KVM: Convert kvm_lock back to non-raw spinlock
[linux-2.6/btrfs-unstable.git] / arch / x86 / kvm / x86.c
blob187f824b1454c948d259acf5e7e1c724e4be516b
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29 #include "cpuid.h"
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/kvm.h>
34 #include <linux/fs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/module.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <trace/events/kvm.h>
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
56 #include <asm/debugreg.h>
57 #include <asm/msr.h>
58 #include <asm/desc.h>
59 #include <asm/mtrr.h>
60 #include <asm/mce.h>
61 #include <asm/i387.h>
62 #include <asm/fpu-internal.h> /* Ugh! */
63 #include <asm/xcr.h>
64 #include <asm/pvclock.h>
65 #include <asm/div64.h>
67 #define MAX_IO_MSRS 256
68 #define KVM_MAX_MCE_BANKS 32
69 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
71 #define emul_to_vcpu(ctxt) \
72 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
74 /* EFER defaults:
75 * - enable syscall per default because its emulated by KVM
76 * - enable LME and LMA per default on 64 bit KVM
78 #ifdef CONFIG_X86_64
79 static
80 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
81 #else
82 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
83 #endif
85 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
86 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
88 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
89 static void process_nmi(struct kvm_vcpu *vcpu);
91 struct kvm_x86_ops *kvm_x86_ops;
92 EXPORT_SYMBOL_GPL(kvm_x86_ops);
94 static bool ignore_msrs = 0;
95 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
97 bool kvm_has_tsc_control;
98 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
99 u32 kvm_max_guest_tsc_khz;
100 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
102 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
103 static u32 tsc_tolerance_ppm = 250;
104 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
106 #define KVM_NR_SHARED_MSRS 16
108 struct kvm_shared_msrs_global {
109 int nr;
110 u32 msrs[KVM_NR_SHARED_MSRS];
113 struct kvm_shared_msrs {
114 struct user_return_notifier urn;
115 bool registered;
116 struct kvm_shared_msr_values {
117 u64 host;
118 u64 curr;
119 } values[KVM_NR_SHARED_MSRS];
122 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
123 static struct kvm_shared_msrs __percpu *shared_msrs;
125 struct kvm_stats_debugfs_item debugfs_entries[] = {
126 { "pf_fixed", VCPU_STAT(pf_fixed) },
127 { "pf_guest", VCPU_STAT(pf_guest) },
128 { "tlb_flush", VCPU_STAT(tlb_flush) },
129 { "invlpg", VCPU_STAT(invlpg) },
130 { "exits", VCPU_STAT(exits) },
131 { "io_exits", VCPU_STAT(io_exits) },
132 { "mmio_exits", VCPU_STAT(mmio_exits) },
133 { "signal_exits", VCPU_STAT(signal_exits) },
134 { "irq_window", VCPU_STAT(irq_window_exits) },
135 { "nmi_window", VCPU_STAT(nmi_window_exits) },
136 { "halt_exits", VCPU_STAT(halt_exits) },
137 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
138 { "hypercalls", VCPU_STAT(hypercalls) },
139 { "request_irq", VCPU_STAT(request_irq_exits) },
140 { "irq_exits", VCPU_STAT(irq_exits) },
141 { "host_state_reload", VCPU_STAT(host_state_reload) },
142 { "efer_reload", VCPU_STAT(efer_reload) },
143 { "fpu_reload", VCPU_STAT(fpu_reload) },
144 { "insn_emulation", VCPU_STAT(insn_emulation) },
145 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
146 { "irq_injections", VCPU_STAT(irq_injections) },
147 { "nmi_injections", VCPU_STAT(nmi_injections) },
148 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
149 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
150 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
151 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
152 { "mmu_flooded", VM_STAT(mmu_flooded) },
153 { "mmu_recycled", VM_STAT(mmu_recycled) },
154 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
155 { "mmu_unsync", VM_STAT(mmu_unsync) },
156 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
157 { "largepages", VM_STAT(lpages) },
158 { NULL }
161 u64 __read_mostly host_xcr0;
163 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
165 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
167 int i;
168 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
169 vcpu->arch.apf.gfns[i] = ~0;
172 static void kvm_on_user_return(struct user_return_notifier *urn)
174 unsigned slot;
175 struct kvm_shared_msrs *locals
176 = container_of(urn, struct kvm_shared_msrs, urn);
177 struct kvm_shared_msr_values *values;
179 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
180 values = &locals->values[slot];
181 if (values->host != values->curr) {
182 wrmsrl(shared_msrs_global.msrs[slot], values->host);
183 values->curr = values->host;
186 locals->registered = false;
187 user_return_notifier_unregister(urn);
190 static void shared_msr_update(unsigned slot, u32 msr)
192 u64 value;
193 unsigned int cpu = smp_processor_id();
194 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
196 /* only read, and nobody should modify it at this time,
197 * so don't need lock */
198 if (slot >= shared_msrs_global.nr) {
199 printk(KERN_ERR "kvm: invalid MSR slot!");
200 return;
202 rdmsrl_safe(msr, &value);
203 smsr->values[slot].host = value;
204 smsr->values[slot].curr = value;
207 void kvm_define_shared_msr(unsigned slot, u32 msr)
209 if (slot >= shared_msrs_global.nr)
210 shared_msrs_global.nr = slot + 1;
211 shared_msrs_global.msrs[slot] = msr;
212 /* we need ensured the shared_msr_global have been updated */
213 smp_wmb();
215 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
217 static void kvm_shared_msr_cpu_online(void)
219 unsigned i;
221 for (i = 0; i < shared_msrs_global.nr; ++i)
222 shared_msr_update(i, shared_msrs_global.msrs[i]);
225 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
227 unsigned int cpu = smp_processor_id();
228 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
230 if (((value ^ smsr->values[slot].curr) & mask) == 0)
231 return;
232 smsr->values[slot].curr = value;
233 wrmsrl(shared_msrs_global.msrs[slot], value);
234 if (!smsr->registered) {
235 smsr->urn.on_user_return = kvm_on_user_return;
236 user_return_notifier_register(&smsr->urn);
237 smsr->registered = true;
240 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
242 static void drop_user_return_notifiers(void *ignore)
244 unsigned int cpu = smp_processor_id();
245 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
247 if (smsr->registered)
248 kvm_on_user_return(&smsr->urn);
251 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
253 return vcpu->arch.apic_base;
255 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
257 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
259 /* TODO: reserve bits check */
260 kvm_lapic_set_base(vcpu, data);
262 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
264 asmlinkage void kvm_spurious_fault(void)
266 /* Fault while not rebooting. We want the trace. */
267 BUG();
269 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
271 #define EXCPT_BENIGN 0
272 #define EXCPT_CONTRIBUTORY 1
273 #define EXCPT_PF 2
275 static int exception_class(int vector)
277 switch (vector) {
278 case PF_VECTOR:
279 return EXCPT_PF;
280 case DE_VECTOR:
281 case TS_VECTOR:
282 case NP_VECTOR:
283 case SS_VECTOR:
284 case GP_VECTOR:
285 return EXCPT_CONTRIBUTORY;
286 default:
287 break;
289 return EXCPT_BENIGN;
292 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
293 unsigned nr, bool has_error, u32 error_code,
294 bool reinject)
296 u32 prev_nr;
297 int class1, class2;
299 kvm_make_request(KVM_REQ_EVENT, vcpu);
301 if (!vcpu->arch.exception.pending) {
302 queue:
303 vcpu->arch.exception.pending = true;
304 vcpu->arch.exception.has_error_code = has_error;
305 vcpu->arch.exception.nr = nr;
306 vcpu->arch.exception.error_code = error_code;
307 vcpu->arch.exception.reinject = reinject;
308 return;
311 /* to check exception */
312 prev_nr = vcpu->arch.exception.nr;
313 if (prev_nr == DF_VECTOR) {
314 /* triple fault -> shutdown */
315 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
316 return;
318 class1 = exception_class(prev_nr);
319 class2 = exception_class(nr);
320 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
321 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
322 /* generate double fault per SDM Table 5-5 */
323 vcpu->arch.exception.pending = true;
324 vcpu->arch.exception.has_error_code = true;
325 vcpu->arch.exception.nr = DF_VECTOR;
326 vcpu->arch.exception.error_code = 0;
327 } else
328 /* replace previous exception with a new one in a hope
329 that instruction re-execution will regenerate lost
330 exception */
331 goto queue;
334 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
336 kvm_multiple_exception(vcpu, nr, false, 0, false);
338 EXPORT_SYMBOL_GPL(kvm_queue_exception);
340 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
342 kvm_multiple_exception(vcpu, nr, false, 0, true);
344 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
346 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
348 if (err)
349 kvm_inject_gp(vcpu, 0);
350 else
351 kvm_x86_ops->skip_emulated_instruction(vcpu);
353 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
355 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
357 ++vcpu->stat.pf_guest;
358 vcpu->arch.cr2 = fault->address;
359 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
361 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
363 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
365 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
366 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
367 else
368 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
371 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
373 atomic_inc(&vcpu->arch.nmi_queued);
374 kvm_make_request(KVM_REQ_NMI, vcpu);
376 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
378 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
380 kvm_multiple_exception(vcpu, nr, true, error_code, false);
382 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
384 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
386 kvm_multiple_exception(vcpu, nr, true, error_code, true);
388 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
391 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
392 * a #GP and return false.
394 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
396 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
397 return true;
398 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
399 return false;
401 EXPORT_SYMBOL_GPL(kvm_require_cpl);
404 * This function will be used to read from the physical memory of the currently
405 * running guest. The difference to kvm_read_guest_page is that this function
406 * can read from guest physical or from the guest's guest physical memory.
408 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
409 gfn_t ngfn, void *data, int offset, int len,
410 u32 access)
412 gfn_t real_gfn;
413 gpa_t ngpa;
415 ngpa = gfn_to_gpa(ngfn);
416 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
417 if (real_gfn == UNMAPPED_GVA)
418 return -EFAULT;
420 real_gfn = gpa_to_gfn(real_gfn);
422 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
424 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
426 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
427 void *data, int offset, int len, u32 access)
429 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
430 data, offset, len, access);
434 * Load the pae pdptrs. Return true is they are all valid.
