proc: vmcore - use kzalloc in get_new_element()
[linux-2.6/btrfs-unstable.git] / drivers / block / cciss.c
blobc7a527c08a0980d542c1fffbd30687bbc95289d0
1 /*
2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17 * 02111-1307, USA.
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/hdreg.h>
39 #include <linux/spinlock.h>
40 #include <linux/compat.h>
41 #include <asm/uaccess.h>
42 #include <asm/io.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/blkdev.h>
46 #include <linux/genhd.h>
47 #include <linux/completion.h>
48 #include <scsi/scsi.h>
49 #include <scsi/sg.h>
50 #include <scsi/scsi_ioctl.h>
51 #include <linux/cdrom.h>
52 #include <linux/scatterlist.h>
53 #include <linux/kthread.h>
55 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
56 #define DRIVER_NAME "HP CISS Driver (v 3.6.20)"
57 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 20)
59 /* Embedded module documentation macros - see modules.h */
60 MODULE_AUTHOR("Hewlett-Packard Company");
61 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
62 MODULE_SUPPORTED_DEVICE("HP SA5i SA5i+ SA532 SA5300 SA5312 SA641 SA642 SA6400"
63 " SA6i P600 P800 P400 P400i E200 E200i E500 P700m"
64 " Smart Array G2 Series SAS/SATA Controllers");
65 MODULE_VERSION("3.6.20");
66 MODULE_LICENSE("GPL");
68 #include "cciss_cmd.h"
69 #include "cciss.h"
70 #include <linux/cciss_ioctl.h>
72 /* define the PCI info for the cards we can control */
73 static const struct pci_device_id cciss_pci_device_id[] = {
74 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISS, 0x0E11, 0x4070},
75 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4080},
76 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4082},
77 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSB, 0x0E11, 0x4083},
78 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x4091},
79 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409A},
80 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409B},
81 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409C},
82 {PCI_VENDOR_ID_COMPAQ, PCI_DEVICE_ID_COMPAQ_CISSC, 0x0E11, 0x409D},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSA, 0x103C, 0x3225},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3223},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3234},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3235},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3211},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3212},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3213},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3214},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSD, 0x103C, 0x3215},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x3237},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSC, 0x103C, 0x323D},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
102 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
103 {0,}
106 MODULE_DEVICE_TABLE(pci, cciss_pci_device_id);
108 /* board_id = Subsystem Device ID & Vendor ID
109 * product = Marketing Name for the board
110 * access = Address of the struct of function pointers
112 static struct board_type products[] = {
113 {0x40700E11, "Smart Array 5300", &SA5_access},
114 {0x40800E11, "Smart Array 5i", &SA5B_access},
115 {0x40820E11, "Smart Array 532", &SA5B_access},
116 {0x40830E11, "Smart Array 5312", &SA5B_access},
117 {0x409A0E11, "Smart Array 641", &SA5_access},
118 {0x409B0E11, "Smart Array 642", &SA5_access},
119 {0x409C0E11, "Smart Array 6400", &SA5_access},
120 {0x409D0E11, "Smart Array 6400 EM", &SA5_access},
121 {0x40910E11, "Smart Array 6i", &SA5_access},
122 {0x3225103C, "Smart Array P600", &SA5_access},
123 {0x3223103C, "Smart Array P800", &SA5_access},
124 {0x3234103C, "Smart Array P400", &SA5_access},
125 {0x3235103C, "Smart Array P400i", &SA5_access},
126 {0x3211103C, "Smart Array E200i", &SA5_access},
127 {0x3212103C, "Smart Array E200", &SA5_access},
128 {0x3213103C, "Smart Array E200i", &SA5_access},
129 {0x3214103C, "Smart Array E200i", &SA5_access},
130 {0x3215103C, "Smart Array E200i", &SA5_access},
131 {0x3237103C, "Smart Array E500", &SA5_access},
132 {0x323D103C, "Smart Array P700m", &SA5_access},
133 {0x3241103C, "Smart Array P212", &SA5_access},
134 {0x3243103C, "Smart Array P410", &SA5_access},
135 {0x3245103C, "Smart Array P410i", &SA5_access},
136 {0x3247103C, "Smart Array P411", &SA5_access},
137 {0x3249103C, "Smart Array P812", &SA5_access},
138 {0x324A103C, "Smart Array P712m", &SA5_access},
139 {0x324B103C, "Smart Array P711m", &SA5_access},
140 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
143 /* How long to wait (in milliseconds) for board to go into simple mode */
144 #define MAX_CONFIG_WAIT 30000
145 #define MAX_IOCTL_CONFIG_WAIT 1000
147 /*define how many times we will try a command because of bus resets */
148 #define MAX_CMD_RETRIES 3
150 #define MAX_CTLR 32
152 /* Originally cciss driver only supports 8 major numbers */
153 #define MAX_CTLR_ORIG 8
155 static ctlr_info_t *hba[MAX_CTLR];
157 static void do_cciss_request(struct request_queue *q);
158 static irqreturn_t do_cciss_intr(int irq, void *dev_id);
159 static int cciss_open(struct block_device *bdev, fmode_t mode);
160 static int cciss_release(struct gendisk *disk, fmode_t mode);
161 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
162 unsigned int cmd, unsigned long arg);
163 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo);
165 static int cciss_revalidate(struct gendisk *disk);
166 static int rebuild_lun_table(ctlr_info_t *h, int first_time);
167 static int deregister_disk(ctlr_info_t *h, int drv_index,
168 int clear_all);
170 static void cciss_read_capacity(int ctlr, int logvol, int withirq,
171 sector_t *total_size, unsigned int *block_size);
172 static void cciss_read_capacity_16(int ctlr, int logvol, int withirq,
173 sector_t *total_size, unsigned int *block_size);
174 static void cciss_geometry_inquiry(int ctlr, int logvol,
175 int withirq, sector_t total_size,
176 unsigned int block_size, InquiryData_struct *inq_buff,
177 drive_info_struct *drv);
178 static void __devinit cciss_interrupt_mode(ctlr_info_t *, struct pci_dev *,
179 __u32);
180 static void start_io(ctlr_info_t *h);
181 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
182 __u8 page_code, unsigned char *scsi3addr, int cmd_type);
183 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
184 __u8 page_code, unsigned char scsi3addr[],
185 int cmd_type);
186 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
187 int attempt_retry);
188 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c);
190 static void fail_all_cmds(unsigned long ctlr);
191 static int scan_thread(void *data);
192 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c);
194 #ifdef CONFIG_PROC_FS
195 static void cciss_procinit(int i);
196 #else
197 static void cciss_procinit(int i)
200 #endif /* CONFIG_PROC_FS */
202 #ifdef CONFIG_COMPAT
203 static int cciss_compat_ioctl(struct block_device *, fmode_t,
204 unsigned, unsigned long);
205 #endif
207 static struct block_device_operations cciss_fops = {
208 .owner = THIS_MODULE,
209 .open = cciss_open,
210 .release = cciss_release,
211 .locked_ioctl = cciss_ioctl,
212 .getgeo = cciss_getgeo,
213 #ifdef CONFIG_COMPAT
214 .compat_ioctl = cciss_compat_ioctl,
215 #endif
216 .revalidate_disk = cciss_revalidate,
220 * Enqueuing and dequeuing functions for cmdlists.
222 static inline void addQ(struct hlist_head *list, CommandList_struct *c)
224 hlist_add_head(&c->list, list);
227 static inline void removeQ(CommandList_struct *c)
229 if (WARN_ON(hlist_unhashed(&c->list)))
230 return;
232 hlist_del_init(&c->list);
235 #include "cciss_scsi.c" /* For SCSI tape support */
237 #define RAID_UNKNOWN 6
239 #ifdef CONFIG_PROC_FS
242 * Report information about this controller.
244 #define ENG_GIG 1000000000
245 #define ENG_GIG_FACTOR (ENG_GIG/512)
246 #define ENGAGE_SCSI "engage scsi"
247 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
248 "UNKNOWN"
251 static struct proc_dir_entry *proc_cciss;
253 static void cciss_seq_show_header(struct seq_file *seq)
255 ctlr_info_t *h = seq->private;
257 seq_printf(seq, "%s: HP %s Controller\n"
258 "Board ID: 0x%08lx\n"
259 "Firmware Version: %c%c%c%c\n"
260 "IRQ: %d\n"
261 "Logical drives: %d\n"
262 "Current Q depth: %d\n"
263 "Current # commands on controller: %d\n"
264 "Max Q depth since init: %d\n"
265 "Max # commands on controller since init: %d\n"
266 "Max SG entries since init: %d\n",
267 h->devname,
268 h->product_name,
269 (unsigned long)h->board_id,
270 h->firm_ver[0], h->firm_ver[1], h->firm_ver[2],
271 h->firm_ver[3], (unsigned int)h->intr[SIMPLE_MODE_INT],
272 h->num_luns,
273 h->Qdepth, h->commands_outstanding,
274 h->maxQsinceinit, h->max_outstanding, h->maxSG);
276 #ifdef CONFIG_CISS_SCSI_TAPE
277 cciss_seq_tape_report(seq, h->ctlr);
278 #endif /* CONFIG_CISS_SCSI_TAPE */
281 static void *cciss_seq_start(struct seq_file *seq, loff_t *pos)
283 ctlr_info_t *h = seq->private;
284 unsigned ctlr = h->ctlr;
285 unsigned long flags;
287 /* prevent displaying bogus info during configuration
288 * or deconfiguration of a logical volume
290 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
291 if (h->busy_configuring) {
292 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
293 return ERR_PTR(-EBUSY);
295 h->busy_configuring = 1;
296 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
298 if (*pos == 0)
299 cciss_seq_show_header(seq);
301 return pos;
304 static int cciss_seq_show(struct seq_file *seq, void *v)
306 sector_t vol_sz, vol_sz_frac;
307 ctlr_info_t *h = seq->private;
308 unsigned ctlr = h->ctlr;
309 loff_t *pos = v;
310 drive_info_struct *drv = &h->drv[*pos];
312 if (*pos > h->highest_lun)
313 return 0;
315 if (drv->heads == 0)
316 return 0;
318 vol_sz = drv->nr_blocks;
319 vol_sz_frac = sector_div(vol_sz, ENG_GIG_FACTOR);
320 vol_sz_frac *= 100;
321 sector_div(vol_sz_frac, ENG_GIG_FACTOR);
323 if (drv->raid_level > 5)
324 drv->raid_level = RAID_UNKNOWN;
325 seq_printf(seq, "cciss/c%dd%d:"
326 "\t%4u.%02uGB\tRAID %s\n",
327 ctlr, (int) *pos, (int)vol_sz, (int)vol_sz_frac,
328 raid_label[drv->raid_level]);
329 return 0;
332 static void *cciss_seq_next(struct seq_file *seq, void *v, loff_t *pos)
334 ctlr_info_t *h = seq->private;
336 if (*pos > h->highest_lun)
337 return NULL;
338 *pos += 1;
340 return pos;
343 static void cciss_seq_stop(struct seq_file *seq, void *v)
345 ctlr_info_t *h = seq->private;
347 /* Only reset h->busy_configuring if we succeeded in setting
348 * it during cciss_seq_start. */
349 if (v == ERR_PTR(-EBUSY))
350 return;
352 h->busy_configuring = 0;
355 static struct seq_operations cciss_seq_ops = {
356 .start = cciss_seq_start,
357 .show = cciss_seq_show,
358 .next = cciss_seq_next,
359 .stop = cciss_seq_stop,
362 static int cciss_seq_open(struct inode *inode, struct file *file)
364 int ret = seq_open(file, &cciss_seq_ops);
365 struct seq_file *seq = file->private_data;
367 if (!ret)
368 seq->private = PDE(inode)->data;
370 return ret;
373 static ssize_t
374 cciss_proc_write(struct file *file, const char __user *buf,
375 size_t length, loff_t *ppos)
377 int err;
378 char *buffer;
380 #ifndef CONFIG_CISS_SCSI_TAPE
381 return -EINVAL;
382 #endif
384 if (!buf || length > PAGE_SIZE - 1)
385 return -EINVAL;
387 buffer = (char *)__get_free_page(GFP_KERNEL);
388 if (!buffer)
389 return -ENOMEM;
391 err = -EFAULT;
392 if (copy_from_user(buffer, buf, length))
393 goto out;
394 buffer[length] = '\0';
396 #ifdef CONFIG_CISS_SCSI_TAPE
397 if (strncmp(ENGAGE_SCSI, buffer, sizeof ENGAGE_SCSI - 1) == 0) {
398 struct seq_file *seq = file->private_data;
399 ctlr_info_t *h = seq->private;
400 int rc;
402 rc = cciss_engage_scsi(h->ctlr);
403 if (rc != 0)
404 err = -rc;
405 else
406 err = length;
407 } else
408 #endif /* CONFIG_CISS_SCSI_TAPE */
409 err = -EINVAL;
410 /* might be nice to have "disengage" too, but it's not
411 safely possible. (only 1 module use count, lock issues.) */
413 out:
414 free_page((unsigned long)buffer);
415 return err;
418 static struct file_operations cciss_proc_fops = {
419 .owner = THIS_MODULE,
420 .open = cciss_seq_open,
421 .read = seq_read,
422 .llseek = seq_lseek,
423 .release = seq_release,
424 .write = cciss_proc_write,
427 static void __devinit cciss_procinit(int i)
429 struct proc_dir_entry *pde;
431 if (proc_cciss == NULL)
432 proc_cciss = proc_mkdir("driver/cciss", NULL);
433 if (!proc_cciss)
434 return;
435 pde = proc_create_data(hba[i]->devname, S_IWUSR | S_IRUSR | S_IRGRP |
436 S_IROTH, proc_cciss,
437 &cciss_proc_fops, hba[i]);
439 #endif /* CONFIG_PROC_FS */
441 #define MAX_PRODUCT_NAME_LEN 19
443 #define to_hba(n) container_of(n, struct ctlr_info, dev)
444 #define to_drv(n) container_of(n, drive_info_struct, dev)
446 static struct device_type cciss_host_type = {
447 .name = "cciss_host",
450 static ssize_t dev_show_unique_id(struct device *dev,
451 struct device_attribute *attr,
452 char *buf)
454 drive_info_struct *drv = to_drv(dev);
455 struct ctlr_info *h = to_hba(drv->dev.parent);
456 __u8 sn[16];
457 unsigned long flags;
458 int ret = 0;
460 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
461 if (h->busy_configuring)
462 ret = -EBUSY;
463 else
464 memcpy(sn, drv->serial_no, sizeof(sn));
465 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
467 if (ret)
468 return ret;
469 else
470 return snprintf(buf, 16 * 2 + 2,
471 "%02X%02X%02X%02X%02X%02X%02X%02X"
472 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
473 sn[0], sn[1], sn[2], sn[3],
474 sn[4], sn[5], sn[6], sn[7],
475 sn[8], sn[9], sn[10], sn[11],
476 sn[12], sn[13], sn[14], sn[15]);
478 DEVICE_ATTR(unique_id, S_IRUGO, dev_show_unique_id, NULL);
480 static ssize_t dev_show_vendor(struct device *dev,
481 struct device_attribute *attr,
482 char *buf)
484 drive_info_struct *drv = to_drv(dev);
485 struct ctlr_info *h = to_hba(drv->dev.parent);
486 char vendor[VENDOR_LEN + 1];
487 unsigned long flags;
488 int ret = 0;
490 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
491 if (h->busy_configuring)
492 ret = -EBUSY;
493 else
494 memcpy(vendor, drv->vendor, VENDOR_LEN + 1);
495 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
497 if (ret)
498 return ret;
499 else
500 return snprintf(buf, sizeof(vendor) + 1, "%s\n", drv->vendor);
502 DEVICE_ATTR(vendor, S_IRUGO, dev_show_vendor, NULL);
504 static ssize_t dev_show_model(struct device *dev,
505 struct device_attribute *attr,
506 char *buf)
508 drive_info_struct *drv = to_drv(dev);
509 struct ctlr_info *h = to_hba(drv->dev.parent);
510 char model[MODEL_LEN + 1];
511 unsigned long flags;
512 int ret = 0;
514 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
515 if (h->busy_configuring)
516 ret = -EBUSY;
517 else
518 memcpy(model, drv->model, MODEL_LEN + 1);
519 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
521 if (ret)
522 return ret;
523 else
524 return snprintf(buf, sizeof(model) + 1, "%s\n", drv->model);
526 DEVICE_ATTR(model, S_IRUGO, dev_show_model, NULL);
528 static ssize_t dev_show_rev(struct device *dev,
529 struct device_attribute *attr,
530 char *buf)
532 drive_info_struct *drv = to_drv(dev);
533 struct ctlr_info *h = to_hba(drv->dev.parent);
534 char rev[REV_LEN + 1];
535 unsigned long flags;
536 int ret = 0;
538 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
539 if (h->busy_configuring)
540 ret = -EBUSY;
541 else
542 memcpy(rev, drv->rev, REV_LEN + 1);
543 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
545 if (ret)
546 return ret;
547 else
548 return snprintf(buf, sizeof(rev) + 1, "%s\n", drv->rev);
550 DEVICE_ATTR(rev, S_IRUGO, dev_show_rev, NULL);
552 static struct attribute *cciss_dev_attrs[] = {
553 &dev_attr_unique_id.attr,
554 &dev_attr_model.attr,
555 &dev_attr_vendor.attr,
556 &dev_attr_rev.attr,
557 NULL
560 static struct attribute_group cciss_dev_attr_group = {
561 .attrs = cciss_dev_attrs,
564 static struct attribute_group *cciss_dev_attr_groups[] = {
565 &cciss_dev_attr_group,
566 NULL
569 static struct device_type cciss_dev_type = {
570 .name = "cciss_device",
571 .groups = cciss_dev_attr_groups,
574 static struct bus_type cciss_bus_type = {
575 .name = "cciss",
580 * Initialize sysfs entry for each controller. This sets up and registers
581 * the 'cciss#' directory for each individual controller under
582 * /sys/bus/pci/devices/<dev>/.
584 static int cciss_create_hba_sysfs_entry(struct ctlr_info *h)
586 device_initialize(&h->dev);
587 h->dev.type = &cciss_host_type;
588 h->dev.bus = &cciss_bus_type;
589 dev_set_name(&h->dev, "%s", h->devname);
590 h->dev.parent = &h->pdev->dev;
592 return device_add(&h->dev);
596 * Remove sysfs entries for an hba.
598 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info *h)
600 device_del(&h->dev);
604 * Initialize sysfs for each logical drive. This sets up and registers
605 * the 'c#d#' directory for each individual logical drive under
606 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
607 * /sys/block/cciss!c#d# to this entry.
