2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
51 * Rudi Cilibrasi : Pass the right thing to
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
150 #include "net-sysfs.h"
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 static DEFINE_SPINLOCK(ptype_lock
);
159 static DEFINE_SPINLOCK(offload_lock
);
160 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
161 struct list_head ptype_all __read_mostly
; /* Taps */
162 static struct list_head offload_base __read_mostly
;
164 static int netif_rx_internal(struct sk_buff
*skb
);
165 static int call_netdevice_notifiers_info(unsigned long val
,
166 struct netdev_notifier_info
*info
);
167 static struct napi_struct
*napi_by_id(unsigned int napi_id
);
170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 * Writers must hold the rtnl semaphore while they loop through the
176 * dev_base_head list, and hold dev_base_lock for writing when they do the
177 * actual updates. This allows pure readers to access the list even
178 * while a writer is preparing to update it.
180 * To put it another way, dev_base_lock is held for writing only to
181 * protect against pure readers; the rtnl semaphore provides the
182 * protection against other writers.
184 * See, for example usages, register_netdevice() and
185 * unregister_netdevice(), which must be called with the rtnl
188 DEFINE_RWLOCK(dev_base_lock
);
189 EXPORT_SYMBOL(dev_base_lock
);
191 static DEFINE_MUTEX(ifalias_mutex
);
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock
);
196 static unsigned int napi_gen_id
= NR_CPUS
;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
199 static seqcount_t devnet_rename_seq
;
201 static inline void dev_base_seq_inc(struct net
*net
)
203 while (++net
->dev_base_seq
== 0)
207 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
209 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
211 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
214 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
216 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
219 static inline void rps_lock(struct softnet_data
*sd
)
222 spin_lock(&sd
->input_pkt_queue
.lock
);
226 static inline void rps_unlock(struct softnet_data
*sd
)
229 spin_unlock(&sd
->input_pkt_queue
.lock
);
233 /* Device list insertion */
234 static void list_netdevice(struct net_device
*dev
)
236 struct net
*net
= dev_net(dev
);
240 write_lock_bh(&dev_base_lock
);
241 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
242 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
243 hlist_add_head_rcu(&dev
->index_hlist
,
244 dev_index_hash(net
, dev
->ifindex
));
245 write_unlock_bh(&dev_base_lock
);
247 dev_base_seq_inc(net
);
250 /* Device list removal
251 * caller must respect a RCU grace period before freeing/reusing dev
253 static void unlist_netdevice(struct net_device
*dev
)
257 /* Unlink dev from the device chain */
258 write_lock_bh(&dev_base_lock
);
259 list_del_rcu(&dev
->dev_list
);
260 hlist_del_rcu(&dev
->name_hlist
);
261 hlist_del_rcu(&dev
->index_hlist
);
262 write_unlock_bh(&dev_base_lock
);
264 dev_base_seq_inc(dev_net(dev
));
271 static RAW_NOTIFIER_HEAD(netdev_chain
);
274 * Device drivers call our routines to queue packets here. We empty the
275 * queue in the local softnet handler.
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
);
279 EXPORT_PER_CPU_SYMBOL(softnet_data
);
281 #ifdef CONFIG_LOCKDEP
283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284 * according to dev->type
286 static const unsigned short netdev_lock_type
[] = {
287 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
288 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
289 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
290 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
291 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
292 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
293 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
294 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
295 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
296 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
297 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
298 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
299 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
300 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
301 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
303 static const char *const netdev_lock_name
[] = {
304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
320 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
321 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
327 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
328 if (netdev_lock_type
[i
] == dev_type
)
330 /* the last key is used by default */
331 return ARRAY_SIZE(netdev_lock_type
) - 1;
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
335 unsigned short dev_type
)
339 i
= netdev_lock_pos(dev_type
);
340 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
341 netdev_lock_name
[i
]);
344 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
348 i
= netdev_lock_pos(dev
->type
);
349 lockdep_set_class_and_name(&dev
->addr_list_lock
,
350 &netdev_addr_lock_key
[i
],
351 netdev_lock_name
[i
]);
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
355 unsigned short dev_type
)
358 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
363 /*******************************************************************************
365 * Protocol management and registration routines
367 *******************************************************************************/
371 * Add a protocol ID to the list. Now that the input handler is
372 * smarter we can dispense with all the messy stuff that used to be
375 * BEWARE!!! Protocol handlers, mangling input packets,
376 * MUST BE last in hash buckets and checking protocol handlers
377 * MUST start from promiscuous ptype_all chain in net_bh.
378 * It is true now, do not change it.
379 * Explanation follows: if protocol handler, mangling packet, will
380 * be the first on list, it is not able to sense, that packet
381 * is cloned and should be copied-on-write, so that it will
382 * change it and subsequent readers will get broken packet.
386 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
388 if (pt
->type
== htons(ETH_P_ALL
))
389 return pt
->dev
? &pt
->dev
->ptype_all
: &ptype_all
;
391 return pt
->dev
? &pt
->dev
->ptype_specific
:
392 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
396 * dev_add_pack - add packet handler
397 * @pt: packet type declaration
399 * Add a protocol handler to the networking stack. The passed &packet_type
400 * is linked into kernel lists and may not be freed until it has been
401 * removed from the kernel lists.
403 * This call does not sleep therefore it can not
404 * guarantee all CPU's that are in middle of receiving packets
405 * will see the new packet type (until the next received packet).
408 void dev_add_pack(struct packet_type
*pt
)
410 struct list_head
*head
= ptype_head(pt
);
412 spin_lock(&ptype_lock
);
413 list_add_rcu(&pt
->list
, head
);
414 spin_unlock(&ptype_lock
);
416 EXPORT_SYMBOL(dev_add_pack
);
419 * __dev_remove_pack - remove packet handler
420 * @pt: packet type declaration
422 * Remove a protocol handler that was previously added to the kernel
423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
424 * from the kernel lists and can be freed or reused once this function
427 * The packet type might still be in use by receivers
428 * and must not be freed until after all the CPU's have gone
429 * through a quiescent state.
431 void __dev_remove_pack(struct packet_type
*pt
)
433 struct list_head
*head
= ptype_head(pt
);
434 struct packet_type
*pt1
;
436 spin_lock(&ptype_lock
);
438 list_for_each_entry(pt1
, head
, list
) {
440 list_del_rcu(&pt
->list
);
445 pr_warn("dev_remove_pack: %p not found\n", pt
);
447 spin_unlock(&ptype_lock
);
449 EXPORT_SYMBOL(__dev_remove_pack
);
452 * dev_remove_pack - remove packet handler
453 * @pt: packet type declaration
455 * Remove a protocol handler that was previously added to the kernel
456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
457 * from the kernel lists and can be freed or reused once this function
460 * This call sleeps to guarantee that no CPU is looking at the packet
463 void dev_remove_pack(struct packet_type
*pt
)
465 __dev_remove_pack(pt
);
469 EXPORT_SYMBOL(dev_remove_pack
);
473 * dev_add_offload - register offload handlers
474 * @po: protocol offload declaration
476 * Add protocol offload handlers to the networking stack. The passed
477 * &proto_offload is linked into kernel lists and may not be freed until
478 * it has been removed from the kernel lists.
480 * This call does not sleep therefore it can not
481 * guarantee all CPU's that are in middle of receiving packets
482 * will see the new offload handlers (until the next received packet).
484 void dev_add_offload(struct packet_offload
*po
)
486 struct packet_offload
*elem
;
488 spin_lock(&offload_lock
);
489 list_for_each_entry(elem
, &offload_base
, list
) {
490 if (po
->priority
< elem
->priority
)
493 list_add_rcu(&po
->list
, elem
->list
.prev
);
494 spin_unlock(&offload_lock
);
496 EXPORT_SYMBOL(dev_add_offload
);
499 * __dev_remove_offload - remove offload handler
500 * @po: packet offload declaration
502 * Remove a protocol offload handler that was previously added to the
503 * kernel offload handlers by dev_add_offload(). The passed &offload_type
504 * is removed from the kernel lists and can be freed or reused once this
507 * The packet type might still be in use by receivers
508 * and must not be freed until after all the CPU's have gone
509 * through a quiescent state.
511 static void __dev_remove_offload(struct packet_offload
*po
)
513 struct list_head
*head
= &offload_base
;
514 struct packet_offload
*po1
;
516 spin_lock(&offload_lock
);
518 list_for_each_entry(po1
, head
, list
) {
520 list_del_rcu(&po
->list
);
525 pr_warn("dev_remove_offload: %p not found\n", po
);
527 spin_unlock(&offload_lock
);
531 * dev_remove_offload - remove packet offload handler
532 * @po: packet offload declaration
534 * Remove a packet offload handler that was previously added to the kernel
535 * offload handlers by dev_add_offload(). The passed &offload_type is
536 * removed from the kernel lists and can be freed or reused once this
539 * This call sleeps to guarantee that no CPU is looking at the packet
542 void dev_remove_offload(struct packet_offload
*po
)
544 __dev_remove_offload(po
);
548 EXPORT_SYMBOL(dev_remove_offload
);
550 /******************************************************************************
552 * Device Boot-time Settings Routines
554 ******************************************************************************/
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup
[NETDEV_BOOT_SETUP_MAX
];
560 * netdev_boot_setup_add - add new setup entry
561 * @name: name of the device
562 * @map: configured settings for the device
564 * Adds new setup entry to the dev_boot_setup list. The function
565 * returns 0 on error and 1 on success. This is a generic routine to
568 static int netdev_boot_setup_add(char *name
, struct ifmap
*map
)
570 struct netdev_boot_setup
*s
;
574 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
575 if (s
[i
].name
[0] == '\0' || s
[i
].name
[0] == ' ') {
576 memset(s
[i
].name
, 0, sizeof(s
[i
].name
));
577 strlcpy(s
[i
].name
, name
, IFNAMSIZ
);
578 memcpy(&s
[i
].map
, map
, sizeof(s
[i
].map
));
583 return i
>= NETDEV_BOOT_SETUP_MAX
? 0 : 1;
587 * netdev_boot_setup_check - check boot time settings
588 * @dev: the netdevice
590 * Check boot time settings for the device.
591 * The found settings are set for the device to be used
592 * later in the device probing.
593 * Returns 0 if no settings found, 1 if they are.
595 int netdev_boot_setup_check(struct net_device
*dev
)
597 struct netdev_boot_setup
*s
= dev_boot_setup
;
600 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++) {
601 if (s
[i
].name
[0] != '\0' && s
[i
].name
[0] != ' ' &&
602 !strcmp(dev
->name
, s
[i
].name
)) {
603 dev
->irq
= s
[i
].map
.irq
;
604 dev
->base_addr
= s
[i
].map
.base_addr
;
605 dev
->mem_start
= s
[i
].map
.mem_start
;
606 dev
->mem_end
= s
[i
].map
.mem_end
;
612 EXPORT_SYMBOL(netdev_boot_setup_check
);
616 * netdev_boot_base - get address from boot time settings
617 * @prefix: prefix for network device
618 * @unit: id for network device
620 * Check boot time settings for the base address of device.
621 * The found settings are set for the device to be used
622 * later in the device probing.
623 * Returns 0 if no settings found.
625 unsigned long netdev_boot_base(const char *prefix
, int unit
)
627 const struct netdev_boot_setup
*s
= dev_boot_setup
;
631 sprintf(name
, "%s%d", prefix
, unit
);
634 * If device already registered then return base of 1
635 * to indicate not to probe for this interface
637 if (__dev_get_by_name(&init_net
, name
))
640 for (i
= 0; i
< NETDEV_BOOT_SETUP_MAX
; i
++)
641 if (!strcmp(name
, s
[i
].name
))
642 return s
[i
].map
.base_addr
;
647 * Saves at boot time configured settings for any netdevice.
649 int __init
netdev_boot_setup(char *str
)
654 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
659 memset(&map
, 0, sizeof(map
));
663 map
.base_addr
= ints
[2];
665 map
.mem_start
= ints
[3];
667 map
.mem_end
= ints
[4];
669 /* Add new entry to the list */
670 return netdev_boot_setup_add(str
, &map
);
673 __setup("netdev=", netdev_boot_setup
);
675 /*******************************************************************************
677 * Device Interface Subroutines
679 *******************************************************************************/
682 * dev_get_iflink - get 'iflink' value of a interface
683 * @dev: targeted interface
685 * Indicates the ifindex the interface is linked to.
686 * Physical interfaces have the same 'ifindex' and 'iflink' values.
689 int dev_get_iflink(const struct net_device
*dev
)
691 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
692 return dev
->netdev_ops
->ndo_get_iflink(dev
);
696 EXPORT_SYMBOL(dev_get_iflink
);
699 * dev_fill_metadata_dst - Retrieve tunnel egress information.
700 * @dev: targeted interface
703 * For better visibility of tunnel traffic OVS needs to retrieve
704 * egress tunnel information for a packet. Following API allows
705 * user to get this info.
707 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
709 struct ip_tunnel_info
*info
;
711 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
714 info
= skb_tunnel_info_unclone(skb
);
717 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
720 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
725 * __dev_get_by_name - find a device by its name
726 * @net: the applicable net namespace
727 * @name: name to find
729 * Find an interface by name. Must be called under RTNL semaphore
730 * or @dev_base_lock. If the name is found a pointer to the device
731 * is returned. If the name is not found then %NULL is returned. The
732 * reference counters are not incremented so the caller must be
733 * careful with locks.
736 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
738 struct net_device
*dev
;
739 struct hlist_head
*head
= dev_name_hash(net
, name
);
741 hlist_for_each_entry(dev
, head
, name_hlist
)
742 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
747 EXPORT_SYMBOL(__dev_get_by_name
);
750 * dev_get_by_name_rcu - find a device by its name
751 * @net: the applicable net namespace
752 * @name: name to find
754 * Find an interface by name.
755 * If the name is found a pointer to the device is returned.
756 * If the name is not found then %NULL is returned.
757 * The reference counters are not incremented so the caller must be
758 * careful with locks. The caller must hold RCU lock.
761 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
763 struct net_device
*dev
;
764 struct hlist_head
*head
= dev_name_hash(net
, name
);
766 hlist_for_each_entry_rcu(dev
, head
, name_hlist
)
767 if (!strncmp(dev
->name
, name
, IFNAMSIZ
))
772 EXPORT_SYMBOL(dev_get_by_name_rcu
);
775 * dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
779 * Find an interface by name. This can be called from any
780 * context and does its own locking. The returned handle has
781 * the usage count incremented and the caller must use dev_put() to
782 * release it when it is no longer needed. %NULL is returned if no
783 * matching device is found.
786 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
788 struct net_device
*dev
;
791 dev
= dev_get_by_name_rcu(net
, name
);
797 EXPORT_SYMBOL(dev_get_by_name
);
800 * __dev_get_by_index - find a device by its ifindex
801 * @net: the applicable net namespace
802 * @ifindex: index of device
804 * Search for an interface by index. Returns %NULL if the device
805 * is not found or a pointer to the device. The device has not
806 * had its reference counter increased so the caller must be careful
807 * about locking. The caller must hold either the RTNL semaphore
811 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
813 struct net_device
*dev
;
814 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
816 hlist_for_each_entry(dev
, head
, index_hlist
)
817 if (dev
->ifindex
== ifindex
)
822 EXPORT_SYMBOL(__dev_get_by_index
);
825 * dev_get_by_index_rcu - find a device by its ifindex
826 * @net: the applicable net namespace
827 * @ifindex: index of device
829 * Search for an interface by index. Returns %NULL if the device
830 * is not found or a pointer to the device. The device has not
831 * had its reference counter increased so the caller must be careful
832 * about locking. The caller must hold RCU lock.
835 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
837 struct net_device
*dev
;
838 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
840 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
841 if (dev
->ifindex
== ifindex
)
846 EXPORT_SYMBOL(dev_get_by_index_rcu
);
850 * dev_get_by_index - find a device by its ifindex
851 * @net: the applicable net namespace
852 * @ifindex: index of device
854 * Search for an interface by index. Returns NULL if the device
855 * is not found or a pointer to the device. The device returned has
856 * had a reference added and the pointer is safe until the user calls
857 * dev_put to indicate they have finished with it.
860 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
862 struct net_device
*dev
;
865 dev
= dev_get_by_index_rcu(net
, ifindex
);
871 EXPORT_SYMBOL(dev_get_by_index
);
874 * dev_get_by_napi_id - find a device by napi_id
875 * @napi_id: ID of the NAPI struct
877 * Search for an interface by NAPI ID. Returns %NULL if the device
878 * is not found or a pointer to the device. The device has not had
879 * its reference counter increased so the caller must be careful
880 * about locking. The caller must hold RCU lock.
883 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
885 struct napi_struct
*napi
;
887 WARN_ON_ONCE(!rcu_read_lock_held());
889 if (napi_id
< MIN_NAPI_ID
)
892 napi
= napi_by_id(napi_id
);
894 return napi
? napi
->dev
: NULL
;
896 EXPORT_SYMBOL(dev_get_by_napi_id
);
899 * netdev_get_name - get a netdevice name, knowing its ifindex.
900 * @net: network namespace
901 * @name: a pointer to the buffer where the name will be stored.
902 * @ifindex: the ifindex of the interface to get the name from.
904 * The use of raw_seqcount_begin() and cond_resched() before
905 * retrying is required as we want to give the writers a chance
906 * to complete when CONFIG_PREEMPT is not set.
908 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
910 struct net_device
*dev
;
914 seq
= raw_seqcount_begin(&devnet_rename_seq
);
916 dev
= dev_get_by_index_rcu(net
, ifindex
);
922 strcpy(name
, dev
->name
);
924 if (read_seqcount_retry(&devnet_rename_seq
, seq
)) {
933 * dev_getbyhwaddr_rcu - find a device by its hardware address
934 * @net: the applicable net namespace
935 * @type: media type of device
936 * @ha: hardware address
938 * Search for an interface by MAC address. Returns NULL if the device
939 * is not found or a pointer to the device.
940 * The caller must hold RCU or RTNL.
941 * The returned device has not had its ref count increased
942 * and the caller must therefore be careful about locking
946 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
949 struct net_device
*dev
;
951 for_each_netdev_rcu(net
, dev
)
952 if (dev
->type
== type
&&
953 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
960 struct net_device
*__dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
962 struct net_device
*dev
;
965 for_each_netdev(net
, dev
)
966 if (dev
->type
== type
)
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype
);
973 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
975 struct net_device
*dev
, *ret
= NULL
;
978 for_each_netdev_rcu(net
, dev
)
979 if (dev
->type
== type
) {
987 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
990 * __dev_get_by_flags - find any device with given flags
991 * @net: the applicable net namespace
992 * @if_flags: IFF_* values
993 * @mask: bitmask of bits in if_flags to check
995 * Search for any interface with the given flags. Returns NULL if a device
996 * is not found or a pointer to the device. Must be called inside
997 * rtnl_lock(), and result refcount is unchanged.
1000 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1001 unsigned short mask
)
1003 struct net_device
*dev
, *ret
;
1008 for_each_netdev(net
, dev
) {
1009 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1016 EXPORT_SYMBOL(__dev_get_by_flags
);
1019 * dev_valid_name - check if name is okay for network device
1020 * @name: name string
1022 * Network device names need to be valid file names to
1023 * to allow sysfs to work. We also disallow any kind of
1026 bool dev_valid_name(const char *name
)
1030 if (strlen(name
) >= IFNAMSIZ
)
1032 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1036 if (*name
== '/' || *name
== ':' || isspace(*name
))
1042 EXPORT_SYMBOL(dev_valid_name
);
1045 * __dev_alloc_name - allocate a name for a device
1046 * @net: network namespace to allocate the device name in
1047 * @name: name format string
1048 * @buf: scratch buffer and result name string
1050 * Passed a format string - eg "lt%d" it will try and find a suitable
1051 * id. It scans list of devices to build up a free map, then chooses
1052 * the first empty slot. The caller must hold the dev_base or rtnl lock
1053 * while allocating the name and adding the device in order to avoid
1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056 * Returns the number of the unit assigned or a negative errno code.
1059 static int __dev_alloc_name(struct net
*net
, const char *name
, char *buf
)
1063 const int max_netdevices
= 8*PAGE_SIZE
;
1064 unsigned long *inuse
;
1065 struct net_device
*d
;
1067 if (!dev_valid_name(name
))
1070 p
= strchr(name
, '%');
1073 * Verify the string as this thing may have come from
1074 * the user. There must be either one "%d" and no other "%"
1077 if (p
[1] != 'd' || strchr(p
+ 2, '%'))
1080 /* Use one page as a bit array of possible slots */
1081 inuse
= (unsigned long *) get_zeroed_page(GFP_ATOMIC
);
1085 for_each_netdev(net
, d
) {
1086 if (!sscanf(d
->name
, name
, &i
))
1088 if (i
< 0 || i
>= max_netdevices
)
1091 /* avoid cases where sscanf is not exact inverse of printf */
1092 snprintf(buf
, IFNAMSIZ
, name
, i
);
1093 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1097 i
= find_first_zero_bit(inuse
, max_netdevices
);
1098 free_page((unsigned long) inuse
);
1101 snprintf(buf
, IFNAMSIZ
, name
, i
);
1102 if (!__dev_get_by_name(net
, buf
))
1105 /* It is possible to run out of possible slots
1106 * when the name is long and there isn't enough space left
1107 * for the digits, or if all bits are used.
1112 static int dev_alloc_name_ns(struct net
*net
,
1113 struct net_device
*dev
,
1120 ret
= __dev_alloc_name(net
, name
, buf
);
1122 strlcpy(dev
->name
, buf
, IFNAMSIZ
);
1127 * dev_alloc_name - allocate a name for a device
1129 * @name: name format string
1131 * Passed a format string - eg "lt%d" it will try and find a suitable
1132 * id. It scans list of devices to build up a free map, then chooses
1133 * the first empty slot. The caller must hold the dev_base or rtnl lock
1134 * while allocating the name and adding the device in order to avoid
1136 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137 * Returns the number of the unit assigned or a negative errno code.
1140 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1142 return dev_alloc_name_ns(dev_net(dev
), dev
, name
);
1144 EXPORT_SYMBOL(dev_alloc_name
);
1146 int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1151 if (!dev_valid_name(name
))
1154 if (strchr(name
, '%'))
1155 return dev_alloc_name_ns(net
, dev
, name
);
1156 else if (__dev_get_by_name(net
, name
))
1158 else if (dev
->name
!= name
)
1159 strlcpy(dev
->name
, name
, IFNAMSIZ
);
1163 EXPORT_SYMBOL(dev_get_valid_name
);
1166 * dev_change_name - change name of a device
1168 * @newname: name (or format string) must be at least IFNAMSIZ
1170 * Change name of a device, can pass format strings "eth%d".
1173 int dev_change_name(struct net_device
*dev
, const char *newname
)
1175 unsigned char old_assign_type
;
1176 char oldname
[IFNAMSIZ
];
1182 BUG_ON(!dev_net(dev
));
1185 if (dev
->flags
& IFF_UP
)
1188 write_seqcount_begin(&devnet_rename_seq
);
1190 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1191 write_seqcount_end(&devnet_rename_seq
);
1195 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1197 err
= dev_get_valid_name(net
, dev
, newname
);
1199 write_seqcount_end(&devnet_rename_seq
);
1203 if (oldname
[0] && !strchr(oldname
, '%'))
1204 netdev_info(dev
, "renamed from %s\n", oldname
);
1206 old_assign_type
= dev
->name_assign_type
;
1207 dev
->name_assign_type
= NET_NAME_RENAMED
;
1210 ret
= device_rename(&dev
->dev
, dev
->name
);
1212 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1213 dev
->name_assign_type
= old_assign_type
;
1214 write_seqcount_end(&devnet_rename_seq
);
1218 write_seqcount_end(&devnet_rename_seq
);
1220 netdev_adjacent_rename_links(dev
, oldname
);
1222 write_lock_bh(&dev_base_lock
);
1223 hlist_del_rcu(&dev
->name_hlist
);
1224 write_unlock_bh(&dev_base_lock
);
1228 write_lock_bh(&dev_base_lock
);
1229 hlist_add_head_rcu(&dev
->name_hlist
, dev_name_hash(net
, dev
->name
));
1230 write_unlock_bh(&dev_base_lock
);
1232 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1233 ret
= notifier_to_errno(ret
);
1236 /* err >= 0 after dev_alloc_name() or stores the first errno */
1239 write_seqcount_begin(&devnet_rename_seq
);
1240 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1241 memcpy(oldname
, newname
, IFNAMSIZ
);
1242 dev
->name_assign_type
= old_assign_type
;
1243 old_assign_type
= NET_NAME_RENAMED
;
1246 pr_err("%s: name change rollback failed: %d\n",
1255 * dev_set_alias - change ifalias of a device
1257 * @alias: name up to IFALIASZ
1258 * @len: limit of bytes to copy from info
1260 * Set ifalias for a device,
1262 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1264 struct dev_ifalias
*new_alias
= NULL
;
1266 if (len
>= IFALIASZ
)
1270 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1274 memcpy(new_alias
->ifalias
, alias
, len
);
1275 new_alias
->ifalias
[len
] = 0;
1278 mutex_lock(&ifalias_mutex
);
1279 rcu_swap_protected(dev
->ifalias
, new_alias
,
1280 mutex_is_locked(&ifalias_mutex
));
1281 mutex_unlock(&ifalias_mutex
);
1284 kfree_rcu(new_alias
, rcuhead
);
1290 * dev_get_alias - get ifalias of a device
1292 * @name: buffer to store name of ifalias
1293 * @len: size of buffer
1295 * get ifalias for a device. Caller must make sure dev cannot go
1296 * away, e.g. rcu read lock or own a reference count to device.
