1 // SPDX-License-Identifier: GPL-2.0
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
7 * The IP fragmentation functionality.
9 * Authors: Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
10 * Alan Cox <alan@lxorguk.ukuu.org.uk>
13 * Alan Cox : Split from ip.c , see ip_input.c for history.
14 * David S. Miller : Begin massive cleanup...
15 * Andi Kleen : Add sysctls.
16 * xxxx : Overlapfrag bug.
17 * Ultima : ip_expire() kernel panic.
18 * Bill Hawes : Frag accounting and evictor fixes.
19 * John McDonald : 0 length frag bug.
20 * Alexey Kuznetsov: SMP races, threading, cleanup.
21 * Patrick McHardy : LRU queue of frag heads for evictor.
24 #define pr_fmt(fmt) "IPv4: " fmt
26 #include <linux/compiler.h>
27 #include <linux/module.h>
28 #include <linux/types.h>
30 #include <linux/jiffies.h>
31 #include <linux/skbuff.h>
32 #include <linux/list.h>
34 #include <linux/icmp.h>
35 #include <linux/netdevice.h>
36 #include <linux/jhash.h>
37 #include <linux/random.h>
38 #include <linux/slab.h>
39 #include <net/route.h>
44 #include <net/checksum.h>
45 #include <net/inetpeer.h>
46 #include <net/inet_frag.h>
47 #include <linux/tcp.h>
48 #include <linux/udp.h>
49 #include <linux/inet.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <net/inet_ecn.h>
52 #include <net/l3mdev.h>
54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
55 * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
56 * as well. Or notify me, at least. --ANK
58 static const char ip_frag_cache_name
[] = "ip4-frags";
62 struct inet_skb_parm h
;
66 #define FRAG_CB(skb) ((struct ipfrag_skb_cb *)((skb)->cb))
68 /* Describe an entry in the "incomplete datagrams" queue. */
70 struct inet_frag_queue q
;
77 u8 ecn
; /* RFC3168 support */
78 u16 max_df_size
; /* largest frag with DF set seen */
80 int vif
; /* L3 master device index */
82 struct inet_peer
*peer
;
85 static u8
ip4_frag_ecn(u8 tos
)
87 return 1 << (tos
& INET_ECN_MASK
);
90 static struct inet_frags ip4_frags
;
92 int ip_frag_mem(struct net
*net
)
94 return sum_frag_mem_limit(&net
->ipv4
.frags
);
97 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
98 struct net_device
*dev
);
100 struct ip4_create_arg
{
106 static unsigned int ipqhashfn(__be16 id
, __be32 saddr
, __be32 daddr
, u8 prot
)
108 net_get_random_once(&ip4_frags
.rnd
, sizeof(ip4_frags
.rnd
));
109 return jhash_3words((__force u32
)id
<< 16 | prot
,
110 (__force u32
)saddr
, (__force u32
)daddr
,
114 static unsigned int ip4_hashfn(const struct inet_frag_queue
*q
)
116 const struct ipq
*ipq
;
118 ipq
= container_of(q
, struct ipq
, q
);
119 return ipqhashfn(ipq
->id
, ipq
->saddr
, ipq
->daddr
, ipq
->protocol
);
122 static bool ip4_frag_match(const struct inet_frag_queue
*q
, const void *a
)
124 const struct ipq
*qp
;
125 const struct ip4_create_arg
*arg
= a
;
127 qp
= container_of(q
, struct ipq
, q
);
128 return qp
->id
== arg
->iph
->id
&&
129 qp
->saddr
== arg
->iph
->saddr
&&
130 qp
->daddr
== arg
->iph
->daddr
&&
131 qp
->protocol
== arg
->iph
->protocol
&&
132 qp
->user
== arg
->user
&&
136 static void ip4_frag_init(struct inet_frag_queue
*q
, const void *a
)
138 struct ipq
*qp
= container_of(q
, struct ipq
, q
);
139 struct netns_ipv4
*ipv4
= container_of(q
->net
, struct netns_ipv4
,
141 struct net
*net
= container_of(ipv4
, struct net
, ipv4
);
143 const struct ip4_create_arg
*arg
= a
;
145 qp
->protocol
= arg
->iph
->protocol
;
146 qp
->id
= arg
->iph
->id
;
147 qp
->ecn
= ip4_frag_ecn(arg
->iph
->tos
);
148 qp
->saddr
= arg
->iph
->saddr
;
149 qp
->daddr
= arg
->iph
->daddr
;
151 qp
->user
= arg
->user
;
152 qp
->peer
= q
->net
->max_dist
?