609 static int cciss_create_ld_sysfs_entry(struct ctlr_info *h,
610 drive_info_struct *drv,
611 int drv_index)
613 device_initialize(&drv->dev);
614 drv->dev.type = &cciss_dev_type;
615 drv->dev.bus = &cciss_bus_type;
616 dev_set_name(&drv->dev, "c%dd%d", h->ctlr, drv_index);
617 drv->dev.parent = &h->dev;
618 return device_add(&drv->dev);
622 * Remove sysfs entries for a logical drive.
624 static void cciss_destroy_ld_sysfs_entry(drive_info_struct *drv)
626 device_del(&drv->dev);
630 * For operations that cannot sleep, a command block is allocated at init,
631 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
632 * which ones are free or in use. For operations that can wait for kmalloc
633 * to possible sleep, this routine can be called with get_from_pool set to 0.
634 * cmd_free() MUST be called with a got_from_pool set to 0 if cmd_alloc was.
636 static CommandList_struct *cmd_alloc(ctlr_info_t *h, int get_from_pool)
638 CommandList_struct *c;
639 int i;
640 u64bit temp64;
641 dma_addr_t cmd_dma_handle, err_dma_handle;
643 if (!get_from_pool) {
644 c = (CommandList_struct *) pci_alloc_consistent(h->pdev,
645 sizeof(CommandList_struct), &cmd_dma_handle);
646 if (c == NULL)
647 return NULL;
648 memset(c, 0, sizeof(CommandList_struct));
650 c->cmdindex = -1;
652 c->err_info = (ErrorInfo_struct *)
653 pci_alloc_consistent(h->pdev, sizeof(ErrorInfo_struct),
654 &err_dma_handle);
656 if (c->err_info == NULL) {
657 pci_free_consistent(h->pdev,
658 sizeof(CommandList_struct), c, cmd_dma_handle);
659 return NULL;
661 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
662 } else { /* get it out of the controllers pool */
664 do {
665 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
666 if (i == h->nr_cmds)
667 return NULL;
668 } while (test_and_set_bit
669 (i & (BITS_PER_LONG - 1),
670 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
671 #ifdef CCISS_DEBUG
672 printk(KERN_DEBUG "cciss: using command buffer %d\n", i);
673 #endif
674 c = h->cmd_pool + i;
675 memset(c, 0, sizeof(CommandList_struct));
676 cmd_dma_handle = h->cmd_pool_dhandle
677 + i * sizeof(CommandList_struct);
678 c->err_info = h->errinfo_pool + i;
679 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
680 err_dma_handle = h->errinfo_pool_dhandle
681 + i * sizeof(ErrorInfo_struct);
682 h->nr_allocs++;
684 c->cmdindex = i;
687 INIT_HLIST_NODE(&c->list);
688 c->busaddr = (__u32) cmd_dma_handle;
689 temp64.val = (__u64) err_dma_handle;
690 c->ErrDesc.Addr.lower = temp64.val32.lower;
691 c->ErrDesc.Addr.upper = temp64.val32.upper;
692 c->ErrDesc.Len = sizeof(ErrorInfo_struct);
694 c->ctlr = h->ctlr;
695 return c;
699 * Frees a command block that was previously allocated with cmd_alloc().
701 static void cmd_free(ctlr_info_t *h, CommandList_struct *c, int got_from_pool)
703 int i;
704 u64bit temp64;
706 if (!got_from_pool) {
707 temp64.val32.lower = c->ErrDesc.Addr.lower;
708 temp64.val32.upper = c->ErrDesc.Addr.upper;
709 pci_free_consistent(h->pdev, sizeof(ErrorInfo_struct),
710 c->err_info, (dma_addr_t) temp64.val);
711 pci_free_consistent(h->pdev, sizeof(CommandList_struct),
712 c, (dma_addr_t) c->busaddr);
713 } else {
714 i = c - h->cmd_pool;
715 clear_bit(i & (BITS_PER_LONG - 1),
716 h->cmd_pool_bits + (i / BITS_PER_LONG));
717 h->nr_frees++;
721 static inline ctlr_info_t *get_host(struct gendisk *disk)
723 return disk->queue->queuedata;
726 static inline drive_info_struct *get_drv(struct gendisk *disk)
728 return disk->private_data;
732 * Open. Make sure the device is really there.
734 static int cciss_open(struct block_device *bdev, fmode_t mode)
736 ctlr_info_t *host = get_host(bdev->bd_disk);
737 drive_info_struct *drv = get_drv(bdev->bd_disk);
739 #ifdef CCISS_DEBUG
740 printk(KERN_DEBUG "cciss_open %s\n", bdev->bd_disk->disk_name);
741 #endif /* CCISS_DEBUG */
743 if (host->busy_initializing || drv->busy_configuring)
744 return -EBUSY;
746 * Root is allowed to open raw volume zero even if it's not configured
747 * so array config can still work. Root is also allowed to open any
748 * volume that has a LUN ID, so it can issue IOCTL to reread the
749 * disk information. I don't think I really like this
750 * but I'm already using way to many device nodes to claim another one
751 * for "raw controller".
753 if (drv->heads == 0) {
754 if (MINOR(bdev->bd_dev) != 0) { /* not node 0? */
755 /* if not node 0 make sure it is a partition = 0 */
756 if (MINOR(bdev->bd_dev) & 0x0f) {
757 return -ENXIO;
758 /* if it is, make sure we have a LUN ID */
759 } else if (drv->LunID == 0) {
760 return -ENXIO;
763 if (!capable(CAP_SYS_ADMIN))
764 return -EPERM;
766 drv->usage_count++;
767 host->usage_count++;
768 return 0;
772 * Close. Sync first.
774 static int cciss_release(struct gendisk *disk, fmode_t mode)
776 ctlr_info_t *host = get_host(disk);
777 drive_info_struct *drv = get_drv(disk);
779 #ifdef CCISS_DEBUG
780 printk(KERN_DEBUG "cciss_release %s\n", disk->disk_name);
781 #endif /* CCISS_DEBUG */
783 drv->usage_count--;
784 host->usage_count--;
785 return 0;
788 #ifdef CONFIG_COMPAT
790 static int do_ioctl(struct block_device *bdev, fmode_t mode,
791 unsigned cmd, unsigned long arg)
793 int ret;
794 lock_kernel();
795 ret = cciss_ioctl(bdev, mode, cmd, arg);
796 unlock_kernel();
797 return ret;
800 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
801 unsigned cmd, unsigned long arg);
802 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
803 unsigned cmd, unsigned long arg);
805 static int cciss_compat_ioctl(struct block_device *bdev, fmode_t mode,
806 unsigned cmd, unsigned long arg)
808 switch (cmd) {
809 case CCISS_GETPCIINFO:
810 case CCISS_GETINTINFO:
811 case CCISS_SETINTINFO:
812 case CCISS_GETNODENAME:
813 case CCISS_SETNODENAME:
814 case CCISS_GETHEARTBEAT:
815 case CCISS_GETBUSTYPES:
816 case CCISS_GETFIRMVER:
817 case CCISS_GETDRIVVER:
818 case CCISS_REVALIDVOLS:
819 case CCISS_DEREGDISK:
820 case CCISS_REGNEWDISK:
821 case CCISS_REGNEWD:
822 case CCISS_RESCANDISK:
823 case CCISS_GETLUNINFO:
824 return do_ioctl(bdev, mode, cmd, arg);
826 case CCISS_PASSTHRU32:
827 return cciss_ioctl32_passthru(bdev, mode, cmd, arg);
828 case CCISS_BIG_PASSTHRU32:
829 return cciss_ioctl32_big_passthru(bdev, mode, cmd, arg);
831 default:
832 return -ENOIOCTLCMD;
836 static int cciss_ioctl32_passthru(struct block_device *bdev, fmode_t mode,
837 unsigned cmd, unsigned long arg)
839 IOCTL32_Command_struct __user *arg32 =
840 (IOCTL32_Command_struct __user *) arg;
841 IOCTL_Command_struct arg64;
842 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
843 int err;
844 u32 cp;
846 err = 0;
847 err |=
848 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
849 sizeof(arg64.LUN_info));
850 err |=
851 copy_from_user(&arg64.Request, &arg32->Request,
852 sizeof(arg64.Request));
853 err |=
854 copy_from_user(&arg64.error_info, &arg32->error_info,
855 sizeof(arg64.error_info));
856 err |= get_user(arg64.buf_size, &arg32->buf_size);
857 err |= get_user(cp, &arg32->buf);
858 arg64.buf = compat_ptr(cp);
859 err |= copy_to_user(p, &arg64, sizeof(arg64));
861 if (err)
862 return -EFAULT;
864 err = do_ioctl(bdev, mode, CCISS_PASSTHRU, (unsigned long)p);
865 if (err)
866 return err;
867 err |=
868 copy_in_user(&arg32->error_info, &p->error_info,
869 sizeof(arg32->error_info));
870 if (err)
871 return -EFAULT;
872 return err;
875 static int cciss_ioctl32_big_passthru(struct block_device *bdev, fmode_t mode,
876 unsigned cmd, unsigned long arg)
878 BIG_IOCTL32_Command_struct __user *arg32 =
879 (BIG_IOCTL32_Command_struct __user *) arg;
880 BIG_IOCTL_Command_struct arg64;
881 BIG_IOCTL_Command_struct __user *p =
882 compat_alloc_user_space(sizeof(arg64));
883 int err;
884 u32 cp;
886 err = 0;
887 err |=
888 copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
889 sizeof(arg64.LUN_info));
890 err |=
891 copy_from_user(&arg64.Request, &arg32->Request,
892 sizeof(arg64.Request));
893 err |=
894 copy_from_user(&arg64.error_info, &arg32->error_info,
895 sizeof(arg64.error_info));
896 err |= get_user(arg64.buf_size, &arg32->buf_size);
897 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
898 err |= get_user(cp, &arg32->buf);
899 arg64.buf = compat_ptr(cp);
900 err |= copy_to_user(p, &arg64, sizeof(arg64));
902 if (err)
903 return -EFAULT;
905 err = do_ioctl(bdev, mode, CCISS_BIG_PASSTHRU, (unsigned long)p);
906 if (err)
907 return err;
908 err |=
909 copy_in_user(&arg32->error_info, &p->error_info,
910 sizeof(arg32->error_info));
911 if (err)
912 return -EFAULT;
913 return err;
915 #endif
917 static int cciss_getgeo(struct block_device *bdev, struct hd_geometry *geo)
919 drive_info_struct *drv = get_drv(bdev->bd_disk);
921 if (!drv->cylinders)
922 return -ENXIO;
924 geo->heads = drv->heads;
925 geo->sectors = drv->sectors;
926 geo->cylinders = drv->cylinders;
927 return 0;
930 static void check_ioctl_unit_attention(ctlr_info_t *host, CommandList_struct *c)
932 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
933 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
934 (void)check_for_unit_attention(host, c);
937 * ioctl
939 static int cciss_ioctl(struct block_device *bdev, fmode_t mode,
940 unsigned int cmd, unsigned long arg)
942 struct gendisk *disk = bdev->bd_disk;
943 ctlr_info_t *host = get_host(disk);
944 drive_info_struct *drv = get_drv(disk);
945 int ctlr = host->ctlr;
946 void __user *argp = (void __user *)arg;
948 #ifdef CCISS_DEBUG
949 printk(KERN_DEBUG "cciss_ioctl: Called with cmd=%x %lx\n", cmd, arg);
950 #endif /* CCISS_DEBUG */
952 switch (cmd) {
953 case CCISS_GETPCIINFO:
955 cciss_pci_info_struct pciinfo;
957 if (!arg)
958 return -EINVAL;
959 pciinfo.domain = pci_domain_nr(host->pdev->bus);
960 pciinfo.bus = host->pdev->bus->number;
961 pciinfo.dev_fn = host->pdev->devfn;
962 pciinfo.board_id = host->board_id;
963 if (copy_to_user
964 (argp, &pciinfo, sizeof(cciss_pci_info_struct)))
965 return -EFAULT;
966 return 0;
968 case CCISS_GETINTINFO:
970 cciss_coalint_struct intinfo;
971 if (!arg)
972 return -EINVAL;
973 intinfo.delay =
974 readl(&host->cfgtable->HostWrite.CoalIntDelay);
975 intinfo.count =
976 readl(&host->cfgtable->HostWrite.CoalIntCount);
977 if (copy_to_user
978 (argp, &intinfo, sizeof(cciss_coalint_struct)))
979 return -EFAULT;
980 return 0;
982 case CCISS_SETINTINFO:
984 cciss_coalint_struct intinfo;
985 unsigned long flags;
986 int i;
988 if (!arg)
989 return -EINVAL;
990 if (!capable(CAP_SYS_ADMIN))
991 return -EPERM;
992 if (copy_from_user
993 (&intinfo, argp, sizeof(cciss_coalint_struct)))
994 return -EFAULT;
995 if ((intinfo.delay == 0) && (intinfo.count == 0))
997 // printk("cciss_ioctl: delay and count cannot be 0\n");
998 return -EINVAL;
1000 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1001 /* Update the field, and then ring the doorbell */
1002 writel(intinfo.delay,
1003 &(host->cfgtable->HostWrite.CoalIntDelay));
1004 writel(intinfo.count,
1005 &(host->cfgtable->HostWrite.CoalIntCount));
1006 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1008 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1009 if (!(readl(host->vaddr + SA5_DOORBELL)
1010 & CFGTBL_ChangeReq))
1011 break;
1012 /* delay and try again */
1013 udelay(1000);
1015 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1016 if (i >= MAX_IOCTL_CONFIG_WAIT)
1017 return -EAGAIN;
1018 return 0;
1020 case CCISS_GETNODENAME:
1022 NodeName_type NodeName;
1023 int i;
1025 if (!arg)
1026 return -EINVAL;
1027 for (i = 0; i < 16; i++)
1028 NodeName[i] =
1029 readb(&host->cfgtable->ServerName[i]);
1030 if (copy_to_user(argp, NodeName, sizeof(NodeName_type)))
1031 return -EFAULT;
1032 return 0;
1034 case CCISS_SETNODENAME:
1036 NodeName_type NodeName;
1037 unsigned long flags;
1038 int i;
1040 if (!arg)
1041 return -EINVAL;
1042 if (!capable(CAP_SYS_ADMIN))
1043 return -EPERM;
1045 if (copy_from_user
1046 (NodeName, argp, sizeof(NodeName_type)))
1047 return -EFAULT;
1049 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1051 /* Update the field, and then ring the doorbell */
1052 for (i = 0; i < 16; i++)
1053 writeb(NodeName[i],
1054 &host->cfgtable->ServerName[i]);
1056 writel(CFGTBL_ChangeReq, host->vaddr + SA5_DOORBELL);
1058 for (i = 0; i < MAX_IOCTL_CONFIG_WAIT; i++) {
1059 if (!(readl(host->vaddr + SA5_DOORBELL)
1060 & CFGTBL_ChangeReq))
1061 break;
1062 /* delay and try again */
1063 udelay(1000);
1065 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1066 if (i >= MAX_IOCTL_CONFIG_WAIT)
1067 return -EAGAIN;
1068 return 0;
1071 case CCISS_GETHEARTBEAT:
1073 Heartbeat_type heartbeat;
1075 if (!arg)
1076 return -EINVAL;
1077 heartbeat = readl(&host->cfgtable->HeartBeat);
1078 if (copy_to_user
1079 (argp, &heartbeat, sizeof(Heartbeat_type)))
1080 return -EFAULT;
1081 return 0;
1083 case CCISS_GETBUSTYPES:
1085 BusTypes_type BusTypes;
1087 if (!arg)
1088 return -EINVAL;
1089 BusTypes = readl(&host->cfgtable->BusTypes);
1090 if (copy_to_user
1091 (argp, &BusTypes, sizeof(BusTypes_type)))
1092 return -EFAULT;
1093 return 0;
1095 case CCISS_GETFIRMVER:
1097 FirmwareVer_type firmware;
1099 if (!arg)
1100 return -EINVAL;
1101 memcpy(firmware, host->firm_ver, 4);
1103 if (copy_to_user
1104 (argp, firmware, sizeof(FirmwareVer_type)))
1105 return -EFAULT;
1106 return 0;
1108 case CCISS_GETDRIVVER:
1110 DriverVer_type DriverVer = DRIVER_VERSION;
1112 if (!arg)
1113 return -EINVAL;
1115 if (copy_to_user
1116 (argp, &DriverVer, sizeof(DriverVer_type)))
1117 return -EFAULT;
1118 return 0;
1121 case CCISS_DEREGDISK:
1122 case CCISS_REGNEWD:
1123 case CCISS_REVALIDVOLS:
1124 return rebuild_lun_table(host, 0);
1126 case CCISS_GETLUNINFO:{
1127 LogvolInfo_struct luninfo;
1129 luninfo.LunID = drv->LunID;
1130 luninfo.num_opens = drv->usage_count;
1131 luninfo.num_parts = 0;
1132 if (copy_to_user(argp, &luninfo,
1133 sizeof(LogvolInfo_struct)))
1134 return -EFAULT;
1135 return 0;
1137 case CCISS_PASSTHRU:
1139 IOCTL_Command_struct iocommand;
1140 CommandList_struct *c;
1141 char *buff = NULL;
1142 u64bit temp64;
1143 unsigned long flags;
1144 DECLARE_COMPLETION_ONSTACK(wait);
1146 if (!arg)
1147 return -EINVAL;
1149 if (!capable(CAP_SYS_RAWIO))
1150 return -EPERM;
1152 if (copy_from_user
1153 (&iocommand, argp, sizeof(IOCTL_Command_struct)))
1154 return -EFAULT;
1155 if ((iocommand.buf_size < 1) &&
1156 (iocommand.Request.Type.Direction != XFER_NONE)) {
1157 return -EINVAL;
1159 #if 0 /* 'buf_size' member is 16-bits, and always smaller than kmalloc limit */
1160 /* Check kmalloc limits */
1161 if (iocommand.buf_size > 128000)
1162 return -EINVAL;
1163 #endif
1164 if (iocommand.buf_size > 0) {
1165 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
1166 if (buff == NULL)
1167 return -EFAULT;
1169 if (iocommand.Request.Type.Direction == XFER_WRITE) {
1170 /* Copy the data into the buffer we created */
1171 if (copy_from_user
1172 (buff, iocommand.buf, iocommand.buf_size)) {
1173 kfree(buff);
1174 return -EFAULT;
1176 } else {
1177 memset(buff, 0, iocommand.buf_size);
1179 if ((c = cmd_alloc(host, 0)) == NULL) {
1180 kfree(buff);
1181 return -ENOMEM;
1183 // Fill in the command type
1184 c->cmd_type = CMD_IOCTL_PEND;
1185 // Fill in Command Header
1186 c->Header.ReplyQueue = 0; // unused in simple mode
1187 if (iocommand.buf_size > 0) // buffer to fill
1189 c->Header.SGList = 1;
1190 c->Header.SGTotal = 1;
1191 } else // no buffers to fill
1193 c->Header.SGList = 0;
1194 c->Header.SGTotal = 0;
1196 c->Header.LUN = iocommand.LUN_info;
1197 c->Header.Tag.lower = c->busaddr; // use the kernel address the cmd block for tag
1199 // Fill in Request block
1200 c->Request = iocommand.Request;
1202 // Fill in the scatter gather information
1203 if (iocommand.buf_size > 0) {
1204 temp64.val = pci_map_single(host->pdev, buff,