1298 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1300 const struct dev_ifalias
*alias
;
1304 alias
= rcu_dereference(dev
->ifalias
);
1306 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1313 * netdev_features_change - device changes features
1314 * @dev: device to cause notification
1316 * Called to indicate a device has changed features.
1318 void netdev_features_change(struct net_device
*dev
)
1320 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1322 EXPORT_SYMBOL(netdev_features_change
);
1325 * netdev_state_change - device changes state
1326 * @dev: device to cause notification
1328 * Called to indicate a device has changed state. This function calls
1329 * the notifier chains for netdev_chain and sends a NEWLINK message
1330 * to the routing socket.
1332 void netdev_state_change(struct net_device
*dev
)
1334 if (dev
->flags
& IFF_UP
) {
1335 struct netdev_notifier_change_info change_info
= {
1339 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1341 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
);
1344 EXPORT_SYMBOL(netdev_state_change
);
1347 * netdev_notify_peers - notify network peers about existence of @dev
1348 * @dev: network device
1350 * Generate traffic such that interested network peers are aware of
1351 * @dev, such as by generating a gratuitous ARP. This may be used when
1352 * a device wants to inform the rest of the network about some sort of
1353 * reconfiguration such as a failover event or virtual machine
1356 void netdev_notify_peers(struct net_device
*dev
)
1359 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1360 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1363 EXPORT_SYMBOL(netdev_notify_peers
);
1365 static int __dev_open(struct net_device
*dev
)
1367 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1372 if (!netif_device_present(dev
))
1375 /* Block netpoll from trying to do any rx path servicing.
1376 * If we don't do this there is a chance ndo_poll_controller
1377 * or ndo_poll may be running while we open the device
1379 netpoll_poll_disable(dev
);
1381 ret
= call_netdevice_notifiers(NETDEV_PRE_UP
, dev
);
1382 ret
= notifier_to_errno(ret
);
1386 set_bit(__LINK_STATE_START
, &dev
->state
);
1388 if (ops
->ndo_validate_addr
)
1389 ret
= ops
->ndo_validate_addr(dev
);
1391 if (!ret
&& ops
->ndo_open
)
1392 ret
= ops
->ndo_open(dev
);
1394 netpoll_poll_enable(dev
);
1397 clear_bit(__LINK_STATE_START
, &dev
->state
);
1399 dev
->flags
|= IFF_UP
;
1400 dev_set_rx_mode(dev
);
1402 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1409 * dev_open - prepare an interface for use.
1410 * @dev: device to open
1412 * Takes a device from down to up state. The device's private open
1413 * function is invoked and then the multicast lists are loaded. Finally
1414 * the device is moved into the up state and a %NETDEV_UP message is
1415 * sent to the netdev notifier chain.
1417 * Calling this function on an active interface is a nop. On a failure
1418 * a negative errno code is returned.
1420 int dev_open(struct net_device
*dev
)
1424 if (dev
->flags
& IFF_UP
)
1427 ret
= __dev_open(dev
);
1431 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1432 call_netdevice_notifiers(NETDEV_UP
, dev
);
1436 EXPORT_SYMBOL(dev_open
);
1438 static void __dev_close_many(struct list_head
*head
)
1440 struct net_device
*dev
;
1445 list_for_each_entry(dev
, head
, close_list
) {
1446 /* Temporarily disable netpoll until the interface is down */
1447 netpoll_poll_disable(dev
);
1449 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1451 clear_bit(__LINK_STATE_START
, &dev
->state
);
1453 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454 * can be even on different cpu. So just clear netif_running().
1456 * dev->stop() will invoke napi_disable() on all of it's
1457 * napi_struct instances on this device.
1459 smp_mb__after_atomic(); /* Commit netif_running(). */
1462 dev_deactivate_many(head
);
1464 list_for_each_entry(dev
, head
, close_list
) {
1465 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1468 * Call the device specific close. This cannot fail.
1469 * Only if device is UP
1471 * We allow it to be called even after a DETACH hot-plug
1477 dev
->flags
&= ~IFF_UP
;
1478 netpoll_poll_enable(dev
);
1482 static void __dev_close(struct net_device
*dev
)
1486 list_add(&dev
->close_list
, &single
);
1487 __dev_close_many(&single
);
1491 void dev_close_many(struct list_head
*head
, bool unlink
)
1493 struct net_device
*dev
, *tmp
;
1495 /* Remove the devices that don't need to be closed */
1496 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1497 if (!(dev
->flags
& IFF_UP
))
1498 list_del_init(&dev
->close_list
);
1500 __dev_close_many(head
);
1502 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1503 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
|IFF_RUNNING
, GFP_KERNEL
);
1504 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1506 list_del_init(&dev
->close_list
);
1509 EXPORT_SYMBOL(dev_close_many
);
1512 * dev_close - shutdown an interface.
1513 * @dev: device to shutdown
1515 * This function moves an active device into down state. A
1516 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1520 void dev_close(struct net_device
*dev
)
1522 if (dev
->flags
& IFF_UP
) {
1525 list_add(&dev
->close_list
, &single
);
1526 dev_close_many(&single
, true);
1530 EXPORT_SYMBOL(dev_close
);
1534 * dev_disable_lro - disable Large Receive Offload on a device
1537 * Disable Large Receive Offload (LRO) on a net device. Must be
1538 * called under RTNL. This is needed if received packets may be
1539 * forwarded to another interface.
1541 void dev_disable_lro(struct net_device
*dev
)
1543 struct net_device
*lower_dev
;
1544 struct list_head
*iter
;
1546 dev
->wanted_features
&= ~NETIF_F_LRO
;
1547 netdev_update_features(dev
);
1549 if (unlikely(dev
->features
& NETIF_F_LRO
))
1550 netdev_WARN(dev
, "failed to disable LRO!\n");
1552 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1553 dev_disable_lro(lower_dev
);
1555 EXPORT_SYMBOL(dev_disable_lro
);
1558 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1561 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1562 * called under RTNL. This is needed if Generic XDP is installed on
1565 static void dev_disable_gro_hw(struct net_device
*dev
)
1567 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1568 netdev_update_features(dev
);
1570 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1571 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1577 case NETDEV_##val: \
1578 return "NETDEV_" __stringify(val);
1580 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1581 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1582 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1583 N(POST_INIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
) N(CHANGEUPPER
)
1584 N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
) N(BONDING_INFO
)
1585 N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
) N(UDP_TUNNEL_PUSH_INFO
)
1586 N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1589 return "UNKNOWN_NETDEV_EVENT";
1591 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1593 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1594 struct net_device
*dev
)
1596 struct netdev_notifier_info info
= {
1600 return nb
->notifier_call(nb
, val
, &info
);
1603 static int dev_boot_phase
= 1;
1606 * register_netdevice_notifier - register a network notifier block
1609 * Register a notifier to be called when network device events occur.
1610 * The notifier passed is linked into the kernel structures and must
1611 * not be reused until it has been unregistered. A negative errno code
1612 * is returned on a failure.
1614 * When registered all registration and up events are replayed
1615 * to the new notifier to allow device to have a race free
1616 * view of the network device list.
1619 int register_netdevice_notifier(struct notifier_block
*nb
)
1621 struct net_device
*dev
;
1622 struct net_device
*last
;
1627 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1633 for_each_netdev(net
, dev
) {
1634 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1635 err
= notifier_to_errno(err
);
1639 if (!(dev
->flags
& IFF_UP
))
1642 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1653 for_each_netdev(net
, dev
) {
1657 if (dev
->flags
& IFF_UP
) {
1658 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1660 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1662 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1667 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1670 EXPORT_SYMBOL(register_netdevice_notifier
);
1673 * unregister_netdevice_notifier - unregister a network notifier block
1676 * Unregister a notifier previously registered by
1677 * register_netdevice_notifier(). The notifier is unlinked into the
1678 * kernel structures and may then be reused. A negative errno code
1679 * is returned on a failure.
1681 * After unregistering unregister and down device events are synthesized
1682 * for all devices on the device list to the removed notifier to remove
1683 * the need for special case cleanup code.
1686 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1688 struct net_device
*dev
;
1693 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1698 for_each_netdev(net
, dev
) {
1699 if (dev
->flags
& IFF_UP
) {
1700 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1702 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1704 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1711 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1714 * call_netdevice_notifiers_info - call all network notifier blocks
1715 * @val: value passed unmodified to notifier function
1716 * @info: notifier information data
1718 * Call all network notifier blocks. Parameters and return value
1719 * are as for raw_notifier_call_chain().
1722 static int call_netdevice_notifiers_info(unsigned long val
,
1723 struct netdev_notifier_info
*info
)
1726 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
1730 * call_netdevice_notifiers - call all network notifier blocks
1731 * @val: value passed unmodified to notifier function
1732 * @dev: net_device pointer passed unmodified to notifier function
1734 * Call all network notifier blocks. Parameters and return value
1735 * are as for raw_notifier_call_chain().
1738 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
1740 struct netdev_notifier_info info
= {
1744 return call_netdevice_notifiers_info(val
, &info
);
1746 EXPORT_SYMBOL(call_netdevice_notifiers
);
1748 #ifdef CONFIG_NET_INGRESS
1749 static struct static_key ingress_needed __read_mostly
;
1751 void net_inc_ingress_queue(void)
1753 static_key_slow_inc(&ingress_needed
);
1755 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
1757 void net_dec_ingress_queue(void)
1759 static_key_slow_dec(&ingress_needed
);
1761 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
1764 #ifdef CONFIG_NET_EGRESS
1765 static struct static_key egress_needed __read_mostly
;
1767 void net_inc_egress_queue(void)
1769 static_key_slow_inc(&egress_needed
);
1771 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
1773 void net_dec_egress_queue(void)
1775 static_key_slow_dec(&egress_needed
);
1777 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
1780 static struct static_key netstamp_needed __read_mostly
;
1781 #ifdef HAVE_JUMP_LABEL
1782 static atomic_t netstamp_needed_deferred
;
1783 static atomic_t netstamp_wanted
;
1784 static void netstamp_clear(struct work_struct
*work
)
1786 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
1789 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
1791 static_key_enable(&netstamp_needed
);
1793 static_key_disable(&netstamp_needed
);
1795 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
1798 void net_enable_timestamp(void)
1800 #ifdef HAVE_JUMP_LABEL
1804 wanted
= atomic_read(&netstamp_wanted
);
1807 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
+ 1) == wanted
)
1810 atomic_inc(&netstamp_needed_deferred
);
1811 schedule_work(&netstamp_work
);
1813 static_key_slow_inc(&netstamp_needed
);
1816 EXPORT_SYMBOL(net_enable_timestamp
);
1818 void net_disable_timestamp(void)
1820 #ifdef HAVE_JUMP_LABEL
1824 wanted
= atomic_read(&netstamp_wanted
);
1827 if (atomic_cmpxchg(&netstamp_wanted
, wanted
, wanted
- 1) == wanted
)
1830 atomic_dec(&netstamp_needed_deferred
);
1831 schedule_work(&netstamp_work
);
1833 static_key_slow_dec(&netstamp_needed
);
1836 EXPORT_SYMBOL(net_disable_timestamp
);
1838 static inline void net_timestamp_set(struct sk_buff
*skb
)
1841 if (static_key_false(&netstamp_needed
))
1842 __net_timestamp(skb
);
1845 #define net_timestamp_check(COND, SKB) \
1846 if (static_key_false(&netstamp_needed)) { \
1847 if ((COND) && !(SKB)->tstamp) \
1848 __net_timestamp(SKB); \
1851 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1855 if (!(dev
->flags
& IFF_UP
))
1858 len
= dev
->mtu
+ dev
->hard_header_len
+ VLAN_HLEN
;
1859 if (skb
->len
<= len
)
1862 /* if TSO is enabled, we don't care about the length as the packet
1863 * could be forwarded without being segmented before
1865 if (skb_is_gso(skb
))
1870 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
1872 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1874 int ret
= ____dev_forward_skb(dev
, skb
);
1877 skb
->protocol
= eth_type_trans(skb
, dev
);
1878 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
1883 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
1886 * dev_forward_skb - loopback an skb to another netif
1888 * @dev: destination network device
1889 * @skb: buffer to forward
1892 * NET_RX_SUCCESS (no congestion)
1893 * NET_RX_DROP (packet was dropped, but freed)
1895 * dev_forward_skb can be used for injecting an skb from the
1896 * start_xmit function of one device into the receive queue
1897 * of another device.
1899 * The receiving device may be in another namespace, so
1900 * we have to clear all information in the skb that could
1901 * impact namespace isolation.
1903 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
1905 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
1907 EXPORT_SYMBOL_GPL(dev_forward_skb
);
1909 static inline int deliver_skb(struct sk_buff
*skb
,
1910 struct packet_type
*pt_prev
,
1911 struct net_device
*orig_dev
)
1913 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
1915 refcount_inc(&skb
->users
);
1916 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
1919 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
1920 struct packet_type
**pt
,
1921 struct net_device
*orig_dev
,
1923 struct list_head
*ptype_list
)
1925 struct packet_type
*ptype
, *pt_prev
= *pt
;
1927 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1928 if (ptype
->type
!= type
)
1931 deliver_skb(skb
, pt_prev
, orig_dev
);
1937 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
1939 if (!ptype
->af_packet_priv
|| !skb
->sk
)
1942 if (ptype
->id_match
)
1943 return ptype
->id_match(ptype
, skb
->sk
);
1944 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
1951 * Support routine. Sends outgoing frames to any network
1952 * taps currently in use.
1955 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
1957 struct packet_type
*ptype
;
1958 struct sk_buff
*skb2
= NULL
;
1959 struct packet_type
*pt_prev
= NULL
;
1960 struct list_head
*ptype_list
= &ptype_all
;
1964 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
1965 /* Never send packets back to the socket
1966 * they originated from - MvS (miquels@drinkel.ow.org)
1968 if (skb_loop_sk(ptype
, skb
))
1972 deliver_skb(skb2
, pt_prev
, skb
->dev
);
1977 /* need to clone skb, done only once */
1978 skb2
= skb_clone(skb
, GFP_ATOMIC
);
1982 net_timestamp_set(skb2
);
1984 /* skb->nh should be correctly
1985 * set by sender, so that the second statement is
1986 * just protection against buggy protocols.
1988 skb_reset_mac_header(skb2
);
1990 if (skb_network_header(skb2
) < skb2
->data
||
1991 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
1992 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1993 ntohs(skb2
->protocol
),
1995 skb_reset_network_header(skb2
);
1998 skb2
->transport_header
= skb2
->network_header
;
1999 skb2
->pkt_type
= PACKET_OUTGOING
;
2003 if (ptype_list
== &ptype_all
) {
2004 ptype_list
= &dev
->ptype_all
;
2009 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2010 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2016 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2019 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2020 * @dev: Network device
2021 * @txq: number of queues available
2023 * If real_num_tx_queues is changed the tc mappings may no longer be
2024 * valid. To resolve this verify the tc mapping remains valid and if
2025 * not NULL the mapping. With no priorities mapping to this
2026 * offset/count pair it will no longer be used. In the worst case TC0
2027 * is invalid nothing can be done so disable priority mappings. If is
2028 * expected that drivers will fix this mapping if they can before
2029 * calling netif_set_real_num_tx_queues.
2031 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2034 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2036 /* If TC0 is invalidated disable TC mapping */
2037 if (tc
->offset
+ tc
->count
> txq
) {
2038 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2043 /* Invalidated prio to tc mappings set to TC0 */
2044 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2045 int q
= netdev_get_prio_tc_map(dev
, i
);
2047 tc
= &dev
->tc_to_txq
[q
];
2048 if (tc
->offset
+ tc
->count
> txq
) {
2049 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2051 netdev_set_prio_tc_map(dev
, i
, 0);
2056 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2059 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2062 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2063 if ((txq
- tc
->offset
) < tc
->count
)
2072 EXPORT_SYMBOL(netdev_txq_to_tc
);
2075 static DEFINE_MUTEX(xps_map_mutex
);
2076 #define xmap_dereference(P) \
2077 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2079 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2082 struct xps_map
*map
= NULL
;
2086 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2090 for (pos
= map
->len
; pos
--;) {
2091 if (map
->queues
[pos
] != index
)
2095 map
->queues
[pos
] = map
->queues
[--map
->len
];
2099 RCU_INIT_POINTER(dev_maps
->cpu_map
[tci
], NULL
);
2100 kfree_rcu(map
, rcu
);
2107 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2108 struct xps_dev_maps
*dev_maps
,
2109 int cpu
, u16 offset
, u16 count
)
2111 int num_tc
= dev
->num_tc
? : 1;
2112 bool active
= false;
2115 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2118 for (i
= count
, j
= offset
; i
--; j
++) {
2119 if (!remove_xps_queue(dev_maps
, cpu
, j
))
2129 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2132 struct xps_dev_maps
*dev_maps
;
2134 bool active
= false;
2136 mutex_lock(&xps_map_mutex
);
2137 dev_maps
= xmap_dereference(dev
->xps_maps
);
2142 for_each_possible_cpu(cpu
)
2143 active
|= remove_xps_queue_cpu(dev
, dev_maps
, cpu
,
2147 RCU_INIT_POINTER(dev
->xps_maps
, NULL
);
2148 kfree_rcu(dev_maps
, rcu
);
2151 for (i
= offset
+ (count
- 1); count
--; i
--)
2152 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, i
),
2156 mutex_unlock(&xps_map_mutex
);
2159 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2161 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2164 static struct xps_map
*expand_xps_map(struct xps_map
*map
,
2167 struct xps_map
*new_map
;
2168 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2171 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2172 if (map
->queues
[pos
] != index
)
2177 /* Need to add queue to this CPU's existing map */
2179 if (pos
< map
->alloc_len
)
2182 alloc_len
= map
->alloc_len
* 2;
2185 /* Need to allocate new map to store queue on this CPU's map */
2186 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2191 for (i
= 0; i
< pos
; i
++)
2192 new_map
->queues
[i
] = map
->queues
[i
];
2193 new_map
->alloc_len
= alloc_len
;
2199 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2202 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
;
2203 int i
, cpu
, tci
, numa_node_id
= -2;
2204 int maps_sz
, num_tc
= 1, tc
= 0;
2205 struct xps_map
*map
, *new_map
;
2206 bool active
= false;
2209 num_tc
= dev
->num_tc
;
2210 tc
= netdev_txq_to_tc(dev
, index
);
2215 maps_sz
= XPS_DEV_MAPS_SIZE(num_tc
);
2216 if (maps_sz
< L1_CACHE_BYTES
)
2217 maps_sz
= L1_CACHE_BYTES
;
2219 mutex_lock(&xps_map_mutex
);
2221 dev_maps
= xmap_dereference(dev
->xps_maps
);
2223 /* allocate memory for queue storage */
2224 for_each_cpu_and(cpu
, cpu_online_mask
, mask
) {
2226 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2227 if (!new_dev_maps
) {
2228 mutex_unlock(&xps_map_mutex
);
2232 tci
= cpu
* num_tc
+ tc
;
2233 map
= dev_maps
? xmap_dereference(dev_maps
->cpu_map
[tci
]) :
2236 map
= expand_xps_map(map
, cpu
, index
);
2240 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2244 goto out_no_new_maps
;
2246 for_each_possible_cpu(cpu
) {
2247 /* copy maps belonging to foreign traffic classes */
2248 for (i
= tc
, tci
= cpu
* num_tc
; dev_maps
&& i
--; tci
++) {
2249 /* fill in the new device map from the old device map */
2250 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2251 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2254 /* We need to explicitly update tci as prevous loop
2255 * could break out early if dev_maps is NULL.
2257 tci
= cpu
* num_tc
+ tc
;
2259 if (cpumask_test_cpu(cpu
, mask
) && cpu_online(cpu
)) {
2260 /* add queue to CPU maps */
2263 map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2264 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2267 if (pos
== map
->len
)
2268 map
->queues
[map
->len
++] = index
;
2270 if (numa_node_id
== -2)
2271 numa_node_id
= cpu_to_node(cpu
);
2272 else if (numa_node_id
!= cpu_to_node(cpu
))
2275 } else if (dev_maps
) {
2276 /* fill in the new device map from the old device map */
2277 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2278 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2281 /* copy maps belonging to foreign traffic classes */
2282 for (i
= num_tc
- tc
, tci
++; dev_maps
&& --i
; tci
++) {
2283 /* fill in the new device map from the old device map */
2284 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2285 RCU_INIT_POINTER(new_dev_maps
->cpu_map
[tci
], map
);
2289 rcu_assign_pointer(dev
->xps_maps
, new_dev_maps
);
2291 /* Cleanup old maps */
2293 goto out_no_old_maps
;
2295 for_each_possible_cpu(cpu
) {
2296 for (i
= num_tc
, tci
= cpu
* num_tc
; i
--; tci
++) {
2297 new_map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2298 map
= xmap_dereference(dev_maps
->cpu_map
[tci
]);
2299 if (map
&& map
!= new_map
)
2300 kfree_rcu(map
, rcu
);
2304 kfree_rcu(dev_maps
, rcu
);
2307 dev_maps
= new_dev_maps
;
2311 /* update Tx queue numa node */
2312 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2313 (numa_node_id
>= 0) ? numa_node_id
:
2319 /* removes queue from unused CPUs */
2320 for_each_possible_cpu(cpu
) {
2321 for (i
= tc
, tci
= cpu
* num_tc
; i
--; tci
++)
2322 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2323 if (!cpumask_test_cpu(cpu
, mask
) || !cpu_online(cpu
))
2324 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2325 for (i
= num_tc
- tc
, tci
++; --i
; tci
++)
2326 active
|= remove_xps_queue(dev_maps
, tci
, index
);
2329 /* free map if not active */
2331 RCU_INIT_POINTER(dev
->xps_maps
, NULL
);
2332 kfree_rcu(dev_maps
, rcu
);
2336 mutex_unlock(&xps_map_mutex
);
2340 /* remove any maps that we added */
2341 for_each_possible_cpu(cpu
) {
2342 for (i
= num_tc
, tci
= cpu
* num_tc
; i
--; tci
++) {
2343 new_map
= xmap_dereference(new_dev_maps
->cpu_map
[tci
]);
2345 xmap_dereference(dev_maps
->cpu_map
[tci
]) :
2347 if (new_map
&& new_map
!= map
)
2352 mutex_unlock(&xps_map_mutex
);
2354 kfree(new_dev_maps
);
2357 EXPORT_SYMBOL(netif_set_xps_queue
);
2360 void netdev_reset_tc(struct net_device
*dev
)
2363 netif_reset_xps_queues_gt(dev
, 0);
2366 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2367 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2369 EXPORT_SYMBOL(netdev_reset_tc
);
2371 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2373 if (tc
>= dev
->num_tc
)
2377 netif_reset_xps_queues(dev
, offset
, count
);
2379 dev
->tc_to_txq
[tc
].count
= count
;
2380 dev
->tc_to_txq
[tc
].offset
= offset
;
2383 EXPORT_SYMBOL(netdev_set_tc_queue
);
2385 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2387 if (num_tc
> TC_MAX_QUEUE
)
2391 netif_reset_xps_queues_gt(dev
, 0);
2393 dev
->num_tc
= num_tc
;
2396 EXPORT_SYMBOL(netdev_set_num_tc
);
2399 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2400 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2402 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2407 disabling
= txq
< dev
->real_num_tx_queues
;
2409 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2412 if (dev
->reg_state
== NETREG_REGISTERED
||
2413 dev
->reg_state
== NETREG_UNREGISTERING
) {
2416 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2422 netif_setup_tc(dev
, txq
);
2424 dev
->real_num_tx_queues
= txq
;
2428 qdisc_reset_all_tx_gt(dev
, txq
);
2430 netif_reset_xps_queues_gt(dev
, txq
);
2434 dev
->real_num_tx_queues
= txq
;
2439 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2443 * netif_set_real_num_rx_queues - set actual number of RX queues used
2444 * @dev: Network device
2445 * @rxq: Actual number of RX queues
2447 * This must be called either with the rtnl_lock held or before
2448 * registration of the net device. Returns 0 on success, or a
2449 * negative error code. If called before registration, it always
2452 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2456 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2459 if (dev
->reg_state
== NETREG_REGISTERED
) {
2462 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
2468 dev
->real_num_rx_queues
= rxq
;
2471 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
2475 * netif_get_num_default_rss_queues - default number of RSS queues
2477 * This routine should set an upper limit on the number of RSS queues
2478 * used by default by multiqueue devices.
2480 int netif_get_num_default_rss_queues(void)
2482 return is_kdump_kernel() ?