153 inet_getpeer_v4(net
->ipv4
.peers
, arg
->iph
->saddr
, arg
->vif
, 1) :
157 static void ip4_frag_free(struct inet_frag_queue
*q
)
161 qp
= container_of(q
, struct ipq
, q
);
163 inet_putpeer(qp
->peer
);
167 /* Destruction primitives. */
169 static void ipq_put(struct ipq
*ipq
)
171 inet_frag_put(&ipq
->q
, &ip4_frags
);
174 /* Kill ipq entry. It is not destroyed immediately,
175 * because caller (and someone more) holds reference count.
177 static void ipq_kill(struct ipq
*ipq
)
179 inet_frag_kill(&ipq
->q
, &ip4_frags
);
182 static bool frag_expire_skip_icmp(u32 user
)
184 return user
== IP_DEFRAG_AF_PACKET
||
185 ip_defrag_user_in_between(user
, IP_DEFRAG_CONNTRACK_IN
,
186 __IP_DEFRAG_CONNTRACK_IN_END
) ||
187 ip_defrag_user_in_between(user
, IP_DEFRAG_CONNTRACK_BRIDGE_IN
,
188 __IP_DEFRAG_CONNTRACK_BRIDGE_IN
);
192 * Oops, a fragment queue timed out. Kill it and send an ICMP reply.
194 static void ip_expire(struct timer_list
*t
)
196 struct inet_frag_queue
*frag
= from_timer(frag
, t
, timer
);
200 qp
= container_of(frag
, struct ipq
, q
);
201 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
204 spin_lock(&qp
->q
.lock
);
206 if (qp
->q
.flags
& INET_FRAG_COMPLETE
)
210 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
212 if (!inet_frag_evicting(&qp
->q
)) {
213 struct sk_buff
*clone
, *head
= qp
->q
.fragments
;
214 const struct iphdr
*iph
;
217 __IP_INC_STATS(net
, IPSTATS_MIB_REASMTIMEOUT
);
219 if (!(qp
->q
.flags
& INET_FRAG_FIRST_IN
) || !qp
->q
.fragments
)
222 head
->dev
= dev_get_by_index_rcu(net
, qp
->iif
);
227 /* skb has no dst, perform route lookup again */
229 err
= ip_route_input_noref(head
, iph
->daddr
, iph
->saddr
,
230 iph
->tos
, head
->dev
);
234 /* Only an end host needs to send an ICMP
235 * "Fragment Reassembly Timeout" message, per RFC792.
237 if (frag_expire_skip_icmp(qp
->user
) &&
238 (skb_rtable(head
)->rt_type
!= RTN_LOCAL
))
241 clone
= skb_clone(head
, GFP_ATOMIC
);
243 /* Send an ICMP "Fragment Reassembly Timeout" message. */
245 spin_unlock(&qp
->q
.lock
);
246 icmp_send(clone
, ICMP_TIME_EXCEEDED
,
247 ICMP_EXC_FRAGTIME
, 0);
253 spin_unlock(&qp
->q
.lock
);
259 /* Find the correct entry in the "incomplete datagrams" queue for
260 * this IP datagram, and create new one, if nothing is found.