1205 iocommand.buf_size,
1206 PCI_DMA_BIDIRECTIONAL);
1207 c->SG[0].Addr.lower = temp64.val32.lower;
1208 c->SG[0].Addr.upper = temp64.val32.upper;
1209 c->SG[0].Len = iocommand.buf_size;
1210 c->SG[0].Ext = 0; // we are not chaining
1212 c->waiting = &wait;
1214 /* Put the request on the tail of the request queue */
1215 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1216 addQ(&host->reqQ, c);
1217 host->Qdepth++;
1218 start_io(host);
1219 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1221 wait_for_completion(&wait);
1223 /* unlock the buffers from DMA */
1224 temp64.val32.lower = c->SG[0].Addr.lower;
1225 temp64.val32.upper = c->SG[0].Addr.upper;
1226 pci_unmap_single(host->pdev, (dma_addr_t) temp64.val,
1227 iocommand.buf_size,
1228 PCI_DMA_BIDIRECTIONAL);
1230 check_ioctl_unit_attention(host, c);
1232 /* Copy the error information out */
1233 iocommand.error_info = *(c->err_info);
1234 if (copy_to_user
1235 (argp, &iocommand, sizeof(IOCTL_Command_struct))) {
1236 kfree(buff);
1237 cmd_free(host, c, 0);
1238 return -EFAULT;
1241 if (iocommand.Request.Type.Direction == XFER_READ) {
1242 /* Copy the data out of the buffer we created */
1243 if (copy_to_user
1244 (iocommand.buf, buff, iocommand.buf_size)) {
1245 kfree(buff);
1246 cmd_free(host, c, 0);
1247 return -EFAULT;
1250 kfree(buff);
1251 cmd_free(host, c, 0);
1252 return 0;
1254 case CCISS_BIG_PASSTHRU:{
1255 BIG_IOCTL_Command_struct *ioc;
1256 CommandList_struct *c;
1257 unsigned char **buff = NULL;
1258 int *buff_size = NULL;
1259 u64bit temp64;
1260 unsigned long flags;
1261 BYTE sg_used = 0;
1262 int status = 0;
1263 int i;
1264 DECLARE_COMPLETION_ONSTACK(wait);
1265 __u32 left;
1266 __u32 sz;
1267 BYTE __user *data_ptr;
1269 if (!arg)
1270 return -EINVAL;
1271 if (!capable(CAP_SYS_RAWIO))
1272 return -EPERM;
1273 ioc = (BIG_IOCTL_Command_struct *)
1274 kmalloc(sizeof(*ioc), GFP_KERNEL);
1275 if (!ioc) {
1276 status = -ENOMEM;
1277 goto cleanup1;
1279 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
1280 status = -EFAULT;
1281 goto cleanup1;
1283 if ((ioc->buf_size < 1) &&
1284 (ioc->Request.Type.Direction != XFER_NONE)) {
1285 status = -EINVAL;
1286 goto cleanup1;
1288 /* Check kmalloc limits using all SGs */
1289 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
1290 status = -EINVAL;
1291 goto cleanup1;
1293 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
1294 status = -EINVAL;
1295 goto cleanup1;
1297 buff =
1298 kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
1299 if (!buff) {
1300 status = -ENOMEM;
1301 goto cleanup1;
1303 buff_size = kmalloc(MAXSGENTRIES * sizeof(int),
1304 GFP_KERNEL);
1305 if (!buff_size) {
1306 status = -ENOMEM;
1307 goto cleanup1;
1309 left = ioc->buf_size;
1310 data_ptr = ioc->buf;
1311 while (left) {
1312 sz = (left >
1313 ioc->malloc_size) ? ioc->
1314 malloc_size : left;
1315 buff_size[sg_used] = sz;
1316 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
1317 if (buff[sg_used] == NULL) {
1318 status = -ENOMEM;
1319 goto cleanup1;
1321 if (ioc->Request.Type.Direction == XFER_WRITE) {
1322 if (copy_from_user
1323 (buff[sg_used], data_ptr, sz)) {
1324 status = -EFAULT;
1325 goto cleanup1;
1327 } else {
1328 memset(buff[sg_used], 0, sz);
1330 left -= sz;
1331 data_ptr += sz;
1332 sg_used++;
1334 if ((c = cmd_alloc(host, 0)) == NULL) {
1335 status = -ENOMEM;
1336 goto cleanup1;
1338 c->cmd_type = CMD_IOCTL_PEND;
1339 c->Header.ReplyQueue = 0;
1341 if (ioc->buf_size > 0) {
1342 c->Header.SGList = sg_used;
1343 c->Header.SGTotal = sg_used;
1344 } else {
1345 c->Header.SGList = 0;
1346 c->Header.SGTotal = 0;
1348 c->Header.LUN = ioc->LUN_info;
1349 c->Header.Tag.lower = c->busaddr;
1351 c->Request = ioc->Request;
1352 if (ioc->buf_size > 0) {
1353 int i;
1354 for (i = 0; i < sg_used; i++) {
1355 temp64.val =
1356 pci_map_single(host->pdev, buff[i],
1357 buff_size[i],
1358 PCI_DMA_BIDIRECTIONAL);
1359 c->SG[i].Addr.lower =
1360 temp64.val32.lower;
1361 c->SG[i].Addr.upper =
1362 temp64.val32.upper;
1363 c->SG[i].Len = buff_size[i];
1364 c->SG[i].Ext = 0; /* we are not chaining */
1367 c->waiting = &wait;
1368 /* Put the request on the tail of the request queue */
1369 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
1370 addQ(&host->reqQ, c);
1371 host->Qdepth++;
1372 start_io(host);
1373 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
1374 wait_for_completion(&wait);
1375 /* unlock the buffers from DMA */
1376 for (i = 0; i < sg_used; i++) {
1377 temp64.val32.lower = c->SG[i].Addr.lower;
1378 temp64.val32.upper = c->SG[i].Addr.upper;
1379 pci_unmap_single(host->pdev,
1380 (dma_addr_t) temp64.val, buff_size[i],
1381 PCI_DMA_BIDIRECTIONAL);
1383 check_ioctl_unit_attention(host, c);
1384 /* Copy the error information out */
1385 ioc->error_info = *(c->err_info);
1386 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
1387 cmd_free(host, c, 0);
1388 status = -EFAULT;
1389 goto cleanup1;
1391 if (ioc->Request.Type.Direction == XFER_READ) {
1392 /* Copy the data out of the buffer we created */
1393 BYTE __user *ptr = ioc->buf;
1394 for (i = 0; i < sg_used; i++) {
1395 if (copy_to_user
1396 (ptr, buff[i], buff_size[i])) {
1397 cmd_free(host, c, 0);
1398 status = -EFAULT;
1399 goto cleanup1;
1401 ptr += buff_size[i];
1404 cmd_free(host, c, 0);
1405 status = 0;
1406 cleanup1:
1407 if (buff) {
1408 for (i = 0; i < sg_used; i++)
1409 kfree(buff[i]);
1410 kfree(buff);
1412 kfree(buff_size);
1413 kfree(ioc);
1414 return status;
1417 /* scsi_cmd_ioctl handles these, below, though some are not */
1418 /* very meaningful for cciss. SG_IO is the main one people want. */
1420 case SG_GET_VERSION_NUM:
1421 case SG_SET_TIMEOUT:
1422 case SG_GET_TIMEOUT:
1423 case SG_GET_RESERVED_SIZE:
1424 case SG_SET_RESERVED_SIZE:
1425 case SG_EMULATED_HOST:
1426 case SG_IO:
1427 case SCSI_IOCTL_SEND_COMMAND:
1428 return scsi_cmd_ioctl(disk->queue, disk, mode, cmd, argp);
1430 /* scsi_cmd_ioctl would normally handle these, below, but */
1431 /* they aren't a good fit for cciss, as CD-ROMs are */
1432 /* not supported, and we don't have any bus/target/lun */
1433 /* which we present to the kernel. */
1435 case CDROM_SEND_PACKET:
1436 case CDROMCLOSETRAY:
1437 case CDROMEJECT:
1438 case SCSI_IOCTL_GET_IDLUN:
1439 case SCSI_IOCTL_GET_BUS_NUMBER:
1440 default:
1441 return -ENOTTY;
1445 static void cciss_check_queues(ctlr_info_t *h)
1447 int start_queue = h->next_to_run;
1448 int i;
1450 /* check to see if we have maxed out the number of commands that can
1451 * be placed on the queue. If so then exit. We do this check here
1452 * in case the interrupt we serviced was from an ioctl and did not
1453 * free any new commands.
1455 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds)
1456 return;
1458 /* We have room on the queue for more commands. Now we need to queue
1459 * them up. We will also keep track of the next queue to run so
1460 * that every queue gets a chance to be started first.
1462 for (i = 0; i < h->highest_lun + 1; i++) {
1463 int curr_queue = (start_queue + i) % (h->highest_lun + 1);
1464 /* make sure the disk has been added and the drive is real
1465 * because this can be called from the middle of init_one.
1467 if (!(h->drv[curr_queue].queue) || !(h->drv[curr_queue].heads))
1468 continue;
1469 blk_start_queue(h->gendisk[curr_queue]->queue);
1471 /* check to see if we have maxed out the number of commands
1472 * that can be placed on the queue.
1474 if ((find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds)) == h->nr_cmds) {
1475 if (curr_queue == start_queue) {
1476 h->next_to_run =
1477 (start_queue + 1) % (h->highest_lun + 1);
1478 break;
1479 } else {
1480 h->next_to_run = curr_queue;
1481 break;
1487 static void cciss_softirq_done(struct request *rq)
1489 CommandList_struct *cmd = rq->completion_data;
1490 ctlr_info_t *h = hba[cmd->ctlr];
1491 unsigned long flags;
1492 u64bit temp64;
1493 int i, ddir;
1495 if (cmd->Request.Type.Direction == XFER_READ)
1496 ddir = PCI_DMA_FROMDEVICE;
1497 else
1498 ddir = PCI_DMA_TODEVICE;
1500 /* command did not need to be retried */
1501 /* unmap the DMA mapping for all the scatter gather elements */
1502 for (i = 0; i < cmd->Header.SGList; i++) {
1503 temp64.val32.lower = cmd->SG[i].Addr.lower;
1504 temp64.val32.upper = cmd->SG[i].Addr.upper;
1505 pci_unmap_page(h->pdev, temp64.val, cmd->SG[i].Len, ddir);
1508 #ifdef CCISS_DEBUG
1509 printk("Done with %p\n", rq);
1510 #endif /* CCISS_DEBUG */
1512 /* set the residual count for pc requests */
1513 if (blk_pc_request(rq))
1514 rq->resid_len = cmd->err_info->ResidualCnt;
1516 blk_end_request_all(rq, (rq->errors == 0) ? 0 : -EIO);
1518 spin_lock_irqsave(&h->lock, flags);
1519 cmd_free(h, cmd, 1);
1520 cciss_check_queues(h);
1521 spin_unlock_irqrestore(&h->lock, flags);
1524 static void log_unit_to_scsi3addr(ctlr_info_t *h, unsigned char scsi3addr[],
1525 uint32_t log_unit)
1527 log_unit = h->drv[log_unit].LunID & 0x03fff;
1528 memset(&scsi3addr[4], 0, 4);
1529 memcpy(&scsi3addr[0], &log_unit, 4);
1530 scsi3addr[3] |= 0x40;
1533 /* This function gets the SCSI vendor, model, and revision of a logical drive
1534 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1535 * they cannot be read.
1537 static void cciss_get_device_descr(int ctlr, int logvol, int withirq,
1538 char *vendor, char *model, char *rev)
1540 int rc;
1541 InquiryData_struct *inq_buf;
1542 unsigned char scsi3addr[8];
1544 *vendor = '\0';
1545 *model = '\0';
1546 *rev = '\0';
1548 inq_buf = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1549 if (!inq_buf)
1550 return;
1552 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1553 if (withirq)
1554 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, inq_buf,
1555 sizeof(InquiryData_struct), 0,
1556 scsi3addr, TYPE_CMD);
1557 else
1558 rc = sendcmd(CISS_INQUIRY, ctlr, inq_buf,
1559 sizeof(InquiryData_struct), 0,
1560 scsi3addr, TYPE_CMD);
1561 if (rc == IO_OK) {
1562 memcpy(vendor, &inq_buf->data_byte[8], VENDOR_LEN);
1563 vendor[VENDOR_LEN] = '\0';
1564 memcpy(model, &inq_buf->data_byte[16], MODEL_LEN);
1565 model[MODEL_LEN] = '\0';
1566 memcpy(rev, &inq_buf->data_byte[32], REV_LEN);
1567 rev[REV_LEN] = '\0';
1570 kfree(inq_buf);
1571 return;
1574 /* This function gets the serial number of a logical drive via
1575 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1576 * number cannot be had, for whatever reason, 16 bytes of 0xff
1577 * are returned instead.
1579 static void cciss_get_serial_no(int ctlr, int logvol, int withirq,
1580 unsigned char *serial_no, int buflen)
1582 #define PAGE_83_INQ_BYTES 64
1583 int rc;
1584 unsigned char *buf;
1585 unsigned char scsi3addr[8];
1587 if (buflen > 16)
1588 buflen = 16;
1589 memset(serial_no, 0xff, buflen);
1590 buf = kzalloc(PAGE_83_INQ_BYTES, GFP_KERNEL);
1591 if (!buf)
1592 return;
1593 memset(serial_no, 0, buflen);
1594 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
1595 if (withirq)
1596 rc = sendcmd_withirq(CISS_INQUIRY, ctlr, buf,
1597 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1598 else
1599 rc = sendcmd(CISS_INQUIRY, ctlr, buf,
1600 PAGE_83_INQ_BYTES, 0x83, scsi3addr, TYPE_CMD);
1601 if (rc == IO_OK)
1602 memcpy(serial_no, &buf[8], buflen);
1603 kfree(buf);
1604 return;
1607 static void cciss_add_disk(ctlr_info_t *h, struct gendisk *disk,
1608 int drv_index)
1610 disk->queue = blk_init_queue(do_cciss_request, &h->lock);
1611 sprintf(disk->disk_name, "cciss/c%dd%d", h->ctlr, drv_index);
1612 disk->major = h->major;
1613 disk->first_minor = drv_index << NWD_SHIFT;
1614 disk->fops = &cciss_fops;
1615 disk->private_data = &h->drv[drv_index];
1616 disk->driverfs_dev = &h->drv[drv_index].dev;
1618 /* Set up queue information */
1619 blk_queue_bounce_limit(disk->queue, h->pdev->dma_mask);
1621 /* This is a hardware imposed limit. */
1622 blk_queue_max_hw_segments(disk->queue, MAXSGENTRIES);
1624 /* This is a limit in the driver and could be eliminated. */
1625 blk_queue_max_phys_segments(disk->queue, MAXSGENTRIES);
1627 blk_queue_max_sectors(disk->queue, h->cciss_max_sectors);
1629 blk_queue_softirq_done(disk->queue, cciss_softirq_done);
1631 disk->queue->queuedata = h;
1633 blk_queue_logical_block_size(disk->queue,
1634 h->drv[drv_index].block_size);
1636 /* Make sure all queue data is written out before */
1637 /* setting h->drv[drv_index].queue, as setting this */
1638 /* allows the interrupt handler to start the queue */
1639 wmb();
1640 h->drv[drv_index].queue = disk->queue;
1641 add_disk(disk);
1644 /* This function will check the usage_count of the drive to be updated/added.
1645 * If the usage_count is zero and it is a heretofore unknown drive, or,
1646 * the drive's capacity, geometry, or serial number has changed,
1647 * then the drive information will be updated and the disk will be
1648 * re-registered with the kernel. If these conditions don't hold,
1649 * then it will be left alone for the next reboot. The exception to this
1650 * is disk 0 which will always be left registered with the kernel since it
1651 * is also the controller node. Any changes to disk 0 will show up on
1652 * the next reboot.
1654 static void cciss_update_drive_info(int ctlr, int drv_index, int first_time)
1656 ctlr_info_t *h = hba[ctlr];
1657 struct gendisk *disk;
1658 InquiryData_struct *inq_buff = NULL;
1659 unsigned int block_size;
1660 sector_t total_size;
1661 unsigned long flags = 0;
1662 int ret = 0;
1663 drive_info_struct *drvinfo;
1664 int was_only_controller_node;
1666 /* Get information about the disk and modify the driver structure */
1667 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
1668 drvinfo = kmalloc(sizeof(*drvinfo), GFP_KERNEL);
1669 if (inq_buff == NULL || drvinfo == NULL)
1670 goto mem_msg;
1672 /* See if we're trying to update the "controller node"
1673 * this will happen the when the first logical drive gets
1674 * created by ACU.
1676 was_only_controller_node = (drv_index == 0 &&
1677 h->drv[0].raid_level == -1);
1679 /* testing to see if 16-byte CDBs are already being used */
1680 if (h->cciss_read == CCISS_READ_16) {
1681 cciss_read_capacity_16(h->ctlr, drv_index, 1,
1682 &total_size, &block_size);
1684 } else {
1685 cciss_read_capacity(ctlr, drv_index, 1,
1686 &total_size, &block_size);
1688 /* if read_capacity returns all F's this volume is >2TB */
1689 /* in size so we switch to 16-byte CDB's for all */
1690 /* read/write ops */
1691 if (total_size == 0xFFFFFFFFULL) {
1692 cciss_read_capacity_16(ctlr, drv_index, 1,
1693 &total_size, &block_size);
1694 h->cciss_read = CCISS_READ_16;
1695 h->cciss_write = CCISS_WRITE_16;
1696 } else {
1697 h->cciss_read = CCISS_READ_10;
1698 h->cciss_write = CCISS_WRITE_10;
1702 cciss_geometry_inquiry(ctlr, drv_index, 1, total_size, block_size,
1703 inq_buff, drvinfo);
1704 drvinfo->block_size = block_size;
1705 drvinfo->nr_blocks = total_size + 1;
1707 cciss_get_device_descr(ctlr, drv_index, 1, drvinfo->vendor,
1708 drvinfo->model, drvinfo->rev);
1709 cciss_get_serial_no(ctlr, drv_index, 1, drvinfo->serial_no,
1710 sizeof(drvinfo->serial_no));
1712 /* Is it the same disk we already know, and nothing's changed? */
1713 if (h->drv[drv_index].raid_level != -1 &&
1714 ((memcmp(drvinfo->serial_no,
1715 h->drv[drv_index].serial_no, 16) == 0) &&
1716 drvinfo->block_size == h->drv[drv_index].block_size &&
1717 drvinfo->nr_blocks == h->drv[drv_index].nr_blocks &&
1718 drvinfo->heads == h->drv[drv_index].heads &&
1719 drvinfo->sectors == h->drv[drv_index].sectors &&
1720 drvinfo->cylinders == h->drv[drv_index].cylinders))
1721 /* The disk is unchanged, nothing to update */
1722 goto freeret;
1724 /* If we get here it's not the same disk, or something's changed,
1725 * so we need to * deregister it, and re-register it, if it's not
1726 * in use.