436 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
438 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
439 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
440 int i;
441 int ret;
442 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
444 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
445 offset * sizeof(u64), sizeof(pdpte),
446 PFERR_USER_MASK|PFERR_WRITE_MASK);
447 if (ret < 0) {
448 ret = 0;
449 goto out;
451 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
452 if (is_present_gpte(pdpte[i]) &&
453 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
454 ret = 0;
455 goto out;
458 ret = 1;
460 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
461 __set_bit(VCPU_EXREG_PDPTR,
462 (unsigned long *)&vcpu->arch.regs_avail);
463 __set_bit(VCPU_EXREG_PDPTR,
464 (unsigned long *)&vcpu->arch.regs_dirty);
465 out:
467 return ret;
469 EXPORT_SYMBOL_GPL(load_pdptrs);
471 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
473 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
474 bool changed = true;
475 int offset;
476 gfn_t gfn;
477 int r;
479 if (is_long_mode(vcpu) || !is_pae(vcpu))
480 return false;
482 if (!test_bit(VCPU_EXREG_PDPTR,
483 (unsigned long *)&vcpu->arch.regs_avail))
484 return true;
486 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
487 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
488 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
489 PFERR_USER_MASK | PFERR_WRITE_MASK);
490 if (r < 0)
491 goto out;
492 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
493 out:
495 return changed;
498 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
500 unsigned long old_cr0 = kvm_read_cr0(vcpu);
501 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
502 X86_CR0_CD | X86_CR0_NW;
504 cr0 |= X86_CR0_ET;
506 #ifdef CONFIG_X86_64
507 if (cr0 & 0xffffffff00000000UL)
508 return 1;
509 #endif
511 cr0 &= ~CR0_RESERVED_BITS;
513 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
514 return 1;
516 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
517 return 1;
519 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
520 #ifdef CONFIG_X86_64
521 if ((vcpu->arch.efer & EFER_LME)) {
522 int cs_db, cs_l;
524 if (!is_pae(vcpu))
525 return 1;
526 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
527 if (cs_l)
528 return 1;
529 } else
530 #endif
531 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
532 kvm_read_cr3(vcpu)))
533 return 1;
536 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
537 return 1;
539 kvm_x86_ops->set_cr0(vcpu, cr0);
541 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
542 kvm_clear_async_pf_completion_queue(vcpu);
543 kvm_async_pf_hash_reset(vcpu);
546 if ((cr0 ^ old_cr0) & update_bits)
547 kvm_mmu_reset_context(vcpu);
548 return 0;
550 EXPORT_SYMBOL_GPL(kvm_set_cr0);
552 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
554 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
556 EXPORT_SYMBOL_GPL(kvm_lmsw);
558 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
560 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
561 !vcpu->guest_xcr0_loaded) {
562 /* kvm_set_xcr() also depends on this */
563 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
564 vcpu->guest_xcr0_loaded = 1;
568 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
570 if (vcpu->guest_xcr0_loaded) {
571 if (vcpu->arch.xcr0 != host_xcr0)
572 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
573 vcpu->guest_xcr0_loaded = 0;
577 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
579 u64 xcr0;
581 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
582 if (index != XCR_XFEATURE_ENABLED_MASK)
583 return 1;
584 xcr0 = xcr;
585 if (!(xcr0 & XSTATE_FP))
586 return 1;
587 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
588 return 1;
589 if (xcr0 & ~host_xcr0)
590 return 1;
591 kvm_put_guest_xcr0(vcpu);
592 vcpu->arch.xcr0 = xcr0;
593 return 0;
596 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
598 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
599 __kvm_set_xcr(vcpu, index, xcr)) {
600 kvm_inject_gp(vcpu, 0);
601 return 1;
603 return 0;
605 EXPORT_SYMBOL_GPL(kvm_set_xcr);
607 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
609 unsigned long old_cr4 = kvm_read_cr4(vcpu);
610 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
611 X86_CR4_PAE | X86_CR4_SMEP;
612 if (cr4 & CR4_RESERVED_BITS)
613 return 1;
615 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
616 return 1;
618 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
619 return 1;
621 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
622 return 1;
624 if (is_long_mode(vcpu)) {
625 if (!(cr4 & X86_CR4_PAE))
626 return 1;
627 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
628 && ((cr4 ^ old_cr4) & pdptr_bits)
629 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
630 kvm_read_cr3(vcpu)))
631 return 1;
633 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
634 if (!guest_cpuid_has_pcid(vcpu))
635 return 1;
637 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
638 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
639 return 1;
642 if (kvm_x86_ops->set_cr4(vcpu, cr4))
643 return 1;
645 if (((cr4 ^ old_cr4) & pdptr_bits) ||
646 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
647 kvm_mmu_reset_context(vcpu);
649 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
650 kvm_update_cpuid(vcpu);
652 return 0;
654 EXPORT_SYMBOL_GPL(kvm_set_cr4);
656 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
658 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
659 kvm_mmu_sync_roots(vcpu);
660 kvm_mmu_flush_tlb(vcpu);
661 return 0;
664 if (is_long_mode(vcpu)) {
665 if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) {
666 if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS)
667 return 1;
668 } else
669 if (cr3 & CR3_L_MODE_RESERVED_BITS)
670 return 1;
671 } else {
672 if (is_pae(vcpu)) {
673 if (cr3 & CR3_PAE_RESERVED_BITS)
674 return 1;
675 if (is_paging(vcpu) &&
676 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
677 return 1;
680 * We don't check reserved bits in nonpae mode, because
681 * this isn't enforced, and VMware depends on this.
685 vcpu->arch.cr3 = cr3;
686 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
687 vcpu->arch.mmu.new_cr3(vcpu);
688 return 0;
690 EXPORT_SYMBOL_GPL(kvm_set_cr3);
692 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
694 if (cr8 & CR8_RESERVED_BITS)
695 return 1;
696 if (irqchip_in_kernel(vcpu->kvm))
697 kvm_lapic_set_tpr(vcpu, cr8);
698 else
699 vcpu->arch.cr8 = cr8;
700 return 0;
702 EXPORT_SYMBOL_GPL(kvm_set_cr8);
704 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
706 if (irqchip_in_kernel(vcpu->kvm))
707 return kvm_lapic_get_cr8(vcpu);
708 else
709 return vcpu->arch.cr8;
711 EXPORT_SYMBOL_GPL(kvm_get_cr8);
713 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
715 unsigned long dr7;
717 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
718 dr7 = vcpu->arch.guest_debug_dr7;
719 else
720 dr7 = vcpu->arch.dr7;
721 kvm_x86_ops->set_dr7(vcpu, dr7);
722 vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK);
725 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
727 switch (dr) {
728 case 0 ... 3:
729 vcpu->arch.db[dr] = val;
730 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
731 vcpu->arch.eff_db[dr] = val;
732 break;
733 case 4:
734 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
735 return 1; /* #UD */
736 /* fall through */
737 case 6:
738 if (val & 0xffffffff00000000ULL)
739 return -1; /* #GP */
740 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
741 break;
742 case 5:
743 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
744 return 1; /* #UD */
745 /* fall through */
746 default: /* 7 */
747 if (val & 0xffffffff00000000ULL)
748 return -1; /* #GP */
749 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
750 kvm_update_dr7(vcpu);
751 break;
754 return 0;
757 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
759 int res;
761 res = __kvm_set_dr(vcpu, dr, val);
762 if (res > 0)
763 kvm_queue_exception(vcpu, UD_VECTOR);
764 else if (res < 0)
765 kvm_inject_gp(vcpu, 0);
767 return res;
769 EXPORT_SYMBOL_GPL(kvm_set_dr);
771 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
773 switch (dr) {
774 case 0 ... 3:
775 *val = vcpu->arch.db[dr];
776 break;
777 case 4:
778 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
779 return 1;
780 /* fall through */
781 case 6:
782 *val = vcpu->arch.dr6;
783 break;
784 case 5:
785 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786 return 1;
787 /* fall through */
788 default: /* 7 */
789 *val = vcpu->arch.dr7;
790 break;
793 return 0;
796 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
798 if (_kvm_get_dr(vcpu, dr, val)) {
799 kvm_queue_exception(vcpu, UD_VECTOR);
800 return 1;
802 return 0;
804 EXPORT_SYMBOL_GPL(kvm_get_dr);
806 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
808 u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
809 u64 data;
810 int err;
812 err = kvm_pmu_read_pmc(vcpu, ecx, &data);
813 if (err)
814 return err;
815 kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
816 kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
817 return err;
819 EXPORT_SYMBOL_GPL(kvm_rdpmc);
822 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
823 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
825 * This list is modified at module load time to reflect the
826 * capabilities of the host cpu. This capabilities test skips MSRs that are
827 * kvm-specific. Those are put in the beginning of the list.
830 #define KVM_SAVE_MSRS_BEGIN 10
831 static u32 msrs_to_save[] = {
832 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
833 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
834 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
835 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
836 MSR_KVM_PV_EOI_EN,
837 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
838 MSR_STAR,
839 #ifdef CONFIG_X86_64
840 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
841 #endif
842 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
843 MSR_IA32_FEATURE_CONTROL
846 static unsigned num_msrs_to_save;
848 static const u32 emulated_msrs[] = {
849 MSR_IA32_TSC_ADJUST,
850 MSR_IA32_TSCDEADLINE,
851 MSR_IA32_MISC_ENABLE,
852 MSR_IA32_MCG_STATUS,
853 MSR_IA32_MCG_CTL,
856 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
858 if (efer & efer_reserved_bits)
859 return false;
861 if (efer & EFER_FFXSR) {
862 struct kvm_cpuid_entry2 *feat;
864 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
865 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
866 return false;
869 if (efer & EFER_SVME) {
870 struct kvm_cpuid_entry2 *feat;
872 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
873 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
874 return false;
877 return true;
879 EXPORT_SYMBOL_GPL(kvm_valid_efer);
881 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
883 u64 old_efer = vcpu->arch.efer;
885 if (!kvm_valid_efer(vcpu, efer))
886 return 1;
888 if (is_paging(vcpu)
889 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
890 return 1;
892 efer &= ~EFER_LMA;
893 efer |= vcpu->arch.efer & EFER_LMA;
895 kvm_x86_ops->set_efer(vcpu, efer);
897 /* Update reserved bits */
898 if ((efer ^ old_efer) & EFER_NX)
899 kvm_mmu_reset_context(vcpu);
901 return 0;
904 void kvm_enable_efer_bits(u64 mask)
906 efer_reserved_bits &= ~mask;
908 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
912 * Writes msr value into into the appropriate "register".
