net: Drop pernet_operations::async
[linux-2.6/btrfs-unstable.git] / net / core / dev.c
blobe13807b5c84d15700b4c909dc2e81a5b1065b610
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly; /* Taps */
162 static struct list_head offload_base __read_mostly;
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171 * semaphore.
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
186 * semaphore held.
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
191 static DEFINE_MUTEX(ifalias_mutex);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199 static seqcount_t devnet_rename_seq;
201 static inline void dev_base_seq_inc(struct net *net)
203 while (++net->dev_base_seq == 0)
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 static inline void rps_lock(struct softnet_data *sd)
221 #ifdef CONFIG_RPS
222 spin_lock(&sd->input_pkt_queue.lock);
223 #endif
226 static inline void rps_unlock(struct softnet_data *sd)
228 #ifdef CONFIG_RPS
229 spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
236 struct net *net = dev_net(dev);
238 ASSERT_RTNL();
240 write_lock_bh(&dev_base_lock);
241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 hlist_add_head_rcu(&dev->index_hlist,
244 dev_index_hash(net, dev->ifindex));
245 write_unlock_bh(&dev_base_lock);
247 dev_base_seq_inc(net);
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
253 static void unlist_netdevice(struct net_device *dev)
255 ASSERT_RTNL();
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock);
259 list_del_rcu(&dev->dev_list);
260 hlist_del_rcu(&dev->name_hlist);
261 hlist_del_rcu(&dev->index_hlist);
262 write_unlock_bh(&dev_base_lock);
264 dev_base_seq_inc(dev_net(dev));
268 * Our notifier list
271 static RAW_NOTIFIER_HEAD(netdev_chain);
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
281 #ifdef CONFIG_LOCKDEP
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
286 static const unsigned short netdev_lock_type[] = {
287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
303 static const char *const netdev_lock_name[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
325 int i;
327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 if (netdev_lock_type[i] == dev_type)
329 return i;
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type) - 1;
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
337 int i;
339 i = netdev_lock_pos(dev_type);
340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 netdev_lock_name[i]);
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 int i;
348 i = netdev_lock_pos(dev->type);
349 lockdep_set_class_and_name(&dev->addr_list_lock,
350 &netdev_addr_lock_key[i],
351 netdev_lock_name[i]);
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 unsigned short dev_type)
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 #endif
363 /*******************************************************************************
365 * Protocol management and registration routines
367 *******************************************************************************/
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
373 * here.
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
383 * --ANK (980803)
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
388 if (pt->type == htons(ETH_P_ALL))
389 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 else
391 return pt->dev ? &pt->dev->ptype_specific :
392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
408 void dev_add_pack(struct packet_type *pt)
410 struct list_head *head = ptype_head(pt);
412 spin_lock(&ptype_lock);
413 list_add_rcu(&pt->list, head);
414 spin_unlock(&ptype_lock);
416 EXPORT_SYMBOL(dev_add_pack);
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
425 * returns.
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
431 void __dev_remove_pack(struct packet_type *pt)
433 struct list_head *head = ptype_head(pt);
434 struct packet_type *pt1;
436 spin_lock(&ptype_lock);
438 list_for_each_entry(pt1, head, list) {
439 if (pt == pt1) {
440 list_del_rcu(&pt->list);
441 goto out;
445 pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 spin_unlock(&ptype_lock);
449 EXPORT_SYMBOL(__dev_remove_pack);
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
458 * returns.
460 * This call sleeps to guarantee that no CPU is looking at the packet
461 * type after return.
463 void dev_remove_pack(struct packet_type *pt)
465 __dev_remove_pack(pt);
467 synchronize_net();
469 EXPORT_SYMBOL(dev_remove_pack);
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
484 void dev_add_offload(struct packet_offload *po)
486 struct packet_offload *elem;
488 spin_lock(&offload_lock);
489 list_for_each_entry(elem, &offload_base, list) {
490 if (po->priority < elem->priority)
491 break;
493 list_add_rcu(&po->list, elem->list.prev);
494 spin_unlock(&offload_lock);
496 EXPORT_SYMBOL(dev_add_offload);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
505 * function returns.
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 static void __dev_remove_offload(struct packet_offload *po)
513 struct list_head *head = &offload_base;
514 struct packet_offload *po1;
516 spin_lock(&offload_lock);
518 list_for_each_entry(po1, head, list) {
519 if (po == po1) {
520 list_del_rcu(&po->list);
521 goto out;
525 pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 spin_unlock(&offload_lock);
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
537 * function returns.
539 * This call sleeps to guarantee that no CPU is looking at the packet
540 * type after return.
542 void dev_remove_offload(struct packet_offload *po)
544 __dev_remove_offload(po);
546 synchronize_net();
548 EXPORT_SYMBOL(dev_remove_offload);
550 /******************************************************************************
552 * Device Boot-time Settings Routines
554 ******************************************************************************/
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
566 * all netdevices.
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
570 struct netdev_boot_setup *s;
571 int i;
573 s = dev_boot_setup;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 memset(s[i].name, 0, sizeof(s[i].name));
577 strlcpy(s[i].name, name, IFNAMSIZ);
578 memcpy(&s[i].map, map, sizeof(s[i].map));
579 break;
583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
595 int netdev_boot_setup_check(struct net_device *dev)
597 struct netdev_boot_setup *s = dev_boot_setup;
598 int i;
600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 !strcmp(dev->name, s[i].name)) {
603 dev->irq = s[i].map.irq;
604 dev->base_addr = s[i].map.base_addr;
605 dev->mem_start = s[i].map.mem_start;
606 dev->mem_end = s[i].map.mem_end;
607 return 1;
610 return 0;
612 EXPORT_SYMBOL(netdev_boot_setup_check);
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
625 unsigned long netdev_boot_base(const char *prefix, int unit)
627 const struct netdev_boot_setup *s = dev_boot_setup;
628 char name[IFNAMSIZ];
629 int i;
631 sprintf(name, "%s%d", prefix, unit);
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
637 if (__dev_get_by_name(&init_net, name))
638 return 1;
640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 if (!strcmp(name, s[i].name))
642 return s[i].map.base_addr;
643 return 0;
647 * Saves at boot time configured settings for any netdevice.
649 int __init netdev_boot_setup(char *str)
651 int ints[5];
652 struct ifmap map;
654 str = get_options(str, ARRAY_SIZE(ints), ints);
655 if (!str || !*str)
656 return 0;
658 /* Save settings */
659 memset(&map, 0, sizeof(map));
660 if (ints[0] > 0)
661 map.irq = ints[1];
662 if (ints[0] > 1)
663 map.base_addr = ints[2];
664 if (ints[0] > 2)
665 map.mem_start = ints[3];
666 if (ints[0] > 3)
667 map.mem_end = ints[4];
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str, &map);
673 __setup("netdev=", netdev_boot_setup);
675 /*******************************************************************************
677 * Device Interface Subroutines
679 *******************************************************************************/
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 int dev_get_iflink(const struct net_device *dev)
691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 return dev->netdev_ops->ndo_get_iflink(dev);
694 return dev->ifindex;
696 EXPORT_SYMBOL(dev_get_iflink);
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
701 * @skb: The packet.
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
709 struct ip_tunnel_info *info;
711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
712 return -EINVAL;
714 info = skb_tunnel_info_unclone(skb);
715 if (!info)
716 return -ENOMEM;
717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 return -EINVAL;
720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
738 struct net_device *dev;
739 struct hlist_head *head = dev_name_hash(net, name);
741 hlist_for_each_entry(dev, head, name_hlist)
742 if (!strncmp(dev->name, name, IFNAMSIZ))
743 return dev;
745 return NULL;
747 EXPORT_SYMBOL(__dev_get_by_name);
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
763 struct net_device *dev;
764 struct hlist_head *head = dev_name_hash(net, name);
766 hlist_for_each_entry_rcu(dev, head, name_hlist)
767 if (!strncmp(dev->name, name, IFNAMSIZ))
768 return dev;
770 return NULL;
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
788 struct net_device *dev;
790 rcu_read_lock();
791 dev = dev_get_by_name_rcu(net, name);
792 if (dev)
793 dev_hold(dev);
794 rcu_read_unlock();
795 return dev;
797 EXPORT_SYMBOL(dev_get_by_name);
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
808 * or @dev_base_lock.
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
813 struct net_device *dev;
814 struct hlist_head *head = dev_index_hash(net, ifindex);
816 hlist_for_each_entry(dev, head, index_hlist)
817 if (dev->ifindex == ifindex)
818 return dev;
820 return NULL;
822 EXPORT_SYMBOL(__dev_get_by_index);
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
837 struct net_device *dev;
838 struct hlist_head *head = dev_index_hash(net, ifindex);
840 hlist_for_each_entry_rcu(dev, head, index_hlist)
841 if (dev->ifindex == ifindex)
842 return dev;
844 return NULL;
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
862 struct net_device *dev;
864 rcu_read_lock();
865 dev = dev_get_by_index_rcu(net, ifindex);
866 if (dev)
867 dev_hold(dev);
868 rcu_read_unlock();
869 return dev;
871 EXPORT_SYMBOL(dev_get_by_index);
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
885 struct napi_struct *napi;
887 WARN_ON_ONCE(!rcu_read_lock_held());
889 if (napi_id < MIN_NAPI_ID)
890 return NULL;
892 napi = napi_by_id(napi_id);
894 return napi ? napi->dev : NULL;
896 EXPORT_SYMBOL(dev_get_by_napi_id);
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
908 int netdev_get_name(struct net *net, char *name, int ifindex)
910 struct net_device *dev;
911 unsigned int seq;
913 retry:
914 seq = raw_seqcount_begin(&devnet_rename_seq);
915 rcu_read_lock();
916 dev = dev_get_by_index_rcu(net, ifindex);
917 if (!dev) {
918 rcu_read_unlock();
919 return -ENODEV;
922 strcpy(name, dev->name);
923 rcu_read_unlock();
924 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 cond_resched();
926 goto retry;
929 return 0;
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 const char *ha)
949 struct net_device *dev;
951 for_each_netdev_rcu(net, dev)
952 if (dev->type == type &&
953 !memcmp(dev->dev_addr, ha, dev->addr_len))
954 return dev;
956 return NULL;
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
962 struct net_device *dev;
964 ASSERT_RTNL();
965 for_each_netdev(net, dev)
966 if (dev->type == type)
967 return dev;
969 return NULL;
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
975 struct net_device *dev, *ret = NULL;
977 rcu_read_lock();
978 for_each_netdev_rcu(net, dev)
979 if (dev->type == type) {
980 dev_hold(dev);
981 ret = dev;
982 break;
984 rcu_read_unlock();
985 return ret;
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 unsigned short mask)
1003 struct net_device *dev, *ret;
1005 ASSERT_RTNL();
1007 ret = NULL;
1008 for_each_netdev(net, dev) {
1009 if (((dev->flags ^ if_flags) & mask) == 0) {
1010 ret = dev;
1011 break;
1014 return ret;
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1024 * whitespace.
1026 bool dev_valid_name(const char *name)
1028 if (*name == '\0')
1029 return false;
1030 if (strlen(name) >= IFNAMSIZ)
1031 return false;
1032 if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 return false;
1035 while (*name) {
1036 if (*name == '/' || *name == ':' || isspace(*name))
1037 return false;
1038 name++;
1040 return true;
1042 EXPORT_SYMBOL(dev_valid_name);
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1054 * duplicates.
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1061 int i = 0;
1062 const char *p;
1063 const int max_netdevices = 8*PAGE_SIZE;
1064 unsigned long *inuse;
1065 struct net_device *d;
1067 if (!dev_valid_name(name))
1068 return -EINVAL;
1070 p = strchr(name, '%');
1071 if (p) {
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1075 * characters.
1077 if (p[1] != 'd' || strchr(p + 2, '%'))
1078 return -EINVAL;
1080 /* Use one page as a bit array of possible slots */
1081 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 if (!inuse)
1083 return -ENOMEM;
1085 for_each_netdev(net, d) {
1086 if (!sscanf(d->name, name, &i))
1087 continue;
1088 if (i < 0 || i >= max_netdevices)
1089 continue;
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf, IFNAMSIZ, name, i);
1093 if (!strncmp(buf, d->name, IFNAMSIZ))
1094 set_bit(i, inuse);
1097 i = find_first_zero_bit(inuse, max_netdevices);
1098 free_page((unsigned long) inuse);
1101 snprintf(buf, IFNAMSIZ, name, i);
1102 if (!__dev_get_by_name(net, buf))
1103 return i;
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1109 return -ENFILE;
1112 static int dev_alloc_name_ns(struct net *net,
1113 struct net_device *dev,
1114 const char *name)
1116 char buf[IFNAMSIZ];
1117 int ret;
1119 BUG_ON(!net);
1120 ret = __dev_alloc_name(net, name, buf);
1121 if (ret >= 0)
1122 strlcpy(dev->name, buf, IFNAMSIZ);
1123 return ret;
1127 * dev_alloc_name - allocate a name for a device
1128 * @dev: device
1129 * @name: name format string
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1135 * duplicates.
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1142 return dev_alloc_name_ns(dev_net(dev), dev, name);
1144 EXPORT_SYMBOL(dev_alloc_name);
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 const char *name)
1149 BUG_ON(!net);
1151 if (!dev_valid_name(name))
1152 return -EINVAL;
1154 if (strchr(name, '%'))
1155 return dev_alloc_name_ns(net, dev, name);
1156 else if (__dev_get_by_name(net, name))
1157 return -EEXIST;
1158 else if (dev->name != name)
1159 strlcpy(dev->name, name, IFNAMSIZ);
1161 return 0;
1163 EXPORT_SYMBOL(dev_get_valid_name);
1166 * dev_change_name - change name of a device
1167 * @dev: device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1170 * Change name of a device, can pass format strings "eth%d".
1171 * for wildcarding.
1173 int dev_change_name(struct net_device *dev, const char *newname)
1175 unsigned char old_assign_type;
1176 char oldname[IFNAMSIZ];
1177 int err = 0;
1178 int ret;
1179 struct net *net;
1181 ASSERT_RTNL();
1182 BUG_ON(!dev_net(dev));
1184 net = dev_net(dev);
1185 if (dev->flags & IFF_UP)
1186 return -EBUSY;
1188 write_seqcount_begin(&devnet_rename_seq);
1190 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 write_seqcount_end(&devnet_rename_seq);
1192 return 0;
1195 memcpy(oldname, dev->name, IFNAMSIZ);
1197 err = dev_get_valid_name(net, dev, newname);
1198 if (err < 0) {
1199 write_seqcount_end(&devnet_rename_seq);
1200 return err;
1203 if (oldname[0] && !strchr(oldname, '%'))
1204 netdev_info(dev, "renamed from %s\n", oldname);
1206 old_assign_type = dev->name_assign_type;
1207 dev->name_assign_type = NET_NAME_RENAMED;
1209 rollback:
1210 ret = device_rename(&dev->dev, dev->name);
1211 if (ret) {
1212 memcpy(dev->name, oldname, IFNAMSIZ);
1213 dev->name_assign_type = old_assign_type;
1214 write_seqcount_end(&devnet_rename_seq);
1215 return ret;
1218 write_seqcount_end(&devnet_rename_seq);
1220 netdev_adjacent_rename_links(dev, oldname);
1222 write_lock_bh(&dev_base_lock);
1223 hlist_del_rcu(&dev->name_hlist);
1224 write_unlock_bh(&dev_base_lock);
1226 synchronize_rcu();
1228 write_lock_bh(&dev_base_lock);
1229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 write_unlock_bh(&dev_base_lock);
1232 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 ret = notifier_to_errno(ret);
1235 if (ret) {
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237 if (err >= 0) {
1238 err = ret;
1239 write_seqcount_begin(&devnet_rename_seq);
1240 memcpy(dev->name, oldname, IFNAMSIZ);
1241 memcpy(oldname, newname, IFNAMSIZ);
1242 dev->name_assign_type = old_assign_type;
1243 old_assign_type = NET_NAME_RENAMED;
1244 goto rollback;
1245 } else {
1246 pr_err("%s: name change rollback failed: %d\n",
1247 dev->name, ret);
1251 return err;
1255 * dev_set_alias - change ifalias of a device
1256 * @dev: device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1260 * Set ifalias for a device,
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1264 struct dev_ifalias *new_alias = NULL;
1266 if (len >= IFALIASZ)
1267 return -EINVAL;
1269 if (len) {
1270 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 if (!new_alias)
1272 return -ENOMEM;
1274 memcpy(new_alias->ifalias, alias, len);
1275 new_alias->ifalias[len] = 0;
1278 mutex_lock(&ifalias_mutex);
1279 rcu_swap_protected(dev->ifalias, new_alias,
1280 mutex_is_locked(&ifalias_mutex));
1281 mutex_unlock(&ifalias_mutex);
1283 if (new_alias)
1284 kfree_rcu(new_alias, rcuhead);
1286 return len;
1290 * dev_get_alias - get ifalias of a device
1291 * @dev: device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1300 const struct dev_ifalias *alias;
1301 int ret = 0;
1303 rcu_read_lock();
1304 alias = rcu_dereference(dev->ifalias);
1305 if (alias)
1306 ret = snprintf(name, len, "%s", alias->ifalias);
1307 rcu_read_unlock();
1309 return ret;
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1316 * Called to indicate a device has changed features.
1318 void netdev_features_change(struct net_device *dev)
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1322 EXPORT_SYMBOL(netdev_features_change);
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1332 void netdev_state_change(struct net_device *dev)
1334 if (dev->flags & IFF_UP) {
1335 struct netdev_notifier_change_info change_info = {
1336 .info.dev = dev,
1339 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 &change_info.info);
1341 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1344 EXPORT_SYMBOL(netdev_state_change);
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1354 * migration.
1356 void netdev_notify_peers(struct net_device *dev)
1358 rtnl_lock();
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 rtnl_unlock();
1363 EXPORT_SYMBOL(netdev_notify_peers);
1365 static int __dev_open(struct net_device *dev)
1367 const struct net_device_ops *ops = dev->netdev_ops;
1368 int ret;
1370 ASSERT_RTNL();
1372 if (!netif_device_present(dev))
1373 return -ENODEV;
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1379 netpoll_poll_disable(dev);
1381 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 ret = notifier_to_errno(ret);
1383 if (ret)
1384 return ret;
1386 set_bit(__LINK_STATE_START, &dev->state);
1388 if (ops->ndo_validate_addr)
1389 ret = ops->ndo_validate_addr(dev);
1391 if (!ret && ops->ndo_open)
1392 ret = ops->ndo_open(dev);
1394 netpoll_poll_enable(dev);
1396 if (ret)
1397 clear_bit(__LINK_STATE_START, &dev->state);
1398 else {
1399 dev->flags |= IFF_UP;
1400 dev_set_rx_mode(dev);
1401 dev_activate(dev);
1402 add_device_randomness(dev->dev_addr, dev->addr_len);
1405 return ret;
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1420 int dev_open(struct net_device *dev)
1422 int ret;
1424 if (dev->flags & IFF_UP)
1425 return 0;
1427 ret = __dev_open(dev);
1428 if (ret < 0)
1429 return ret;
1431 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 call_netdevice_notifiers(NETDEV_UP, dev);
1434 return ret;
1436 EXPORT_SYMBOL(dev_open);
1438 static void __dev_close_many(struct list_head *head)
1440 struct net_device *dev;
1442 ASSERT_RTNL();
1443 might_sleep();
1445 list_for_each_entry(dev, head, close_list) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev);
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1451 clear_bit(__LINK_STATE_START, &dev->state);
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1462 dev_deactivate_many(head);
1464 list_for_each_entry(dev, head, close_list) {
1465 const struct net_device_ops *ops = dev->netdev_ops;
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1471 * We allow it to be called even after a DETACH hot-plug
1472 * event.
1474 if (ops->ndo_stop)
1475 ops->ndo_stop(dev);
1477 dev->flags &= ~IFF_UP;
1478 netpoll_poll_enable(dev);
1482 static void __dev_close(struct net_device *dev)
1484 LIST_HEAD(single);
1486 list_add(&dev->close_list, &single);
1487 __dev_close_many(&single);
1488 list_del(&single);
1491 void dev_close_many(struct list_head *head, bool unlink)
1493 struct net_device *dev, *tmp;
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev, tmp, head, close_list)
1497 if (!(dev->flags & IFF_UP))
1498 list_del_init(&dev->close_list);
1500 __dev_close_many(head);
1502 list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 if (unlink)
1506 list_del_init(&dev->close_list);
1509 EXPORT_SYMBOL(dev_close_many);
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518 * chain.
1520 void dev_close(struct net_device *dev)
1522 if (dev->flags & IFF_UP) {
1523 LIST_HEAD(single);
1525 list_add(&dev->close_list, &single);
1526 dev_close_many(&single, true);
1527 list_del(&single);
1530 EXPORT_SYMBOL(dev_close);
1534 * dev_disable_lro - disable Large Receive Offload on a device
1535 * @dev: device
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1541 void dev_disable_lro(struct net_device *dev)
1543 struct net_device *lower_dev;
1544 struct list_head *iter;
1546 dev->wanted_features &= ~NETIF_F_LRO;
1547 netdev_update_features(dev);
1549 if (unlikely(dev->features & NETIF_F_LRO))
1550 netdev_WARN(dev, "failed to disable LRO!\n");
1552 netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 dev_disable_lro(lower_dev);
1555 EXPORT_SYMBOL(dev_disable_lro);
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559 * @dev: device
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1563 * the device.
1565 static void dev_disable_gro_hw(struct net_device *dev)
1567 dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 netdev_update_features(dev);
1570 if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1576 #define N(val) \
1577 case NETDEV_##val: \
1578 return "NETDEV_" __stringify(val);
1579 switch (cmd) {
1580 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1588 #undef N
1589 return "UNKNOWN_NETDEV_EVENT";
1591 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1594 struct net_device *dev)
1596 struct netdev_notifier_info info = {
1597 .dev = dev,
1600 return nb->notifier_call(nb, val, &info);
1603 static int dev_boot_phase = 1;
1606 * register_netdevice_notifier - register a network notifier block
1607 * @nb: notifier
1609 * Register a notifier to be called when network device events occur.
1610 * The notifier passed is linked into the kernel structures and must
1611 * not be reused until it has been unregistered. A negative errno code
1612 * is returned on a failure.
1614 * When registered all registration and up events are replayed
1615 * to the new notifier to allow device to have a race free
1616 * view of the network device list.
1619 int register_netdevice_notifier(struct notifier_block *nb)
1621 struct net_device *dev;
1622 struct net_device *last;
1623 struct net *net;
1624 int err;
1626 rtnl_lock();
1627 err = raw_notifier_chain_register(&netdev_chain, nb);
1628 if (err)
1629 goto unlock;
1630 if (dev_boot_phase)
1631 goto unlock;
1632 for_each_net(net) {
1633 for_each_netdev(net, dev) {
1634 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1635 err = notifier_to_errno(err);
1636 if (err)
1637 goto rollback;
1639 if (!(dev->flags & IFF_UP))
1640 continue;
1642 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 unlock:
1647 rtnl_unlock();
1648 return err;
1650 rollback:
1651 last = dev;
1652 for_each_net(net) {
1653 for_each_netdev(net, dev) {
1654 if (dev == last)
1655 goto outroll;
1657 if (dev->flags & IFF_UP) {
1658 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1659 dev);
1660 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1662 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1666 outroll:
1667 raw_notifier_chain_unregister(&netdev_chain, nb);
1668 goto unlock;
1670 EXPORT_SYMBOL(register_netdevice_notifier);
1673 * unregister_netdevice_notifier - unregister a network notifier block
1674 * @nb: notifier
1676 * Unregister a notifier previously registered by
1677 * register_netdevice_notifier(). The notifier is unlinked into the
1678 * kernel structures and may then be reused. A negative errno code
1679 * is returned on a failure.
1681 * After unregistering unregister and down device events are synthesized
1682 * for all devices on the device list to the removed notifier to remove
1683 * the need for special case cleanup code.
1686 int unregister_netdevice_notifier(struct notifier_block *nb)
1688 struct net_device *dev;
1689 struct net *net;
1690 int err;
1692 rtnl_lock();
1693 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1694 if (err)
1695 goto unlock;
1697 for_each_net(net) {
1698 for_each_netdev(net, dev) {
1699 if (dev->flags & IFF_UP) {
1700 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1701 dev);
1702 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1704 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1707 unlock:
1708 rtnl_unlock();
1709 return err;
1711 EXPORT_SYMBOL(unregister_netdevice_notifier);
1714 * call_netdevice_notifiers_info - call all network notifier blocks
1715 * @val: value passed unmodified to notifier function
1716 * @info: notifier information data
1718 * Call all network notifier blocks. Parameters and return value
1719 * are as for raw_notifier_call_chain().
1722 static int call_netdevice_notifiers_info(unsigned long val,
1723 struct netdev_notifier_info *info)
1725 ASSERT_RTNL();
1726 return raw_notifier_call_chain(&netdev_chain, val, info);
1730 * call_netdevice_notifiers - call all network notifier blocks
1731 * @val: value passed unmodified to notifier function
1732 * @dev: net_device pointer passed unmodified to notifier function
1734 * Call all network notifier blocks. Parameters and return value
1735 * are as for raw_notifier_call_chain().
1738 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1740 struct netdev_notifier_info info = {
1741 .dev = dev,
1744 return call_netdevice_notifiers_info(val, &info);
1746 EXPORT_SYMBOL(call_netdevice_notifiers);
1748 #ifdef CONFIG_NET_INGRESS
1749 static struct static_key ingress_needed __read_mostly;
1751 void net_inc_ingress_queue(void)
1753 static_key_slow_inc(&ingress_needed);
1755 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1757 void net_dec_ingress_queue(void)
1759 static_key_slow_dec(&ingress_needed);
1761 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1762 #endif
1764 #ifdef CONFIG_NET_EGRESS
1765 static struct static_key egress_needed __read_mostly;
1767 void net_inc_egress_queue(void)
1769 static_key_slow_inc(&egress_needed);
1771 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1773 void net_dec_egress_queue(void)
1775 static_key_slow_dec(&egress_needed);
1777 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1778 #endif
1780 static struct static_key netstamp_needed __read_mostly;
1781 #ifdef HAVE_JUMP_LABEL
1782 static atomic_t netstamp_needed_deferred;
1783 static atomic_t netstamp_wanted;
1784 static void netstamp_clear(struct work_struct *work)
1786 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1787 int wanted;
1789 wanted = atomic_add_return(deferred, &netstamp_wanted);
1790 if (wanted > 0)
1791 static_key_enable(&netstamp_needed);
1792 else
1793 static_key_disable(&netstamp_needed);
1795 static DECLARE_WORK(netstamp_work, netstamp_clear);
1796 #endif
1798 void net_enable_timestamp(void)
1800 #ifdef HAVE_JUMP_LABEL
1801 int wanted;
1803 while (1) {
1804 wanted = atomic_read(&netstamp_wanted);
1805 if (wanted <= 0)
1806 break;
1807 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1808 return;
1810 atomic_inc(&netstamp_needed_deferred);
1811 schedule_work(&netstamp_work);
1812 #else
1813 static_key_slow_inc(&netstamp_needed);
1814 #endif
1816 EXPORT_SYMBOL(net_enable_timestamp);
1818 void net_disable_timestamp(void)
1820 #ifdef HAVE_JUMP_LABEL
1821 int wanted;
1823 while (1) {
1824 wanted = atomic_read(&netstamp_wanted);
1825 if (wanted <= 1)
1826 break;
1827 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1828 return;
1830 atomic_dec(&netstamp_needed_deferred);
1831 schedule_work(&netstamp_work);
1832 #else
1833 static_key_slow_dec(&netstamp_needed);
1834 #endif
1836 EXPORT_SYMBOL(net_disable_timestamp);
1838 static inline void net_timestamp_set(struct sk_buff *skb)
1840 skb->tstamp = 0;
1841 if (static_key_false(&netstamp_needed))
1842 __net_timestamp(skb);
1845 #define net_timestamp_check(COND, SKB) \
1846 if (static_key_false(&netstamp_needed)) { \
1847 if ((COND) && !(SKB)->tstamp) \
1848 __net_timestamp(SKB); \
1851 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1853 unsigned int len;
1855 if (!(dev->flags & IFF_UP))
1856 return false;
1858 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1859 if (skb->len <= len)
1860 return true;
1862 /* if TSO is enabled, we don't care about the length as the packet
1863 * could be forwarded without being segmented before
1865 if (skb_is_gso(skb))
1866 return true;
1868 return false;
1870 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1872 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1874 int ret = ____dev_forward_skb(dev, skb);
1876 if (likely(!ret)) {
1877 skb->protocol = eth_type_trans(skb, dev);
1878 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1881 return ret;
1883 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1886 * dev_forward_skb - loopback an skb to another netif
1888 * @dev: destination network device
1889 * @skb: buffer to forward
1891 * return values:
1892 * NET_RX_SUCCESS (no congestion)
1893 * NET_RX_DROP (packet was dropped, but freed)
1895 * dev_forward_skb can be used for injecting an skb from the
1896 * start_xmit function of one device into the receive queue
1897 * of another device.
