net: Drop pernet_operations::async
[linux-2.6/btrfs-unstable.git] / net / ipv6 / ip6_fib.c
blob908b8e5b615a928c6ebdb0475cde62a5558e9c6c
1 /*
2 * Linux INET6 implementation
3 * Forwarding Information Database
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
20 #define pr_fmt(fmt) "IPv6: " fmt
22 #include <linux/errno.h>
23 #include <linux/types.h>
24 #include <linux/net.h>
25 #include <linux/route.h>
26 #include <linux/netdevice.h>
27 #include <linux/in6.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
32 #include <net/ipv6.h>
33 #include <net/ndisc.h>
34 #include <net/addrconf.h>
35 #include <net/lwtunnel.h>
36 #include <net/fib_notifier.h>
38 #include <net/ip6_fib.h>
39 #include <net/ip6_route.h>
41 static struct kmem_cache *fib6_node_kmem __read_mostly;
43 struct fib6_cleaner {
44 struct fib6_walker w;
45 struct net *net;
46 int (*func)(struct rt6_info *, void *arg);
47 int sernum;
48 void *arg;
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
57 static struct rt6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
73 static void fib6_gc_timer_cb(struct timer_list *t);
75 #define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
92 static int fib6_new_sernum(struct net *net)
94 int new, old;
96 do {
97 old = atomic_read(&net->ipv6.fib6_sernum);
98 new = old < INT_MAX ? old + 1 : 1;
99 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
100 old, new) != old);
101 return new;
104 enum {
105 FIB6_NO_SERNUM_CHANGE = 0,
108 void fib6_update_sernum(struct rt6_info *rt)
110 struct net *net = dev_net(rt->dst.dev);
111 struct fib6_node *fn;
113 fn = rcu_dereference_protected(rt->rt6i_node,
114 lockdep_is_held(&rt->rt6i_table->tb6_lock));
115 if (fn)
116 fn->fn_sernum = fib6_new_sernum(net);
120 * Auxiliary address test functions for the radix tree.
122 * These assume a 32bit processor (although it will work on
123 * 64bit processors)
127 * test bit
129 #if defined(__LITTLE_ENDIAN)
130 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
131 #else
132 # define BITOP_BE32_SWIZZLE 0
133 #endif
135 static __be32 addr_bit_set(const void *token, int fn_bit)
137 const __be32 *addr = token;
139 * Here,
140 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
141 * is optimized version of
142 * htonl(1 << ((~fn_bit)&0x1F))
143 * See include/asm-generic/bitops/le.h.
145 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
146 addr[fn_bit >> 5];
149 static struct fib6_node *node_alloc(struct net *net)
151 struct fib6_node *fn;
153 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
154 if (fn)
155 net->ipv6.rt6_stats->fib_nodes++;
157 return fn;
160 static void node_free_immediate(struct net *net, struct fib6_node *fn)
162 kmem_cache_free(fib6_node_kmem, fn);
163 net->ipv6.rt6_stats->fib_nodes--;
166 static void node_free_rcu(struct rcu_head *head)
168 struct fib6_node *fn = container_of(head, struct fib6_node, rcu);
170 kmem_cache_free(fib6_node_kmem, fn);
173 static void node_free(struct net *net, struct fib6_node *fn)
175 call_rcu(&fn->rcu, node_free_rcu);
176 net->ipv6.rt6_stats->fib_nodes--;
179 void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
181 int cpu;
183 if (!non_pcpu_rt->rt6i_pcpu)
184 return;
186 for_each_possible_cpu(cpu) {
187 struct rt6_info **ppcpu_rt;
188 struct rt6_info *pcpu_rt;
190 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
191 pcpu_rt = *ppcpu_rt;
192 if (pcpu_rt) {
193 dst_dev_put(&pcpu_rt->dst);
194 dst_release(&pcpu_rt->dst);
195 *ppcpu_rt = NULL;
199 EXPORT_SYMBOL_GPL(rt6_free_pcpu);
201 static void fib6_free_table(struct fib6_table *table)
203 inetpeer_invalidate_tree(&table->tb6_peers);
204 kfree(table);
207 static void fib6_link_table(struct net *net, struct fib6_table *tb)
209 unsigned int h;
212 * Initialize table lock at a single place to give lockdep a key,
213 * tables aren't visible prior to being linked to the list.
215 spin_lock_init(&tb->tb6_lock);
216 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
219 * No protection necessary, this is the only list mutatation
220 * operation, tables never disappear once they exist.
222 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
225 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
227 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
229 struct fib6_table *table;
231 table = kzalloc(sizeof(*table), GFP_ATOMIC);
232 if (table) {
233 table->tb6_id = id;
234 rcu_assign_pointer(table->tb6_root.leaf,
235 net->ipv6.ip6_null_entry);
236 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
237 inet_peer_base_init(&table->tb6_peers);
240 return table;
243 struct fib6_table *fib6_new_table(struct net *net, u32 id)
245 struct fib6_table *tb;
247 if (id == 0)
248 id = RT6_TABLE_MAIN;
249 tb = fib6_get_table(net, id);
250 if (tb)
251 return tb;
253 tb = fib6_alloc_table(net, id);
254 if (tb)
255 fib6_link_table(net, tb);
257 return tb;
259 EXPORT_SYMBOL_GPL(fib6_new_table);
261 struct fib6_table *fib6_get_table(struct net *net, u32 id)
263 struct fib6_table *tb;
264 struct hlist_head *head;
265 unsigned int h;
267 if (id == 0)
268 id = RT6_TABLE_MAIN;
269 h = id & (FIB6_TABLE_HASHSZ - 1);
270 rcu_read_lock();
271 head = &net->ipv6.fib_table_hash[h];
272 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
273 if (tb->tb6_id == id) {
274 rcu_read_unlock();
275 return tb;
278 rcu_read_unlock();
280 return NULL;
282 EXPORT_SYMBOL_GPL(fib6_get_table);
284 static void __net_init fib6_tables_init(struct net *net)
286 fib6_link_table(net, net->ipv6.fib6_main_tbl);
287 fib6_link_table(net, net->ipv6.fib6_local_tbl);
289 #else
291 struct fib6_table *fib6_new_table(struct net *net, u32 id)
293 return fib6_get_table(net, id);
296 struct fib6_table *fib6_get_table(struct net *net, u32 id)
298 return net->ipv6.fib6_main_tbl;
301 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
302 const struct sk_buff *skb,
303 int flags, pol_lookup_t lookup)
305 struct rt6_info *rt;
307 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
308 if (rt->dst.error == -EAGAIN) {
309 ip6_rt_put(rt);
310 rt = net->ipv6.ip6_null_entry;
311 dst_hold(&rt->dst);
314 return &rt->dst;
317 static void __net_init fib6_tables_init(struct net *net)
319 fib6_link_table(net, net->ipv6.fib6_main_tbl);
322 #endif
324 unsigned int fib6_tables_seq_read(struct net *net)
326 unsigned int h, fib_seq = 0;
328 rcu_read_lock();
329 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
330 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
331 struct fib6_table *tb;
333 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
334 fib_seq += tb->fib_seq;
336 rcu_read_unlock();
338 return fib_seq;
341 static int call_fib6_entry_notifier(struct notifier_block *nb, struct net *net,
342 enum fib_event_type event_type,
343 struct rt6_info *rt)
345 struct fib6_entry_notifier_info info = {
346 .rt = rt,
349 return call_fib6_notifier(nb, net, event_type, &info.info);
352 static int call_fib6_entry_notifiers(struct net *net,
353 enum fib_event_type event_type,
354 struct rt6_info *rt,