913 * Returns 0 on success, non-0 otherwise.
914 * Assumes vcpu_load() was already called.
916 int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
918 return kvm_x86_ops->set_msr(vcpu, msr);
922 * Adapt set_msr() to msr_io()'s calling convention
924 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
926 struct msr_data msr;
928 msr.data = *data;
929 msr.index = index;
930 msr.host_initiated = true;
931 return kvm_set_msr(vcpu, &msr);
934 #ifdef CONFIG_X86_64
935 struct pvclock_gtod_data {
936 seqcount_t seq;
938 struct { /* extract of a clocksource struct */
939 int vclock_mode;
940 cycle_t cycle_last;
941 cycle_t mask;
942 u32 mult;
943 u32 shift;
944 } clock;
946 /* open coded 'struct timespec' */
947 u64 monotonic_time_snsec;
948 time_t monotonic_time_sec;
951 static struct pvclock_gtod_data pvclock_gtod_data;
953 static void update_pvclock_gtod(struct timekeeper *tk)
955 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
957 write_seqcount_begin(&vdata->seq);
959 /* copy pvclock gtod data */
960 vdata->clock.vclock_mode = tk->clock->archdata.vclock_mode;
961 vdata->clock.cycle_last = tk->clock->cycle_last;
962 vdata->clock.mask = tk->clock->mask;
963 vdata->clock.mult = tk->mult;
964 vdata->clock.shift = tk->shift;
966 vdata->monotonic_time_sec = tk->xtime_sec
967 + tk->wall_to_monotonic.tv_sec;
968 vdata->monotonic_time_snsec = tk->xtime_nsec
969 + (tk->wall_to_monotonic.tv_nsec
970 << tk->shift);
971 while (vdata->monotonic_time_snsec >=
972 (((u64)NSEC_PER_SEC) << tk->shift)) {
973 vdata->monotonic_time_snsec -=
974 ((u64)NSEC_PER_SEC) << tk->shift;
975 vdata->monotonic_time_sec++;
978 write_seqcount_end(&vdata->seq);
980 #endif
983 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
985 int version;
986 int r;
987 struct pvclock_wall_clock wc;
988 struct timespec boot;
990 if (!wall_clock)
991 return;
993 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
994 if (r)
995 return;
997 if (version & 1)
998 ++version; /* first time write, random junk */
1000 ++version;
1002 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1005 * The guest calculates current wall clock time by adding
1006 * system time (updated by kvm_guest_time_update below) to the
1007 * wall clock specified here. guest system time equals host
1008 * system time for us, thus we must fill in host boot time here.
1010 getboottime(&boot);
1012 if (kvm->arch.kvmclock_offset) {
1013 struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset);
1014 boot = timespec_sub(boot, ts);
1016 wc.sec = boot.tv_sec;
1017 wc.nsec = boot.tv_nsec;
1018 wc.version = version;
1020 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1022 version++;
1023 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1026 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1028 uint32_t quotient, remainder;
1030 /* Don't try to replace with do_div(), this one calculates
1031 * "(dividend << 32) / divisor" */
1032 __asm__ ( "divl %4"
1033 : "=a" (quotient), "=d" (remainder)
1034 : "0" (0), "1" (dividend), "r" (divisor) );
1035 return quotient;
1038 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
1039 s8 *pshift, u32 *pmultiplier)
1041 uint64_t scaled64;
1042 int32_t shift = 0;
1043 uint64_t tps64;
1044 uint32_t tps32;
1046 tps64 = base_khz * 1000LL;
1047 scaled64 = scaled_khz * 1000LL;
1048 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1049 tps64 >>= 1;
1050 shift--;
1053 tps32 = (uint32_t)tps64;
1054 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1055 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1056 scaled64 >>= 1;
1057 else
1058 tps32 <<= 1;
1059 shift++;
1062 *pshift = shift;
1063 *pmultiplier = div_frac(scaled64, tps32);
1065 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1066 __func__, base_khz, scaled_khz, shift, *pmultiplier);
1069 static inline u64 get_kernel_ns(void)
1071 struct timespec ts;
1073 WARN_ON(preemptible());
1074 ktime_get_ts(&ts);
1075 monotonic_to_bootbased(&ts);
1076 return timespec_to_ns(&ts);
1079 #ifdef CONFIG_X86_64
1080 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1081 #endif
1083 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1084 unsigned long max_tsc_khz;
1086 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1088 return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult,
1089 vcpu->arch.virtual_tsc_shift);
1092 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1094 u64 v = (u64)khz * (1000000 + ppm);
1095 do_div(v, 1000000);
1096 return v;
1099 static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1101 u32 thresh_lo, thresh_hi;
1102 int use_scaling = 0;
1104 /* tsc_khz can be zero if TSC calibration fails */
1105 if (this_tsc_khz == 0)
1106 return;
1108 /* Compute a scale to convert nanoseconds in TSC cycles */
1109 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1110 &vcpu->arch.virtual_tsc_shift,
1111 &vcpu->arch.virtual_tsc_mult);
1112 vcpu->arch.virtual_tsc_khz = this_tsc_khz;
1115 * Compute the variation in TSC rate which is acceptable
1116 * within the range of tolerance and decide if the
1117 * rate being applied is within that bounds of the hardware
1118 * rate. If so, no scaling or compensation need be done.
1120 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1121 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1122 if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) {
1123 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi);
1124 use_scaling = 1;
1126 kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling);
1129 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1131 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1132 vcpu->arch.virtual_tsc_mult,
1133 vcpu->arch.virtual_tsc_shift);
1134 tsc += vcpu->arch.this_tsc_write;
1135 return tsc;
1138 void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1140 #ifdef CONFIG_X86_64
1141 bool vcpus_matched;
1142 bool do_request = false;
1143 struct kvm_arch *ka = &vcpu->kvm->arch;
1144 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1146 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1147 atomic_read(&vcpu->kvm->online_vcpus));
1149 if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC)
1150 if (!ka->use_master_clock)
1151 do_request = 1;
1153 if (!vcpus_matched && ka->use_master_clock)
1154 do_request = 1;
1156 if (do_request)
1157 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1159 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1160 atomic_read(&vcpu->kvm->online_vcpus),
1161 ka->use_master_clock, gtod->clock.vclock_mode);
1162 #endif
1165 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1167 u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1168 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1171 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1173 struct kvm *kvm = vcpu->kvm;
1174 u64 offset, ns, elapsed;
1175 unsigned long flags;
1176 s64 usdiff;
1177 bool matched;
1178 u64 data = msr->data;
1180 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1181 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1182 ns = get_kernel_ns();
1183 elapsed = ns - kvm->arch.last_tsc_nsec;
1185 if (vcpu->arch.virtual_tsc_khz) {
1186 int faulted = 0;
1188 /* n.b - signed multiplication and division required */
1189 usdiff = data - kvm->arch.last_tsc_write;
1190 #ifdef CONFIG_X86_64
1191 usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1192 #else
1193 /* do_div() only does unsigned */
1194 asm("1: idivl %[divisor]\n"
1195 "2: xor %%edx, %%edx\n"
1196 " movl $0, %[faulted]\n"
1197 "3:\n"
1198 ".section .fixup,\"ax\"\n"
1199 "4: movl $1, %[faulted]\n"
1200 " jmp 3b\n"
1201 ".previous\n"
1203 _ASM_EXTABLE(1b, 4b)
1205 : "=A"(usdiff), [faulted] "=r" (faulted)
1206 : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1208 #endif
1209 do_div(elapsed, 1000);
1210 usdiff -= elapsed;
1211 if (usdiff < 0)
1212 usdiff = -usdiff;
1214 /* idivl overflow => difference is larger than USEC_PER_SEC */
1215 if (faulted)
1216 usdiff = USEC_PER_SEC;
1217 } else
1218 usdiff = USEC_PER_SEC; /* disable TSC match window below */
1221 * Special case: TSC write with a small delta (1 second) of virtual
1222 * cycle time against real time is interpreted as an attempt to
1223 * synchronize the CPU.
1225 * For a reliable TSC, we can match TSC offsets, and for an unstable
1226 * TSC, we add elapsed time in this computation. We could let the
1227 * compensation code attempt to catch up if we fall behind, but
1228 * it's better to try to match offsets from the beginning.
1230 if (usdiff < USEC_PER_SEC &&
1231 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1232 if (!check_tsc_unstable()) {
1233 offset = kvm->arch.cur_tsc_offset;
1234 pr_debug("kvm: matched tsc offset for %llu\n", data);
1235 } else {
1236 u64 delta = nsec_to_cycles(vcpu, elapsed);
1237 data += delta;
1238 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1239 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1241 matched = true;
1242 } else {
1244 * We split periods of matched TSC writes into generations.
1245 * For each generation, we track the original measured
1246 * nanosecond time, offset, and write, so if TSCs are in
1247 * sync, we can match exact offset, and if not, we can match
1248 * exact software computation in compute_guest_tsc()
1250 * These values are tracked in kvm->arch.cur_xxx variables.
1252 kvm->arch.cur_tsc_generation++;
1253 kvm->arch.cur_tsc_nsec = ns;
1254 kvm->arch.cur_tsc_write = data;
1255 kvm->arch.cur_tsc_offset = offset;
1256 matched = false;
1257 pr_debug("kvm: new tsc generation %u, clock %llu\n",
1258 kvm->arch.cur_tsc_generation, data);
1262 * We also track th most recent recorded KHZ, write and time to
1263 * allow the matching interval to be extended at each write.