1727 * If the disk already exists then deregister it before proceeding
1728 * (unless it's the first disk (for the controller node).
1730 if (h->drv[drv_index].raid_level != -1 && drv_index != 0) {
1731 printk(KERN_WARNING "disk %d has changed.\n", drv_index);
1732 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1733 h->drv[drv_index].busy_configuring = 1;
1734 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1736 /* deregister_disk sets h->drv[drv_index].queue = NULL
1737 * which keeps the interrupt handler from starting
1738 * the queue.
1740 ret = deregister_disk(h, drv_index, 0);
1741 h->drv[drv_index].busy_configuring = 0;
1744 /* If the disk is in use return */
1745 if (ret)
1746 goto freeret;
1748 /* Save the new information from cciss_geometry_inquiry
1749 * and serial number inquiry.
1751 h->drv[drv_index].block_size = drvinfo->block_size;
1752 h->drv[drv_index].nr_blocks = drvinfo->nr_blocks;
1753 h->drv[drv_index].heads = drvinfo->heads;
1754 h->drv[drv_index].sectors = drvinfo->sectors;
1755 h->drv[drv_index].cylinders = drvinfo->cylinders;
1756 h->drv[drv_index].raid_level = drvinfo->raid_level;
1757 memcpy(h->drv[drv_index].serial_no, drvinfo->serial_no, 16);
1758 memcpy(h->drv[drv_index].vendor, drvinfo->vendor, VENDOR_LEN + 1);
1759 memcpy(h->drv[drv_index].model, drvinfo->model, MODEL_LEN + 1);
1760 memcpy(h->drv[drv_index].rev, drvinfo->rev, REV_LEN + 1);
1762 ++h->num_luns;
1763 disk = h->gendisk[drv_index];
1764 set_capacity(disk, h->drv[drv_index].nr_blocks);
1766 /* If it's not disk 0 (drv_index != 0)
1767 * or if it was disk 0, but there was previously
1768 * no actual corresponding configured logical drive
1769 * (raid_leve == -1) then we want to update the
1770 * logical drive's information.
1772 if (drv_index || first_time)
1773 cciss_add_disk(h, disk, drv_index);
1775 freeret:
1776 kfree(inq_buff);
1777 kfree(drvinfo);
1778 return;
1779 mem_msg:
1780 printk(KERN_ERR "cciss: out of memory\n");
1781 goto freeret;
1784 /* This function will find the first index of the controllers drive array
1785 * that has a -1 for the raid_level and will return that index. This is
1786 * where new drives will be added. If the index to be returned is greater
1787 * than the highest_lun index for the controller then highest_lun is set
1788 * to this new index. If there are no available indexes then -1 is returned.
1789 * "controller_node" is used to know if this is a real logical drive, or just
1790 * the controller node, which determines if this counts towards highest_lun.
1792 static int cciss_find_free_drive_index(int ctlr, int controller_node)
1794 int i;
1796 for (i = 0; i < CISS_MAX_LUN; i++) {
1797 if (hba[ctlr]->drv[i].raid_level == -1) {
1798 if (i > hba[ctlr]->highest_lun)
1799 if (!controller_node)
1800 hba[ctlr]->highest_lun = i;
1801 return i;
1804 return -1;
1807 /* cciss_add_gendisk finds a free hba[]->drv structure
1808 * and allocates a gendisk if needed, and sets the lunid
1809 * in the drvinfo structure. It returns the index into
1810 * the ->drv[] array, or -1 if none are free.
1811 * is_controller_node indicates whether highest_lun should
1812 * count this disk, or if it's only being added to provide
1813 * a means to talk to the controller in case no logical
1814 * drives have yet been configured.
1816 static int cciss_add_gendisk(ctlr_info_t *h, __u32 lunid, int controller_node)
1818 int drv_index;
1820 drv_index = cciss_find_free_drive_index(h->ctlr, controller_node);
1821 if (drv_index == -1)
1822 return -1;
1823 /*Check if the gendisk needs to be allocated */
1824 if (!h->gendisk[drv_index]) {
1825 h->gendisk[drv_index] =
1826 alloc_disk(1 << NWD_SHIFT);
1827 if (!h->gendisk[drv_index]) {
1828 printk(KERN_ERR "cciss%d: could not "
1829 "allocate a new disk %d\n",
1830 h->ctlr, drv_index);
1831 return -1;
1834 h->drv[drv_index].LunID = lunid;
1835 if (cciss_create_ld_sysfs_entry(h, &h->drv[drv_index], drv_index))
1836 goto err_free_disk;
1838 /* Don't need to mark this busy because nobody */
1839 /* else knows about this disk yet to contend */
1840 /* for access to it. */
1841 h->drv[drv_index].busy_configuring = 0;
1842 wmb();
1843 return drv_index;
1845 err_free_disk:
1846 put_disk(h->gendisk[drv_index]);
1847 h->gendisk[drv_index] = NULL;
1848 return -1;
1851 /* This is for the special case of a controller which
1852 * has no logical drives. In this case, we still need
1853 * to register a disk so the controller can be accessed
1854 * by the Array Config Utility.
1856 static void cciss_add_controller_node(ctlr_info_t *h)
1858 struct gendisk *disk;
1859 int drv_index;
1861 if (h->gendisk[0] != NULL) /* already did this? Then bail. */
1862 return;
1864 drv_index = cciss_add_gendisk(h, 0, 1);
1865 if (drv_index == -1) {
1866 printk(KERN_WARNING "cciss%d: could not "
1867 "add disk 0.\n", h->ctlr);
1868 return;
1870 h->drv[drv_index].block_size = 512;
1871 h->drv[drv_index].nr_blocks = 0;
1872 h->drv[drv_index].heads = 0;
1873 h->drv[drv_index].sectors = 0;
1874 h->drv[drv_index].cylinders = 0;
1875 h->drv[drv_index].raid_level = -1;
1876 memset(h->drv[drv_index].serial_no, 0, 16);
1877 disk = h->gendisk[drv_index];
1878 cciss_add_disk(h, disk, drv_index);
1881 /* This function will add and remove logical drives from the Logical
1882 * drive array of the controller and maintain persistency of ordering
1883 * so that mount points are preserved until the next reboot. This allows
1884 * for the removal of logical drives in the middle of the drive array
1885 * without a re-ordering of those drives.
1886 * INPUT
1887 * h = The controller to perform the operations on
1889 static int rebuild_lun_table(ctlr_info_t *h, int first_time)
1891 int ctlr = h->ctlr;
1892 int num_luns;
1893 ReportLunData_struct *ld_buff = NULL;
1894 int return_code;
1895 int listlength = 0;
1896 int i;
1897 int drv_found;
1898 int drv_index = 0;
1899 __u32 lunid = 0;
1900 unsigned long flags;
1902 if (!capable(CAP_SYS_RAWIO))
1903 return -EPERM;
1905 /* Set busy_configuring flag for this operation */
1906 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1907 if (h->busy_configuring) {
1908 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1909 return -EBUSY;
1911 h->busy_configuring = 1;
1912 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1914 ld_buff = kzalloc(sizeof(ReportLunData_struct), GFP_KERNEL);
1915 if (ld_buff == NULL)
1916 goto mem_msg;
1918 return_code = sendcmd_withirq(CISS_REPORT_LOG, ctlr, ld_buff,
1919 sizeof(ReportLunData_struct),
1920 0, CTLR_LUNID, TYPE_CMD);
1922 if (return_code == IO_OK)
1923 listlength = be32_to_cpu(*(__be32 *) ld_buff->LUNListLength);
1924 else { /* reading number of logical volumes failed */
1925 printk(KERN_WARNING "cciss: report logical volume"
1926 " command failed\n");
1927 listlength = 0;
1928 goto freeret;
1931 num_luns = listlength / 8; /* 8 bytes per entry */
1932 if (num_luns > CISS_MAX_LUN) {
1933 num_luns = CISS_MAX_LUN;
1934 printk(KERN_WARNING "cciss: more luns configured"
1935 " on controller than can be handled by"
1936 " this driver.\n");
1939 if (num_luns == 0)
1940 cciss_add_controller_node(h);
1942 /* Compare controller drive array to driver's drive array
1943 * to see if any drives are missing on the controller due
1944 * to action of Array Config Utility (user deletes drive)
1945 * and deregister logical drives which have disappeared.
1947 for (i = 0; i <= h->highest_lun; i++) {
1948 int j;
1949 drv_found = 0;
1951 /* skip holes in the array from already deleted drives */
1952 if (h->drv[i].raid_level == -1)
1953 continue;
1955 for (j = 0; j < num_luns; j++) {
1956 memcpy(&lunid, &ld_buff->LUN[j][0], 4);
1957 lunid = le32_to_cpu(lunid);
1958 if (h->drv[i].LunID == lunid) {
1959 drv_found = 1;
1960 break;
1963 if (!drv_found) {
1964 /* Deregister it from the OS, it's gone. */
1965 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
1966 h->drv[i].busy_configuring = 1;
1967 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
1968 return_code = deregister_disk(h, i, 1);
1969 cciss_destroy_ld_sysfs_entry(&h->drv[i]);
1970 h->drv[i].busy_configuring = 0;
1974 /* Compare controller drive array to driver's drive array.
1975 * Check for updates in the drive information and any new drives
1976 * on the controller due to ACU adding logical drives, or changing
1977 * a logical drive's size, etc. Reregister any new/changed drives
1979 for (i = 0; i < num_luns; i++) {
1980 int j;
1982 drv_found = 0;
1984 memcpy(&lunid, &ld_buff->LUN[i][0], 4);
1985 lunid = le32_to_cpu(lunid);
1987 /* Find if the LUN is already in the drive array
1988 * of the driver. If so then update its info
1989 * if not in use. If it does not exist then find
1990 * the first free index and add it.
1992 for (j = 0; j <= h->highest_lun; j++) {
1993 if (h->drv[j].raid_level != -1 &&
1994 h->drv[j].LunID == lunid) {
1995 drv_index = j;
1996 drv_found = 1;
1997 break;
2001 /* check if the drive was found already in the array */
2002 if (!drv_found) {
2003 drv_index = cciss_add_gendisk(h, lunid, 0);
2004 if (drv_index == -1)
2005 goto freeret;
2007 cciss_update_drive_info(ctlr, drv_index, first_time);
2008 } /* end for */
2010 freeret:
2011 kfree(ld_buff);
2012 h->busy_configuring = 0;
2013 /* We return -1 here to tell the ACU that we have registered/updated
2014 * all of the drives that we can and to keep it from calling us
2015 * additional times.
2017 return -1;
2018 mem_msg:
2019 printk(KERN_ERR "cciss: out of memory\n");
2020 h->busy_configuring = 0;
2021 goto freeret;
2024 /* This function will deregister the disk and it's queue from the
2025 * kernel. It must be called with the controller lock held and the
2026 * drv structures busy_configuring flag set. It's parameters are:
2028 * disk = This is the disk to be deregistered
2029 * drv = This is the drive_info_struct associated with the disk to be
2030 * deregistered. It contains information about the disk used
2031 * by the driver.
2032 * clear_all = This flag determines whether or not the disk information
2033 * is going to be completely cleared out and the highest_lun
2034 * reset. Sometimes we want to clear out information about
2035 * the disk in preparation for re-adding it. In this case
2036 * the highest_lun should be left unchanged and the LunID
2037 * should not be cleared.
2039 static int deregister_disk(ctlr_info_t *h, int drv_index,
2040 int clear_all)
2042 int i;
2043 struct gendisk *disk;
2044 drive_info_struct *drv;
2046 if (!capable(CAP_SYS_RAWIO))
2047 return -EPERM;
2049 drv = &h->drv[drv_index];
2050 disk = h->gendisk[drv_index];
2052 /* make sure logical volume is NOT is use */
2053 if (clear_all || (h->gendisk[0] == disk)) {
2054 if (drv->usage_count > 1)
2055 return -EBUSY;
2056 } else if (drv->usage_count > 0)
2057 return -EBUSY;
2059 /* invalidate the devices and deregister the disk. If it is disk
2060 * zero do not deregister it but just zero out it's values. This
2061 * allows us to delete disk zero but keep the controller registered.
2063 if (h->gendisk[0] != disk) {
2064 struct request_queue *q = disk->queue;
2065 if (disk->flags & GENHD_FL_UP)
2066 del_gendisk(disk);
2067 if (q) {
2068 blk_cleanup_queue(q);
2069 /* Set drv->queue to NULL so that we do not try
2070 * to call blk_start_queue on this queue in the
2071 * interrupt handler
2073 drv->queue = NULL;
2075 /* If clear_all is set then we are deleting the logical
2076 * drive, not just refreshing its info. For drives
2077 * other than disk 0 we will call put_disk. We do not
2078 * do this for disk 0 as we need it to be able to
2079 * configure the controller.
2081 if (clear_all){
2082 /* This isn't pretty, but we need to find the
2083 * disk in our array and NULL our the pointer.
2084 * This is so that we will call alloc_disk if
2085 * this index is used again later.
2087 for (i=0; i < CISS_MAX_LUN; i++){
2088 if (h->gendisk[i] == disk) {
2089 h->gendisk[i] = NULL;
2090 break;
2093 put_disk(disk);
2095 } else {
2096 set_capacity(disk, 0);
2099 --h->num_luns;
2100 /* zero out the disk size info */
2101 drv->nr_blocks = 0;
2102 drv->block_size = 0;
2103 drv->heads = 0;
2104 drv->sectors = 0;
2105 drv->cylinders = 0;
2106 drv->raid_level = -1; /* This can be used as a flag variable to
2107 * indicate that this element of the drive
2108 * array is free.
2111 if (clear_all) {
2112 /* check to see if it was the last disk */
2113 if (drv == h->drv + h->highest_lun) {
2114 /* if so, find the new hightest lun */
2115 int i, newhighest = -1;
2116 for (i = 0; i <= h->highest_lun; i++) {
2117 /* if the disk has size > 0, it is available */
2118 if (h->drv[i].heads)
2119 newhighest = i;
2121 h->highest_lun = newhighest;
2124 drv->LunID = 0;
2126 return 0;
2129 static int fill_cmd(CommandList_struct *c, __u8 cmd, int ctlr, void *buff,
2130 size_t size, __u8 page_code, unsigned char *scsi3addr,
2131 int cmd_type)
2133 ctlr_info_t *h = hba[ctlr];
2134 u64bit buff_dma_handle;
2135 int status = IO_OK;
2137 c->cmd_type = CMD_IOCTL_PEND;
2138 c->Header.ReplyQueue = 0;
2139 if (buff != NULL) {
2140 c->Header.SGList = 1;
2141 c->Header.SGTotal = 1;
2142 } else {
2143 c->Header.SGList = 0;
2144 c->Header.SGTotal = 0;
2146 c->Header.Tag.lower = c->busaddr;
2147 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2149 c->Request.Type.Type = cmd_type;
2150 if (cmd_type == TYPE_CMD) {
2151 switch (cmd) {
2152 case CISS_INQUIRY:
2153 /* are we trying to read a vital product page */
2154 if (page_code != 0) {
2155 c->Request.CDB[1] = 0x01;
2156 c->Request.CDB[2] = page_code;
2158 c->Request.CDBLen = 6;
2159 c->Request.Type.Attribute = ATTR_SIMPLE;
2160 c->Request.Type.Direction = XFER_READ;
2161 c->Request.Timeout = 0;
2162 c->Request.CDB[0] = CISS_INQUIRY;
2163 c->Request.CDB[4] = size & 0xFF;
2164 break;
2165 case CISS_REPORT_LOG:
2166 case CISS_REPORT_PHYS:
2167 /* Talking to controller so It's a physical command
2168 mode = 00 target = 0. Nothing to write.