355 struct netlink_ext_ack *extack)
357 struct fib6_entry_notifier_info info = {
358 .info.extack = extack,
359 .rt = rt,
362 rt->rt6i_table->fib_seq++;
363 return call_fib6_notifiers(net, event_type, &info.info);
366 struct fib6_dump_arg {
367 struct net *net;
368 struct notifier_block *nb;
371 static void fib6_rt_dump(struct rt6_info *rt, struct fib6_dump_arg *arg)
373 if (rt == arg->net->ipv6.ip6_null_entry)
374 return;
375 call_fib6_entry_notifier(arg->nb, arg->net, FIB_EVENT_ENTRY_ADD, rt);
378 static int fib6_node_dump(struct fib6_walker *w)
380 struct rt6_info *rt;
382 for_each_fib6_walker_rt(w)
383 fib6_rt_dump(rt, w->args);
384 w->leaf = NULL;
385 return 0;
388 static void fib6_table_dump(struct net *net, struct fib6_table *tb,
389 struct fib6_walker *w)
391 w->root = &tb->tb6_root;
392 spin_lock_bh(&tb->tb6_lock);
393 fib6_walk(net, w);
394 spin_unlock_bh(&tb->tb6_lock);
397 /* Called with rcu_read_lock() */
398 int fib6_tables_dump(struct net *net, struct notifier_block *nb)
400 struct fib6_dump_arg arg;
401 struct fib6_walker *w;
402 unsigned int h;
404 w = kzalloc(sizeof(*w), GFP_ATOMIC);
405 if (!w)
406 return -ENOMEM;
408 w->func = fib6_node_dump;
409 arg.net = net;
410 arg.nb = nb;
411 w->args = &arg;
413 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
414 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
415 struct fib6_table *tb;
417 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
418 fib6_table_dump(net, tb, w);
421 kfree(w);
423 return 0;
426 static int fib6_dump_node(struct fib6_walker *w)
428 int res;
429 struct rt6_info *rt;
431 for_each_fib6_walker_rt(w) {
432 res = rt6_dump_route(rt, w->args);
433 if (res < 0) {
434 /* Frame is full, suspend walking */
435 w->leaf = rt;
436 return 1;
439 /* Multipath routes are dumped in one route with the
440 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
441 * last sibling of this route (no need to dump the
442 * sibling routes again)
444 if (rt->rt6i_nsiblings)
445 rt = list_last_entry(&rt->rt6i_siblings,
446 struct rt6_info,
447 rt6i_siblings);
449 w->leaf = NULL;
450 return 0;
453 static void fib6_dump_end(struct netlink_callback *cb)
455 struct net *net = sock_net(cb->skb->sk);
456 struct fib6_walker *w = (void *)cb->args[2];
458 if (w) {
459 if (cb->args[4]) {
460 cb->args[4] = 0;
461 fib6_walker_unlink(net, w);
463 cb->args[2] = 0;
464 kfree(w);
466 cb->done = (void *)cb->args[3];
467 cb->args[1] = 3;
470 static int fib6_dump_done(struct netlink_callback *cb)
472 fib6_dump_end(cb);
473 return cb->done ? cb->done(cb) : 0;
476 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
477 struct netlink_callback *cb)
479 struct net *net = sock_net(skb->sk);
480 struct fib6_walker *w;
481 int res;
483 w = (void *)cb->args[2];
484 w->root = &table->tb6_root;
486 if (cb->args[4] == 0) {
487 w->count = 0;
488 w->skip = 0;
490 spin_lock_bh(&table->tb6_lock);
491 res = fib6_walk(net, w);
492 spin_unlock_bh(&table->tb6_lock);
493 if (res > 0) {
494 cb->args[4] = 1;
495 cb->args[5] = w->root->fn_sernum;
497 } else {
498 if (cb->args[5] != w->root->fn_sernum) {
499 /* Begin at the root if the tree changed */
500 cb->args[5] = w->root->fn_sernum;
501 w->state = FWS_INIT;
502 w->node = w->root;
503 w->skip = w->count;
504 } else
505 w->skip = 0;
507 spin_lock_bh(&table->tb6_lock);
508 res = fib6_walk_continue(w);
509 spin_unlock_bh(&table->tb6_lock);
510 if (res <= 0) {
511 fib6_walker_unlink(net, w);
512 cb->args[4] = 0;
516 return res;
519 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
521 struct net *net = sock_net(skb->sk);
522 unsigned int h, s_h;
523 unsigned int e = 0, s_e;
524 struct rt6_rtnl_dump_arg arg;
525 struct fib6_walker *w;
526 struct fib6_table *tb;
527 struct hlist_head *head;
528 int res = 0;
530 s_h = cb->args[0];
531 s_e = cb->args[1];
533 w = (void *)cb->args[2];
534 if (!w) {
535 /* New dump:
537 * 1. hook callback destructor.
539 cb->args[3] = (long)cb->done;
540 cb->done = fib6_dump_done;
543 * 2. allocate and initialize walker.
545 w = kzalloc(sizeof(*w), GFP_ATOMIC);
546 if (!w)
547 return -ENOMEM;
548 w->func = fib6_dump_node;
549 cb->args[2] = (long)w;
552 arg.skb = skb;
553 arg.cb = cb;
554 arg.net = net;
555 w->args = &arg;
557 rcu_read_lock();
558 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
559 e = 0;
560 head = &net->ipv6.fib_table_hash[h];
561 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
562 if (e < s_e)
563 goto next;
564 res = fib6_dump_table(tb, skb, cb);
565 if (res != 0)
566 goto out;
567 next:
568 e++;
571 out:
572 rcu_read_unlock();
573 cb->args[1] = e;
574 cb->args[0] = h;
576 res = res < 0 ? res : skb->len;
577 if (res <= 0)
578 fib6_dump_end(cb);
579 return res;
583 * Routing Table
585 * return the appropriate node for a routing tree "add" operation
586 * by either creating and inserting or by returning an existing
587 * node.
590 static struct fib6_node *fib6_add_1(struct net *net,
591 struct fib6_table *table,
592 struct fib6_node *root,
593 struct in6_addr *addr, int plen,
594 int offset, int allow_create,
595 int replace_required,
596 struct netlink_ext_ack *extack)
598 struct fib6_node *fn, *in, *ln;
599 struct fib6_node *pn = NULL;
600 struct rt6key *key;
601 int bit;
602 __be32 dir = 0;
604 RT6_TRACE("fib6_add_1\n");
606 /* insert node in tree */
608 fn = root;
610 do {
611 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
612 lockdep_is_held(&table->tb6_lock));
613 key = (struct rt6key *)((u8 *)leaf + offset);
616 * Prefix match
618 if (plen < fn->fn_bit ||
619 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
620 if (!allow_create) {
621 if (replace_required) {
622 NL_SET_ERR_MSG(extack,
623 "Can not replace route - no match found");
624 pr_warn("Can't replace route, no match found\n");
625 return ERR_PTR(-ENOENT);
627 pr_warn("NLM_F_CREATE should be set when creating new route\n");
629 goto insert_above;
633 * Exact match ?
636 if (plen == fn->fn_bit) {
637 /* clean up an intermediate node */
638 if (!(fn->fn_flags & RTN_RTINFO)) {
639 RCU_INIT_POINTER(fn->leaf, NULL);
640 rt6_release(leaf);
641 /* remove null_entry in the root node */
642 } else if (fn->fn_flags & RTN_TL_ROOT &&
643 rcu_access_pointer(fn->leaf) ==
644 net->ipv6.ip6_null_entry) {
645 RCU_INIT_POINTER(fn->leaf, NULL);
648 return fn;
652 * We have more bits to go
655 /* Try to walk down on tree. */
656 dir = addr_bit_set(addr, fn->fn_bit);
657 pn = fn;
658 fn = dir ?
659 rcu_dereference_protected(fn->right,
660 lockdep_is_held(&table->tb6_lock)) :
661 rcu_dereference_protected(fn->left,
662 lockdep_is_held(&table->tb6_lock));
663 } while (fn);
665 if (!allow_create) {
666 /* We should not create new node because
667 * NLM_F_REPLACE was specified without NLM_F_CREATE
668 * I assume it is safe to require NLM_F_CREATE when
669 * REPLACE flag is used! Later we may want to remove the
670 * check for replace_required, because according
671 * to netlink specification, NLM_F_CREATE
672 * MUST be specified if new route is created.