1265 kvm->arch.last_tsc_nsec = ns;
1266 kvm->arch.last_tsc_write = data;
1267 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1269 /* Reset of TSC must disable overshoot protection below */
1270 vcpu->arch.hv_clock.tsc_timestamp = 0;
1271 vcpu->arch.last_guest_tsc = data;
1273 /* Keep track of which generation this VCPU has synchronized to */
1274 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1275 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1276 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1278 if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1279 update_ia32_tsc_adjust_msr(vcpu, offset);
1280 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1281 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1283 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1284 if (matched)
1285 kvm->arch.nr_vcpus_matched_tsc++;
1286 else
1287 kvm->arch.nr_vcpus_matched_tsc = 0;
1289 kvm_track_tsc_matching(vcpu);
1290 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1293 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1295 #ifdef CONFIG_X86_64
1297 static cycle_t read_tsc(void)
1299 cycle_t ret;
1300 u64 last;
1303 * Empirically, a fence (of type that depends on the CPU)
1304 * before rdtsc is enough to ensure that rdtsc is ordered
1305 * with respect to loads. The various CPU manuals are unclear
1306 * as to whether rdtsc can be reordered with later loads,
1307 * but no one has ever seen it happen.
1309 rdtsc_barrier();
1310 ret = (cycle_t)vget_cycles();
1312 last = pvclock_gtod_data.clock.cycle_last;
1314 if (likely(ret >= last))
1315 return ret;
1318 * GCC likes to generate cmov here, but this branch is extremely
1319 * predictable (it's just a funciton of time and the likely is
1320 * very likely) and there's a data dependence, so force GCC
1321 * to generate a branch instead. I don't barrier() because
1322 * we don't actually need a barrier, and if this function
1323 * ever gets inlined it will generate worse code.
1325 asm volatile ("");
1326 return last;
1329 static inline u64 vgettsc(cycle_t *cycle_now)
1331 long v;
1332 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1334 *cycle_now = read_tsc();
1336 v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1337 return v * gtod->clock.mult;
1340 static int do_monotonic(struct timespec *ts, cycle_t *cycle_now)
1342 unsigned long seq;
1343 u64 ns;
1344 int mode;
1345 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1347 ts->tv_nsec = 0;
1348 do {
1349 seq = read_seqcount_begin(&gtod->seq);
1350 mode = gtod->clock.vclock_mode;
1351 ts->tv_sec = gtod->monotonic_time_sec;
1352 ns = gtod->monotonic_time_snsec;
1353 ns += vgettsc(cycle_now);
1354 ns >>= gtod->clock.shift;
1355 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1356 timespec_add_ns(ts, ns);
1358 return mode;
1361 /* returns true if host is using tsc clocksource */
1362 static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1364 struct timespec ts;
1366 /* checked again under seqlock below */
1367 if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1368 return false;
1370 if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC)
1371 return false;
1373 monotonic_to_bootbased(&ts);
1374 *kernel_ns = timespec_to_ns(&ts);
1376 return true;
1378 #endif
1382 * Assuming a stable TSC across physical CPUS, and a stable TSC
1383 * across virtual CPUs, the following condition is possible.
1384 * Each numbered line represents an event visible to both
1385 * CPUs at the next numbered event.
1387 * "timespecX" represents host monotonic time. "tscX" represents
1388 * RDTSC value.
1390 * VCPU0 on CPU0 | VCPU1 on CPU1
1392 * 1. read timespec0,tsc0
1393 * 2. | timespec1 = timespec0 + N
1394 * | tsc1 = tsc0 + M
1395 * 3. transition to guest | transition to guest
1396 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1397 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1398 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1400 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1402 * - ret0 < ret1
1403 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1404 * ...
1405 * - 0 < N - M => M < N
1407 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1408 * always the case (the difference between two distinct xtime instances
1409 * might be smaller then the difference between corresponding TSC reads,
1410 * when updating guest vcpus pvclock areas).
1412 * To avoid that problem, do not allow visibility of distinct
1413 * system_timestamp/tsc_timestamp values simultaneously: use a master
1414 * copy of host monotonic time values. Update that master copy
1415 * in lockstep.
1417 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1421 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1423 #ifdef CONFIG_X86_64
1424 struct kvm_arch *ka = &kvm->arch;
1425 int vclock_mode;
1426 bool host_tsc_clocksource, vcpus_matched;
1428 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1429 atomic_read(&kvm->online_vcpus));
1432 * If the host uses TSC clock, then passthrough TSC as stable
1433 * to the guest.
1435 host_tsc_clocksource = kvm_get_time_and_clockread(
1436 &ka->master_kernel_ns,
1437 &ka->master_cycle_now);
1439 ka->use_master_clock = host_tsc_clocksource & vcpus_matched;
1441 if (ka->use_master_clock)
1442 atomic_set(&kvm_guest_has_master_clock, 1);
1444 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1445 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1446 vcpus_matched);
1447 #endif
1450 static void kvm_gen_update_masterclock(struct kvm *kvm)
1452 #ifdef CONFIG_X86_64
1453 int i;
1454 struct kvm_vcpu *vcpu;
1455 struct kvm_arch *ka = &kvm->arch;
1457 spin_lock(&ka->pvclock_gtod_sync_lock);
1458 kvm_make_mclock_inprogress_request(kvm);
1459 /* no guest entries from this point */
1460 pvclock_update_vm_gtod_copy(kvm);
1462 kvm_for_each_vcpu(i, vcpu, kvm)
1463 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1465 /* guest entries allowed */
1466 kvm_for_each_vcpu(i, vcpu, kvm)
1467 clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1469 spin_unlock(&ka->pvclock_gtod_sync_lock);
1470 #endif
1473 static int kvm_guest_time_update(struct kvm_vcpu *v)
1475 unsigned long flags, this_tsc_khz;
1476 struct kvm_vcpu_arch *vcpu = &v->arch;
1477 struct kvm_arch *ka = &v->kvm->arch;
1478 s64 kernel_ns, max_kernel_ns;
1479 u64 tsc_timestamp, host_tsc;
1480 struct pvclock_vcpu_time_info guest_hv_clock;
1481 u8 pvclock_flags;
1482 bool use_master_clock;
1484 kernel_ns = 0;
1485 host_tsc = 0;
1488 * If the host uses TSC clock, then passthrough TSC as stable
1489 * to the guest.
1491 spin_lock(&ka->pvclock_gtod_sync_lock);
1492 use_master_clock = ka->use_master_clock;
1493 if (use_master_clock) {
1494 host_tsc = ka->master_cycle_now;
1495 kernel_ns = ka->master_kernel_ns;
1497 spin_unlock(&ka->pvclock_gtod_sync_lock);
1499 /* Keep irq disabled to prevent changes to the clock */
1500 local_irq_save(flags);
1501 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1502 if (unlikely(this_tsc_khz == 0)) {
1503 local_irq_restore(flags);
1504 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1505 return 1;
1507 if (!use_master_clock) {
1508 host_tsc = native_read_tsc();
1509 kernel_ns = get_kernel_ns();
1512 tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc);
1515 * We may have to catch up the TSC to match elapsed wall clock
1516 * time for two reasons, even if kvmclock is used.
1517 * 1) CPU could have been running below the maximum TSC rate
1518 * 2) Broken TSC compensation resets the base at each VCPU
1519 * entry to avoid unknown leaps of TSC even when running
1520 * again on the same CPU. This may cause apparent elapsed
1521 * time to disappear, and the guest to stand still or run
1522 * very slowly.
1524 if (vcpu->tsc_catchup) {
1525 u64 tsc = compute_guest_tsc(v, kernel_ns);
1526 if (tsc > tsc_timestamp) {
1527 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1528 tsc_timestamp = tsc;
1532 local_irq_restore(flags);
1534 if (!vcpu->pv_time_enabled)
1535 return 0;
1538 * Time as measured by the TSC may go backwards when resetting the base
1539 * tsc_timestamp. The reason for this is that the TSC resolution is
1540 * higher than the resolution of the other clock scales. Thus, many
1541 * possible measurments of the TSC correspond to one measurement of any
1542 * other clock, and so a spread of values is possible. This is not a
1543 * problem for the computation of the nanosecond clock; with TSC rates
1544 * around 1GHZ, there can only be a few cycles which correspond to one
1545 * nanosecond value, and any path through this code will inevitably
1546 * take longer than that. However, with the kernel_ns value itself,
1547 * the precision may be much lower, down to HZ granularity. If the
1548 * first sampling of TSC against kernel_ns ends in the low part of the
1549 * range, and the second in the high end of the range, we can get:
1551 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1553 * As the sampling errors potentially range in the thousands of cycles,
1554 * it is possible such a time value has already been observed by the
1555 * guest. To protect against this, we must compute the system time as
1556 * observed by the guest and ensure the new system time is greater.
1558 max_kernel_ns = 0;
1559 if (vcpu->hv_clock.tsc_timestamp) {
1560 max_kernel_ns = vcpu->last_guest_tsc -
1561 vcpu->hv_clock.tsc_timestamp;
1562 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1563 vcpu->hv_clock.tsc_to_system_mul,
1564 vcpu->hv_clock.tsc_shift);
1565 max_kernel_ns += vcpu->last_kernel_ns;
1568 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1569 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1570 &vcpu->hv_clock.tsc_shift,
1571 &vcpu->hv_clock.tsc_to_system_mul);
1572 vcpu->hw_tsc_khz = this_tsc_khz;
1575 /* with a master <monotonic time, tsc value> tuple,
1576 * pvclock clock reads always increase at the (scaled) rate
1577 * of guest TSC - no need to deal with sampling errors.
1579 if (!use_master_clock) {
1580 if (max_kernel_ns > kernel_ns)
1581 kernel_ns = max_kernel_ns;
1583 /* With all the info we got, fill in the values */
1584 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1585 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1586 vcpu->last_kernel_ns = kernel_ns;
1587 vcpu->last_guest_tsc = tsc_timestamp;
1590 * The interface expects us to write an even number signaling that the
1591 * update is finished. Since the guest won't see the intermediate
1592 * state, we just increase by 2 at the end.