1899 * The receiving device may be in another namespace, so
1900 * we have to clear all information in the skb that could
1901 * impact namespace isolation.
1903 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1905 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1907 EXPORT_SYMBOL_GPL(dev_forward_skb);
1909 static inline int deliver_skb(struct sk_buff *skb,
1910 struct packet_type *pt_prev,
1911 struct net_device *orig_dev)
1913 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1914 return -ENOMEM;
1915 refcount_inc(&skb->users);
1916 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1919 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1920 struct packet_type **pt,
1921 struct net_device *orig_dev,
1922 __be16 type,
1923 struct list_head *ptype_list)
1925 struct packet_type *ptype, *pt_prev = *pt;
1927 list_for_each_entry_rcu(ptype, ptype_list, list) {
1928 if (ptype->type != type)
1929 continue;
1930 if (pt_prev)
1931 deliver_skb(skb, pt_prev, orig_dev);
1932 pt_prev = ptype;
1934 *pt = pt_prev;
1937 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1939 if (!ptype->af_packet_priv || !skb->sk)
1940 return false;
1942 if (ptype->id_match)
1943 return ptype->id_match(ptype, skb->sk);
1944 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1945 return true;
1947 return false;
1951 * Support routine. Sends outgoing frames to any network
1952 * taps currently in use.
1955 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1957 struct packet_type *ptype;
1958 struct sk_buff *skb2 = NULL;
1959 struct packet_type *pt_prev = NULL;
1960 struct list_head *ptype_list = &ptype_all;
1962 rcu_read_lock();
1963 again:
1964 list_for_each_entry_rcu(ptype, ptype_list, list) {
1965 /* Never send packets back to the socket
1966 * they originated from - MvS (miquels@drinkel.ow.org)
1968 if (skb_loop_sk(ptype, skb))
1969 continue;
1971 if (pt_prev) {
1972 deliver_skb(skb2, pt_prev, skb->dev);
1973 pt_prev = ptype;
1974 continue;
1977 /* need to clone skb, done only once */
1978 skb2 = skb_clone(skb, GFP_ATOMIC);
1979 if (!skb2)
1980 goto out_unlock;
1982 net_timestamp_set(skb2);
1984 /* skb->nh should be correctly
1985 * set by sender, so that the second statement is
1986 * just protection against buggy protocols.
1988 skb_reset_mac_header(skb2);
1990 if (skb_network_header(skb2) < skb2->data ||
1991 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1992 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1993 ntohs(skb2->protocol),
1994 dev->name);
1995 skb_reset_network_header(skb2);
1998 skb2->transport_header = skb2->network_header;
1999 skb2->pkt_type = PACKET_OUTGOING;
2000 pt_prev = ptype;
2003 if (ptype_list == &ptype_all) {
2004 ptype_list = &dev->ptype_all;
2005 goto again;
2007 out_unlock:
2008 if (pt_prev) {
2009 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2010 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2011 else
2012 kfree_skb(skb2);
2014 rcu_read_unlock();
2016 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2019 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2020 * @dev: Network device
2021 * @txq: number of queues available
2023 * If real_num_tx_queues is changed the tc mappings may no longer be
2024 * valid. To resolve this verify the tc mapping remains valid and if
2025 * not NULL the mapping. With no priorities mapping to this
2026 * offset/count pair it will no longer be used. In the worst case TC0
2027 * is invalid nothing can be done so disable priority mappings. If is
2028 * expected that drivers will fix this mapping if they can before
2029 * calling netif_set_real_num_tx_queues.
2031 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2033 int i;
2034 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2036 /* If TC0 is invalidated disable TC mapping */
2037 if (tc->offset + tc->count > txq) {
2038 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2039 dev->num_tc = 0;
2040 return;
2043 /* Invalidated prio to tc mappings set to TC0 */
2044 for (i = 1; i < TC_BITMASK + 1; i++) {
2045 int q = netdev_get_prio_tc_map(dev, i);
2047 tc = &dev->tc_to_txq[q];
2048 if (tc->offset + tc->count > txq) {
2049 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2050 i, q);
2051 netdev_set_prio_tc_map(dev, i, 0);
2056 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2058 if (dev->num_tc) {
2059 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2060 int i;
2062 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2063 if ((txq - tc->offset) < tc->count)
2064 return i;
2067 return -1;
2070 return 0;
2072 EXPORT_SYMBOL(netdev_txq_to_tc);
2074 #ifdef CONFIG_XPS
2075 static DEFINE_MUTEX(xps_map_mutex);
2076 #define xmap_dereference(P) \
2077 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2079 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2080 int tci, u16 index)
2082 struct xps_map *map = NULL;
2083 int pos;
2085 if (dev_maps)
2086 map = xmap_dereference(dev_maps->cpu_map[tci]);
2087 if (!map)
2088 return false;
2090 for (pos = map->len; pos--;) {
2091 if (map->queues[pos] != index)
2092 continue;
2094 if (map->len > 1) {
2095 map->queues[pos] = map->queues[--map->len];
2096 break;
2099 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2100 kfree_rcu(map, rcu);
2101 return false;
2104 return true;
2107 static bool remove_xps_queue_cpu(struct net_device *dev,
2108 struct xps_dev_maps *dev_maps,
2109 int cpu, u16 offset, u16 count)
2111 int num_tc = dev->num_tc ? : 1;
2112 bool active = false;
2113 int tci;
2115 for (tci = cpu * num_tc; num_tc--; tci++) {
2116 int i, j;
2118 for (i = count, j = offset; i--; j++) {
2119 if (!remove_xps_queue(dev_maps, cpu, j))
2120 break;
2123 active |= i < 0;
2126 return active;
2129 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2130 u16 count)
2132 struct xps_dev_maps *dev_maps;
2133 int cpu, i;
2134 bool active = false;
2136 mutex_lock(&xps_map_mutex);
2137 dev_maps = xmap_dereference(dev->xps_maps);
2139 if (!dev_maps)
2140 goto out_no_maps;
2142 for_each_possible_cpu(cpu)
2143 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2144 offset, count);
2146 if (!active) {
2147 RCU_INIT_POINTER(dev->xps_maps, NULL);
2148 kfree_rcu(dev_maps, rcu);
2151 for (i = offset + (count - 1); count--; i--)
2152 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2153 NUMA_NO_NODE);
2155 out_no_maps:
2156 mutex_unlock(&xps_map_mutex);
2159 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2161 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2164 static struct xps_map *expand_xps_map(struct xps_map *map,
2165 int cpu, u16 index)
2167 struct xps_map *new_map;
2168 int alloc_len = XPS_MIN_MAP_ALLOC;
2169 int i, pos;
2171 for (pos = 0; map && pos < map->len; pos++) {
2172 if (map->queues[pos] != index)
2173 continue;
2174 return map;
2177 /* Need to add queue to this CPU's existing map */
2178 if (map) {
2179 if (pos < map->alloc_len)
2180 return map;
2182 alloc_len = map->alloc_len * 2;
2185 /* Need to allocate new map to store queue on this CPU's map */
2186 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2187 cpu_to_node(cpu));
2188 if (!new_map)
2189 return NULL;
2191 for (i = 0; i < pos; i++)
2192 new_map->queues[i] = map->queues[i];
2193 new_map->alloc_len = alloc_len;
2194 new_map->len = pos;
2196 return new_map;
2199 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2200 u16 index)
2202 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2203 int i, cpu, tci, numa_node_id = -2;
2204 int maps_sz, num_tc = 1, tc = 0;
2205 struct xps_map *map, *new_map;
2206 bool active = false;
2208 if (dev->num_tc) {
2209 num_tc = dev->num_tc;
2210 tc = netdev_txq_to_tc(dev, index);
2211 if (tc < 0)
2212 return -EINVAL;
2215 maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2216 if (maps_sz < L1_CACHE_BYTES)
2217 maps_sz = L1_CACHE_BYTES;
2219 mutex_lock(&xps_map_mutex);
2221 dev_maps = xmap_dereference(dev->xps_maps);
2223 /* allocate memory for queue storage */
2224 for_each_cpu_and(cpu, cpu_online_mask, mask) {
2225 if (!new_dev_maps)
2226 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2227 if (!new_dev_maps) {
2228 mutex_unlock(&xps_map_mutex);
2229 return -ENOMEM;
2232 tci = cpu * num_tc + tc;
2233 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2234 NULL;
2236 map = expand_xps_map(map, cpu, index);
2237 if (!map)
2238 goto error;
2240 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2243 if (!new_dev_maps)
2244 goto out_no_new_maps;
2246 for_each_possible_cpu(cpu) {
2247 /* copy maps belonging to foreign traffic classes */
2248 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2249 /* fill in the new device map from the old device map */
2250 map = xmap_dereference(dev_maps->cpu_map[tci]);
2251 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2254 /* We need to explicitly update tci as prevous loop
2255 * could break out early if dev_maps is NULL.
2257 tci = cpu * num_tc + tc;
2259 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2260 /* add queue to CPU maps */
2261 int pos = 0;
2263 map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2264 while ((pos < map->len) && (map->queues[pos] != index))
2265 pos++;
2267 if (pos == map->len)
2268 map->queues[map->len++] = index;
2269 #ifdef CONFIG_NUMA
2270 if (numa_node_id == -2)
2271 numa_node_id = cpu_to_node(cpu);
2272 else if (numa_node_id != cpu_to_node(cpu))
2273 numa_node_id = -1;
2274 #endif
2275 } else if (dev_maps) {
2276 /* fill in the new device map from the old device map */
2277 map = xmap_dereference(dev_maps->cpu_map[tci]);
2278 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2281 /* copy maps belonging to foreign traffic classes */
2282 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2283 /* fill in the new device map from the old device map */
2284 map = xmap_dereference(dev_maps->cpu_map[tci]);
2285 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2289 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2291 /* Cleanup old maps */
2292 if (!dev_maps)
2293 goto out_no_old_maps;
2295 for_each_possible_cpu(cpu) {
2296 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2297 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2298 map = xmap_dereference(dev_maps->cpu_map[tci]);
2299 if (map && map != new_map)
2300 kfree_rcu(map, rcu);
2304 kfree_rcu(dev_maps, rcu);
2306 out_no_old_maps:
2307 dev_maps = new_dev_maps;
2308 active = true;
2310 out_no_new_maps:
2311 /* update Tx queue numa node */
2312 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2313 (numa_node_id >= 0) ? numa_node_id :
2314 NUMA_NO_NODE);
2316 if (!dev_maps)
2317 goto out_no_maps;
2319 /* removes queue from unused CPUs */
2320 for_each_possible_cpu(cpu) {
2321 for (i = tc, tci = cpu * num_tc; i--; tci++)
2322 active |= remove_xps_queue(dev_maps, tci, index);
2323 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2324 active |= remove_xps_queue(dev_maps, tci, index);
2325 for (i = num_tc - tc, tci++; --i; tci++)
2326 active |= remove_xps_queue(dev_maps, tci, index);
2329 /* free map if not active */
2330 if (!active) {
2331 RCU_INIT_POINTER(dev->xps_maps, NULL);
2332 kfree_rcu(dev_maps, rcu);
2335 out_no_maps:
2336 mutex_unlock(&xps_map_mutex);
2338 return 0;
2339 error:
2340 /* remove any maps that we added */
2341 for_each_possible_cpu(cpu) {
2342 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2343 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2344 map = dev_maps ?
2345 xmap_dereference(dev_maps->cpu_map[tci]) :
2346 NULL;
2347 if (new_map && new_map != map)
2348 kfree(new_map);
2352 mutex_unlock(&xps_map_mutex);
2354 kfree(new_dev_maps);
2355 return -ENOMEM;
2357 EXPORT_SYMBOL(netif_set_xps_queue);
2359 #endif
2360 void netdev_reset_tc(struct net_device *dev)
2362 #ifdef CONFIG_XPS
2363 netif_reset_xps_queues_gt(dev, 0);
2364 #endif
2365 dev->num_tc = 0;
2366 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2367 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2369 EXPORT_SYMBOL(netdev_reset_tc);
2371 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2373 if (tc >= dev->num_tc)
2374 return -EINVAL;
2376 #ifdef CONFIG_XPS
2377 netif_reset_xps_queues(dev, offset, count);
2378 #endif
2379 dev->tc_to_txq[tc].count = count;
2380 dev->tc_to_txq[tc].offset = offset;
2381 return 0;
2383 EXPORT_SYMBOL(netdev_set_tc_queue);
2385 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2387 if (num_tc > TC_MAX_QUEUE)
2388 return -EINVAL;
2390 #ifdef CONFIG_XPS
2391 netif_reset_xps_queues_gt(dev, 0);
2392 #endif
2393 dev->num_tc = num_tc;
2394 return 0;
2396 EXPORT_SYMBOL(netdev_set_num_tc);
2399 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2400 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2402 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2404 bool disabling;
2405 int rc;
2407 disabling = txq < dev->real_num_tx_queues;
2409 if (txq < 1 || txq > dev->num_tx_queues)
2410 return -EINVAL;
2412 if (dev->reg_state == NETREG_REGISTERED ||
2413 dev->reg_state == NETREG_UNREGISTERING) {
2414 ASSERT_RTNL();
2416 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2417 txq);
2418 if (rc)
2419 return rc;
2421 if (dev->num_tc)
2422 netif_setup_tc(dev, txq);
2424 dev->real_num_tx_queues = txq;
2426 if (disabling) {
2427 synchronize_net();
2428 qdisc_reset_all_tx_gt(dev, txq);
2429 #ifdef CONFIG_XPS
2430 netif_reset_xps_queues_gt(dev, txq);
2431 #endif
2433 } else {
2434 dev->real_num_tx_queues = txq;
2437 return 0;
2439 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2441 #ifdef CONFIG_SYSFS
2443 * netif_set_real_num_rx_queues - set actual number of RX queues used
2444 * @dev: Network device
2445 * @rxq: Actual number of RX queues
2447 * This must be called either with the rtnl_lock held or before
2448 * registration of the net device. Returns 0 on success, or a
2449 * negative error code. If called before registration, it always
2450 * succeeds.
2452 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2454 int rc;
2456 if (rxq < 1 || rxq > dev->num_rx_queues)
2457 return -EINVAL;
2459 if (dev->reg_state == NETREG_REGISTERED) {
2460 ASSERT_RTNL();
2462 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2463 rxq);
2464 if (rc)
2465 return rc;
2468 dev->real_num_rx_queues = rxq;
2469 return 0;
2471 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2472 #endif
2475 * netif_get_num_default_rss_queues - default number of RSS queues
2477 * This routine should set an upper limit on the number of RSS queues
2478 * used by default by multiqueue devices.
2480 int netif_get_num_default_rss_queues(void)
2482 return is_kdump_kernel() ?
2483 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2485 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2487 static void __netif_reschedule(struct Qdisc *q)
2489 struct softnet_data *sd;
2490 unsigned long flags;
2492 local_irq_save(flags);
2493 sd = this_cpu_ptr(&softnet_data);
2494 q->next_sched = NULL;
2495 *sd->output_queue_tailp = q;
2496 sd->output_queue_tailp = &q->next_sched;
2497 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2498 local_irq_restore(flags);
2501 void __netif_schedule(struct Qdisc *q)
2503 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2504 __netif_reschedule(q);
2506 EXPORT_SYMBOL(__netif_schedule);
2508 struct dev_kfree_skb_cb {
2509 enum skb_free_reason reason;
2512 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2514 return (struct dev_kfree_skb_cb *)skb->cb;
2517 void netif_schedule_queue(struct netdev_queue *txq)
2519 rcu_read_lock();
2520 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2521 struct Qdisc *q = rcu_dereference(txq->qdisc);
2523 __netif_schedule(q);
2525 rcu_read_unlock();
2527 EXPORT_SYMBOL(netif_schedule_queue);
2529 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2531 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2532 struct Qdisc *q;
2534 rcu_read_lock();
2535 q = rcu_dereference(dev_queue->qdisc);
2536 __netif_schedule(q);
2537 rcu_read_unlock();
2540 EXPORT_SYMBOL(netif_tx_wake_queue);
2542 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2544 unsigned long flags;
2546 if (unlikely(!skb))
2547 return;
2549 if (likely(refcount_read(&skb->users) == 1)) {
2550 smp_rmb();
2551 refcount_set(&skb->users, 0);
2552 } else if (likely(!refcount_dec_and_test(&skb->users))) {
2553 return;
2555 get_kfree_skb_cb(skb)->reason = reason;
2556 local_irq_save(flags);
2557 skb->next = __this_cpu_read(softnet_data.completion_queue);
2558 __this_cpu_write(softnet_data.completion_queue, skb);
2559 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2560 local_irq_restore(flags);
2562 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2564 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2566 if (in_irq() || irqs_disabled())
2567 __dev_kfree_skb_irq(skb, reason);
2568 else
2569 dev_kfree_skb(skb);
2571 EXPORT_SYMBOL(__dev_kfree_skb_any);
2575 * netif_device_detach - mark device as removed
2576 * @dev: network device
2578 * Mark device as removed from system and therefore no longer available.
2580 void netif_device_detach(struct net_device *dev)
2582 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2583 netif_running(dev)) {
2584 netif_tx_stop_all_queues(dev);
2587 EXPORT_SYMBOL(netif_device_detach);
2590 * netif_device_attach - mark device as attached
2591 * @dev: network device
2593 * Mark device as attached from system and restart if needed.
2595 void netif_device_attach(struct net_device *dev)
2597 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2598 netif_running(dev)) {
2599 netif_tx_wake_all_queues(dev);
2600 __netdev_watchdog_up(dev);
2603 EXPORT_SYMBOL(netif_device_attach);
2606 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2607 * to be used as a distribution range.
2609 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2610 unsigned int num_tx_queues)
2612 u32 hash;
2613 u16 qoffset = 0;
2614 u16 qcount = num_tx_queues;
2616 if (skb_rx_queue_recorded(skb)) {
2617 hash = skb_get_rx_queue(skb);
2618 while (unlikely(hash >= num_tx_queues))
2619 hash -= num_tx_queues;
2620 return hash;
2623 if (dev->num_tc) {
2624 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2626 qoffset = dev->tc_to_txq[tc].offset;
2627 qcount = dev->tc_to_txq[tc].count;
2630 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2632 EXPORT_SYMBOL(__skb_tx_hash);
2634 static void skb_warn_bad_offload(const struct sk_buff *skb)
2636 static const netdev_features_t null_features;
2637 struct net_device *dev = skb->dev;
2638 const char *name = "";
2640 if (!net_ratelimit())
2641 return;
2643 if (dev) {
2644 if (dev->dev.parent)
2645 name = dev_driver_string(dev->dev.parent);
2646 else
2647 name = netdev_name(dev);
2649 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2650 "gso_type=%d ip_summed=%d\n",
2651 name, dev ? &dev->features : &null_features,
2652 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2653 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2654 skb_shinfo(skb)->gso_type, skb->ip_summed);
2658 * Invalidate hardware checksum when packet is to be mangled, and
2659 * complete checksum manually on outgoing path.
2661 int skb_checksum_help(struct sk_buff *skb)
2663 __wsum csum;
2664 int ret = 0, offset;
2666 if (skb->ip_summed == CHECKSUM_COMPLETE)
2667 goto out_set_summed;
2669 if (unlikely(skb_shinfo(skb)->gso_size)) {
2670 skb_warn_bad_offload(skb);
2671 return -EINVAL;
2674 /* Before computing a checksum, we should make sure no frag could
2675 * be modified by an external entity : checksum could be wrong.
2677 if (skb_has_shared_frag(skb)) {
2678 ret = __skb_linearize(skb);
2679 if (ret)
2680 goto out;
2683 offset = skb_checksum_start_offset(skb);
2684 BUG_ON(offset >= skb_headlen(skb));
2685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2687 offset += skb->csum_offset;
2688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2690 if (skb_cloned(skb) &&
2691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2693 if (ret)
2694 goto out;
2697 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2698 out_set_summed:
2699 skb->ip_summed = CHECKSUM_NONE;
2700 out:
2701 return ret;
2703 EXPORT_SYMBOL(skb_checksum_help);
2705 int skb_crc32c_csum_help(struct sk_buff *skb)
2707 __le32 crc32c_csum;
2708 int ret = 0, offset, start;
2710 if (skb->ip_summed != CHECKSUM_PARTIAL)
2711 goto out;
2713 if (unlikely(skb_is_gso(skb)))
2714 goto out;
2716 /* Before computing a checksum, we should make sure no frag could
2717 * be modified by an external entity : checksum could be wrong.
2719 if (unlikely(skb_has_shared_frag(skb))) {
2720 ret = __skb_linearize(skb);
2721 if (ret)
2722 goto out;
2724 start = skb_checksum_start_offset(skb);
2725 offset = start + offsetof(struct sctphdr, checksum);
2726 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2727 ret = -EINVAL;
2728 goto out;
2730 if (skb_cloned(skb) &&
2731 !skb_clone_writable(skb, offset + sizeof(__le32))) {
2732 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2733 if (ret)
2734 goto out;
2736 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2737 skb->len - start, ~(__u32)0,
2738 crc32c_csum_stub));
2739 *(__le32 *)(skb->data + offset) = crc32c_csum;
2740 skb->ip_summed = CHECKSUM_NONE;
2741 skb->csum_not_inet = 0;
2742 out:
2743 return ret;
2746 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2748 __be16 type = skb->protocol;
2750 /* Tunnel gso handlers can set protocol to ethernet. */
2751 if (type == htons(ETH_P_TEB)) {
2752 struct ethhdr *eth;
2754 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2755 return 0;
2757 eth = (struct ethhdr *)skb_mac_header(skb);
2758 type = eth->h_proto;
2761 return __vlan_get_protocol(skb, type, depth);
2765 * skb_mac_gso_segment - mac layer segmentation handler.
2766 * @skb: buffer to segment
2767 * @features: features for the output path (see dev->features)
2769 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2770 netdev_features_t features)
2772 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2773 struct packet_offload *ptype;
2774 int vlan_depth = skb->mac_len;
2775 __be16 type = skb_network_protocol(skb, &vlan_depth);
2777 if (unlikely(!type))
2778 return ERR_PTR(-EINVAL);
2780 __skb_pull(skb, vlan_depth);
2782 rcu_read_lock();
2783 list_for_each_entry_rcu(ptype, &offload_base, list) {
2784 if (ptype->type == type && ptype->callbacks.gso_segment) {
2785 segs = ptype->callbacks.gso_segment(skb, features);
2786 break;
2789 rcu_read_unlock();
2791 __skb_push(skb, skb->data - skb_mac_header(skb));
2793 return segs;
2795 EXPORT_SYMBOL(skb_mac_gso_segment);
2798 /* openvswitch calls this on rx path, so we need a different check.
2800 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2802 if (tx_path)
2803 return skb->ip_summed != CHECKSUM_PARTIAL &&
2804 skb->ip_summed != CHECKSUM_UNNECESSARY;
2806 return skb->ip_summed == CHECKSUM_NONE;
2810 * __skb_gso_segment - Perform segmentation on skb.
2811 * @skb: buffer to segment
2812 * @features: features for the output path (see dev->features)
2813 * @tx_path: whether it is called in TX path
2815 * This function segments the given skb and returns a list of segments.
2817 * It may return NULL if the skb requires no segmentation. This is
2818 * only possible when GSO is used for verifying header integrity.
2820 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2822 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2823 netdev_features_t features, bool tx_path)
2825 struct sk_buff *segs;
2827 if (unlikely(skb_needs_check(skb, tx_path))) {
2828 int err;
2830 /* We're going to init ->check field in TCP or UDP header */
2831 err = skb_cow_head(skb, 0);
2832 if (err < 0)
2833 return ERR_PTR(err);
2836 /* Only report GSO partial support if it will enable us to
2837 * support segmentation on this frame without needing additional
2838 * work.
2840 if (features & NETIF_F_GSO_PARTIAL) {
2841 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2842 struct net_device *dev = skb->dev;
2844 partial_features |= dev->features & dev->gso_partial_features;
2845 if (!skb_gso_ok(skb, features | partial_features))
2846 features &= ~NETIF_F_GSO_PARTIAL;
2849 BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2850 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2852 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2853 SKB_GSO_CB(skb)->encap_level = 0;
2855 skb_reset_mac_header(skb);
2856 skb_reset_mac_len(skb);
2858 segs = skb_mac_gso_segment(skb, features);
2860 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2861 skb_warn_bad_offload(skb);
2863 return segs;
2865 EXPORT_SYMBOL(__skb_gso_segment);
2867 /* Take action when hardware reception checksum errors are detected. */
2868 #ifdef CONFIG_BUG
2869 void netdev_rx_csum_fault(struct net_device *dev)
2871 if (net_ratelimit()) {
2872 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2873 dump_stack();
2876 EXPORT_SYMBOL(netdev_rx_csum_fault);
2877 #endif
2879 /* Actually, we should eliminate this check as soon as we know, that:
2880 * 1. IOMMU is present and allows to map all the memory.
2881 * 2. No high memory really exists on this machine.
2884 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2886 #ifdef CONFIG_HIGHMEM
2887 int i;
2889 if (!(dev->features & NETIF_F_HIGHDMA)) {
2890 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2891 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2893 if (PageHighMem(skb_frag_page(frag)))
2894 return 1;
2898 if (PCI_DMA_BUS_IS_PHYS) {
2899 struct device *pdev = dev->dev.parent;
2901 if (!pdev)
2902 return 0;
2903 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2904 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2905 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2907 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2908 return 1;
2911 #endif
2912 return 0;
2915 /* If MPLS offload request, verify we are testing hardware MPLS features
2916 * instead of standard features for the netdev.