262 static struct ipq
*ip_find(struct net
*net
, struct iphdr
*iph
,
265 struct inet_frag_queue
*q
;
266 struct ip4_create_arg arg
;
273 hash
= ipqhashfn(iph
->id
, iph
->saddr
, iph
->daddr
, iph
->protocol
);
275 q
= inet_frag_find(&net
->ipv4
.frags
, &ip4_frags
, &arg
, hash
);
276 if (IS_ERR_OR_NULL(q
)) {
277 inet_frag_maybe_warn_overflow(q
, pr_fmt());
280 return container_of(q
, struct ipq
, q
);
283 /* Is the fragment too far ahead to be part of ipq? */
284 static int ip_frag_too_far(struct ipq
*qp
)
286 struct inet_peer
*peer
= qp
->peer
;
287 unsigned int max
= qp
->q
.net
->max_dist
;
288 unsigned int start
, end
;
296 end
= atomic_inc_return(&peer
->rid
);
299 rc
= qp
->q
.fragments
&& (end
- start
) > max
;
304 net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
305 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
311 static int ip_frag_reinit(struct ipq
*qp
)
314 unsigned int sum_truesize
= 0;
316 if (!mod_timer(&qp
->q
.timer
, jiffies
+ qp
->q
.net
->timeout
)) {
317 refcount_inc(&qp
->q
.refcnt
);
321 fp
= qp
->q
.fragments
;
323 struct sk_buff
*xp
= fp
->next
;
325 sum_truesize
+= fp
->truesize
;
329 sub_frag_mem_limit(qp
->q
.net
, sum_truesize
);
334 qp
->q
.fragments
= NULL
;
335 qp
->q
.fragments_tail
= NULL
;
342 /* Add new segment to existing queue. */
343 static int ip_frag_queue(struct ipq
*qp
, struct sk_buff
*skb
)
345 struct sk_buff
*prev
, *next
;
346 struct net_device
*dev
;
347 unsigned int fragsize
;
353 if (qp
->q
.flags
& INET_FRAG_COMPLETE
)
356 if (!(IPCB(skb
)->flags
& IPSKB_FRAG_COMPLETE
) &&
357 unlikely(ip_frag_too_far(qp
)) &&
358 unlikely(err
= ip_frag_reinit(qp
))) {
363 ecn
= ip4_frag_ecn(ip_hdr(skb
)->tos
);
364 offset
= ntohs(ip_hdr(skb
)->frag_off
);
365 flags
= offset
& ~IP_OFFSET
;
367 offset
<<= 3; /* offset is in 8-byte chunks */
368 ihl
= ip_hdrlen(skb
);
370 /* Determine the position of this fragment. */
371 end
= offset
+ skb
->len
- skb_network_offset(skb
) - ihl
;
374 /* Is this the final fragment? */
375 if ((flags
& IP_MF
) == 0) {
376 /* If we already have some bits beyond end
377 * or have different end, the segment is corrupted.
379 if (end
< qp
->q
.len
||
380 ((qp
->q
.flags
& INET_FRAG_LAST_IN
) && end
!= qp
->q
.len
))
382 qp
->q
.flags
|= INET_FRAG_LAST_IN
;
387 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
388 skb
->ip_summed
= CHECKSUM_NONE
;
390 if (end
> qp
->q
.len
) {
391 /* Some bits beyond end -> corruption. */
392 if (qp
->q
.flags
& INET_FRAG_LAST_IN
)
401 if (!pskb_pull(skb
, skb_network_offset(skb
) + ihl
))
404 err
= pskb_trim_rcsum(skb
, end
- offset
);
408 /* Find out which fragments are in front and at the back of us
409 * in the chain of fragments so far. We must know where to put
410 * this fragment, right?
412 prev
= qp
->q
.fragments_tail
;
413 if (!prev
|| FRAG_CB(prev
)->offset
< offset
) {
418 for (next
= qp
->q
.fragments
; next
!= NULL
; next
= next
->next
) {
419 if (FRAG_CB(next
)->offset
>= offset
)
425 /* We found where to put this one. Check for overlap with
426 * preceding fragment, and, if needed, align things so that
427 * any overlaps are eliminated.
430 int i
= (FRAG_CB(prev
)->offset
+ prev
->len
) - offset
;
438 if (!pskb_pull(skb
, i
))
440 if (skb
->ip_summed
!= CHECKSUM_UNNECESSARY
)
441 skb
->ip_summed
= CHECKSUM_NONE
;
447 while (next
&& FRAG_CB(next
)->offset
< end
) {
448 int i
= end
- FRAG_CB(next
)->offset
; /* overlap is 'i' bytes */
451 /* Eat head of the next overlapped fragment
452 * and leave the loop. The next ones cannot overlap.