1594 vcpu->hv_clock.version += 2;
1596 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1597 &guest_hv_clock, sizeof(guest_hv_clock))))
1598 return 0;
1600 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1601 pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1603 if (vcpu->pvclock_set_guest_stopped_request) {
1604 pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1605 vcpu->pvclock_set_guest_stopped_request = false;
1608 /* If the host uses TSC clocksource, then it is stable */
1609 if (use_master_clock)
1610 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1612 vcpu->hv_clock.flags = pvclock_flags;
1614 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1615 &vcpu->hv_clock,
1616 sizeof(vcpu->hv_clock));
1617 return 0;
1621 * kvmclock updates which are isolated to a given vcpu, such as
1622 * vcpu->cpu migration, should not allow system_timestamp from
1623 * the rest of the vcpus to remain static. Otherwise ntp frequency
1624 * correction applies to one vcpu's system_timestamp but not
1625 * the others.
1627 * So in those cases, request a kvmclock update for all vcpus.
1628 * The worst case for a remote vcpu to update its kvmclock
1629 * is then bounded by maximum nohz sleep latency.
1632 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1634 int i;
1635 struct kvm *kvm = v->kvm;
1636 struct kvm_vcpu *vcpu;
1638 kvm_for_each_vcpu(i, vcpu, kvm) {
1639 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
1640 kvm_vcpu_kick(vcpu);
1644 static bool msr_mtrr_valid(unsigned msr)
1646 switch (msr) {
1647 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1648 case MSR_MTRRfix64K_00000:
1649 case MSR_MTRRfix16K_80000:
1650 case MSR_MTRRfix16K_A0000:
1651 case MSR_MTRRfix4K_C0000:
1652 case MSR_MTRRfix4K_C8000:
1653 case MSR_MTRRfix4K_D0000:
1654 case MSR_MTRRfix4K_D8000:
1655 case MSR_MTRRfix4K_E0000:
1656 case MSR_MTRRfix4K_E8000:
1657 case MSR_MTRRfix4K_F0000:
1658 case MSR_MTRRfix4K_F8000:
1659 case MSR_MTRRdefType:
1660 case MSR_IA32_CR_PAT:
1661 return true;
1662 case 0x2f8:
1663 return true;
1665 return false;
1668 static bool valid_pat_type(unsigned t)
1670 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1673 static bool valid_mtrr_type(unsigned t)
1675 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1678 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1680 int i;
1682 if (!msr_mtrr_valid(msr))
1683 return false;
1685 if (msr == MSR_IA32_CR_PAT) {
1686 for (i = 0; i < 8; i++)
1687 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1688 return false;
1689 return true;
1690 } else if (msr == MSR_MTRRdefType) {
1691 if (data & ~0xcff)
1692 return false;
1693 return valid_mtrr_type(data & 0xff);
1694 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1695 for (i = 0; i < 8 ; i++)
1696 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1697 return false;
1698 return true;
1701 /* variable MTRRs */
1702 return valid_mtrr_type(data & 0xff);
1705 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1707 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1709 if (!mtrr_valid(vcpu, msr, data))
1710 return 1;
1712 if (msr == MSR_MTRRdefType) {
1713 vcpu->arch.mtrr_state.def_type = data;
1714 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1715 } else if (msr == MSR_MTRRfix64K_00000)
1716 p[0] = data;
1717 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1718 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1719 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1720 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1721 else if (msr == MSR_IA32_CR_PAT)
1722 vcpu->arch.pat = data;
1723 else { /* Variable MTRRs */
1724 int idx, is_mtrr_mask;
1725 u64 *pt;
1727 idx = (msr - 0x200) / 2;
1728 is_mtrr_mask = msr - 0x200 - 2 * idx;
1729 if (!is_mtrr_mask)
1730 pt =
1731 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1732 else
1733 pt =
1734 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1735 *pt = data;
1738 kvm_mmu_reset_context(vcpu);
1739 return 0;
1742 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1744 u64 mcg_cap = vcpu->arch.mcg_cap;
1745 unsigned bank_num = mcg_cap & 0xff;
1747 switch (msr) {
1748 case MSR_IA32_MCG_STATUS:
1749 vcpu->arch.mcg_status = data;
1750 break;
1751 case MSR_IA32_MCG_CTL:
1752 if (!(mcg_cap & MCG_CTL_P))
1753 return 1;
1754 if (data != 0 && data != ~(u64)0)
1755 return -1;
1756 vcpu->arch.mcg_ctl = data;
1757 break;
1758 default:
1759 if (msr >= MSR_IA32_MC0_CTL &&
1760 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1761 u32 offset = msr - MSR_IA32_MC0_CTL;
1762 /* only 0 or all 1s can be written to IA32_MCi_CTL
1763 * some Linux kernels though clear bit 10 in bank 4 to
1764 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1765 * this to avoid an uncatched #GP in the guest
1767 if ((offset & 0x3) == 0 &&
1768 data != 0 && (data | (1 << 10)) != ~(u64)0)
1769 return -1;
1770 vcpu->arch.mce_banks[offset] = data;
1771 break;
1773 return 1;
1775 return 0;
1778 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1780 struct kvm *kvm = vcpu->kvm;
1781 int lm = is_long_mode(vcpu);
1782 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1783 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1784 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1785 : kvm->arch.xen_hvm_config.blob_size_32;
1786 u32 page_num = data & ~PAGE_MASK;
1787 u64 page_addr = data & PAGE_MASK;
1788 u8 *page;
1789 int r;
1791 r = -E2BIG;
1792 if (page_num >= blob_size)
1793 goto out;
1794 r = -ENOMEM;
1795 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1796 if (IS_ERR(page)) {
1797 r = PTR_ERR(page);
1798 goto out;
1800 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1801 goto out_free;
1802 r = 0;
1803 out_free:
1804 kfree(page);
1805 out:
1806 return r;
1809 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1811 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1814 static bool kvm_hv_msr_partition_wide(u32 msr)
1816 bool r = false;
1817 switch (msr) {
1818 case HV_X64_MSR_GUEST_OS_ID:
1819 case HV_X64_MSR_HYPERCALL:
1820 r = true;
1821 break;
1824 return r;
1827 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1829 struct kvm *kvm = vcpu->kvm;
1831 switch (msr) {
1832 case HV_X64_MSR_GUEST_OS_ID:
1833 kvm->arch.hv_guest_os_id = data;
1834 /* setting guest os id to zero disables hypercall page */
1835 if (!kvm->arch.hv_guest_os_id)
1836 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1837 break;
1838 case HV_X64_MSR_HYPERCALL: {
1839 u64 gfn;
1840 unsigned long addr;
1841 u8 instructions[4];
1843 /* if guest os id is not set hypercall should remain disabled */
1844 if (!kvm->arch.hv_guest_os_id)
1845 break;
1846 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1847 kvm->arch.hv_hypercall = data;
1848 break;
1850 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1851 addr = gfn_to_hva(kvm, gfn);
1852 if (kvm_is_error_hva(addr))
1853 return 1;
1854 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1855 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1856 if (__copy_to_user((void __user *)addr, instructions, 4))
1857 return 1;
1858 kvm->arch.hv_hypercall = data;
1859 break;
1861 default:
1862 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1863 "data 0x%llx\n", msr, data);
1864 return 1;
1866 return 0;
1869 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1871 switch (msr) {
1872 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1873 unsigned long addr;
1875 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1876 vcpu->arch.hv_vapic = data;
1877 break;
1879 addr = gfn_to_hva(vcpu->kvm, data >>
1880 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1881 if (kvm_is_error_hva(addr))
1882 return 1;
1883 if (__clear_user((void __user *)addr, PAGE_SIZE))
1884 return 1;
1885 vcpu->arch.hv_vapic = data;
1886 break;
1888 case HV_X64_MSR_EOI:
1889 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1890 case HV_X64_MSR_ICR:
1891 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1892 case HV_X64_MSR_TPR:
1893 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1894 default:
1895 vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1896 "data 0x%llx\n", msr, data);
1897 return 1;
1900 return 0;
1903 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1905 gpa_t gpa = data & ~0x3f;
1907 /* Bits 2:5 are reserved, Should be zero */
1908 if (data & 0x3c)
1909 return 1;
1911 vcpu->arch.apf.msr_val = data;
1913 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1914 kvm_clear_async_pf_completion_queue(vcpu);
1915 kvm_async_pf_hash_reset(vcpu);
1916 return 0;
1919 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1920 sizeof(u32)))
1921 return 1;
1923 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1924 kvm_async_pf_wakeup_all(vcpu);
1925 return 0;
1928 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1930 vcpu->arch.pv_time_enabled = false;
1933 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1935 u64 delta;
1937 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1938 return;
1940 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1941 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1942 vcpu->arch.st.accum_steal = delta;
1945 static void record_steal_time(struct kvm_vcpu *vcpu)
1947 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1948 return;
1950 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1951 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1952 return;
1954 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1955 vcpu->arch.st.steal.version += 2;
1956 vcpu->arch.st.accum_steal = 0;
1958 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1959 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1962 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1964 bool pr = false;
1965 u32 msr = msr_info->index;
1966 u64 data = msr_info->data;
1968 switch (msr) {
1969 case MSR_AMD64_NB_CFG:
1970 case MSR_IA32_UCODE_REV:
1971 case MSR_IA32_UCODE_WRITE:
1972 case MSR_VM_HSAVE_PA:
1973 case MSR_AMD64_PATCH_LOADER:
1974 case MSR_AMD64_BU_CFG2:
1975 break;
1977 case MSR_EFER:
1978 return set_efer(vcpu, data);
1979 case MSR_K7_HWCR:
1980 data &= ~(u64)0x40; /* ignore flush filter disable */
1981 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1982 data &= ~(u64)0x8; /* ignore TLB cache disable */
1983 if (data != 0) {