2170 c->Request.CDBLen = 12;
2171 c->Request.Type.Attribute = ATTR_SIMPLE;
2172 c->Request.Type.Direction = XFER_READ;
2173 c->Request.Timeout = 0;
2174 c->Request.CDB[0] = cmd;
2175 c->Request.CDB[6] = (size >> 24) & 0xFF; //MSB
2176 c->Request.CDB[7] = (size >> 16) & 0xFF;
2177 c->Request.CDB[8] = (size >> 8) & 0xFF;
2178 c->Request.CDB[9] = size & 0xFF;
2179 break;
2181 case CCISS_READ_CAPACITY:
2182 c->Request.CDBLen = 10;
2183 c->Request.Type.Attribute = ATTR_SIMPLE;
2184 c->Request.Type.Direction = XFER_READ;
2185 c->Request.Timeout = 0;
2186 c->Request.CDB[0] = cmd;
2187 break;
2188 case CCISS_READ_CAPACITY_16:
2189 c->Request.CDBLen = 16;
2190 c->Request.Type.Attribute = ATTR_SIMPLE;
2191 c->Request.Type.Direction = XFER_READ;
2192 c->Request.Timeout = 0;
2193 c->Request.CDB[0] = cmd;
2194 c->Request.CDB[1] = 0x10;
2195 c->Request.CDB[10] = (size >> 24) & 0xFF;
2196 c->Request.CDB[11] = (size >> 16) & 0xFF;
2197 c->Request.CDB[12] = (size >> 8) & 0xFF;
2198 c->Request.CDB[13] = size & 0xFF;
2199 c->Request.Timeout = 0;
2200 c->Request.CDB[0] = cmd;
2201 break;
2202 case CCISS_CACHE_FLUSH:
2203 c->Request.CDBLen = 12;
2204 c->Request.Type.Attribute = ATTR_SIMPLE;
2205 c->Request.Type.Direction = XFER_WRITE;
2206 c->Request.Timeout = 0;
2207 c->Request.CDB[0] = BMIC_WRITE;
2208 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2209 break;
2210 case TEST_UNIT_READY:
2211 c->Request.CDBLen = 6;
2212 c->Request.Type.Attribute = ATTR_SIMPLE;
2213 c->Request.Type.Direction = XFER_NONE;
2214 c->Request.Timeout = 0;
2215 break;
2216 default:
2217 printk(KERN_WARNING
2218 "cciss%d: Unknown Command 0x%c\n", ctlr, cmd);
2219 return IO_ERROR;
2221 } else if (cmd_type == TYPE_MSG) {
2222 switch (cmd) {
2223 case 0: /* ABORT message */
2224 c->Request.CDBLen = 12;
2225 c->Request.Type.Attribute = ATTR_SIMPLE;
2226 c->Request.Type.Direction = XFER_WRITE;
2227 c->Request.Timeout = 0;
2228 c->Request.CDB[0] = cmd; /* abort */
2229 c->Request.CDB[1] = 0; /* abort a command */
2230 /* buff contains the tag of the command to abort */
2231 memcpy(&c->Request.CDB[4], buff, 8);
2232 break;
2233 case 1: /* RESET message */
2234 c->Request.CDBLen = 16;
2235 c->Request.Type.Attribute = ATTR_SIMPLE;
2236 c->Request.Type.Direction = XFER_NONE;
2237 c->Request.Timeout = 0;
2238 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
2239 c->Request.CDB[0] = cmd; /* reset */
2240 c->Request.CDB[1] = 0x03; /* reset a target */
2241 break;
2242 case 3: /* No-Op message */
2243 c->Request.CDBLen = 1;
2244 c->Request.Type.Attribute = ATTR_SIMPLE;
2245 c->Request.Type.Direction = XFER_WRITE;
2246 c->Request.Timeout = 0;
2247 c->Request.CDB[0] = cmd;
2248 break;
2249 default:
2250 printk(KERN_WARNING
2251 "cciss%d: unknown message type %d\n", ctlr, cmd);
2252 return IO_ERROR;
2254 } else {
2255 printk(KERN_WARNING
2256 "cciss%d: unknown command type %d\n", ctlr, cmd_type);
2257 return IO_ERROR;
2259 /* Fill in the scatter gather information */
2260 if (size > 0) {
2261 buff_dma_handle.val = (__u64) pci_map_single(h->pdev,
2262 buff, size,
2263 PCI_DMA_BIDIRECTIONAL);
2264 c->SG[0].Addr.lower = buff_dma_handle.val32.lower;
2265 c->SG[0].Addr.upper = buff_dma_handle.val32.upper;
2266 c->SG[0].Len = size;
2267 c->SG[0].Ext = 0; /* we are not chaining */
2269 return status;
2272 static int check_target_status(ctlr_info_t *h, CommandList_struct *c)
2274 switch (c->err_info->ScsiStatus) {
2275 case SAM_STAT_GOOD:
2276 return IO_OK;
2277 case SAM_STAT_CHECK_CONDITION:
2278 switch (0xf & c->err_info->SenseInfo[2]) {
2279 case 0: return IO_OK; /* no sense */
2280 case 1: return IO_OK; /* recovered error */
2281 default:
2282 printk(KERN_WARNING "cciss%d: cmd 0x%02x "
2283 "check condition, sense key = 0x%02x\n",
2284 h->ctlr, c->Request.CDB[0],
2285 c->err_info->SenseInfo[2]);
2287 break;
2288 default:
2289 printk(KERN_WARNING "cciss%d: cmd 0x%02x"
2290 "scsi status = 0x%02x\n", h->ctlr,
2291 c->Request.CDB[0], c->err_info->ScsiStatus);
2292 break;
2294 return IO_ERROR;
2297 static int process_sendcmd_error(ctlr_info_t *h, CommandList_struct *c)
2299 int return_status = IO_OK;
2301 if (c->err_info->CommandStatus == CMD_SUCCESS)
2302 return IO_OK;
2304 switch (c->err_info->CommandStatus) {
2305 case CMD_TARGET_STATUS:
2306 return_status = check_target_status(h, c);
2307 break;
2308 case CMD_DATA_UNDERRUN:
2309 case CMD_DATA_OVERRUN:
2310 /* expected for inquiry and report lun commands */
2311 break;
2312 case CMD_INVALID:
2313 printk(KERN_WARNING "cciss: cmd 0x%02x is "
2314 "reported invalid\n", c->Request.CDB[0]);
2315 return_status = IO_ERROR;
2316 break;
2317 case CMD_PROTOCOL_ERR:
2318 printk(KERN_WARNING "cciss: cmd 0x%02x has "
2319 "protocol error \n", c->Request.CDB[0]);
2320 return_status = IO_ERROR;
2321 break;
2322 case CMD_HARDWARE_ERR:
2323 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2324 " hardware error\n", c->Request.CDB[0]);
2325 return_status = IO_ERROR;
2326 break;
2327 case CMD_CONNECTION_LOST:
2328 printk(KERN_WARNING "cciss: cmd 0x%02x had "
2329 "connection lost\n", c->Request.CDB[0]);
2330 return_status = IO_ERROR;
2331 break;
2332 case CMD_ABORTED:
2333 printk(KERN_WARNING "cciss: cmd 0x%02x was "
2334 "aborted\n", c->Request.CDB[0]);
2335 return_status = IO_ERROR;
2336 break;
2337 case CMD_ABORT_FAILED:
2338 printk(KERN_WARNING "cciss: cmd 0x%02x reports "
2339 "abort failed\n", c->Request.CDB[0]);
2340 return_status = IO_ERROR;
2341 break;
2342 case CMD_UNSOLICITED_ABORT:
2343 printk(KERN_WARNING
2344 "cciss%d: unsolicited abort 0x%02x\n", h->ctlr,
2345 c->Request.CDB[0]);
2346 return_status = IO_NEEDS_RETRY;
2347 break;
2348 default:
2349 printk(KERN_WARNING "cciss: cmd 0x%02x returned "
2350 "unknown status %x\n", c->Request.CDB[0],
2351 c->err_info->CommandStatus);
2352 return_status = IO_ERROR;
2354 return return_status;
2357 static int sendcmd_withirq_core(ctlr_info_t *h, CommandList_struct *c,
2358 int attempt_retry)
2360 DECLARE_COMPLETION_ONSTACK(wait);
2361 u64bit buff_dma_handle;
2362 unsigned long flags;
2363 int return_status = IO_OK;
2365 resend_cmd2:
2366 c->waiting = &wait;
2367 /* Put the request on the tail of the queue and send it */
2368 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
2369 addQ(&h->reqQ, c);
2370 h->Qdepth++;
2371 start_io(h);
2372 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
2374 wait_for_completion(&wait);
2376 if (c->err_info->CommandStatus == 0 || !attempt_retry)
2377 goto command_done;
2379 return_status = process_sendcmd_error(h, c);
2381 if (return_status == IO_NEEDS_RETRY &&
2382 c->retry_count < MAX_CMD_RETRIES) {
2383 printk(KERN_WARNING "cciss%d: retrying 0x%02x\n", h->ctlr,
2384 c->Request.CDB[0]);
2385 c->retry_count++;
2386 /* erase the old error information */
2387 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2388 return_status = IO_OK;
2389 INIT_COMPLETION(wait);
2390 goto resend_cmd2;
2393 command_done:
2394 /* unlock the buffers from DMA */
2395 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2396 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2397 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2398 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2399 return return_status;
2402 static int sendcmd_withirq(__u8 cmd, int ctlr, void *buff, size_t size,
2403 __u8 page_code, unsigned char scsi3addr[],
2404 int cmd_type)
2406 ctlr_info_t *h = hba[ctlr];
2407 CommandList_struct *c;
2408 int return_status;
2410 c = cmd_alloc(h, 0);
2411 if (!c)
2412 return -ENOMEM;
2413 return_status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2414 scsi3addr, cmd_type);
2415 if (return_status == IO_OK)
2416 return_status = sendcmd_withirq_core(h, c, 1);
2418 cmd_free(h, c, 0);
2419 return return_status;
2422 static void cciss_geometry_inquiry(int ctlr, int logvol,
2423 int withirq, sector_t total_size,
2424 unsigned int block_size,
2425 InquiryData_struct *inq_buff,
2426 drive_info_struct *drv)
2428 int return_code;
2429 unsigned long t;
2430 unsigned char scsi3addr[8];
2432 memset(inq_buff, 0, sizeof(InquiryData_struct));
2433 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2434 if (withirq)
2435 return_code = sendcmd_withirq(CISS_INQUIRY, ctlr,
2436 inq_buff, sizeof(*inq_buff),
2437 0xC1, scsi3addr, TYPE_CMD);
2438 else
2439 return_code = sendcmd(CISS_INQUIRY, ctlr, inq_buff,
2440 sizeof(*inq_buff), 0xC1, scsi3addr,
2441 TYPE_CMD);
2442 if (return_code == IO_OK) {
2443 if (inq_buff->data_byte[8] == 0xFF) {
2444 printk(KERN_WARNING
2445 "cciss: reading geometry failed, volume "
2446 "does not support reading geometry\n");
2447 drv->heads = 255;
2448 drv->sectors = 32; // Sectors per track
2449 drv->cylinders = total_size + 1;
2450 drv->raid_level = RAID_UNKNOWN;
2451 } else {
2452 drv->heads = inq_buff->data_byte[6];
2453 drv->sectors = inq_buff->data_byte[7];
2454 drv->cylinders = (inq_buff->data_byte[4] & 0xff) << 8;
2455 drv->cylinders += inq_buff->data_byte[5];
2456 drv->raid_level = inq_buff->data_byte[8];
2458 drv->block_size = block_size;
2459 drv->nr_blocks = total_size + 1;
2460 t = drv->heads * drv->sectors;
2461 if (t > 1) {
2462 sector_t real_size = total_size + 1;
2463 unsigned long rem = sector_div(real_size, t);
2464 if (rem)
2465 real_size++;
2466 drv->cylinders = real_size;
2468 } else { /* Get geometry failed */
2469 printk(KERN_WARNING "cciss: reading geometry failed\n");
2471 printk(KERN_INFO " heads=%d, sectors=%d, cylinders=%d\n\n",
2472 drv->heads, drv->sectors, drv->cylinders);
2475 static void
2476 cciss_read_capacity(int ctlr, int logvol, int withirq, sector_t *total_size,
2477 unsigned int *block_size)
2479 ReadCapdata_struct *buf;
2480 int return_code;
2481 unsigned char scsi3addr[8];
2483 buf = kzalloc(sizeof(ReadCapdata_struct), GFP_KERNEL);
2484 if (!buf) {
2485 printk(KERN_WARNING "cciss: out of memory\n");
2486 return;
2489 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2490 if (withirq)
2491 return_code = sendcmd_withirq(CCISS_READ_CAPACITY,
2492 ctlr, buf, sizeof(ReadCapdata_struct),
2493 0, scsi3addr, TYPE_CMD);
2494 else
2495 return_code = sendcmd(CCISS_READ_CAPACITY,
2496 ctlr, buf, sizeof(ReadCapdata_struct),
2497 0, scsi3addr, TYPE_CMD);
2498 if (return_code == IO_OK) {
2499 *total_size = be32_to_cpu(*(__be32 *) buf->total_size);
2500 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2501 } else { /* read capacity command failed */
2502 printk(KERN_WARNING "cciss: read capacity failed\n");
2503 *total_size = 0;
2504 *block_size = BLOCK_SIZE;
2506 if (*total_size != 0)
2507 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2508 (unsigned long long)*total_size+1, *block_size);
2509 kfree(buf);
2512 static void
2513 cciss_read_capacity_16(int ctlr, int logvol, int withirq, sector_t *total_size, unsigned int *block_size)
2515 ReadCapdata_struct_16 *buf;
2516 int return_code;
2517 unsigned char scsi3addr[8];
2519 buf = kzalloc(sizeof(ReadCapdata_struct_16), GFP_KERNEL);
2520 if (!buf) {
2521 printk(KERN_WARNING "cciss: out of memory\n");
2522 return;
2525 log_unit_to_scsi3addr(hba[ctlr], scsi3addr, logvol);
2526 if (withirq) {
2527 return_code = sendcmd_withirq(CCISS_READ_CAPACITY_16,
2528 ctlr, buf, sizeof(ReadCapdata_struct_16),
2529 0, scsi3addr, TYPE_CMD);
2531 else {
2532 return_code = sendcmd(CCISS_READ_CAPACITY_16,
2533 ctlr, buf, sizeof(ReadCapdata_struct_16),
2534 0, scsi3addr, TYPE_CMD);
2536 if (return_code == IO_OK) {
2537 *total_size = be64_to_cpu(*(__be64 *) buf->total_size);
2538 *block_size = be32_to_cpu(*(__be32 *) buf->block_size);
2539 } else { /* read capacity command failed */
2540 printk(KERN_WARNING "cciss: read capacity failed\n");
2541 *total_size = 0;
2542 *block_size = BLOCK_SIZE;
2544 printk(KERN_INFO " blocks= %llu block_size= %d\n",
2545 (unsigned long long)*total_size+1, *block_size);
2546 kfree(buf);
2549 static int cciss_revalidate(struct gendisk *disk)
2551 ctlr_info_t *h = get_host(disk);
2552 drive_info_struct *drv = get_drv(disk);
2553 int logvol;
2554 int FOUND = 0;
2555 unsigned int block_size;
2556 sector_t total_size;
2557 InquiryData_struct *inq_buff = NULL;
2559 for (logvol = 0; logvol < CISS_MAX_LUN; logvol++) {
2560 if (h->drv[logvol].LunID == drv->LunID) {
2561 FOUND = 1;
2562 break;
2566 if (!FOUND)
2567 return 1;
2569 inq_buff = kmalloc(sizeof(InquiryData_struct), GFP_KERNEL);
2570 if (inq_buff == NULL) {
2571 printk(KERN_WARNING "cciss: out of memory\n");
2572 return 1;
2574 if (h->cciss_read == CCISS_READ_10) {
2575 cciss_read_capacity(h->ctlr, logvol, 1,
2576 &total_size, &block_size);
2577 } else {
2578 cciss_read_capacity_16(h->ctlr, logvol, 1,
2579 &total_size, &block_size);
2581 cciss_geometry_inquiry(h->ctlr, logvol, 1, total_size, block_size,
2582 inq_buff, drv);
2584 blk_queue_logical_block_size(drv->queue, drv->block_size);
2585 set_capacity(disk, drv->nr_blocks);
2587 kfree(inq_buff);
2588 return 0;
2592 * Wait polling for a command to complete.
2593 * The memory mapped FIFO is polled for the completion.
2594 * Used only at init time, interrupts from the HBA are disabled.
2596 static unsigned long pollcomplete(int ctlr)
2598 unsigned long done;
2599 int i;
2601 /* Wait (up to 20 seconds) for a command to complete */
2603 for (i = 20 * HZ; i > 0; i--) {
2604 done = hba[ctlr]->access.command_completed(hba[ctlr]);
2605 if (done == FIFO_EMPTY)
2606 schedule_timeout_uninterruptible(1);
2607 else
2608 return done;
2610 /* Invalid address to tell caller we ran out of time */
2611 return 1;
2614 /* Send command c to controller h and poll for it to complete.
2615 * Turns interrupts off on the board. Used at driver init time
2616 * and during SCSI error recovery.
2618 static int sendcmd_core(ctlr_info_t *h, CommandList_struct *c)
2620 int i;
2621 unsigned long complete;
2622 int status = IO_ERROR;
2623 u64bit buff_dma_handle;
2625 resend_cmd1:
2627 /* Disable interrupt on the board. */
2628 h->access.set_intr_mask(h, CCISS_INTR_OFF);
2630 /* Make sure there is room in the command FIFO */
2631 /* Actually it should be completely empty at this time */
2632 /* unless we are in here doing error handling for the scsi */
2633 /* tape side of the driver. */
2634 for (i = 200000; i > 0; i--) {
2635 /* if fifo isn't full go */
2636 if (!(h->access.fifo_full(h)))
2637 break;
2638 udelay(10);
2639 printk(KERN_WARNING "cciss cciss%d: SendCmd FIFO full,"
2640 " waiting!\n", h->ctlr);
2642 h->access.submit_command(h, c); /* Send the cmd */
2643 do {
2644 complete = pollcomplete(h->ctlr);
2646 #ifdef CCISS_DEBUG
2647 printk(KERN_DEBUG "cciss: command completed\n");
2648 #endif /* CCISS_DEBUG */
2650 if (complete == 1) {
2651 printk(KERN_WARNING
2652 "cciss cciss%d: SendCmd Timeout out, "
2653 "No command list address returned!\n", h->ctlr);
2654 status = IO_ERROR;
2655 break;
2658 /* Make sure it's the command we're expecting. */
2659 if ((complete & ~CISS_ERROR_BIT) != c->busaddr) {
2660 printk(KERN_WARNING "cciss%d: Unexpected command "
2661 "completion.\n", h->ctlr);
2662 continue;
2665 /* It is our command. If no error, we're done. */
2666 if (!(complete & CISS_ERROR_BIT)) {
2667 status = IO_OK;
2668 break;
2671 /* There is an error... */
2673 /* if data overrun or underun on Report command ignore it */
2674 if (((c->Request.CDB[0] == CISS_REPORT_LOG) ||
2675 (c->Request.CDB[0] == CISS_REPORT_PHYS) ||
2676 (c->Request.CDB[0] == CISS_INQUIRY)) &&
2677 ((c->err_info->CommandStatus == CMD_DATA_OVERRUN) ||
2678 (c->err_info->CommandStatus == CMD_DATA_UNDERRUN))) {
2679 complete = c->busaddr;
2680 status = IO_OK;
2681 break;
2684 if (c->err_info->CommandStatus == CMD_UNSOLICITED_ABORT) {
2685 printk(KERN_WARNING "cciss%d: unsolicited abort %p\n",
2686 h->ctlr, c);
2687 if (c->retry_count < MAX_CMD_RETRIES) {
2688 printk(KERN_WARNING "cciss%d: retrying %p\n",
2689 h->ctlr, c);
2690 c->retry_count++;
2691 /* erase the old error information */
2692 memset(c->err_info, 0, sizeof(c->err_info));
2693 goto resend_cmd1;
2695 printk(KERN_WARNING "cciss%d: retried %p too many "
2696 "times\n", h->ctlr, c);
2697 status = IO_ERROR;
2698 break;
2701 if (c->err_info->CommandStatus == CMD_UNABORTABLE) {
2702 printk(KERN_WARNING "cciss%d: command could not be "
2703 "aborted.\n", h->ctlr);
2704 status = IO_ERROR;
2705 break;
2708 if (c->err_info->CommandStatus == CMD_TARGET_STATUS) {
2709 status = check_target_status(h, c);
2710 break;
2713 printk(KERN_WARNING "cciss%d: sendcmd error\n", h->ctlr);
2714 printk(KERN_WARNING "cmd = 0x%02x, CommandStatus = 0x%02x\n",
2715 c->Request.CDB[0], c->err_info->CommandStatus);
2716 status = IO_ERROR;
2717 break;
2719 } while (1);
2721 /* unlock the data buffer from DMA */
2722 buff_dma_handle.val32.lower = c->SG[0].Addr.lower;
2723 buff_dma_handle.val32.upper = c->SG[0].Addr.upper;
2724 pci_unmap_single(h->pdev, (dma_addr_t) buff_dma_handle.val,
2725 c->SG[0].Len, PCI_DMA_BIDIRECTIONAL);
2726 return status;
2730 * Send a command to the controller, and wait for it to complete.