454 if (!pskb_pull(next
, i
))
456 FRAG_CB(next
)->offset
+= i
;
458 if (next
->ip_summed
!= CHECKSUM_UNNECESSARY
)
459 next
->ip_summed
= CHECKSUM_NONE
;
462 struct sk_buff
*free_it
= next
;
464 /* Old fragment is completely overridden with
472 qp
->q
.fragments
= next
;
474 qp
->q
.meat
-= free_it
->len
;
475 sub_frag_mem_limit(qp
->q
.net
, free_it
->truesize
);
480 FRAG_CB(skb
)->offset
= offset
;
482 /* Insert this fragment in the chain of fragments. */
485 qp
->q
.fragments_tail
= skb
;
489 qp
->q
.fragments
= skb
;
493 qp
->iif
= dev
->ifindex
;
496 qp
->q
.stamp
= skb
->tstamp
;
497 qp
->q
.meat
+= skb
->len
;
499 add_frag_mem_limit(qp
->q
.net
, skb
->truesize
);
501 qp
->q
.flags
|= INET_FRAG_FIRST_IN
;
503 fragsize
= skb
->len
+ ihl
;
505 if (fragsize
> qp
->q
.max_size
)
506 qp
->q
.max_size
= fragsize
;
508 if (ip_hdr(skb
)->frag_off
& htons(IP_DF
) &&
509 fragsize
> qp
->max_df_size
)
510 qp
->max_df_size
= fragsize
;
512 if (qp
->q
.flags
== (INET_FRAG_FIRST_IN
| INET_FRAG_LAST_IN
) &&
513 qp
->q
.meat
== qp
->q
.len
) {
514 unsigned long orefdst
= skb
->_skb_refdst
;
516 skb
->_skb_refdst
= 0UL;
517 err
= ip_frag_reasm(qp
, prev
, dev
);
518 skb
->_skb_refdst
= orefdst
;
531 /* Build a new IP datagram from all its fragments. */
533 static int ip_frag_reasm(struct ipq
*qp
, struct sk_buff
*prev
,
534 struct net_device
*dev
)
536 struct net
*net
= container_of(qp
->q
.net
, struct net
, ipv4
.frags
);
538 struct sk_buff
*fp
, *head
= qp
->q
.fragments
;
546 ecn
= ip_frag_ecn_table
[qp
->ecn
];
547 if (unlikely(ecn
== 0xff)) {
551 /* Make the one we just received the head. */
554 fp
= skb_clone(head
, GFP_ATOMIC
);
558 fp
->next
= head
->next
;
560 qp
->q
.fragments_tail
= fp
;
563 skb_morph(head
, qp
->q
.fragments
);
564 head
->next
= qp
->q
.fragments
->next
;
566 consume_skb(qp
->q
.fragments
);
567 qp
->q
.fragments
= head
;
571 WARN_ON(FRAG_CB(head
)->offset
!= 0);
573 /* Allocate a new buffer for the datagram. */
574 ihlen
= ip_hdrlen(head
);
575 len
= ihlen
+ qp
->q
.len
;
581 /* Head of list must not be cloned. */
582 if (skb_unclone(head
, GFP_ATOMIC
))
585 /* If the first fragment is fragmented itself, we split
586 * it to two chunks: the first with data and paged part
587 * and the second, holding only fragments. */
588 if (skb_has_frag_list(head
)) {
589 struct sk_buff
*clone
;
592 clone
= alloc_skb(0, GFP_ATOMIC
);
595 clone
->next
= head
->next
;
597 skb_shinfo(clone
)->frag_list
= skb_shinfo(head
)->frag_list
;
598 skb_frag_list_init(head
);
599 for (i
= 0; i
< skb_shinfo(head
)->nr_frags
; i
++)
600 plen
+= skb_frag_size(&skb_shinfo(head
)->frags
[i
]);
601 clone
->len
= clone
->data_len
= head
->data_len
- plen
;
602 head
->data_len
-= clone
->len
;
603 head
->len
-= clone
->len
;
605 clone
->ip_summed
= head
->ip_summed
;
606 add_frag_mem_limit(qp
->q
.net
, clone
->truesize
);
609 skb_shinfo(head
)->frag_list
= head
->next
;
610 skb_push(head
, head
->data
- skb_network_header(head
));
612 for (fp
=head
->next
; fp
; fp
= fp
->next
) {
613 head
->data_len
+= fp
->len
;
614 head
->len
+= fp
->len
;
615 if (head
->ip_summed
!= fp
->ip_summed
)
616 head
->ip_summed
= CHECKSUM_NONE
;
617 else if (head
->ip_summed
== CHECKSUM_COMPLETE
)
618 head
->csum
= csum_add(head
->csum
, fp
->csum
);
619 head
->truesize
+= fp
->truesize
;
621 sub_frag_mem_limit(qp
->q
.net
, head
->truesize
);
625 head
->tstamp
= qp
->q
.stamp
;
626 IPCB(head
)->frag_max_size
= max(qp
->max_df_size
, qp
->q
.max_size
);
629 iph
->tot_len
= htons(len
);
632 /* When we set IP_DF on a refragmented skb we must also force a
633 * call to ip_fragment to avoid forwarding a DF-skb of size s while
634 * original sender only sent fragments of size f (where f < s).