1984 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1985 data);
1986 return 1;
1988 break;
1989 case MSR_FAM10H_MMIO_CONF_BASE:
1990 if (data != 0) {
1991 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1992 "0x%llx\n", data);
1993 return 1;
1995 break;
1996 case MSR_IA32_DEBUGCTLMSR:
1997 if (!data) {
1998 /* We support the non-activated case already */
1999 break;
2000 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2001 /* Values other than LBR and BTF are vendor-specific,
2002 thus reserved and should throw a #GP */
2003 return 1;
2005 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2006 __func__, data);
2007 break;
2008 case 0x200 ... 0x2ff:
2009 return set_msr_mtrr(vcpu, msr, data);
2010 case MSR_IA32_APICBASE:
2011 kvm_set_apic_base(vcpu, data);
2012 break;
2013 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2014 return kvm_x2apic_msr_write(vcpu, msr, data);
2015 case MSR_IA32_TSCDEADLINE:
2016 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2017 break;
2018 case MSR_IA32_TSC_ADJUST:
2019 if (guest_cpuid_has_tsc_adjust(vcpu)) {
2020 if (!msr_info->host_initiated) {
2021 u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2022 kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true);
2024 vcpu->arch.ia32_tsc_adjust_msr = data;
2026 break;
2027 case MSR_IA32_MISC_ENABLE:
2028 vcpu->arch.ia32_misc_enable_msr = data;
2029 break;
2030 case MSR_KVM_WALL_CLOCK_NEW:
2031 case MSR_KVM_WALL_CLOCK:
2032 vcpu->kvm->arch.wall_clock = data;
2033 kvm_write_wall_clock(vcpu->kvm, data);
2034 break;
2035 case MSR_KVM_SYSTEM_TIME_NEW:
2036 case MSR_KVM_SYSTEM_TIME: {
2037 u64 gpa_offset;
2038 kvmclock_reset(vcpu);
2040 vcpu->arch.time = data;
2041 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2043 /* we verify if the enable bit is set... */
2044 if (!(data & 1))
2045 break;
2047 gpa_offset = data & ~(PAGE_MASK | 1);
2049 if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2050 &vcpu->arch.pv_time, data & ~1ULL,
2051 sizeof(struct pvclock_vcpu_time_info)))
2052 vcpu->arch.pv_time_enabled = false;
2053 else
2054 vcpu->arch.pv_time_enabled = true;
2056 break;
2058 case MSR_KVM_ASYNC_PF_EN:
2059 if (kvm_pv_enable_async_pf(vcpu, data))
2060 return 1;
2061 break;
2062 case MSR_KVM_STEAL_TIME:
2064 if (unlikely(!sched_info_on()))
2065 return 1;
2067 if (data & KVM_STEAL_RESERVED_MASK)
2068 return 1;
2070 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2071 data & KVM_STEAL_VALID_BITS,
2072 sizeof(struct kvm_steal_time)))
2073 return 1;
2075 vcpu->arch.st.msr_val = data;
2077 if (!(data & KVM_MSR_ENABLED))
2078 break;
2080 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2082 preempt_disable();
2083 accumulate_steal_time(vcpu);
2084 preempt_enable();
2086 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2088 break;
2089 case MSR_KVM_PV_EOI_EN:
2090 if (kvm_lapic_enable_pv_eoi(vcpu, data))
2091 return 1;
2092 break;
2094 case MSR_IA32_MCG_CTL:
2095 case MSR_IA32_MCG_STATUS:
2096 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2097 return set_msr_mce(vcpu, msr, data);
2099 /* Performance counters are not protected by a CPUID bit,
2100 * so we should check all of them in the generic path for the sake of
2101 * cross vendor migration.
2102 * Writing a zero into the event select MSRs disables them,
2103 * which we perfectly emulate ;-). Any other value should be at least
2104 * reported, some guests depend on them.
2106 case MSR_K7_EVNTSEL0:
2107 case MSR_K7_EVNTSEL1:
2108 case MSR_K7_EVNTSEL2:
2109 case MSR_K7_EVNTSEL3:
2110 if (data != 0)
2111 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2112 "0x%x data 0x%llx\n", msr, data);
2113 break;
2114 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2115 * so we ignore writes to make it happy.
2117 case MSR_K7_PERFCTR0:
2118 case MSR_K7_PERFCTR1:
2119 case MSR_K7_PERFCTR2:
2120 case MSR_K7_PERFCTR3:
2121 vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: "
2122 "0x%x data 0x%llx\n", msr, data);
2123 break;
2124 case MSR_P6_PERFCTR0:
2125 case MSR_P6_PERFCTR1:
2126 pr = true;
2127 case MSR_P6_EVNTSEL0:
2128 case MSR_P6_EVNTSEL1:
2129 if (kvm_pmu_msr(vcpu, msr))
2130 return kvm_pmu_set_msr(vcpu, msr_info);
2132 if (pr || data != 0)
2133 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2134 "0x%x data 0x%llx\n", msr, data);
2135 break;
2136 case MSR_K7_CLK_CTL:
2138 * Ignore all writes to this no longer documented MSR.
2139 * Writes are only relevant for old K7 processors,
2140 * all pre-dating SVM, but a recommended workaround from
2141 * AMD for these chips. It is possible to specify the
2142 * affected processor models on the command line, hence
2143 * the need to ignore the workaround.
2145 break;
2146 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2147 if (kvm_hv_msr_partition_wide(msr)) {
2148 int r;
2149 mutex_lock(&vcpu->kvm->lock);
2150 r = set_msr_hyperv_pw(vcpu, msr, data);
2151 mutex_unlock(&vcpu->kvm->lock);
2152 return r;
2153 } else
2154 return set_msr_hyperv(vcpu, msr, data);
2155 break;
2156 case MSR_IA32_BBL_CR_CTL3:
2157 /* Drop writes to this legacy MSR -- see rdmsr
2158 * counterpart for further detail.
2160 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2161 break;
2162 case MSR_AMD64_OSVW_ID_LENGTH:
2163 if (!guest_cpuid_has_osvw(vcpu))
2164 return 1;
2165 vcpu->arch.osvw.length = data;
2166 break;
2167 case MSR_AMD64_OSVW_STATUS:
2168 if (!guest_cpuid_has_osvw(vcpu))
2169 return 1;
2170 vcpu->arch.osvw.status = data;
2171 break;
2172 default:
2173 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2174 return xen_hvm_config(vcpu, data);
2175 if (kvm_pmu_msr(vcpu, msr))
2176 return kvm_pmu_set_msr(vcpu, msr_info);
2177 if (!ignore_msrs) {
2178 vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2179 msr, data);
2180 return 1;
2181 } else {
2182 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2183 msr, data);
2184 break;
2187 return 0;
2189 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2193 * Reads an msr value (of 'msr_index') into 'pdata'.
2194 * Returns 0 on success, non-0 otherwise.
2195 * Assumes vcpu_load() was already called.
2197 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2199 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
2202 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2204 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
2206 if (!msr_mtrr_valid(msr))
2207 return 1;
2209 if (msr == MSR_MTRRdefType)
2210 *pdata = vcpu->arch.mtrr_state.def_type +
2211 (vcpu->arch.mtrr_state.enabled << 10);
2212 else if (msr == MSR_MTRRfix64K_00000)
2213 *pdata = p[0];
2214 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
2215 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
2216 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
2217 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
2218 else if (msr == MSR_IA32_CR_PAT)
2219 *pdata = vcpu->arch.pat;
2220 else { /* Variable MTRRs */
2221 int idx, is_mtrr_mask;
2222 u64 *pt;
2224 idx = (msr - 0x200) / 2;
2225 is_mtrr_mask = msr - 0x200 - 2 * idx;
2226 if (!is_mtrr_mask)
2227 pt =
2228 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
2229 else
2230 pt =
2231 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
2232 *pdata = *pt;
2235 return 0;
2238 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2240 u64 data;
2241 u64 mcg_cap = vcpu->arch.mcg_cap;
2242 unsigned bank_num = mcg_cap & 0xff;
2244 switch (msr) {
2245 case MSR_IA32_P5_MC_ADDR:
2246 case MSR_IA32_P5_MC_TYPE:
2247 data = 0;
2248 break;
2249 case MSR_IA32_MCG_CAP:
2250 data = vcpu->arch.mcg_cap;
2251 break;
2252 case MSR_IA32_MCG_CTL:
2253 if (!(mcg_cap & MCG_CTL_P))
2254 return 1;
2255 data = vcpu->arch.mcg_ctl;
2256 break;
2257 case MSR_IA32_MCG_STATUS:
2258 data = vcpu->arch.mcg_status;
2259 break;
2260 default:
2261 if (msr >= MSR_IA32_MC0_CTL &&
2262 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
2263 u32 offset = msr - MSR_IA32_MC0_CTL;
2264 data = vcpu->arch.mce_banks[offset];
2265 break;
2267 return 1;
2269 *pdata = data;
2270 return 0;
2273 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2275 u64 data = 0;
2276 struct kvm *kvm = vcpu->kvm;
2278 switch (msr) {
2279 case HV_X64_MSR_GUEST_OS_ID:
2280 data = kvm->arch.hv_guest_os_id;
2281 break;
2282 case HV_X64_MSR_HYPERCALL:
2283 data = kvm->arch.hv_hypercall;
2284 break;
2285 default:
2286 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2287 return 1;
2290 *pdata = data;
2291 return 0;
2294 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2296 u64 data = 0;
2298 switch (msr) {
2299 case HV_X64_MSR_VP_INDEX: {
2300 int r;
2301 struct kvm_vcpu *v;
2302 kvm_for_each_vcpu(r, v, vcpu->kvm)
2303 if (v == vcpu)
2304 data = r;
2305 break;
2307 case HV_X64_MSR_EOI:
2308 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
2309 case HV_X64_MSR_ICR:
2310 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
2311 case HV_X64_MSR_TPR:
2312 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
2313 case HV_X64_MSR_APIC_ASSIST_PAGE:
2314 data = vcpu->arch.hv_vapic;
2315 break;
2316 default:
2317 vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
2318 return 1;
2320 *pdata = data;
2321 return 0;
2324 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2326 u64 data;
2328 switch (msr) {
2329 case MSR_IA32_PLATFORM_ID:
2330 case MSR_IA32_EBL_CR_POWERON:
2331 case MSR_IA32_DEBUGCTLMSR:
2332 case MSR_IA32_LASTBRANCHFROMIP:
2333 case MSR_IA32_LASTBRANCHTOIP:
2334 case MSR_IA32_LASTINTFROMIP:
2335 case MSR_IA32_LASTINTTOIP:
2336 case MSR_K8_SYSCFG:
2337 case MSR_K7_HWCR:
2338 case MSR_VM_HSAVE_PA:
2339 case MSR_K7_EVNTSEL0:
2340 case MSR_K7_PERFCTR0:
2341 case MSR_K8_INT_PENDING_MSG:
2342 case MSR_AMD64_NB_CFG:
2343 case MSR_FAM10H_MMIO_CONF_BASE:
2344 case MSR_AMD64_BU_CFG2:
2345 data = 0;
2346 break;
2347 case MSR_P6_PERFCTR0:
2348 case MSR_P6_PERFCTR1:
2349 case MSR_P6_EVNTSEL0:
2350 case MSR_P6_EVNTSEL1:
2351 if (kvm_pmu_msr(vcpu, msr))
2352 return kvm_pmu_get_msr(vcpu, msr, pdata);
2353 data = 0;
2354 break;
2355 case MSR_IA32_UCODE_REV:
2356 data = 0x100000000ULL;
2357 break;
2358 case MSR_MTRRcap:
2359 data = 0x500 | KVM_NR_VAR_MTRR;
2360 break;
2361 case 0x200 ... 0x2ff:
2362 return get_msr_mtrr(vcpu, msr, pdata);
2363 case 0xcd: /* fsb frequency */
2364 data = 3;
2365 break;
2367 * MSR_EBC_FREQUENCY_ID
2368 * Conservative value valid for even the basic CPU models.