2731 * Used at init time, and during SCSI error recovery.
2733 static int sendcmd(__u8 cmd, int ctlr, void *buff, size_t size,
2734 __u8 page_code, unsigned char *scsi3addr, int cmd_type)
2736 CommandList_struct *c;
2737 int status;
2739 c = cmd_alloc(hba[ctlr], 1);
2740 if (!c) {
2741 printk(KERN_WARNING "cciss: unable to get memory");
2742 return IO_ERROR;
2744 status = fill_cmd(c, cmd, ctlr, buff, size, page_code,
2745 scsi3addr, cmd_type);
2746 if (status == IO_OK)
2747 status = sendcmd_core(hba[ctlr], c);
2748 cmd_free(hba[ctlr], c, 1);
2749 return status;
2753 * Map (physical) PCI mem into (virtual) kernel space
2755 static void __iomem *remap_pci_mem(ulong base, ulong size)
2757 ulong page_base = ((ulong) base) & PAGE_MASK;
2758 ulong page_offs = ((ulong) base) - page_base;
2759 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2761 return page_remapped ? (page_remapped + page_offs) : NULL;
2765 * Takes jobs of the Q and sends them to the hardware, then puts it on
2766 * the Q to wait for completion.
2768 static void start_io(ctlr_info_t *h)
2770 CommandList_struct *c;
2772 while (!hlist_empty(&h->reqQ)) {
2773 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
2774 /* can't do anything if fifo is full */
2775 if ((h->access.fifo_full(h))) {
2776 printk(KERN_WARNING "cciss: fifo full\n");
2777 break;
2780 /* Get the first entry from the Request Q */
2781 removeQ(c);
2782 h->Qdepth--;
2784 /* Tell the controller execute command */
2785 h->access.submit_command(h, c);
2787 /* Put job onto the completed Q */
2788 addQ(&h->cmpQ, c);
2792 /* Assumes that CCISS_LOCK(h->ctlr) is held. */
2793 /* Zeros out the error record and then resends the command back */
2794 /* to the controller */
2795 static inline void resend_cciss_cmd(ctlr_info_t *h, CommandList_struct *c)
2797 /* erase the old error information */
2798 memset(c->err_info, 0, sizeof(ErrorInfo_struct));
2800 /* add it to software queue and then send it to the controller */
2801 addQ(&h->reqQ, c);
2802 h->Qdepth++;
2803 if (h->Qdepth > h->maxQsinceinit)
2804 h->maxQsinceinit = h->Qdepth;
2806 start_io(h);
2809 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte,
2810 unsigned int msg_byte, unsigned int host_byte,
2811 unsigned int driver_byte)
2813 /* inverse of macros in scsi.h */
2814 return (scsi_status_byte & 0xff) |
2815 ((msg_byte & 0xff) << 8) |
2816 ((host_byte & 0xff) << 16) |
2817 ((driver_byte & 0xff) << 24);
2820 static inline int evaluate_target_status(ctlr_info_t *h,
2821 CommandList_struct *cmd, int *retry_cmd)
2823 unsigned char sense_key;
2824 unsigned char status_byte, msg_byte, host_byte, driver_byte;
2825 int error_value;
2827 *retry_cmd = 0;
2828 /* If we get in here, it means we got "target status", that is, scsi status */
2829 status_byte = cmd->err_info->ScsiStatus;
2830 driver_byte = DRIVER_OK;
2831 msg_byte = cmd->err_info->CommandStatus; /* correct? seems too device specific */
2833 if (blk_pc_request(cmd->rq))
2834 host_byte = DID_PASSTHROUGH;
2835 else
2836 host_byte = DID_OK;
2838 error_value = make_status_bytes(status_byte, msg_byte,
2839 host_byte, driver_byte);
2841 if (cmd->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION) {
2842 if (!blk_pc_request(cmd->rq))
2843 printk(KERN_WARNING "cciss: cmd %p "
2844 "has SCSI Status 0x%x\n",
2845 cmd, cmd->err_info->ScsiStatus);
2846 return error_value;
2849 /* check the sense key */
2850 sense_key = 0xf & cmd->err_info->SenseInfo[2];
2851 /* no status or recovered error */
2852 if (((sense_key == 0x0) || (sense_key == 0x1)) && !blk_pc_request(cmd->rq))
2853 error_value = 0;
2855 if (check_for_unit_attention(h, cmd)) {
2856 *retry_cmd = !blk_pc_request(cmd->rq);
2857 return 0;
2860 if (!blk_pc_request(cmd->rq)) { /* Not SG_IO or similar? */
2861 if (error_value != 0)
2862 printk(KERN_WARNING "cciss: cmd %p has CHECK CONDITION"
2863 " sense key = 0x%x\n", cmd, sense_key);
2864 return error_value;
2867 /* SG_IO or similar, copy sense data back */
2868 if (cmd->rq->sense) {
2869 if (cmd->rq->sense_len > cmd->err_info->SenseLen)
2870 cmd->rq->sense_len = cmd->err_info->SenseLen;
2871 memcpy(cmd->rq->sense, cmd->err_info->SenseInfo,
2872 cmd->rq->sense_len);
2873 } else
2874 cmd->rq->sense_len = 0;
2876 return error_value;
2879 /* checks the status of the job and calls complete buffers to mark all
2880 * buffers for the completed job. Note that this function does not need
2881 * to hold the hba/queue lock.
2883 static inline void complete_command(ctlr_info_t *h, CommandList_struct *cmd,
2884 int timeout)
2886 int retry_cmd = 0;
2887 struct request *rq = cmd->rq;
2889 rq->errors = 0;
2891 if (timeout)
2892 rq->errors = make_status_bytes(0, 0, 0, DRIVER_TIMEOUT);
2894 if (cmd->err_info->CommandStatus == 0) /* no error has occurred */
2895 goto after_error_processing;
2897 switch (cmd->err_info->CommandStatus) {
2898 case CMD_TARGET_STATUS:
2899 rq->errors = evaluate_target_status(h, cmd, &retry_cmd);
2900 break;
2901 case CMD_DATA_UNDERRUN:
2902 if (blk_fs_request(cmd->rq)) {
2903 printk(KERN_WARNING "cciss: cmd %p has"
2904 " completed with data underrun "
2905 "reported\n", cmd);
2906 cmd->rq->resid_len = cmd->err_info->ResidualCnt;
2908 break;
2909 case CMD_DATA_OVERRUN:
2910 if (blk_fs_request(cmd->rq))
2911 printk(KERN_WARNING "cciss: cmd %p has"
2912 " completed with data overrun "
2913 "reported\n", cmd);
2914 break;
2915 case CMD_INVALID:
2916 printk(KERN_WARNING "cciss: cmd %p is "
2917 "reported invalid\n", cmd);
2918 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2919 cmd->err_info->CommandStatus, DRIVER_OK,
2920 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2921 break;
2922 case CMD_PROTOCOL_ERR:
2923 printk(KERN_WARNING "cciss: cmd %p has "
2924 "protocol error \n", cmd);
2925 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2926 cmd->err_info->CommandStatus, DRIVER_OK,
2927 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2928 break;
2929 case CMD_HARDWARE_ERR:
2930 printk(KERN_WARNING "cciss: cmd %p had "
2931 " hardware error\n", cmd);
2932 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2933 cmd->err_info->CommandStatus, DRIVER_OK,
2934 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2935 break;
2936 case CMD_CONNECTION_LOST:
2937 printk(KERN_WARNING "cciss: cmd %p had "
2938 "connection lost\n", cmd);
2939 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2940 cmd->err_info->CommandStatus, DRIVER_OK,
2941 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2942 break;
2943 case CMD_ABORTED:
2944 printk(KERN_WARNING "cciss: cmd %p was "
2945 "aborted\n", cmd);
2946 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2947 cmd->err_info->CommandStatus, DRIVER_OK,
2948 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2949 break;
2950 case CMD_ABORT_FAILED:
2951 printk(KERN_WARNING "cciss: cmd %p reports "
2952 "abort failed\n", cmd);
2953 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2954 cmd->err_info->CommandStatus, DRIVER_OK,
2955 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2956 break;
2957 case CMD_UNSOLICITED_ABORT:
2958 printk(KERN_WARNING "cciss%d: unsolicited "
2959 "abort %p\n", h->ctlr, cmd);
2960 if (cmd->retry_count < MAX_CMD_RETRIES) {
2961 retry_cmd = 1;
2962 printk(KERN_WARNING
2963 "cciss%d: retrying %p\n", h->ctlr, cmd);
2964 cmd->retry_count++;
2965 } else
2966 printk(KERN_WARNING
2967 "cciss%d: %p retried too "
2968 "many times\n", h->ctlr, cmd);
2969 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2970 cmd->err_info->CommandStatus, DRIVER_OK,
2971 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ABORT);
2972 break;
2973 case CMD_TIMEOUT:
2974 printk(KERN_WARNING "cciss: cmd %p timedout\n", cmd);
2975 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2976 cmd->err_info->CommandStatus, DRIVER_OK,
2977 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2978 break;
2979 default:
2980 printk(KERN_WARNING "cciss: cmd %p returned "
2981 "unknown status %x\n", cmd,
2982 cmd->err_info->CommandStatus);
2983 rq->errors = make_status_bytes(SAM_STAT_GOOD,
2984 cmd->err_info->CommandStatus, DRIVER_OK,
2985 blk_pc_request(cmd->rq) ? DID_PASSTHROUGH : DID_ERROR);
2988 after_error_processing:
2990 /* We need to return this command */
2991 if (retry_cmd) {
2992 resend_cciss_cmd(h, cmd);
2993 return;
2995 cmd->rq->completion_data = cmd;
2996 blk_complete_request(cmd->rq);
3000 * Get a request and submit it to the controller.
3002 static void do_cciss_request(struct request_queue *q)
3004 ctlr_info_t *h = q->queuedata;
3005 CommandList_struct *c;
3006 sector_t start_blk;
3007 int seg;
3008 struct request *creq;
3009 u64bit temp64;
3010 struct scatterlist tmp_sg[MAXSGENTRIES];
3011 drive_info_struct *drv;
3012 int i, dir;
3014 /* We call start_io here in case there is a command waiting on the
3015 * queue that has not been sent.
3017 if (blk_queue_plugged(q))
3018 goto startio;
3020 queue:
3021 creq = blk_peek_request(q);
3022 if (!creq)
3023 goto startio;
3025 BUG_ON(creq->nr_phys_segments > MAXSGENTRIES);
3027 if ((c = cmd_alloc(h, 1)) == NULL)
3028 goto full;
3030 blk_start_request(creq);
3032 spin_unlock_irq(q->queue_lock);
3034 c->cmd_type = CMD_RWREQ;
3035 c->rq = creq;
3037 /* fill in the request */
3038 drv = creq->rq_disk->private_data;
3039 c->Header.ReplyQueue = 0; // unused in simple mode
3040 /* got command from pool, so use the command block index instead */
3041 /* for direct lookups. */
3042 /* The first 2 bits are reserved for controller error reporting. */
3043 c->Header.Tag.lower = (c->cmdindex << 3);
3044 c->Header.Tag.lower |= 0x04; /* flag for direct lookup. */
3045 c->Header.LUN.LogDev.VolId = drv->LunID;
3046 c->Header.LUN.LogDev.Mode = 1;
3047 c->Request.CDBLen = 10; // 12 byte commands not in FW yet;
3048 c->Request.Type.Type = TYPE_CMD; // It is a command.
3049 c->Request.Type.Attribute = ATTR_SIMPLE;
3050 c->Request.Type.Direction =
3051 (rq_data_dir(creq) == READ) ? XFER_READ : XFER_WRITE;
3052 c->Request.Timeout = 0; // Don't time out
3053 c->Request.CDB[0] =
3054 (rq_data_dir(creq) == READ) ? h->cciss_read : h->cciss_write;
3055 start_blk = blk_rq_pos(creq);
3056 #ifdef CCISS_DEBUG
3057 printk(KERN_DEBUG "ciss: sector =%d nr_sectors=%d\n",
3058 (int)blk_rq_pos(creq), (int)blk_rq_sectors(creq));
3059 #endif /* CCISS_DEBUG */
3061 sg_init_table(tmp_sg, MAXSGENTRIES);
3062 seg = blk_rq_map_sg(q, creq, tmp_sg);
3064 /* get the DMA records for the setup */
3065 if (c->Request.Type.Direction == XFER_READ)
3066 dir = PCI_DMA_FROMDEVICE;
3067 else
3068 dir = PCI_DMA_TODEVICE;
3070 for (i = 0; i < seg; i++) {
3071 c->SG[i].Len = tmp_sg[i].length;
3072 temp64.val = (__u64) pci_map_page(h->pdev, sg_page(&tmp_sg[i]),
3073 tmp_sg[i].offset,
3074 tmp_sg[i].length, dir);
3075 c->SG[i].Addr.lower = temp64.val32.lower;
3076 c->SG[i].Addr.upper = temp64.val32.upper;
3077 c->SG[i].Ext = 0; // we are not chaining
3079 /* track how many SG entries we are using */
3080 if (seg > h->maxSG)
3081 h->maxSG = seg;
3083 #ifdef CCISS_DEBUG
3084 printk(KERN_DEBUG "cciss: Submitting %u sectors in %d segments\n",
3085 blk_rq_sectors(creq), seg);
3086 #endif /* CCISS_DEBUG */
3088 c->Header.SGList = c->Header.SGTotal = seg;
3089 if (likely(blk_fs_request(creq))) {
3090 if(h->cciss_read == CCISS_READ_10) {
3091 c->Request.CDB[1] = 0;
3092 c->Request.CDB[2] = (start_blk >> 24) & 0xff; //MSB
3093 c->Request.CDB[3] = (start_blk >> 16) & 0xff;
3094 c->Request.CDB[4] = (start_blk >> 8) & 0xff;
3095 c->Request.CDB[5] = start_blk & 0xff;
3096 c->Request.CDB[6] = 0; // (sect >> 24) & 0xff; MSB
3097 c->Request.CDB[7] = (blk_rq_sectors(creq) >> 8) & 0xff;
3098 c->Request.CDB[8] = blk_rq_sectors(creq) & 0xff;
3099 c->Request.CDB[9] = c->Request.CDB[11] = c->Request.CDB[12] = 0;
3100 } else {
3101 u32 upper32 = upper_32_bits(start_blk);
3103 c->Request.CDBLen = 16;
3104 c->Request.CDB[1]= 0;
3105 c->Request.CDB[2]= (upper32 >> 24) & 0xff; //MSB
3106 c->Request.CDB[3]= (upper32 >> 16) & 0xff;
3107 c->Request.CDB[4]= (upper32 >> 8) & 0xff;
3108 c->Request.CDB[5]= upper32 & 0xff;
3109 c->Request.CDB[6]= (start_blk >> 24) & 0xff;
3110 c->Request.CDB[7]= (start_blk >> 16) & 0xff;
3111 c->Request.CDB[8]= (start_blk >> 8) & 0xff;
3112 c->Request.CDB[9]= start_blk & 0xff;
3113 c->Request.CDB[10]= (blk_rq_sectors(creq) >> 24) & 0xff;
3114 c->Request.CDB[11]= (blk_rq_sectors(creq) >> 16) & 0xff;
3115 c->Request.CDB[12]= (blk_rq_sectors(creq) >> 8) & 0xff;
3116 c->Request.CDB[13]= blk_rq_sectors(creq) & 0xff;
3117 c->Request.CDB[14] = c->Request.CDB[15] = 0;
3119 } else if (blk_pc_request(creq)) {
3120 c->Request.CDBLen = creq->cmd_len;
3121 memcpy(c->Request.CDB, creq->cmd, BLK_MAX_CDB);
3122 } else {
3123 printk(KERN_WARNING "cciss%d: bad request type %d\n", h->ctlr, creq->cmd_type);
3124 BUG();
3127 spin_lock_irq(q->queue_lock);
3129 addQ(&h->reqQ, c);
3130 h->Qdepth++;
3131 if (h->Qdepth > h->maxQsinceinit)
3132 h->maxQsinceinit = h->Qdepth;
3134 goto queue;
3135 full:
3136 blk_stop_queue(q);
3137 startio:
3138 /* We will already have the driver lock here so not need
3139 * to lock it.
3141 start_io(h);
3144 static inline unsigned long get_next_completion(ctlr_info_t *h)
3146 return h->access.command_completed(h);
3149 static inline int interrupt_pending(ctlr_info_t *h)
3151 return h->access.intr_pending(h);
3154 static inline long interrupt_not_for_us(ctlr_info_t *h)
3156 return (((h->access.intr_pending(h) == 0) ||
3157 (h->interrupts_enabled == 0)));
3160 static irqreturn_t do_cciss_intr(int irq, void *dev_id)
3162 ctlr_info_t *h = dev_id;
3163 CommandList_struct *c;
3164 unsigned long flags;
3165 __u32 a, a1, a2;
3167 if (interrupt_not_for_us(h))
3168 return IRQ_NONE;
3170 * If there are completed commands in the completion queue,
3171 * we had better do something about it.