2483 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES
, num_online_cpus());
2485 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
2487 static void __netif_reschedule(struct Qdisc
*q
)
2489 struct softnet_data
*sd
;
2490 unsigned long flags
;
2492 local_irq_save(flags
);
2493 sd
= this_cpu_ptr(&softnet_data
);
2494 q
->next_sched
= NULL
;
2495 *sd
->output_queue_tailp
= q
;
2496 sd
->output_queue_tailp
= &q
->next_sched
;
2497 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2498 local_irq_restore(flags
);
2501 void __netif_schedule(struct Qdisc
*q
)
2503 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
2504 __netif_reschedule(q
);
2506 EXPORT_SYMBOL(__netif_schedule
);
2508 struct dev_kfree_skb_cb
{
2509 enum skb_free_reason reason
;
2512 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
2514 return (struct dev_kfree_skb_cb
*)skb
->cb
;
2517 void netif_schedule_queue(struct netdev_queue
*txq
)
2520 if (!(txq
->state
& QUEUE_STATE_ANY_XOFF
)) {
2521 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
2523 __netif_schedule(q
);
2527 EXPORT_SYMBOL(netif_schedule_queue
);
2529 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
2531 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
2535 q
= rcu_dereference(dev_queue
->qdisc
);
2536 __netif_schedule(q
);
2540 EXPORT_SYMBOL(netif_tx_wake_queue
);
2542 void __dev_kfree_skb_irq(struct sk_buff
*skb
, enum skb_free_reason reason
)
2544 unsigned long flags
;
2549 if (likely(refcount_read(&skb
->users
) == 1)) {
2551 refcount_set(&skb
->users
, 0);
2552 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
2555 get_kfree_skb_cb(skb
)->reason
= reason
;
2556 local_irq_save(flags
);
2557 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
2558 __this_cpu_write(softnet_data
.completion_queue
, skb
);
2559 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
2560 local_irq_restore(flags
);
2562 EXPORT_SYMBOL(__dev_kfree_skb_irq
);
2564 void __dev_kfree_skb_any(struct sk_buff
*skb
, enum skb_free_reason reason
)
2566 if (in_irq() || irqs_disabled())
2567 __dev_kfree_skb_irq(skb
, reason
);
2571 EXPORT_SYMBOL(__dev_kfree_skb_any
);
2575 * netif_device_detach - mark device as removed
2576 * @dev: network device
2578 * Mark device as removed from system and therefore no longer available.
2580 void netif_device_detach(struct net_device
*dev
)
2582 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2583 netif_running(dev
)) {
2584 netif_tx_stop_all_queues(dev
);
2587 EXPORT_SYMBOL(netif_device_detach
);
2590 * netif_device_attach - mark device as attached
2591 * @dev: network device
2593 * Mark device as attached from system and restart if needed.
2595 void netif_device_attach(struct net_device
*dev
)
2597 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
2598 netif_running(dev
)) {
2599 netif_tx_wake_all_queues(dev
);
2600 __netdev_watchdog_up(dev
);
2603 EXPORT_SYMBOL(netif_device_attach
);
2606 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2607 * to be used as a distribution range.
2609 u16
__skb_tx_hash(const struct net_device
*dev
, struct sk_buff
*skb
,
2610 unsigned int num_tx_queues
)
2614 u16 qcount
= num_tx_queues
;
2616 if (skb_rx_queue_recorded(skb
)) {
2617 hash
= skb_get_rx_queue(skb
);
2618 while (unlikely(hash
>= num_tx_queues
))
2619 hash
-= num_tx_queues
;
2624 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
2626 qoffset
= dev
->tc_to_txq
[tc
].offset
;
2627 qcount
= dev
->tc_to_txq
[tc
].count
;
2630 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
2632 EXPORT_SYMBOL(__skb_tx_hash
);
2634 static void skb_warn_bad_offload(const struct sk_buff
*skb
)
2636 static const netdev_features_t null_features
;
2637 struct net_device
*dev
= skb
->dev
;
2638 const char *name
= "";
2640 if (!net_ratelimit())
2644 if (dev
->dev
.parent
)
2645 name
= dev_driver_string(dev
->dev
.parent
);
2647 name
= netdev_name(dev
);
2649 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2650 "gso_type=%d ip_summed=%d\n",
2651 name
, dev
? &dev
->features
: &null_features
,
2652 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
,
2653 skb
->len
, skb
->data_len
, skb_shinfo(skb
)->gso_size
,
2654 skb_shinfo(skb
)->gso_type
, skb
->ip_summed
);
2658 * Invalidate hardware checksum when packet is to be mangled, and
2659 * complete checksum manually on outgoing path.
2661 int skb_checksum_help(struct sk_buff
*skb
)
2664 int ret
= 0, offset
;
2666 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
2667 goto out_set_summed
;
2669 if (unlikely(skb_shinfo(skb
)->gso_size
)) {
2670 skb_warn_bad_offload(skb
);
2674 /* Before computing a checksum, we should make sure no frag could
2675 * be modified by an external entity : checksum could be wrong.
2677 if (skb_has_shared_frag(skb
)) {
2678 ret
= __skb_linearize(skb
);
2683 offset
= skb_checksum_start_offset(skb
);
2684 BUG_ON(offset
>= skb_headlen(skb
));
2685 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2687 offset
+= skb
->csum_offset
;
2688 BUG_ON(offset
+ sizeof(__sum16
) > skb_headlen(skb
));
2690 if (skb_cloned(skb
) &&
2691 !skb_clone_writable(skb
, offset
+ sizeof(__sum16
))) {
2692 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2697 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
2699 skb
->ip_summed
= CHECKSUM_NONE
;
2703 EXPORT_SYMBOL(skb_checksum_help
);
2705 int skb_crc32c_csum_help(struct sk_buff
*skb
)
2708 int ret
= 0, offset
, start
;
2710 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2713 if (unlikely(skb_is_gso(skb
)))
2716 /* Before computing a checksum, we should make sure no frag could
2717 * be modified by an external entity : checksum could be wrong.
2719 if (unlikely(skb_has_shared_frag(skb
))) {
2720 ret
= __skb_linearize(skb
);
2724 start
= skb_checksum_start_offset(skb
);
2725 offset
= start
+ offsetof(struct sctphdr
, checksum
);
2726 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
2730 if (skb_cloned(skb
) &&
2731 !skb_clone_writable(skb
, offset
+ sizeof(__le32
))) {
2732 ret
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2736 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
2737 skb
->len
- start
, ~(__u32
)0,
2739 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
2740 skb
->ip_summed
= CHECKSUM_NONE
;
2741 skb
->csum_not_inet
= 0;
2746 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
2748 __be16 type
= skb
->protocol
;
2750 /* Tunnel gso handlers can set protocol to ethernet. */
2751 if (type
== htons(ETH_P_TEB
)) {
2754 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
2757 eth
= (struct ethhdr
*)skb_mac_header(skb
);
2758 type
= eth
->h_proto
;
2761 return __vlan_get_protocol(skb
, type
, depth
);
2765 * skb_mac_gso_segment - mac layer segmentation handler.
2766 * @skb: buffer to segment
2767 * @features: features for the output path (see dev->features)
2769 struct sk_buff
*skb_mac_gso_segment(struct sk_buff
*skb
,
2770 netdev_features_t features
)
2772 struct sk_buff
*segs
= ERR_PTR(-EPROTONOSUPPORT
);
2773 struct packet_offload
*ptype
;
2774 int vlan_depth
= skb
->mac_len
;
2775 __be16 type
= skb_network_protocol(skb
, &vlan_depth
);
2777 if (unlikely(!type
))
2778 return ERR_PTR(-EINVAL
);
2780 __skb_pull(skb
, vlan_depth
);
2783 list_for_each_entry_rcu(ptype
, &offload_base
, list
) {
2784 if (ptype
->type
== type
&& ptype
->callbacks
.gso_segment
) {
2785 segs
= ptype
->callbacks
.gso_segment(skb
, features
);
2791 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
2795 EXPORT_SYMBOL(skb_mac_gso_segment
);
2798 /* openvswitch calls this on rx path, so we need a different check.
2800 static inline bool skb_needs_check(struct sk_buff
*skb
, bool tx_path
)
2803 return skb
->ip_summed
!= CHECKSUM_PARTIAL
&&
2804 skb
->ip_summed
!= CHECKSUM_UNNECESSARY
;
2806 return skb
->ip_summed
== CHECKSUM_NONE
;
2810 * __skb_gso_segment - Perform segmentation on skb.
2811 * @skb: buffer to segment
2812 * @features: features for the output path (see dev->features)
2813 * @tx_path: whether it is called in TX path
2815 * This function segments the given skb and returns a list of segments.
2817 * It may return NULL if the skb requires no segmentation. This is
2818 * only possible when GSO is used for verifying header integrity.
2820 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2822 struct sk_buff
*__skb_gso_segment(struct sk_buff
*skb
,
2823 netdev_features_t features
, bool tx_path
)
2825 struct sk_buff
*segs
;
2827 if (unlikely(skb_needs_check(skb
, tx_path
))) {
2830 /* We're going to init ->check field in TCP or UDP header */
2831 err
= skb_cow_head(skb
, 0);
2833 return ERR_PTR(err
);
2836 /* Only report GSO partial support if it will enable us to
2837 * support segmentation on this frame without needing additional
2840 if (features
& NETIF_F_GSO_PARTIAL
) {
2841 netdev_features_t partial_features
= NETIF_F_GSO_ROBUST
;
2842 struct net_device
*dev
= skb
->dev
;
2844 partial_features
|= dev
->features
& dev
->gso_partial_features
;
2845 if (!skb_gso_ok(skb
, features
| partial_features
))
2846 features
&= ~NETIF_F_GSO_PARTIAL
;
2849 BUILD_BUG_ON(SKB_SGO_CB_OFFSET
+
2850 sizeof(*SKB_GSO_CB(skb
)) > sizeof(skb
->cb
));
2852 SKB_GSO_CB(skb
)->mac_offset
= skb_headroom(skb
);
2853 SKB_GSO_CB(skb
)->encap_level
= 0;
2855 skb_reset_mac_header(skb
);
2856 skb_reset_mac_len(skb
);
2858 segs
= skb_mac_gso_segment(skb
, features
);
2860 if (unlikely(skb_needs_check(skb
, tx_path
) && !IS_ERR(segs
)))
2861 skb_warn_bad_offload(skb
);
2865 EXPORT_SYMBOL(__skb_gso_segment
);
2867 /* Take action when hardware reception checksum errors are detected. */
2869 void netdev_rx_csum_fault(struct net_device
*dev
)
2871 if (net_ratelimit()) {
2872 pr_err("%s: hw csum failure\n", dev
? dev
->name
: "<unknown>");
2876 EXPORT_SYMBOL(netdev_rx_csum_fault
);
2879 /* Actually, we should eliminate this check as soon as we know, that:
2880 * 1. IOMMU is present and allows to map all the memory.
2881 * 2. No high memory really exists on this machine.
2884 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
2886 #ifdef CONFIG_HIGHMEM
2889 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
2890 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2891 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2893 if (PageHighMem(skb_frag_page(frag
)))
2898 if (PCI_DMA_BUS_IS_PHYS
) {
2899 struct device
*pdev
= dev
->dev
.parent
;
2903 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2904 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2905 dma_addr_t addr
= page_to_phys(skb_frag_page(frag
));
2907 if (!pdev
->dma_mask
|| addr
+ PAGE_SIZE
- 1 > *pdev
->dma_mask
)
2915 /* If MPLS offload request, verify we are testing hardware MPLS features
2916 * instead of standard features for the netdev.
2918 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2919 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
2920 netdev_features_t features
,
2923 if (eth_p_mpls(type
))
2924 features
&= skb
->dev
->mpls_features
;
2929 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
2930 netdev_features_t features
,
2937 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
2938 netdev_features_t features
)
2943 type
= skb_network_protocol(skb
, &tmp
);
2944 features
= net_mpls_features(skb
, features
, type
);
2946 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
2947 !can_checksum_protocol(features
, type
)) {
2948 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
2950 if (illegal_highdma(skb
->dev
, skb
))
2951 features
&= ~NETIF_F_SG
;
2956 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
2957 struct net_device
*dev
,
2958 netdev_features_t features
)
2962 EXPORT_SYMBOL(passthru_features_check
);
2964 static netdev_features_t
dflt_features_check(const struct sk_buff
*skb
,
2965 struct net_device
*dev
,
2966 netdev_features_t features
)
2968 return vlan_features_check(skb
, features
);
2971 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
2972 struct net_device
*dev
,
2973 netdev_features_t features
)
2975 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
2977 if (gso_segs
> dev
->gso_max_segs
)
2978 return features
& ~NETIF_F_GSO_MASK
;
2980 /* Support for GSO partial features requires software
2981 * intervention before we can actually process the packets
2982 * so we need to strip support for any partial features now
2983 * and we can pull them back in after we have partially
2984 * segmented the frame.
2986 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
2987 features
&= ~dev
->gso_partial_features
;
2989 /* Make sure to clear the IPv4 ID mangling feature if the
2990 * IPv4 header has the potential to be fragmented.
2992 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
2993 struct iphdr
*iph
= skb
->encapsulation
?
2994 inner_ip_hdr(skb
) : ip_hdr(skb
);
2996 if (!(iph
->frag_off
& htons(IP_DF
)))
2997 features
&= ~NETIF_F_TSO_MANGLEID
;
3003 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3005 struct net_device
*dev
= skb
->dev
;
3006 netdev_features_t features
= dev
->features
;
3008 if (skb_is_gso(skb
))
3009 features
= gso_features_check(skb
, dev
, features
);
3011 /* If encapsulation offload request, verify we are testing
3012 * hardware encapsulation features instead of standard
3013 * features for the netdev
3015 if (skb
->encapsulation
)
3016 features
&= dev
->hw_enc_features
;
3018 if (skb_vlan_tagged(skb
))
3019 features
= netdev_intersect_features(features
,
3020 dev
->vlan_features
|
3021 NETIF_F_HW_VLAN_CTAG_TX
|
3022 NETIF_F_HW_VLAN_STAG_TX
);
3024 if (dev
->netdev_ops
->ndo_features_check
)
3025 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3028 features
&= dflt_features_check(skb
, dev
, features
);
3030 return harmonize_features(skb
, features
);
3032 EXPORT_SYMBOL(netif_skb_features
);
3034 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3035 struct netdev_queue
*txq
, bool more
)
3040 if (!list_empty(&ptype_all
) || !list_empty(&dev
->ptype_all
))
3041 dev_queue_xmit_nit(skb
, dev
);
3044 trace_net_dev_start_xmit(skb
, dev
);
3045 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3046 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3051 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3052 struct netdev_queue
*txq
, int *ret
)
3054 struct sk_buff
*skb
= first
;
3055 int rc
= NETDEV_TX_OK
;
3058 struct sk_buff
*next
= skb
->next
;
3061 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3062 if (unlikely(!dev_xmit_complete(rc
))) {
3068 if (netif_xmit_stopped(txq
) && skb
) {
3069 rc
= NETDEV_TX_BUSY
;
3079 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3080 netdev_features_t features
)
3082 if (skb_vlan_tag_present(skb
) &&
3083 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3084 skb
= __vlan_hwaccel_push_inside(skb
);
3088 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3089 const netdev_features_t features
)
3091 if (unlikely(skb
->csum_not_inet
))
3092 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3093 skb_crc32c_csum_help(skb
);
3095 return !!(features
& NETIF_F_CSUM_MASK
) ? 0 : skb_checksum_help(skb
);
3097 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3099 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3101 netdev_features_t features
;
3103 features
= netif_skb_features(skb
);
3104 skb
= validate_xmit_vlan(skb
, features
);
3108 if (netif_needs_gso(skb
, features
)) {
3109 struct sk_buff
*segs
;
3111 segs
= skb_gso_segment(skb
, features
);
3119 if (skb_needs_linearize(skb
, features
) &&
3120 __skb_linearize(skb
))
3123 /* If packet is not checksummed and device does not
3124 * support checksumming for this protocol, complete
3125 * checksumming here.
3127 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3128 if (skb
->encapsulation
)
3129 skb_set_inner_transport_header(skb
,
3130 skb_checksum_start_offset(skb
));
3132 skb_set_transport_header(skb
,
3133 skb_checksum_start_offset(skb
));
3134 if (skb_csum_hwoffload_help(skb
, features
))
3139 skb
= validate_xmit_xfrm(skb
, features
, again
);
3146 atomic_long_inc(&dev
->tx_dropped
);
3150 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3152 struct sk_buff
*next
, *head
= NULL
, *tail
;
3154 for (; skb
!= NULL
; skb
= next
) {
3158 /* in case skb wont be segmented, point to itself */
3161 skb
= validate_xmit_skb(skb
, dev
, again
);
3169 /* If skb was segmented, skb->prev points to
3170 * the last segment. If not, it still contains skb.
3176 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3178 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3180 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3182 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3184 /* To get more precise estimation of bytes sent on wire,
3185 * we add to pkt_len the headers size of all segments
3187 if (shinfo
->gso_size
) {
3188 unsigned int hdr_len
;
3189 u16 gso_segs
= shinfo
->gso_segs
;
3191 /* mac layer + network layer */
3192 hdr_len
= skb_transport_header(skb
) - skb_mac_header(skb
);
3194 /* + transport layer */
3195 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3196 const struct tcphdr
*th
;
3197 struct tcphdr _tcphdr
;
3199 th
= skb_header_pointer(skb
, skb_transport_offset(skb
),
3200 sizeof(_tcphdr
), &_tcphdr
);
3202 hdr_len
+= __tcp_hdrlen(th
);
3204 struct udphdr _udphdr
;
3206 if (skb_header_pointer(skb
, skb_transport_offset(skb
),
3207 sizeof(_udphdr
), &_udphdr
))
3208 hdr_len
+= sizeof(struct udphdr
);
3211 if (shinfo
->gso_type
& SKB_GSO_DODGY
)
3212 gso_segs
= DIV_ROUND_UP(skb
->len
- hdr_len
,
3215 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3219 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3220 struct net_device
*dev
,
3221 struct netdev_queue
*txq
)
3223 spinlock_t
*root_lock
= qdisc_lock(q
);
3224 struct sk_buff
*to_free
= NULL
;
3228 qdisc_calculate_pkt_len(skb
, q
);
3230 if (q
->flags
& TCQ_F_NOLOCK
) {
3231 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3232 __qdisc_drop(skb
, &to_free
);
3235 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3239 if (unlikely(to_free
))
3240 kfree_skb_list(to_free
);
3245 * Heuristic to force contended enqueues to serialize on a
3246 * separate lock before trying to get qdisc main lock.
3247 * This permits qdisc->running owner to get the lock more
3248 * often and dequeue packets faster.
3250 contended
= qdisc_is_running(q
);
3251 if (unlikely(contended
))
3252 spin_lock(&q
->busylock
);
3254 spin_lock(root_lock
);
3255 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3256 __qdisc_drop(skb
, &to_free
);
3258 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3259 qdisc_run_begin(q
)) {
3261 * This is a work-conserving queue; there are no old skbs
3262 * waiting to be sent out; and the qdisc is not running -
3263 * xmit the skb directly.
3266 qdisc_bstats_update(q
, skb
);
3268 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3269 if (unlikely(contended
)) {
3270 spin_unlock(&q
->busylock
);
3277 rc
= NET_XMIT_SUCCESS
;
3279 rc
= q
->enqueue(skb
, q
, &to_free
) & NET_XMIT_MASK
;
3280 if (qdisc_run_begin(q
)) {
3281 if (unlikely(contended
)) {
3282 spin_unlock(&q
->busylock
);
3289 spin_unlock(root_lock
);
3290 if (unlikely(to_free
))
3291 kfree_skb_list(to_free
);
3292 if (unlikely(contended
))
3293 spin_unlock(&q
->busylock
);
3297 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3298 static void skb_update_prio(struct sk_buff
*skb
)
3300 const struct netprio_map
*map
;
3301 const struct sock
*sk
;
3302 unsigned int prioidx
;
3306 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3309 sk
= skb_to_full_sk(skb
);
3313 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3315 if (prioidx
< map
->priomap_len
)
3316 skb
->priority
= map
->priomap
[prioidx
];
3319 #define skb_update_prio(skb)
3322 DEFINE_PER_CPU(int, xmit_recursion
);
3323 EXPORT_SYMBOL(xmit_recursion
);
3326 * dev_loopback_xmit - loop back @skb
3327 * @net: network namespace this loopback is happening in
3328 * @sk: sk needed to be a netfilter okfn
3329 * @skb: buffer to transmit
3331 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3333 skb_reset_mac_header(skb
);
3334 __skb_pull(skb
, skb_network_offset(skb
));
3335 skb
->pkt_type
= PACKET_LOOPBACK
;
3336 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3337 WARN_ON(!skb_dst(skb
));
3342 EXPORT_SYMBOL(dev_loopback_xmit
);
3344 #ifdef CONFIG_NET_EGRESS
3345 static struct sk_buff
*
3346 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
3348 struct mini_Qdisc
*miniq
= rcu_dereference_bh(dev
->miniq_egress
);
3349 struct tcf_result cl_res
;
3354 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3355 mini_qdisc_bstats_cpu_update(miniq
, skb
);
3357 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
3359 case TC_ACT_RECLASSIFY
:
3360 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
3363 mini_qdisc_qstats_cpu_drop(miniq
);
3364 *ret
= NET_XMIT_DROP
;
3370 *ret
= NET_XMIT_SUCCESS
;
3373 case TC_ACT_REDIRECT
:
3374 /* No need to push/pop skb's mac_header here on egress! */
3375 skb_do_redirect(skb
);
3376 *ret
= NET_XMIT_SUCCESS
;
3384 #endif /* CONFIG_NET_EGRESS */
3386 static inline int get_xps_queue(struct net_device
*dev
, struct sk_buff
*skb
)
3389 struct xps_dev_maps
*dev_maps
;
3390 struct xps_map
*map
;
3391 int queue_index
= -1;
3394 dev_maps
= rcu_dereference(dev
->xps_maps
);
3396 unsigned int tci
= skb
->sender_cpu
- 1;
3400 tci
+= netdev_get_prio_tc_map(dev
, skb
->priority
);
3403 map
= rcu_dereference(dev_maps
->cpu_map
[tci
]);
3406 queue_index
= map
->queues
[0];
3408 queue_index
= map
->queues
[reciprocal_scale(skb_get_hash(skb
),
3410 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
3422 static u16
__netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
)
3424 struct sock
*sk
= skb
->sk
;
3425 int queue_index
= sk_tx_queue_get(sk
);
3427 if (queue_index
< 0 || skb
->ooo_okay
||
3428 queue_index
>= dev
->real_num_tx_queues
) {
3429 int new_index
= get_xps_queue(dev
, skb
);
3432 new_index
= skb_tx_hash(dev
, skb
);
3434 if (queue_index
!= new_index
&& sk
&&
3436 rcu_access_pointer(sk
->sk_dst_cache
))
3437 sk_tx_queue_set(sk
, new_index
);
3439 queue_index
= new_index
;
3445 struct netdev_queue
*netdev_pick_tx(struct net_device
*dev
,
3446 struct sk_buff
*skb
,
3449 int queue_index
= 0;
3452 u32 sender_cpu
= skb
->sender_cpu
- 1;
3454 if (sender_cpu
>= (u32
)NR_CPUS
)
3455 skb
->sender_cpu
= raw_smp_processor_id() + 1;
3458 if (dev
->real_num_tx_queues
!= 1) {
3459 const struct net_device_ops
*ops
= dev
->netdev_ops
;
3461 if (ops
->ndo_select_queue
)
3462 queue_index
= ops
->ndo_select_queue(dev
, skb
, accel_priv
,
3465 queue_index
= __netdev_pick_tx(dev
, skb
);
3467 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
3470 skb_set_queue_mapping(skb
, queue_index
);
3471 return netdev_get_tx_queue(dev
, queue_index
);
3475 * __dev_queue_xmit - transmit a buffer
3476 * @skb: buffer to transmit
3477 * @accel_priv: private data used for L2 forwarding offload
3479 * Queue a buffer for transmission to a network device. The caller must
3480 * have set the device and priority and built the buffer before calling
3481 * this function. The function can be called from an interrupt.
3483 * A negative errno code is returned on a failure. A success does not
3484 * guarantee the frame will be transmitted as it may be dropped due
3485 * to congestion or traffic shaping.
3487 * -----------------------------------------------------------------------------------
3488 * I notice this method can also return errors from the queue disciplines,
3489 * including NET_XMIT_DROP, which is a positive value. So, errors can also
3492 * Regardless of the return value, the skb is consumed, so it is currently
3493 * difficult to retry a send to this method. (You can bump the ref count
3494 * before sending to hold a reference for retry if you are careful.)
3496 * When calling this method, interrupts MUST be enabled. This is because
3497 * the BH enable code must have IRQs enabled so that it will not deadlock.
3500 static int __dev_queue_xmit(struct sk_buff
*skb
, void *accel_priv
)
3502 struct net_device
*dev
= skb
->dev
;
3503 struct netdev_queue
*txq
;
3508 skb_reset_mac_header(skb
);
3510 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
3511 __skb_tstamp_tx(skb
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
3513 /* Disable soft irqs for various locks below. Also
3514 * stops preemption for RCU.
3518 skb_update_prio(skb
);
3520 qdisc_pkt_len_init(skb
);
3521 #ifdef CONFIG_NET_CLS_ACT
3522 skb
->tc_at_ingress
= 0;
3523 # ifdef CONFIG_NET_EGRESS
3524 if (static_key_false(&egress_needed
)) {
3525 skb
= sch_handle_egress(skb
, &rc
, dev
);
3531 /* If device/qdisc don't need skb->dst, release it right now while
3532 * its hot in this cpu cache.
3534 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
3539 txq
= netdev_pick_tx(dev
, skb
, accel_priv
);
3540 q
= rcu_dereference_bh(txq
->qdisc
);
3542 trace_net_dev_queue(skb
);
3544 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
3548 /* The device has no queue. Common case for software devices:
3549 * loopback, all the sorts of tunnels...
3551 * Really, it is unlikely that netif_tx_lock protection is necessary
3552 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
3554 * However, it is possible, that they rely on protection
3557 * Check this and shot the lock. It is not prone from deadlocks.