2918 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2919 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2920 netdev_features_t features,
2921 __be16 type)
2923 if (eth_p_mpls(type))
2924 features &= skb->dev->mpls_features;
2926 return features;
2928 #else
2929 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2930 netdev_features_t features,
2931 __be16 type)
2933 return features;
2935 #endif
2937 static netdev_features_t harmonize_features(struct sk_buff *skb,
2938 netdev_features_t features)
2940 int tmp;
2941 __be16 type;
2943 type = skb_network_protocol(skb, &tmp);
2944 features = net_mpls_features(skb, features, type);
2946 if (skb->ip_summed != CHECKSUM_NONE &&
2947 !can_checksum_protocol(features, type)) {
2948 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2950 if (illegal_highdma(skb->dev, skb))
2951 features &= ~NETIF_F_SG;
2953 return features;
2956 netdev_features_t passthru_features_check(struct sk_buff *skb,
2957 struct net_device *dev,
2958 netdev_features_t features)
2960 return features;
2962 EXPORT_SYMBOL(passthru_features_check);
2964 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2965 struct net_device *dev,
2966 netdev_features_t features)
2968 return vlan_features_check(skb, features);
2971 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2972 struct net_device *dev,
2973 netdev_features_t features)
2975 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2977 if (gso_segs > dev->gso_max_segs)
2978 return features & ~NETIF_F_GSO_MASK;
2980 /* Support for GSO partial features requires software
2981 * intervention before we can actually process the packets
2982 * so we need to strip support for any partial features now
2983 * and we can pull them back in after we have partially
2984 * segmented the frame.
2986 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2987 features &= ~dev->gso_partial_features;
2989 /* Make sure to clear the IPv4 ID mangling feature if the
2990 * IPv4 header has the potential to be fragmented.
2992 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2993 struct iphdr *iph = skb->encapsulation ?
2994 inner_ip_hdr(skb) : ip_hdr(skb);
2996 if (!(iph->frag_off & htons(IP_DF)))
2997 features &= ~NETIF_F_TSO_MANGLEID;
3000 return features;
3003 netdev_features_t netif_skb_features(struct sk_buff *skb)
3005 struct net_device *dev = skb->dev;
3006 netdev_features_t features = dev->features;
3008 if (skb_is_gso(skb))
3009 features = gso_features_check(skb, dev, features);
3011 /* If encapsulation offload request, verify we are testing
3012 * hardware encapsulation features instead of standard
3013 * features for the netdev
3015 if (skb->encapsulation)
3016 features &= dev->hw_enc_features;
3018 if (skb_vlan_tagged(skb))
3019 features = netdev_intersect_features(features,
3020 dev->vlan_features |
3021 NETIF_F_HW_VLAN_CTAG_TX |
3022 NETIF_F_HW_VLAN_STAG_TX);
3024 if (dev->netdev_ops->ndo_features_check)
3025 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3026 features);
3027 else
3028 features &= dflt_features_check(skb, dev, features);
3030 return harmonize_features(skb, features);
3032 EXPORT_SYMBOL(netif_skb_features);
3034 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3035 struct netdev_queue *txq, bool more)
3037 unsigned int len;
3038 int rc;
3040 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3041 dev_queue_xmit_nit(skb, dev);
3043 len = skb->len;
3044 trace_net_dev_start_xmit(skb, dev);
3045 rc = netdev_start_xmit(skb, dev, txq, more);
3046 trace_net_dev_xmit(skb, rc, dev, len);
3048 return rc;
3051 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3052 struct netdev_queue *txq, int *ret)
3054 struct sk_buff *skb = first;
3055 int rc = NETDEV_TX_OK;
3057 while (skb) {
3058 struct sk_buff *next = skb->next;
3060 skb->next = NULL;
3061 rc = xmit_one(skb, dev, txq, next != NULL);
3062 if (unlikely(!dev_xmit_complete(rc))) {
3063 skb->next = next;
3064 goto out;
3067 skb = next;
3068 if (netif_xmit_stopped(txq) && skb) {
3069 rc = NETDEV_TX_BUSY;
3070 break;
3074 out:
3075 *ret = rc;
3076 return skb;
3079 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3080 netdev_features_t features)
3082 if (skb_vlan_tag_present(skb) &&
3083 !vlan_hw_offload_capable(features, skb->vlan_proto))
3084 skb = __vlan_hwaccel_push_inside(skb);
3085 return skb;
3088 int skb_csum_hwoffload_help(struct sk_buff *skb,
3089 const netdev_features_t features)
3091 if (unlikely(skb->csum_not_inet))
3092 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3093 skb_crc32c_csum_help(skb);
3095 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3097 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3099 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3101 netdev_features_t features;
3103 features = netif_skb_features(skb);
3104 skb = validate_xmit_vlan(skb, features);
3105 if (unlikely(!skb))
3106 goto out_null;
3108 if (netif_needs_gso(skb, features)) {
3109 struct sk_buff *segs;
3111 segs = skb_gso_segment(skb, features);
3112 if (IS_ERR(segs)) {
3113 goto out_kfree_skb;
3114 } else if (segs) {
3115 consume_skb(skb);
3116 skb = segs;
3118 } else {
3119 if (skb_needs_linearize(skb, features) &&
3120 __skb_linearize(skb))
3121 goto out_kfree_skb;
3123 /* If packet is not checksummed and device does not
3124 * support checksumming for this protocol, complete
3125 * checksumming here.
3127 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3128 if (skb->encapsulation)
3129 skb_set_inner_transport_header(skb,
3130 skb_checksum_start_offset(skb));
3131 else
3132 skb_set_transport_header(skb,
3133 skb_checksum_start_offset(skb));
3134 if (skb_csum_hwoffload_help(skb, features))
3135 goto out_kfree_skb;
3139 skb = validate_xmit_xfrm(skb, features, again);
3141 return skb;
3143 out_kfree_skb:
3144 kfree_skb(skb);
3145 out_null:
3146 atomic_long_inc(&dev->tx_dropped);
3147 return NULL;
3150 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3152 struct sk_buff *next, *head = NULL, *tail;
3154 for (; skb != NULL; skb = next) {
3155 next = skb->next;
3156 skb->next = NULL;
3158 /* in case skb wont be segmented, point to itself */
3159 skb->prev = skb;
3161 skb = validate_xmit_skb(skb, dev, again);
3162 if (!skb)
3163 continue;
3165 if (!head)
3166 head = skb;
3167 else
3168 tail->next = skb;
3169 /* If skb was segmented, skb->prev points to
3170 * the last segment. If not, it still contains skb.
3172 tail = skb->prev;
3174 return head;
3176 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3178 static void qdisc_pkt_len_init(struct sk_buff *skb)
3180 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3182 qdisc_skb_cb(skb)->pkt_len = skb->len;
3184 /* To get more precise estimation of bytes sent on wire,
3185 * we add to pkt_len the headers size of all segments
3187 if (shinfo->gso_size) {
3188 unsigned int hdr_len;
3189 u16 gso_segs = shinfo->gso_segs;
3191 /* mac layer + network layer */
3192 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3194 /* + transport layer */
3195 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3196 const struct tcphdr *th;
3197 struct tcphdr _tcphdr;
3199 th = skb_header_pointer(skb, skb_transport_offset(skb),
3200 sizeof(_tcphdr), &_tcphdr);
3201 if (likely(th))
3202 hdr_len += __tcp_hdrlen(th);
3203 } else {
3204 struct udphdr _udphdr;
3206 if (skb_header_pointer(skb, skb_transport_offset(skb),
3207 sizeof(_udphdr), &_udphdr))
3208 hdr_len += sizeof(struct udphdr);
3211 if (shinfo->gso_type & SKB_GSO_DODGY)
3212 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3213 shinfo->gso_size);
3215 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3219 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3220 struct net_device *dev,
3221 struct netdev_queue *txq)
3223 spinlock_t *root_lock = qdisc_lock(q);
3224 struct sk_buff *to_free = NULL;
3225 bool contended;
3226 int rc;
3228 qdisc_calculate_pkt_len(skb, q);
3230 if (q->flags & TCQ_F_NOLOCK) {
3231 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3232 __qdisc_drop(skb, &to_free);
3233 rc = NET_XMIT_DROP;
3234 } else {
3235 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3236 __qdisc_run(q);
3239 if (unlikely(to_free))
3240 kfree_skb_list(to_free);
3241 return rc;
3245 * Heuristic to force contended enqueues to serialize on a
3246 * separate lock before trying to get qdisc main lock.
3247 * This permits qdisc->running owner to get the lock more
3248 * often and dequeue packets faster.
3250 contended = qdisc_is_running(q);
3251 if (unlikely(contended))
3252 spin_lock(&q->busylock);
3254 spin_lock(root_lock);
3255 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3256 __qdisc_drop(skb, &to_free);
3257 rc = NET_XMIT_DROP;
3258 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3259 qdisc_run_begin(q)) {
3261 * This is a work-conserving queue; there are no old skbs
3262 * waiting to be sent out; and the qdisc is not running -
3263 * xmit the skb directly.
3266 qdisc_bstats_update(q, skb);
3268 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3269 if (unlikely(contended)) {
3270 spin_unlock(&q->busylock);
3271 contended = false;
3273 __qdisc_run(q);
3276 qdisc_run_end(q);
3277 rc = NET_XMIT_SUCCESS;
3278 } else {
3279 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3280 if (qdisc_run_begin(q)) {
3281 if (unlikely(contended)) {
3282 spin_unlock(&q->busylock);
3283 contended = false;
3285 __qdisc_run(q);
3286 qdisc_run_end(q);
3289 spin_unlock(root_lock);
3290 if (unlikely(to_free))
3291 kfree_skb_list(to_free);
3292 if (unlikely(contended))
3293 spin_unlock(&q->busylock);
3294 return rc;
3297 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3298 static void skb_update_prio(struct sk_buff *skb)
3300 const struct netprio_map *map;
3301 const struct sock *sk;
3302 unsigned int prioidx;
3304 if (skb->priority)
3305 return;
3306 map = rcu_dereference_bh(skb->dev->priomap);
3307 if (!map)
3308 return;
3309 sk = skb_to_full_sk(skb);
3310 if (!sk)
3311 return;
3313 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3315 if (prioidx < map->priomap_len)
3316 skb->priority = map->priomap[prioidx];
3318 #else
3319 #define skb_update_prio(skb)
3320 #endif
3322 DEFINE_PER_CPU(int, xmit_recursion);
3323 EXPORT_SYMBOL(xmit_recursion);
3326 * dev_loopback_xmit - loop back @skb
3327 * @net: network namespace this loopback is happening in
3328 * @sk: sk needed to be a netfilter okfn
3329 * @skb: buffer to transmit
3331 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3333 skb_reset_mac_header(skb);
3334 __skb_pull(skb, skb_network_offset(skb));
3335 skb->pkt_type = PACKET_LOOPBACK;
3336 skb->ip_summed = CHECKSUM_UNNECESSARY;
3337 WARN_ON(!skb_dst(skb));
3338 skb_dst_force(skb);
3339 netif_rx_ni(skb);
3340 return 0;
3342 EXPORT_SYMBOL(dev_loopback_xmit);
3344 #ifdef CONFIG_NET_EGRESS
3345 static struct sk_buff *
3346 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3348 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3349 struct tcf_result cl_res;
3351 if (!miniq)
3352 return skb;
3354 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3355 mini_qdisc_bstats_cpu_update(miniq, skb);
3357 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3358 case TC_ACT_OK:
3359 case TC_ACT_RECLASSIFY:
3360 skb->tc_index = TC_H_MIN(cl_res.classid);
3361 break;
3362 case TC_ACT_SHOT:
3363 mini_qdisc_qstats_cpu_drop(miniq);
3364 *ret = NET_XMIT_DROP;
3365 kfree_skb(skb);
3366 return NULL;
3367 case TC_ACT_STOLEN:
3368 case TC_ACT_QUEUED:
3369 case TC_ACT_TRAP:
3370 *ret = NET_XMIT_SUCCESS;
3371 consume_skb(skb);
3372 return NULL;
3373 case TC_ACT_REDIRECT:
3374 /* No need to push/pop skb's mac_header here on egress! */
3375 skb_do_redirect(skb);
3376 *ret = NET_XMIT_SUCCESS;
3377 return NULL;
3378 default:
3379 break;
3382 return skb;
3384 #endif /* CONFIG_NET_EGRESS */
3386 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3388 #ifdef CONFIG_XPS
3389 struct xps_dev_maps *dev_maps;
3390 struct xps_map *map;
3391 int queue_index = -1;
3393 rcu_read_lock();
3394 dev_maps = rcu_dereference(dev->xps_maps);
3395 if (dev_maps) {
3396 unsigned int tci = skb->sender_cpu - 1;
3398 if (dev->num_tc) {
3399 tci *= dev->num_tc;
3400 tci += netdev_get_prio_tc_map(dev, skb->priority);
3403 map = rcu_dereference(dev_maps->cpu_map[tci]);
3404 if (map) {
3405 if (map->len == 1)
3406 queue_index = map->queues[0];
3407 else
3408 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3409 map->len)];
3410 if (unlikely(queue_index >= dev->real_num_tx_queues))
3411 queue_index = -1;
3414 rcu_read_unlock();
3416 return queue_index;
3417 #else
3418 return -1;
3419 #endif
3422 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3424 struct sock *sk = skb->sk;
3425 int queue_index = sk_tx_queue_get(sk);
3427 if (queue_index < 0 || skb->ooo_okay ||
3428 queue_index >= dev->real_num_tx_queues) {
3429 int new_index = get_xps_queue(dev, skb);
3431 if (new_index < 0)
3432 new_index = skb_tx_hash(dev, skb);
3434 if (queue_index != new_index && sk &&
3435 sk_fullsock(sk) &&
3436 rcu_access_pointer(sk->sk_dst_cache))
3437 sk_tx_queue_set(sk, new_index);
3439 queue_index = new_index;
3442 return queue_index;
3445 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3446 struct sk_buff *skb,
3447 void *accel_priv)
3449 int queue_index = 0;
3451 #ifdef CONFIG_XPS
3452 u32 sender_cpu = skb->sender_cpu - 1;
3454 if (sender_cpu >= (u32)NR_CPUS)
3455 skb->sender_cpu = raw_smp_processor_id() + 1;
3456 #endif
3458 if (dev->real_num_tx_queues != 1) {
3459 const struct net_device_ops *ops = dev->netdev_ops;
3461 if (ops->ndo_select_queue)
3462 queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3463 __netdev_pick_tx);
3464 else
3465 queue_index = __netdev_pick_tx(dev, skb);
3467 queue_index = netdev_cap_txqueue(dev, queue_index);
3470 skb_set_queue_mapping(skb, queue_index);
3471 return netdev_get_tx_queue(dev, queue_index);
3475 * __dev_queue_xmit - transmit a buffer
3476 * @skb: buffer to transmit
3477 * @accel_priv: private data used for L2 forwarding offload
3479 * Queue a buffer for transmission to a network device. The caller must
3480 * have set the device and priority and built the buffer before calling
3481 * this function. The function can be called from an interrupt.
3483 * A negative errno code is returned on a failure. A success does not
3484 * guarantee the frame will be transmitted as it may be dropped due
3485 * to congestion or traffic shaping.
3487 * -----------------------------------------------------------------------------------
3488 * I notice this method can also return errors from the queue disciplines,
3489 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3490 * be positive.
3492 * Regardless of the return value, the skb is consumed, so it is currently
3493 * difficult to retry a send to this method. (You can bump the ref count
3494 * before sending to hold a reference for retry if you are careful.)
3496 * When calling this method, interrupts MUST be enabled. This is because
3497 * the BH enable code must have IRQs enabled so that it will not deadlock.
3498 * --BLG
3500 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3502 struct net_device *dev = skb->dev;
3503 struct netdev_queue *txq;
3504 struct Qdisc *q;
3505 int rc = -ENOMEM;
3506 bool again = false;
3508 skb_reset_mac_header(skb);
3510 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3511 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3513 /* Disable soft irqs for various locks below. Also
3514 * stops preemption for RCU.
3516 rcu_read_lock_bh();
3518 skb_update_prio(skb);
3520 qdisc_pkt_len_init(skb);
3521 #ifdef CONFIG_NET_CLS_ACT
3522 skb->tc_at_ingress = 0;
3523 # ifdef CONFIG_NET_EGRESS
3524 if (static_key_false(&egress_needed)) {
3525 skb = sch_handle_egress(skb, &rc, dev);
3526 if (!skb)
3527 goto out;
3529 # endif
3530 #endif
3531 /* If device/qdisc don't need skb->dst, release it right now while
3532 * its hot in this cpu cache.
3534 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3535 skb_dst_drop(skb);
3536 else
3537 skb_dst_force(skb);
3539 txq = netdev_pick_tx(dev, skb, accel_priv);
3540 q = rcu_dereference_bh(txq->qdisc);
3542 trace_net_dev_queue(skb);
3543 if (q->enqueue) {
3544 rc = __dev_xmit_skb(skb, q, dev, txq);
3545 goto out;
3548 /* The device has no queue. Common case for software devices:
3549 * loopback, all the sorts of tunnels...
3551 * Really, it is unlikely that netif_tx_lock protection is necessary
3552 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3553 * counters.)
3554 * However, it is possible, that they rely on protection
3555 * made by us here.
3557 * Check this and shot the lock. It is not prone from deadlocks.
3558 *Either shot noqueue qdisc, it is even simpler 8)
3560 if (dev->flags & IFF_UP) {
3561 int cpu = smp_processor_id(); /* ok because BHs are off */
3563 if (txq->xmit_lock_owner != cpu) {
3564 if (unlikely(__this_cpu_read(xmit_recursion) >
3565 XMIT_RECURSION_LIMIT))
3566 goto recursion_alert;
3568 skb = validate_xmit_skb(skb, dev, &again);
3569 if (!skb)
3570 goto out;
3572 HARD_TX_LOCK(dev, txq, cpu);
3574 if (!netif_xmit_stopped(txq)) {
3575 __this_cpu_inc(xmit_recursion);
3576 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3577 __this_cpu_dec(xmit_recursion);
3578 if (dev_xmit_complete(rc)) {
3579 HARD_TX_UNLOCK(dev, txq);
3580 goto out;
3583 HARD_TX_UNLOCK(dev, txq);
3584 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3585 dev->name);
3586 } else {
3587 /* Recursion is detected! It is possible,
3588 * unfortunately
3590 recursion_alert:
3591 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3592 dev->name);
3596 rc = -ENETDOWN;
3597 rcu_read_unlock_bh();
3599 atomic_long_inc(&dev->tx_dropped);
3600 kfree_skb_list(skb);
3601 return rc;
3602 out:
3603 rcu_read_unlock_bh();
3604 return rc;
3607 int dev_queue_xmit(struct sk_buff *skb)
3609 return __dev_queue_xmit(skb, NULL);
3611 EXPORT_SYMBOL(dev_queue_xmit);
3613 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3615 return __dev_queue_xmit(skb, accel_priv);
3617 EXPORT_SYMBOL(dev_queue_xmit_accel);
3620 /*************************************************************************
3621 * Receiver routines
3622 *************************************************************************/
3624 int netdev_max_backlog __read_mostly = 1000;
3625 EXPORT_SYMBOL(netdev_max_backlog);
3627 int netdev_tstamp_prequeue __read_mostly = 1;
3628 int netdev_budget __read_mostly = 300;
3629 unsigned int __read_mostly netdev_budget_usecs = 2000;
3630 int weight_p __read_mostly = 64; /* old backlog weight */
3631 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
3632 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
3633 int dev_rx_weight __read_mostly = 64;
3634 int dev_tx_weight __read_mostly = 64;
3636 /* Called with irq disabled */
3637 static inline void ____napi_schedule(struct softnet_data *sd,
3638 struct napi_struct *napi)
3640 list_add_tail(&napi->poll_list, &sd->poll_list);
3641 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3644 #ifdef CONFIG_RPS
3646 /* One global table that all flow-based protocols share. */
3647 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3648 EXPORT_SYMBOL(rps_sock_flow_table);
3649 u32 rps_cpu_mask __read_mostly;
3650 EXPORT_SYMBOL(rps_cpu_mask);
3652 struct static_key rps_needed __read_mostly;
3653 EXPORT_SYMBOL(rps_needed);
3654 struct static_key rfs_needed __read_mostly;
3655 EXPORT_SYMBOL(rfs_needed);
3657 static struct rps_dev_flow *
3658 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3659 struct rps_dev_flow *rflow, u16 next_cpu)
3661 if (next_cpu < nr_cpu_ids) {
3662 #ifdef CONFIG_RFS_ACCEL
3663 struct netdev_rx_queue *rxqueue;
3664 struct rps_dev_flow_table *flow_table;
3665 struct rps_dev_flow *old_rflow;
3666 u32 flow_id;
3667 u16 rxq_index;
3668 int rc;
3670 /* Should we steer this flow to a different hardware queue? */
3671 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3672 !(dev->features & NETIF_F_NTUPLE))
3673 goto out;
3674 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3675 if (rxq_index == skb_get_rx_queue(skb))
3676 goto out;
3678 rxqueue = dev->_rx + rxq_index;
3679 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3680 if (!flow_table)
3681 goto out;
3682 flow_id = skb_get_hash(skb) & flow_table->mask;
3683 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3684 rxq_index, flow_id);
3685 if (rc < 0)
3686 goto out;
3687 old_rflow = rflow;
3688 rflow = &flow_table->flows[flow_id];
3689 rflow->filter = rc;
3690 if (old_rflow->filter == rflow->filter)
3691 old_rflow->filter = RPS_NO_FILTER;
3692 out:
3693 #endif
3694 rflow->last_qtail =
3695 per_cpu(softnet_data, next_cpu).input_queue_head;
3698 rflow->cpu = next_cpu;
3699 return rflow;
3703 * get_rps_cpu is called from netif_receive_skb and returns the target
3704 * CPU from the RPS map of the receiving queue for a given skb.
3705 * rcu_read_lock must be held on entry.
3707 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3708 struct rps_dev_flow **rflowp)
3710 const struct rps_sock_flow_table *sock_flow_table;
3711 struct netdev_rx_queue *rxqueue = dev->_rx;
3712 struct rps_dev_flow_table *flow_table;
3713 struct rps_map *map;
3714 int cpu = -1;
3715 u32 tcpu;
3716 u32 hash;
3718 if (skb_rx_queue_recorded(skb)) {
3719 u16 index = skb_get_rx_queue(skb);
3721 if (unlikely(index >= dev->real_num_rx_queues)) {
3722 WARN_ONCE(dev->real_num_rx_queues > 1,
3723 "%s received packet on queue %u, but number "
3724 "of RX queues is %u\n",
3725 dev->name, index, dev->real_num_rx_queues);
3726 goto done;
3728 rxqueue += index;
3731 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3733 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3734 map = rcu_dereference(rxqueue->rps_map);
3735 if (!flow_table && !map)
3736 goto done;
3738 skb_reset_network_header(skb);
3739 hash = skb_get_hash(skb);
3740 if (!hash)
3741 goto done;
3743 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3744 if (flow_table && sock_flow_table) {
3745 struct rps_dev_flow *rflow;
3746 u32 next_cpu;
3747 u32 ident;
3749 /* First check into global flow table if there is a match */
3750 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3751 if ((ident ^ hash) & ~rps_cpu_mask)
3752 goto try_rps;
3754 next_cpu = ident & rps_cpu_mask;
3756 /* OK, now we know there is a match,
3757 * we can look at the local (per receive queue) flow table
3759 rflow = &flow_table->flows[hash & flow_table->mask];
3760 tcpu = rflow->cpu;
3763 * If the desired CPU (where last recvmsg was done) is
3764 * different from current CPU (one in the rx-queue flow
3765 * table entry), switch if one of the following holds:
3766 * - Current CPU is unset (>= nr_cpu_ids).
3767 * - Current CPU is offline.
3768 * - The current CPU's queue tail has advanced beyond the
3769 * last packet that was enqueued using this table entry.
3770 * This guarantees that all previous packets for the flow
3771 * have been dequeued, thus preserving in order delivery.
3773 if (unlikely(tcpu != next_cpu) &&
3774 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3775 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3776 rflow->last_qtail)) >= 0)) {
3777 tcpu = next_cpu;
3778 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3781 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3782 *rflowp = rflow;
3783 cpu = tcpu;
3784 goto done;
3788 try_rps:
3790 if (map) {
3791 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3792 if (cpu_online(tcpu)) {
3793 cpu = tcpu;
3794 goto done;
3798 done:
3799 return cpu;
3802 #ifdef CONFIG_RFS_ACCEL
3805 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3806 * @dev: Device on which the filter was set
3807 * @rxq_index: RX queue index
3808 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3809 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3811 * Drivers that implement ndo_rx_flow_steer() should periodically call
3812 * this function for each installed filter and remove the filters for
3813 * which it returns %true.
3815 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3816 u32 flow_id, u16 filter_id)
3818 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3819 struct rps_dev_flow_table *flow_table;
3820 struct rps_dev_flow *rflow;
3821 bool expire = true;
3822 unsigned int cpu;
3824 rcu_read_lock();
3825 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3826 if (flow_table && flow_id <= flow_table->mask) {
3827 rflow = &flow_table->flows[flow_id];
3828 cpu = READ_ONCE(rflow->cpu);
3829 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3830 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3831 rflow->last_qtail) <
3832 (int)(10 * flow_table->mask)))
3833 expire = false;
3835 rcu_read_unlock();
3836 return expire;
3838 EXPORT_SYMBOL(rps_may_expire_flow);
3840 #endif /* CONFIG_RFS_ACCEL */
3842 /* Called from hardirq (IPI) context */
3843 static void rps_trigger_softirq(void *data)
3845 struct softnet_data *sd = data;
3847 ____napi_schedule(sd, &sd->backlog);
3848 sd->received_rps++;
3851 #endif /* CONFIG_RPS */
3854 * Check if this softnet_data structure is another cpu one
3855 * If yes, queue it to our IPI list and return 1
3856 * If no, return 0
3858 static int rps_ipi_queued(struct softnet_data *sd)
3860 #ifdef CONFIG_RPS
3861 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3863 if (sd != mysd) {
3864 sd->rps_ipi_next = mysd->rps_ipi_list;
3865 mysd->rps_ipi_list = sd;
3867 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3868 return 1;
3870 #endif /* CONFIG_RPS */
3871 return 0;
3874 #ifdef CONFIG_NET_FLOW_LIMIT
3875 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3876 #endif
3878 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3880 #ifdef CONFIG_NET_FLOW_LIMIT
3881 struct sd_flow_limit *fl;
3882 struct softnet_data *sd;
3883 unsigned int old_flow, new_flow;
3885 if (qlen < (netdev_max_backlog >> 1))
3886 return false;
3888 sd = this_cpu_ptr(&softnet_data);
3890 rcu_read_lock();
3891 fl = rcu_dereference(sd->flow_limit);
3892 if (fl) {
3893 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3894 old_flow = fl->history[fl->history_head];
3895 fl->history[fl->history_head] = new_flow;
3897 fl->history_head++;
3898 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3900 if (likely(fl->buckets[old_flow]))
3901 fl->buckets[old_flow]--;
3903 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3904 fl->count++;
3905 rcu_read_unlock();
3906 return true;
3909 rcu_read_unlock();
3910 #endif
3911 return false;
3915 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3916 * queue (may be a remote CPU queue).