3173 spin_lock_irqsave(CCISS_LOCK(h->ctlr), flags);
3174 while (interrupt_pending(h)) {
3175 while ((a = get_next_completion(h)) != FIFO_EMPTY) {
3176 a1 = a;
3177 if ((a & 0x04)) {
3178 a2 = (a >> 3);
3179 if (a2 >= h->nr_cmds) {
3180 printk(KERN_WARNING
3181 "cciss: controller cciss%d failed, stopping.\n",
3182 h->ctlr);
3183 fail_all_cmds(h->ctlr);
3184 return IRQ_HANDLED;
3187 c = h->cmd_pool + a2;
3188 a = c->busaddr;
3190 } else {
3191 struct hlist_node *tmp;
3193 a &= ~3;
3194 c = NULL;
3195 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
3196 if (c->busaddr == a)
3197 break;
3201 * If we've found the command, take it off the
3202 * completion Q and free it
3204 if (c && c->busaddr == a) {
3205 removeQ(c);
3206 if (c->cmd_type == CMD_RWREQ) {
3207 complete_command(h, c, 0);
3208 } else if (c->cmd_type == CMD_IOCTL_PEND) {
3209 complete(c->waiting);
3211 # ifdef CONFIG_CISS_SCSI_TAPE
3212 else if (c->cmd_type == CMD_SCSI)
3213 complete_scsi_command(c, 0, a1);
3214 # endif
3215 continue;
3220 spin_unlock_irqrestore(CCISS_LOCK(h->ctlr), flags);
3221 return IRQ_HANDLED;
3224 static int scan_thread(void *data)
3226 ctlr_info_t *h = data;
3227 int rc;
3228 DECLARE_COMPLETION_ONSTACK(wait);
3229 h->rescan_wait = &wait;
3231 for (;;) {
3232 rc = wait_for_completion_interruptible(&wait);
3233 if (kthread_should_stop())
3234 break;
3235 if (!rc)
3236 rebuild_lun_table(h, 0);
3238 return 0;
3241 static int check_for_unit_attention(ctlr_info_t *h, CommandList_struct *c)
3243 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
3244 return 0;
3246 switch (c->err_info->SenseInfo[12]) {
3247 case STATE_CHANGED:
3248 printk(KERN_WARNING "cciss%d: a state change "
3249 "detected, command retried\n", h->ctlr);
3250 return 1;
3251 break;
3252 case LUN_FAILED:
3253 printk(KERN_WARNING "cciss%d: LUN failure "
3254 "detected, action required\n", h->ctlr);
3255 return 1;
3256 break;
3257 case REPORT_LUNS_CHANGED:
3258 printk(KERN_WARNING "cciss%d: report LUN data "
3259 "changed\n", h->ctlr);
3260 if (h->rescan_wait)
3261 complete(h->rescan_wait);
3262 return 1;
3263 break;
3264 case POWER_OR_RESET:
3265 printk(KERN_WARNING "cciss%d: a power on "
3266 "or device reset detected\n", h->ctlr);
3267 return 1;
3268 break;
3269 case UNIT_ATTENTION_CLEARED:
3270 printk(KERN_WARNING "cciss%d: unit attention "
3271 "cleared by another initiator\n", h->ctlr);
3272 return 1;
3273 break;
3274 default:
3275 printk(KERN_WARNING "cciss%d: unknown "
3276 "unit attention detected\n", h->ctlr);
3277 return 1;
3282 * We cannot read the structure directly, for portability we must use
3283 * the io functions.
3284 * This is for debug only.
3286 #ifdef CCISS_DEBUG
3287 static void print_cfg_table(CfgTable_struct *tb)
3289 int i;
3290 char temp_name[17];
3292 printk("Controller Configuration information\n");
3293 printk("------------------------------------\n");
3294 for (i = 0; i < 4; i++)
3295 temp_name[i] = readb(&(tb->Signature[i]));
3296 temp_name[4] = '\0';
3297 printk(" Signature = %s\n", temp_name);
3298 printk(" Spec Number = %d\n", readl(&(tb->SpecValence)));
3299 printk(" Transport methods supported = 0x%x\n",
3300 readl(&(tb->TransportSupport)));
3301 printk(" Transport methods active = 0x%x\n",
3302 readl(&(tb->TransportActive)));
3303 printk(" Requested transport Method = 0x%x\n",
3304 readl(&(tb->HostWrite.TransportRequest)));
3305 printk(" Coalesce Interrupt Delay = 0x%x\n",
3306 readl(&(tb->HostWrite.CoalIntDelay)));
3307 printk(" Coalesce Interrupt Count = 0x%x\n",
3308 readl(&(tb->HostWrite.CoalIntCount)));
3309 printk(" Max outstanding commands = 0x%d\n",
3310 readl(&(tb->CmdsOutMax)));
3311 printk(" Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3312 for (i = 0; i < 16; i++)
3313 temp_name[i] = readb(&(tb->ServerName[i]));
3314 temp_name[16] = '\0';
3315 printk(" Server Name = %s\n", temp_name);
3316 printk(" Heartbeat Counter = 0x%x\n\n\n", readl(&(tb->HeartBeat)));
3318 #endif /* CCISS_DEBUG */
3320 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3322 int i, offset, mem_type, bar_type;
3323 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3324 return 0;
3325 offset = 0;
3326 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3327 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3328 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3329 offset += 4;
3330 else {
3331 mem_type = pci_resource_flags(pdev, i) &
3332 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3333 switch (mem_type) {
3334 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3335 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3336 offset += 4; /* 32 bit */
3337 break;
3338 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3339 offset += 8;
3340 break;
3341 default: /* reserved in PCI 2.2 */
3342 printk(KERN_WARNING
3343 "Base address is invalid\n");
3344 return -1;
3345 break;
3348 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3349 return i + 1;
3351 return -1;
3354 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3355 * controllers that are capable. If not, we use IO-APIC mode.
3358 static void __devinit cciss_interrupt_mode(ctlr_info_t *c,
3359 struct pci_dev *pdev, __u32 board_id)
3361 #ifdef CONFIG_PCI_MSI
3362 int err;
3363 struct msix_entry cciss_msix_entries[4] = { {0, 0}, {0, 1},
3364 {0, 2}, {0, 3}
3367 /* Some boards advertise MSI but don't really support it */
3368 if ((board_id == 0x40700E11) ||
3369 (board_id == 0x40800E11) ||
3370 (board_id == 0x40820E11) || (board_id == 0x40830E11))
3371 goto default_int_mode;
3373 if (pci_find_capability(pdev, PCI_CAP_ID_MSIX)) {
3374 err = pci_enable_msix(pdev, cciss_msix_entries, 4);
3375 if (!err) {
3376 c->intr[0] = cciss_msix_entries[0].vector;
3377 c->intr[1] = cciss_msix_entries[1].vector;
3378 c->intr[2] = cciss_msix_entries[2].vector;
3379 c->intr[3] = cciss_msix_entries[3].vector;
3380 c->msix_vector = 1;
3381 return;
3383 if (err > 0) {
3384 printk(KERN_WARNING "cciss: only %d MSI-X vectors "
3385 "available\n", err);
3386 goto default_int_mode;
3387 } else {
3388 printk(KERN_WARNING "cciss: MSI-X init failed %d\n",
3389 err);
3390 goto default_int_mode;
3393 if (pci_find_capability(pdev, PCI_CAP_ID_MSI)) {
3394 if (!pci_enable_msi(pdev)) {
3395 c->msi_vector = 1;
3396 } else {
3397 printk(KERN_WARNING "cciss: MSI init failed\n");
3400 default_int_mode:
3401 #endif /* CONFIG_PCI_MSI */
3402 /* if we get here we're going to use the default interrupt mode */
3403 c->intr[SIMPLE_MODE_INT] = pdev->irq;
3404 return;
3407 static int __devinit cciss_pci_init(ctlr_info_t *c, struct pci_dev *pdev)
3409 ushort subsystem_vendor_id, subsystem_device_id, command;
3410 __u32 board_id, scratchpad = 0;
3411 __u64 cfg_offset;
3412 __u32 cfg_base_addr;
3413 __u64 cfg_base_addr_index;
3414 int i, err;
3416 /* check to see if controller has been disabled */
3417 /* BEFORE trying to enable it */
3418 (void)pci_read_config_word(pdev, PCI_COMMAND, &command);
3419 if (!(command & 0x02)) {
3420 printk(KERN_WARNING
3421 "cciss: controller appears to be disabled\n");
3422 return -ENODEV;
3425 err = pci_enable_device(pdev);
3426 if (err) {
3427 printk(KERN_ERR "cciss: Unable to Enable PCI device\n");
3428 return err;
3431 err = pci_request_regions(pdev, "cciss");
3432 if (err) {
3433 printk(KERN_ERR "cciss: Cannot obtain PCI resources, "
3434 "aborting\n");
3435 return err;
3438 subsystem_vendor_id = pdev->subsystem_vendor;
3439 subsystem_device_id = pdev->subsystem_device;
3440 board_id = (((__u32) (subsystem_device_id << 16) & 0xffff0000) |
3441 subsystem_vendor_id);
3443 #ifdef CCISS_DEBUG
3444 printk("command = %x\n", command);
3445 printk("irq = %x\n", pdev->irq);
3446 printk("board_id = %x\n", board_id);
3447 #endif /* CCISS_DEBUG */
3449 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
3450 * else we use the IO-APIC interrupt assigned to us by system ROM.
3452 cciss_interrupt_mode(c, pdev, board_id);
3454 /* find the memory BAR */
3455 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3456 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM)
3457 break;
3459 if (i == DEVICE_COUNT_RESOURCE) {
3460 printk(KERN_WARNING "cciss: No memory BAR found\n");
3461 err = -ENODEV;
3462 goto err_out_free_res;
3465 c->paddr = pci_resource_start(pdev, i); /* addressing mode bits
3466 * already removed
3469 #ifdef CCISS_DEBUG
3470 printk("address 0 = %lx\n", c->paddr);
3471 #endif /* CCISS_DEBUG */
3472 c->vaddr = remap_pci_mem(c->paddr, 0x250);
3474 /* Wait for the board to become ready. (PCI hotplug needs this.)
3475 * We poll for up to 120 secs, once per 100ms. */
3476 for (i = 0; i < 1200; i++) {
3477 scratchpad = readl(c->vaddr + SA5_SCRATCHPAD_OFFSET);
3478 if (scratchpad == CCISS_FIRMWARE_READY)
3479 break;
3480 set_current_state(TASK_INTERRUPTIBLE);
3481 schedule_timeout(HZ / 10); /* wait 100ms */
3483 if (scratchpad != CCISS_FIRMWARE_READY) {
3484 printk(KERN_WARNING "cciss: Board not ready. Timed out.\n");
3485 err = -ENODEV;
3486 goto err_out_free_res;
3489 /* get the address index number */
3490 cfg_base_addr = readl(c->vaddr + SA5_CTCFG_OFFSET);
3491 cfg_base_addr &= (__u32) 0x0000ffff;
3492 #ifdef CCISS_DEBUG
3493 printk("cfg base address = %x\n", cfg_base_addr);
3494 #endif /* CCISS_DEBUG */
3495 cfg_base_addr_index = find_PCI_BAR_index(pdev, cfg_base_addr);
3496 #ifdef CCISS_DEBUG
3497 printk("cfg base address index = %llx\n",
3498 (unsigned long long)cfg_base_addr_index);
3499 #endif /* CCISS_DEBUG */
3500 if (cfg_base_addr_index == -1) {
3501 printk(KERN_WARNING "cciss: Cannot find cfg_base_addr_index\n");
3502 err = -ENODEV;
3503 goto err_out_free_res;
3506 cfg_offset = readl(c->vaddr + SA5_CTMEM_OFFSET);
3507 #ifdef CCISS_DEBUG
3508 printk("cfg offset = %llx\n", (unsigned long long)cfg_offset);
3509 #endif /* CCISS_DEBUG */
3510 c->cfgtable = remap_pci_mem(pci_resource_start(pdev,
3511 cfg_base_addr_index) +
3512 cfg_offset, sizeof(CfgTable_struct));
3513 c->board_id = board_id;
3515 #ifdef CCISS_DEBUG
3516 print_cfg_table(c->cfgtable);
3517 #endif /* CCISS_DEBUG */
3519 /* Some controllers support Zero Memory Raid (ZMR).
3520 * When configured in ZMR mode the number of supported
3521 * commands drops to 64. So instead of just setting an
3522 * arbitrary value we make the driver a little smarter.
3523 * We read the config table to tell us how many commands
3524 * are supported on the controller then subtract 4 to
3525 * leave a little room for ioctl calls.
3527 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3528 for (i = 0; i < ARRAY_SIZE(products); i++) {
3529 if (board_id == products[i].board_id) {
3530 c->product_name = products[i].product_name;
3531 c->access = *(products[i].access);
3532 c->nr_cmds = c->max_commands - 4;
3533 break;
3536 if ((readb(&c->cfgtable->Signature[0]) != 'C') ||
3537 (readb(&c->cfgtable->Signature[1]) != 'I') ||
3538 (readb(&c->cfgtable->Signature[2]) != 'S') ||
3539 (readb(&c->cfgtable->Signature[3]) != 'S')) {
3540 printk("Does not appear to be a valid CISS config table\n");
3541 err = -ENODEV;
3542 goto err_out_free_res;
3544 /* We didn't find the controller in our list. We know the
3545 * signature is valid. If it's an HP device let's try to
3546 * bind to the device and fire it up. Otherwise we bail.
3548 if (i == ARRAY_SIZE(products)) {
3549 if (subsystem_vendor_id == PCI_VENDOR_ID_HP) {
3550 c->product_name = products[i-1].product_name;
3551 c->access = *(products[i-1].access);
3552 c->nr_cmds = c->max_commands - 4;
3553 printk(KERN_WARNING "cciss: This is an unknown "
3554 "Smart Array controller.\n"
3555 "cciss: Please update to the latest driver "
3556 "available from www.hp.com.\n");
3557 } else {
3558 printk(KERN_WARNING "cciss: Sorry, I don't know how"
3559 " to access the Smart Array controller %08lx\n"
3560 , (unsigned long)board_id);
3561 err = -ENODEV;
3562 goto err_out_free_res;
3565 #ifdef CONFIG_X86
3567 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3568 __u32 prefetch;
3569 prefetch = readl(&(c->cfgtable->SCSI_Prefetch));
3570 prefetch |= 0x100;
3571 writel(prefetch, &(c->cfgtable->SCSI_Prefetch));
3573 #endif
3575 /* Disabling DMA prefetch and refetch for the P600.
3576 * An ASIC bug may result in accesses to invalid memory addresses.
3577 * We've disabled prefetch for some time now. Testing with XEN
3578 * kernels revealed a bug in the refetch if dom0 resides on a P600.
3580 if(board_id == 0x3225103C) {
3581 __u32 dma_prefetch;
3582 __u32 dma_refetch;
3583 dma_prefetch = readl(c->vaddr + I2O_DMA1_CFG);
3584 dma_prefetch |= 0x8000;
3585 writel(dma_prefetch, c->vaddr + I2O_DMA1_CFG);
3586 pci_read_config_dword(pdev, PCI_COMMAND_PARITY, &dma_refetch);
3587 dma_refetch |= 0x1;
3588 pci_write_config_dword(pdev, PCI_COMMAND_PARITY, dma_refetch);
3591 #ifdef CCISS_DEBUG
3592 printk("Trying to put board into Simple mode\n");
3593 #endif /* CCISS_DEBUG */
3594 c->max_commands = readl(&(c->cfgtable->CmdsOutMax));
3595 /* Update the field, and then ring the doorbell */
3596 writel(CFGTBL_Trans_Simple, &(c->cfgtable->HostWrite.TransportRequest));
3597 writel(CFGTBL_ChangeReq, c->vaddr + SA5_DOORBELL);
3599 /* under certain very rare conditions, this can take awhile.
3600 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3601 * as we enter this code.) */
3602 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3603 if (!(readl(c->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3604 break;
3605 /* delay and try again */
3606 set_current_state(TASK_INTERRUPTIBLE);
3607 schedule_timeout(10);
3610 #ifdef CCISS_DEBUG
3611 printk(KERN_DEBUG "I counter got to %d %x\n", i,
3612 readl(c->vaddr + SA5_DOORBELL));
3613 #endif /* CCISS_DEBUG */
3614 #ifdef CCISS_DEBUG
3615 print_cfg_table(c->cfgtable);
3616 #endif /* CCISS_DEBUG */
3618 if (!(readl(&(c->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3619 printk(KERN_WARNING "cciss: unable to get board into"
3620 " simple mode\n");
3621 err = -ENODEV;
3622 goto err_out_free_res;
3624 return 0;
3626 err_out_free_res:
3628 * Deliberately omit pci_disable_device(): it does something nasty to
3629 * Smart Array controllers that pci_enable_device does not undo
3631 pci_release_regions(pdev);
3632 return err;
3635 /* Function to find the first free pointer into our hba[] array
3636 * Returns -1 if no free entries are left.