673 * That would keep IPv6 consistent with IPv4
675 if (replace_required) {
676 NL_SET_ERR_MSG(extack,
677 "Can not replace route - no match found");
678 pr_warn("Can't replace route, no match found\n");
679 return ERR_PTR(-ENOENT);
681 pr_warn("NLM_F_CREATE should be set when creating new route\n");
684 * We walked to the bottom of tree.
685 * Create new leaf node without children.
688 ln = node_alloc(net);
690 if (!ln)
691 return ERR_PTR(-ENOMEM);
692 ln->fn_bit = plen;
693 RCU_INIT_POINTER(ln->parent, pn);
695 if (dir)
696 rcu_assign_pointer(pn->right, ln);
697 else
698 rcu_assign_pointer(pn->left, ln);
700 return ln;
703 insert_above:
705 * split since we don't have a common prefix anymore or
706 * we have a less significant route.
707 * we've to insert an intermediate node on the list
708 * this new node will point to the one we need to create
709 * and the current
712 pn = rcu_dereference_protected(fn->parent,
713 lockdep_is_held(&table->tb6_lock));
715 /* find 1st bit in difference between the 2 addrs.
717 See comment in __ipv6_addr_diff: bit may be an invalid value,
718 but if it is >= plen, the value is ignored in any case.
721 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
724 * (intermediate)[in]
725 * / \
726 * (new leaf node)[ln] (old node)[fn]
728 if (plen > bit) {
729 in = node_alloc(net);
730 ln = node_alloc(net);
732 if (!in || !ln) {
733 if (in)
734 node_free_immediate(net, in);
735 if (ln)
736 node_free_immediate(net, ln);
737 return ERR_PTR(-ENOMEM);
741 * new intermediate node.
742 * RTN_RTINFO will
743 * be off since that an address that chooses one of
744 * the branches would not match less specific routes
745 * in the other branch
748 in->fn_bit = bit;
750 RCU_INIT_POINTER(in->parent, pn);
751 in->leaf = fn->leaf;
752 atomic_inc(&rcu_dereference_protected(in->leaf,
753 lockdep_is_held(&table->tb6_lock))->rt6i_ref);
755 /* update parent pointer */
756 if (dir)
757 rcu_assign_pointer(pn->right, in);
758 else
759 rcu_assign_pointer(pn->left, in);
761 ln->fn_bit = plen;
763 RCU_INIT_POINTER(ln->parent, in);
764 rcu_assign_pointer(fn->parent, in);
766 if (addr_bit_set(addr, bit)) {
767 rcu_assign_pointer(in->right, ln);
768 rcu_assign_pointer(in->left, fn);
769 } else {
770 rcu_assign_pointer(in->left, ln);
771 rcu_assign_pointer(in->right, fn);
773 } else { /* plen <= bit */
776 * (new leaf node)[ln]
777 * / \
778 * (old node)[fn] NULL
781 ln = node_alloc(net);
783 if (!ln)
784 return ERR_PTR(-ENOMEM);
786 ln->fn_bit = plen;
788 RCU_INIT_POINTER(ln->parent, pn);
790 if (addr_bit_set(&key->addr, plen))
791 RCU_INIT_POINTER(ln->right, fn);
792 else
793 RCU_INIT_POINTER(ln->left, fn);
795 rcu_assign_pointer(fn->parent, ln);
797 if (dir)
798 rcu_assign_pointer(pn->right, ln);
799 else
800 rcu_assign_pointer(pn->left, ln);
802 return ln;
805 static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
807 int i;
809 for (i = 0; i < RTAX_MAX; i++) {
810 if (test_bit(i, mxc->mx_valid))
811 mp[i] = mxc->mx[i];
815 static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
817 if (!mxc->mx)
818 return 0;
820 if (dst->flags & DST_HOST) {
821 u32 *mp = dst_metrics_write_ptr(dst);
823 if (unlikely(!mp))
824 return -ENOMEM;
826 fib6_copy_metrics(mp, mxc);
827 } else {
828 dst_init_metrics(dst, mxc->mx, false);
830 /* We've stolen mx now. */
831 mxc->mx = NULL;
834 return 0;
837 static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
838 struct net *net)
840 struct fib6_table *table = rt->rt6i_table;
842 if (atomic_read(&rt->rt6i_ref) != 1) {
843 /* This route is used as dummy address holder in some split
844 * nodes. It is not leaked, but it still holds other resources,
845 * which must be released in time. So, scan ascendant nodes
846 * and replace dummy references to this route with references
847 * to still alive ones.
849 while (fn) {
850 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
851 lockdep_is_held(&table->tb6_lock));
852 struct rt6_info *new_leaf;
853 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
854 new_leaf = fib6_find_prefix(net, table, fn);
855 atomic_inc(&new_leaf->rt6i_ref);
856 rcu_assign_pointer(fn->leaf, new_leaf);
857 rt6_release(rt);
859 fn = rcu_dereference_protected(fn->parent,
860 lockdep_is_held(&table->tb6_lock));
866 * Insert routing information in a node.
869 static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
870 struct nl_info *info, struct mx6_config *mxc,
871 struct netlink_ext_ack *extack)
873 struct rt6_info *leaf = rcu_dereference_protected(fn->leaf,
874 lockdep_is_held(&rt->rt6i_table->tb6_lock));
875 struct rt6_info *iter = NULL;
876 struct rt6_info __rcu **ins;
877 struct rt6_info __rcu **fallback_ins = NULL;
878 int replace = (info->nlh &&
879 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
880 int add = (!info->nlh ||
881 (info->nlh->nlmsg_flags & NLM_F_CREATE));
882 int found = 0;
883 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
884 u16 nlflags = NLM_F_EXCL;
885 int err;
887 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
888 nlflags |= NLM_F_APPEND;
890 ins = &fn->leaf;
892 for (iter = leaf; iter;
893 iter = rcu_dereference_protected(iter->rt6_next,
894 lockdep_is_held(&rt->rt6i_table->tb6_lock))) {
896 * Search for duplicates
899 if (iter->rt6i_metric == rt->rt6i_metric) {
901 * Same priority level
903 if (info->nlh &&
904 (info->nlh->nlmsg_flags & NLM_F_EXCL))
905 return -EEXIST;
907 nlflags &= ~NLM_F_EXCL;
908 if (replace) {
909 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
910 found++;
911 break;
913 if (rt_can_ecmp)
914 fallback_ins = fallback_ins ?: ins;
915 goto next_iter;
918 if (rt6_duplicate_nexthop(iter, rt)) {
919 if (rt->rt6i_nsiblings)
920 rt->rt6i_nsiblings = 0;
921 if (!(iter->rt6i_flags & RTF_EXPIRES))
922 return -EEXIST;
923 if (!(rt->rt6i_flags & RTF_EXPIRES))
924 rt6_clean_expires(iter);
925 else
926 rt6_set_expires(iter, rt->dst.expires);
927 iter->rt6i_pmtu = rt->rt6i_pmtu;
928 return -EEXIST;
930 /* If we have the same destination and the same metric,
931 * but not the same gateway, then the route we try to
932 * add is sibling to this route, increment our counter
933 * of siblings, and later we will add our route to the
934 * list.
935 * Only static routes (which don't have flag
936 * RTF_EXPIRES) are used for ECMPv6.
938 * To avoid long list, we only had siblings if the
939 * route have a gateway.