3558 *Either shot noqueue qdisc, it is even simpler 8)
3560 if (dev
->flags
& IFF_UP
) {
3561 int cpu
= smp_processor_id(); /* ok because BHs are off */
3563 if (txq
->xmit_lock_owner
!= cpu
) {
3564 if (unlikely(__this_cpu_read(xmit_recursion
) >
3565 XMIT_RECURSION_LIMIT
))
3566 goto recursion_alert
;
3568 skb
= validate_xmit_skb(skb
, dev
, &again
);
3572 HARD_TX_LOCK(dev
, txq
, cpu
);
3574 if (!netif_xmit_stopped(txq
)) {
3575 __this_cpu_inc(xmit_recursion
);
3576 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
3577 __this_cpu_dec(xmit_recursion
);
3578 if (dev_xmit_complete(rc
)) {
3579 HARD_TX_UNLOCK(dev
, txq
);
3583 HARD_TX_UNLOCK(dev
, txq
);
3584 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3587 /* Recursion is detected! It is possible,
3591 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3597 rcu_read_unlock_bh();
3599 atomic_long_inc(&dev
->tx_dropped
);
3600 kfree_skb_list(skb
);
3603 rcu_read_unlock_bh();
3607 int dev_queue_xmit(struct sk_buff
*skb
)
3609 return __dev_queue_xmit(skb
, NULL
);
3611 EXPORT_SYMBOL(dev_queue_xmit
);
3613 int dev_queue_xmit_accel(struct sk_buff
*skb
, void *accel_priv
)
3615 return __dev_queue_xmit(skb
, accel_priv
);
3617 EXPORT_SYMBOL(dev_queue_xmit_accel
);
3620 /*************************************************************************
3622 *************************************************************************/
3624 int netdev_max_backlog __read_mostly
= 1000;
3625 EXPORT_SYMBOL(netdev_max_backlog
);
3627 int netdev_tstamp_prequeue __read_mostly
= 1;
3628 int netdev_budget __read_mostly
= 300;
3629 unsigned int __read_mostly netdev_budget_usecs
= 2000;
3630 int weight_p __read_mostly
= 64; /* old backlog weight */
3631 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
3632 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
3633 int dev_rx_weight __read_mostly
= 64;
3634 int dev_tx_weight __read_mostly
= 64;
3636 /* Called with irq disabled */
3637 static inline void ____napi_schedule(struct softnet_data
*sd
,
3638 struct napi_struct
*napi
)
3640 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
3641 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3646 /* One global table that all flow-based protocols share. */
3647 struct rps_sock_flow_table __rcu
*rps_sock_flow_table __read_mostly
;
3648 EXPORT_SYMBOL(rps_sock_flow_table
);
3649 u32 rps_cpu_mask __read_mostly
;
3650 EXPORT_SYMBOL(rps_cpu_mask
);
3652 struct static_key rps_needed __read_mostly
;
3653 EXPORT_SYMBOL(rps_needed
);
3654 struct static_key rfs_needed __read_mostly
;
3655 EXPORT_SYMBOL(rfs_needed
);
3657 static struct rps_dev_flow
*
3658 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3659 struct rps_dev_flow
*rflow
, u16 next_cpu
)
3661 if (next_cpu
< nr_cpu_ids
) {
3662 #ifdef CONFIG_RFS_ACCEL
3663 struct netdev_rx_queue
*rxqueue
;
3664 struct rps_dev_flow_table
*flow_table
;
3665 struct rps_dev_flow
*old_rflow
;
3670 /* Should we steer this flow to a different hardware queue? */
3671 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
3672 !(dev
->features
& NETIF_F_NTUPLE
))
3674 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
3675 if (rxq_index
== skb_get_rx_queue(skb
))
3678 rxqueue
= dev
->_rx
+ rxq_index
;
3679 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3682 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
3683 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
3684 rxq_index
, flow_id
);
3688 rflow
= &flow_table
->flows
[flow_id
];
3690 if (old_rflow
->filter
== rflow
->filter
)
3691 old_rflow
->filter
= RPS_NO_FILTER
;
3695 per_cpu(softnet_data
, next_cpu
).input_queue_head
;
3698 rflow
->cpu
= next_cpu
;
3703 * get_rps_cpu is called from netif_receive_skb and returns the target
3704 * CPU from the RPS map of the receiving queue for a given skb.
3705 * rcu_read_lock must be held on entry.
3707 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
3708 struct rps_dev_flow
**rflowp
)
3710 const struct rps_sock_flow_table
*sock_flow_table
;
3711 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
3712 struct rps_dev_flow_table
*flow_table
;
3713 struct rps_map
*map
;
3718 if (skb_rx_queue_recorded(skb
)) {
3719 u16 index
= skb_get_rx_queue(skb
);
3721 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
3722 WARN_ONCE(dev
->real_num_rx_queues
> 1,
3723 "%s received packet on queue %u, but number "
3724 "of RX queues is %u\n",
3725 dev
->name
, index
, dev
->real_num_rx_queues
);
3731 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3733 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3734 map
= rcu_dereference(rxqueue
->rps_map
);
3735 if (!flow_table
&& !map
)
3738 skb_reset_network_header(skb
);
3739 hash
= skb_get_hash(skb
);
3743 sock_flow_table
= rcu_dereference(rps_sock_flow_table
);
3744 if (flow_table
&& sock_flow_table
) {
3745 struct rps_dev_flow
*rflow
;
3749 /* First check into global flow table if there is a match */
3750 ident
= sock_flow_table
->ents
[hash
& sock_flow_table
->mask
];
3751 if ((ident
^ hash
) & ~rps_cpu_mask
)
3754 next_cpu
= ident
& rps_cpu_mask
;
3756 /* OK, now we know there is a match,
3757 * we can look at the local (per receive queue) flow table
3759 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
3763 * If the desired CPU (where last recvmsg was done) is
3764 * different from current CPU (one in the rx-queue flow
3765 * table entry), switch if one of the following holds:
3766 * - Current CPU is unset (>= nr_cpu_ids).
3767 * - Current CPU is offline.
3768 * - The current CPU's queue tail has advanced beyond the
3769 * last packet that was enqueued using this table entry.
3770 * This guarantees that all previous packets for the flow
3771 * have been dequeued, thus preserving in order delivery.
3773 if (unlikely(tcpu
!= next_cpu
) &&
3774 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
3775 ((int)(per_cpu(softnet_data
, tcpu
).input_queue_head
-
3776 rflow
->last_qtail
)) >= 0)) {
3778 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
3781 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
3791 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
3792 if (cpu_online(tcpu
)) {
3802 #ifdef CONFIG_RFS_ACCEL
3805 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3806 * @dev: Device on which the filter was set
3807 * @rxq_index: RX queue index
3808 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3809 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3811 * Drivers that implement ndo_rx_flow_steer() should periodically call
3812 * this function for each installed filter and remove the filters for
3813 * which it returns %true.
3815 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
3816 u32 flow_id
, u16 filter_id
)
3818 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
3819 struct rps_dev_flow_table
*flow_table
;
3820 struct rps_dev_flow
*rflow
;
3825 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
3826 if (flow_table
&& flow_id
<= flow_table
->mask
) {
3827 rflow
= &flow_table
->flows
[flow_id
];
3828 cpu
= READ_ONCE(rflow
->cpu
);
3829 if (rflow
->filter
== filter_id
&& cpu
< nr_cpu_ids
&&
3830 ((int)(per_cpu(softnet_data
, cpu
).input_queue_head
-
3831 rflow
->last_qtail
) <
3832 (int)(10 * flow_table
->mask
)))
3838 EXPORT_SYMBOL(rps_may_expire_flow
);
3840 #endif /* CONFIG_RFS_ACCEL */
3842 /* Called from hardirq (IPI) context */
3843 static void rps_trigger_softirq(void *data
)
3845 struct softnet_data
*sd
= data
;
3847 ____napi_schedule(sd
, &sd
->backlog
);
3851 #endif /* CONFIG_RPS */
3854 * Check if this softnet_data structure is another cpu one
3855 * If yes, queue it to our IPI list and return 1
3858 static int rps_ipi_queued(struct softnet_data
*sd
)
3861 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
3864 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
3865 mysd
->rps_ipi_list
= sd
;
3867 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
3870 #endif /* CONFIG_RPS */
3874 #ifdef CONFIG_NET_FLOW_LIMIT
3875 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
3878 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
3880 #ifdef CONFIG_NET_FLOW_LIMIT
3881 struct sd_flow_limit
*fl
;
3882 struct softnet_data
*sd
;
3883 unsigned int old_flow
, new_flow
;
3885 if (qlen
< (netdev_max_backlog
>> 1))
3888 sd
= this_cpu_ptr(&softnet_data
);
3891 fl
= rcu_dereference(sd
->flow_limit
);
3893 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
3894 old_flow
= fl
->history
[fl
->history_head
];
3895 fl
->history
[fl
->history_head
] = new_flow
;
3898 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
3900 if (likely(fl
->buckets
[old_flow
]))
3901 fl
->buckets
[old_flow
]--;
3903 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
3915 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3916 * queue (may be a remote CPU queue).
3918 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
3919 unsigned int *qtail
)
3921 struct softnet_data
*sd
;
3922 unsigned long flags
;
3925 sd
= &per_cpu(softnet_data
, cpu
);
3927 local_irq_save(flags
);
3930 if (!netif_running(skb
->dev
))
3932 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
3933 if (qlen
<= netdev_max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
3936 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
3937 input_queue_tail_incr_save(sd
, qtail
);
3939 local_irq_restore(flags
);
3940 return NET_RX_SUCCESS
;
3943 /* Schedule NAPI for backlog device
3944 * We can use non atomic operation since we own the queue lock
3946 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
)) {
3947 if (!rps_ipi_queued(sd
))
3948 ____napi_schedule(sd
, &sd
->backlog
);
3957 local_irq_restore(flags
);
3959 atomic_long_inc(&skb
->dev
->rx_dropped
);
3964 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
3966 struct net_device
*dev
= skb
->dev
;
3967 struct netdev_rx_queue
*rxqueue
;
3971 if (skb_rx_queue_recorded(skb
)) {
3972 u16 index
= skb_get_rx_queue(skb
);
3974 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
3975 WARN_ONCE(dev
->real_num_rx_queues
> 1,
3976 "%s received packet on queue %u, but number "
3977 "of RX queues is %u\n",
3978 dev
->name
, index
, dev
->real_num_rx_queues
);
3980 return rxqueue
; /* Return first rxqueue */
3987 static u32
netif_receive_generic_xdp(struct sk_buff
*skb
,
3988 struct bpf_prog
*xdp_prog
)
3990 struct netdev_rx_queue
*rxqueue
;
3991 u32 metalen
, act
= XDP_DROP
;
3992 struct xdp_buff xdp
;
3997 /* Reinjected packets coming from act_mirred or similar should
3998 * not get XDP generic processing.
4000 if (skb_cloned(skb
))
4003 /* XDP packets must be linear and must have sufficient headroom
4004 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4005 * native XDP provides, thus we need to do it here as well.
4007 if (skb_is_nonlinear(skb
) ||
4008 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
4009 int hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
4010 int troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
4012 /* In case we have to go down the path and also linearize,
4013 * then lets do the pskb_expand_head() work just once here.
4015 if (pskb_expand_head(skb
,
4016 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
4017 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
))
4019 if (skb_linearize(skb
))
4023 /* The XDP program wants to see the packet starting at the MAC
4026 mac_len
= skb
->data
- skb_mac_header(skb
);
4027 hlen
= skb_headlen(skb
) + mac_len
;
4028 xdp
.data
= skb
->data
- mac_len
;
4029 xdp
.data_meta
= xdp
.data
;
4030 xdp
.data_end
= xdp
.data
+ hlen
;
4031 xdp
.data_hard_start
= skb
->data
- skb_headroom(skb
);
4032 orig_data
= xdp
.data
;
4034 rxqueue
= netif_get_rxqueue(skb
);
4035 xdp
.rxq
= &rxqueue
->xdp_rxq
;
4037 act
= bpf_prog_run_xdp(xdp_prog
, &xdp
);
4039 off
= xdp
.data
- orig_data
;
4041 __skb_pull(skb
, off
);
4043 __skb_push(skb
, -off
);
4044 skb
->mac_header
+= off
;
4049 __skb_push(skb
, mac_len
);
4052 metalen
= xdp
.data
- xdp
.data_meta
;
4054 skb_metadata_set(skb
, metalen
);
4057 bpf_warn_invalid_xdp_action(act
);
4060 trace_xdp_exception(skb
->dev
, xdp_prog
, act
);
4071 /* When doing generic XDP we have to bypass the qdisc layer and the
4072 * network taps in order to match in-driver-XDP behavior.
4074 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
4076 struct net_device
*dev
= skb
->dev
;
4077 struct netdev_queue
*txq
;
4078 bool free_skb
= true;
4081 txq
= netdev_pick_tx(dev
, skb
, NULL
);
4082 cpu
= smp_processor_id();
4083 HARD_TX_LOCK(dev
, txq
, cpu
);
4084 if (!netif_xmit_stopped(txq
)) {
4085 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
4086 if (dev_xmit_complete(rc
))
4089 HARD_TX_UNLOCK(dev
, txq
);
4091 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
4095 EXPORT_SYMBOL_GPL(generic_xdp_tx
);
4097 static struct static_key generic_xdp_needed __read_mostly
;
4099 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
*skb
)
4102 u32 act
= netif_receive_generic_xdp(skb
, xdp_prog
);
4105 if (act
!= XDP_PASS
) {
4108 err
= xdp_do_generic_redirect(skb
->dev
, skb
,
4112 /* fallthru to submit skb */
4114 generic_xdp_tx(skb
, xdp_prog
);
4125 EXPORT_SYMBOL_GPL(do_xdp_generic
);
4127 static int netif_rx_internal(struct sk_buff
*skb
)
4131 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4133 trace_netif_rx(skb
);
4135 if (static_key_false(&generic_xdp_needed
)) {
4140 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4144 /* Consider XDP consuming the packet a success from
4145 * the netdev point of view we do not want to count
4148 if (ret
!= XDP_PASS
)
4149 return NET_RX_SUCCESS
;
4153 if (static_key_false(&rps_needed
)) {
4154 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4160 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4162 cpu
= smp_processor_id();
4164 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4173 ret
= enqueue_to_backlog(skb
, get_cpu(), &qtail
);
4180 * netif_rx - post buffer to the network code
4181 * @skb: buffer to post
4183 * This function receives a packet from a device driver and queues it for
4184 * the upper (protocol) levels to process. It always succeeds. The buffer
4185 * may be dropped during processing for congestion control or by the
4189 * NET_RX_SUCCESS (no congestion)
4190 * NET_RX_DROP (packet was dropped)
4194 int netif_rx(struct sk_buff
*skb
)
4196 trace_netif_rx_entry(skb
);
4198 return netif_rx_internal(skb
);
4200 EXPORT_SYMBOL(netif_rx
);
4202 int netif_rx_ni(struct sk_buff
*skb
)
4206 trace_netif_rx_ni_entry(skb
);
4209 err
= netif_rx_internal(skb
);
4210 if (local_softirq_pending())
4216 EXPORT_SYMBOL(netif_rx_ni
);
4218 static __latent_entropy
void net_tx_action(struct softirq_action
*h
)
4220 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
4222 if (sd
->completion_queue
) {
4223 struct sk_buff
*clist
;
4225 local_irq_disable();
4226 clist
= sd
->completion_queue
;
4227 sd
->completion_queue
= NULL
;
4231 struct sk_buff
*skb
= clist
;
4233 clist
= clist
->next
;
4235 WARN_ON(refcount_read(&skb
->users
));
4236 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_REASON_CONSUMED
))
4237 trace_consume_skb(skb
);
4239 trace_kfree_skb(skb
, net_tx_action
);
4241 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
4244 __kfree_skb_defer(skb
);
4247 __kfree_skb_flush();
4250 if (sd
->output_queue
) {
4253 local_irq_disable();
4254 head
= sd
->output_queue
;
4255 sd
->output_queue
= NULL
;
4256 sd
->output_queue_tailp
= &sd
->output_queue
;
4260 struct Qdisc
*q
= head
;
4261 spinlock_t
*root_lock
= NULL
;
4263 head
= head
->next_sched
;
4265 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
4266 root_lock
= qdisc_lock(q
);
4267 spin_lock(root_lock
);
4269 /* We need to make sure head->next_sched is read
4270 * before clearing __QDISC_STATE_SCHED
4272 smp_mb__before_atomic();
4273 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
4276 spin_unlock(root_lock
);
4280 xfrm_dev_backlog(sd
);
4283 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4284 /* This hook is defined here for ATM LANE */
4285 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
4286 unsigned char *addr
) __read_mostly
;
4287 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
4290 static inline struct sk_buff
*
4291 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4292 struct net_device
*orig_dev
)
4294 #ifdef CONFIG_NET_CLS_ACT
4295 struct mini_Qdisc
*miniq
= rcu_dereference_bh(skb
->dev
->miniq_ingress
);
4296 struct tcf_result cl_res
;
4298 /* If there's at least one ingress present somewhere (so
4299 * we get here via enabled static key), remaining devices
4300 * that are not configured with an ingress qdisc will bail
4307 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4311 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4312 skb
->tc_at_ingress
= 1;
4313 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4315 switch (tcf_classify(skb
, miniq
->filter_list
, &cl_res
, false)) {
4317 case TC_ACT_RECLASSIFY
:
4318 skb
->tc_index
= TC_H_MIN(cl_res
.classid
);
4321 mini_qdisc_qstats_cpu_drop(miniq
);
4329 case TC_ACT_REDIRECT
:
4330 /* skb_mac_header check was done by cls/act_bpf, so
4331 * we can safely push the L2 header back before
4332 * redirecting to another netdev
4334 __skb_push(skb
, skb
->mac_len
);
4335 skb_do_redirect(skb
);
4340 #endif /* CONFIG_NET_CLS_ACT */
4345 * netdev_is_rx_handler_busy - check if receive handler is registered
4346 * @dev: device to check
4348 * Check if a receive handler is already registered for a given device.
4349 * Return true if there one.
4351 * The caller must hold the rtnl_mutex.
4353 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
4356 return dev
&& rtnl_dereference(dev
->rx_handler
);
4358 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
4361 * netdev_rx_handler_register - register receive handler
4362 * @dev: device to register a handler for
4363 * @rx_handler: receive handler to register
4364 * @rx_handler_data: data pointer that is used by rx handler
4366 * Register a receive handler for a device. This handler will then be
4367 * called from __netif_receive_skb. A negative errno code is returned
4370 * The caller must hold the rtnl_mutex.
4372 * For a general description of rx_handler, see enum rx_handler_result.
4374 int netdev_rx_handler_register(struct net_device
*dev
,
4375 rx_handler_func_t
*rx_handler
,
4376 void *rx_handler_data
)
4378 if (netdev_is_rx_handler_busy(dev
))
4381 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
4384 /* Note: rx_handler_data must be set before rx_handler */
4385 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
4386 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
4390 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
4393 * netdev_rx_handler_unregister - unregister receive handler
4394 * @dev: device to unregister a handler from
4396 * Unregister a receive handler from a device.
4398 * The caller must hold the rtnl_mutex.
4400 void netdev_rx_handler_unregister(struct net_device
*dev
)
4404 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
4405 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4406 * section has a guarantee to see a non NULL rx_handler_data
4410 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
4412 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
4415 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4416 * the special handling of PFMEMALLOC skbs.
4418 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
4420 switch (skb
->protocol
) {
4421 case htons(ETH_P_ARP
):
4422 case htons(ETH_P_IP
):
4423 case htons(ETH_P_IPV6
):
4424 case htons(ETH_P_8021Q
):
4425 case htons(ETH_P_8021AD
):
4432 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
4433 int *ret
, struct net_device
*orig_dev
)
4435 #ifdef CONFIG_NETFILTER_INGRESS
4436 if (nf_hook_ingress_active(skb
)) {
4440 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4445 ingress_retval
= nf_hook_ingress(skb
);
4447 return ingress_retval
;
4449 #endif /* CONFIG_NETFILTER_INGRESS */
4453 static int __netif_receive_skb_core(struct sk_buff
*skb
, bool pfmemalloc
)
4455 struct packet_type
*ptype
, *pt_prev
;
4456 rx_handler_func_t
*rx_handler
;
4457 struct net_device
*orig_dev
;
4458 bool deliver_exact
= false;
4459 int ret
= NET_RX_DROP
;
4462 net_timestamp_check(!netdev_tstamp_prequeue
, skb
);
4464 trace_netif_receive_skb(skb
);
4466 orig_dev
= skb
->dev
;
4468 skb_reset_network_header(skb
);
4469 if (!skb_transport_header_was_set(skb
))
4470 skb_reset_transport_header(skb
);
4471 skb_reset_mac_len(skb
);
4476 skb
->skb_iif
= skb
->dev
->ifindex
;
4478 __this_cpu_inc(softnet_data
.processed
);
4480 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
) ||
4481 skb
->protocol
== cpu_to_be16(ETH_P_8021AD
)) {
4482 skb
= skb_vlan_untag(skb
);
4487 if (skb_skip_tc_classify(skb
))
4493 list_for_each_entry_rcu(ptype
, &ptype_all
, list
) {
4495 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4499 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
4501 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4506 #ifdef CONFIG_NET_INGRESS
4507 if (static_key_false(&ingress_needed
)) {
4508 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
);
4512 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
4518 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
4521 if (skb_vlan_tag_present(skb
)) {
4523 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4526 if (vlan_do_receive(&skb
))
4528 else if (unlikely(!skb
))
4532 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
4535 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
4538 switch (rx_handler(&skb
)) {
4539 case RX_HANDLER_CONSUMED
:
4540 ret
= NET_RX_SUCCESS
;
4542 case RX_HANDLER_ANOTHER
:
4544 case RX_HANDLER_EXACT
:
4545 deliver_exact
= true;
4546 case RX_HANDLER_PASS
:
4553 if (unlikely(skb_vlan_tag_present(skb
))) {
4554 if (skb_vlan_tag_get_id(skb
))
4555 skb
->pkt_type
= PACKET_OTHERHOST
;
4556 /* Note: we might in the future use prio bits
4557 * and set skb->priority like in vlan_do_receive()
4558 * For the time being, just ignore Priority Code Point
4563 type
= skb
->protocol
;
4565 /* deliver only exact match when indicated */
4566 if (likely(!deliver_exact
)) {
4567 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4568 &ptype_base
[ntohs(type
) &
4572 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4573 &orig_dev
->ptype_specific
);
4575 if (unlikely(skb
->dev
!= orig_dev
)) {
4576 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
4577 &skb
->dev
->ptype_specific
);
4581 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
4584 ret
= pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
4588 atomic_long_inc(&skb
->dev
->rx_dropped
);
4590 atomic_long_inc(&skb
->dev
->rx_nohandler
);
4592 /* Jamal, now you will not able to escape explaining
4593 * me how you were going to use this. :-)
4603 * netif_receive_skb_core - special purpose version of netif_receive_skb
4604 * @skb: buffer to process
4606 * More direct receive version of netif_receive_skb(). It should
4607 * only be used by callers that have a need to skip RPS and Generic XDP.
4608 * Caller must also take care of handling if (page_is_)pfmemalloc.
4610 * This function may only be called from softirq context and interrupts
4611 * should be enabled.
4613 * Return values (usually ignored):
4614 * NET_RX_SUCCESS: no congestion
4615 * NET_RX_DROP: packet was dropped
4617 int netif_receive_skb_core(struct sk_buff
*skb
)
4622 ret
= __netif_receive_skb_core(skb
, false);
4627 EXPORT_SYMBOL(netif_receive_skb_core
);
4629 static int __netif_receive_skb(struct sk_buff
*skb
)
4633 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
4634 unsigned int noreclaim_flag
;
4637 * PFMEMALLOC skbs are special, they should
4638 * - be delivered to SOCK_MEMALLOC sockets only
4639 * - stay away from userspace
4640 * - have bounded memory usage
4642 * Use PF_MEMALLOC as this saves us from propagating the allocation
4643 * context down to all allocation sites.
4645 noreclaim_flag
= memalloc_noreclaim_save();
4646 ret
= __netif_receive_skb_core(skb
, true);
4647 memalloc_noreclaim_restore(noreclaim_flag
);
4649 ret
= __netif_receive_skb_core(skb
, false);
4654 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
4656 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
4657 struct bpf_prog
*new = xdp
->prog
;
4660 switch (xdp
->command
) {
4661 case XDP_SETUP_PROG
:
4662 rcu_assign_pointer(dev
->xdp_prog
, new);
4667 static_key_slow_dec(&generic_xdp_needed
);
4668 } else if (new && !old
) {
4669 static_key_slow_inc(&generic_xdp_needed
);
4670 dev_disable_lro(dev
);
4671 dev_disable_gro_hw(dev
);
4675 case XDP_QUERY_PROG
:
4676 xdp
->prog_attached
= !!old
;
4677 xdp
->prog_id
= old
? old
->aux
->id
: 0;
4688 static int netif_receive_skb_internal(struct sk_buff
*skb
)
4692 net_timestamp_check(netdev_tstamp_prequeue
, skb
);
4694 if (skb_defer_rx_timestamp(skb
))
4695 return NET_RX_SUCCESS
;
4697 if (static_key_false(&generic_xdp_needed
)) {
4702 ret
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
), skb
);
4706 if (ret
!= XDP_PASS
)
4712 if (static_key_false(&rps_needed
)) {
4713 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
4714 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
4717 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
4723 ret
= __netif_receive_skb(skb
);
4729 * netif_receive_skb - process receive buffer from network
4730 * @skb: buffer to process
4732 * netif_receive_skb() is the main receive data processing function.
4733 * It always succeeds. The buffer may be dropped during processing
4734 * for congestion control or by the protocol layers.
4736 * This function may only be called from softirq context and interrupts
4737 * should be enabled.