636 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
637 * frag seen to avoid sending tiny DF-fragments in case skb was built
638 * from one very small df-fragment and one large non-df frag.
640 if (qp
->max_df_size
== qp
->q
.max_size
) {
641 IPCB(head
)->flags
|= IPSKB_FRAG_PMTU
;
642 iph
->frag_off
= htons(IP_DF
);
649 __IP_INC_STATS(net
, IPSTATS_MIB_REASMOKS
);
650 qp
->q
.fragments
= NULL
;
651 qp
->q
.fragments_tail
= NULL
;
655 net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp
);
659 net_info_ratelimited("Oversized IP packet from %pI4\n", &qp
->saddr
);
661 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
665 /* Process an incoming IP datagram fragment. */
666 int ip_defrag(struct net
*net
, struct sk_buff
*skb
, u32 user
)
668 struct net_device
*dev
= skb
->dev
? : skb_dst(skb
)->dev
;
669 int vif
= l3mdev_master_ifindex_rcu(dev
);
672 __IP_INC_STATS(net
, IPSTATS_MIB_REASMREQDS
);
675 /* Lookup (or create) queue header */
676 qp
= ip_find(net
, ip_hdr(skb
), user
, vif
);
680 spin_lock(&qp
->q
.lock
);
682 ret
= ip_frag_queue(qp
, skb
);
684 spin_unlock(&qp
->q
.lock
);
689 __IP_INC_STATS(net
, IPSTATS_MIB_REASMFAILS
);
693 EXPORT_SYMBOL(ip_defrag
);
695 struct sk_buff
*ip_check_defrag(struct net
*net
, struct sk_buff
*skb
, u32 user
)
701 if (skb
->protocol
!= htons(ETH_P_IP
))
704 netoff
= skb_network_offset(skb
);
706 if (skb_copy_bits(skb
, netoff
, &iph
, sizeof(iph
)) < 0)
709 if (iph
.ihl
< 5 || iph
.version
!= 4)
712 len
= ntohs(iph
.tot_len
);
713 if (skb
->len
< netoff
+ len
|| len
< (iph
.ihl
* 4))
716 if (ip_is_fragment(&iph
)) {
717 skb
= skb_share_check(skb
, GFP_ATOMIC
);
719 if (!pskb_may_pull(skb
, netoff
+ iph
.ihl
* 4))
721 if (pskb_trim_rcsum(skb
, netoff
+ len
))
723 memset(IPCB(skb
), 0, sizeof(struct inet_skb_parm
));
724 if (ip_defrag(net
, skb
, user
))
731 EXPORT_SYMBOL(ip_check_defrag
);
736 static struct ctl_table ip4_frags_ns_ctl_table
[] = {
738 .procname
= "ipfrag_high_thresh",
739 .data
= &init_net
.ipv4
.frags
.high_thresh
,
740 .maxlen
= sizeof(int),
742 .proc_handler
= proc_dointvec_minmax
,
743 .extra1
= &init_net
.ipv4
.frags
.low_thresh
746 .procname
= "ipfrag_low_thresh",
747 .data
= &init_net
.ipv4
.frags
.low_thresh
,
748 .maxlen
= sizeof(int),
750 .proc_handler
= proc_dointvec_minmax
,
752 .extra2
= &init_net
.ipv4
.frags
.high_thresh
755 .procname
= "ipfrag_time",
756 .data
= &init_net
.ipv4
.frags
.timeout
,
757 .maxlen
= sizeof(int),
759 .proc_handler
= proc_dointvec_jiffies
,
762 .procname
= "ipfrag_max_dist",
763 .data
= &init_net
.ipv4
.frags
.max_dist
,
764 .maxlen
= sizeof(int),
766 .proc_handler
= proc_dointvec_minmax
,
772 /* secret interval has been deprecated */
773 static int ip4_frags_secret_interval_unused
;
774 static struct ctl_table ip4_frags_ctl_table
[] = {
776 .procname
= "ipfrag_secret_interval",
777 .data
= &ip4_frags_secret_interval_unused
,
778 .maxlen
= sizeof(int),
780 .proc_handler
= proc_dointvec_jiffies
,
785 static int __net_init
ip4_frags_ns_ctl_register(struct net