3638 static int alloc_cciss_hba(void)
3640 int i;
3642 for (i = 0; i < MAX_CTLR; i++) {
3643 if (!hba[i]) {
3644 ctlr_info_t *p;
3646 p = kzalloc(sizeof(ctlr_info_t), GFP_KERNEL);
3647 if (!p)
3648 goto Enomem;
3649 hba[i] = p;
3650 return i;
3653 printk(KERN_WARNING "cciss: This driver supports a maximum"
3654 " of %d controllers.\n", MAX_CTLR);
3655 return -1;
3656 Enomem:
3657 printk(KERN_ERR "cciss: out of memory.\n");
3658 return -1;
3661 static void free_hba(int i)
3663 ctlr_info_t *p = hba[i];
3664 int n;
3666 hba[i] = NULL;
3667 for (n = 0; n < CISS_MAX_LUN; n++)
3668 put_disk(p->gendisk[n]);
3669 kfree(p);
3672 /* Send a message CDB to the firmware. */
3673 static __devinit int cciss_message(struct pci_dev *pdev, unsigned char opcode, unsigned char type)
3675 typedef struct {
3676 CommandListHeader_struct CommandHeader;
3677 RequestBlock_struct Request;
3678 ErrDescriptor_struct ErrorDescriptor;
3679 } Command;
3680 static const size_t cmd_sz = sizeof(Command) + sizeof(ErrorInfo_struct);
3681 Command *cmd;
3682 dma_addr_t paddr64;
3683 uint32_t paddr32, tag;
3684 void __iomem *vaddr;
3685 int i, err;
3687 vaddr = ioremap_nocache(pci_resource_start(pdev, 0), pci_resource_len(pdev, 0));
3688 if (vaddr == NULL)
3689 return -ENOMEM;
3691 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3692 CCISS commands, so they must be allocated from the lower 4GiB of
3693 memory. */
3694 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3695 if (err) {
3696 iounmap(vaddr);
3697 return -ENOMEM;
3700 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3701 if (cmd == NULL) {
3702 iounmap(vaddr);
3703 return -ENOMEM;
3706 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3707 although there's no guarantee, we assume that the address is at
3708 least 4-byte aligned (most likely, it's page-aligned). */
3709 paddr32 = paddr64;
3711 cmd->CommandHeader.ReplyQueue = 0;
3712 cmd->CommandHeader.SGList = 0;
3713 cmd->CommandHeader.SGTotal = 0;
3714 cmd->CommandHeader.Tag.lower = paddr32;
3715 cmd->CommandHeader.Tag.upper = 0;
3716 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3718 cmd->Request.CDBLen = 16;
3719 cmd->Request.Type.Type = TYPE_MSG;
3720 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3721 cmd->Request.Type.Direction = XFER_NONE;
3722 cmd->Request.Timeout = 0; /* Don't time out */
3723 cmd->Request.CDB[0] = opcode;
3724 cmd->Request.CDB[1] = type;
3725 memset(&cmd->Request.CDB[2], 0, 14); /* the rest of the CDB is reserved */
3727 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(Command);
3728 cmd->ErrorDescriptor.Addr.upper = 0;
3729 cmd->ErrorDescriptor.Len = sizeof(ErrorInfo_struct);
3731 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3733 for (i = 0; i < 10; i++) {
3734 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3735 if ((tag & ~3) == paddr32)
3736 break;
3737 schedule_timeout_uninterruptible(HZ);
3740 iounmap(vaddr);
3742 /* we leak the DMA buffer here ... no choice since the controller could
3743 still complete the command. */
3744 if (i == 10) {
3745 printk(KERN_ERR "cciss: controller message %02x:%02x timed out\n",
3746 opcode, type);
3747 return -ETIMEDOUT;
3750 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3752 if (tag & 2) {
3753 printk(KERN_ERR "cciss: controller message %02x:%02x failed\n",
3754 opcode, type);
3755 return -EIO;
3758 printk(KERN_INFO "cciss: controller message %02x:%02x succeeded\n",
3759 opcode, type);
3760 return 0;
3763 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
3764 #define cciss_noop(p) cciss_message(p, 3, 0)
3766 static __devinit int cciss_reset_msi(struct pci_dev *pdev)
3768 /* the #defines are stolen from drivers/pci/msi.h. */
3769 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3770 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3772 int pos;
3773 u16 control = 0;
3775 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3776 if (pos) {
3777 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3778 if (control & PCI_MSI_FLAGS_ENABLE) {
3779 printk(KERN_INFO "cciss: resetting MSI\n");
3780 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSI_FLAGS_ENABLE);
3784 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3785 if (pos) {
3786 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3787 if (control & PCI_MSIX_FLAGS_ENABLE) {
3788 printk(KERN_INFO "cciss: resetting MSI-X\n");
3789 pci_write_config_word(pdev, msi_control_reg(pos), control & ~PCI_MSIX_FLAGS_ENABLE);
3793 return 0;
3796 /* This does a hard reset of the controller using PCI power management
3797 * states. */
3798 static __devinit int cciss_hard_reset_controller(struct pci_dev *pdev)
3800 u16 pmcsr, saved_config_space[32];
3801 int i, pos;
3803 printk(KERN_INFO "cciss: using PCI PM to reset controller\n");
3805 /* This is very nearly the same thing as
3807 pci_save_state(pci_dev);
3808 pci_set_power_state(pci_dev, PCI_D3hot);
3809 pci_set_power_state(pci_dev, PCI_D0);
3810 pci_restore_state(pci_dev);
3812 but we can't use these nice canned kernel routines on
3813 kexec, because they also check the MSI/MSI-X state in PCI
3814 configuration space and do the wrong thing when it is
3815 set/cleared. Also, the pci_save/restore_state functions
3816 violate the ordering requirements for restoring the
3817 configuration space from the CCISS document (see the
3818 comment below). So we roll our own .... */
3820 for (i = 0; i < 32; i++)
3821 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3823 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3824 if (pos == 0) {
3825 printk(KERN_ERR "cciss_reset_controller: PCI PM not supported\n");
3826 return -ENODEV;
3829 /* Quoting from the Open CISS Specification: "The Power
3830 * Management Control/Status Register (CSR) controls the power
3831 * state of the device. The normal operating state is D0,
3832 * CSR=00h. The software off state is D3, CSR=03h. To reset
3833 * the controller, place the interface device in D3 then to
3834 * D0, this causes a secondary PCI reset which will reset the
3835 * controller." */
3837 /* enter the D3hot power management state */
3838 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3839 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3840 pmcsr |= PCI_D3hot;
3841 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3843 schedule_timeout_uninterruptible(HZ >> 1);
3845 /* enter the D0 power management state */
3846 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3847 pmcsr |= PCI_D0;
3848 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3850 schedule_timeout_uninterruptible(HZ >> 1);
3852 /* Restore the PCI configuration space. The Open CISS
3853 * Specification says, "Restore the PCI Configuration
3854 * Registers, offsets 00h through 60h. It is important to
3855 * restore the command register, 16-bits at offset 04h,
3856 * last. Do not restore the configuration status register,
3857 * 16-bits at offset 06h." Note that the offset is 2*i. */
3858 for (i = 0; i < 32; i++) {
3859 if (i == 2 || i == 3)
3860 continue;
3861 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3863 wmb();
3864 pci_write_config_word(pdev, 4, saved_config_space[2]);
3866 return 0;
3870 * This is it. Find all the controllers and register them. I really hate
3871 * stealing all these major device numbers.
3872 * returns the number of block devices registered.
3874 static int __devinit cciss_init_one(struct pci_dev *pdev,
3875 const struct pci_device_id *ent)
3877 int i;
3878 int j = 0;
3879 int rc;
3880 int dac, return_code;
3881 InquiryData_struct *inq_buff = NULL;
3883 if (reset_devices) {
3884 /* Reset the controller with a PCI power-cycle */
3885 if (cciss_hard_reset_controller(pdev) || cciss_reset_msi(pdev))
3886 return -ENODEV;
3888 /* Now try to get the controller to respond to a no-op. Some
3889 devices (notably the HP Smart Array 5i Controller) need
3890 up to 30 seconds to respond. */
3891 for (i=0; i<30; i++) {
3892 if (cciss_noop(pdev) == 0)
3893 break;
3895 schedule_timeout_uninterruptible(HZ);
3897 if (i == 30) {
3898 printk(KERN_ERR "cciss: controller seems dead\n");
3899 return -EBUSY;
3903 i = alloc_cciss_hba();
3904 if (i < 0)
3905 return -1;
3907 hba[i]->busy_initializing = 1;
3908 INIT_HLIST_HEAD(&hba[i]->cmpQ);
3909 INIT_HLIST_HEAD(&hba[i]->reqQ);
3911 if (cciss_pci_init(hba[i], pdev) != 0)
3912 goto clean0;
3914 sprintf(hba[i]->devname, "cciss%d", i);
3915 hba[i]->ctlr = i;
3916 hba[i]->pdev = pdev;
3918 if (cciss_create_hba_sysfs_entry(hba[i]))
3919 goto clean0;
3921 /* configure PCI DMA stuff */
3922 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
3923 dac = 1;
3924 else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
3925 dac = 0;
3926 else {
3927 printk(KERN_ERR "cciss: no suitable DMA available\n");
3928 goto clean1;
3932 * register with the major number, or get a dynamic major number
3933 * by passing 0 as argument. This is done for greater than
3934 * 8 controller support.
3936 if (i < MAX_CTLR_ORIG)
3937 hba[i]->major = COMPAQ_CISS_MAJOR + i;
3938 rc = register_blkdev(hba[i]->major, hba[i]->devname);
3939 if (rc == -EBUSY || rc == -EINVAL) {
3940 printk(KERN_ERR
3941 "cciss: Unable to get major number %d for %s "
3942 "on hba %d\n", hba[i]->major, hba[i]->devname, i);
3943 goto clean1;
3944 } else {
3945 if (i >= MAX_CTLR_ORIG)
3946 hba[i]->major = rc;
3949 /* make sure the board interrupts are off */
3950 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_OFF);
3951 if (request_irq(hba[i]->intr[SIMPLE_MODE_INT], do_cciss_intr,
3952 IRQF_DISABLED | IRQF_SHARED, hba[i]->devname, hba[i])) {
3953 printk(KERN_ERR "cciss: Unable to get irq %d for %s\n",
3954 hba[i]->intr[SIMPLE_MODE_INT], hba[i]->devname);
3955 goto clean2;
3958 printk(KERN_INFO "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
3959 hba[i]->devname, pdev->device, pci_name(pdev),
3960 hba[i]->intr[SIMPLE_MODE_INT], dac ? "" : " not");
3962 hba[i]->cmd_pool_bits =
3963 kmalloc(DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3964 * sizeof(unsigned long), GFP_KERNEL);
3965 hba[i]->cmd_pool = (CommandList_struct *)
3966 pci_alloc_consistent(hba[i]->pdev,
3967 hba[i]->nr_cmds * sizeof(CommandList_struct),
3968 &(hba[i]->cmd_pool_dhandle));
3969 hba[i]->errinfo_pool = (ErrorInfo_struct *)
3970 pci_alloc_consistent(hba[i]->pdev,
3971 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
3972 &(hba[i]->errinfo_pool_dhandle));
3973 if ((hba[i]->cmd_pool_bits == NULL)
3974 || (hba[i]->cmd_pool == NULL)
3975 || (hba[i]->errinfo_pool == NULL)) {
3976 printk(KERN_ERR "cciss: out of memory");
3977 goto clean4;
3979 spin_lock_init(&hba[i]->lock);
3981 /* Initialize the pdev driver private data.
3982 have it point to hba[i]. */
3983 pci_set_drvdata(pdev, hba[i]);
3984 /* command and error info recs zeroed out before
3985 they are used */
3986 memset(hba[i]->cmd_pool_bits, 0,
3987 DIV_ROUND_UP(hba[i]->nr_cmds, BITS_PER_LONG)
3988 * sizeof(unsigned long));
3990 hba[i]->num_luns = 0;
3991 hba[i]->highest_lun = -1;
3992 for (j = 0; j < CISS_MAX_LUN; j++) {
3993 hba[i]->drv[j].raid_level = -1;
3994 hba[i]->drv[j].queue = NULL;
3995 hba[i]->gendisk[j] = NULL;
3998 cciss_scsi_setup(i);
4000 /* Turn the interrupts on so we can service requests */
4001 hba[i]->access.set_intr_mask(hba[i], CCISS_INTR_ON);
4003 /* Get the firmware version */
4004 inq_buff = kzalloc(sizeof(InquiryData_struct), GFP_KERNEL);
4005 if (inq_buff == NULL) {
4006 printk(KERN_ERR "cciss: out of memory\n");
4007 goto clean4;
4010 return_code = sendcmd_withirq(CISS_INQUIRY, i, inq_buff,
4011 sizeof(InquiryData_struct), 0, CTLR_LUNID, TYPE_CMD);
4012 if (return_code == IO_OK) {
4013 hba[i]->firm_ver[0] = inq_buff->data_byte[32];
4014 hba[i]->firm_ver[1] = inq_buff->data_byte[33];
4015 hba[i]->firm_ver[2] = inq_buff->data_byte[34];
4016 hba[i]->firm_ver[3] = inq_buff->data_byte[35];
4017 } else { /* send command failed */
4018 printk(KERN_WARNING "cciss: unable to determine firmware"
4019 " version of controller\n");
4022 cciss_procinit(i);
4024 hba[i]->cciss_max_sectors = 2048;
4026 hba[i]->busy_initializing = 0;
4028 rebuild_lun_table(hba[i], 1);
4029 hba[i]->cciss_scan_thread = kthread_run(scan_thread, hba[i],
4030 "cciss_scan%02d", i);
4031 if (IS_ERR(hba[i]->cciss_scan_thread))
4032 return PTR_ERR(hba[i]->cciss_scan_thread);
4034 return 1;
4036 clean4:
4037 kfree(inq_buff);
4038 kfree(hba[i]->cmd_pool_bits);
4039 if (hba[i]->cmd_pool)
4040 pci_free_consistent(hba[i]->pdev,
4041 hba[i]->nr_cmds * sizeof(CommandList_struct),
4042 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4043 if (hba[i]->errinfo_pool)
4044 pci_free_consistent(hba[i]->pdev,
4045 hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4046 hba[i]->errinfo_pool,
4047 hba[i]->errinfo_pool_dhandle);
4048 free_irq(hba[i]->intr[SIMPLE_MODE_INT], hba[i]);
4049 clean2:
4050 unregister_blkdev(hba[i]->major, hba[i]->devname);
4051 clean1:
4052 cciss_destroy_hba_sysfs_entry(hba[i]);
4053 clean0:
4054 hba[i]->busy_initializing = 0;
4055 /* cleanup any queues that may have been initialized */
4056 for (j=0; j <= hba[i]->highest_lun; j++){
4057 drive_info_struct *drv = &(hba[i]->drv[j]);
4058 if (drv->queue)
4059 blk_cleanup_queue(drv->queue);
4062 * Deliberately omit pci_disable_device(): it does something nasty to
4063 * Smart Array controllers that pci_enable_device does not undo
4065 pci_release_regions(pdev);
4066 pci_set_drvdata(pdev, NULL);
4067 free_hba(i);
4068 return -1;
4071 static void cciss_shutdown(struct pci_dev *pdev)
4073 ctlr_info_t *tmp_ptr;
4074 int i;
4075 char flush_buf[4];
4076 int return_code;
4078 tmp_ptr = pci_get_drvdata(pdev);
4079 if (tmp_ptr == NULL)
4080 return;
4081 i = tmp_ptr->ctlr;
4082 if (hba[i] == NULL)
4083 return;
4085 /* Turn board interrupts off and send the flush cache command */
4086 /* sendcmd will turn off interrupt, and send the flush...
4087 * To write all data in the battery backed cache to disks */
4088 memset(flush_buf, 0, 4);
4089 return_code = sendcmd(CCISS_CACHE_FLUSH, i, flush_buf, 4, 0,
4090 CTLR_LUNID, TYPE_CMD);
4091 if (return_code == IO_OK) {
4092 printk(KERN_INFO "Completed flushing cache on controller %d\n", i);
4093 } else {
4094 printk(KERN_WARNING "Error flushing cache on controller %d\n", i);
4096 free_irq(hba[i]->intr[2], hba[i]);
4099 static void __devexit cciss_remove_one(struct pci_dev *pdev)
4101 ctlr_info_t *tmp_ptr;
4102 int i, j;
4104 if (pci_get_drvdata(pdev) == NULL) {
4105 printk(KERN_ERR "cciss: Unable to remove device \n");
4106 return;
4109 tmp_ptr = pci_get_drvdata(pdev);
4110 i = tmp_ptr->ctlr;
4111 if (hba[i] == NULL) {
4112 printk(KERN_ERR "cciss: device appears to "
4113 "already be removed \n");
4114 return;
4117 kthread_stop(hba[i]->cciss_scan_thread);
4119 remove_proc_entry(hba[i]->devname, proc_cciss);
4120 unregister_blkdev(hba[i]->major, hba[i]->devname);
4122 /* remove it from the disk list */
4123 for (j = 0; j < CISS_MAX_LUN; j++) {
4124 struct gendisk *disk = hba[i]->gendisk[j];
4125 if (disk) {
4126 struct request_queue *q = disk->queue;
4128 if (disk->flags & GENHD_FL_UP)
4129 del_gendisk(disk);
4130 if (q)
4131 blk_cleanup_queue(q);
4135 #ifdef CONFIG_CISS_SCSI_TAPE
4136 cciss_unregister_scsi(i); /* unhook from SCSI subsystem */
4137 #endif
4139 cciss_shutdown(pdev);
4141 #ifdef CONFIG_PCI_MSI
4142 if (hba[i]->msix_vector)
4143 pci_disable_msix(hba[i]->pdev);
4144 else if (hba[i]->msi_vector)
4145 pci_disable_msi(hba[i]->pdev);
4146 #endif /* CONFIG_PCI_MSI */
4148 iounmap(hba[i]->vaddr);
4150 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(CommandList_struct),
4151 hba[i]->cmd_pool, hba[i]->cmd_pool_dhandle);
4152 pci_free_consistent(hba[i]->pdev, hba[i]->nr_cmds * sizeof(ErrorInfo_struct),
4153 hba[i]->errinfo_pool, hba[i]->errinfo_pool_dhandle);
4154 kfree(hba[i]->cmd_pool_bits);
4156 * Deliberately omit pci_disable_device(): it does something nasty to
4157 * Smart Array controllers that pci_enable_device does not undo
4159 pci_release_regions(pdev);
4160 pci_set_drvdata(pdev, NULL);
4161 cciss_destroy_hba_sysfs_entry(hba[i]);
4162 free_hba(i);
4165 static struct pci_driver cciss_pci_driver = {
4166 .name = "cciss",
4167 .probe = cciss_init_one,
4168 .remove = __devexit_p(cciss_remove_one),
4169 .id_table = cciss_pci_device_id, /* id_table */
4170 .shutdown = cciss_shutdown,
4174 * This is it. Register the PCI driver information for the cards we control
4175 * the OS will call our registered routines when it finds one of our cards.
4177 static int __init cciss_init(void)
4179 int err;
4182 * The hardware requires that commands are aligned on a 64-bit
4183 * boundary. Given that we use pci_alloc_consistent() to allocate an
4184 * array of them, the size must be a multiple of 8 bytes.
4186 BUILD_BUG_ON(sizeof(CommandList_struct) % 8);
4188 printk(KERN_INFO DRIVER_NAME "\n");
4190 err = bus_register(&cciss_bus_type);
4191 if (err)
4192 return err;
4194 /* Register for our PCI devices */
4195 err = pci_register_driver(&cciss_pci_driver);
4196 if (err)
4197 goto err_bus_register;
4199 return 0;
4201 err_bus_register:
4202 bus_unregister(&cciss_bus_type);
4203 return err;
4206 static void __exit cciss_cleanup(void)
4208 int i;
4210 pci_unregister_driver(&cciss_pci_driver);
4211 /* double check that all controller entrys have been removed */
4212 for (i = 0; i < MAX_CTLR; i++) {
4213 if (hba[i] != NULL) {
4214 printk(KERN_WARNING "cciss: had to remove"
4215 " controller %d\n", i);
4216 cciss_remove_one(hba[i]->pdev);
4219 remove_proc_entry("driver/cciss", NULL);
4220 bus_unregister(&cciss_bus_type);
4223 static void fail_all_cmds(unsigned long ctlr)
4225 /* If we get here, the board is apparently dead. */
4226 ctlr_info_t *h = hba[ctlr];
4227 CommandList_struct *c;
4228 unsigned long flags;
4230 printk(KERN_WARNING "cciss%d: controller not responding.\n", h->ctlr);
4231 h->alive = 0; /* the controller apparently died... */
4233 spin_lock_irqsave(CCISS_LOCK(ctlr), flags);
4235 pci_disable_device(h->pdev); /* Make sure it is really dead. */
4237 /* move everything off the request queue onto the completed queue */
4238 while (!hlist_empty(&h->reqQ)) {
4239 c = hlist_entry(h->reqQ.first, CommandList_struct, list);
4240 removeQ(c);
4241 h->Qdepth--;
4242 addQ(&h->cmpQ, c);
4245 /* Now, fail everything on the completed queue with a HW error */
4246 while (!hlist_empty(&h->cmpQ)) {
4247 c = hlist_entry(h->cmpQ.first, CommandList_struct, list);
4248 removeQ(c);
4249 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4250 if (c->cmd_type == CMD_RWREQ) {
4251 complete_command(h, c, 0);
4252 } else if (c->cmd_type == CMD_IOCTL_PEND)
4253 complete(c->waiting);
4254 #ifdef CONFIG_CISS_SCSI_TAPE
4255 else if (c->cmd_type == CMD_SCSI)
4256 complete_scsi_command(c, 0, 0);
4257 #endif
4259 spin_unlock_irqrestore(CCISS_LOCK(ctlr), flags);
4260 return;
4263 module_init(cciss_init);
4264 module_exit(cciss_cleanup);