3918 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3919 unsigned int *qtail)
3921 struct softnet_data *sd;
3922 unsigned long flags;
3923 unsigned int qlen;
3925 sd = &per_cpu(softnet_data, cpu);
3927 local_irq_save(flags);
3929 rps_lock(sd);
3930 if (!netif_running(skb->dev))
3931 goto drop;
3932 qlen = skb_queue_len(&sd->input_pkt_queue);
3933 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3934 if (qlen) {
3935 enqueue:
3936 __skb_queue_tail(&sd->input_pkt_queue, skb);
3937 input_queue_tail_incr_save(sd, qtail);
3938 rps_unlock(sd);
3939 local_irq_restore(flags);
3940 return NET_RX_SUCCESS;
3943 /* Schedule NAPI for backlog device
3944 * We can use non atomic operation since we own the queue lock
3946 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3947 if (!rps_ipi_queued(sd))
3948 ____napi_schedule(sd, &sd->backlog);
3950 goto enqueue;
3953 drop:
3954 sd->dropped++;
3955 rps_unlock(sd);
3957 local_irq_restore(flags);
3959 atomic_long_inc(&skb->dev->rx_dropped);
3960 kfree_skb(skb);
3961 return NET_RX_DROP;
3964 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3966 struct net_device *dev = skb->dev;
3967 struct netdev_rx_queue *rxqueue;
3969 rxqueue = dev->_rx;
3971 if (skb_rx_queue_recorded(skb)) {
3972 u16 index = skb_get_rx_queue(skb);
3974 if (unlikely(index >= dev->real_num_rx_queues)) {
3975 WARN_ONCE(dev->real_num_rx_queues > 1,
3976 "%s received packet on queue %u, but number "
3977 "of RX queues is %u\n",
3978 dev->name, index, dev->real_num_rx_queues);
3980 return rxqueue; /* Return first rxqueue */
3982 rxqueue += index;
3984 return rxqueue;
3987 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3988 struct bpf_prog *xdp_prog)
3990 struct netdev_rx_queue *rxqueue;
3991 u32 metalen, act = XDP_DROP;
3992 struct xdp_buff xdp;
3993 void *orig_data;
3994 int hlen, off;
3995 u32 mac_len;
3997 /* Reinjected packets coming from act_mirred or similar should
3998 * not get XDP generic processing.
4000 if (skb_cloned(skb))
4001 return XDP_PASS;
4003 /* XDP packets must be linear and must have sufficient headroom
4004 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4005 * native XDP provides, thus we need to do it here as well.
4007 if (skb_is_nonlinear(skb) ||
4008 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4009 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4010 int troom = skb->tail + skb->data_len - skb->end;
4012 /* In case we have to go down the path and also linearize,
4013 * then lets do the pskb_expand_head() work just once here.
4015 if (pskb_expand_head(skb,
4016 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4017 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4018 goto do_drop;
4019 if (skb_linearize(skb))
4020 goto do_drop;
4023 /* The XDP program wants to see the packet starting at the MAC
4024 * header.
4026 mac_len = skb->data - skb_mac_header(skb);
4027 hlen = skb_headlen(skb) + mac_len;
4028 xdp.data = skb->data - mac_len;
4029 xdp.data_meta = xdp.data;
4030 xdp.data_end = xdp.data + hlen;
4031 xdp.data_hard_start = skb->data - skb_headroom(skb);
4032 orig_data = xdp.data;
4034 rxqueue = netif_get_rxqueue(skb);
4035 xdp.rxq = &rxqueue->xdp_rxq;
4037 act = bpf_prog_run_xdp(xdp_prog, &xdp);
4039 off = xdp.data - orig_data;
4040 if (off > 0)
4041 __skb_pull(skb, off);
4042 else if (off < 0)
4043 __skb_push(skb, -off);
4044 skb->mac_header += off;
4046 switch (act) {
4047 case XDP_REDIRECT:
4048 case XDP_TX:
4049 __skb_push(skb, mac_len);
4050 break;
4051 case XDP_PASS:
4052 metalen = xdp.data - xdp.data_meta;
4053 if (metalen)
4054 skb_metadata_set(skb, metalen);
4055 break;
4056 default:
4057 bpf_warn_invalid_xdp_action(act);
4058 /* fall through */
4059 case XDP_ABORTED:
4060 trace_xdp_exception(skb->dev, xdp_prog, act);
4061 /* fall through */
4062 case XDP_DROP:
4063 do_drop:
4064 kfree_skb(skb);
4065 break;
4068 return act;
4071 /* When doing generic XDP we have to bypass the qdisc layer and the
4072 * network taps in order to match in-driver-XDP behavior.
4074 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4076 struct net_device *dev = skb->dev;
4077 struct netdev_queue *txq;
4078 bool free_skb = true;
4079 int cpu, rc;
4081 txq = netdev_pick_tx(dev, skb, NULL);
4082 cpu = smp_processor_id();
4083 HARD_TX_LOCK(dev, txq, cpu);
4084 if (!netif_xmit_stopped(txq)) {
4085 rc = netdev_start_xmit(skb, dev, txq, 0);
4086 if (dev_xmit_complete(rc))
4087 free_skb = false;
4089 HARD_TX_UNLOCK(dev, txq);
4090 if (free_skb) {
4091 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4092 kfree_skb(skb);
4095 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4097 static struct static_key generic_xdp_needed __read_mostly;
4099 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4101 if (xdp_prog) {
4102 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4103 int err;
4105 if (act != XDP_PASS) {
4106 switch (act) {
4107 case XDP_REDIRECT:
4108 err = xdp_do_generic_redirect(skb->dev, skb,
4109 xdp_prog);
4110 if (err)
4111 goto out_redir;
4112 /* fallthru to submit skb */
4113 case XDP_TX:
4114 generic_xdp_tx(skb, xdp_prog);
4115 break;
4117 return XDP_DROP;
4120 return XDP_PASS;
4121 out_redir:
4122 kfree_skb(skb);
4123 return XDP_DROP;
4125 EXPORT_SYMBOL_GPL(do_xdp_generic);
4127 static int netif_rx_internal(struct sk_buff *skb)
4129 int ret;
4131 net_timestamp_check(netdev_tstamp_prequeue, skb);
4133 trace_netif_rx(skb);
4135 if (static_key_false(&generic_xdp_needed)) {
4136 int ret;
4138 preempt_disable();
4139 rcu_read_lock();
4140 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4141 rcu_read_unlock();
4142 preempt_enable();
4144 /* Consider XDP consuming the packet a success from
4145 * the netdev point of view we do not want to count
4146 * this as an error.
4148 if (ret != XDP_PASS)
4149 return NET_RX_SUCCESS;
4152 #ifdef CONFIG_RPS
4153 if (static_key_false(&rps_needed)) {
4154 struct rps_dev_flow voidflow, *rflow = &voidflow;
4155 int cpu;
4157 preempt_disable();
4158 rcu_read_lock();
4160 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4161 if (cpu < 0)
4162 cpu = smp_processor_id();
4164 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4166 rcu_read_unlock();
4167 preempt_enable();
4168 } else
4169 #endif
4171 unsigned int qtail;
4173 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4174 put_cpu();
4176 return ret;
4180 * netif_rx - post buffer to the network code
4181 * @skb: buffer to post
4183 * This function receives a packet from a device driver and queues it for
4184 * the upper (protocol) levels to process. It always succeeds. The buffer
4185 * may be dropped during processing for congestion control or by the
4186 * protocol layers.
4188 * return values:
4189 * NET_RX_SUCCESS (no congestion)
4190 * NET_RX_DROP (packet was dropped)
4194 int netif_rx(struct sk_buff *skb)
4196 trace_netif_rx_entry(skb);
4198 return netif_rx_internal(skb);
4200 EXPORT_SYMBOL(netif_rx);
4202 int netif_rx_ni(struct sk_buff *skb)
4204 int err;
4206 trace_netif_rx_ni_entry(skb);
4208 preempt_disable();
4209 err = netif_rx_internal(skb);
4210 if (local_softirq_pending())
4211 do_softirq();
4212 preempt_enable();
4214 return err;
4216 EXPORT_SYMBOL(netif_rx_ni);
4218 static __latent_entropy void net_tx_action(struct softirq_action *h)
4220 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4222 if (sd->completion_queue) {
4223 struct sk_buff *clist;
4225 local_irq_disable();
4226 clist = sd->completion_queue;
4227 sd->completion_queue = NULL;
4228 local_irq_enable();
4230 while (clist) {
4231 struct sk_buff *skb = clist;
4233 clist = clist->next;
4235 WARN_ON(refcount_read(&skb->users));
4236 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4237 trace_consume_skb(skb);
4238 else
4239 trace_kfree_skb(skb, net_tx_action);
4241 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4242 __kfree_skb(skb);
4243 else
4244 __kfree_skb_defer(skb);
4247 __kfree_skb_flush();
4250 if (sd->output_queue) {
4251 struct Qdisc *head;
4253 local_irq_disable();
4254 head = sd->output_queue;
4255 sd->output_queue = NULL;
4256 sd->output_queue_tailp = &sd->output_queue;
4257 local_irq_enable();
4259 while (head) {
4260 struct Qdisc *q = head;
4261 spinlock_t *root_lock = NULL;
4263 head = head->next_sched;
4265 if (!(q->flags & TCQ_F_NOLOCK)) {
4266 root_lock = qdisc_lock(q);
4267 spin_lock(root_lock);
4269 /* We need to make sure head->next_sched is read
4270 * before clearing __QDISC_STATE_SCHED
4272 smp_mb__before_atomic();
4273 clear_bit(__QDISC_STATE_SCHED, &q->state);
4274 qdisc_run(q);
4275 if (root_lock)
4276 spin_unlock(root_lock);
4280 xfrm_dev_backlog(sd);
4283 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4284 /* This hook is defined here for ATM LANE */
4285 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4286 unsigned char *addr) __read_mostly;
4287 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4288 #endif
4290 static inline struct sk_buff *
4291 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4292 struct net_device *orig_dev)
4294 #ifdef CONFIG_NET_CLS_ACT
4295 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4296 struct tcf_result cl_res;
4298 /* If there's at least one ingress present somewhere (so
4299 * we get here via enabled static key), remaining devices
4300 * that are not configured with an ingress qdisc will bail
4301 * out here.
4303 if (!miniq)
4304 return skb;
4306 if (*pt_prev) {
4307 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4308 *pt_prev = NULL;
4311 qdisc_skb_cb(skb)->pkt_len = skb->len;
4312 skb->tc_at_ingress = 1;
4313 mini_qdisc_bstats_cpu_update(miniq, skb);
4315 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4316 case TC_ACT_OK:
4317 case TC_ACT_RECLASSIFY:
4318 skb->tc_index = TC_H_MIN(cl_res.classid);
4319 break;
4320 case TC_ACT_SHOT:
4321 mini_qdisc_qstats_cpu_drop(miniq);
4322 kfree_skb(skb);
4323 return NULL;
4324 case TC_ACT_STOLEN:
4325 case TC_ACT_QUEUED:
4326 case TC_ACT_TRAP:
4327 consume_skb(skb);
4328 return NULL;
4329 case TC_ACT_REDIRECT:
4330 /* skb_mac_header check was done by cls/act_bpf, so
4331 * we can safely push the L2 header back before
4332 * redirecting to another netdev
4334 __skb_push(skb, skb->mac_len);
4335 skb_do_redirect(skb);
4336 return NULL;
4337 default:
4338 break;
4340 #endif /* CONFIG_NET_CLS_ACT */
4341 return skb;
4345 * netdev_is_rx_handler_busy - check if receive handler is registered
4346 * @dev: device to check
4348 * Check if a receive handler is already registered for a given device.
4349 * Return true if there one.
4351 * The caller must hold the rtnl_mutex.
4353 bool netdev_is_rx_handler_busy(struct net_device *dev)
4355 ASSERT_RTNL();
4356 return dev && rtnl_dereference(dev->rx_handler);
4358 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4361 * netdev_rx_handler_register - register receive handler
4362 * @dev: device to register a handler for
4363 * @rx_handler: receive handler to register
4364 * @rx_handler_data: data pointer that is used by rx handler
4366 * Register a receive handler for a device. This handler will then be
4367 * called from __netif_receive_skb. A negative errno code is returned
4368 * on a failure.
4370 * The caller must hold the rtnl_mutex.
4372 * For a general description of rx_handler, see enum rx_handler_result.
4374 int netdev_rx_handler_register(struct net_device *dev,
4375 rx_handler_func_t *rx_handler,
4376 void *rx_handler_data)
4378 if (netdev_is_rx_handler_busy(dev))
4379 return -EBUSY;
4381 if (dev->priv_flags & IFF_NO_RX_HANDLER)
4382 return -EINVAL;
4384 /* Note: rx_handler_data must be set before rx_handler */
4385 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4386 rcu_assign_pointer(dev->rx_handler, rx_handler);
4388 return 0;
4390 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4393 * netdev_rx_handler_unregister - unregister receive handler
4394 * @dev: device to unregister a handler from
4396 * Unregister a receive handler from a device.
4398 * The caller must hold the rtnl_mutex.
4400 void netdev_rx_handler_unregister(struct net_device *dev)
4403 ASSERT_RTNL();
4404 RCU_INIT_POINTER(dev->rx_handler, NULL);
4405 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4406 * section has a guarantee to see a non NULL rx_handler_data
4407 * as well.
4409 synchronize_net();
4410 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4412 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4415 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4416 * the special handling of PFMEMALLOC skbs.
4418 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4420 switch (skb->protocol) {
4421 case htons(ETH_P_ARP):
4422 case htons(ETH_P_IP):
4423 case htons(ETH_P_IPV6):
4424 case htons(ETH_P_8021Q):
4425 case htons(ETH_P_8021AD):
4426 return true;
4427 default:
4428 return false;
4432 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4433 int *ret, struct net_device *orig_dev)
4435 #ifdef CONFIG_NETFILTER_INGRESS
4436 if (nf_hook_ingress_active(skb)) {
4437 int ingress_retval;
4439 if (*pt_prev) {
4440 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4441 *pt_prev = NULL;
4444 rcu_read_lock();
4445 ingress_retval = nf_hook_ingress(skb);
4446 rcu_read_unlock();
4447 return ingress_retval;
4449 #endif /* CONFIG_NETFILTER_INGRESS */
4450 return 0;
4453 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4455 struct packet_type *ptype, *pt_prev;
4456 rx_handler_func_t *rx_handler;
4457 struct net_device *orig_dev;
4458 bool deliver_exact = false;
4459 int ret = NET_RX_DROP;
4460 __be16 type;
4462 net_timestamp_check(!netdev_tstamp_prequeue, skb);
4464 trace_netif_receive_skb(skb);
4466 orig_dev = skb->dev;
4468 skb_reset_network_header(skb);
4469 if (!skb_transport_header_was_set(skb))
4470 skb_reset_transport_header(skb);
4471 skb_reset_mac_len(skb);
4473 pt_prev = NULL;
4475 another_round:
4476 skb->skb_iif = skb->dev->ifindex;
4478 __this_cpu_inc(softnet_data.processed);
4480 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4481 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4482 skb = skb_vlan_untag(skb);
4483 if (unlikely(!skb))
4484 goto out;
4487 if (skb_skip_tc_classify(skb))
4488 goto skip_classify;
4490 if (pfmemalloc)
4491 goto skip_taps;
4493 list_for_each_entry_rcu(ptype, &ptype_all, list) {
4494 if (pt_prev)
4495 ret = deliver_skb(skb, pt_prev, orig_dev);
4496 pt_prev = ptype;
4499 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4500 if (pt_prev)
4501 ret = deliver_skb(skb, pt_prev, orig_dev);
4502 pt_prev = ptype;
4505 skip_taps:
4506 #ifdef CONFIG_NET_INGRESS
4507 if (static_key_false(&ingress_needed)) {
4508 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4509 if (!skb)
4510 goto out;
4512 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4513 goto out;
4515 #endif
4516 skb_reset_tc(skb);
4517 skip_classify:
4518 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4519 goto drop;
4521 if (skb_vlan_tag_present(skb)) {
4522 if (pt_prev) {
4523 ret = deliver_skb(skb, pt_prev, orig_dev);
4524 pt_prev = NULL;
4526 if (vlan_do_receive(&skb))
4527 goto another_round;
4528 else if (unlikely(!skb))
4529 goto out;
4532 rx_handler = rcu_dereference(skb->dev->rx_handler);
4533 if (rx_handler) {
4534 if (pt_prev) {
4535 ret = deliver_skb(skb, pt_prev, orig_dev);
4536 pt_prev = NULL;
4538 switch (rx_handler(&skb)) {
4539 case RX_HANDLER_CONSUMED:
4540 ret = NET_RX_SUCCESS;
4541 goto out;
4542 case RX_HANDLER_ANOTHER:
4543 goto another_round;
4544 case RX_HANDLER_EXACT:
4545 deliver_exact = true;
4546 case RX_HANDLER_PASS:
4547 break;
4548 default:
4549 BUG();
4553 if (unlikely(skb_vlan_tag_present(skb))) {
4554 if (skb_vlan_tag_get_id(skb))
4555 skb->pkt_type = PACKET_OTHERHOST;
4556 /* Note: we might in the future use prio bits
4557 * and set skb->priority like in vlan_do_receive()
4558 * For the time being, just ignore Priority Code Point
4560 skb->vlan_tci = 0;
4563 type = skb->protocol;
4565 /* deliver only exact match when indicated */
4566 if (likely(!deliver_exact)) {
4567 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4568 &ptype_base[ntohs(type) &
4569 PTYPE_HASH_MASK]);
4572 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4573 &orig_dev->ptype_specific);
4575 if (unlikely(skb->dev != orig_dev)) {
4576 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4577 &skb->dev->ptype_specific);
4580 if (pt_prev) {
4581 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4582 goto drop;
4583 else
4584 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4585 } else {
4586 drop:
4587 if (!deliver_exact)
4588 atomic_long_inc(&skb->dev->rx_dropped);
4589 else
4590 atomic_long_inc(&skb->dev->rx_nohandler);
4591 kfree_skb(skb);
4592 /* Jamal, now you will not able to escape explaining
4593 * me how you were going to use this. :-)
4595 ret = NET_RX_DROP;
4598 out:
4599 return ret;
4603 * netif_receive_skb_core - special purpose version of netif_receive_skb
4604 * @skb: buffer to process
4606 * More direct receive version of netif_receive_skb(). It should
4607 * only be used by callers that have a need to skip RPS and Generic XDP.
4608 * Caller must also take care of handling if (page_is_)pfmemalloc.
4610 * This function may only be called from softirq context and interrupts
4611 * should be enabled.
4613 * Return values (usually ignored):
4614 * NET_RX_SUCCESS: no congestion
4615 * NET_RX_DROP: packet was dropped
4617 int netif_receive_skb_core(struct sk_buff *skb)
4619 int ret;
4621 rcu_read_lock();
4622 ret = __netif_receive_skb_core(skb, false);
4623 rcu_read_unlock();
4625 return ret;
4627 EXPORT_SYMBOL(netif_receive_skb_core);
4629 static int __netif_receive_skb(struct sk_buff *skb)
4631 int ret;
4633 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4634 unsigned int noreclaim_flag;
4637 * PFMEMALLOC skbs are special, they should
4638 * - be delivered to SOCK_MEMALLOC sockets only
4639 * - stay away from userspace
4640 * - have bounded memory usage
4642 * Use PF_MEMALLOC as this saves us from propagating the allocation
4643 * context down to all allocation sites.
4645 noreclaim_flag = memalloc_noreclaim_save();
4646 ret = __netif_receive_skb_core(skb, true);
4647 memalloc_noreclaim_restore(noreclaim_flag);
4648 } else
4649 ret = __netif_receive_skb_core(skb, false);
4651 return ret;
4654 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4656 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4657 struct bpf_prog *new = xdp->prog;
4658 int ret = 0;
4660 switch (xdp->command) {
4661 case XDP_SETUP_PROG:
4662 rcu_assign_pointer(dev->xdp_prog, new);
4663 if (old)
4664 bpf_prog_put(old);
4666 if (old && !new) {
4667 static_key_slow_dec(&generic_xdp_needed);
4668 } else if (new && !old) {
4669 static_key_slow_inc(&generic_xdp_needed);
4670 dev_disable_lro(dev);
4671 dev_disable_gro_hw(dev);
4673 break;
4675 case XDP_QUERY_PROG:
4676 xdp->prog_attached = !!old;
4677 xdp->prog_id = old ? old->aux->id : 0;
4678 break;
4680 default:
4681 ret = -EINVAL;
4682 break;
4685 return ret;
4688 static int netif_receive_skb_internal(struct sk_buff *skb)
4690 int ret;
4692 net_timestamp_check(netdev_tstamp_prequeue, skb);
4694 if (skb_defer_rx_timestamp(skb))
4695 return NET_RX_SUCCESS;
4697 if (static_key_false(&generic_xdp_needed)) {
4698 int ret;
4700 preempt_disable();
4701 rcu_read_lock();
4702 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4703 rcu_read_unlock();
4704 preempt_enable();
4706 if (ret != XDP_PASS)
4707 return NET_RX_DROP;
4710 rcu_read_lock();
4711 #ifdef CONFIG_RPS
4712 if (static_key_false(&rps_needed)) {
4713 struct rps_dev_flow voidflow, *rflow = &voidflow;
4714 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4716 if (cpu >= 0) {
4717 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4718 rcu_read_unlock();
4719 return ret;
4722 #endif
4723 ret = __netif_receive_skb(skb);
4724 rcu_read_unlock();
4725 return ret;
4729 * netif_receive_skb - process receive buffer from network
4730 * @skb: buffer to process
4732 * netif_receive_skb() is the main receive data processing function.
4733 * It always succeeds. The buffer may be dropped during processing
4734 * for congestion control or by the protocol layers.
4736 * This function may only be called from softirq context and interrupts
4737 * should be enabled.
4739 * Return values (usually ignored):
4740 * NET_RX_SUCCESS: no congestion
4741 * NET_RX_DROP: packet was dropped
4743 int netif_receive_skb(struct sk_buff *skb)
4745 trace_netif_receive_skb_entry(skb);
4747 return netif_receive_skb_internal(skb);
4749 EXPORT_SYMBOL(netif_receive_skb);
4751 DEFINE_PER_CPU(struct work_struct, flush_works);
4753 /* Network device is going away, flush any packets still pending */
4754 static void flush_backlog(struct work_struct *work)
4756 struct sk_buff *skb, *tmp;
4757 struct softnet_data *sd;
4759 local_bh_disable();
4760 sd = this_cpu_ptr(&softnet_data);
4762 local_irq_disable();
4763 rps_lock(sd);
4764 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4765 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4766 __skb_unlink(skb, &sd->input_pkt_queue);
4767 kfree_skb(skb);
4768 input_queue_head_incr(sd);
4771 rps_unlock(sd);
4772 local_irq_enable();
4774 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4775 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4776 __skb_unlink(skb, &sd->process_queue);
4777 kfree_skb(skb);
4778 input_queue_head_incr(sd);
4781 local_bh_enable();
4784 static void flush_all_backlogs(void)
4786 unsigned int cpu;
4788 get_online_cpus();
4790 for_each_online_cpu(cpu)
4791 queue_work_on(cpu, system_highpri_wq,
4792 per_cpu_ptr(&flush_works, cpu));
4794 for_each_online_cpu(cpu)
4795 flush_work(per_cpu_ptr(&flush_works, cpu));
4797 put_online_cpus();
4800 static int napi_gro_complete(struct sk_buff *skb)
4802 struct packet_offload *ptype;
4803 __be16 type = skb->protocol;
4804 struct list_head *head = &offload_base;
4805 int err = -ENOENT;
4807 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4809 if (NAPI_GRO_CB(skb)->count == 1) {
4810 skb_shinfo(skb)->gso_size = 0;
4811 goto out;
4814 rcu_read_lock();
4815 list_for_each_entry_rcu(ptype, head, list) {
4816 if (ptype->type != type || !ptype->callbacks.gro_complete)
4817 continue;
4819 err = ptype->callbacks.gro_complete(skb, 0);
4820 break;
4822 rcu_read_unlock();
4824 if (err) {
4825 WARN_ON(&ptype->list == head);
4826 kfree_skb(skb);
4827 return NET_RX_SUCCESS;
4830 out:
4831 return netif_receive_skb_internal(skb);
4834 /* napi->gro_list contains packets ordered by age.
4835 * youngest packets at the head of it.
4836 * Complete skbs in reverse order to reduce latencies.