941 if (rt_can_ecmp &&
942 rt6_qualify_for_ecmp(iter))
943 rt->rt6i_nsiblings++;
946 if (iter->rt6i_metric > rt->rt6i_metric)
947 break;
949 next_iter:
950 ins = &iter->rt6_next;
953 if (fallback_ins && !found) {
954 /* No ECMP-able route found, replace first non-ECMP one */
955 ins = fallback_ins;
956 iter = rcu_dereference_protected(*ins,
957 lockdep_is_held(&rt->rt6i_table->tb6_lock));
958 found++;
961 /* Reset round-robin state, if necessary */
962 if (ins == &fn->leaf)
963 fn->rr_ptr = NULL;
965 /* Link this route to others same route. */
966 if (rt->rt6i_nsiblings) {
967 unsigned int rt6i_nsiblings;
968 struct rt6_info *sibling, *temp_sibling;
970 /* Find the first route that have the same metric */
971 sibling = leaf;
972 while (sibling) {
973 if (sibling->rt6i_metric == rt->rt6i_metric &&
974 rt6_qualify_for_ecmp(sibling)) {
975 list_add_tail(&rt->rt6i_siblings,
976 &sibling->rt6i_siblings);
977 break;
979 sibling = rcu_dereference_protected(sibling->rt6_next,
980 lockdep_is_held(&rt->rt6i_table->tb6_lock));
982 /* For each sibling in the list, increment the counter of
983 * siblings. BUG() if counters does not match, list of siblings
984 * is broken!
986 rt6i_nsiblings = 0;
987 list_for_each_entry_safe(sibling, temp_sibling,
988 &rt->rt6i_siblings, rt6i_siblings) {
989 sibling->rt6i_nsiblings++;
990 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
991 rt6i_nsiblings++;
993 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
994 rt6_multipath_rebalance(temp_sibling);
998 * insert node
1000 if (!replace) {
1001 if (!add)
1002 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1004 add:
1005 nlflags |= NLM_F_CREATE;
1006 err = fib6_commit_metrics(&rt->dst, mxc);
1007 if (err)
1008 return err;
1010 rcu_assign_pointer(rt->rt6_next, iter);
1011 atomic_inc(&rt->rt6i_ref);
1012 rcu_assign_pointer(rt->rt6i_node, fn);
1013 rcu_assign_pointer(*ins, rt);
1014 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_ADD,
1015 rt, extack);
1016 if (!info->skip_notify)
1017 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1018 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1020 if (!(fn->fn_flags & RTN_RTINFO)) {
1021 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1022 fn->fn_flags |= RTN_RTINFO;
1025 } else {
1026 int nsiblings;
1028 if (!found) {
1029 if (add)
1030 goto add;
1031 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1032 return -ENOENT;
1035 err = fib6_commit_metrics(&rt->dst, mxc);
1036 if (err)
1037 return err;
1039 atomic_inc(&rt->rt6i_ref);
1040 rcu_assign_pointer(rt->rt6i_node, fn);
1041 rt->rt6_next = iter->rt6_next;
1042 rcu_assign_pointer(*ins, rt);
1043 call_fib6_entry_notifiers(info->nl_net, FIB_EVENT_ENTRY_REPLACE,
1044 rt, extack);
1045 if (!info->skip_notify)
1046 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1047 if (!(fn->fn_flags & RTN_RTINFO)) {
1048 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1049 fn->fn_flags |= RTN_RTINFO;
1051 nsiblings = iter->rt6i_nsiblings;
1052 iter->rt6i_node = NULL;
1053 fib6_purge_rt(iter, fn, info->nl_net);
1054 if (rcu_access_pointer(fn->rr_ptr) == iter)
1055 fn->rr_ptr = NULL;
1056 rt6_release(iter);
1058 if (nsiblings) {
1059 /* Replacing an ECMP route, remove all siblings */
1060 ins = &rt->rt6_next;
1061 iter = rcu_dereference_protected(*ins,
1062 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1063 while (iter) {
1064 if (iter->rt6i_metric > rt->rt6i_metric)
1065 break;
1066 if (rt6_qualify_for_ecmp(iter)) {
1067 *ins = iter->rt6_next;
1068 iter->rt6i_node = NULL;
1069 fib6_purge_rt(iter, fn, info->nl_net);
1070 if (rcu_access_pointer(fn->rr_ptr) == iter)
1071 fn->rr_ptr = NULL;
1072 rt6_release(iter);
1073 nsiblings--;
1074 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1075 } else {
1076 ins = &iter->rt6_next;
1078 iter = rcu_dereference_protected(*ins,
1079 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1081 WARN_ON(nsiblings != 0);
1085 return 0;
1088 static void fib6_start_gc(struct net *net, struct rt6_info *rt)
1090 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1091 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
1092 mod_timer(&net->ipv6.ip6_fib_timer,
1093 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1096 void fib6_force_start_gc(struct net *net)
1098 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1099 mod_timer(&net->ipv6.ip6_fib_timer,
1100 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1103 static void __fib6_update_sernum_upto_root(struct rt6_info *rt,
1104 int sernum)
1106 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1107 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1109 /* paired with smp_rmb() in rt6_get_cookie_safe() */
1110 smp_wmb();
1111 while (fn) {
1112 fn->fn_sernum = sernum;
1113 fn = rcu_dereference_protected(fn->parent,
1114 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1118 void fib6_update_sernum_upto_root(struct net *net, struct rt6_info *rt)
1120 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1124 * Add routing information to the routing tree.
1125 * <destination addr>/<source addr>
1126 * with source addr info in sub-trees
1127 * Need to own table->tb6_lock
1130 int fib6_add(struct fib6_node *root, struct rt6_info *rt,
1131 struct nl_info *info, struct mx6_config *mxc,
1132 struct netlink_ext_ack *extack)
1134 struct fib6_table *table = rt->rt6i_table;
1135 struct fib6_node *fn, *pn = NULL;
1136 int err = -ENOMEM;
1137 int allow_create = 1;
1138 int replace_required = 0;
1139 int sernum = fib6_new_sernum(info->nl_net);
1141 if (WARN_ON_ONCE(!atomic_read(&rt->dst.__refcnt)))
1142 return -EINVAL;
1143 if (WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE))
1144 return -EINVAL;
1146 if (info->nlh) {
1147 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1148 allow_create = 0;
1149 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1150 replace_required = 1;
1152 if (!allow_create && !replace_required)
1153 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1155 fn = fib6_add_1(info->nl_net, table, root,
1156 &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
1157 offsetof(struct rt6_info, rt6i_dst), allow_create,
1158 replace_required, extack);
1159 if (IS_ERR(fn)) {
1160 err = PTR_ERR(fn);
1161 fn = NULL;
1162 goto out;
1165 pn = fn;
1167 #ifdef CONFIG_IPV6_SUBTREES
1168 if (rt->rt6i_src.plen) {
1169 struct fib6_node *sn;
1171 if (!rcu_access_pointer(fn->subtree)) {
1172 struct fib6_node *sfn;
1175 * Create subtree.
1177 * fn[main tree]
1179 * sfn[subtree root]
1181 * sn[new leaf node]
1184 /* Create subtree root node */
1185 sfn = node_alloc(info->nl_net);
1186 if (!sfn)
1187 goto failure;
1189 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1190 rcu_assign_pointer(sfn->leaf,
1191 info->nl_net->ipv6.ip6_null_entry);
1192 sfn->fn_flags = RTN_ROOT;
1194 /* Now add the first leaf node to new subtree */
1196 sn = fib6_add_1(info->nl_net, table, sfn,
1197 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1198 offsetof(struct rt6_info, rt6i_src),
1199 allow_create, replace_required, extack);
1201 if (IS_ERR(sn)) {
1202 /* If it is failed, discard just allocated
1203 root, and then (in failure) stale node
1204 in main tree.