4739 * Return values (usually ignored):
4740 * NET_RX_SUCCESS: no congestion
4741 * NET_RX_DROP: packet was dropped
4743 int netif_receive_skb(struct sk_buff
*skb
)
4745 trace_netif_receive_skb_entry(skb
);
4747 return netif_receive_skb_internal(skb
);
4749 EXPORT_SYMBOL(netif_receive_skb
);
4751 DEFINE_PER_CPU(struct work_struct
, flush_works
);
4753 /* Network device is going away, flush any packets still pending */
4754 static void flush_backlog(struct work_struct
*work
)
4756 struct sk_buff
*skb
, *tmp
;
4757 struct softnet_data
*sd
;
4760 sd
= this_cpu_ptr(&softnet_data
);
4762 local_irq_disable();
4764 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
4765 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
4766 __skb_unlink(skb
, &sd
->input_pkt_queue
);
4768 input_queue_head_incr(sd
);
4774 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
4775 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
4776 __skb_unlink(skb
, &sd
->process_queue
);
4778 input_queue_head_incr(sd
);
4784 static void flush_all_backlogs(void)
4790 for_each_online_cpu(cpu
)
4791 queue_work_on(cpu
, system_highpri_wq
,
4792 per_cpu_ptr(&flush_works
, cpu
));
4794 for_each_online_cpu(cpu
)
4795 flush_work(per_cpu_ptr(&flush_works
, cpu
));
4800 static int napi_gro_complete(struct sk_buff
*skb
)
4802 struct packet_offload
*ptype
;
4803 __be16 type
= skb
->protocol
;
4804 struct list_head
*head
= &offload_base
;
4807 BUILD_BUG_ON(sizeof(struct napi_gro_cb
) > sizeof(skb
->cb
));
4809 if (NAPI_GRO_CB(skb
)->count
== 1) {
4810 skb_shinfo(skb
)->gso_size
= 0;
4815 list_for_each_entry_rcu(ptype
, head
, list
) {
4816 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
4819 err
= ptype
->callbacks
.gro_complete(skb
, 0);
4825 WARN_ON(&ptype
->list
== head
);
4827 return NET_RX_SUCCESS
;
4831 return netif_receive_skb_internal(skb
);
4834 /* napi->gro_list contains packets ordered by age.
4835 * youngest packets at the head of it.
4836 * Complete skbs in reverse order to reduce latencies.
4838 void napi_gro_flush(struct napi_struct
*napi
, bool flush_old
)
4840 struct sk_buff
*skb
, *prev
= NULL
;
4842 /* scan list and build reverse chain */
4843 for (skb
= napi
->gro_list
; skb
!= NULL
; skb
= skb
->next
) {
4848 for (skb
= prev
; skb
; skb
= prev
) {
4851 if (flush_old
&& NAPI_GRO_CB(skb
)->age
== jiffies
)
4855 napi_gro_complete(skb
);
4859 napi
->gro_list
= NULL
;
4861 EXPORT_SYMBOL(napi_gro_flush
);
4863 static void gro_list_prepare(struct napi_struct
*napi
, struct sk_buff
*skb
)
4866 unsigned int maclen
= skb
->dev
->hard_header_len
;
4867 u32 hash
= skb_get_hash_raw(skb
);
4869 for (p
= napi
->gro_list
; p
; p
= p
->next
) {
4870 unsigned long diffs
;
4872 NAPI_GRO_CB(p
)->flush
= 0;
4874 if (hash
!= skb_get_hash_raw(p
)) {
4875 NAPI_GRO_CB(p
)->same_flow
= 0;
4879 diffs
= (unsigned long)p
->dev
^ (unsigned long)skb
->dev
;
4880 diffs
|= p
->vlan_tci
^ skb
->vlan_tci
;
4881 diffs
|= skb_metadata_dst_cmp(p
, skb
);
4882 diffs
|= skb_metadata_differs(p
, skb
);
4883 if (maclen
== ETH_HLEN
)
4884 diffs
|= compare_ether_header(skb_mac_header(p
),
4885 skb_mac_header(skb
));
4887 diffs
= memcmp(skb_mac_header(p
),
4888 skb_mac_header(skb
),
4890 NAPI_GRO_CB(p
)->same_flow
= !diffs
;
4894 static void skb_gro_reset_offset(struct sk_buff
*skb
)
4896 const struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
4897 const skb_frag_t
*frag0
= &pinfo
->frags
[0];
4899 NAPI_GRO_CB(skb
)->data_offset
= 0;
4900 NAPI_GRO_CB(skb
)->frag0
= NULL
;
4901 NAPI_GRO_CB(skb
)->frag0_len
= 0;
4903 if (skb_mac_header(skb
) == skb_tail_pointer(skb
) &&
4905 !PageHighMem(skb_frag_page(frag0
))) {
4906 NAPI_GRO_CB(skb
)->frag0
= skb_frag_address(frag0
);
4907 NAPI_GRO_CB(skb
)->frag0_len
= min_t(unsigned int,
4908 skb_frag_size(frag0
),
4909 skb
->end
- skb
->tail
);
4913 static void gro_pull_from_frag0(struct sk_buff
*skb
, int grow
)
4915 struct skb_shared_info
*pinfo
= skb_shinfo(skb
);
4917 BUG_ON(skb
->end
- skb
->tail
< grow
);
4919 memcpy(skb_tail_pointer(skb
), NAPI_GRO_CB(skb
)->frag0
, grow
);
4921 skb
->data_len
-= grow
;
4924 pinfo
->frags
[0].page_offset
+= grow
;
4925 skb_frag_size_sub(&pinfo
->frags
[0], grow
);
4927 if (unlikely(!skb_frag_size(&pinfo
->frags
[0]))) {
4928 skb_frag_unref(skb
, 0);
4929 memmove(pinfo
->frags
, pinfo
->frags
+ 1,
4930 --pinfo
->nr_frags
* sizeof(pinfo
->frags
[0]));
4934 static enum gro_result
dev_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
4936 struct sk_buff
**pp
= NULL
;
4937 struct packet_offload
*ptype
;
4938 __be16 type
= skb
->protocol
;
4939 struct list_head
*head
= &offload_base
;
4941 enum gro_result ret
;
4944 if (netif_elide_gro(skb
->dev
))
4947 gro_list_prepare(napi
, skb
);
4950 list_for_each_entry_rcu(ptype
, head
, list
) {
4951 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
4954 skb_set_network_header(skb
, skb_gro_offset(skb
));
4955 skb_reset_mac_len(skb
);
4956 NAPI_GRO_CB(skb
)->same_flow
= 0;
4957 NAPI_GRO_CB(skb
)->flush
= skb_is_gso(skb
) || skb_has_frag_list(skb
);
4958 NAPI_GRO_CB(skb
)->free
= 0;
4959 NAPI_GRO_CB(skb
)->encap_mark
= 0;
4960 NAPI_GRO_CB(skb
)->recursion_counter
= 0;
4961 NAPI_GRO_CB(skb
)->is_fou
= 0;
4962 NAPI_GRO_CB(skb
)->is_atomic
= 1;
4963 NAPI_GRO_CB(skb
)->gro_remcsum_start
= 0;
4965 /* Setup for GRO checksum validation */
4966 switch (skb
->ip_summed
) {
4967 case CHECKSUM_COMPLETE
:
4968 NAPI_GRO_CB(skb
)->csum
= skb
->csum
;
4969 NAPI_GRO_CB(skb
)->csum_valid
= 1;
4970 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
4972 case CHECKSUM_UNNECESSARY
:
4973 NAPI_GRO_CB(skb
)->csum_cnt
= skb
->csum_level
+ 1;
4974 NAPI_GRO_CB(skb
)->csum_valid
= 0;
4977 NAPI_GRO_CB(skb
)->csum_cnt
= 0;
4978 NAPI_GRO_CB(skb
)->csum_valid
= 0;
4981 pp
= ptype
->callbacks
.gro_receive(&napi
->gro_list
, skb
);
4986 if (&ptype
->list
== head
)
4989 if (IS_ERR(pp
) && PTR_ERR(pp
) == -EINPROGRESS
) {
4994 same_flow
= NAPI_GRO_CB(skb
)->same_flow
;
4995 ret
= NAPI_GRO_CB(skb
)->free
? GRO_MERGED_FREE
: GRO_MERGED
;
4998 struct sk_buff
*nskb
= *pp
;
5002 napi_gro_complete(nskb
);
5009 if (NAPI_GRO_CB(skb
)->flush
)
5012 if (unlikely(napi
->gro_count
>= MAX_GRO_SKBS
)) {
5013 struct sk_buff
*nskb
= napi
->gro_list
;
5015 /* locate the end of the list to select the 'oldest' flow */
5016 while (nskb
->next
) {
5022 napi_gro_complete(nskb
);
5026 NAPI_GRO_CB(skb
)->count
= 1;
5027 NAPI_GRO_CB(skb
)->age
= jiffies
;
5028 NAPI_GRO_CB(skb
)->last
= skb
;
5029 skb_shinfo(skb
)->gso_size
= skb_gro_len(skb
);
5030 skb
->next
= napi
->gro_list
;
5031 napi
->gro_list
= skb
;
5035 grow
= skb_gro_offset(skb
) - skb_headlen(skb
);
5037 gro_pull_from_frag0(skb
, grow
);
5046 struct packet_offload
*gro_find_receive_by_type(__be16 type
)
5048 struct list_head
*offload_head
= &offload_base
;
5049 struct packet_offload
*ptype
;
5051 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5052 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_receive
)
5058 EXPORT_SYMBOL(gro_find_receive_by_type
);
5060 struct packet_offload
*gro_find_complete_by_type(__be16 type
)
5062 struct list_head
*offload_head
= &offload_base
;
5063 struct packet_offload
*ptype
;
5065 list_for_each_entry_rcu(ptype
, offload_head
, list
) {
5066 if (ptype
->type
!= type
|| !ptype
->callbacks
.gro_complete
)
5072 EXPORT_SYMBOL(gro_find_complete_by_type
);
5074 static void napi_skb_free_stolen_head(struct sk_buff
*skb
)
5078 kmem_cache_free(skbuff_head_cache
, skb
);
5081 static gro_result_t
napi_skb_finish(gro_result_t ret
, struct sk_buff
*skb
)
5085 if (netif_receive_skb_internal(skb
))
5093 case GRO_MERGED_FREE
:
5094 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5095 napi_skb_free_stolen_head(skb
);
5109 gro_result_t
napi_gro_receive(struct napi_struct
*napi
, struct sk_buff
*skb
)
5111 skb_mark_napi_id(skb
, napi
);
5112 trace_napi_gro_receive_entry(skb
);
5114 skb_gro_reset_offset(skb
);
5116 return napi_skb_finish(dev_gro_receive(napi
, skb
), skb
);
5118 EXPORT_SYMBOL(napi_gro_receive
);
5120 static void napi_reuse_skb(struct napi_struct
*napi
, struct sk_buff
*skb
)
5122 if (unlikely(skb
->pfmemalloc
)) {
5126 __skb_pull(skb
, skb_headlen(skb
));
5127 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5128 skb_reserve(skb
, NET_SKB_PAD
+ NET_IP_ALIGN
- skb_headroom(skb
));
5130 skb
->dev
= napi
->dev
;
5132 skb
->encapsulation
= 0;
5133 skb_shinfo(skb
)->gso_type
= 0;
5134 skb
->truesize
= SKB_TRUESIZE(skb_end_offset(skb
));
5140 struct sk_buff
*napi_get_frags(struct napi_struct
*napi
)
5142 struct sk_buff
*skb
= napi
->skb
;
5145 skb
= napi_alloc_skb(napi
, GRO_MAX_HEAD
);
5148 skb_mark_napi_id(skb
, napi
);
5153 EXPORT_SYMBOL(napi_get_frags
);
5155 static gro_result_t
napi_frags_finish(struct napi_struct
*napi
,
5156 struct sk_buff
*skb
,
5162 __skb_push(skb
, ETH_HLEN
);
5163 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5164 if (ret
== GRO_NORMAL
&& netif_receive_skb_internal(skb
))
5169 napi_reuse_skb(napi
, skb
);
5172 case GRO_MERGED_FREE
:
5173 if (NAPI_GRO_CB(skb
)->free
== NAPI_GRO_FREE_STOLEN_HEAD
)
5174 napi_skb_free_stolen_head(skb
);
5176 napi_reuse_skb(napi
, skb
);
5187 /* Upper GRO stack assumes network header starts at gro_offset=0
5188 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5189 * We copy ethernet header into skb->data to have a common layout.
5191 static struct sk_buff
*napi_frags_skb(struct napi_struct
*napi
)
5193 struct sk_buff
*skb
= napi
->skb
;
5194 const struct ethhdr
*eth
;
5195 unsigned int hlen
= sizeof(*eth
);
5199 skb_reset_mac_header(skb
);
5200 skb_gro_reset_offset(skb
);
5202 eth
= skb_gro_header_fast(skb
, 0);
5203 if (unlikely(skb_gro_header_hard(skb
, hlen
))) {
5204 eth
= skb_gro_header_slow(skb
, hlen
, 0);
5205 if (unlikely(!eth
)) {
5206 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5207 __func__
, napi
->dev
->name
);
5208 napi_reuse_skb(napi
, skb
);
5212 gro_pull_from_frag0(skb
, hlen
);
5213 NAPI_GRO_CB(skb
)->frag0
+= hlen
;
5214 NAPI_GRO_CB(skb
)->frag0_len
-= hlen
;
5216 __skb_pull(skb
, hlen
);
5219 * This works because the only protocols we care about don't require
5221 * We'll fix it up properly in napi_frags_finish()
5223 skb
->protocol
= eth
->h_proto
;
5228 gro_result_t
napi_gro_frags(struct napi_struct
*napi
)
5230 struct sk_buff
*skb
= napi_frags_skb(napi
);
5235 trace_napi_gro_frags_entry(skb
);
5237 return napi_frags_finish(napi
, skb
, dev_gro_receive(napi
, skb
));
5239 EXPORT_SYMBOL(napi_gro_frags
);
5241 /* Compute the checksum from gro_offset and return the folded value
5242 * after adding in any pseudo checksum.
5244 __sum16
__skb_gro_checksum_complete(struct sk_buff
*skb
)
5249 wsum
= skb_checksum(skb
, skb_gro_offset(skb
), skb_gro_len(skb
), 0);
5251 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5252 sum
= csum_fold(csum_add(NAPI_GRO_CB(skb
)->csum
, wsum
));
5254 if (unlikely(skb
->ip_summed
== CHECKSUM_COMPLETE
) &&
5255 !skb
->csum_complete_sw
)
5256 netdev_rx_csum_fault(skb
->dev
);
5259 NAPI_GRO_CB(skb
)->csum
= wsum
;
5260 NAPI_GRO_CB(skb
)->csum_valid
= 1;
5264 EXPORT_SYMBOL(__skb_gro_checksum_complete
);
5266 static void net_rps_send_ipi(struct softnet_data
*remsd
)
5270 struct softnet_data
*next
= remsd
->rps_ipi_next
;
5272 if (cpu_online(remsd
->cpu
))
5273 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
5280 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5281 * Note: called with local irq disabled, but exits with local irq enabled.
5283 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
5286 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
5289 sd
->rps_ipi_list
= NULL
;
5293 /* Send pending IPI's to kick RPS processing on remote cpus. */
5294 net_rps_send_ipi(remsd
);
5300 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
5303 return sd
->rps_ipi_list
!= NULL
;
5309 static int process_backlog(struct napi_struct
*napi
, int quota
)
5311 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
5315 /* Check if we have pending ipi, its better to send them now,
5316 * not waiting net_rx_action() end.
5318 if (sd_has_rps_ipi_waiting(sd
)) {
5319 local_irq_disable();
5320 net_rps_action_and_irq_enable(sd
);
5323 napi
->weight
= dev_rx_weight
;
5325 struct sk_buff
*skb
;
5327 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
5329 __netif_receive_skb(skb
);
5331 input_queue_head_incr(sd
);
5332 if (++work
>= quota
)
5337 local_irq_disable();
5339 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
5341 * Inline a custom version of __napi_complete().
5342 * only current cpu owns and manipulates this napi,
5343 * and NAPI_STATE_SCHED is the only possible flag set
5345 * We can use a plain write instead of clear_bit(),
5346 * and we dont need an smp_mb() memory barrier.
5351 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
5352 &sd
->process_queue
);
5362 * __napi_schedule - schedule for receive
5363 * @n: entry to schedule
5365 * The entry's receive function will be scheduled to run.
5366 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5368 void __napi_schedule(struct napi_struct
*n
)
5370 unsigned long flags
;
5372 local_irq_save(flags
);
5373 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5374 local_irq_restore(flags
);
5376 EXPORT_SYMBOL(__napi_schedule
);
5379 * napi_schedule_prep - check if napi can be scheduled
5382 * Test if NAPI routine is already running, and if not mark
5383 * it as running. This is used as a condition variable
5384 * insure only one NAPI poll instance runs. We also make
5385 * sure there is no pending NAPI disable.
5387 bool napi_schedule_prep(struct napi_struct
*n
)
5389 unsigned long val
, new;
5392 val
= READ_ONCE(n
->state
);
5393 if (unlikely(val
& NAPIF_STATE_DISABLE
))
5395 new = val
| NAPIF_STATE_SCHED
;
5397 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5398 * This was suggested by Alexander Duyck, as compiler
5399 * emits better code than :
5400 * if (val & NAPIF_STATE_SCHED)
5401 * new |= NAPIF_STATE_MISSED;
5403 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
5405 } while (cmpxchg(&n
->state
, val
, new) != val
);
5407 return !(val
& NAPIF_STATE_SCHED
);
5409 EXPORT_SYMBOL(napi_schedule_prep
);
5412 * __napi_schedule_irqoff - schedule for receive
5413 * @n: entry to schedule
5415 * Variant of __napi_schedule() assuming hard irqs are masked
5417 void __napi_schedule_irqoff(struct napi_struct
*n
)
5419 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
5421 EXPORT_SYMBOL(__napi_schedule_irqoff
);
5423 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
5425 unsigned long flags
, val
, new;
5428 * 1) Don't let napi dequeue from the cpu poll list
5429 * just in case its running on a different cpu.
5430 * 2) If we are busy polling, do nothing here, we have
5431 * the guarantee we will be called later.
5433 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
5434 NAPIF_STATE_IN_BUSY_POLL
)))
5438 unsigned long timeout
= 0;
5441 timeout
= n
->dev
->gro_flush_timeout
;
5444 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
5445 HRTIMER_MODE_REL_PINNED
);
5447 napi_gro_flush(n
, false);
5449 if (unlikely(!list_empty(&n
->poll_list
))) {
5450 /* If n->poll_list is not empty, we need to mask irqs */
5451 local_irq_save(flags
);
5452 list_del_init(&n
->poll_list
);
5453 local_irq_restore(flags
);
5457 val
= READ_ONCE(n
->state
);
5459 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
5461 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
);
5463 /* If STATE_MISSED was set, leave STATE_SCHED set,
5464 * because we will call napi->poll() one more time.
5465 * This C code was suggested by Alexander Duyck to help gcc.
5467 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
5469 } while (cmpxchg(&n
->state
, val
, new) != val
);
5471 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
5478 EXPORT_SYMBOL(napi_complete_done
);
5480 /* must be called under rcu_read_lock(), as we dont take a reference */
5481 static struct napi_struct
*napi_by_id(unsigned int napi_id
)
5483 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
5484 struct napi_struct
*napi
;
5486 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
5487 if (napi
->napi_id
== napi_id
)
5493 #if defined(CONFIG_NET_RX_BUSY_POLL)
5495 #define BUSY_POLL_BUDGET 8
5497 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
)
5501 /* Busy polling means there is a high chance device driver hard irq
5502 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5503 * set in napi_schedule_prep().
5504 * Since we are about to call napi->poll() once more, we can safely
5505 * clear NAPI_STATE_MISSED.
5507 * Note: x86 could use a single "lock and ..." instruction
5508 * to perform these two clear_bit()
5510 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
5511 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
5515 /* All we really want here is to re-enable device interrupts.
5516 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5518 rc
= napi
->poll(napi
, BUSY_POLL_BUDGET
);
5519 trace_napi_poll(napi
, rc
, BUSY_POLL_BUDGET
);
5520 netpoll_poll_unlock(have_poll_lock
);
5521 if (rc
== BUSY_POLL_BUDGET
)
5522 __napi_schedule(napi
);
5526 void napi_busy_loop(unsigned int napi_id
,
5527 bool (*loop_end
)(void *, unsigned long),
5530 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
5531 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
5532 void *have_poll_lock
= NULL
;
5533 struct napi_struct
*napi
;
5540 napi
= napi_by_id(napi_id
);
5550 unsigned long val
= READ_ONCE(napi
->state
);
5552 /* If multiple threads are competing for this napi,
5553 * we avoid dirtying napi->state as much as we can.
5555 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
5556 NAPIF_STATE_IN_BUSY_POLL
))
5558 if (cmpxchg(&napi
->state
, val
,
5559 val
| NAPIF_STATE_IN_BUSY_POLL
|
5560 NAPIF_STATE_SCHED
) != val
)
5562 have_poll_lock
= netpoll_poll_lock(napi
);
5563 napi_poll
= napi
->poll
;
5565 work
= napi_poll(napi
, BUSY_POLL_BUDGET
);
5566 trace_napi_poll(napi
, work
, BUSY_POLL_BUDGET
);
5569 __NET_ADD_STATS(dev_net(napi
->dev
),
5570 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
5573 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
5576 if (unlikely(need_resched())) {
5578 busy_poll_stop(napi
, have_poll_lock
);
5582 if (loop_end(loop_end_arg
, start_time
))
5589 busy_poll_stop(napi
, have_poll_lock
);
5594 EXPORT_SYMBOL(napi_busy_loop
);
5596 #endif /* CONFIG_NET_RX_BUSY_POLL */
5598 static void napi_hash_add(struct napi_struct
*napi
)
5600 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
) ||
5601 test_and_set_bit(NAPI_STATE_HASHED
, &napi
->state
))
5604 spin_lock(&napi_hash_lock
);
5606 /* 0..NR_CPUS range is reserved for sender_cpu use */
5608 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
5609 napi_gen_id
= MIN_NAPI_ID
;
5610 } while (napi_by_id(napi_gen_id
));
5611 napi
->napi_id
= napi_gen_id
;
5613 hlist_add_head_rcu(&napi
->napi_hash_node
,
5614 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
5616 spin_unlock(&napi_hash_lock
);
5619 /* Warning : caller is responsible to make sure rcu grace period
5620 * is respected before freeing memory containing @napi
5622 bool napi_hash_del(struct napi_struct
*napi
)
5624 bool rcu_sync_needed
= false;
5626 spin_lock(&napi_hash_lock
);
5628 if (test_and_clear_bit(NAPI_STATE_HASHED
, &napi
->state
)) {
5629 rcu_sync_needed
= true;
5630 hlist_del_rcu(&napi
->napi_hash_node
);
5632 spin_unlock(&napi_hash_lock
);
5633 return rcu_sync_needed
;
5635 EXPORT_SYMBOL_GPL(napi_hash_del
);
5637 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
5639 struct napi_struct
*napi
;
5641 napi
= container_of(timer
, struct napi_struct
, timer
);
5643 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5644 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5646 if (napi
->gro_list
&& !napi_disable_pending(napi
) &&
5647 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
))
5648 __napi_schedule_irqoff(napi
);
5650 return HRTIMER_NORESTART
;
5653 void netif_napi_add(struct net_device
*dev
, struct napi_struct
*napi
,
5654 int (*poll
)(struct napi_struct
*, int), int weight
)
5656 INIT_LIST_HEAD(&napi
->poll_list
);
5657 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
5658 napi
->timer
.function
= napi_watchdog
;
5659 napi
->gro_count
= 0;
5660 napi
->gro_list
= NULL
;
5663 if (weight
> NAPI_POLL_WEIGHT
)
5664 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5666 napi
->weight
= weight
;
5667 list_add(&napi
->dev_list
, &dev
->napi_list
);
5669 #ifdef CONFIG_NETPOLL
5670 napi
->poll_owner
= -1;
5672 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
5673 napi_hash_add(napi
);
5675 EXPORT_SYMBOL(netif_napi_add
);
5677 void napi_disable(struct napi_struct
*n
)
5680 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
5682 while (test_and_set_bit(NAPI_STATE_SCHED
, &n
->state
))
5684 while (test_and_set_bit(NAPI_STATE_NPSVC
, &n
->state
))
5687 hrtimer_cancel(&n
->timer
);
5689 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
5691 EXPORT_SYMBOL(napi_disable
);
5693 /* Must be called in process context */
5694 void netif_napi_del(struct napi_struct
*napi
)
5697 if (napi_hash_del(napi
))
5699 list_del_init(&napi
->dev_list
);
5700 napi_free_frags(napi
);
5702 kfree_skb_list(napi
->gro_list
);
5703 napi
->gro_list
= NULL
;
5704 napi
->gro_count
= 0;
5706 EXPORT_SYMBOL(netif_napi_del
);
5708 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
5713 list_del_init(&n
->poll_list
);
5715 have
= netpoll_poll_lock(n
);
5719 /* This NAPI_STATE_SCHED test is for avoiding a race
5720 * with netpoll's poll_napi(). Only the entity which
5721 * obtains the lock and sees NAPI_STATE_SCHED set will
5722 * actually make the ->poll() call. Therefore we avoid
5723 * accidentally calling ->poll() when NAPI is not scheduled.
5726 if (test_bit(NAPI_STATE_SCHED
, &n
->state
)) {
5727 work
= n
->poll(n
, weight
);
5728 trace_napi_poll(n
, work
, weight
);
5731 WARN_ON_ONCE(work
> weight
);
5733 if (likely(work
< weight
))
5736 /* Drivers must not modify the NAPI state if they
5737 * consume the entire weight. In such cases this code
5738 * still "owns" the NAPI instance and therefore can
5739 * move the instance around on the list at-will.