4838 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4840 struct sk_buff *skb, *prev = NULL;
4842 /* scan list and build reverse chain */
4843 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4844 skb->prev = prev;
4845 prev = skb;
4848 for (skb = prev; skb; skb = prev) {
4849 skb->next = NULL;
4851 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4852 return;
4854 prev = skb->prev;
4855 napi_gro_complete(skb);
4856 napi->gro_count--;
4859 napi->gro_list = NULL;
4861 EXPORT_SYMBOL(napi_gro_flush);
4863 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4865 struct sk_buff *p;
4866 unsigned int maclen = skb->dev->hard_header_len;
4867 u32 hash = skb_get_hash_raw(skb);
4869 for (p = napi->gro_list; p; p = p->next) {
4870 unsigned long diffs;
4872 NAPI_GRO_CB(p)->flush = 0;
4874 if (hash != skb_get_hash_raw(p)) {
4875 NAPI_GRO_CB(p)->same_flow = 0;
4876 continue;
4879 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4880 diffs |= p->vlan_tci ^ skb->vlan_tci;
4881 diffs |= skb_metadata_dst_cmp(p, skb);
4882 diffs |= skb_metadata_differs(p, skb);
4883 if (maclen == ETH_HLEN)
4884 diffs |= compare_ether_header(skb_mac_header(p),
4885 skb_mac_header(skb));
4886 else if (!diffs)
4887 diffs = memcmp(skb_mac_header(p),
4888 skb_mac_header(skb),
4889 maclen);
4890 NAPI_GRO_CB(p)->same_flow = !diffs;
4894 static void skb_gro_reset_offset(struct sk_buff *skb)
4896 const struct skb_shared_info *pinfo = skb_shinfo(skb);
4897 const skb_frag_t *frag0 = &pinfo->frags[0];
4899 NAPI_GRO_CB(skb)->data_offset = 0;
4900 NAPI_GRO_CB(skb)->frag0 = NULL;
4901 NAPI_GRO_CB(skb)->frag0_len = 0;
4903 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4904 pinfo->nr_frags &&
4905 !PageHighMem(skb_frag_page(frag0))) {
4906 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4907 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4908 skb_frag_size(frag0),
4909 skb->end - skb->tail);
4913 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4915 struct skb_shared_info *pinfo = skb_shinfo(skb);
4917 BUG_ON(skb->end - skb->tail < grow);
4919 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4921 skb->data_len -= grow;
4922 skb->tail += grow;
4924 pinfo->frags[0].page_offset += grow;
4925 skb_frag_size_sub(&pinfo->frags[0], grow);
4927 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4928 skb_frag_unref(skb, 0);
4929 memmove(pinfo->frags, pinfo->frags + 1,
4930 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4934 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4936 struct sk_buff **pp = NULL;
4937 struct packet_offload *ptype;
4938 __be16 type = skb->protocol;
4939 struct list_head *head = &offload_base;
4940 int same_flow;
4941 enum gro_result ret;
4942 int grow;
4944 if (netif_elide_gro(skb->dev))
4945 goto normal;
4947 gro_list_prepare(napi, skb);
4949 rcu_read_lock();
4950 list_for_each_entry_rcu(ptype, head, list) {
4951 if (ptype->type != type || !ptype->callbacks.gro_receive)
4952 continue;
4954 skb_set_network_header(skb, skb_gro_offset(skb));
4955 skb_reset_mac_len(skb);
4956 NAPI_GRO_CB(skb)->same_flow = 0;
4957 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4958 NAPI_GRO_CB(skb)->free = 0;
4959 NAPI_GRO_CB(skb)->encap_mark = 0;
4960 NAPI_GRO_CB(skb)->recursion_counter = 0;
4961 NAPI_GRO_CB(skb)->is_fou = 0;
4962 NAPI_GRO_CB(skb)->is_atomic = 1;
4963 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4965 /* Setup for GRO checksum validation */
4966 switch (skb->ip_summed) {
4967 case CHECKSUM_COMPLETE:
4968 NAPI_GRO_CB(skb)->csum = skb->csum;
4969 NAPI_GRO_CB(skb)->csum_valid = 1;
4970 NAPI_GRO_CB(skb)->csum_cnt = 0;
4971 break;
4972 case CHECKSUM_UNNECESSARY:
4973 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4974 NAPI_GRO_CB(skb)->csum_valid = 0;
4975 break;
4976 default:
4977 NAPI_GRO_CB(skb)->csum_cnt = 0;
4978 NAPI_GRO_CB(skb)->csum_valid = 0;
4981 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4982 break;
4984 rcu_read_unlock();
4986 if (&ptype->list == head)
4987 goto normal;
4989 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4990 ret = GRO_CONSUMED;
4991 goto ok;
4994 same_flow = NAPI_GRO_CB(skb)->same_flow;
4995 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4997 if (pp) {
4998 struct sk_buff *nskb = *pp;
5000 *pp = nskb->next;
5001 nskb->next = NULL;
5002 napi_gro_complete(nskb);
5003 napi->gro_count--;
5006 if (same_flow)
5007 goto ok;
5009 if (NAPI_GRO_CB(skb)->flush)
5010 goto normal;
5012 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
5013 struct sk_buff *nskb = napi->gro_list;
5015 /* locate the end of the list to select the 'oldest' flow */
5016 while (nskb->next) {
5017 pp = &nskb->next;
5018 nskb = *pp;
5020 *pp = NULL;
5021 nskb->next = NULL;
5022 napi_gro_complete(nskb);
5023 } else {
5024 napi->gro_count++;
5026 NAPI_GRO_CB(skb)->count = 1;
5027 NAPI_GRO_CB(skb)->age = jiffies;
5028 NAPI_GRO_CB(skb)->last = skb;
5029 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5030 skb->next = napi->gro_list;
5031 napi->gro_list = skb;
5032 ret = GRO_HELD;
5034 pull:
5035 grow = skb_gro_offset(skb) - skb_headlen(skb);
5036 if (grow > 0)
5037 gro_pull_from_frag0(skb, grow);
5039 return ret;
5041 normal:
5042 ret = GRO_NORMAL;
5043 goto pull;
5046 struct packet_offload *gro_find_receive_by_type(__be16 type)
5048 struct list_head *offload_head = &offload_base;
5049 struct packet_offload *ptype;
5051 list_for_each_entry_rcu(ptype, offload_head, list) {
5052 if (ptype->type != type || !ptype->callbacks.gro_receive)
5053 continue;
5054 return ptype;
5056 return NULL;
5058 EXPORT_SYMBOL(gro_find_receive_by_type);
5060 struct packet_offload *gro_find_complete_by_type(__be16 type)
5062 struct list_head *offload_head = &offload_base;
5063 struct packet_offload *ptype;
5065 list_for_each_entry_rcu(ptype, offload_head, list) {
5066 if (ptype->type != type || !ptype->callbacks.gro_complete)
5067 continue;
5068 return ptype;
5070 return NULL;
5072 EXPORT_SYMBOL(gro_find_complete_by_type);
5074 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5076 skb_dst_drop(skb);
5077 secpath_reset(skb);
5078 kmem_cache_free(skbuff_head_cache, skb);
5081 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5083 switch (ret) {
5084 case GRO_NORMAL:
5085 if (netif_receive_skb_internal(skb))
5086 ret = GRO_DROP;
5087 break;
5089 case GRO_DROP:
5090 kfree_skb(skb);
5091 break;
5093 case GRO_MERGED_FREE:
5094 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5095 napi_skb_free_stolen_head(skb);
5096 else
5097 __kfree_skb(skb);
5098 break;
5100 case GRO_HELD:
5101 case GRO_MERGED:
5102 case GRO_CONSUMED:
5103 break;
5106 return ret;
5109 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5111 skb_mark_napi_id(skb, napi);
5112 trace_napi_gro_receive_entry(skb);
5114 skb_gro_reset_offset(skb);
5116 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5118 EXPORT_SYMBOL(napi_gro_receive);
5120 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5122 if (unlikely(skb->pfmemalloc)) {
5123 consume_skb(skb);
5124 return;
5126 __skb_pull(skb, skb_headlen(skb));
5127 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5128 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5129 skb->vlan_tci = 0;
5130 skb->dev = napi->dev;
5131 skb->skb_iif = 0;
5132 skb->encapsulation = 0;
5133 skb_shinfo(skb)->gso_type = 0;
5134 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5135 secpath_reset(skb);
5137 napi->skb = skb;
5140 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5142 struct sk_buff *skb = napi->skb;
5144 if (!skb) {
5145 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5146 if (skb) {
5147 napi->skb = skb;
5148 skb_mark_napi_id(skb, napi);
5151 return skb;
5153 EXPORT_SYMBOL(napi_get_frags);
5155 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5156 struct sk_buff *skb,
5157 gro_result_t ret)
5159 switch (ret) {
5160 case GRO_NORMAL:
5161 case GRO_HELD:
5162 __skb_push(skb, ETH_HLEN);
5163 skb->protocol = eth_type_trans(skb, skb->dev);
5164 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5165 ret = GRO_DROP;
5166 break;
5168 case GRO_DROP:
5169 napi_reuse_skb(napi, skb);
5170 break;
5172 case GRO_MERGED_FREE:
5173 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5174 napi_skb_free_stolen_head(skb);
5175 else
5176 napi_reuse_skb(napi, skb);
5177 break;
5179 case GRO_MERGED:
5180 case GRO_CONSUMED:
5181 break;
5184 return ret;
5187 /* Upper GRO stack assumes network header starts at gro_offset=0
5188 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5189 * We copy ethernet header into skb->data to have a common layout.
5191 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5193 struct sk_buff *skb = napi->skb;
5194 const struct ethhdr *eth;
5195 unsigned int hlen = sizeof(*eth);
5197 napi->skb = NULL;
5199 skb_reset_mac_header(skb);
5200 skb_gro_reset_offset(skb);
5202 eth = skb_gro_header_fast(skb, 0);
5203 if (unlikely(skb_gro_header_hard(skb, hlen))) {
5204 eth = skb_gro_header_slow(skb, hlen, 0);
5205 if (unlikely(!eth)) {
5206 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5207 __func__, napi->dev->name);
5208 napi_reuse_skb(napi, skb);
5209 return NULL;
5211 } else {
5212 gro_pull_from_frag0(skb, hlen);
5213 NAPI_GRO_CB(skb)->frag0 += hlen;
5214 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5216 __skb_pull(skb, hlen);
5219 * This works because the only protocols we care about don't require
5220 * special handling.
5221 * We'll fix it up properly in napi_frags_finish()
5223 skb->protocol = eth->h_proto;
5225 return skb;
5228 gro_result_t napi_gro_frags(struct napi_struct *napi)
5230 struct sk_buff *skb = napi_frags_skb(napi);
5232 if (!skb)
5233 return GRO_DROP;
5235 trace_napi_gro_frags_entry(skb);
5237 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5239 EXPORT_SYMBOL(napi_gro_frags);
5241 /* Compute the checksum from gro_offset and return the folded value
5242 * after adding in any pseudo checksum.
5244 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5246 __wsum wsum;
5247 __sum16 sum;
5249 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5251 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5252 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5253 if (likely(!sum)) {
5254 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5255 !skb->csum_complete_sw)
5256 netdev_rx_csum_fault(skb->dev);
5259 NAPI_GRO_CB(skb)->csum = wsum;
5260 NAPI_GRO_CB(skb)->csum_valid = 1;
5262 return sum;
5264 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5266 static void net_rps_send_ipi(struct softnet_data *remsd)
5268 #ifdef CONFIG_RPS
5269 while (remsd) {
5270 struct softnet_data *next = remsd->rps_ipi_next;
5272 if (cpu_online(remsd->cpu))
5273 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5274 remsd = next;
5276 #endif
5280 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5281 * Note: called with local irq disabled, but exits with local irq enabled.
5283 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5285 #ifdef CONFIG_RPS
5286 struct softnet_data *remsd = sd->rps_ipi_list;
5288 if (remsd) {
5289 sd->rps_ipi_list = NULL;
5291 local_irq_enable();
5293 /* Send pending IPI's to kick RPS processing on remote cpus. */
5294 net_rps_send_ipi(remsd);
5295 } else
5296 #endif
5297 local_irq_enable();
5300 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5302 #ifdef CONFIG_RPS
5303 return sd->rps_ipi_list != NULL;
5304 #else
5305 return false;
5306 #endif
5309 static int process_backlog(struct napi_struct *napi, int quota)
5311 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5312 bool again = true;
5313 int work = 0;
5315 /* Check if we have pending ipi, its better to send them now,
5316 * not waiting net_rx_action() end.
5318 if (sd_has_rps_ipi_waiting(sd)) {
5319 local_irq_disable();
5320 net_rps_action_and_irq_enable(sd);
5323 napi->weight = dev_rx_weight;
5324 while (again) {
5325 struct sk_buff *skb;
5327 while ((skb = __skb_dequeue(&sd->process_queue))) {
5328 rcu_read_lock();
5329 __netif_receive_skb(skb);
5330 rcu_read_unlock();
5331 input_queue_head_incr(sd);
5332 if (++work >= quota)
5333 return work;
5337 local_irq_disable();
5338 rps_lock(sd);
5339 if (skb_queue_empty(&sd->input_pkt_queue)) {
5341 * Inline a custom version of __napi_complete().
5342 * only current cpu owns and manipulates this napi,
5343 * and NAPI_STATE_SCHED is the only possible flag set
5344 * on backlog.
5345 * We can use a plain write instead of clear_bit(),
5346 * and we dont need an smp_mb() memory barrier.
5348 napi->state = 0;
5349 again = false;
5350 } else {
5351 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5352 &sd->process_queue);
5354 rps_unlock(sd);
5355 local_irq_enable();
5358 return work;
5362 * __napi_schedule - schedule for receive
5363 * @n: entry to schedule
5365 * The entry's receive function will be scheduled to run.
5366 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5368 void __napi_schedule(struct napi_struct *n)
5370 unsigned long flags;
5372 local_irq_save(flags);
5373 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5374 local_irq_restore(flags);
5376 EXPORT_SYMBOL(__napi_schedule);
5379 * napi_schedule_prep - check if napi can be scheduled
5380 * @n: napi context
5382 * Test if NAPI routine is already running, and if not mark
5383 * it as running. This is used as a condition variable
5384 * insure only one NAPI poll instance runs. We also make
5385 * sure there is no pending NAPI disable.
5387 bool napi_schedule_prep(struct napi_struct *n)
5389 unsigned long val, new;
5391 do {
5392 val = READ_ONCE(n->state);
5393 if (unlikely(val & NAPIF_STATE_DISABLE))
5394 return false;
5395 new = val | NAPIF_STATE_SCHED;
5397 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5398 * This was suggested by Alexander Duyck, as compiler
5399 * emits better code than :
5400 * if (val & NAPIF_STATE_SCHED)
5401 * new |= NAPIF_STATE_MISSED;
5403 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5404 NAPIF_STATE_MISSED;
5405 } while (cmpxchg(&n->state, val, new) != val);
5407 return !(val & NAPIF_STATE_SCHED);
5409 EXPORT_SYMBOL(napi_schedule_prep);
5412 * __napi_schedule_irqoff - schedule for receive
5413 * @n: entry to schedule
5415 * Variant of __napi_schedule() assuming hard irqs are masked
5417 void __napi_schedule_irqoff(struct napi_struct *n)
5419 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5421 EXPORT_SYMBOL(__napi_schedule_irqoff);
5423 bool napi_complete_done(struct napi_struct *n, int work_done)
5425 unsigned long flags, val, new;
5428 * 1) Don't let napi dequeue from the cpu poll list
5429 * just in case its running on a different cpu.
5430 * 2) If we are busy polling, do nothing here, we have
5431 * the guarantee we will be called later.
5433 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5434 NAPIF_STATE_IN_BUSY_POLL)))
5435 return false;
5437 if (n->gro_list) {
5438 unsigned long timeout = 0;
5440 if (work_done)
5441 timeout = n->dev->gro_flush_timeout;
5443 if (timeout)
5444 hrtimer_start(&n->timer, ns_to_ktime(timeout),
5445 HRTIMER_MODE_REL_PINNED);
5446 else
5447 napi_gro_flush(n, false);
5449 if (unlikely(!list_empty(&n->poll_list))) {
5450 /* If n->poll_list is not empty, we need to mask irqs */
5451 local_irq_save(flags);
5452 list_del_init(&n->poll_list);
5453 local_irq_restore(flags);
5456 do {
5457 val = READ_ONCE(n->state);
5459 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5461 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5463 /* If STATE_MISSED was set, leave STATE_SCHED set,
5464 * because we will call napi->poll() one more time.
5465 * This C code was suggested by Alexander Duyck to help gcc.
5467 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5468 NAPIF_STATE_SCHED;
5469 } while (cmpxchg(&n->state, val, new) != val);
5471 if (unlikely(val & NAPIF_STATE_MISSED)) {
5472 __napi_schedule(n);
5473 return false;
5476 return true;
5478 EXPORT_SYMBOL(napi_complete_done);
5480 /* must be called under rcu_read_lock(), as we dont take a reference */
5481 static struct napi_struct *napi_by_id(unsigned int napi_id)
5483 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5484 struct napi_struct *napi;
5486 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5487 if (napi->napi_id == napi_id)
5488 return napi;
5490 return NULL;
5493 #if defined(CONFIG_NET_RX_BUSY_POLL)
5495 #define BUSY_POLL_BUDGET 8
5497 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5499 int rc;
5501 /* Busy polling means there is a high chance device driver hard irq
5502 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5503 * set in napi_schedule_prep().
5504 * Since we are about to call napi->poll() once more, we can safely
5505 * clear NAPI_STATE_MISSED.
5507 * Note: x86 could use a single "lock and ..." instruction
5508 * to perform these two clear_bit()
5510 clear_bit(NAPI_STATE_MISSED, &napi->state);
5511 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5513 local_bh_disable();
5515 /* All we really want here is to re-enable device interrupts.
5516 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5518 rc = napi->poll(napi, BUSY_POLL_BUDGET);
5519 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5520 netpoll_poll_unlock(have_poll_lock);
5521 if (rc == BUSY_POLL_BUDGET)
5522 __napi_schedule(napi);
5523 local_bh_enable();
5526 void napi_busy_loop(unsigned int napi_id,
5527 bool (*loop_end)(void *, unsigned long),
5528 void *loop_end_arg)
5530 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5531 int (*napi_poll)(struct napi_struct *napi, int budget);
5532 void *have_poll_lock = NULL;
5533 struct napi_struct *napi;
5535 restart:
5536 napi_poll = NULL;
5538 rcu_read_lock();
5540 napi = napi_by_id(napi_id);
5541 if (!napi)
5542 goto out;
5544 preempt_disable();
5545 for (;;) {
5546 int work = 0;
5548 local_bh_disable();
5549 if (!napi_poll) {
5550 unsigned long val = READ_ONCE(napi->state);
5552 /* If multiple threads are competing for this napi,
5553 * we avoid dirtying napi->state as much as we can.
5555 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5556 NAPIF_STATE_IN_BUSY_POLL))
5557 goto count;
5558 if (cmpxchg(&napi->state, val,
5559 val | NAPIF_STATE_IN_BUSY_POLL |
5560 NAPIF_STATE_SCHED) != val)
5561 goto count;
5562 have_poll_lock = netpoll_poll_lock(napi);
5563 napi_poll = napi->poll;
5565 work = napi_poll(napi, BUSY_POLL_BUDGET);
5566 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5567 count:
5568 if (work > 0)
5569 __NET_ADD_STATS(dev_net(napi->dev),
5570 LINUX_MIB_BUSYPOLLRXPACKETS, work);
5571 local_bh_enable();
5573 if (!loop_end || loop_end(loop_end_arg, start_time))
5574 break;
5576 if (unlikely(need_resched())) {
5577 if (napi_poll)
5578 busy_poll_stop(napi, have_poll_lock);
5579 preempt_enable();
5580 rcu_read_unlock();
5581 cond_resched();
5582 if (loop_end(loop_end_arg, start_time))
5583 return;
5584 goto restart;
5586 cpu_relax();
5588 if (napi_poll)
5589 busy_poll_stop(napi, have_poll_lock);
5590 preempt_enable();
5591 out:
5592 rcu_read_unlock();
5594 EXPORT_SYMBOL(napi_busy_loop);
5596 #endif /* CONFIG_NET_RX_BUSY_POLL */
5598 static void napi_hash_add(struct napi_struct *napi)
5600 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5601 test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5602 return;
5604 spin_lock(&napi_hash_lock);
5606 /* 0..NR_CPUS range is reserved for sender_cpu use */
5607 do {
5608 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5609 napi_gen_id = MIN_NAPI_ID;
5610 } while (napi_by_id(napi_gen_id));
5611 napi->napi_id = napi_gen_id;
5613 hlist_add_head_rcu(&napi->napi_hash_node,
5614 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5616 spin_unlock(&napi_hash_lock);
5619 /* Warning : caller is responsible to make sure rcu grace period
5620 * is respected before freeing memory containing @napi
5622 bool napi_hash_del(struct napi_struct *napi)
5624 bool rcu_sync_needed = false;
5626 spin_lock(&napi_hash_lock);
5628 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5629 rcu_sync_needed = true;
5630 hlist_del_rcu(&napi->napi_hash_node);
5632 spin_unlock(&napi_hash_lock);
5633 return rcu_sync_needed;
5635 EXPORT_SYMBOL_GPL(napi_hash_del);
5637 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5639 struct napi_struct *napi;
5641 napi = container_of(timer, struct napi_struct, timer);
5643 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5644 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5646 if (napi->gro_list && !napi_disable_pending(napi) &&
5647 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5648 __napi_schedule_irqoff(napi);
5650 return HRTIMER_NORESTART;
5653 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5654 int (*poll)(struct napi_struct *, int), int weight)
5656 INIT_LIST_HEAD(&napi->poll_list);
5657 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5658 napi->timer.function = napi_watchdog;
5659 napi->gro_count = 0;
5660 napi->gro_list = NULL;
5661 napi->skb = NULL;
5662 napi->poll = poll;
5663 if (weight > NAPI_POLL_WEIGHT)
5664 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5665 weight, dev->name);
5666 napi->weight = weight;
5667 list_add(&napi->dev_list, &dev->napi_list);
5668 napi->dev = dev;
5669 #ifdef CONFIG_NETPOLL
5670 napi->poll_owner = -1;
5671 #endif
5672 set_bit(NAPI_STATE_SCHED, &napi->state);
5673 napi_hash_add(napi);
5675 EXPORT_SYMBOL(netif_napi_add);
5677 void napi_disable(struct napi_struct *n)
5679 might_sleep();
5680 set_bit(NAPI_STATE_DISABLE, &n->state);
5682 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5683 msleep(1);
5684 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5685 msleep(1);
5687 hrtimer_cancel(&n->timer);
5689 clear_bit(NAPI_STATE_DISABLE, &n->state);
5691 EXPORT_SYMBOL(napi_disable);
5693 /* Must be called in process context */
5694 void netif_napi_del(struct napi_struct *napi)
5696 might_sleep();
5697 if (napi_hash_del(napi))
5698 synchronize_net();
5699 list_del_init(&napi->dev_list);
5700 napi_free_frags(napi);
5702 kfree_skb_list(napi->gro_list);
5703 napi->gro_list = NULL;
5704 napi->gro_count = 0;
5706 EXPORT_SYMBOL(netif_napi_del);
5708 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5710 void *have;
5711 int work, weight;
5713 list_del_init(&n->poll_list);
5715 have = netpoll_poll_lock(n);
5717 weight = n->weight;
5719 /* This NAPI_STATE_SCHED test is for avoiding a race
5720 * with netpoll's poll_napi(). Only the entity which
5721 * obtains the lock and sees NAPI_STATE_SCHED set will
5722 * actually make the ->poll() call. Therefore we avoid
5723 * accidentally calling ->poll() when NAPI is not scheduled.
5725 work = 0;
5726 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5727 work = n->poll(n, weight);
5728 trace_napi_poll(n, work, weight);
5731 WARN_ON_ONCE(work > weight);
5733 if (likely(work < weight))
5734 goto out_unlock;
5736 /* Drivers must not modify the NAPI state if they
5737 * consume the entire weight. In such cases this code
5738 * still "owns" the NAPI instance and therefore can
5739 * move the instance around on the list at-will.
5741 if (unlikely(napi_disable_pending(n))) {
5742 napi_complete(n);
5743 goto out_unlock;
5746 if (n->gro_list) {
5747 /* flush too old packets
5748 * If HZ < 1000, flush all packets.
5750 napi_gro_flush(n, HZ >= 1000);
5753 /* Some drivers may have called napi_schedule
5754 * prior to exhausting their budget.
5756 if (unlikely(!list_empty(&n->poll_list))) {
5757 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5758 n->dev ? n->dev->name : "backlog");
5759 goto out_unlock;
5762 list_add_tail(&n->poll_list, repoll);
5764 out_unlock:
5765 netpoll_poll_unlock(have);
5767 return work;
5770 static __latent_entropy void net_rx_action(struct softirq_action *h)
5772 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5773 unsigned long time_limit = jiffies +
5774 usecs_to_jiffies(netdev_budget_usecs);
5775 int budget = netdev_budget;
5776 LIST_HEAD(list);
5777 LIST_HEAD(repoll);
5779 local_irq_disable();
5780 list_splice_init(&sd->poll_list, &list);
5781 local_irq_enable();
5783 for (;;) {
5784 struct napi_struct *n;
5786 if (list_empty(&list)) {
5787 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5788 goto out;
5789 break;
5792 n = list_first_entry(&list, struct napi_struct, poll_list);
5793 budget -= napi_poll(n, &repoll);
5795 /* If softirq window is exhausted then punt.
5796 * Allow this to run for 2 jiffies since which will allow
5797 * an average latency of 1.5/HZ.
5799 if (unlikely(budget <= 0 ||
5800 time_after_eq(jiffies, time_limit))) {
5801 sd->time_squeeze++;
5802 break;
5806 local_irq_disable();
5808 list_splice_tail_init(&sd->poll_list, &list);
5809 list_splice_tail(&repoll, &list);
5810 list_splice(&list, &sd->poll_list);
5811 if (!list_empty(&sd->poll_list))
5812 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5814 net_rps_action_and_irq_enable(sd);
5815 out:
5816 __kfree_skb_flush();
5819 struct netdev_adjacent {
5820 struct net_device *dev;
5822 /* upper master flag, there can only be one master device per list */
5823 bool master;
5825 /* counter for the number of times this device was added to us */
5826 u16 ref_nr;
5828 /* private field for the users */
5829 void *private;
5831 struct list_head list;
5832 struct rcu_head rcu;
5835 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5836 struct list_head *adj_list)
5838 struct netdev_adjacent *adj;
5840 list_for_each_entry(adj, adj_list, list) {
5841 if (adj->dev == adj_dev)
5842 return adj;
5844 return NULL;
5847 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5849 struct net_device *dev = data;
5851 return upper_dev == dev;
5855 * netdev_has_upper_dev - Check if device is linked to an upper device
5856 * @dev: device
5857 * @upper_dev: upper device to check
5859 * Find out if a device is linked to specified upper device and return true
5860 * in case it is. Note that this checks only immediate upper device,
5861 * not through a complete stack of devices. The caller must hold the RTNL lock.
5863 bool netdev_has_upper_dev(struct net_device *dev,
5864 struct net_device *upper_dev)
5866 ASSERT_RTNL();
5868 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5869 upper_dev);
5871 EXPORT_SYMBOL(netdev_has_upper_dev);
5874 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5875 * @dev: device
5876 * @upper_dev: upper device to check
5878 * Find out if a device is linked to specified upper device and return true
5879 * in case it is. Note that this checks the entire upper device chain.
5880 * The caller must hold rcu lock.
5883 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5884 struct net_device *upper_dev)
5886 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5887 upper_dev);
5889 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5892 * netdev_has_any_upper_dev - Check if device is linked to some device
5893 * @dev: device
5895 * Find out if a device is linked to an upper device and return true in case
5896 * it is. The caller must hold the RTNL lock.
5898 bool netdev_has_any_upper_dev(struct net_device *dev)
5900 ASSERT_RTNL();
5902 return !list_empty(&dev->adj_list.upper);
5904 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5907 * netdev_master_upper_dev_get - Get master upper device
5908 * @dev: device
5910 * Find a master upper device and return pointer to it or NULL in case
5911 * it's not there. The caller must hold the RTNL lock.
5913 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5915 struct netdev_adjacent *upper;
5917 ASSERT_RTNL();
5919 if (list_empty(&dev->adj_list.upper))
5920 return NULL;
5922 upper = list_first_entry(&dev->adj_list.upper,
5923 struct netdev_adjacent, list);
5924 if (likely(upper->master))
5925 return upper->dev;
5926 return NULL;
5928 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5931 * netdev_has_any_lower_dev - Check if device is linked to some device
5932 * @dev: device
5934 * Find out if a device is linked to a lower device and return true in case
5935 * it is. The caller must hold the RTNL lock.
5937 static bool netdev_has_any_lower_dev(struct net_device *dev)
5939 ASSERT_RTNL();
5941 return !list_empty(&dev->adj_list.lower);
5944 void *netdev_adjacent_get_private(struct list_head *adj_list)
5946 struct netdev_adjacent *adj;
5948 adj = list_entry(adj_list, struct netdev_adjacent, list);
5950 return adj->private;
5952 EXPORT_SYMBOL(netdev_adjacent_get_private);
5955 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5956 * @dev: device
5957 * @iter: list_head ** of the current position
5959 * Gets the next device from the dev's upper list, starting from iter
5960 * position. The caller must hold RCU read lock.