1206 node_free_immediate(info->nl_net, sfn);
1207 err = PTR_ERR(sn);
1208 goto failure;
1211 /* Now link new subtree to main tree */
1212 rcu_assign_pointer(sfn->parent, fn);
1213 rcu_assign_pointer(fn->subtree, sfn);
1214 } else {
1215 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1216 &rt->rt6i_src.addr, rt->rt6i_src.plen,
1217 offsetof(struct rt6_info, rt6i_src),
1218 allow_create, replace_required, extack);
1220 if (IS_ERR(sn)) {
1221 err = PTR_ERR(sn);
1222 goto failure;
1226 if (!rcu_access_pointer(fn->leaf)) {
1227 if (fn->fn_flags & RTN_TL_ROOT) {
1228 /* put back null_entry for root node */
1229 rcu_assign_pointer(fn->leaf,
1230 info->nl_net->ipv6.ip6_null_entry);
1231 } else {
1232 atomic_inc(&rt->rt6i_ref);
1233 rcu_assign_pointer(fn->leaf, rt);
1236 fn = sn;
1238 #endif
1240 err = fib6_add_rt2node(fn, rt, info, mxc, extack);
1241 if (!err) {
1242 __fib6_update_sernum_upto_root(rt, sernum);
1243 fib6_start_gc(info->nl_net, rt);
1246 out:
1247 if (err) {
1248 #ifdef CONFIG_IPV6_SUBTREES
1250 * If fib6_add_1 has cleared the old leaf pointer in the
1251 * super-tree leaf node we have to find a new one for it.
1253 if (pn != fn) {
1254 struct rt6_info *pn_leaf =
1255 rcu_dereference_protected(pn->leaf,
1256 lockdep_is_held(&table->tb6_lock));
1257 if (pn_leaf == rt) {
1258 pn_leaf = NULL;
1259 RCU_INIT_POINTER(pn->leaf, NULL);
1260 atomic_dec(&rt->rt6i_ref);
1262 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1263 pn_leaf = fib6_find_prefix(info->nl_net, table,
1264 pn);
1265 #if RT6_DEBUG >= 2
1266 if (!pn_leaf) {
1267 WARN_ON(!pn_leaf);
1268 pn_leaf =
1269 info->nl_net->ipv6.ip6_null_entry;
1271 #endif
1272 atomic_inc(&pn_leaf->rt6i_ref);
1273 rcu_assign_pointer(pn->leaf, pn_leaf);
1276 #endif
1277 goto failure;
1279 return err;
1281 failure:
1282 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1283 * 1. fn is an intermediate node and we failed to add the new
1284 * route to it in both subtree creation failure and fib6_add_rt2node()
1285 * failure case.
1286 * 2. fn is the root node in the table and we fail to add the first
1287 * default route to it.
1289 if (fn &&
1290 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1291 (fn->fn_flags & RTN_TL_ROOT &&
1292 !rcu_access_pointer(fn->leaf))))
1293 fib6_repair_tree(info->nl_net, table, fn);
1294 /* Always release dst as dst->__refcnt is guaranteed
1295 * to be taken before entering this function
1297 dst_release_immediate(&rt->dst);
1298 return err;
1302 * Routing tree lookup
1306 struct lookup_args {
1307 int offset; /* key offset on rt6_info */
1308 const struct in6_addr *addr; /* search key */
1311 static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1312 struct lookup_args *args)
1314 struct fib6_node *fn;
1315 __be32 dir;
1317 if (unlikely(args->offset == 0))
1318 return NULL;
1321 * Descend on a tree
1324 fn = root;
1326 for (;;) {
1327 struct fib6_node *next;
1329 dir = addr_bit_set(args->addr, fn->fn_bit);
1331 next = dir ? rcu_dereference(fn->right) :
1332 rcu_dereference(fn->left);
1334 if (next) {
1335 fn = next;
1336 continue;
1338 break;
1341 while (fn) {
1342 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1344 if (subtree || fn->fn_flags & RTN_RTINFO) {
1345 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1346 struct rt6key *key;
1348 if (!leaf)
1349 goto backtrack;
1351 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1353 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1354 #ifdef CONFIG_IPV6_SUBTREES
1355 if (subtree) {
1356 struct fib6_node *sfn;
1357 sfn = fib6_lookup_1(subtree, args + 1);
1358 if (!sfn)
1359 goto backtrack;
1360 fn = sfn;
1362 #endif
1363 if (fn->fn_flags & RTN_RTINFO)
1364 return fn;
1367 backtrack:
1368 if (fn->fn_flags & RTN_ROOT)
1369 break;
1371 fn = rcu_dereference(fn->parent);
1374 return NULL;
1377 /* called with rcu_read_lock() held
1379 struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1380 const struct in6_addr *saddr)
1382 struct fib6_node *fn;
1383 struct lookup_args args[] = {
1385 .offset = offsetof(struct rt6_info, rt6i_dst),
1386 .addr = daddr,
1388 #ifdef CONFIG_IPV6_SUBTREES
1390 .offset = offsetof(struct rt6_info, rt6i_src),
1391 .addr = saddr,
1393 #endif
1395 .offset = 0, /* sentinel */
1399 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1400 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1401 fn = root;
1403 return fn;
1407 * Get node with specified destination prefix (and source prefix,
1408 * if subtrees are used)
1409 * exact_match == true means we try to find fn with exact match of
1410 * the passed in prefix addr
1411 * exact_match == false means we try to find fn with longest prefix
1412 * match of the passed in prefix addr. This is useful for finding fn
1413 * for cached route as it will be stored in the exception table under
1414 * the node with longest prefix length.
1418 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1419 const struct in6_addr *addr,
1420 int plen, int offset,
1421 bool exact_match)
1423 struct fib6_node *fn, *prev = NULL;
1425 for (fn = root; fn ; ) {
1426 struct rt6_info *leaf = rcu_dereference(fn->leaf);
1427 struct rt6key *key;
1429 /* This node is being deleted */
1430 if (!leaf) {
1431 if (plen <= fn->fn_bit)
1432 goto out;
1433 else
1434 goto next;
1437 key = (struct rt6key *)((u8 *)leaf + offset);
1440 * Prefix match
1442 if (plen < fn->fn_bit ||
1443 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1444 goto out;
1446 if (plen == fn->fn_bit)
1447 return fn;
1449 prev = fn;
1451 next:
1453 * We have more bits to go
1455 if (addr_bit_set(addr, fn->fn_bit))
1456 fn = rcu_dereference(fn->right);
1457 else
1458 fn = rcu_dereference(fn->left);
1460 out:
1461 if (exact_match)
1462 return NULL;
1463 else
1464 return prev;
1467 struct fib6_node *fib6_locate(struct fib6_node *root,
1468 const struct in6_addr *daddr, int dst_len,
1469 const struct in6_addr *saddr, int src_len,
1470 bool exact_match)
1472 struct fib6_node *fn;
1474 fn = fib6_locate_1(root, daddr, dst_len,
1475 offsetof(struct rt6_info, rt6i_dst),
1476 exact_match);
1478 #ifdef CONFIG_IPV6_SUBTREES
1479 if (src_len) {
1480 WARN_ON(saddr == NULL);
1481 if (fn) {
1482 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1484 if (subtree) {
1485 fn = fib6_locate_1(subtree, saddr, src_len,
1486 offsetof(struct rt6_info, rt6i_src),
1487 exact_match);
1491 #endif
1493 if (fn && fn->fn_flags & RTN_RTINFO)
1494 return fn;
1496 return NULL;
1501 * Deletion
1505 static struct rt6_info *fib6_find_prefix(struct net *net,
1506 struct fib6_table *table,
1507 struct fib6_node *fn)
1509 struct fib6_node *child_left, *child_right;
1511 if (fn->fn_flags & RTN_ROOT)
1512 return net->ipv6.ip6_null_entry;
1514 while (fn) {
1515 child_left = rcu_dereference_protected(fn->left,
1516 lockdep_is_held(&table->tb6_lock));
1517 child_right = rcu_dereference_protected(fn->right,
1518 lockdep_is_held(&table->tb6_lock));
1519 if (child_left)
1520 return rcu_dereference_protected(child_left->leaf,
1521 lockdep_is_held(&table->tb6_lock));
1522 if (child_right)
1523 return rcu_dereference_protected(child_right->leaf,
1524 lockdep_is_held(&table->tb6_lock));
1526 fn = FIB6_SUBTREE(fn);
1528 return NULL;
1532 * Called to trim the tree of intermediate nodes when possible. "fn"
1533 * is the node we want to try and remove.