5741 if (unlikely(napi_disable_pending(n
))) {
5747 /* flush too old packets
5748 * If HZ < 1000, flush all packets.
5750 napi_gro_flush(n
, HZ
>= 1000);
5753 /* Some drivers may have called napi_schedule
5754 * prior to exhausting their budget.
5756 if (unlikely(!list_empty(&n
->poll_list
))) {
5757 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5758 n
->dev
? n
->dev
->name
: "backlog");
5762 list_add_tail(&n
->poll_list
, repoll
);
5765 netpoll_poll_unlock(have
);
5770 static __latent_entropy
void net_rx_action(struct softirq_action
*h
)
5772 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
5773 unsigned long time_limit
= jiffies
+
5774 usecs_to_jiffies(netdev_budget_usecs
);
5775 int budget
= netdev_budget
;
5779 local_irq_disable();
5780 list_splice_init(&sd
->poll_list
, &list
);
5784 struct napi_struct
*n
;
5786 if (list_empty(&list
)) {
5787 if (!sd_has_rps_ipi_waiting(sd
) && list_empty(&repoll
))
5792 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
5793 budget
-= napi_poll(n
, &repoll
);
5795 /* If softirq window is exhausted then punt.
5796 * Allow this to run for 2 jiffies since which will allow
5797 * an average latency of 1.5/HZ.
5799 if (unlikely(budget
<= 0 ||
5800 time_after_eq(jiffies
, time_limit
))) {
5806 local_irq_disable();
5808 list_splice_tail_init(&sd
->poll_list
, &list
);
5809 list_splice_tail(&repoll
, &list
);
5810 list_splice(&list
, &sd
->poll_list
);
5811 if (!list_empty(&sd
->poll_list
))
5812 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
5814 net_rps_action_and_irq_enable(sd
);
5816 __kfree_skb_flush();
5819 struct netdev_adjacent
{
5820 struct net_device
*dev
;
5822 /* upper master flag, there can only be one master device per list */
5825 /* counter for the number of times this device was added to us */
5828 /* private field for the users */
5831 struct list_head list
;
5832 struct rcu_head rcu
;
5835 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
5836 struct list_head
*adj_list
)
5838 struct netdev_adjacent
*adj
;
5840 list_for_each_entry(adj
, adj_list
, list
) {
5841 if (adj
->dev
== adj_dev
)
5847 static int __netdev_has_upper_dev(struct net_device
*upper_dev
, void *data
)
5849 struct net_device
*dev
= data
;
5851 return upper_dev
== dev
;
5855 * netdev_has_upper_dev - Check if device is linked to an upper device
5857 * @upper_dev: upper device to check
5859 * Find out if a device is linked to specified upper device and return true
5860 * in case it is. Note that this checks only immediate upper device,
5861 * not through a complete stack of devices. The caller must hold the RTNL lock.
5863 bool netdev_has_upper_dev(struct net_device
*dev
,
5864 struct net_device
*upper_dev
)
5868 return netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
5871 EXPORT_SYMBOL(netdev_has_upper_dev
);
5874 * netdev_has_upper_dev_all - Check if device is linked to an upper device
5876 * @upper_dev: upper device to check
5878 * Find out if a device is linked to specified upper device and return true
5879 * in case it is. Note that this checks the entire upper device chain.
5880 * The caller must hold rcu lock.
5883 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
5884 struct net_device
*upper_dev
)
5886 return !!netdev_walk_all_upper_dev_rcu(dev
, __netdev_has_upper_dev
,
5889 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
5892 * netdev_has_any_upper_dev - Check if device is linked to some device
5895 * Find out if a device is linked to an upper device and return true in case
5896 * it is. The caller must hold the RTNL lock.
5898 bool netdev_has_any_upper_dev(struct net_device
*dev
)
5902 return !list_empty(&dev
->adj_list
.upper
);
5904 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
5907 * netdev_master_upper_dev_get - Get master upper device
5910 * Find a master upper device and return pointer to it or NULL in case
5911 * it's not there. The caller must hold the RTNL lock.
5913 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
5915 struct netdev_adjacent
*upper
;
5919 if (list_empty(&dev
->adj_list
.upper
))
5922 upper
= list_first_entry(&dev
->adj_list
.upper
,
5923 struct netdev_adjacent
, list
);
5924 if (likely(upper
->master
))
5928 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
5931 * netdev_has_any_lower_dev - Check if device is linked to some device
5934 * Find out if a device is linked to a lower device and return true in case
5935 * it is. The caller must hold the RTNL lock.
5937 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
5941 return !list_empty(&dev
->adj_list
.lower
);
5944 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
5946 struct netdev_adjacent
*adj
;
5948 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
5950 return adj
->private;
5952 EXPORT_SYMBOL(netdev_adjacent_get_private
);
5955 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5957 * @iter: list_head ** of the current position
5959 * Gets the next device from the dev's upper list, starting from iter
5960 * position. The caller must hold RCU read lock.
5962 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
5963 struct list_head
**iter
)
5965 struct netdev_adjacent
*upper
;
5967 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5969 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5971 if (&upper
->list
== &dev
->adj_list
.upper
)
5974 *iter
= &upper
->list
;
5978 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
5980 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
5981 struct list_head
**iter
)
5983 struct netdev_adjacent
*upper
;
5985 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5987 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
5989 if (&upper
->list
== &dev
->adj_list
.upper
)
5992 *iter
= &upper
->list
;
5997 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
5998 int (*fn
)(struct net_device
*dev
,
6002 struct net_device
*udev
;
6003 struct list_head
*iter
;
6006 for (iter
= &dev
->adj_list
.upper
,
6007 udev
= netdev_next_upper_dev_rcu(dev
, &iter
);
6009 udev
= netdev_next_upper_dev_rcu(dev
, &iter
)) {
6010 /* first is the upper device itself */
6011 ret
= fn(udev
, data
);
6015 /* then look at all of its upper devices */
6016 ret
= netdev_walk_all_upper_dev_rcu(udev
, fn
, data
);
6023 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
6026 * netdev_lower_get_next_private - Get the next ->private from the
6027 * lower neighbour list
6029 * @iter: list_head ** of the current position
6031 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6032 * list, starting from iter position. The caller must hold either hold the
6033 * RTNL lock or its own locking that guarantees that the neighbour lower
6034 * list will remain unchanged.
6036 void *netdev_lower_get_next_private(struct net_device
*dev
,
6037 struct list_head
**iter
)
6039 struct netdev_adjacent
*lower
;
6041 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6043 if (&lower
->list
== &dev
->adj_list
.lower
)
6046 *iter
= lower
->list
.next
;
6048 return lower
->private;
6050 EXPORT_SYMBOL(netdev_lower_get_next_private
);
6053 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6054 * lower neighbour list, RCU
6057 * @iter: list_head ** of the current position
6059 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6060 * list, starting from iter position. The caller must hold RCU read lock.
6062 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
6063 struct list_head
**iter
)
6065 struct netdev_adjacent
*lower
;
6067 WARN_ON_ONCE(!rcu_read_lock_held());
6069 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6071 if (&lower
->list
== &dev
->adj_list
.lower
)
6074 *iter
= &lower
->list
;
6076 return lower
->private;
6078 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
6081 * netdev_lower_get_next - Get the next device from the lower neighbour
6084 * @iter: list_head ** of the current position
6086 * Gets the next netdev_adjacent from the dev's lower neighbour
6087 * list, starting from iter position. The caller must hold RTNL lock or
6088 * its own locking that guarantees that the neighbour lower
6089 * list will remain unchanged.
6091 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
6093 struct netdev_adjacent
*lower
;
6095 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
6097 if (&lower
->list
== &dev
->adj_list
.lower
)
6100 *iter
= lower
->list
.next
;
6104 EXPORT_SYMBOL(netdev_lower_get_next
);
6106 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
6107 struct list_head
**iter
)
6109 struct netdev_adjacent
*lower
;
6111 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
6113 if (&lower
->list
== &dev
->adj_list
.lower
)
6116 *iter
= &lower
->list
;
6121 int netdev_walk_all_lower_dev(struct net_device
*dev
,
6122 int (*fn
)(struct net_device
*dev
,
6126 struct net_device
*ldev
;
6127 struct list_head
*iter
;
6130 for (iter
= &dev
->adj_list
.lower
,
6131 ldev
= netdev_next_lower_dev(dev
, &iter
);
6133 ldev
= netdev_next_lower_dev(dev
, &iter
)) {
6134 /* first is the lower device itself */
6135 ret
= fn(ldev
, data
);
6139 /* then look at all of its lower devices */
6140 ret
= netdev_walk_all_lower_dev(ldev
, fn
, data
);
6147 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
6149 static struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
6150 struct list_head
**iter
)
6152 struct netdev_adjacent
*lower
;
6154 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
6155 if (&lower
->list
== &dev
->adj_list
.lower
)
6158 *iter
= &lower
->list
;
6163 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
6164 int (*fn
)(struct net_device
*dev
,
6168 struct net_device
*ldev
;
6169 struct list_head
*iter
;
6172 for (iter
= &dev
->adj_list
.lower
,
6173 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
);
6175 ldev
= netdev_next_lower_dev_rcu(dev
, &iter
)) {
6176 /* first is the lower device itself */
6177 ret
= fn(ldev
, data
);
6181 /* then look at all of its lower devices */
6182 ret
= netdev_walk_all_lower_dev_rcu(ldev
, fn
, data
);
6189 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
6192 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6193 * lower neighbour list, RCU
6197 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6198 * list. The caller must hold RCU read lock.
6200 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
6202 struct netdev_adjacent
*lower
;
6204 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
6205 struct netdev_adjacent
, list
);
6207 return lower
->private;
6210 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
6213 * netdev_master_upper_dev_get_rcu - Get master upper device
6216 * Find a master upper device and return pointer to it or NULL in case
6217 * it's not there. The caller must hold the RCU read lock.
6219 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
6221 struct netdev_adjacent
*upper
;
6223 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
6224 struct netdev_adjacent
, list
);
6225 if (upper
&& likely(upper
->master
))
6229 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
6231 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
6232 struct net_device
*adj_dev
,
6233 struct list_head
*dev_list
)
6235 char linkname
[IFNAMSIZ
+7];
6237 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6238 "upper_%s" : "lower_%s", adj_dev
->name
);
6239 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
6242 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
6244 struct list_head
*dev_list
)
6246 char linkname
[IFNAMSIZ
+7];
6248 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
6249 "upper_%s" : "lower_%s", name
);
6250 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
6253 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
6254 struct net_device
*adj_dev
,
6255 struct list_head
*dev_list
)
6257 return (dev_list
== &dev
->adj_list
.upper
||
6258 dev_list
== &dev
->adj_list
.lower
) &&
6259 net_eq(dev_net(dev
), dev_net(adj_dev
));
6262 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
6263 struct net_device
*adj_dev
,
6264 struct list_head
*dev_list
,
6265 void *private, bool master
)
6267 struct netdev_adjacent
*adj
;
6270 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6274 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6275 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
6280 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
6285 adj
->master
= master
;
6287 adj
->private = private;
6290 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6291 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
6293 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
6294 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
6299 /* Ensure that master link is always the first item in list. */
6301 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
6302 &(adj_dev
->dev
.kobj
), "master");
6304 goto remove_symlinks
;
6306 list_add_rcu(&adj
->list
, dev_list
);
6308 list_add_tail_rcu(&adj
->list
, dev_list
);
6314 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6315 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6323 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
6324 struct net_device
*adj_dev
,
6326 struct list_head
*dev_list
)
6328 struct netdev_adjacent
*adj
;
6330 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6331 dev
->name
, adj_dev
->name
, ref_nr
);
6333 adj
= __netdev_find_adj(adj_dev
, dev_list
);
6336 pr_err("Adjacency does not exist for device %s from %s\n",
6337 dev
->name
, adj_dev
->name
);
6342 if (adj
->ref_nr
> ref_nr
) {
6343 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6344 dev
->name
, adj_dev
->name
, ref_nr
,
6345 adj
->ref_nr
- ref_nr
);
6346 adj
->ref_nr
-= ref_nr
;
6351 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
6353 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
6354 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
6356 list_del_rcu(&adj
->list
);
6357 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6358 adj_dev
->name
, dev
->name
, adj_dev
->name
);
6360 kfree_rcu(adj
, rcu
);
6363 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
6364 struct net_device
*upper_dev
,
6365 struct list_head
*up_list
,
6366 struct list_head
*down_list
,
6367 void *private, bool master
)
6371 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
6376 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
6379 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
6386 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
6387 struct net_device
*upper_dev
,
6389 struct list_head
*up_list
,
6390 struct list_head
*down_list
)
6392 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
6393 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
6396 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
6397 struct net_device
*upper_dev
,
6398 void *private, bool master
)
6400 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
6401 &dev
->adj_list
.upper
,
6402 &upper_dev
->adj_list
.lower
,
6406 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
6407 struct net_device
*upper_dev
)
6409 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
6410 &dev
->adj_list
.upper
,
6411 &upper_dev
->adj_list
.lower
);
6414 static int __netdev_upper_dev_link(struct net_device
*dev
,
6415 struct net_device
*upper_dev
, bool master
,
6416 void *upper_priv
, void *upper_info
,
6417 struct netlink_ext_ack
*extack
)
6419 struct netdev_notifier_changeupper_info changeupper_info
= {
6424 .upper_dev
= upper_dev
,
6427 .upper_info
= upper_info
,
6429 struct net_device
*master_dev
;
6434 if (dev
== upper_dev
)
6437 /* To prevent loops, check if dev is not upper device to upper_dev. */
6438 if (netdev_has_upper_dev(upper_dev
, dev
))
6442 if (netdev_has_upper_dev(dev
, upper_dev
))
6445 master_dev
= netdev_master_upper_dev_get(dev
);
6447 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
6450 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
6451 &changeupper_info
.info
);
6452 ret
= notifier_to_errno(ret
);
6456 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
6461 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
6462 &changeupper_info
.info
);
6463 ret
= notifier_to_errno(ret
);
6470 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6476 * netdev_upper_dev_link - Add a link to the upper device
6478 * @upper_dev: new upper device
6479 * @extack: netlink extended ack
6481 * Adds a link to device which is upper to this one. The caller must hold
6482 * the RTNL lock. On a failure a negative errno code is returned.
6483 * On success the reference counts are adjusted and the function
6486 int netdev_upper_dev_link(struct net_device
*dev
,
6487 struct net_device
*upper_dev
,
6488 struct netlink_ext_ack
*extack
)
6490 return __netdev_upper_dev_link(dev
, upper_dev
, false,
6491 NULL
, NULL
, extack
);
6493 EXPORT_SYMBOL(netdev_upper_dev_link
);
6496 * netdev_master_upper_dev_link - Add a master link to the upper device
6498 * @upper_dev: new upper device
6499 * @upper_priv: upper device private
6500 * @upper_info: upper info to be passed down via notifier
6501 * @extack: netlink extended ack
6503 * Adds a link to device which is upper to this one. In this case, only
6504 * one master upper device can be linked, although other non-master devices
6505 * might be linked as well. The caller must hold the RTNL lock.
6506 * On a failure a negative errno code is returned. On success the reference
6507 * counts are adjusted and the function returns zero.
6509 int netdev_master_upper_dev_link(struct net_device
*dev
,
6510 struct net_device
*upper_dev
,
6511 void *upper_priv
, void *upper_info
,
6512 struct netlink_ext_ack
*extack
)
6514 return __netdev_upper_dev_link(dev
, upper_dev
, true,
6515 upper_priv
, upper_info
, extack
);
6517 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
6520 * netdev_upper_dev_unlink - Removes a link to upper device
6522 * @upper_dev: new upper device
6524 * Removes a link to device which is upper to this one. The caller must hold
6527 void netdev_upper_dev_unlink(struct net_device
*dev
,
6528 struct net_device
*upper_dev
)
6530 struct netdev_notifier_changeupper_info changeupper_info
= {
6534 .upper_dev
= upper_dev
,
6540 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
6542 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
6543 &changeupper_info
.info
);
6545 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
6547 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
6548 &changeupper_info
.info
);
6550 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
6553 * netdev_bonding_info_change - Dispatch event about slave change
6555 * @bonding_info: info to dispatch
6557 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6558 * The caller must hold the RTNL lock.
6560 void netdev_bonding_info_change(struct net_device
*dev
,
6561 struct netdev_bonding_info
*bonding_info
)
6563 struct netdev_notifier_bonding_info info
= {
6567 memcpy(&info
.bonding_info
, bonding_info
,
6568 sizeof(struct netdev_bonding_info
));
6569 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
6572 EXPORT_SYMBOL(netdev_bonding_info_change
);
6574 static void netdev_adjacent_add_links(struct net_device
*dev
)
6576 struct netdev_adjacent
*iter
;
6578 struct net
*net
= dev_net(dev
);
6580 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6581 if (!net_eq(net
, dev_net(iter
->dev
)))
6583 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6584 &iter
->dev
->adj_list
.lower
);
6585 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
6586 &dev
->adj_list
.upper
);
6589 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6590 if (!net_eq(net
, dev_net(iter
->dev
)))
6592 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6593 &iter
->dev
->adj_list
.upper
);
6594 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
6595 &dev
->adj_list
.lower
);
6599 static void netdev_adjacent_del_links(struct net_device
*dev
)
6601 struct netdev_adjacent
*iter
;
6603 struct net
*net
= dev_net(dev
);
6605 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6606 if (!net_eq(net
, dev_net(iter
->dev
)))
6608 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
6609 &iter
->dev
->adj_list
.lower
);
6610 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
6611 &dev
->adj_list
.upper
);
6614 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6615 if (!net_eq(net
, dev_net(iter
->dev
)))
6617 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
6618 &iter
->dev
->adj_list
.upper
);
6619 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
6620 &dev
->adj_list
.lower
);
6624 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
6626 struct netdev_adjacent
*iter
;
6628 struct net
*net
= dev_net(dev
);
6630 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
6631 if (!net_eq(net
, dev_net(iter
->dev
)))
6633 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
6634 &iter
->dev
->adj_list
.lower
);
6635 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6636 &iter
->dev
->adj_list
.lower
);
6639 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
6640 if (!net_eq(net
, dev_net(iter
->dev
)))
6642 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
6643 &iter
->dev
->adj_list
.upper
);
6644 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
6645 &iter
->dev
->adj_list
.upper
);
6649 void *netdev_lower_dev_get_private(struct net_device
*dev
,
6650 struct net_device
*lower_dev
)
6652 struct netdev_adjacent
*lower
;
6656 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
6660 return lower
->private;
6662 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
6665 int dev_get_nest_level(struct net_device
*dev
)
6667 struct net_device
*lower
= NULL
;
6668 struct list_head
*iter
;
6674 netdev_for_each_lower_dev(dev
, lower
, iter
) {
6675 nest
= dev_get_nest_level(lower
);
6676 if (max_nest
< nest
)
6680 return max_nest
+ 1;
6682 EXPORT_SYMBOL(dev_get_nest_level
);
6685 * netdev_lower_change - Dispatch event about lower device state change
6686 * @lower_dev: device
6687 * @lower_state_info: state to dispatch
6689 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6690 * The caller must hold the RTNL lock.
6692 void netdev_lower_state_changed(struct net_device
*lower_dev
,
6693 void *lower_state_info
)
6695 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
6696 .info
.dev
= lower_dev
,
6700 changelowerstate_info
.lower_state_info
= lower_state_info
;
6701 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
6702 &changelowerstate_info
.info
);
6704 EXPORT_SYMBOL(netdev_lower_state_changed
);
6706 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
6708 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6710 if (ops
->ndo_change_rx_flags
)
6711 ops
->ndo_change_rx_flags(dev
, flags
);
6714 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
6716 unsigned int old_flags
= dev
->flags
;
6722 dev
->flags
|= IFF_PROMISC
;
6723 dev
->promiscuity
+= inc
;
6724 if (dev
->promiscuity
== 0) {
6727 * If inc causes overflow, untouch promisc and return error.
6730 dev
->flags
&= ~IFF_PROMISC
;
6732 dev
->promiscuity
-= inc
;
6733 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6738 if (dev
->flags
!= old_flags
) {
6739 pr_info("device %s %s promiscuous mode\n",
6741 dev
->flags
& IFF_PROMISC
? "entered" : "left");
6742 if (audit_enabled
) {
6743 current_uid_gid(&uid
, &gid
);
6744 audit_log(current
->audit_context
, GFP_ATOMIC
,
6745 AUDIT_ANOM_PROMISCUOUS
,
6746 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6747 dev
->name
, (dev
->flags
& IFF_PROMISC
),
6748 (old_flags
& IFF_PROMISC
),
6749 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
6750 from_kuid(&init_user_ns
, uid
),
6751 from_kgid(&init_user_ns
, gid
),
6752 audit_get_sessionid(current
));
6755 dev_change_rx_flags(dev
, IFF_PROMISC
);
6758 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
);
6763 * dev_set_promiscuity - update promiscuity count on a device
6767 * Add or remove promiscuity from a device. While the count in the device
6768 * remains above zero the interface remains promiscuous. Once it hits zero
6769 * the device reverts back to normal filtering operation. A negative inc
6770 * value is used to drop promiscuity on the device.
6771 * Return 0 if successful or a negative errno code on error.
6773 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
6775 unsigned int old_flags
= dev
->flags
;
6778 err
= __dev_set_promiscuity(dev
, inc
, true);
6781 if (dev
->flags
!= old_flags
)
6782 dev_set_rx_mode(dev
);
6785 EXPORT_SYMBOL(dev_set_promiscuity
);
6787 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
6789 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
6793 dev
->flags
|= IFF_ALLMULTI
;
6794 dev
->allmulti
+= inc
;
6795 if (dev
->allmulti
== 0) {
6798 * If inc causes overflow, untouch allmulti and return error.
6801 dev
->flags
&= ~IFF_ALLMULTI
;
6803 dev
->allmulti
-= inc
;
6804 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6809 if (dev
->flags
^ old_flags
) {
6810 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
6811 dev_set_rx_mode(dev
);
6813 __dev_notify_flags(dev
, old_flags
,
6814 dev
->gflags
^ old_gflags
);
6820 * dev_set_allmulti - update allmulti count on a device
6824 * Add or remove reception of all multicast frames to a device. While the
6825 * count in the device remains above zero the interface remains listening
6826 * to all interfaces. Once it hits zero the device reverts back to normal
6827 * filtering operation. A negative @inc value is used to drop the counter
6828 * when releasing a resource needing all multicasts.
6829 * Return 0 if successful or a negative errno code on error.
6832 int dev_set_allmulti(struct net_device
*dev
, int inc
)
6834 return __dev_set_allmulti(dev
, inc
, true);
6836 EXPORT_SYMBOL(dev_set_allmulti
);
6839 * Upload unicast and multicast address lists to device and
6840 * configure RX filtering. When the device doesn't support unicast
6841 * filtering it is put in promiscuous mode while unicast addresses
6844 void __dev_set_rx_mode(struct net_device
*dev
)
6846 const struct net_device_ops
*ops
= dev
->netdev_ops
;
6848 /* dev_open will call this function so the list will stay sane. */
6849 if (!(dev
->flags
&IFF_UP
))
6852 if (!netif_device_present(dev
))
6855 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
6856 /* Unicast addresses changes may only happen under the rtnl,
6857 * therefore calling __dev_set_promiscuity here is safe.
6859 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
6860 __dev_set_promiscuity(dev
, 1, false);
6861 dev
->uc_promisc
= true;
6862 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
6863 __dev_set_promiscuity(dev
, -1, false);
6864 dev
->uc_promisc
= false;
6868 if (ops
->ndo_set_rx_mode
)
6869 ops
->ndo_set_rx_mode(dev
);
6872 void dev_set_rx_mode(struct net_device
*dev
)
6874 netif_addr_lock_bh(dev
);
6875 __dev_set_rx_mode(dev
);
6876 netif_addr_unlock_bh(dev
);
6880 * dev_get_flags - get flags reported to userspace
6883 * Get the combination of flag bits exported through APIs to userspace.
6885 unsigned int dev_get_flags(const struct net_device
*dev
)
6889 flags
= (dev
->flags
& ~(IFF_PROMISC
|
6894 (dev
->gflags
& (IFF_PROMISC
|
6897 if (netif_running(dev
)) {
6898 if (netif_oper_up(dev
))
6899 flags
|= IFF_RUNNING
;
6900 if (netif_carrier_ok(dev
))
6901 flags
|= IFF_LOWER_UP
;
6902 if (netif_dormant(dev
))
6903 flags
|= IFF_DORMANT
;
6908 EXPORT_SYMBOL(dev_get_flags
);
6910 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
)
6912 unsigned int old_flags
= dev
->flags
;
6918 * Set the flags on our device.
6921 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
6922 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
6924 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
6928 * Load in the correct multicast list now the flags have changed.
6931 if ((old_flags
^ flags
) & IFF_MULTICAST
)
6932 dev_change_rx_flags(dev
, IFF_MULTICAST
);
6934 dev_set_rx_mode(dev
);
6937 * Have we downed the interface. We handle IFF_UP ourselves
6938 * according to user attempts to set it, rather than blindly
6943 if ((old_flags
^ flags
) & IFF_UP
) {
6944 if (old_flags
& IFF_UP
)
6947 ret
= __dev_open(dev
);
6950 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
6951 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
6952 unsigned int old_flags
= dev
->flags
;
6954 dev
->gflags
^= IFF_PROMISC
;
6956 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
6957 if (dev
->flags
!= old_flags
)
6958 dev_set_rx_mode(dev
);
6961 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6962 * is important. Some (broken) drivers set IFF_PROMISC, when
6963 * IFF_ALLMULTI is requested not asking us and not reporting.