*net
)
787 struct ctl_table
*table
;
788 struct ctl_table_header
*hdr
;
790 table
= ip4_frags_ns_ctl_table
;
791 if (!net_eq(net
, &init_net
)) {
792 table
= kmemdup(table
, sizeof(ip4_frags_ns_ctl_table
), GFP_KERNEL
);
796 table
[0].data
= &net
->ipv4
.frags
.high_thresh
;
797 table
[0].extra1
= &net
->ipv4
.frags
.low_thresh
;
798 table
[0].extra2
= &init_net
.ipv4
.frags
.high_thresh
;
799 table
[1].data
= &net
->ipv4
.frags
.low_thresh
;
800 table
[1].extra2
= &net
->ipv4
.frags
.high_thresh
;
801 table
[2].data
= &net
->ipv4
.frags
.timeout
;
802 table
[3].data
= &net
->ipv4
.frags
.max_dist
;
805 hdr
= register_net_sysctl(net
, "net/ipv4", table
);
809 net
->ipv4
.frags_hdr
= hdr
;
813 if (!net_eq(net
, &init_net
))
819 static void __net_exit
ip4_frags_ns_ctl_unregister(struct net
*net
)
821 struct ctl_table
*table
;
823 table
= net
->ipv4
.frags_hdr
->ctl_table_arg
;
824 unregister_net_sysctl_table(net
->ipv4
.frags_hdr
);
828 static void __init
ip4_frags_ctl_register(void)
830 register_net_sysctl(&init_net
, "net/ipv4", ip4_frags_ctl_table
);
833 static int ip4_frags_ns_ctl_register(struct net
*net
)
838 static void ip4_frags_ns_ctl_unregister(struct net
*net
)
842 static void __init
ip4_frags_ctl_register(void)
847 static int __net_init
ipv4_frags_init_net(struct net
*net
)
849 /* Fragment cache limits.
851 * The fragment memory accounting code, (tries to) account for
852 * the real memory usage, by measuring both the size of frag
853 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
854 * and the SKB's truesize.
856 * A 64K fragment consumes 129736 bytes (44*2944)+200
857 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
859 * We will commit 4MB at one time. Should we cross that limit
860 * we will prune down to 3MB, making room for approx 8 big 64K
863 net
->ipv4
.frags
.high_thresh
= 4 * 1024 * 1024;
864 net
->ipv4
.frags
.low_thresh
= 3 * 1024 * 1024;
866 * Important NOTE! Fragment queue must be destroyed before MSL expires.
867 * RFC791 is wrong proposing to prolongate timer each fragment arrival
870 net
->ipv4
.frags
.timeout
= IP_FRAG_TIME
;
872 net
->ipv4
.frags
.max_dist
= 64;
874 inet_frags_init_net(&net
->ipv4
.frags
);
876 return ip4_frags_ns_ctl_register(net
);
879 static void __net_exit
ipv4_frags_exit_net(struct net
*net
)
881 ip4_frags_ns_ctl_unregister(net
);
882 inet_frags_exit_net(&net
->ipv4
.frags
, &ip4_frags
);
885 static struct pernet_operations ip4_frags_ops
= {
886 .init
= ipv4_frags_init_net
,
887 .exit
= ipv4_frags_exit_net
,
890 void __init
ipfrag_init(void)
892 ip4_frags_ctl_register();
893 register_pernet_subsys(&ip4_frags_ops
);
894 ip4_frags
.hashfn
= ip4_hashfn
;
895 ip4_frags
.constructor
= ip4_frag_init
;
896 ip4_frags
.destructor
= ip4_frag_free
;
897 ip4_frags
.qsize
= sizeof(struct ipq
);
898 ip4_frags
.match
= ip4_frag_match
;
899 ip4_frags
.frag_expire
= ip_expire
;
900 ip4_frags
.frags_cache_name
= ip_frag_cache_name
;
901 if (inet_frags_init(&ip4_frags
))
902 panic("IP: failed to allocate ip4_frags cache\n");