1534 * Need to own table->tb6_lock
1537 static struct fib6_node *fib6_repair_tree(struct net *net,
1538 struct fib6_table *table,
1539 struct fib6_node *fn)
1541 int children;
1542 int nstate;
1543 struct fib6_node *child;
1544 struct fib6_walker *w;
1545 int iter = 0;
1547 /* Set fn->leaf to null_entry for root node. */
1548 if (fn->fn_flags & RTN_TL_ROOT) {
1549 rcu_assign_pointer(fn->leaf, net->ipv6.ip6_null_entry);
1550 return fn;
1553 for (;;) {
1554 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1555 lockdep_is_held(&table->tb6_lock));
1556 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1557 lockdep_is_held(&table->tb6_lock));
1558 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1559 lockdep_is_held(&table->tb6_lock));
1560 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1561 lockdep_is_held(&table->tb6_lock));
1562 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1563 lockdep_is_held(&table->tb6_lock));
1564 struct rt6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1565 lockdep_is_held(&table->tb6_lock));
1566 struct rt6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1567 lockdep_is_held(&table->tb6_lock));
1568 struct rt6_info *new_fn_leaf;
1570 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1571 iter++;
1573 WARN_ON(fn->fn_flags & RTN_RTINFO);
1574 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1575 WARN_ON(fn_leaf);
1577 children = 0;
1578 child = NULL;
1579 if (fn_r)
1580 child = fn_r, children |= 1;
1581 if (fn_l)
1582 child = fn_l, children |= 2;
1584 if (children == 3 || FIB6_SUBTREE(fn)
1585 #ifdef CONFIG_IPV6_SUBTREES
1586 /* Subtree root (i.e. fn) may have one child */
1587 || (children && fn->fn_flags & RTN_ROOT)
1588 #endif
1590 new_fn_leaf = fib6_find_prefix(net, table, fn);
1591 #if RT6_DEBUG >= 2
1592 if (!new_fn_leaf) {
1593 WARN_ON(!new_fn_leaf);
1594 new_fn_leaf = net->ipv6.ip6_null_entry;
1596 #endif
1597 atomic_inc(&new_fn_leaf->rt6i_ref);
1598 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1599 return pn;
1602 #ifdef CONFIG_IPV6_SUBTREES
1603 if (FIB6_SUBTREE(pn) == fn) {
1604 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1605 RCU_INIT_POINTER(pn->subtree, NULL);
1606 nstate = FWS_L;
1607 } else {
1608 WARN_ON(fn->fn_flags & RTN_ROOT);
1609 #endif
1610 if (pn_r == fn)
1611 rcu_assign_pointer(pn->right, child);
1612 else if (pn_l == fn)
1613 rcu_assign_pointer(pn->left, child);
1614 #if RT6_DEBUG >= 2
1615 else
1616 WARN_ON(1);
1617 #endif
1618 if (child)
1619 rcu_assign_pointer(child->parent, pn);
1620 nstate = FWS_R;
1621 #ifdef CONFIG_IPV6_SUBTREES
1623 #endif
1625 read_lock(&net->ipv6.fib6_walker_lock);
1626 FOR_WALKERS(net, w) {
1627 if (!child) {
1628 if (w->node == fn) {
1629 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1630 w->node = pn;
1631 w->state = nstate;
1633 } else {
1634 if (w->node == fn) {
1635 w->node = child;
1636 if (children&2) {
1637 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1638 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1639 } else {
1640 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1641 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1646 read_unlock(&net->ipv6.fib6_walker_lock);
1648 node_free(net, fn);
1649 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1650 return pn;
1652 RCU_INIT_POINTER(pn->leaf, NULL);
1653 rt6_release(pn_leaf);
1654 fn = pn;
1658 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1659 struct rt6_info __rcu **rtp, struct nl_info *info)
1661 struct fib6_walker *w;
1662 struct rt6_info *rt = rcu_dereference_protected(*rtp,
1663 lockdep_is_held(&table->tb6_lock));
1664 struct net *net = info->nl_net;
1666 RT6_TRACE("fib6_del_route\n");
1668 WARN_ON_ONCE(rt->rt6i_flags & RTF_CACHE);
1670 /* Unlink it */
1671 *rtp = rt->rt6_next;
1672 rt->rt6i_node = NULL;
1673 net->ipv6.rt6_stats->fib_rt_entries--;
1674 net->ipv6.rt6_stats->fib_discarded_routes++;
1676 /* Flush all cached dst in exception table */
1677 rt6_flush_exceptions(rt);
1679 /* Reset round-robin state, if necessary */
1680 if (rcu_access_pointer(fn->rr_ptr) == rt)
1681 fn->rr_ptr = NULL;
1683 /* Remove this entry from other siblings */
1684 if (rt->rt6i_nsiblings) {
1685 struct rt6_info *sibling, *next_sibling;
1687 list_for_each_entry_safe(sibling, next_sibling,
1688 &rt->rt6i_siblings, rt6i_siblings)
1689 sibling->rt6i_nsiblings--;
1690 rt->rt6i_nsiblings = 0;
1691 list_del_init(&rt->rt6i_siblings);
1692 rt6_multipath_rebalance(next_sibling);
1695 /* Adjust walkers */
1696 read_lock(&net->ipv6.fib6_walker_lock);
1697 FOR_WALKERS(net, w) {
1698 if (w->state == FWS_C && w->leaf == rt) {
1699 RT6_TRACE("walker %p adjusted by delroute\n", w);
1700 w->leaf = rcu_dereference_protected(rt->rt6_next,
1701 lockdep_is_held(&table->tb6_lock));
1702 if (!w->leaf)
1703 w->state = FWS_U;
1706 read_unlock(&net->ipv6.fib6_walker_lock);
1708 /* If it was last route, call fib6_repair_tree() to:
1709 * 1. For root node, put back null_entry as how the table was created.
1710 * 2. For other nodes, expunge its radix tree node.
1712 if (!rcu_access_pointer(fn->leaf)) {
1713 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1714 fn->fn_flags &= ~RTN_RTINFO;
1715 net->ipv6.rt6_stats->fib_route_nodes--;
1717 fn = fib6_repair_tree(net, table, fn);
1720 fib6_purge_rt(rt, fn, net);
1722 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, rt, NULL);
1723 if (!info->skip_notify)
1724 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1725 rt6_release(rt);
1728 /* Need to own table->tb6_lock */
1729 int fib6_del(struct rt6_info *rt, struct nl_info *info)
1731 struct fib6_node *fn = rcu_dereference_protected(rt->rt6i_node,
1732 lockdep_is_held(&rt->rt6i_table->tb6_lock));
1733 struct fib6_table *table = rt->rt6i_table;
1734 struct net *net = info->nl_net;
1735 struct rt6_info __rcu **rtp;
1736 struct rt6_info __rcu **rtp_next;
1738 #if RT6_DEBUG >= 2
1739 if (rt->dst.obsolete > 0) {
1740 WARN_ON(fn);
1741 return -ENOENT;
1743 #endif
1744 if (!fn || rt == net->ipv6.ip6_null_entry)
1745 return -ENOENT;
1747 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1749 /* remove cached dst from exception table */
1750 if (rt->rt6i_flags & RTF_CACHE)
1751 return rt6_remove_exception_rt(rt);
1754 * Walk the leaf entries looking for ourself
1757 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
1758 struct rt6_info *cur = rcu_dereference_protected(*rtp,
1759 lockdep_is_held(&table->tb6_lock));
1760 if (rt == cur) {
1761 fib6_del_route(table, fn, rtp, info);
1762 return 0;
1764 rtp_next = &cur->rt6_next;
1766 return -ENOENT;
1770 * Tree traversal function.
1772 * Certainly, it is not interrupt safe.
1773 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1774 * It means, that we can modify tree during walking
1775 * and use this function for garbage collection, clone pruning,
1776 * cleaning tree when a device goes down etc. etc.