6965 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
6966 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
6968 dev
->gflags
^= IFF_ALLMULTI
;
6969 __dev_set_allmulti(dev
, inc
, false);
6975 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
6976 unsigned int gchanges
)
6978 unsigned int changes
= dev
->flags
^ old_flags
;
6981 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
);
6983 if (changes
& IFF_UP
) {
6984 if (dev
->flags
& IFF_UP
)
6985 call_netdevice_notifiers(NETDEV_UP
, dev
);
6987 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
6990 if (dev
->flags
& IFF_UP
&&
6991 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
6992 struct netdev_notifier_change_info change_info
= {
6996 .flags_changed
= changes
,
6999 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
7004 * dev_change_flags - change device settings
7006 * @flags: device state flags
7008 * Change settings on device based state flags. The flags are
7009 * in the userspace exported format.
7011 int dev_change_flags(struct net_device
*dev
, unsigned int flags
)
7014 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
7016 ret
= __dev_change_flags(dev
, flags
);
7020 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
7021 __dev_notify_flags(dev
, old_flags
, changes
);
7024 EXPORT_SYMBOL(dev_change_flags
);
7026 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7028 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7030 if (ops
->ndo_change_mtu
)
7031 return ops
->ndo_change_mtu(dev
, new_mtu
);
7036 EXPORT_SYMBOL(__dev_set_mtu
);
7039 * dev_set_mtu - Change maximum transfer unit
7041 * @new_mtu: new transfer unit
7043 * Change the maximum transfer size of the network device.
7045 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
7049 if (new_mtu
== dev
->mtu
)
7052 /* MTU must be positive, and in range */
7053 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
7054 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7055 dev
->name
, new_mtu
, dev
->min_mtu
);
7059 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
7060 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7061 dev
->name
, new_mtu
, dev
->max_mtu
);
7065 if (!netif_device_present(dev
))
7068 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
7069 err
= notifier_to_errno(err
);
7073 orig_mtu
= dev
->mtu
;
7074 err
= __dev_set_mtu(dev
, new_mtu
);
7077 err
= call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
7078 err
= notifier_to_errno(err
);
7080 /* setting mtu back and notifying everyone again,
7081 * so that they have a chance to revert changes.
7083 __dev_set_mtu(dev
, orig_mtu
);
7084 call_netdevice_notifiers(NETDEV_CHANGEMTU
, dev
);
7089 EXPORT_SYMBOL(dev_set_mtu
);
7092 * dev_change_tx_queue_len - Change TX queue length of a netdevice
7094 * @new_len: new tx queue length
7096 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
7098 unsigned int orig_len
= dev
->tx_queue_len
;
7101 if (new_len
!= (unsigned int)new_len
)
7104 if (new_len
!= orig_len
) {
7105 dev
->tx_queue_len
= new_len
;
7106 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
7107 res
= notifier_to_errno(res
);
7110 "refused to change device tx_queue_len\n");
7111 dev
->tx_queue_len
= orig_len
;
7114 return dev_qdisc_change_tx_queue_len(dev
);
7121 * dev_set_group - Change group this device belongs to
7123 * @new_group: group this device should belong to
7125 void dev_set_group(struct net_device
*dev
, int new_group
)
7127 dev
->group
= new_group
;
7129 EXPORT_SYMBOL(dev_set_group
);
7132 * dev_set_mac_address - Change Media Access Control Address
7136 * Change the hardware (MAC) address of the device
7138 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
)
7140 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7143 if (!ops
->ndo_set_mac_address
)
7145 if (sa
->sa_family
!= dev
->type
)
7147 if (!netif_device_present(dev
))
7149 err
= ops
->ndo_set_mac_address(dev
, sa
);
7152 dev
->addr_assign_type
= NET_ADDR_SET
;
7153 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
7154 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7157 EXPORT_SYMBOL(dev_set_mac_address
);
7160 * dev_change_carrier - Change device carrier
7162 * @new_carrier: new value
7164 * Change device carrier
7166 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
7168 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7170 if (!ops
->ndo_change_carrier
)
7172 if (!netif_device_present(dev
))
7174 return ops
->ndo_change_carrier(dev
, new_carrier
);
7176 EXPORT_SYMBOL(dev_change_carrier
);
7179 * dev_get_phys_port_id - Get device physical port ID
7183 * Get device physical port ID
7185 int dev_get_phys_port_id(struct net_device
*dev
,
7186 struct netdev_phys_item_id
*ppid
)
7188 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7190 if (!ops
->ndo_get_phys_port_id
)
7192 return ops
->ndo_get_phys_port_id(dev
, ppid
);
7194 EXPORT_SYMBOL(dev_get_phys_port_id
);
7197 * dev_get_phys_port_name - Get device physical port name
7200 * @len: limit of bytes to copy to name
7202 * Get device physical port name
7204 int dev_get_phys_port_name(struct net_device
*dev
,
7205 char *name
, size_t len
)
7207 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7209 if (!ops
->ndo_get_phys_port_name
)
7211 return ops
->ndo_get_phys_port_name(dev
, name
, len
);
7213 EXPORT_SYMBOL(dev_get_phys_port_name
);
7216 * dev_change_proto_down - update protocol port state information
7218 * @proto_down: new value
7220 * This info can be used by switch drivers to set the phys state of the
7223 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
7225 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7227 if (!ops
->ndo_change_proto_down
)
7229 if (!netif_device_present(dev
))
7231 return ops
->ndo_change_proto_down(dev
, proto_down
);
7233 EXPORT_SYMBOL(dev_change_proto_down
);
7235 void __dev_xdp_query(struct net_device
*dev
, bpf_op_t bpf_op
,
7236 struct netdev_bpf
*xdp
)
7238 memset(xdp
, 0, sizeof(*xdp
));
7239 xdp
->command
= XDP_QUERY_PROG
;
7241 /* Query must always succeed. */
7242 WARN_ON(bpf_op(dev
, xdp
) < 0);
7245 static u8
__dev_xdp_attached(struct net_device
*dev
, bpf_op_t bpf_op
)
7247 struct netdev_bpf xdp
;
7249 __dev_xdp_query(dev
, bpf_op
, &xdp
);
7251 return xdp
.prog_attached
;
7254 static int dev_xdp_install(struct net_device
*dev
, bpf_op_t bpf_op
,
7255 struct netlink_ext_ack
*extack
, u32 flags
,
7256 struct bpf_prog
*prog
)
7258 struct netdev_bpf xdp
;
7260 memset(&xdp
, 0, sizeof(xdp
));
7261 if (flags
& XDP_FLAGS_HW_MODE
)
7262 xdp
.command
= XDP_SETUP_PROG_HW
;
7264 xdp
.command
= XDP_SETUP_PROG
;
7265 xdp
.extack
= extack
;
7269 return bpf_op(dev
, &xdp
);
7272 static void dev_xdp_uninstall(struct net_device
*dev
)
7274 struct netdev_bpf xdp
;
7277 /* Remove generic XDP */
7278 WARN_ON(dev_xdp_install(dev
, generic_xdp_install
, NULL
, 0, NULL
));
7280 /* Remove from the driver */
7281 ndo_bpf
= dev
->netdev_ops
->ndo_bpf
;
7285 __dev_xdp_query(dev
, ndo_bpf
, &xdp
);
7286 if (xdp
.prog_attached
== XDP_ATTACHED_NONE
)
7289 /* Program removal should always succeed */
7290 WARN_ON(dev_xdp_install(dev
, ndo_bpf
, NULL
, xdp
.prog_flags
, NULL
));
7294 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
7296 * @extack: netlink extended ack
7297 * @fd: new program fd or negative value to clear
7298 * @flags: xdp-related flags
7300 * Set or clear a bpf program for a device
7302 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
7305 const struct net_device_ops
*ops
= dev
->netdev_ops
;
7306 struct bpf_prog
*prog
= NULL
;
7307 bpf_op_t bpf_op
, bpf_chk
;
7312 bpf_op
= bpf_chk
= ops
->ndo_bpf
;
7313 if (!bpf_op
&& (flags
& (XDP_FLAGS_DRV_MODE
| XDP_FLAGS_HW_MODE
)))
7315 if (!bpf_op
|| (flags
& XDP_FLAGS_SKB_MODE
))
7316 bpf_op
= generic_xdp_install
;
7317 if (bpf_op
== bpf_chk
)
7318 bpf_chk
= generic_xdp_install
;
7321 if (bpf_chk
&& __dev_xdp_attached(dev
, bpf_chk
))
7323 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) &&
7324 __dev_xdp_attached(dev
, bpf_op
))
7327 prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
7328 bpf_op
== ops
->ndo_bpf
);
7330 return PTR_ERR(prog
);
7332 if (!(flags
& XDP_FLAGS_HW_MODE
) &&
7333 bpf_prog_is_dev_bound(prog
->aux
)) {
7334 NL_SET_ERR_MSG(extack
, "using device-bound program without HW_MODE flag is not supported");
7340 err
= dev_xdp_install(dev
, bpf_op
, extack
, flags
, prog
);
7341 if (err
< 0 && prog
)
7348 * dev_new_index - allocate an ifindex
7349 * @net: the applicable net namespace
7351 * Returns a suitable unique value for a new device interface
7352 * number. The caller must hold the rtnl semaphore or the
7353 * dev_base_lock to be sure it remains unique.
7355 static int dev_new_index(struct net
*net
)
7357 int ifindex
= net
->ifindex
;
7362 if (!__dev_get_by_index(net
, ifindex
))
7363 return net
->ifindex
= ifindex
;
7367 /* Delayed registration/unregisteration */
7368 static LIST_HEAD(net_todo_list
);
7369 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
7371 static void net_set_todo(struct net_device
*dev
)
7373 list_add_tail(&dev
->todo_list
, &net_todo_list
);
7374 dev_net(dev
)->dev_unreg_count
++;
7377 static void rollback_registered_many(struct list_head
*head
)
7379 struct net_device
*dev
, *tmp
;
7380 LIST_HEAD(close_head
);
7382 BUG_ON(dev_boot_phase
);
7385 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
7386 /* Some devices call without registering
7387 * for initialization unwind. Remove those
7388 * devices and proceed with the remaining.
7390 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
7391 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7395 list_del(&dev
->unreg_list
);
7398 dev
->dismantle
= true;
7399 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
7402 /* If device is running, close it first. */
7403 list_for_each_entry(dev
, head
, unreg_list
)
7404 list_add_tail(&dev
->close_list
, &close_head
);
7405 dev_close_many(&close_head
, true);
7407 list_for_each_entry(dev
, head
, unreg_list
) {
7408 /* And unlink it from device chain. */
7409 unlist_netdevice(dev
);
7411 dev
->reg_state
= NETREG_UNREGISTERING
;
7413 flush_all_backlogs();
7417 list_for_each_entry(dev
, head
, unreg_list
) {
7418 struct sk_buff
*skb
= NULL
;
7420 /* Shutdown queueing discipline. */
7423 dev_xdp_uninstall(dev
);
7425 /* Notify protocols, that we are about to destroy
7426 * this device. They should clean all the things.
7428 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
7430 if (!dev
->rtnl_link_ops
||
7431 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
7432 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
7433 GFP_KERNEL
, NULL
, 0);
7436 * Flush the unicast and multicast chains
7441 if (dev
->netdev_ops
->ndo_uninit
)
7442 dev
->netdev_ops
->ndo_uninit(dev
);
7445 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
);
7447 /* Notifier chain MUST detach us all upper devices. */
7448 WARN_ON(netdev_has_any_upper_dev(dev
));
7449 WARN_ON(netdev_has_any_lower_dev(dev
));
7451 /* Remove entries from kobject tree */
7452 netdev_unregister_kobject(dev
);
7454 /* Remove XPS queueing entries */
7455 netif_reset_xps_queues_gt(dev
, 0);
7461 list_for_each_entry(dev
, head
, unreg_list
)
7465 static void rollback_registered(struct net_device
*dev
)
7469 list_add(&dev
->unreg_list
, &single
);
7470 rollback_registered_many(&single
);
7474 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
7475 struct net_device
*upper
, netdev_features_t features
)
7477 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
7478 netdev_features_t feature
;
7481 for_each_netdev_feature(&upper_disables
, feature_bit
) {
7482 feature
= __NETIF_F_BIT(feature_bit
);
7483 if (!(upper
->wanted_features
& feature
)
7484 && (features
& feature
)) {
7485 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
7486 &feature
, upper
->name
);
7487 features
&= ~feature
;
7494 static void netdev_sync_lower_features(struct net_device
*upper
,
7495 struct net_device
*lower
, netdev_features_t features
)
7497 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
7498 netdev_features_t feature
;
7501 for_each_netdev_feature(&upper_disables
, feature_bit
) {
7502 feature
= __NETIF_F_BIT(feature_bit
);
7503 if (!(features
& feature
) && (lower
->features
& feature
)) {
7504 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
7505 &feature
, lower
->name
);
7506 lower
->wanted_features
&= ~feature
;
7507 netdev_update_features(lower
);
7509 if (unlikely(lower
->features
& feature
))
7510 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
7511 &feature
, lower
->name
);
7516 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
7517 netdev_features_t features
)
7519 /* Fix illegal checksum combinations */
7520 if ((features
& NETIF_F_HW_CSUM
) &&
7521 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
7522 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
7523 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
7526 /* TSO requires that SG is present as well. */
7527 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
7528 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
7529 features
&= ~NETIF_F_ALL_TSO
;
7532 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
7533 !(features
& NETIF_F_IP_CSUM
)) {
7534 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
7535 features
&= ~NETIF_F_TSO
;
7536 features
&= ~NETIF_F_TSO_ECN
;
7539 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
7540 !(features
& NETIF_F_IPV6_CSUM
)) {
7541 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
7542 features
&= ~NETIF_F_TSO6
;
7545 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7546 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
7547 features
&= ~NETIF_F_TSO_MANGLEID
;
7549 /* TSO ECN requires that TSO is present as well. */
7550 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
7551 features
&= ~NETIF_F_TSO_ECN
;
7553 /* Software GSO depends on SG. */
7554 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
7555 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
7556 features
&= ~NETIF_F_GSO
;
7559 /* GSO partial features require GSO partial be set */
7560 if ((features
& dev
->gso_partial_features
) &&
7561 !(features
& NETIF_F_GSO_PARTIAL
)) {
7563 "Dropping partially supported GSO features since no GSO partial.\n");
7564 features
&= ~dev
->gso_partial_features
;
7567 if (!(features
& NETIF_F_RXCSUM
)) {
7568 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7569 * successfully merged by hardware must also have the
7570 * checksum verified by hardware. If the user does not
7571 * want to enable RXCSUM, logically, we should disable GRO_HW.
7573 if (features
& NETIF_F_GRO_HW
) {
7574 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7575 features
&= ~NETIF_F_GRO_HW
;
7579 /* LRO/HW-GRO features cannot be combined with RX-FCS */
7580 if (features
& NETIF_F_RXFCS
) {
7581 if (features
& NETIF_F_LRO
) {
7582 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
7583 features
&= ~NETIF_F_LRO
;
7586 if (features
& NETIF_F_GRO_HW
) {
7587 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
7588 features
&= ~NETIF_F_GRO_HW
;
7595 int __netdev_update_features(struct net_device
*dev
)
7597 struct net_device
*upper
, *lower
;
7598 netdev_features_t features
;
7599 struct list_head
*iter
;
7604 features
= netdev_get_wanted_features(dev
);
7606 if (dev
->netdev_ops
->ndo_fix_features
)
7607 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
7609 /* driver might be less strict about feature dependencies */
7610 features
= netdev_fix_features(dev
, features
);
7612 /* some features can't be enabled if they're off an an upper device */
7613 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
7614 features
= netdev_sync_upper_features(dev
, upper
, features
);
7616 if (dev
->features
== features
)
7619 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
7620 &dev
->features
, &features
);
7622 if (dev
->netdev_ops
->ndo_set_features
)
7623 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
7627 if (unlikely(err
< 0)) {
7629 "set_features() failed (%d); wanted %pNF, left %pNF\n",
7630 err
, &features
, &dev
->features
);
7631 /* return non-0 since some features might have changed and
7632 * it's better to fire a spurious notification than miss it
7638 /* some features must be disabled on lower devices when disabled
7639 * on an upper device (think: bonding master or bridge)
7641 netdev_for_each_lower_dev(dev
, lower
, iter
)
7642 netdev_sync_lower_features(dev
, lower
, features
);
7645 netdev_features_t diff
= features
^ dev
->features
;
7647 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
7648 /* udp_tunnel_{get,drop}_rx_info both need
7649 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7650 * device, or they won't do anything.
7651 * Thus we need to update dev->features
7652 * *before* calling udp_tunnel_get_rx_info,
7653 * but *after* calling udp_tunnel_drop_rx_info.
7655 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
7656 dev
->features
= features
;
7657 udp_tunnel_get_rx_info(dev
);
7659 udp_tunnel_drop_rx_info(dev
);
7663 dev
->features
= features
;
7666 return err
< 0 ? 0 : 1;
7670 * netdev_update_features - recalculate device features
7671 * @dev: the device to check
7673 * Recalculate dev->features set and send notifications if it
7674 * has changed. Should be called after driver or hardware dependent
7675 * conditions might have changed that influence the features.
7677 void netdev_update_features(struct net_device
*dev
)
7679 if (__netdev_update_features(dev
))
7680 netdev_features_change(dev
);
7682 EXPORT_SYMBOL(netdev_update_features
);
7685 * netdev_change_features - recalculate device features
7686 * @dev: the device to check
7688 * Recalculate dev->features set and send notifications even
7689 * if they have not changed. Should be called instead of
7690 * netdev_update_features() if also dev->vlan_features might
7691 * have changed to allow the changes to be propagated to stacked
7694 void netdev_change_features(struct net_device
*dev
)
7696 __netdev_update_features(dev
);
7697 netdev_features_change(dev
);
7699 EXPORT_SYMBOL(netdev_change_features
);
7702 * netif_stacked_transfer_operstate - transfer operstate
7703 * @rootdev: the root or lower level device to transfer state from
7704 * @dev: the device to transfer operstate to
7706 * Transfer operational state from root to device. This is normally
7707 * called when a stacking relationship exists between the root
7708 * device and the device(a leaf device).
7710 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
7711 struct net_device
*dev
)
7713 if (rootdev
->operstate
== IF_OPER_DORMANT
)
7714 netif_dormant_on(dev
);
7716 netif_dormant_off(dev
);
7718 if (netif_carrier_ok(rootdev
))
7719 netif_carrier_on(dev
);
7721 netif_carrier_off(dev
);
7723 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
7725 static int netif_alloc_rx_queues(struct net_device
*dev
)
7727 unsigned int i
, count
= dev
->num_rx_queues
;
7728 struct netdev_rx_queue
*rx
;
7729 size_t sz
= count
* sizeof(*rx
);
7734 rx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
7740 for (i
= 0; i
< count
; i
++) {
7743 /* XDP RX-queue setup */
7744 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
);
7751 /* Rollback successful reg's and free other resources */
7753 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
7759 static void netif_free_rx_queues(struct net_device
*dev
)
7761 unsigned int i
, count
= dev
->num_rx_queues
;
7763 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7767 for (i
= 0; i
< count
; i
++)
7768 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
7773 static void netdev_init_one_queue(struct net_device
*dev
,
7774 struct netdev_queue
*queue
, void *_unused
)
7776 /* Initialize queue lock */
7777 spin_lock_init(&queue
->_xmit_lock
);
7778 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
7779 queue
->xmit_lock_owner
= -1;
7780 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
7783 dql_init(&queue
->dql
, HZ
);
7787 static void netif_free_tx_queues(struct net_device
*dev
)
7792 static int netif_alloc_netdev_queues(struct net_device
*dev
)
7794 unsigned int count
= dev
->num_tx_queues
;
7795 struct netdev_queue
*tx
;
7796 size_t sz
= count
* sizeof(*tx
);
7798 if (count
< 1 || count
> 0xffff)
7801 tx
= kvzalloc(sz
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
7807 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
7808 spin_lock_init(&dev
->tx_global_lock
);
7813 void netif_tx_stop_all_queues(struct net_device
*dev
)
7817 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
7818 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
7820 netif_tx_stop_queue(txq
);
7823 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
7826 * register_netdevice - register a network device
7827 * @dev: device to register
7829 * Take a completed network device structure and add it to the kernel
7830 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7831 * chain. 0 is returned on success. A negative errno code is returned
7832 * on a failure to set up the device, or if the name is a duplicate.
7834 * Callers must hold the rtnl semaphore. You may want
7835 * register_netdev() instead of this.
7838 * The locking appears insufficient to guarantee two parallel registers
7839 * will not get the same name.
7842 int register_netdevice(struct net_device
*dev
)
7845 struct net
*net
= dev_net(dev
);
7847 BUG_ON(dev_boot_phase
);
7852 /* When net_device's are persistent, this will be fatal. */
7853 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
7856 spin_lock_init(&dev
->addr_list_lock
);
7857 netdev_set_addr_lockdep_class(dev
);
7859 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
7863 /* Init, if this function is available */
7864 if (dev
->netdev_ops
->ndo_init
) {
7865 ret
= dev
->netdev_ops
->ndo_init(dev
);
7873 if (((dev
->hw_features
| dev
->features
) &
7874 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
7875 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
7876 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
7877 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
7884 dev
->ifindex
= dev_new_index(net
);
7885 else if (__dev_get_by_index(net
, dev
->ifindex
))
7888 /* Transfer changeable features to wanted_features and enable
7889 * software offloads (GSO and GRO).
7891 dev
->hw_features
|= NETIF_F_SOFT_FEATURES
;
7892 dev
->features
|= NETIF_F_SOFT_FEATURES
;
7894 if (dev
->netdev_ops
->ndo_udp_tunnel_add
) {
7895 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
7896 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
7899 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
7901 if (!(dev
->flags
& IFF_LOOPBACK
))
7902 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
7904 /* If IPv4 TCP segmentation offload is supported we should also
7905 * allow the device to enable segmenting the frame with the option
7906 * of ignoring a static IP ID value. This doesn't enable the
7907 * feature itself but allows the user to enable it later.
7909 if (dev
->hw_features
& NETIF_F_TSO
)
7910 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
7911 if (dev
->vlan_features
& NETIF_F_TSO
)
7912 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
7913 if (dev
->mpls_features
& NETIF_F_TSO
)
7914 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
7915 if (dev
->hw_enc_features
& NETIF_F_TSO
)
7916 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
7918 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7920 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
7922 /* Make NETIF_F_SG inheritable to tunnel devices.
7924 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
7926 /* Make NETIF_F_SG inheritable to MPLS.
7928 dev
->mpls_features
|= NETIF_F_SG
;
7930 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
7931 ret
= notifier_to_errno(ret
);
7935 ret
= netdev_register_kobject(dev
);
7938 dev
->reg_state
= NETREG_REGISTERED
;
7940 __netdev_update_features(dev
);
7943 * Default initial state at registry is that the
7944 * device is present.
7947 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
7949 linkwatch_init_dev(dev
);
7951 dev_init_scheduler(dev
);
7953 list_netdevice(dev
);
7954 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
7956 /* If the device has permanent device address, driver should
7957 * set dev_addr and also addr_assign_type should be set to
7958 * NET_ADDR_PERM (default value).
7960 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
7961 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
7963 /* Notify protocols, that a new device appeared. */
7964 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
7965 ret
= notifier_to_errno(ret
);
7967 rollback_registered(dev
);
7968 dev
->reg_state
= NETREG_UNREGISTERED
;
7971 * Prevent userspace races by waiting until the network
7972 * device is fully setup before sending notifications.
7974 if (!dev
->rtnl_link_ops
||
7975 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
7976 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
7982 if (dev
->netdev_ops
->ndo_uninit
)
7983 dev
->netdev_ops
->ndo_uninit(dev
);
7984 if (dev
->priv_destructor
)
7985 dev
->priv_destructor(dev
);
7988 EXPORT_SYMBOL(register_netdevice
);
7991 * init_dummy_netdev - init a dummy network device for NAPI
7992 * @dev: device to init
7994 * This takes a network device structure and initialize the minimum
7995 * amount of fields so it can be used to schedule NAPI polls without
7996 * registering a full blown interface. This is to be used by drivers
7997 * that need to tie several hardware interfaces to a single NAPI
7998 * poll scheduler due to HW limitations.
8000 int init_dummy_netdev(struct net_device
*dev
)
8002 /* Clear everything. Note we don't initialize spinlocks
8003 * are they aren't supposed to be taken by any of the
8004 * NAPI code and this dummy netdev is supposed to be
8005 * only ever used for NAPI polls
8007 memset(dev
, 0, sizeof(struct net_device
));
8009 /* make sure we BUG if trying to hit standard
8010 * register/unregister code path
8012 dev
->reg_state
= NETREG_DUMMY
;
8014 /* NAPI wants this */
8015 INIT_LIST_HEAD(&dev
->napi_list
);
8017 /* a dummy interface is started by default */
8018 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
8019 set_bit(__LINK_STATE_START
, &dev
->state
);
8021 /* Note : We dont allocate pcpu_refcnt for dummy devices,
8022 * because users of this 'device' dont need to change
8028 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
8032 * register_netdev - register a network device
8033 * @dev: device to register
8035 * Take a completed network device structure and add it to the kernel
8036 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8037 * chain. 0 is returned on success. A negative errno code is returned
8038 * on a failure to set up the device, or if the name is a duplicate.