5962 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5963 struct list_head **iter)
5965 struct netdev_adjacent *upper;
5967 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5969 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5971 if (&upper->list == &dev->adj_list.upper)
5972 return NULL;
5974 *iter = &upper->list;
5976 return upper->dev;
5978 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5980 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5981 struct list_head **iter)
5983 struct netdev_adjacent *upper;
5985 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5987 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5989 if (&upper->list == &dev->adj_list.upper)
5990 return NULL;
5992 *iter = &upper->list;
5994 return upper->dev;
5997 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5998 int (*fn)(struct net_device *dev,
5999 void *data),
6000 void *data)
6002 struct net_device *udev;
6003 struct list_head *iter;
6004 int ret;
6006 for (iter = &dev->adj_list.upper,
6007 udev = netdev_next_upper_dev_rcu(dev, &iter);
6008 udev;
6009 udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6010 /* first is the upper device itself */
6011 ret = fn(udev, data);
6012 if (ret)
6013 return ret;
6015 /* then look at all of its upper devices */
6016 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6017 if (ret)
6018 return ret;
6021 return 0;
6023 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6026 * netdev_lower_get_next_private - Get the next ->private from the
6027 * lower neighbour list
6028 * @dev: device
6029 * @iter: list_head ** of the current position
6031 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6032 * list, starting from iter position. The caller must hold either hold the
6033 * RTNL lock or its own locking that guarantees that the neighbour lower
6034 * list will remain unchanged.
6036 void *netdev_lower_get_next_private(struct net_device *dev,
6037 struct list_head **iter)
6039 struct netdev_adjacent *lower;
6041 lower = list_entry(*iter, struct netdev_adjacent, list);
6043 if (&lower->list == &dev->adj_list.lower)
6044 return NULL;
6046 *iter = lower->list.next;
6048 return lower->private;
6050 EXPORT_SYMBOL(netdev_lower_get_next_private);
6053 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6054 * lower neighbour list, RCU
6055 * variant
6056 * @dev: device
6057 * @iter: list_head ** of the current position
6059 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6060 * list, starting from iter position. The caller must hold RCU read lock.
6062 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6063 struct list_head **iter)
6065 struct netdev_adjacent *lower;
6067 WARN_ON_ONCE(!rcu_read_lock_held());
6069 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6071 if (&lower->list == &dev->adj_list.lower)
6072 return NULL;
6074 *iter = &lower->list;
6076 return lower->private;
6078 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6081 * netdev_lower_get_next - Get the next device from the lower neighbour
6082 * list
6083 * @dev: device
6084 * @iter: list_head ** of the current position
6086 * Gets the next netdev_adjacent from the dev's lower neighbour
6087 * list, starting from iter position. The caller must hold RTNL lock or
6088 * its own locking that guarantees that the neighbour lower
6089 * list will remain unchanged.
6091 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6093 struct netdev_adjacent *lower;
6095 lower = list_entry(*iter, struct netdev_adjacent, list);
6097 if (&lower->list == &dev->adj_list.lower)
6098 return NULL;
6100 *iter = lower->list.next;
6102 return lower->dev;
6104 EXPORT_SYMBOL(netdev_lower_get_next);
6106 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6107 struct list_head **iter)
6109 struct netdev_adjacent *lower;
6111 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6113 if (&lower->list == &dev->adj_list.lower)
6114 return NULL;
6116 *iter = &lower->list;
6118 return lower->dev;
6121 int netdev_walk_all_lower_dev(struct net_device *dev,
6122 int (*fn)(struct net_device *dev,
6123 void *data),
6124 void *data)
6126 struct net_device *ldev;
6127 struct list_head *iter;
6128 int ret;
6130 for (iter = &dev->adj_list.lower,
6131 ldev = netdev_next_lower_dev(dev, &iter);
6132 ldev;
6133 ldev = netdev_next_lower_dev(dev, &iter)) {
6134 /* first is the lower device itself */
6135 ret = fn(ldev, data);
6136 if (ret)
6137 return ret;
6139 /* then look at all of its lower devices */
6140 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6141 if (ret)
6142 return ret;
6145 return 0;
6147 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6149 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6150 struct list_head **iter)
6152 struct netdev_adjacent *lower;
6154 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6155 if (&lower->list == &dev->adj_list.lower)
6156 return NULL;
6158 *iter = &lower->list;
6160 return lower->dev;
6163 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6164 int (*fn)(struct net_device *dev,
6165 void *data),
6166 void *data)
6168 struct net_device *ldev;
6169 struct list_head *iter;
6170 int ret;
6172 for (iter = &dev->adj_list.lower,
6173 ldev = netdev_next_lower_dev_rcu(dev, &iter);
6174 ldev;
6175 ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6176 /* first is the lower device itself */
6177 ret = fn(ldev, data);
6178 if (ret)
6179 return ret;
6181 /* then look at all of its lower devices */
6182 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6183 if (ret)
6184 return ret;
6187 return 0;
6189 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6192 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6193 * lower neighbour list, RCU
6194 * variant
6195 * @dev: device
6197 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6198 * list. The caller must hold RCU read lock.
6200 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6202 struct netdev_adjacent *lower;
6204 lower = list_first_or_null_rcu(&dev->adj_list.lower,
6205 struct netdev_adjacent, list);
6206 if (lower)
6207 return lower->private;
6208 return NULL;
6210 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6213 * netdev_master_upper_dev_get_rcu - Get master upper device
6214 * @dev: device
6216 * Find a master upper device and return pointer to it or NULL in case
6217 * it's not there. The caller must hold the RCU read lock.
6219 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6221 struct netdev_adjacent *upper;
6223 upper = list_first_or_null_rcu(&dev->adj_list.upper,
6224 struct netdev_adjacent, list);
6225 if (upper && likely(upper->master))
6226 return upper->dev;
6227 return NULL;
6229 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6231 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6232 struct net_device *adj_dev,
6233 struct list_head *dev_list)
6235 char linkname[IFNAMSIZ+7];
6237 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6238 "upper_%s" : "lower_%s", adj_dev->name);
6239 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6240 linkname);
6242 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6243 char *name,
6244 struct list_head *dev_list)
6246 char linkname[IFNAMSIZ+7];
6248 sprintf(linkname, dev_list == &dev->adj_list.upper ?
6249 "upper_%s" : "lower_%s", name);
6250 sysfs_remove_link(&(dev->dev.kobj), linkname);
6253 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6254 struct net_device *adj_dev,
6255 struct list_head *dev_list)
6257 return (dev_list == &dev->adj_list.upper ||
6258 dev_list == &dev->adj_list.lower) &&
6259 net_eq(dev_net(dev), dev_net(adj_dev));
6262 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6263 struct net_device *adj_dev,
6264 struct list_head *dev_list,
6265 void *private, bool master)
6267 struct netdev_adjacent *adj;
6268 int ret;
6270 adj = __netdev_find_adj(adj_dev, dev_list);
6272 if (adj) {
6273 adj->ref_nr += 1;
6274 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6275 dev->name, adj_dev->name, adj->ref_nr);
6277 return 0;
6280 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6281 if (!adj)
6282 return -ENOMEM;
6284 adj->dev = adj_dev;
6285 adj->master = master;
6286 adj->ref_nr = 1;
6287 adj->private = private;
6288 dev_hold(adj_dev);
6290 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6291 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6293 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6294 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6295 if (ret)
6296 goto free_adj;
6299 /* Ensure that master link is always the first item in list. */
6300 if (master) {
6301 ret = sysfs_create_link(&(dev->dev.kobj),
6302 &(adj_dev->dev.kobj), "master");
6303 if (ret)
6304 goto remove_symlinks;
6306 list_add_rcu(&adj->list, dev_list);
6307 } else {
6308 list_add_tail_rcu(&adj->list, dev_list);
6311 return 0;
6313 remove_symlinks:
6314 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6315 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6316 free_adj:
6317 kfree(adj);
6318 dev_put(adj_dev);
6320 return ret;
6323 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6324 struct net_device *adj_dev,
6325 u16 ref_nr,
6326 struct list_head *dev_list)
6328 struct netdev_adjacent *adj;
6330 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6331 dev->name, adj_dev->name, ref_nr);
6333 adj = __netdev_find_adj(adj_dev, dev_list);
6335 if (!adj) {
6336 pr_err("Adjacency does not exist for device %s from %s\n",
6337 dev->name, adj_dev->name);
6338 WARN_ON(1);
6339 return;
6342 if (adj->ref_nr > ref_nr) {
6343 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6344 dev->name, adj_dev->name, ref_nr,
6345 adj->ref_nr - ref_nr);
6346 adj->ref_nr -= ref_nr;
6347 return;
6350 if (adj->master)
6351 sysfs_remove_link(&(dev->dev.kobj), "master");
6353 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6354 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6356 list_del_rcu(&adj->list);
6357 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6358 adj_dev->name, dev->name, adj_dev->name);
6359 dev_put(adj_dev);
6360 kfree_rcu(adj, rcu);
6363 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6364 struct net_device *upper_dev,
6365 struct list_head *up_list,
6366 struct list_head *down_list,
6367 void *private, bool master)
6369 int ret;
6371 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6372 private, master);
6373 if (ret)
6374 return ret;
6376 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6377 private, false);
6378 if (ret) {
6379 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6380 return ret;
6383 return 0;
6386 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6387 struct net_device *upper_dev,
6388 u16 ref_nr,
6389 struct list_head *up_list,
6390 struct list_head *down_list)
6392 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6393 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6396 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6397 struct net_device *upper_dev,
6398 void *private, bool master)
6400 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6401 &dev->adj_list.upper,
6402 &upper_dev->adj_list.lower,
6403 private, master);
6406 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6407 struct net_device *upper_dev)
6409 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6410 &dev->adj_list.upper,
6411 &upper_dev->adj_list.lower);
6414 static int __netdev_upper_dev_link(struct net_device *dev,
6415 struct net_device *upper_dev, bool master,
6416 void *upper_priv, void *upper_info,
6417 struct netlink_ext_ack *extack)
6419 struct netdev_notifier_changeupper_info changeupper_info = {
6420 .info = {
6421 .dev = dev,
6422 .extack = extack,
6424 .upper_dev = upper_dev,
6425 .master = master,
6426 .linking = true,
6427 .upper_info = upper_info,
6429 struct net_device *master_dev;
6430 int ret = 0;
6432 ASSERT_RTNL();
6434 if (dev == upper_dev)
6435 return -EBUSY;
6437 /* To prevent loops, check if dev is not upper device to upper_dev. */
6438 if (netdev_has_upper_dev(upper_dev, dev))
6439 return -EBUSY;
6441 if (!master) {
6442 if (netdev_has_upper_dev(dev, upper_dev))
6443 return -EEXIST;
6444 } else {
6445 master_dev = netdev_master_upper_dev_get(dev);
6446 if (master_dev)
6447 return master_dev == upper_dev ? -EEXIST : -EBUSY;
6450 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6451 &changeupper_info.info);
6452 ret = notifier_to_errno(ret);
6453 if (ret)
6454 return ret;
6456 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6457 master);
6458 if (ret)
6459 return ret;
6461 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6462 &changeupper_info.info);
6463 ret = notifier_to_errno(ret);
6464 if (ret)
6465 goto rollback;
6467 return 0;
6469 rollback:
6470 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6472 return ret;
6476 * netdev_upper_dev_link - Add a link to the upper device
6477 * @dev: device
6478 * @upper_dev: new upper device
6479 * @extack: netlink extended ack
6481 * Adds a link to device which is upper to this one. The caller must hold
6482 * the RTNL lock. On a failure a negative errno code is returned.
6483 * On success the reference counts are adjusted and the function
6484 * returns zero.
6486 int netdev_upper_dev_link(struct net_device *dev,
6487 struct net_device *upper_dev,
6488 struct netlink_ext_ack *extack)
6490 return __netdev_upper_dev_link(dev, upper_dev, false,
6491 NULL, NULL, extack);
6493 EXPORT_SYMBOL(netdev_upper_dev_link);
6496 * netdev_master_upper_dev_link - Add a master link to the upper device
6497 * @dev: device
6498 * @upper_dev: new upper device
6499 * @upper_priv: upper device private
6500 * @upper_info: upper info to be passed down via notifier
6501 * @extack: netlink extended ack
6503 * Adds a link to device which is upper to this one. In this case, only
6504 * one master upper device can be linked, although other non-master devices
6505 * might be linked as well. The caller must hold the RTNL lock.
6506 * On a failure a negative errno code is returned. On success the reference
6507 * counts are adjusted and the function returns zero.
6509 int netdev_master_upper_dev_link(struct net_device *dev,
6510 struct net_device *upper_dev,
6511 void *upper_priv, void *upper_info,
6512 struct netlink_ext_ack *extack)
6514 return __netdev_upper_dev_link(dev, upper_dev, true,
6515 upper_priv, upper_info, extack);
6517 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6520 * netdev_upper_dev_unlink - Removes a link to upper device
6521 * @dev: device
6522 * @upper_dev: new upper device
6524 * Removes a link to device which is upper to this one. The caller must hold
6525 * the RTNL lock.
6527 void netdev_upper_dev_unlink(struct net_device *dev,
6528 struct net_device *upper_dev)
6530 struct netdev_notifier_changeupper_info changeupper_info = {
6531 .info = {
6532 .dev = dev,
6534 .upper_dev = upper_dev,
6535 .linking = false,
6538 ASSERT_RTNL();
6540 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6542 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6543 &changeupper_info.info);
6545 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6547 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6548 &changeupper_info.info);
6550 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6553 * netdev_bonding_info_change - Dispatch event about slave change
6554 * @dev: device
6555 * @bonding_info: info to dispatch
6557 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6558 * The caller must hold the RTNL lock.
6560 void netdev_bonding_info_change(struct net_device *dev,
6561 struct netdev_bonding_info *bonding_info)
6563 struct netdev_notifier_bonding_info info = {
6564 .info.dev = dev,
6567 memcpy(&info.bonding_info, bonding_info,
6568 sizeof(struct netdev_bonding_info));
6569 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6570 &info.info);
6572 EXPORT_SYMBOL(netdev_bonding_info_change);
6574 static void netdev_adjacent_add_links(struct net_device *dev)
6576 struct netdev_adjacent *iter;
6578 struct net *net = dev_net(dev);
6580 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6581 if (!net_eq(net, dev_net(iter->dev)))
6582 continue;
6583 netdev_adjacent_sysfs_add(iter->dev, dev,
6584 &iter->dev->adj_list.lower);
6585 netdev_adjacent_sysfs_add(dev, iter->dev,
6586 &dev->adj_list.upper);
6589 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6590 if (!net_eq(net, dev_net(iter->dev)))
6591 continue;
6592 netdev_adjacent_sysfs_add(iter->dev, dev,
6593 &iter->dev->adj_list.upper);
6594 netdev_adjacent_sysfs_add(dev, iter->dev,
6595 &dev->adj_list.lower);
6599 static void netdev_adjacent_del_links(struct net_device *dev)
6601 struct netdev_adjacent *iter;
6603 struct net *net = dev_net(dev);
6605 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6606 if (!net_eq(net, dev_net(iter->dev)))
6607 continue;
6608 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6609 &iter->dev->adj_list.lower);
6610 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6611 &dev->adj_list.upper);
6614 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6615 if (!net_eq(net, dev_net(iter->dev)))
6616 continue;
6617 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6618 &iter->dev->adj_list.upper);
6619 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6620 &dev->adj_list.lower);
6624 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6626 struct netdev_adjacent *iter;
6628 struct net *net = dev_net(dev);
6630 list_for_each_entry(iter, &dev->adj_list.upper, list) {
6631 if (!net_eq(net, dev_net(iter->dev)))
6632 continue;
6633 netdev_adjacent_sysfs_del(iter->dev, oldname,
6634 &iter->dev->adj_list.lower);
6635 netdev_adjacent_sysfs_add(iter->dev, dev,
6636 &iter->dev->adj_list.lower);
6639 list_for_each_entry(iter, &dev->adj_list.lower, list) {
6640 if (!net_eq(net, dev_net(iter->dev)))
6641 continue;
6642 netdev_adjacent_sysfs_del(iter->dev, oldname,
6643 &iter->dev->adj_list.upper);
6644 netdev_adjacent_sysfs_add(iter->dev, dev,
6645 &iter->dev->adj_list.upper);
6649 void *netdev_lower_dev_get_private(struct net_device *dev,
6650 struct net_device *lower_dev)
6652 struct netdev_adjacent *lower;
6654 if (!lower_dev)
6655 return NULL;
6656 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6657 if (!lower)
6658 return NULL;
6660 return lower->private;
6662 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6665 int dev_get_nest_level(struct net_device *dev)
6667 struct net_device *lower = NULL;
6668 struct list_head *iter;
6669 int max_nest = -1;
6670 int nest;
6672 ASSERT_RTNL();
6674 netdev_for_each_lower_dev(dev, lower, iter) {
6675 nest = dev_get_nest_level(lower);
6676 if (max_nest < nest)
6677 max_nest = nest;
6680 return max_nest + 1;
6682 EXPORT_SYMBOL(dev_get_nest_level);
6685 * netdev_lower_change - Dispatch event about lower device state change
6686 * @lower_dev: device
6687 * @lower_state_info: state to dispatch
6689 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6690 * The caller must hold the RTNL lock.
6692 void netdev_lower_state_changed(struct net_device *lower_dev,
6693 void *lower_state_info)
6695 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6696 .info.dev = lower_dev,
6699 ASSERT_RTNL();
6700 changelowerstate_info.lower_state_info = lower_state_info;
6701 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6702 &changelowerstate_info.info);
6704 EXPORT_SYMBOL(netdev_lower_state_changed);
6706 static void dev_change_rx_flags(struct net_device *dev, int flags)
6708 const struct net_device_ops *ops = dev->netdev_ops;
6710 if (ops->ndo_change_rx_flags)
6711 ops->ndo_change_rx_flags(dev, flags);
6714 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6716 unsigned int old_flags = dev->flags;
6717 kuid_t uid;
6718 kgid_t gid;
6720 ASSERT_RTNL();
6722 dev->flags |= IFF_PROMISC;
6723 dev->promiscuity += inc;
6724 if (dev->promiscuity == 0) {
6726 * Avoid overflow.
6727 * If inc causes overflow, untouch promisc and return error.
6729 if (inc < 0)
6730 dev->flags &= ~IFF_PROMISC;
6731 else {
6732 dev->promiscuity -= inc;
6733 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6734 dev->name);
6735 return -EOVERFLOW;
6738 if (dev->flags != old_flags) {
6739 pr_info("device %s %s promiscuous mode\n",
6740 dev->name,
6741 dev->flags & IFF_PROMISC ? "entered" : "left");
6742 if (audit_enabled) {
6743 current_uid_gid(&uid, &gid);
6744 audit_log(current->audit_context, GFP_ATOMIC,
6745 AUDIT_ANOM_PROMISCUOUS,
6746 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6747 dev->name, (dev->flags & IFF_PROMISC),
6748 (old_flags & IFF_PROMISC),
6749 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6750 from_kuid(&init_user_ns, uid),
6751 from_kgid(&init_user_ns, gid),
6752 audit_get_sessionid(current));
6755 dev_change_rx_flags(dev, IFF_PROMISC);
6757 if (notify)
6758 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6759 return 0;
6763 * dev_set_promiscuity - update promiscuity count on a device
6764 * @dev: device
6765 * @inc: modifier
6767 * Add or remove promiscuity from a device. While the count in the device
6768 * remains above zero the interface remains promiscuous. Once it hits zero
6769 * the device reverts back to normal filtering operation. A negative inc
6770 * value is used to drop promiscuity on the device.
6771 * Return 0 if successful or a negative errno code on error.
6773 int dev_set_promiscuity(struct net_device *dev, int inc)
6775 unsigned int old_flags = dev->flags;
6776 int err;
6778 err = __dev_set_promiscuity(dev, inc, true);
6779 if (err < 0)
6780 return err;
6781 if (dev->flags != old_flags)
6782 dev_set_rx_mode(dev);
6783 return err;
6785 EXPORT_SYMBOL(dev_set_promiscuity);
6787 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6789 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6791 ASSERT_RTNL();
6793 dev->flags |= IFF_ALLMULTI;
6794 dev->allmulti += inc;
6795 if (dev->allmulti == 0) {
6797 * Avoid overflow.
6798 * If inc causes overflow, untouch allmulti and return error.
6800 if (inc < 0)
6801 dev->flags &= ~IFF_ALLMULTI;
6802 else {
6803 dev->allmulti -= inc;
6804 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6805 dev->name);
6806 return -EOVERFLOW;
6809 if (dev->flags ^ old_flags) {
6810 dev_change_rx_flags(dev, IFF_ALLMULTI);
6811 dev_set_rx_mode(dev);
6812 if (notify)
6813 __dev_notify_flags(dev, old_flags,
6814 dev->gflags ^ old_gflags);
6816 return 0;
6820 * dev_set_allmulti - update allmulti count on a device
6821 * @dev: device
6822 * @inc: modifier
6824 * Add or remove reception of all multicast frames to a device. While the
6825 * count in the device remains above zero the interface remains listening
6826 * to all interfaces. Once it hits zero the device reverts back to normal
6827 * filtering operation. A negative @inc value is used to drop the counter
6828 * when releasing a resource needing all multicasts.
6829 * Return 0 if successful or a negative errno code on error.
6832 int dev_set_allmulti(struct net_device *dev, int inc)
6834 return __dev_set_allmulti(dev, inc, true);
6836 EXPORT_SYMBOL(dev_set_allmulti);
6839 * Upload unicast and multicast address lists to device and
6840 * configure RX filtering. When the device doesn't support unicast
6841 * filtering it is put in promiscuous mode while unicast addresses
6842 * are present.
6844 void __dev_set_rx_mode(struct net_device *dev)
6846 const struct net_device_ops *ops = dev->netdev_ops;
6848 /* dev_open will call this function so the list will stay sane. */
6849 if (!(dev->flags&IFF_UP))
6850 return;
6852 if (!netif_device_present(dev))
6853 return;
6855 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6856 /* Unicast addresses changes may only happen under the rtnl,
6857 * therefore calling __dev_set_promiscuity here is safe.
6859 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6860 __dev_set_promiscuity(dev, 1, false);
6861 dev->uc_promisc = true;
6862 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6863 __dev_set_promiscuity(dev, -1, false);
6864 dev->uc_promisc = false;
6868 if (ops->ndo_set_rx_mode)
6869 ops->ndo_set_rx_mode(dev);
6872 void dev_set_rx_mode(struct net_device *dev)
6874 netif_addr_lock_bh(dev);
6875 __dev_set_rx_mode(dev);
6876 netif_addr_unlock_bh(dev);
6880 * dev_get_flags - get flags reported to userspace
6881 * @dev: device
6883 * Get the combination of flag bits exported through APIs to userspace.
6885 unsigned int dev_get_flags(const struct net_device *dev)
6887 unsigned int flags;
6889 flags = (dev->flags & ~(IFF_PROMISC |
6890 IFF_ALLMULTI |
6891 IFF_RUNNING |
6892 IFF_LOWER_UP |
6893 IFF_DORMANT)) |
6894 (dev->gflags & (IFF_PROMISC |
6895 IFF_ALLMULTI));
6897 if (netif_running(dev)) {
6898 if (netif_oper_up(dev))
6899 flags |= IFF_RUNNING;
6900 if (netif_carrier_ok(dev))
6901 flags |= IFF_LOWER_UP;
6902 if (netif_dormant(dev))
6903 flags |= IFF_DORMANT;
6906 return flags;
6908 EXPORT_SYMBOL(dev_get_flags);
6910 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6912 unsigned int old_flags = dev->flags;
6913 int ret;
6915 ASSERT_RTNL();
6918 * Set the flags on our device.
6921 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6922 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6923 IFF_AUTOMEDIA)) |
6924 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6925 IFF_ALLMULTI));
6928 * Load in the correct multicast list now the flags have changed.
6931 if ((old_flags ^ flags) & IFF_MULTICAST)
6932 dev_change_rx_flags(dev, IFF_MULTICAST);
6934 dev_set_rx_mode(dev);
6937 * Have we downed the interface. We handle IFF_UP ourselves
6938 * according to user attempts to set it, rather than blindly
6939 * setting it.
6942 ret = 0;
6943 if ((old_flags ^ flags) & IFF_UP) {
6944 if (old_flags & IFF_UP)
6945 __dev_close(dev);
6946 else
6947 ret = __dev_open(dev);
6950 if ((flags ^ dev->gflags) & IFF_PROMISC) {
6951 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6952 unsigned int old_flags = dev->flags;
6954 dev->gflags ^= IFF_PROMISC;
6956 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6957 if (dev->flags != old_flags)
6958 dev_set_rx_mode(dev);
6961 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6962 * is important. Some (broken) drivers set IFF_PROMISC, when
6963 * IFF_ALLMULTI is requested not asking us and not reporting.
6965 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6966 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6968 dev->gflags ^= IFF_ALLMULTI;
6969 __dev_set_allmulti(dev, inc, false);
6972 return ret;
6975 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6976 unsigned int gchanges)
6978 unsigned int changes = dev->flags ^ old_flags;
6980 if (gchanges)
6981 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6983 if (changes & IFF_UP) {
6984 if (dev->flags & IFF_UP)
6985 call_netdevice_notifiers(NETDEV_UP, dev);
6986 else
6987 call_netdevice_notifiers(NETDEV_DOWN, dev);
6990 if (dev->flags & IFF_UP &&
6991 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6992 struct netdev_notifier_change_info change_info = {
6993 .info = {
6994 .dev = dev,
6996 .flags_changed = changes,
6999 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7004 * dev_change_flags - change device settings
7005 * @dev: device
7006 * @flags: device state flags
7008 * Change settings on device based state flags. The flags are
7009 * in the userspace exported format.
7011 int dev_change_flags(struct net_device *dev, unsigned int flags)
7013 int ret;
7014 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7016 ret = __dev_change_flags(dev, flags);
7017 if (ret < 0)
7018 return ret;
7020 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7021 __dev_notify_flags(dev, old_flags, changes);
7022 return ret;
7024 EXPORT_SYMBOL(dev_change_flags);
7026 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7028 const struct net_device_ops *ops = dev->netdev_ops;
7030 if (ops->ndo_change_mtu)
7031 return ops->ndo_change_mtu(dev, new_mtu);
7033 dev->mtu = new_mtu;
7034 return 0;
7036 EXPORT_SYMBOL(__dev_set_mtu);
7039 * dev_set_mtu - Change maximum transfer unit
7040 * @dev: device
7041 * @new_mtu: new transfer unit
7043 * Change the maximum transfer size of the network device.
7045 int dev_set_mtu(struct net_device *dev, int new_mtu)
7047 int err, orig_mtu;
7049 if (new_mtu == dev->mtu)
7050 return 0;
7052 /* MTU must be positive, and in range */
7053 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7054 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7055 dev->name, new_mtu, dev->min_mtu);
7056 return -EINVAL;
7059 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7060 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7061 dev->name, new_mtu, dev->max_mtu);
7062 return -EINVAL;
7065 if (!netif_device_present(dev))
7066 return -ENODEV;
7068 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7069 err = notifier_to_errno(err);
7070 if (err)
7071 return err;
7073 orig_mtu = dev->mtu;
7074 err = __dev_set_mtu(dev, new_mtu);
7076 if (!err) {
7077 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7078 err = notifier_to_errno(err);
7079 if (err) {
7080 /* setting mtu back and notifying everyone again,
7081 * so that they have a chance to revert changes.