1778 * It guarantees that every node will be traversed,
1779 * and that it will be traversed only once.
1781 * Callback function w->func may return:
1782 * 0 -> continue walking.
1783 * positive value -> walking is suspended (used by tree dumps,
1784 * and probably by gc, if it will be split to several slices)
1785 * negative value -> terminate walking.
1787 * The function itself returns:
1788 * 0 -> walk is complete.
1789 * >0 -> walk is incomplete (i.e. suspended)
1790 * <0 -> walk is terminated by an error.
1792 * This function is called with tb6_lock held.
1795 static int fib6_walk_continue(struct fib6_walker *w)
1797 struct fib6_node *fn, *pn, *left, *right;
1799 /* w->root should always be table->tb6_root */
1800 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
1802 for (;;) {
1803 fn = w->node;
1804 if (!fn)
1805 return 0;
1807 switch (w->state) {
1808 #ifdef CONFIG_IPV6_SUBTREES
1809 case FWS_S:
1810 if (FIB6_SUBTREE(fn)) {
1811 w->node = FIB6_SUBTREE(fn);
1812 continue;
1814 w->state = FWS_L;
1815 #endif
1816 /* fall through */
1817 case FWS_L:
1818 left = rcu_dereference_protected(fn->left, 1);
1819 if (left) {
1820 w->node = left;
1821 w->state = FWS_INIT;
1822 continue;
1824 w->state = FWS_R;
1825 /* fall through */
1826 case FWS_R:
1827 right = rcu_dereference_protected(fn->right, 1);
1828 if (right) {
1829 w->node = right;
1830 w->state = FWS_INIT;
1831 continue;
1833 w->state = FWS_C;
1834 w->leaf = rcu_dereference_protected(fn->leaf, 1);
1835 /* fall through */
1836 case FWS_C:
1837 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1838 int err;
1840 if (w->skip) {
1841 w->skip--;
1842 goto skip;
1845 err = w->func(w);
1846 if (err)
1847 return err;
1849 w->count++;
1850 continue;
1852 skip:
1853 w->state = FWS_U;
1854 /* fall through */
1855 case FWS_U:
1856 if (fn == w->root)
1857 return 0;
1858 pn = rcu_dereference_protected(fn->parent, 1);
1859 left = rcu_dereference_protected(pn->left, 1);
1860 right = rcu_dereference_protected(pn->right, 1);
1861 w->node = pn;
1862 #ifdef CONFIG_IPV6_SUBTREES
1863 if (FIB6_SUBTREE(pn) == fn) {
1864 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1865 w->state = FWS_L;
1866 continue;
1868 #endif
1869 if (left == fn) {
1870 w->state = FWS_R;
1871 continue;
1873 if (right == fn) {
1874 w->state = FWS_C;
1875 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
1876 continue;
1878 #if RT6_DEBUG >= 2
1879 WARN_ON(1);
1880 #endif
1885 static int fib6_walk(struct net *net, struct fib6_walker *w)
1887 int res;
1889 w->state = FWS_INIT;
1890 w->node = w->root;
1892 fib6_walker_link(net, w);
1893 res = fib6_walk_continue(w);
1894 if (res <= 0)
1895 fib6_walker_unlink(net, w);
1896 return res;
1899 static int fib6_clean_node(struct fib6_walker *w)
1901 int res;
1902 struct rt6_info *rt;
1903 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1904 struct nl_info info = {
1905 .nl_net = c->net,
1908 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1909 w->node->fn_sernum != c->sernum)
1910 w->node->fn_sernum = c->sernum;
1912 if (!c->func) {
1913 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1914 w->leaf = NULL;
1915 return 0;
1918 for_each_fib6_walker_rt(w) {
1919 res = c->func(rt, c->arg);
1920 if (res == -1) {
1921 w->leaf = rt;
1922 res = fib6_del(rt, &info);
1923 if (res) {
1924 #if RT6_DEBUG >= 2
1925 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1926 __func__, rt,
1927 rcu_access_pointer(rt->rt6i_node),
1928 res);
1929 #endif
1930 continue;
1932 return 0;
1933 } else if (res == -2) {
1934 if (WARN_ON(!rt->rt6i_nsiblings))
1935 continue;
1936 rt = list_last_entry(&rt->rt6i_siblings,
1937 struct rt6_info, rt6i_siblings);
1938 continue;
1940 WARN_ON(res != 0);
1942 w->leaf = rt;
1943 return 0;
1947 * Convenient frontend to tree walker.
1949 * func is called on each route.
1950 * It may return -2 -> skip multipath route.
1951 * -1 -> delete this route.
1952 * 0 -> continue walking
1955 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1956 int (*func)(struct rt6_info *, void *arg),
1957 int sernum, void *arg)
1959 struct fib6_cleaner c;
1961 c.w.root = root;
1962 c.w.func = fib6_clean_node;
1963 c.w.count = 0;
1964 c.w.skip = 0;
1965 c.func = func;
1966 c.sernum = sernum;
1967 c.arg = arg;
1968 c.net = net;
1970 fib6_walk(net, &c.w);
1973 static void __fib6_clean_all(struct net *net,
1974 int (*func)(struct rt6_info *, void *),
1975 int sernum, void *arg)
1977 struct fib6_table *table;
1978 struct hlist_head *head;
1979 unsigned int h;
1981 rcu_read_lock();
1982 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1983 head = &net->ipv6.fib_table_hash[h];
1984 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1985 spin_lock_bh(&table->tb6_lock);
1986 fib6_clean_tree(net, &table->tb6_root,
1987 func, sernum, arg);
1988 spin_unlock_bh(&table->tb6_lock);
1991 rcu_read_unlock();
1994 void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1995 void *arg)
1997 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
2000 static void fib6_flush_trees(struct net *net)
2002 int new_sernum = fib6_new_sernum(net);
2004 __fib6_clean_all(net, NULL, new_sernum, NULL);
2008 * Garbage collection
2011 static int fib6_age(struct rt6_info *rt, void *arg)
2013 struct fib6_gc_args *gc_args = arg;
2014 unsigned long now = jiffies;
2017 * check addrconf expiration here.
2018 * Routes are expired even if they are in use.
2021 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
2022 if (time_after(now, rt->dst.expires)) {
2023 RT6_TRACE("expiring %p\n", rt);
2024 return -1;
2026 gc_args->more++;
2029 /* Also age clones in the exception table.
2030 * Note, that clones are aged out
2031 * only if they are not in use now.