8040 * This is a wrapper around register_netdevice that takes the rtnl semaphore
8041 * and expands the device name if you passed a format string to
8044 int register_netdev(struct net_device
*dev
)
8048 if (rtnl_lock_killable())
8050 err
= register_netdevice(dev
);
8054 EXPORT_SYMBOL(register_netdev
);
8056 int netdev_refcnt_read(const struct net_device
*dev
)
8060 for_each_possible_cpu(i
)
8061 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
8064 EXPORT_SYMBOL(netdev_refcnt_read
);
8067 * netdev_wait_allrefs - wait until all references are gone.
8068 * @dev: target net_device
8070 * This is called when unregistering network devices.
8072 * Any protocol or device that holds a reference should register
8073 * for netdevice notification, and cleanup and put back the
8074 * reference if they receive an UNREGISTER event.
8075 * We can get stuck here if buggy protocols don't correctly
8078 static void netdev_wait_allrefs(struct net_device
*dev
)
8080 unsigned long rebroadcast_time
, warning_time
;
8083 linkwatch_forget_dev(dev
);
8085 rebroadcast_time
= warning_time
= jiffies
;
8086 refcnt
= netdev_refcnt_read(dev
);
8088 while (refcnt
!= 0) {
8089 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
8092 /* Rebroadcast unregister notification */
8093 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8099 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
8101 /* We must not have linkwatch events
8102 * pending on unregister. If this
8103 * happens, we simply run the queue
8104 * unscheduled, resulting in a noop
8107 linkwatch_run_queue();
8112 rebroadcast_time
= jiffies
;
8117 refcnt
= netdev_refcnt_read(dev
);
8119 if (time_after(jiffies
, warning_time
+ 10 * HZ
)) {
8120 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8122 warning_time
= jiffies
;
8131 * register_netdevice(x1);
8132 * register_netdevice(x2);
8134 * unregister_netdevice(y1);
8135 * unregister_netdevice(y2);
8141 * We are invoked by rtnl_unlock().
8142 * This allows us to deal with problems:
8143 * 1) We can delete sysfs objects which invoke hotplug
8144 * without deadlocking with linkwatch via keventd.
8145 * 2) Since we run with the RTNL semaphore not held, we can sleep
8146 * safely in order to wait for the netdev refcnt to drop to zero.
8148 * We must not return until all unregister events added during
8149 * the interval the lock was held have been completed.
8151 void netdev_run_todo(void)
8153 struct list_head list
;
8155 /* Snapshot list, allow later requests */
8156 list_replace_init(&net_todo_list
, &list
);
8161 /* Wait for rcu callbacks to finish before next phase */
8162 if (!list_empty(&list
))
8165 while (!list_empty(&list
)) {
8166 struct net_device
*dev
8167 = list_first_entry(&list
, struct net_device
, todo_list
);
8168 list_del(&dev
->todo_list
);
8170 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
8171 pr_err("network todo '%s' but state %d\n",
8172 dev
->name
, dev
->reg_state
);
8177 dev
->reg_state
= NETREG_UNREGISTERED
;
8179 netdev_wait_allrefs(dev
);
8182 BUG_ON(netdev_refcnt_read(dev
));
8183 BUG_ON(!list_empty(&dev
->ptype_all
));
8184 BUG_ON(!list_empty(&dev
->ptype_specific
));
8185 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
8186 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
8187 #if IS_ENABLED(CONFIG_DECNET)
8188 WARN_ON(dev
->dn_ptr
);
8190 if (dev
->priv_destructor
)
8191 dev
->priv_destructor(dev
);
8192 if (dev
->needs_free_netdev
)
8195 /* Report a network device has been unregistered */
8197 dev_net(dev
)->dev_unreg_count
--;
8199 wake_up(&netdev_unregistering_wq
);
8201 /* Free network device */
8202 kobject_put(&dev
->dev
.kobj
);
8206 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8207 * all the same fields in the same order as net_device_stats, with only
8208 * the type differing, but rtnl_link_stats64 may have additional fields
8209 * at the end for newer counters.
8211 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
8212 const struct net_device_stats
*netdev_stats
)
8214 #if BITS_PER_LONG == 64
8215 BUILD_BUG_ON(sizeof(*stats64
) < sizeof(*netdev_stats
));
8216 memcpy(stats64
, netdev_stats
, sizeof(*netdev_stats
));
8217 /* zero out counters that only exist in rtnl_link_stats64 */
8218 memset((char *)stats64
+ sizeof(*netdev_stats
), 0,
8219 sizeof(*stats64
) - sizeof(*netdev_stats
));
8221 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(unsigned long);
8222 const unsigned long *src
= (const unsigned long *)netdev_stats
;
8223 u64
*dst
= (u64
*)stats64
;
8225 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
8226 for (i
= 0; i
< n
; i
++)
8228 /* zero out counters that only exist in rtnl_link_stats64 */
8229 memset((char *)stats64
+ n
* sizeof(u64
), 0,
8230 sizeof(*stats64
) - n
* sizeof(u64
));
8233 EXPORT_SYMBOL(netdev_stats_to_stats64
);
8236 * dev_get_stats - get network device statistics
8237 * @dev: device to get statistics from
8238 * @storage: place to store stats
8240 * Get network statistics from device. Return @storage.
8241 * The device driver may provide its own method by setting
8242 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8243 * otherwise the internal statistics structure is used.
8245 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
8246 struct rtnl_link_stats64
*storage
)
8248 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8250 if (ops
->ndo_get_stats64
) {
8251 memset(storage
, 0, sizeof(*storage
));
8252 ops
->ndo_get_stats64(dev
, storage
);
8253 } else if (ops
->ndo_get_stats
) {
8254 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
8256 netdev_stats_to_stats64(storage
, &dev
->stats
);
8258 storage
->rx_dropped
+= (unsigned long)atomic_long_read(&dev
->rx_dropped
);
8259 storage
->tx_dropped
+= (unsigned long)atomic_long_read(&dev
->tx_dropped
);
8260 storage
->rx_nohandler
+= (unsigned long)atomic_long_read(&dev
->rx_nohandler
);
8263 EXPORT_SYMBOL(dev_get_stats
);
8265 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
8267 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
8269 #ifdef CONFIG_NET_CLS_ACT
8272 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
8275 netdev_init_one_queue(dev
, queue
, NULL
);
8276 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
8277 queue
->qdisc_sleeping
= &noop_qdisc
;
8278 rcu_assign_pointer(dev
->ingress_queue
, queue
);
8283 static const struct ethtool_ops default_ethtool_ops
;
8285 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
8286 const struct ethtool_ops
*ops
)
8288 if (dev
->ethtool_ops
== &default_ethtool_ops
)
8289 dev
->ethtool_ops
= ops
;
8291 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
8293 void netdev_freemem(struct net_device
*dev
)
8295 char *addr
= (char *)dev
- dev
->padded
;
8301 * alloc_netdev_mqs - allocate network device
8302 * @sizeof_priv: size of private data to allocate space for
8303 * @name: device name format string
8304 * @name_assign_type: origin of device name
8305 * @setup: callback to initialize device
8306 * @txqs: the number of TX subqueues to allocate
8307 * @rxqs: the number of RX subqueues to allocate
8309 * Allocates a struct net_device with private data area for driver use
8310 * and performs basic initialization. Also allocates subqueue structs
8311 * for each queue on the device.
8313 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
8314 unsigned char name_assign_type
,
8315 void (*setup
)(struct net_device
*),
8316 unsigned int txqs
, unsigned int rxqs
)
8318 struct net_device
*dev
;
8319 unsigned int alloc_size
;
8320 struct net_device
*p
;
8322 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
8325 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8330 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8334 alloc_size
= sizeof(struct net_device
);
8336 /* ensure 32-byte alignment of private area */
8337 alloc_size
= ALIGN(alloc_size
, NETDEV_ALIGN
);
8338 alloc_size
+= sizeof_priv
;
8340 /* ensure 32-byte alignment of whole construct */
8341 alloc_size
+= NETDEV_ALIGN
- 1;
8343 p
= kvzalloc(alloc_size
, GFP_KERNEL
| __GFP_RETRY_MAYFAIL
);
8347 dev
= PTR_ALIGN(p
, NETDEV_ALIGN
);
8348 dev
->padded
= (char *)dev
- (char *)p
;
8350 dev
->pcpu_refcnt
= alloc_percpu(int);
8351 if (!dev
->pcpu_refcnt
)
8354 if (dev_addr_init(dev
))
8360 dev_net_set(dev
, &init_net
);
8362 dev
->gso_max_size
= GSO_MAX_SIZE
;
8363 dev
->gso_max_segs
= GSO_MAX_SEGS
;
8365 INIT_LIST_HEAD(&dev
->napi_list
);
8366 INIT_LIST_HEAD(&dev
->unreg_list
);
8367 INIT_LIST_HEAD(&dev
->close_list
);
8368 INIT_LIST_HEAD(&dev
->link_watch_list
);
8369 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
8370 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
8371 INIT_LIST_HEAD(&dev
->ptype_all
);
8372 INIT_LIST_HEAD(&dev
->ptype_specific
);
8373 #ifdef CONFIG_NET_SCHED
8374 hash_init(dev
->qdisc_hash
);
8376 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
8379 if (!dev
->tx_queue_len
) {
8380 dev
->priv_flags
|= IFF_NO_QUEUE
;
8381 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
8384 dev
->num_tx_queues
= txqs
;
8385 dev
->real_num_tx_queues
= txqs
;
8386 if (netif_alloc_netdev_queues(dev
))
8389 dev
->num_rx_queues
= rxqs
;
8390 dev
->real_num_rx_queues
= rxqs
;
8391 if (netif_alloc_rx_queues(dev
))
8394 strcpy(dev
->name
, name
);
8395 dev
->name_assign_type
= name_assign_type
;
8396 dev
->group
= INIT_NETDEV_GROUP
;
8397 if (!dev
->ethtool_ops
)
8398 dev
->ethtool_ops
= &default_ethtool_ops
;
8400 nf_hook_ingress_init(dev
);
8409 free_percpu(dev
->pcpu_refcnt
);
8411 netdev_freemem(dev
);
8414 EXPORT_SYMBOL(alloc_netdev_mqs
);
8417 * free_netdev - free network device
8420 * This function does the last stage of destroying an allocated device
8421 * interface. The reference to the device object is released. If this
8422 * is the last reference then it will be freed.Must be called in process
8425 void free_netdev(struct net_device
*dev
)
8427 struct napi_struct
*p
, *n
;
8430 netif_free_tx_queues(dev
);
8431 netif_free_rx_queues(dev
);
8433 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
8435 /* Flush device addresses */
8436 dev_addr_flush(dev
);
8438 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
8441 free_percpu(dev
->pcpu_refcnt
);
8442 dev
->pcpu_refcnt
= NULL
;
8444 /* Compatibility with error handling in drivers */
8445 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
8446 netdev_freemem(dev
);
8450 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
8451 dev
->reg_state
= NETREG_RELEASED
;
8453 /* will free via device release */
8454 put_device(&dev
->dev
);
8456 EXPORT_SYMBOL(free_netdev
);
8459 * synchronize_net - Synchronize with packet receive processing
8461 * Wait for packets currently being received to be done.
8462 * Does not block later packets from starting.
8464 void synchronize_net(void)
8467 if (rtnl_is_locked())
8468 synchronize_rcu_expedited();
8472 EXPORT_SYMBOL(synchronize_net
);
8475 * unregister_netdevice_queue - remove device from the kernel
8479 * This function shuts down a device interface and removes it
8480 * from the kernel tables.
8481 * If head not NULL, device is queued to be unregistered later.
8483 * Callers must hold the rtnl semaphore. You may want
8484 * unregister_netdev() instead of this.
8487 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
8492 list_move_tail(&dev
->unreg_list
, head
);
8494 rollback_registered(dev
);
8495 /* Finish processing unregister after unlock */
8499 EXPORT_SYMBOL(unregister_netdevice_queue
);
8502 * unregister_netdevice_many - unregister many devices
8503 * @head: list of devices
8505 * Note: As most callers use a stack allocated list_head,
8506 * we force a list_del() to make sure stack wont be corrupted later.
8508 void unregister_netdevice_many(struct list_head
*head
)
8510 struct net_device
*dev
;
8512 if (!list_empty(head
)) {
8513 rollback_registered_many(head
);
8514 list_for_each_entry(dev
, head
, unreg_list
)
8519 EXPORT_SYMBOL(unregister_netdevice_many
);
8522 * unregister_netdev - remove device from the kernel
8525 * This function shuts down a device interface and removes it
8526 * from the kernel tables.
8528 * This is just a wrapper for unregister_netdevice that takes
8529 * the rtnl semaphore. In general you want to use this and not
8530 * unregister_netdevice.
8532 void unregister_netdev(struct net_device
*dev
)
8535 unregister_netdevice(dev
);
8538 EXPORT_SYMBOL(unregister_netdev
);
8541 * dev_change_net_namespace - move device to different nethost namespace
8543 * @net: network namespace
8544 * @pat: If not NULL name pattern to try if the current device name
8545 * is already taken in the destination network namespace.
8547 * This function shuts down a device interface and moves it
8548 * to a new network namespace. On success 0 is returned, on
8549 * a failure a netagive errno code is returned.
8551 * Callers must hold the rtnl semaphore.
8554 int dev_change_net_namespace(struct net_device
*dev
, struct net
*net
, const char *pat
)
8556 int err
, new_nsid
, new_ifindex
;
8560 /* Don't allow namespace local devices to be moved. */
8562 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
8565 /* Ensure the device has been registrered */
8566 if (dev
->reg_state
!= NETREG_REGISTERED
)
8569 /* Get out if there is nothing todo */
8571 if (net_eq(dev_net(dev
), net
))
8574 /* Pick the destination device name, and ensure
8575 * we can use it in the destination network namespace.
8578 if (__dev_get_by_name(net
, dev
->name
)) {
8579 /* We get here if we can't use the current device name */
8582 if (dev_get_valid_name(net
, dev
, pat
) < 0)
8587 * And now a mini version of register_netdevice unregister_netdevice.
8590 /* If device is running close it first. */
8593 /* And unlink it from device chain */
8595 unlist_netdevice(dev
);
8599 /* Shutdown queueing discipline. */
8602 /* Notify protocols, that we are about to destroy
8603 * this device. They should clean all the things.
8605 * Note that dev->reg_state stays at NETREG_REGISTERED.
8606 * This is wanted because this way 8021q and macvlan know
8607 * the device is just moving and can keep their slaves up.
8609 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
8612 new_nsid
= peernet2id_alloc(dev_net(dev
), net
);
8613 /* If there is an ifindex conflict assign a new one */
8614 if (__dev_get_by_index(net
, dev
->ifindex
))
8615 new_ifindex
= dev_new_index(net
);
8617 new_ifindex
= dev
->ifindex
;
8619 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
8623 * Flush the unicast and multicast chains
8628 /* Send a netdev-removed uevent to the old namespace */
8629 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
8630 netdev_adjacent_del_links(dev
);
8632 /* Actually switch the network namespace */
8633 dev_net_set(dev
, net
);
8634 dev
->ifindex
= new_ifindex
;
8636 /* Send a netdev-add uevent to the new namespace */
8637 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
8638 netdev_adjacent_add_links(dev
);
8640 /* Fixup kobjects */
8641 err
= device_rename(&dev
->dev
, dev
->name
);
8644 /* Add the device back in the hashes */
8645 list_netdevice(dev
);
8647 /* Notify protocols, that a new device appeared. */
8648 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
8651 * Prevent userspace races by waiting until the network
8652 * device is fully setup before sending notifications.
8654 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
);
8661 EXPORT_SYMBOL_GPL(dev_change_net_namespace
);
8663 static int dev_cpu_dead(unsigned int oldcpu
)
8665 struct sk_buff
**list_skb
;
8666 struct sk_buff
*skb
;
8668 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
8670 local_irq_disable();
8671 cpu
= smp_processor_id();
8672 sd
= &per_cpu(softnet_data
, cpu
);
8673 oldsd
= &per_cpu(softnet_data
, oldcpu
);
8675 /* Find end of our completion_queue. */
8676 list_skb
= &sd
->completion_queue
;
8678 list_skb
= &(*list_skb
)->next
;
8679 /* Append completion queue from offline CPU. */
8680 *list_skb
= oldsd
->completion_queue
;
8681 oldsd
->completion_queue
= NULL
;
8683 /* Append output queue from offline CPU. */
8684 if (oldsd
->output_queue
) {
8685 *sd
->output_queue_tailp
= oldsd
->output_queue
;
8686 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
8687 oldsd
->output_queue
= NULL
;
8688 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
8690 /* Append NAPI poll list from offline CPU, with one exception :
8691 * process_backlog() must be called by cpu owning percpu backlog.
8692 * We properly handle process_queue & input_pkt_queue later.
8694 while (!list_empty(&oldsd
->poll_list
)) {
8695 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
8699 list_del_init(&napi
->poll_list
);
8700 if (napi
->poll
== process_backlog
)
8703 ____napi_schedule(sd
, napi
);
8706 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
8710 remsd
= oldsd
->rps_ipi_list
;
8711 oldsd
->rps_ipi_list
= NULL
;
8713 /* send out pending IPI's on offline CPU */
8714 net_rps_send_ipi(remsd
);
8716 /* Process offline CPU's input_pkt_queue */
8717 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
8719 input_queue_head_incr(oldsd
);
8721 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
8723 input_queue_head_incr(oldsd
);
8730 * netdev_increment_features - increment feature set by one
8731 * @all: current feature set
8732 * @one: new feature set
8733 * @mask: mask feature set
8735 * Computes a new feature set after adding a device with feature set
8736 * @one to the master device with current feature set @all. Will not
8737 * enable anything that is off in @mask. Returns the new feature set.
8739 netdev_features_t
netdev_increment_features(netdev_features_t all
,
8740 netdev_features_t one
, netdev_features_t mask
)
8742 if (mask
& NETIF_F_HW_CSUM
)
8743 mask
|= NETIF_F_CSUM_MASK
;
8744 mask
|= NETIF_F_VLAN_CHALLENGED
;
8746 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
8747 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
8749 /* If one device supports hw checksumming, set for all. */
8750 if (all
& NETIF_F_HW_CSUM
)
8751 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
8755 EXPORT_SYMBOL(netdev_increment_features
);
8757 static struct hlist_head
* __net_init
netdev_create_hash(void)
8760 struct hlist_head
*hash
;
8762 hash
= kmalloc(sizeof(*hash
) * NETDEV_HASHENTRIES
, GFP_KERNEL
);
8764 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
8765 INIT_HLIST_HEAD(&hash
[i
]);
8770 /* Initialize per network namespace state */
8771 static int __net_init
netdev_init(struct net
*net
)
8773 if (net
!= &init_net
)
8774 INIT_LIST_HEAD(&net
->dev_base_head
);
8776 net
->dev_name_head
= netdev_create_hash();
8777 if (net
->dev_name_head
== NULL
)
8780 net
->dev_index_head
= netdev_create_hash();
8781 if (net
->dev_index_head
== NULL
)
8787 kfree(net
->dev_name_head
);
8793 * netdev_drivername - network driver for the device
8794 * @dev: network device
8796 * Determine network driver for device.
8798 const char *netdev_drivername(const struct net_device
*dev
)
8800 const struct device_driver
*driver
;
8801 const struct device
*parent
;
8802 const char *empty
= "";
8804 parent
= dev
->dev
.parent
;
8808 driver
= parent
->driver
;
8809 if (driver
&& driver
->name
)
8810 return driver
->name
;
8814 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
8815 struct va_format
*vaf
)
8817 if (dev
&& dev
->dev
.parent
) {
8818 dev_printk_emit(level
[1] - '0',
8821 dev_driver_string(dev
->dev
.parent
),
8822 dev_name(dev
->dev
.parent
),
8823 netdev_name(dev
), netdev_reg_state(dev
),
8826 printk("%s%s%s: %pV",
8827 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
8829 printk("%s(NULL net_device): %pV", level
, vaf
);
8833 void netdev_printk(const char *level
, const struct net_device
*dev
,
8834 const char *format
, ...)
8836 struct va_format vaf
;
8839 va_start(args
, format
);
8844 __netdev_printk(level
, dev
, &vaf
);
8848 EXPORT_SYMBOL(netdev_printk
);
8850 #define define_netdev_printk_level(func, level) \
8851 void func(const struct net_device *dev, const char *fmt, ...) \
8853 struct va_format vaf; \
8856 va_start(args, fmt); \
8861 __netdev_printk(level, dev, &vaf); \
8865 EXPORT_SYMBOL(func);
8867 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
8868 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
8869 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
8870 define_netdev_printk_level(netdev_err
, KERN_ERR
);
8871 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
8872 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
8873 define_netdev_printk_level(netdev_info
, KERN_INFO
);
8875 static void __net_exit
netdev_exit(struct net
*net
)
8877 kfree(net
->dev_name_head
);
8878 kfree(net
->dev_index_head
);
8879 if (net
!= &init_net
)
8880 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
8883 static struct pernet_operations __net_initdata netdev_net_ops
= {
8884 .init
= netdev_init
,
8885 .exit
= netdev_exit
,
8888 static void __net_exit
default_device_exit(struct net
*net
)
8890 struct net_device
*dev
, *aux
;
8892 * Push all migratable network devices back to the
8893 * initial network namespace
8896 for_each_netdev_safe(net
, dev
, aux
) {
8898 char fb_name
[IFNAMSIZ
];
8900 /* Ignore unmoveable devices (i.e. loopback) */
8901 if (dev
->features
& NETIF_F_NETNS_LOCAL
)
8904 /* Leave virtual devices for the generic cleanup */
8905 if (dev
->rtnl_link_ops
)
8908 /* Push remaining network devices to init_net */
8909 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
8910 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
8912 pr_emerg("%s: failed to move %s to init_net: %d\n",
8913 __func__
, dev
->name
, err
);
8920 static void __net_exit
rtnl_lock_unregistering(struct list_head
*net_list
)
8922 /* Return with the rtnl_lock held when there are no network
8923 * devices unregistering in any network namespace in net_list.
8927 DEFINE_WAIT_FUNC(wait
, woken_wake_function
);
8929 add_wait_queue(&netdev_unregistering_wq
, &wait
);
8931 unregistering
= false;
8933 list_for_each_entry(net
, net_list
, exit_list
) {
8934 if (net
->dev_unreg_count
> 0) {
8935 unregistering
= true;
8943 wait_woken(&wait
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
8945 remove_wait_queue(&netdev_unregistering_wq
, &wait
);
8948 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
8950 /* At exit all network devices most be removed from a network
8951 * namespace. Do this in the reverse order of registration.
8952 * Do this across as many network namespaces as possible to
8953 * improve batching efficiency.
8955 struct net_device
*dev
;
8957 LIST_HEAD(dev_kill_list
);
8959 /* To prevent network device cleanup code from dereferencing
8960 * loopback devices or network devices that have been freed
8961 * wait here for all pending unregistrations to complete,
8962 * before unregistring the loopback device and allowing the
8963 * network namespace be freed.
8965 * The netdev todo list containing all network devices
8966 * unregistrations that happen in default_device_exit_batch
8967 * will run in the rtnl_unlock() at the end of
8968 * default_device_exit_batch.
8970 rtnl_lock_unregistering(net_list
);
8971 list_for_each_entry(net
, net_list
, exit_list
) {
8972 for_each_netdev_reverse(net
, dev
) {
8973 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
8974 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
8976 unregister_netdevice_queue(dev
, &dev_kill_list
);
8979 unregister_netdevice_many(&dev_kill_list
);
8983 static struct pernet_operations __net_initdata default_device_ops
= {
8984 .exit
= default_device_exit
,
8985 .exit_batch
= default_device_exit_batch
,
8989 * Initialize the DEV module. At boot time this walks the device list and
8990 * unhooks any devices that fail to initialise (normally hardware not
8991 * present) and leaves us with a valid list of present and active devices.
8996 * This is called single threaded during boot, so no need
8997 * to take the rtnl semaphore.
8999 static int __init
net_dev_init(void)
9001 int i
, rc
= -ENOMEM
;
9003 BUG_ON(!dev_boot_phase
);
9005 if (dev_proc_init())
9008 if (netdev_kobject_init())
9011 INIT_LIST_HEAD(&ptype_all
);
9012 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
9013 INIT_LIST_HEAD(&ptype_base
[i
]);
9015 INIT_LIST_HEAD(&offload_base
);
9017 if (register_pernet_subsys(&netdev_net_ops
))
9021 * Initialise the packet receive queues.
9024 for_each_possible_cpu(i
) {
9025 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
9026 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
9028 INIT_WORK(flush
, flush_backlog
);
9030 skb_queue_head_init(&sd
->input_pkt_queue
);
9031 skb_queue_head_init(&sd
->process_queue
);
9032 #ifdef CONFIG_XFRM_OFFLOAD
9033 skb_queue_head_init(&sd
->xfrm_backlog
);
9035 INIT_LIST_HEAD(&sd
->poll_list
);
9036 sd
->output_queue_tailp
= &sd
->output_queue
;
9038 sd
->csd
.func
= rps_trigger_softirq
;
9043 sd
->backlog
.poll
= process_backlog
;
9044 sd
->backlog
.weight
= weight_p
;
9049 /* The loopback device is special if any other network devices
9050 * is present in a network namespace the loopback device must
9051 * be present. Since we now dynamically allocate and free the
9052 * loopback device ensure this invariant is maintained by
9053 * keeping the loopback device as the first device on the
9054 * list of network devices. Ensuring the loopback devices
9055 * is the first device that appears and the last network device
9058 if (register_pernet_device(&loopback_net_ops
))
9061 if (register_pernet_device(&default_device_ops
))
9064 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
9065 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
9067 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
9068 NULL
, dev_cpu_dead
);
9075 subsys_initcall(net_dev_init
);