7083 __dev_set_mtu(dev, orig_mtu);
7084 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7087 return err;
7089 EXPORT_SYMBOL(dev_set_mtu);
7092 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7093 * @dev: device
7094 * @new_len: new tx queue length
7096 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7098 unsigned int orig_len = dev->tx_queue_len;
7099 int res;
7101 if (new_len != (unsigned int)new_len)
7102 return -ERANGE;
7104 if (new_len != orig_len) {
7105 dev->tx_queue_len = new_len;
7106 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7107 res = notifier_to_errno(res);
7108 if (res) {
7109 netdev_err(dev,
7110 "refused to change device tx_queue_len\n");
7111 dev->tx_queue_len = orig_len;
7112 return res;
7114 return dev_qdisc_change_tx_queue_len(dev);
7117 return 0;
7121 * dev_set_group - Change group this device belongs to
7122 * @dev: device
7123 * @new_group: group this device should belong to
7125 void dev_set_group(struct net_device *dev, int new_group)
7127 dev->group = new_group;
7129 EXPORT_SYMBOL(dev_set_group);
7132 * dev_set_mac_address - Change Media Access Control Address
7133 * @dev: device
7134 * @sa: new address
7136 * Change the hardware (MAC) address of the device
7138 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7140 const struct net_device_ops *ops = dev->netdev_ops;
7141 int err;
7143 if (!ops->ndo_set_mac_address)
7144 return -EOPNOTSUPP;
7145 if (sa->sa_family != dev->type)
7146 return -EINVAL;
7147 if (!netif_device_present(dev))
7148 return -ENODEV;
7149 err = ops->ndo_set_mac_address(dev, sa);
7150 if (err)
7151 return err;
7152 dev->addr_assign_type = NET_ADDR_SET;
7153 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7154 add_device_randomness(dev->dev_addr, dev->addr_len);
7155 return 0;
7157 EXPORT_SYMBOL(dev_set_mac_address);
7160 * dev_change_carrier - Change device carrier
7161 * @dev: device
7162 * @new_carrier: new value
7164 * Change device carrier
7166 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7168 const struct net_device_ops *ops = dev->netdev_ops;
7170 if (!ops->ndo_change_carrier)
7171 return -EOPNOTSUPP;
7172 if (!netif_device_present(dev))
7173 return -ENODEV;
7174 return ops->ndo_change_carrier(dev, new_carrier);
7176 EXPORT_SYMBOL(dev_change_carrier);
7179 * dev_get_phys_port_id - Get device physical port ID
7180 * @dev: device
7181 * @ppid: port ID
7183 * Get device physical port ID
7185 int dev_get_phys_port_id(struct net_device *dev,
7186 struct netdev_phys_item_id *ppid)
7188 const struct net_device_ops *ops = dev->netdev_ops;
7190 if (!ops->ndo_get_phys_port_id)
7191 return -EOPNOTSUPP;
7192 return ops->ndo_get_phys_port_id(dev, ppid);
7194 EXPORT_SYMBOL(dev_get_phys_port_id);
7197 * dev_get_phys_port_name - Get device physical port name
7198 * @dev: device
7199 * @name: port name
7200 * @len: limit of bytes to copy to name
7202 * Get device physical port name
7204 int dev_get_phys_port_name(struct net_device *dev,
7205 char *name, size_t len)
7207 const struct net_device_ops *ops = dev->netdev_ops;
7209 if (!ops->ndo_get_phys_port_name)
7210 return -EOPNOTSUPP;
7211 return ops->ndo_get_phys_port_name(dev, name, len);
7213 EXPORT_SYMBOL(dev_get_phys_port_name);
7216 * dev_change_proto_down - update protocol port state information
7217 * @dev: device
7218 * @proto_down: new value
7220 * This info can be used by switch drivers to set the phys state of the
7221 * port.
7223 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7225 const struct net_device_ops *ops = dev->netdev_ops;
7227 if (!ops->ndo_change_proto_down)
7228 return -EOPNOTSUPP;
7229 if (!netif_device_present(dev))
7230 return -ENODEV;
7231 return ops->ndo_change_proto_down(dev, proto_down);
7233 EXPORT_SYMBOL(dev_change_proto_down);
7235 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7236 struct netdev_bpf *xdp)
7238 memset(xdp, 0, sizeof(*xdp));
7239 xdp->command = XDP_QUERY_PROG;
7241 /* Query must always succeed. */
7242 WARN_ON(bpf_op(dev, xdp) < 0);
7245 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7247 struct netdev_bpf xdp;
7249 __dev_xdp_query(dev, bpf_op, &xdp);
7251 return xdp.prog_attached;
7254 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7255 struct netlink_ext_ack *extack, u32 flags,
7256 struct bpf_prog *prog)
7258 struct netdev_bpf xdp;
7260 memset(&xdp, 0, sizeof(xdp));
7261 if (flags & XDP_FLAGS_HW_MODE)
7262 xdp.command = XDP_SETUP_PROG_HW;
7263 else
7264 xdp.command = XDP_SETUP_PROG;
7265 xdp.extack = extack;
7266 xdp.flags = flags;
7267 xdp.prog = prog;
7269 return bpf_op(dev, &xdp);
7272 static void dev_xdp_uninstall(struct net_device *dev)
7274 struct netdev_bpf xdp;
7275 bpf_op_t ndo_bpf;
7277 /* Remove generic XDP */
7278 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7280 /* Remove from the driver */
7281 ndo_bpf = dev->netdev_ops->ndo_bpf;
7282 if (!ndo_bpf)
7283 return;
7285 __dev_xdp_query(dev, ndo_bpf, &xdp);
7286 if (xdp.prog_attached == XDP_ATTACHED_NONE)
7287 return;
7289 /* Program removal should always succeed */
7290 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7294 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7295 * @dev: device
7296 * @extack: netlink extended ack
7297 * @fd: new program fd or negative value to clear
7298 * @flags: xdp-related flags
7300 * Set or clear a bpf program for a device
7302 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7303 int fd, u32 flags)
7305 const struct net_device_ops *ops = dev->netdev_ops;
7306 struct bpf_prog *prog = NULL;
7307 bpf_op_t bpf_op, bpf_chk;
7308 int err;
7310 ASSERT_RTNL();
7312 bpf_op = bpf_chk = ops->ndo_bpf;
7313 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7314 return -EOPNOTSUPP;
7315 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7316 bpf_op = generic_xdp_install;
7317 if (bpf_op == bpf_chk)
7318 bpf_chk = generic_xdp_install;
7320 if (fd >= 0) {
7321 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7322 return -EEXIST;
7323 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7324 __dev_xdp_attached(dev, bpf_op))
7325 return -EBUSY;
7327 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7328 bpf_op == ops->ndo_bpf);
7329 if (IS_ERR(prog))
7330 return PTR_ERR(prog);
7332 if (!(flags & XDP_FLAGS_HW_MODE) &&
7333 bpf_prog_is_dev_bound(prog->aux)) {
7334 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7335 bpf_prog_put(prog);
7336 return -EINVAL;
7340 err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7341 if (err < 0 && prog)
7342 bpf_prog_put(prog);
7344 return err;
7348 * dev_new_index - allocate an ifindex
7349 * @net: the applicable net namespace
7351 * Returns a suitable unique value for a new device interface
7352 * number. The caller must hold the rtnl semaphore or the
7353 * dev_base_lock to be sure it remains unique.
7355 static int dev_new_index(struct net *net)
7357 int ifindex = net->ifindex;
7359 for (;;) {
7360 if (++ifindex <= 0)
7361 ifindex = 1;
7362 if (!__dev_get_by_index(net, ifindex))
7363 return net->ifindex = ifindex;
7367 /* Delayed registration/unregisteration */
7368 static LIST_HEAD(net_todo_list);
7369 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7371 static void net_set_todo(struct net_device *dev)
7373 list_add_tail(&dev->todo_list, &net_todo_list);
7374 dev_net(dev)->dev_unreg_count++;
7377 static void rollback_registered_many(struct list_head *head)
7379 struct net_device *dev, *tmp;
7380 LIST_HEAD(close_head);
7382 BUG_ON(dev_boot_phase);
7383 ASSERT_RTNL();
7385 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7386 /* Some devices call without registering
7387 * for initialization unwind. Remove those
7388 * devices and proceed with the remaining.
7390 if (dev->reg_state == NETREG_UNINITIALIZED) {
7391 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7392 dev->name, dev);
7394 WARN_ON(1);
7395 list_del(&dev->unreg_list);
7396 continue;
7398 dev->dismantle = true;
7399 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7402 /* If device is running, close it first. */
7403 list_for_each_entry(dev, head, unreg_list)
7404 list_add_tail(&dev->close_list, &close_head);
7405 dev_close_many(&close_head, true);
7407 list_for_each_entry(dev, head, unreg_list) {
7408 /* And unlink it from device chain. */
7409 unlist_netdevice(dev);
7411 dev->reg_state = NETREG_UNREGISTERING;
7413 flush_all_backlogs();
7415 synchronize_net();
7417 list_for_each_entry(dev, head, unreg_list) {
7418 struct sk_buff *skb = NULL;
7420 /* Shutdown queueing discipline. */
7421 dev_shutdown(dev);
7423 dev_xdp_uninstall(dev);
7425 /* Notify protocols, that we are about to destroy
7426 * this device. They should clean all the things.
7428 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7430 if (!dev->rtnl_link_ops ||
7431 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7432 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7433 GFP_KERNEL, NULL, 0);
7436 * Flush the unicast and multicast chains
7438 dev_uc_flush(dev);
7439 dev_mc_flush(dev);
7441 if (dev->netdev_ops->ndo_uninit)
7442 dev->netdev_ops->ndo_uninit(dev);
7444 if (skb)
7445 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7447 /* Notifier chain MUST detach us all upper devices. */
7448 WARN_ON(netdev_has_any_upper_dev(dev));
7449 WARN_ON(netdev_has_any_lower_dev(dev));
7451 /* Remove entries from kobject tree */
7452 netdev_unregister_kobject(dev);
7453 #ifdef CONFIG_XPS
7454 /* Remove XPS queueing entries */
7455 netif_reset_xps_queues_gt(dev, 0);
7456 #endif
7459 synchronize_net();
7461 list_for_each_entry(dev, head, unreg_list)
7462 dev_put(dev);
7465 static void rollback_registered(struct net_device *dev)
7467 LIST_HEAD(single);
7469 list_add(&dev->unreg_list, &single);
7470 rollback_registered_many(&single);
7471 list_del(&single);
7474 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7475 struct net_device *upper, netdev_features_t features)
7477 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7478 netdev_features_t feature;
7479 int feature_bit;
7481 for_each_netdev_feature(&upper_disables, feature_bit) {
7482 feature = __NETIF_F_BIT(feature_bit);
7483 if (!(upper->wanted_features & feature)
7484 && (features & feature)) {
7485 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7486 &feature, upper->name);
7487 features &= ~feature;
7491 return features;
7494 static void netdev_sync_lower_features(struct net_device *upper,
7495 struct net_device *lower, netdev_features_t features)
7497 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7498 netdev_features_t feature;
7499 int feature_bit;
7501 for_each_netdev_feature(&upper_disables, feature_bit) {
7502 feature = __NETIF_F_BIT(feature_bit);
7503 if (!(features & feature) && (lower->features & feature)) {
7504 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7505 &feature, lower->name);
7506 lower->wanted_features &= ~feature;
7507 netdev_update_features(lower);
7509 if (unlikely(lower->features & feature))
7510 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7511 &feature, lower->name);
7516 static netdev_features_t netdev_fix_features(struct net_device *dev,
7517 netdev_features_t features)
7519 /* Fix illegal checksum combinations */
7520 if ((features & NETIF_F_HW_CSUM) &&
7521 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7522 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7523 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7526 /* TSO requires that SG is present as well. */
7527 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7528 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7529 features &= ~NETIF_F_ALL_TSO;
7532 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7533 !(features & NETIF_F_IP_CSUM)) {
7534 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7535 features &= ~NETIF_F_TSO;
7536 features &= ~NETIF_F_TSO_ECN;
7539 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7540 !(features & NETIF_F_IPV6_CSUM)) {
7541 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7542 features &= ~NETIF_F_TSO6;
7545 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7546 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7547 features &= ~NETIF_F_TSO_MANGLEID;
7549 /* TSO ECN requires that TSO is present as well. */
7550 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7551 features &= ~NETIF_F_TSO_ECN;
7553 /* Software GSO depends on SG. */
7554 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7555 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7556 features &= ~NETIF_F_GSO;
7559 /* GSO partial features require GSO partial be set */
7560 if ((features & dev->gso_partial_features) &&
7561 !(features & NETIF_F_GSO_PARTIAL)) {
7562 netdev_dbg(dev,
7563 "Dropping partially supported GSO features since no GSO partial.\n");
7564 features &= ~dev->gso_partial_features;
7567 if (!(features & NETIF_F_RXCSUM)) {
7568 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7569 * successfully merged by hardware must also have the
7570 * checksum verified by hardware. If the user does not
7571 * want to enable RXCSUM, logically, we should disable GRO_HW.
7573 if (features & NETIF_F_GRO_HW) {
7574 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7575 features &= ~NETIF_F_GRO_HW;
7579 /* LRO/HW-GRO features cannot be combined with RX-FCS */
7580 if (features & NETIF_F_RXFCS) {
7581 if (features & NETIF_F_LRO) {
7582 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
7583 features &= ~NETIF_F_LRO;
7586 if (features & NETIF_F_GRO_HW) {
7587 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7588 features &= ~NETIF_F_GRO_HW;
7592 return features;
7595 int __netdev_update_features(struct net_device *dev)
7597 struct net_device *upper, *lower;
7598 netdev_features_t features;
7599 struct list_head *iter;
7600 int err = -1;
7602 ASSERT_RTNL();
7604 features = netdev_get_wanted_features(dev);
7606 if (dev->netdev_ops->ndo_fix_features)
7607 features = dev->netdev_ops->ndo_fix_features(dev, features);
7609 /* driver might be less strict about feature dependencies */
7610 features = netdev_fix_features(dev, features);
7612 /* some features can't be enabled if they're off an an upper device */
7613 netdev_for_each_upper_dev_rcu(dev, upper, iter)
7614 features = netdev_sync_upper_features(dev, upper, features);
7616 if (dev->features == features)
7617 goto sync_lower;
7619 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7620 &dev->features, &features);
7622 if (dev->netdev_ops->ndo_set_features)
7623 err = dev->netdev_ops->ndo_set_features(dev, features);
7624 else
7625 err = 0;
7627 if (unlikely(err < 0)) {
7628 netdev_err(dev,
7629 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7630 err, &features, &dev->features);
7631 /* return non-0 since some features might have changed and
7632 * it's better to fire a spurious notification than miss it
7634 return -1;
7637 sync_lower:
7638 /* some features must be disabled on lower devices when disabled
7639 * on an upper device (think: bonding master or bridge)
7641 netdev_for_each_lower_dev(dev, lower, iter)
7642 netdev_sync_lower_features(dev, lower, features);
7644 if (!err) {
7645 netdev_features_t diff = features ^ dev->features;
7647 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7648 /* udp_tunnel_{get,drop}_rx_info both need
7649 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7650 * device, or they won't do anything.
7651 * Thus we need to update dev->features
7652 * *before* calling udp_tunnel_get_rx_info,
7653 * but *after* calling udp_tunnel_drop_rx_info.
7655 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7656 dev->features = features;
7657 udp_tunnel_get_rx_info(dev);
7658 } else {
7659 udp_tunnel_drop_rx_info(dev);
7663 dev->features = features;
7666 return err < 0 ? 0 : 1;
7670 * netdev_update_features - recalculate device features
7671 * @dev: the device to check
7673 * Recalculate dev->features set and send notifications if it
7674 * has changed. Should be called after driver or hardware dependent
7675 * conditions might have changed that influence the features.
7677 void netdev_update_features(struct net_device *dev)
7679 if (__netdev_update_features(dev))
7680 netdev_features_change(dev);
7682 EXPORT_SYMBOL(netdev_update_features);
7685 * netdev_change_features - recalculate device features
7686 * @dev: the device to check
7688 * Recalculate dev->features set and send notifications even
7689 * if they have not changed. Should be called instead of
7690 * netdev_update_features() if also dev->vlan_features might
7691 * have changed to allow the changes to be propagated to stacked
7692 * VLAN devices.
7694 void netdev_change_features(struct net_device *dev)
7696 __netdev_update_features(dev);
7697 netdev_features_change(dev);
7699 EXPORT_SYMBOL(netdev_change_features);
7702 * netif_stacked_transfer_operstate - transfer operstate
7703 * @rootdev: the root or lower level device to transfer state from
7704 * @dev: the device to transfer operstate to
7706 * Transfer operational state from root to device. This is normally
7707 * called when a stacking relationship exists between the root
7708 * device and the device(a leaf device).
7710 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7711 struct net_device *dev)
7713 if (rootdev->operstate == IF_OPER_DORMANT)
7714 netif_dormant_on(dev);
7715 else
7716 netif_dormant_off(dev);
7718 if (netif_carrier_ok(rootdev))
7719 netif_carrier_on(dev);
7720 else
7721 netif_carrier_off(dev);
7723 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7725 static int netif_alloc_rx_queues(struct net_device *dev)
7727 unsigned int i, count = dev->num_rx_queues;
7728 struct netdev_rx_queue *rx;
7729 size_t sz = count * sizeof(*rx);
7730 int err = 0;
7732 BUG_ON(count < 1);
7734 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7735 if (!rx)
7736 return -ENOMEM;
7738 dev->_rx = rx;
7740 for (i = 0; i < count; i++) {
7741 rx[i].dev = dev;
7743 /* XDP RX-queue setup */
7744 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7745 if (err < 0)
7746 goto err_rxq_info;
7748 return 0;
7750 err_rxq_info:
7751 /* Rollback successful reg's and free other resources */
7752 while (i--)
7753 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7754 kvfree(dev->_rx);
7755 dev->_rx = NULL;
7756 return err;
7759 static void netif_free_rx_queues(struct net_device *dev)
7761 unsigned int i, count = dev->num_rx_queues;
7763 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7764 if (!dev->_rx)
7765 return;
7767 for (i = 0; i < count; i++)
7768 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7770 kvfree(dev->_rx);
7773 static void netdev_init_one_queue(struct net_device *dev,
7774 struct netdev_queue *queue, void *_unused)
7776 /* Initialize queue lock */
7777 spin_lock_init(&queue->_xmit_lock);
7778 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7779 queue->xmit_lock_owner = -1;
7780 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7781 queue->dev = dev;
7782 #ifdef CONFIG_BQL
7783 dql_init(&queue->dql, HZ);
7784 #endif
7787 static void netif_free_tx_queues(struct net_device *dev)
7789 kvfree(dev->_tx);
7792 static int netif_alloc_netdev_queues(struct net_device *dev)
7794 unsigned int count = dev->num_tx_queues;
7795 struct netdev_queue *tx;
7796 size_t sz = count * sizeof(*tx);
7798 if (count < 1 || count > 0xffff)
7799 return -EINVAL;
7801 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7802 if (!tx)
7803 return -ENOMEM;
7805 dev->_tx = tx;
7807 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7808 spin_lock_init(&dev->tx_global_lock);
7810 return 0;
7813 void netif_tx_stop_all_queues(struct net_device *dev)
7815 unsigned int i;
7817 for (i = 0; i < dev->num_tx_queues; i++) {
7818 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7820 netif_tx_stop_queue(txq);
7823 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7826 * register_netdevice - register a network device
7827 * @dev: device to register
7829 * Take a completed network device structure and add it to the kernel
7830 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7831 * chain. 0 is returned on success. A negative errno code is returned
7832 * on a failure to set up the device, or if the name is a duplicate.
7834 * Callers must hold the rtnl semaphore. You may want
7835 * register_netdev() instead of this.
7837 * BUGS:
7838 * The locking appears insufficient to guarantee two parallel registers
7839 * will not get the same name.
7842 int register_netdevice(struct net_device *dev)
7844 int ret;
7845 struct net *net = dev_net(dev);
7847 BUG_ON(dev_boot_phase);
7848 ASSERT_RTNL();
7850 might_sleep();
7852 /* When net_device's are persistent, this will be fatal. */
7853 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7854 BUG_ON(!net);
7856 spin_lock_init(&dev->addr_list_lock);
7857 netdev_set_addr_lockdep_class(dev);
7859 ret = dev_get_valid_name(net, dev, dev->name);
7860 if (ret < 0)
7861 goto out;
7863 /* Init, if this function is available */
7864 if (dev->netdev_ops->ndo_init) {
7865 ret = dev->netdev_ops->ndo_init(dev);
7866 if (ret) {
7867 if (ret > 0)
7868 ret = -EIO;
7869 goto out;
7873 if (((dev->hw_features | dev->features) &
7874 NETIF_F_HW_VLAN_CTAG_FILTER) &&
7875 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7876 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7877 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7878 ret = -EINVAL;
7879 goto err_uninit;
7882 ret = -EBUSY;
7883 if (!dev->ifindex)
7884 dev->ifindex = dev_new_index(net);
7885 else if (__dev_get_by_index(net, dev->ifindex))
7886 goto err_uninit;
7888 /* Transfer changeable features to wanted_features and enable
7889 * software offloads (GSO and GRO).
7891 dev->hw_features |= NETIF_F_SOFT_FEATURES;
7892 dev->features |= NETIF_F_SOFT_FEATURES;
7894 if (dev->netdev_ops->ndo_udp_tunnel_add) {
7895 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7896 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7899 dev->wanted_features = dev->features & dev->hw_features;
7901 if (!(dev->flags & IFF_LOOPBACK))
7902 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7904 /* If IPv4 TCP segmentation offload is supported we should also
7905 * allow the device to enable segmenting the frame with the option
7906 * of ignoring a static IP ID value. This doesn't enable the
7907 * feature itself but allows the user to enable it later.
7909 if (dev->hw_features & NETIF_F_TSO)
7910 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7911 if (dev->vlan_features & NETIF_F_TSO)
7912 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7913 if (dev->mpls_features & NETIF_F_TSO)
7914 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7915 if (dev->hw_enc_features & NETIF_F_TSO)
7916 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7918 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7920 dev->vlan_features |= NETIF_F_HIGHDMA;
7922 /* Make NETIF_F_SG inheritable to tunnel devices.
7924 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7926 /* Make NETIF_F_SG inheritable to MPLS.
7928 dev->mpls_features |= NETIF_F_SG;
7930 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7931 ret = notifier_to_errno(ret);
7932 if (ret)
7933 goto err_uninit;
7935 ret = netdev_register_kobject(dev);
7936 if (ret)
7937 goto err_uninit;
7938 dev->reg_state = NETREG_REGISTERED;
7940 __netdev_update_features(dev);
7943 * Default initial state at registry is that the
7944 * device is present.
7947 set_bit(__LINK_STATE_PRESENT, &dev->state);
7949 linkwatch_init_dev(dev);
7951 dev_init_scheduler(dev);
7952 dev_hold(dev);
7953 list_netdevice(dev);
7954 add_device_randomness(dev->dev_addr, dev->addr_len);
7956 /* If the device has permanent device address, driver should
7957 * set dev_addr and also addr_assign_type should be set to
7958 * NET_ADDR_PERM (default value).
7960 if (dev->addr_assign_type == NET_ADDR_PERM)
7961 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7963 /* Notify protocols, that a new device appeared. */
7964 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7965 ret = notifier_to_errno(ret);
7966 if (ret) {
7967 rollback_registered(dev);
7968 dev->reg_state = NETREG_UNREGISTERED;
7971 * Prevent userspace races by waiting until the network
7972 * device is fully setup before sending notifications.
7974 if (!dev->rtnl_link_ops ||
7975 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7976 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7978 out:
7979 return ret;
7981 err_uninit:
7982 if (dev->netdev_ops->ndo_uninit)
7983 dev->netdev_ops->ndo_uninit(dev);
7984 if (dev->priv_destructor)
7985 dev->priv_destructor(dev);
7986 goto out;
7988 EXPORT_SYMBOL(register_netdevice);
7991 * init_dummy_netdev - init a dummy network device for NAPI
7992 * @dev: device to init
7994 * This takes a network device structure and initialize the minimum
7995 * amount of fields so it can be used to schedule NAPI polls without
7996 * registering a full blown interface. This is to be used by drivers
7997 * that need to tie several hardware interfaces to a single NAPI
7998 * poll scheduler due to HW limitations.
8000 int init_dummy_netdev(struct net_device *dev)
8002 /* Clear everything. Note we don't initialize spinlocks
8003 * are they aren't supposed to be taken by any of the
8004 * NAPI code and this dummy netdev is supposed to be
8005 * only ever used for NAPI polls
8007 memset(dev, 0, sizeof(struct net_device));
8009 /* make sure we BUG if trying to hit standard
8010 * register/unregister code path
8012 dev->reg_state = NETREG_DUMMY;
8014 /* NAPI wants this */
8015 INIT_LIST_HEAD(&dev->napi_list);
8017 /* a dummy interface is started by default */
8018 set_bit(__LINK_STATE_PRESENT, &dev->state);
8019 set_bit(__LINK_STATE_START, &dev->state);
8021 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8022 * because users of this 'device' dont need to change
8023 * its refcount.
8026 return 0;
8028 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8032 * register_netdev - register a network device
8033 * @dev: device to register
8035 * Take a completed network device structure and add it to the kernel
8036 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8037 * chain. 0 is returned on success. A negative errno code is returned
8038 * on a failure to set up the device, or if the name is a duplicate.
8040 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8041 * and expands the device name if you passed a format string to
8042 * alloc_netdev.
8044 int register_netdev(struct net_device *dev)
8046 int err;
8048 if (rtnl_lock_killable())
8049 return -EINTR;
8050 err = register_netdevice(dev);
8051 rtnl_unlock();
8052 return err;
8054 EXPORT_SYMBOL(register_netdev);
8056 int netdev_refcnt_read(const struct net_device *dev)
8058 int i, refcnt = 0;
8060 for_each_possible_cpu(i)
8061 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8062 return refcnt;
8064 EXPORT_SYMBOL(netdev_refcnt_read);
8067 * netdev_wait_allrefs - wait until all references are gone.
8068 * @dev: target net_device
8070 * This is called when unregistering network devices.
8072 * Any protocol or device that holds a reference should register
8073 * for netdevice notification, and cleanup and put back the
8074 * reference if they receive an UNREGISTER event.
8075 * We can get stuck here if buggy protocols don't correctly
8076 * call dev_put.
8078 static void netdev_wait_allrefs(struct net_device *dev)
8080 unsigned long rebroadcast_time, warning_time;
8081 int refcnt;
8083 linkwatch_forget_dev(dev);
8085 rebroadcast_time = warning_time = jiffies;
8086 refcnt = netdev_refcnt_read(dev);
8088 while (refcnt != 0) {
8089 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8090 rtnl_lock();
8092 /* Rebroadcast unregister notification */
8093 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8095 __rtnl_unlock();
8096 rcu_barrier();
8097 rtnl_lock();
8099 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8100 &dev->state)) {
8101 /* We must not have linkwatch events
8102 * pending on unregister. If this
8103 * happens, we simply run the queue
8104 * unscheduled, resulting in a noop
8105 * for this device.