2033 rt6_age_exceptions(rt, gc_args, now);
2035 return 0;
2038 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2040 struct fib6_gc_args gc_args;
2041 unsigned long now;
2043 if (force) {
2044 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2045 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2046 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2047 return;
2049 gc_args.timeout = expires ? (int)expires :
2050 net->ipv6.sysctl.ip6_rt_gc_interval;
2051 gc_args.more = 0;
2053 fib6_clean_all(net, fib6_age, &gc_args);
2054 now = jiffies;
2055 net->ipv6.ip6_rt_last_gc = now;
2057 if (gc_args.more)
2058 mod_timer(&net->ipv6.ip6_fib_timer,
2059 round_jiffies(now
2060 + net->ipv6.sysctl.ip6_rt_gc_interval));
2061 else
2062 del_timer(&net->ipv6.ip6_fib_timer);
2063 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2066 static void fib6_gc_timer_cb(struct timer_list *t)
2068 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2070 fib6_run_gc(0, arg, true);
2073 static int __net_init fib6_net_init(struct net *net)
2075 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2076 int err;
2078 err = fib6_notifier_init(net);
2079 if (err)
2080 return err;
2082 spin_lock_init(&net->ipv6.fib6_gc_lock);
2083 rwlock_init(&net->ipv6.fib6_walker_lock);
2084 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2085 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2087 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2088 if (!net->ipv6.rt6_stats)
2089 goto out_timer;
2091 /* Avoid false sharing : Use at least a full cache line */
2092 size = max_t(size_t, size, L1_CACHE_BYTES);
2094 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2095 if (!net->ipv6.fib_table_hash)
2096 goto out_rt6_stats;
2098 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2099 GFP_KERNEL);
2100 if (!net->ipv6.fib6_main_tbl)
2101 goto out_fib_table_hash;
2103 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2104 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2105 net->ipv6.ip6_null_entry);
2106 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2107 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2108 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2110 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2111 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2112 GFP_KERNEL);
2113 if (!net->ipv6.fib6_local_tbl)
2114 goto out_fib6_main_tbl;
2115 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2116 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2117 net->ipv6.ip6_null_entry);
2118 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2119 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2120 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2121 #endif
2122 fib6_tables_init(net);
2124 return 0;
2126 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2127 out_fib6_main_tbl:
2128 kfree(net->ipv6.fib6_main_tbl);
2129 #endif
2130 out_fib_table_hash:
2131 kfree(net->ipv6.fib_table_hash);
2132 out_rt6_stats:
2133 kfree(net->ipv6.rt6_stats);
2134 out_timer:
2135 fib6_notifier_exit(net);
2136 return -ENOMEM;
2139 static void fib6_net_exit(struct net *net)
2141 unsigned int i;
2143 del_timer_sync(&net->ipv6.ip6_fib_timer);
2145 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2146 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2147 struct hlist_node *tmp;
2148 struct fib6_table *tb;
2150 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2151 hlist_del(&tb->tb6_hlist);
2152 fib6_free_table(tb);
2156 kfree(net->ipv6.fib_table_hash);
2157 kfree(net->ipv6.rt6_stats);
2158 fib6_notifier_exit(net);
2161 static struct pernet_operations fib6_net_ops = {
2162 .init = fib6_net_init,
2163 .exit = fib6_net_exit,
2166 int __init fib6_init(void)
2168 int ret = -ENOMEM;
2170 fib6_node_kmem = kmem_cache_create("fib6_nodes",
2171 sizeof(struct fib6_node),
2172 0, SLAB_HWCACHE_ALIGN,
2173 NULL);
2174 if (!fib6_node_kmem)
2175 goto out;
2177 ret = register_pernet_subsys(&fib6_net_ops);
2178 if (ret)
2179 goto out_kmem_cache_create;
2181 ret = rtnl_register_module(THIS_MODULE, PF_INET6, RTM_GETROUTE, NULL,
2182 inet6_dump_fib, 0);
2183 if (ret)
2184 goto out_unregister_subsys;
2186 __fib6_flush_trees = fib6_flush_trees;
2187 out:
2188 return ret;
2190 out_unregister_subsys:
2191 unregister_pernet_subsys(&fib6_net_ops);
2192 out_kmem_cache_create:
2193 kmem_cache_destroy(fib6_node_kmem);
2194 goto out;
2197 void fib6_gc_cleanup(void)
2199 unregister_pernet_subsys(&fib6_net_ops);
2200 kmem_cache_destroy(fib6_node_kmem);
2203 #ifdef CONFIG_PROC_FS
2205 struct ipv6_route_iter {
2206 struct seq_net_private p;
2207 struct fib6_walker w;
2208 loff_t skip;
2209 struct fib6_table *tbl;
2210 int sernum;
2213 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2215 struct rt6_info *rt = v;
2216 struct ipv6_route_iter *iter = seq->private;
2218 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
2220 #ifdef CONFIG_IPV6_SUBTREES
2221 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
2222 #else
2223 seq_puts(seq, "00000000000000000000000000000000 00 ");
2224 #endif
2225 if (rt->rt6i_flags & RTF_GATEWAY)
2226 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
2227 else
2228 seq_puts(seq, "00000000000000000000000000000000");
2230 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2231 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
2232 rt->dst.__use, rt->rt6i_flags,
2233 rt->dst.dev ? rt->dst.dev->name : "");
2234 iter->w.leaf = NULL;
2235 return 0;
2238 static int ipv6_route_yield(struct fib6_walker *w)
2240 struct ipv6_route_iter *iter = w->args;
2242 if (!iter->skip)
2243 return 1;
2245 do {
2246 iter->w.leaf = rcu_dereference_protected(
2247 iter->w.leaf->rt6_next,
2248 lockdep_is_held(&iter->tbl->tb6_lock));
2249 iter->skip--;
2250 if (!iter->skip && iter->w.leaf)
2251 return 1;
2252 } while (iter->w.leaf);
2254 return 0;
2257 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2258 struct net *net)
2260 memset(&iter->w, 0, sizeof(iter->w));
2261 iter->w.func = ipv6_route_yield;
2262 iter->w.root = &iter->tbl->tb6_root;
2263 iter->w.state = FWS_INIT;
2264 iter->w.node = iter->w.root;
2265 iter->w.args = iter;
2266 iter->sernum = iter->w.root->fn_sernum;
2267 INIT_LIST_HEAD(&iter->w.lh);
2268 fib6_walker_link(net, &iter->w);
2271 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2272 struct net *net)
2274 unsigned int h;
2275 struct hlist_node *node;
2277 if (tbl) {
2278 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2279 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2280 } else {
2281 h = 0;
2282 node = NULL;
2285 while (!node && h < FIB6_TABLE_HASHSZ) {
2286 node = rcu_dereference_bh(
2287 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2289 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2292 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2294 if (iter->sernum != iter->w.root->fn_sernum) {
2295 iter->sernum = iter->w.root->fn_sernum;
2296 iter->w.state = FWS_INIT;
2297 iter->w.node = iter->w.root;
2298 WARN_ON(iter->w.skip);
2299 iter->w.skip = iter->w.count;
2303 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2305 int r;
2306 struct rt6_info *n;
2307 struct net *net = seq_file_net(seq);
2308 struct ipv6_route_iter *iter = seq->private;
2310 if (!v)
2311 goto iter_table;
2313 n = rcu_dereference_bh(((struct rt6_info *)v)->rt6_next);
2314 if (n) {
2315 ++*pos;
2316 return n;
2319 iter_table:
2320 ipv6_route_check_sernum(iter);
2321 spin_lock_bh(&iter->tbl->tb6_lock);
2322 r = fib6_walk_continue(&iter->w);
2323 spin_unlock_bh(&iter->tbl->tb6_lock);
2324 if (r > 0) {
2325 if (v)
2326 ++*pos;
2327 return iter->w.leaf;
2328 } else if (r < 0) {
2329 fib6_walker_unlink(net, &iter->w);
2330 return NULL;
2332 fib6_walker_unlink(net, &iter->w);
2334 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2335 if (!iter->tbl)
2336 return NULL;
2338 ipv6_route_seq_setup_walk(iter, net);
2339 goto iter_table;
2342 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2343 __acquires(RCU_BH)
2345 struct net *net = seq_file_net(seq);
2346 struct ipv6_route_iter *iter = seq->private;
2348 rcu_read_lock_bh();
2349 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2350 iter->skip = *pos;
2352 if (iter->tbl) {
2353 ipv6_route_seq_setup_walk(iter, net);
2354 return ipv6_route_seq_next(seq, NULL, pos);
2355 } else {
2356 return NULL;
2360 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2362 struct fib6_walker *w = &iter->w;
2363 return w->node && !(w->state == FWS_U && w->node == w->root);
2366 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2367 __releases(RCU_BH)
2369 struct net *net = seq_file_net(seq);
2370 struct ipv6_route_iter *iter = seq->private;
2372 if (ipv6_route_iter_active(iter))
2373 fib6_walker_unlink(net, &iter->w);
2375 rcu_read_unlock_bh();
2378 static const struct seq_operations ipv6_route_seq_ops = {
2379 .start = ipv6_route_seq_start,
2380 .next = ipv6_route_seq_next,
2381 .stop = ipv6_route_seq_stop,
2382 .show = ipv6_route_seq_show
2385 int ipv6_route_open(struct inode *inode, struct file *file)
2387 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2388 sizeof(struct ipv6_route_iter));
2391 #endif /* CONFIG_PROC_FS */