2369 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2370 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2371 * and 266MHz for model 3, or 4. Set Core Clock
2372 * Frequency to System Bus Frequency Ratio to 1 (bits
2373 * 31:24) even though these are only valid for CPU
2374 * models > 2, however guests may end up dividing or
2375 * multiplying by zero otherwise.
2377 case MSR_EBC_FREQUENCY_ID:
2378 data = 1 << 24;
2379 break;
2380 case MSR_IA32_APICBASE:
2381 data = kvm_get_apic_base(vcpu);
2382 break;
2383 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2384 return kvm_x2apic_msr_read(vcpu, msr, pdata);
2385 break;
2386 case MSR_IA32_TSCDEADLINE:
2387 data = kvm_get_lapic_tscdeadline_msr(vcpu);
2388 break;
2389 case MSR_IA32_TSC_ADJUST:
2390 data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2391 break;
2392 case MSR_IA32_MISC_ENABLE:
2393 data = vcpu->arch.ia32_misc_enable_msr;
2394 break;
2395 case MSR_IA32_PERF_STATUS:
2396 /* TSC increment by tick */
2397 data = 1000ULL;
2398 /* CPU multiplier */
2399 data |= (((uint64_t)4ULL) << 40);
2400 break;
2401 case MSR_EFER:
2402 data = vcpu->arch.efer;
2403 break;
2404 case MSR_KVM_WALL_CLOCK:
2405 case MSR_KVM_WALL_CLOCK_NEW:
2406 data = vcpu->kvm->arch.wall_clock;
2407 break;
2408 case MSR_KVM_SYSTEM_TIME:
2409 case MSR_KVM_SYSTEM_TIME_NEW:
2410 data = vcpu->arch.time;
2411 break;
2412 case MSR_KVM_ASYNC_PF_EN:
2413 data = vcpu->arch.apf.msr_val;
2414 break;
2415 case MSR_KVM_STEAL_TIME:
2416 data = vcpu->arch.st.msr_val;
2417 break;
2418 case MSR_KVM_PV_EOI_EN:
2419 data = vcpu->arch.pv_eoi.msr_val;
2420 break;
2421 case MSR_IA32_P5_MC_ADDR:
2422 case MSR_IA32_P5_MC_TYPE:
2423 case MSR_IA32_MCG_CAP:
2424 case MSR_IA32_MCG_CTL:
2425 case MSR_IA32_MCG_STATUS:
2426 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
2427 return get_msr_mce(vcpu, msr, pdata);
2428 case MSR_K7_CLK_CTL:
2430 * Provide expected ramp-up count for K7. All other
2431 * are set to zero, indicating minimum divisors for
2432 * every field.
2434 * This prevents guest kernels on AMD host with CPU
2435 * type 6, model 8 and higher from exploding due to
2436 * the rdmsr failing.
2438 data = 0x20000000;
2439 break;
2440 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2441 if (kvm_hv_msr_partition_wide(msr)) {
2442 int r;
2443 mutex_lock(&vcpu->kvm->lock);
2444 r = get_msr_hyperv_pw(vcpu, msr, pdata);
2445 mutex_unlock(&vcpu->kvm->lock);
2446 return r;
2447 } else
2448 return get_msr_hyperv(vcpu, msr, pdata);
2449 break;
2450 case MSR_IA32_BBL_CR_CTL3:
2451 /* This legacy MSR exists but isn't fully documented in current
2452 * silicon. It is however accessed by winxp in very narrow
2453 * scenarios where it sets bit #19, itself documented as
2454 * a "reserved" bit. Best effort attempt to source coherent
2455 * read data here should the balance of the register be
2456 * interpreted by the guest:
2458 * L2 cache control register 3: 64GB range, 256KB size,
2459 * enabled, latency 0x1, configured
2461 data = 0xbe702111;
2462 break;
2463 case MSR_AMD64_OSVW_ID_LENGTH:
2464 if (!guest_cpuid_has_osvw(vcpu))
2465 return 1;
2466 data = vcpu->arch.osvw.length;
2467 break;
2468 case MSR_AMD64_OSVW_STATUS:
2469 if (!guest_cpuid_has_osvw(vcpu))
2470 return 1;
2471 data = vcpu->arch.osvw.status;
2472 break;
2473 default:
2474 if (kvm_pmu_msr(vcpu, msr))
2475 return kvm_pmu_get_msr(vcpu, msr, pdata);
2476 if (!ignore_msrs) {
2477 vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
2478 return 1;
2479 } else {
2480 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
2481 data = 0;
2483 break;
2485 *pdata = data;
2486 return 0;
2488 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2491 * Read or write a bunch of msrs. All parameters are kernel addresses.
2493 * @return number of msrs set successfully.
2495 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2496 struct kvm_msr_entry *entries,
2497 int (*do_msr)(struct kvm_vcpu *vcpu,
2498 unsigned index, u64 *data))
2500 int i, idx;
2502 idx = srcu_read_lock(&vcpu->kvm->srcu);
2503 for (i = 0; i < msrs->nmsrs; ++i)
2504 if (do_msr(vcpu, entries[i].index, &entries[i].data))
2505 break;
2506 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2508 return i;
2512 * Read or write a bunch of msrs. Parameters are user addresses.
2514 * @return number of msrs set successfully.
2516 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2517 int (*do_msr)(struct kvm_vcpu *vcpu,
2518 unsigned index, u64 *data),
2519 int writeback)
2521 struct kvm_msrs msrs;
2522 struct kvm_msr_entry *entries;
2523 int r, n;
2524 unsigned size;
2526 r = -EFAULT;
2527 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2528 goto out;
2530 r = -E2BIG;
2531 if (msrs.nmsrs >= MAX_IO_MSRS)
2532 goto out;
2534 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2535 entries = memdup_user(user_msrs->entries, size);
2536 if (IS_ERR(entries)) {
2537 r = PTR_ERR(entries);
2538 goto out;
2541 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2542 if (r < 0)
2543 goto out_free;
2545 r = -EFAULT;
2546 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2547 goto out_free;
2549 r = n;
2551 out_free:
2552 kfree(entries);
2553 out:
2554 return r;
2557 int kvm_dev_ioctl_check_extension(long ext)
2559 int r;
2561 switch (ext) {
2562 case KVM_CAP_IRQCHIP:
2563 case KVM_CAP_HLT:
2564 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2565 case KVM_CAP_SET_TSS_ADDR:
2566 case KVM_CAP_EXT_CPUID:
2567 case KVM_CAP_CLOCKSOURCE:
2568 case KVM_CAP_PIT:
2569 case KVM_CAP_NOP_IO_DELAY:
2570 case KVM_CAP_MP_STATE:
2571 case KVM_CAP_SYNC_MMU:
2572 case KVM_CAP_USER_NMI:
2573 case KVM_CAP_REINJECT_CONTROL:
2574 case KVM_CAP_IRQ_INJECT_STATUS:
2575 case KVM_CAP_IRQFD:
2576 case KVM_CAP_IOEVENTFD:
2577 case KVM_CAP_PIT2:
2578 case KVM_CAP_PIT_STATE2:
2579 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2580 case KVM_CAP_XEN_HVM:
2581 case KVM_CAP_ADJUST_CLOCK:
2582 case KVM_CAP_VCPU_EVENTS:
2583 case KVM_CAP_HYPERV:
2584 case KVM_CAP_HYPERV_VAPIC:
2585 case KVM_CAP_HYPERV_SPIN:
2586 case KVM_CAP_PCI_SEGMENT:
2587 case KVM_CAP_DEBUGREGS:
2588 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2589 case KVM_CAP_XSAVE:
2590 case KVM_CAP_ASYNC_PF:
2591 case KVM_CAP_GET_TSC_KHZ:
2592 case KVM_CAP_KVMCLOCK_CTRL:
2593 case KVM_CAP_READONLY_MEM:
2594 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2595 case KVM_CAP_ASSIGN_DEV_IRQ:
2596 case KVM_CAP_PCI_2_3:
2597 #endif
2598 r = 1;
2599 break;
2600 case KVM_CAP_COALESCED_MMIO:
2601 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2602 break;
2603 case KVM_CAP_VAPIC:
2604 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2605 break;
2606 case KVM_CAP_NR_VCPUS:
2607 r = KVM_SOFT_MAX_VCPUS;
2608 break;
2609 case KVM_CAP_MAX_VCPUS:
2610 r = KVM_MAX_VCPUS;
2611 break;
2612 case KVM_CAP_NR_MEMSLOTS:
2613 r = KVM_USER_MEM_SLOTS;
2614 break;
2615 case KVM_CAP_PV_MMU: /* obsolete */
2616 r = 0;
2617 break;
2618 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2619 case KVM_CAP_IOMMU:
2620 r = iommu_present(&pci_bus_type);
2621 break;
2622 #endif
2623 case KVM_CAP_MCE:
2624 r = KVM_MAX_MCE_BANKS;
2625 break;
2626 case KVM_CAP_XCRS:
2627 r = cpu_has_xsave;
2628 break;
2629 case KVM_CAP_TSC_CONTROL:
2630 r = kvm_has_tsc_control;
2631 break;
2632 case KVM_CAP_TSC_DEADLINE_TIMER:
2633 r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER);
2634 break;
2635 default:
2636 r = 0;
2637 break;
2639 return r;
2643 long kvm_arch_dev_ioctl(struct file *filp,
2644 unsigned int ioctl, unsigned long arg)
2646 void __user *argp = (void __user *)arg;
2647 long r;
2649 switch (ioctl) {
2650 case KVM_GET_MSR_INDEX_LIST: {
2651 struct kvm_msr_list __user *user_msr_list = argp;
2652 struct kvm_msr_list msr_list;
2653 unsigned n;
2655 r = -EFAULT;
2656 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2657 goto out;
2658 n = msr_list.nmsrs;
2659 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2660 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2661 goto out;
2662 r = -E2BIG;
2663 if (n < msr_list.nmsrs)
2664 goto out;
2665 r = -EFAULT;
2666 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2667 num_msrs_to_save * sizeof(u32)))
2668 goto out;
2669 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2670 &emulated_msrs,
2671 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2672 goto out;
2673 r = 0;
2674 break;
2676 case KVM_GET_SUPPORTED_CPUID: {
2677 struct kvm_cpuid2 __user *cpuid_arg = argp;
2678 struct kvm_cpuid2 cpuid;
2680 r = -EFAULT;