8107 linkwatch_run_queue();
8110 __rtnl_unlock();
8112 rebroadcast_time = jiffies;
8115 msleep(250);
8117 refcnt = netdev_refcnt_read(dev);
8119 if (time_after(jiffies, warning_time + 10 * HZ)) {
8120 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8121 dev->name, refcnt);
8122 warning_time = jiffies;
8127 /* The sequence is:
8129 * rtnl_lock();
8130 * ...
8131 * register_netdevice(x1);
8132 * register_netdevice(x2);
8133 * ...
8134 * unregister_netdevice(y1);
8135 * unregister_netdevice(y2);
8136 * ...
8137 * rtnl_unlock();
8138 * free_netdev(y1);
8139 * free_netdev(y2);
8141 * We are invoked by rtnl_unlock().
8142 * This allows us to deal with problems:
8143 * 1) We can delete sysfs objects which invoke hotplug
8144 * without deadlocking with linkwatch via keventd.
8145 * 2) Since we run with the RTNL semaphore not held, we can sleep
8146 * safely in order to wait for the netdev refcnt to drop to zero.
8148 * We must not return until all unregister events added during
8149 * the interval the lock was held have been completed.
8151 void netdev_run_todo(void)
8153 struct list_head list;
8155 /* Snapshot list, allow later requests */
8156 list_replace_init(&net_todo_list, &list);
8158 __rtnl_unlock();
8161 /* Wait for rcu callbacks to finish before next phase */
8162 if (!list_empty(&list))
8163 rcu_barrier();
8165 while (!list_empty(&list)) {
8166 struct net_device *dev
8167 = list_first_entry(&list, struct net_device, todo_list);
8168 list_del(&dev->todo_list);
8170 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8171 pr_err("network todo '%s' but state %d\n",
8172 dev->name, dev->reg_state);
8173 dump_stack();
8174 continue;
8177 dev->reg_state = NETREG_UNREGISTERED;
8179 netdev_wait_allrefs(dev);
8181 /* paranoia */
8182 BUG_ON(netdev_refcnt_read(dev));
8183 BUG_ON(!list_empty(&dev->ptype_all));
8184 BUG_ON(!list_empty(&dev->ptype_specific));
8185 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8186 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8187 #if IS_ENABLED(CONFIG_DECNET)
8188 WARN_ON(dev->dn_ptr);
8189 #endif
8190 if (dev->priv_destructor)
8191 dev->priv_destructor(dev);
8192 if (dev->needs_free_netdev)
8193 free_netdev(dev);
8195 /* Report a network device has been unregistered */
8196 rtnl_lock();
8197 dev_net(dev)->dev_unreg_count--;
8198 __rtnl_unlock();
8199 wake_up(&netdev_unregistering_wq);
8201 /* Free network device */
8202 kobject_put(&dev->dev.kobj);
8206 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8207 * all the same fields in the same order as net_device_stats, with only
8208 * the type differing, but rtnl_link_stats64 may have additional fields
8209 * at the end for newer counters.
8211 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8212 const struct net_device_stats *netdev_stats)
8214 #if BITS_PER_LONG == 64
8215 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8216 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8217 /* zero out counters that only exist in rtnl_link_stats64 */
8218 memset((char *)stats64 + sizeof(*netdev_stats), 0,
8219 sizeof(*stats64) - sizeof(*netdev_stats));
8220 #else
8221 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8222 const unsigned long *src = (const unsigned long *)netdev_stats;
8223 u64 *dst = (u64 *)stats64;
8225 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8226 for (i = 0; i < n; i++)
8227 dst[i] = src[i];
8228 /* zero out counters that only exist in rtnl_link_stats64 */
8229 memset((char *)stats64 + n * sizeof(u64), 0,
8230 sizeof(*stats64) - n * sizeof(u64));
8231 #endif
8233 EXPORT_SYMBOL(netdev_stats_to_stats64);
8236 * dev_get_stats - get network device statistics
8237 * @dev: device to get statistics from
8238 * @storage: place to store stats
8240 * Get network statistics from device. Return @storage.
8241 * The device driver may provide its own method by setting
8242 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8243 * otherwise the internal statistics structure is used.
8245 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8246 struct rtnl_link_stats64 *storage)
8248 const struct net_device_ops *ops = dev->netdev_ops;
8250 if (ops->ndo_get_stats64) {
8251 memset(storage, 0, sizeof(*storage));
8252 ops->ndo_get_stats64(dev, storage);
8253 } else if (ops->ndo_get_stats) {
8254 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8255 } else {
8256 netdev_stats_to_stats64(storage, &dev->stats);
8258 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8259 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8260 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8261 return storage;
8263 EXPORT_SYMBOL(dev_get_stats);
8265 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8267 struct netdev_queue *queue = dev_ingress_queue(dev);
8269 #ifdef CONFIG_NET_CLS_ACT
8270 if (queue)
8271 return queue;
8272 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8273 if (!queue)
8274 return NULL;
8275 netdev_init_one_queue(dev, queue, NULL);
8276 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8277 queue->qdisc_sleeping = &noop_qdisc;
8278 rcu_assign_pointer(dev->ingress_queue, queue);
8279 #endif
8280 return queue;
8283 static const struct ethtool_ops default_ethtool_ops;
8285 void netdev_set_default_ethtool_ops(struct net_device *dev,
8286 const struct ethtool_ops *ops)
8288 if (dev->ethtool_ops == &default_ethtool_ops)
8289 dev->ethtool_ops = ops;
8291 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8293 void netdev_freemem(struct net_device *dev)
8295 char *addr = (char *)dev - dev->padded;
8297 kvfree(addr);
8301 * alloc_netdev_mqs - allocate network device
8302 * @sizeof_priv: size of private data to allocate space for
8303 * @name: device name format string
8304 * @name_assign_type: origin of device name
8305 * @setup: callback to initialize device
8306 * @txqs: the number of TX subqueues to allocate
8307 * @rxqs: the number of RX subqueues to allocate
8309 * Allocates a struct net_device with private data area for driver use
8310 * and performs basic initialization. Also allocates subqueue structs
8311 * for each queue on the device.
8313 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8314 unsigned char name_assign_type,
8315 void (*setup)(struct net_device *),
8316 unsigned int txqs, unsigned int rxqs)
8318 struct net_device *dev;
8319 unsigned int alloc_size;
8320 struct net_device *p;
8322 BUG_ON(strlen(name) >= sizeof(dev->name));
8324 if (txqs < 1) {
8325 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8326 return NULL;
8329 if (rxqs < 1) {
8330 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8331 return NULL;
8334 alloc_size = sizeof(struct net_device);
8335 if (sizeof_priv) {
8336 /* ensure 32-byte alignment of private area */
8337 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8338 alloc_size += sizeof_priv;
8340 /* ensure 32-byte alignment of whole construct */
8341 alloc_size += NETDEV_ALIGN - 1;
8343 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8344 if (!p)
8345 return NULL;
8347 dev = PTR_ALIGN(p, NETDEV_ALIGN);
8348 dev->padded = (char *)dev - (char *)p;
8350 dev->pcpu_refcnt = alloc_percpu(int);
8351 if (!dev->pcpu_refcnt)
8352 goto free_dev;
8354 if (dev_addr_init(dev))
8355 goto free_pcpu;
8357 dev_mc_init(dev);
8358 dev_uc_init(dev);
8360 dev_net_set(dev, &init_net);
8362 dev->gso_max_size = GSO_MAX_SIZE;
8363 dev->gso_max_segs = GSO_MAX_SEGS;
8365 INIT_LIST_HEAD(&dev->napi_list);
8366 INIT_LIST_HEAD(&dev->unreg_list);
8367 INIT_LIST_HEAD(&dev->close_list);
8368 INIT_LIST_HEAD(&dev->link_watch_list);
8369 INIT_LIST_HEAD(&dev->adj_list.upper);
8370 INIT_LIST_HEAD(&dev->adj_list.lower);
8371 INIT_LIST_HEAD(&dev->ptype_all);
8372 INIT_LIST_HEAD(&dev->ptype_specific);
8373 #ifdef CONFIG_NET_SCHED
8374 hash_init(dev->qdisc_hash);
8375 #endif
8376 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8377 setup(dev);
8379 if (!dev->tx_queue_len) {
8380 dev->priv_flags |= IFF_NO_QUEUE;
8381 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8384 dev->num_tx_queues = txqs;
8385 dev->real_num_tx_queues = txqs;
8386 if (netif_alloc_netdev_queues(dev))
8387 goto free_all;
8389 dev->num_rx_queues = rxqs;
8390 dev->real_num_rx_queues = rxqs;
8391 if (netif_alloc_rx_queues(dev))
8392 goto free_all;
8394 strcpy(dev->name, name);
8395 dev->name_assign_type = name_assign_type;
8396 dev->group = INIT_NETDEV_GROUP;
8397 if (!dev->ethtool_ops)
8398 dev->ethtool_ops = &default_ethtool_ops;
8400 nf_hook_ingress_init(dev);
8402 return dev;
8404 free_all:
8405 free_netdev(dev);
8406 return NULL;
8408 free_pcpu:
8409 free_percpu(dev->pcpu_refcnt);
8410 free_dev:
8411 netdev_freemem(dev);
8412 return NULL;
8414 EXPORT_SYMBOL(alloc_netdev_mqs);
8417 * free_netdev - free network device
8418 * @dev: device
8420 * This function does the last stage of destroying an allocated device
8421 * interface. The reference to the device object is released. If this
8422 * is the last reference then it will be freed.Must be called in process
8423 * context.
8425 void free_netdev(struct net_device *dev)
8427 struct napi_struct *p, *n;
8429 might_sleep();
8430 netif_free_tx_queues(dev);
8431 netif_free_rx_queues(dev);
8433 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8435 /* Flush device addresses */
8436 dev_addr_flush(dev);
8438 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8439 netif_napi_del(p);
8441 free_percpu(dev->pcpu_refcnt);
8442 dev->pcpu_refcnt = NULL;
8444 /* Compatibility with error handling in drivers */
8445 if (dev->reg_state == NETREG_UNINITIALIZED) {
8446 netdev_freemem(dev);
8447 return;
8450 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8451 dev->reg_state = NETREG_RELEASED;
8453 /* will free via device release */
8454 put_device(&dev->dev);
8456 EXPORT_SYMBOL(free_netdev);
8459 * synchronize_net - Synchronize with packet receive processing
8461 * Wait for packets currently being received to be done.
8462 * Does not block later packets from starting.
8464 void synchronize_net(void)
8466 might_sleep();
8467 if (rtnl_is_locked())
8468 synchronize_rcu_expedited();
8469 else
8470 synchronize_rcu();
8472 EXPORT_SYMBOL(synchronize_net);
8475 * unregister_netdevice_queue - remove device from the kernel
8476 * @dev: device
8477 * @head: list
8479 * This function shuts down a device interface and removes it
8480 * from the kernel tables.
8481 * If head not NULL, device is queued to be unregistered later.
8483 * Callers must hold the rtnl semaphore. You may want
8484 * unregister_netdev() instead of this.
8487 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8489 ASSERT_RTNL();
8491 if (head) {
8492 list_move_tail(&dev->unreg_list, head);
8493 } else {
8494 rollback_registered(dev);
8495 /* Finish processing unregister after unlock */
8496 net_set_todo(dev);
8499 EXPORT_SYMBOL(unregister_netdevice_queue);
8502 * unregister_netdevice_many - unregister many devices
8503 * @head: list of devices
8505 * Note: As most callers use a stack allocated list_head,
8506 * we force a list_del() to make sure stack wont be corrupted later.
8508 void unregister_netdevice_many(struct list_head *head)
8510 struct net_device *dev;
8512 if (!list_empty(head)) {
8513 rollback_registered_many(head);
8514 list_for_each_entry(dev, head, unreg_list)
8515 net_set_todo(dev);
8516 list_del(head);
8519 EXPORT_SYMBOL(unregister_netdevice_many);
8522 * unregister_netdev - remove device from the kernel
8523 * @dev: device
8525 * This function shuts down a device interface and removes it
8526 * from the kernel tables.
8528 * This is just a wrapper for unregister_netdevice that takes
8529 * the rtnl semaphore. In general you want to use this and not
8530 * unregister_netdevice.
8532 void unregister_netdev(struct net_device *dev)
8534 rtnl_lock();
8535 unregister_netdevice(dev);
8536 rtnl_unlock();
8538 EXPORT_SYMBOL(unregister_netdev);
8541 * dev_change_net_namespace - move device to different nethost namespace
8542 * @dev: device
8543 * @net: network namespace
8544 * @pat: If not NULL name pattern to try if the current device name
8545 * is already taken in the destination network namespace.
8547 * This function shuts down a device interface and moves it
8548 * to a new network namespace. On success 0 is returned, on
8549 * a failure a netagive errno code is returned.
8551 * Callers must hold the rtnl semaphore.
8554 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8556 int err, new_nsid, new_ifindex;
8558 ASSERT_RTNL();
8560 /* Don't allow namespace local devices to be moved. */
8561 err = -EINVAL;
8562 if (dev->features & NETIF_F_NETNS_LOCAL)
8563 goto out;
8565 /* Ensure the device has been registrered */
8566 if (dev->reg_state != NETREG_REGISTERED)
8567 goto out;
8569 /* Get out if there is nothing todo */
8570 err = 0;
8571 if (net_eq(dev_net(dev), net))
8572 goto out;
8574 /* Pick the destination device name, and ensure
8575 * we can use it in the destination network namespace.
8577 err = -EEXIST;
8578 if (__dev_get_by_name(net, dev->name)) {
8579 /* We get here if we can't use the current device name */
8580 if (!pat)
8581 goto out;
8582 if (dev_get_valid_name(net, dev, pat) < 0)
8583 goto out;
8587 * And now a mini version of register_netdevice unregister_netdevice.
8590 /* If device is running close it first. */
8591 dev_close(dev);
8593 /* And unlink it from device chain */
8594 err = -ENODEV;
8595 unlist_netdevice(dev);
8597 synchronize_net();
8599 /* Shutdown queueing discipline. */
8600 dev_shutdown(dev);
8602 /* Notify protocols, that we are about to destroy
8603 * this device. They should clean all the things.
8605 * Note that dev->reg_state stays at NETREG_REGISTERED.
8606 * This is wanted because this way 8021q and macvlan know
8607 * the device is just moving and can keep their slaves up.
8609 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8610 rcu_barrier();
8612 new_nsid = peernet2id_alloc(dev_net(dev), net);
8613 /* If there is an ifindex conflict assign a new one */
8614 if (__dev_get_by_index(net, dev->ifindex))
8615 new_ifindex = dev_new_index(net);
8616 else
8617 new_ifindex = dev->ifindex;
8619 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8620 new_ifindex);
8623 * Flush the unicast and multicast chains
8625 dev_uc_flush(dev);
8626 dev_mc_flush(dev);
8628 /* Send a netdev-removed uevent to the old namespace */
8629 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8630 netdev_adjacent_del_links(dev);
8632 /* Actually switch the network namespace */
8633 dev_net_set(dev, net);
8634 dev->ifindex = new_ifindex;
8636 /* Send a netdev-add uevent to the new namespace */
8637 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8638 netdev_adjacent_add_links(dev);
8640 /* Fixup kobjects */
8641 err = device_rename(&dev->dev, dev->name);
8642 WARN_ON(err);
8644 /* Add the device back in the hashes */
8645 list_netdevice(dev);
8647 /* Notify protocols, that a new device appeared. */
8648 call_netdevice_notifiers(NETDEV_REGISTER, dev);
8651 * Prevent userspace races by waiting until the network
8652 * device is fully setup before sending notifications.
8654 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8656 synchronize_net();
8657 err = 0;
8658 out:
8659 return err;
8661 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8663 static int dev_cpu_dead(unsigned int oldcpu)
8665 struct sk_buff **list_skb;
8666 struct sk_buff *skb;
8667 unsigned int cpu;
8668 struct softnet_data *sd, *oldsd, *remsd = NULL;
8670 local_irq_disable();
8671 cpu = smp_processor_id();
8672 sd = &per_cpu(softnet_data, cpu);
8673 oldsd = &per_cpu(softnet_data, oldcpu);
8675 /* Find end of our completion_queue. */
8676 list_skb = &sd->completion_queue;
8677 while (*list_skb)
8678 list_skb = &(*list_skb)->next;
8679 /* Append completion queue from offline CPU. */
8680 *list_skb = oldsd->completion_queue;
8681 oldsd->completion_queue = NULL;
8683 /* Append output queue from offline CPU. */
8684 if (oldsd->output_queue) {
8685 *sd->output_queue_tailp = oldsd->output_queue;
8686 sd->output_queue_tailp = oldsd->output_queue_tailp;
8687 oldsd->output_queue = NULL;
8688 oldsd->output_queue_tailp = &oldsd->output_queue;
8690 /* Append NAPI poll list from offline CPU, with one exception :
8691 * process_backlog() must be called by cpu owning percpu backlog.
8692 * We properly handle process_queue & input_pkt_queue later.
8694 while (!list_empty(&oldsd->poll_list)) {
8695 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8696 struct napi_struct,
8697 poll_list);
8699 list_del_init(&napi->poll_list);
8700 if (napi->poll == process_backlog)
8701 napi->state = 0;
8702 else
8703 ____napi_schedule(sd, napi);
8706 raise_softirq_irqoff(NET_TX_SOFTIRQ);
8707 local_irq_enable();
8709 #ifdef CONFIG_RPS
8710 remsd = oldsd->rps_ipi_list;
8711 oldsd->rps_ipi_list = NULL;
8712 #endif
8713 /* send out pending IPI's on offline CPU */
8714 net_rps_send_ipi(remsd);
8716 /* Process offline CPU's input_pkt_queue */
8717 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8718 netif_rx_ni(skb);
8719 input_queue_head_incr(oldsd);
8721 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8722 netif_rx_ni(skb);
8723 input_queue_head_incr(oldsd);
8726 return 0;
8730 * netdev_increment_features - increment feature set by one
8731 * @all: current feature set
8732 * @one: new feature set
8733 * @mask: mask feature set
8735 * Computes a new feature set after adding a device with feature set
8736 * @one to the master device with current feature set @all. Will not
8737 * enable anything that is off in @mask. Returns the new feature set.
8739 netdev_features_t netdev_increment_features(netdev_features_t all,
8740 netdev_features_t one, netdev_features_t mask)
8742 if (mask & NETIF_F_HW_CSUM)
8743 mask |= NETIF_F_CSUM_MASK;
8744 mask |= NETIF_F_VLAN_CHALLENGED;
8746 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8747 all &= one | ~NETIF_F_ALL_FOR_ALL;
8749 /* If one device supports hw checksumming, set for all. */
8750 if (all & NETIF_F_HW_CSUM)
8751 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8753 return all;
8755 EXPORT_SYMBOL(netdev_increment_features);
8757 static struct hlist_head * __net_init netdev_create_hash(void)
8759 int i;
8760 struct hlist_head *hash;
8762 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8763 if (hash != NULL)
8764 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8765 INIT_HLIST_HEAD(&hash[i]);
8767 return hash;
8770 /* Initialize per network namespace state */
8771 static int __net_init netdev_init(struct net *net)
8773 if (net != &init_net)
8774 INIT_LIST_HEAD(&net->dev_base_head);
8776 net->dev_name_head = netdev_create_hash();
8777 if (net->dev_name_head == NULL)
8778 goto err_name;
8780 net->dev_index_head = netdev_create_hash();
8781 if (net->dev_index_head == NULL)
8782 goto err_idx;
8784 return 0;
8786 err_idx:
8787 kfree(net->dev_name_head);
8788 err_name:
8789 return -ENOMEM;
8793 * netdev_drivername - network driver for the device
8794 * @dev: network device
8796 * Determine network driver for device.
8798 const char *netdev_drivername(const struct net_device *dev)
8800 const struct device_driver *driver;
8801 const struct device *parent;
8802 const char *empty = "";
8804 parent = dev->dev.parent;
8805 if (!parent)
8806 return empty;
8808 driver = parent->driver;
8809 if (driver && driver->name)
8810 return driver->name;
8811 return empty;
8814 static void __netdev_printk(const char *level, const struct net_device *dev,
8815 struct va_format *vaf)
8817 if (dev && dev->dev.parent) {
8818 dev_printk_emit(level[1] - '0',
8819 dev->dev.parent,
8820 "%s %s %s%s: %pV",
8821 dev_driver_string(dev->dev.parent),
8822 dev_name(dev->dev.parent),
8823 netdev_name(dev), netdev_reg_state(dev),
8824 vaf);
8825 } else if (dev) {
8826 printk("%s%s%s: %pV",
8827 level, netdev_name(dev), netdev_reg_state(dev), vaf);
8828 } else {
8829 printk("%s(NULL net_device): %pV", level, vaf);
8833 void netdev_printk(const char *level, const struct net_device *dev,
8834 const char *format, ...)
8836 struct va_format vaf;
8837 va_list args;
8839 va_start(args, format);
8841 vaf.fmt = format;
8842 vaf.va = &args;
8844 __netdev_printk(level, dev, &vaf);
8846 va_end(args);
8848 EXPORT_SYMBOL(netdev_printk);
8850 #define define_netdev_printk_level(func, level) \
8851 void func(const struct net_device *dev, const char *fmt, ...) \
8853 struct va_format vaf; \
8854 va_list args; \
8856 va_start(args, fmt); \
8858 vaf.fmt = fmt; \
8859 vaf.va = &args; \
8861 __netdev_printk(level, dev, &vaf); \
8863 va_end(args); \
8865 EXPORT_SYMBOL(func);
8867 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8868 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8869 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8870 define_netdev_printk_level(netdev_err, KERN_ERR);
8871 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8872 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8873 define_netdev_printk_level(netdev_info, KERN_INFO);
8875 static void __net_exit netdev_exit(struct net *net)
8877 kfree(net->dev_name_head);
8878 kfree(net->dev_index_head);
8879 if (net != &init_net)
8880 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8883 static struct pernet_operations __net_initdata netdev_net_ops = {
8884 .init = netdev_init,
8885 .exit = netdev_exit,
8888 static void __net_exit default_device_exit(struct net *net)
8890 struct net_device *dev, *aux;
8892 * Push all migratable network devices back to the
8893 * initial network namespace
8895 rtnl_lock();
8896 for_each_netdev_safe(net, dev, aux) {
8897 int err;
8898 char fb_name[IFNAMSIZ];
8900 /* Ignore unmoveable devices (i.e. loopback) */
8901 if (dev->features & NETIF_F_NETNS_LOCAL)
8902 continue;
8904 /* Leave virtual devices for the generic cleanup */
8905 if (dev->rtnl_link_ops)
8906 continue;
8908 /* Push remaining network devices to init_net */
8909 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8910 err = dev_change_net_namespace(dev, &init_net, fb_name);
8911 if (err) {
8912 pr_emerg("%s: failed to move %s to init_net: %d\n",
8913 __func__, dev->name, err);
8914 BUG();
8917 rtnl_unlock();
8920 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8922 /* Return with the rtnl_lock held when there are no network
8923 * devices unregistering in any network namespace in net_list.
8925 struct net *net;
8926 bool unregistering;
8927 DEFINE_WAIT_FUNC(wait, woken_wake_function);
8929 add_wait_queue(&netdev_unregistering_wq, &wait);
8930 for (;;) {
8931 unregistering = false;
8932 rtnl_lock();
8933 list_for_each_entry(net, net_list, exit_list) {
8934 if (net->dev_unreg_count > 0) {
8935 unregistering = true;
8936 break;
8939 if (!unregistering)
8940 break;
8941 __rtnl_unlock();
8943 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8945 remove_wait_queue(&netdev_unregistering_wq, &wait);
8948 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8950 /* At exit all network devices most be removed from a network
8951 * namespace. Do this in the reverse order of registration.
8952 * Do this across as many network namespaces as possible to
8953 * improve batching efficiency.
8955 struct net_device *dev;
8956 struct net *net;
8957 LIST_HEAD(dev_kill_list);
8959 /* To prevent network device cleanup code from dereferencing
8960 * loopback devices or network devices that have been freed
8961 * wait here for all pending unregistrations to complete,
8962 * before unregistring the loopback device and allowing the
8963 * network namespace be freed.
8965 * The netdev todo list containing all network devices
8966 * unregistrations that happen in default_device_exit_batch
8967 * will run in the rtnl_unlock() at the end of
8968 * default_device_exit_batch.
8970 rtnl_lock_unregistering(net_list);
8971 list_for_each_entry(net, net_list, exit_list) {
8972 for_each_netdev_reverse(net, dev) {
8973 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8974 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8975 else
8976 unregister_netdevice_queue(dev, &dev_kill_list);
8979 unregister_netdevice_many(&dev_kill_list);
8980 rtnl_unlock();
8983 static struct pernet_operations __net_initdata default_device_ops = {
8984 .exit = default_device_exit,
8985 .exit_batch = default_device_exit_batch,
8989 * Initialize the DEV module. At boot time this walks the device list and
8990 * unhooks any devices that fail to initialise (normally hardware not
8991 * present) and leaves us with a valid list of present and active devices.
8996 * This is called single threaded during boot, so no need
8997 * to take the rtnl semaphore.
8999 static int __init net_dev_init(void)
9001 int i, rc = -ENOMEM;
9003 BUG_ON(!dev_boot_phase);
9005 if (dev_proc_init())
9006 goto out;
9008 if (netdev_kobject_init())
9009 goto out;
9011 INIT_LIST_HEAD(&ptype_all);
9012 for (i = 0; i < PTYPE_HASH_SIZE; i++)
9013 INIT_LIST_HEAD(&ptype_base[i]);
9015 INIT_LIST_HEAD(&offload_base);
9017 if (register_pernet_subsys(&netdev_net_ops))
9018 goto out;
9021 * Initialise the packet receive queues.
9024 for_each_possible_cpu(i) {
9025 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9026 struct softnet_data *sd = &per_cpu(softnet_data, i);
9028 INIT_WORK(flush, flush_backlog);
9030 skb_queue_head_init(&sd->input_pkt_queue);
9031 skb_queue_head_init(&sd->process_queue);
9032 #ifdef CONFIG_XFRM_OFFLOAD
9033 skb_queue_head_init(&sd->xfrm_backlog);
9034 #endif
9035 INIT_LIST_HEAD(&sd->poll_list);
9036 sd->output_queue_tailp = &sd->output_queue;
9037 #ifdef CONFIG_RPS
9038 sd->csd.func = rps_trigger_softirq;
9039 sd->csd.info = sd;
9040 sd->cpu = i;
9041 #endif
9043 sd->backlog.poll = process_backlog;
9044 sd->backlog.weight = weight_p;
9047 dev_boot_phase = 0;
9049 /* The loopback device is special if any other network devices
9050 * is present in a network namespace the loopback device must
9051 * be present. Since we now dynamically allocate and free the
9052 * loopback device ensure this invariant is maintained by
9053 * keeping the loopback device as the first device on the
9054 * list of network devices. Ensuring the loopback devices
9055 * is the first device that appears and the last network device
9056 * that disappears.
9058 if (register_pernet_device(&loopback_net_ops))
9059 goto out;
9061 if (register_pernet_device(&default_device_ops))
9062 goto out;
9064 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9065 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9067 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9068 NULL, dev_cpu_dead);
9069 WARN_ON(rc < 0);
9070 rc = 0;
9071 out:
9072 return rc;
9075 subsys_initcall(net_dev_init);