2681 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2682 goto out;
2683 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2684 cpuid_arg->entries);
2685 if (r)
2686 goto out;
2688 r = -EFAULT;
2689 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2690 goto out;
2691 r = 0;
2692 break;
2694 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2695 u64 mce_cap;
2697 mce_cap = KVM_MCE_CAP_SUPPORTED;
2698 r = -EFAULT;
2699 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2700 goto out;
2701 r = 0;
2702 break;
2704 default:
2705 r = -EINVAL;
2707 out:
2708 return r;
2711 static void wbinvd_ipi(void *garbage)
2713 wbinvd();
2716 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2718 return vcpu->kvm->arch.iommu_domain &&
2719 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2722 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2724 /* Address WBINVD may be executed by guest */
2725 if (need_emulate_wbinvd(vcpu)) {
2726 if (kvm_x86_ops->has_wbinvd_exit())
2727 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2728 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2729 smp_call_function_single(vcpu->cpu,
2730 wbinvd_ipi, NULL, 1);
2733 kvm_x86_ops->vcpu_load(vcpu, cpu);
2735 /* Apply any externally detected TSC adjustments (due to suspend) */
2736 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2737 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2738 vcpu->arch.tsc_offset_adjustment = 0;
2739 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
2742 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2743 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2744 native_read_tsc() - vcpu->arch.last_host_tsc;
2745 if (tsc_delta < 0)
2746 mark_tsc_unstable("KVM discovered backwards TSC");
2747 if (check_tsc_unstable()) {
2748 u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu,
2749 vcpu->arch.last_guest_tsc);
2750 kvm_x86_ops->write_tsc_offset(vcpu, offset);
2751 vcpu->arch.tsc_catchup = 1;
2754 * On a host with synchronized TSC, there is no need to update
2755 * kvmclock on vcpu->cpu migration
2757 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2758 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2759 if (vcpu->cpu != cpu)
2760 kvm_migrate_timers(vcpu);
2761 vcpu->cpu = cpu;
2764 accumulate_steal_time(vcpu);
2765 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2768 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2770 kvm_x86_ops->vcpu_put(vcpu);
2771 kvm_put_guest_fpu(vcpu);
2772 vcpu->arch.last_host_tsc = native_read_tsc();
2775 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2776 struct kvm_lapic_state *s)
2778 kvm_x86_ops->sync_pir_to_irr(vcpu);
2779 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2781 return 0;
2784 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2785 struct kvm_lapic_state *s)
2787 kvm_apic_post_state_restore(vcpu, s);
2788 update_cr8_intercept(vcpu);
2790 return 0;
2793 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2794 struct kvm_interrupt *irq)
2796 if (irq->irq >= KVM_NR_INTERRUPTS)
2797 return -EINVAL;
2798 if (irqchip_in_kernel(vcpu->kvm))
2799 return -ENXIO;
2801 kvm_queue_interrupt(vcpu, irq->irq, false);
2802 kvm_make_request(KVM_REQ_EVENT, vcpu);
2804 return 0;
2807 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2809 kvm_inject_nmi(vcpu);
2811 return 0;
2814 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2815 struct kvm_tpr_access_ctl *tac)
2817 if (tac->flags)
2818 return -EINVAL;
2819 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2820 return 0;
2823 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2824 u64 mcg_cap)
2826 int r;
2827 unsigned bank_num = mcg_cap & 0xff, bank;
2829 r = -EINVAL;
2830 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2831 goto out;
2832 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2833 goto out;
2834 r = 0;
2835 vcpu->arch.mcg_cap = mcg_cap;
2836 /* Init IA32_MCG_CTL to all 1s */
2837 if (mcg_cap & MCG_CTL_P)
2838 vcpu->arch.mcg_ctl = ~(u64)0;
2839 /* Init IA32_MCi_CTL to all 1s */
2840 for (bank = 0; bank < bank_num; bank++)
2841 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2842 out:
2843 return r;
2846 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2847 struct kvm_x86_mce *mce)
2849 u64 mcg_cap = vcpu->arch.mcg_cap;
2850 unsigned bank_num = mcg_cap & 0xff;
2851 u64 *banks = vcpu->arch.mce_banks;
2853 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2854 return -EINVAL;
2856 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2857 * reporting is disabled
2859 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2860 vcpu->arch.mcg_ctl != ~(u64)0)
2861 return 0;
2862 banks += 4 * mce->bank;
2864 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2865 * reporting is disabled for the bank
2867 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2868 return 0;
2869 if (mce->status & MCI_STATUS_UC) {
2870 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2871 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2872 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2873 return 0;
2875 if (banks[1] & MCI_STATUS_VAL)
2876 mce->status |= MCI_STATUS_OVER;
2877 banks[2] = mce->addr;
2878 banks[3] = mce->misc;
2879 vcpu->arch.mcg_status = mce->mcg_status;
2880 banks[1] = mce->status;
2881 kvm_queue_exception(vcpu, MC_VECTOR);
2882 } else if (!(banks[1] & MCI_STATUS_VAL)
2883 || !(banks[1] & MCI_STATUS_UC)) {
2884 if (banks[1] & MCI_STATUS_VAL)
2885 mce->status |= MCI_STATUS_OVER;
2886 banks[2] = mce->addr;
2887 banks[3] = mce->misc;
2888 banks[1] = mce->status;
2889 } else
2890 banks[1] |= MCI_STATUS_OVER;
2891 return 0;
2894 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2895 struct kvm_vcpu_events *events)
2897 process_nmi(vcpu);
2898 events->exception.injected =
2899 vcpu->arch.exception.pending &&
2900 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2901 events->exception.nr = vcpu->arch.exception.nr;
2902 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2903 events->exception.pad = 0;
2904 events->exception.error_code = vcpu->arch.exception.error_code;
2906 events->interrupt.injected =
2907 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2908 events->interrupt.nr = vcpu->arch.interrupt.nr;
2909 events->interrupt.soft = 0;
2910 events->interrupt.shadow =
2911 kvm_x86_ops->get_interrupt_shadow(vcpu,
2912 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2914 events->nmi.injected = vcpu->arch.nmi_injected;
2915 events->nmi.pending = vcpu->arch.nmi_pending != 0;
2916 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2917 events->nmi.pad = 0;
2919 events->sipi_vector = 0; /* never valid when reporting to user space */
2921 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2922 | KVM_VCPUEVENT_VALID_SHADOW);
2923 memset(&events->reserved, 0, sizeof(events->reserved));
2926 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2927 struct kvm_vcpu_events *events)
2929 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2930 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2931 | KVM_VCPUEVENT_VALID_SHADOW))
2932 return -EINVAL;
2934 process_nmi(vcpu);
2935 vcpu->arch.exception.pending = events->exception.injected;
2936 vcpu->arch.exception.nr = events->exception.nr;
2937 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2938 vcpu->arch.exception.error_code = events->exception.error_code;
2940 vcpu->arch.interrupt.pending = events->interrupt.injected;
2941 vcpu->arch.interrupt.nr = events->interrupt.nr;
2942 vcpu->arch.interrupt.soft = events->interrupt.soft;
2943 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2944 kvm_x86_ops->set_interrupt_shadow(vcpu,
2945 events->interrupt.shadow);
2947 vcpu->arch.nmi_injected = events->nmi.injected;
2948 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2949 vcpu->arch.nmi_pending = events->nmi.pending;
2950 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2952 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
2953 kvm_vcpu_has_lapic(vcpu))
2954 vcpu->arch.apic->sipi_vector = events->sipi_vector;
2956 kvm_make_request(KVM_REQ_EVENT, vcpu);
2958 return 0;
2961 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2962 struct kvm_debugregs *dbgregs)
2964 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2965 dbgregs->dr6 = vcpu->arch.dr6;
2966 dbgregs->dr7 = vcpu->arch.dr7;
2967 dbgregs->flags = 0;
2968 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2971 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2972 struct kvm_debugregs *dbgregs)
2974 if (dbgregs->flags)
2975 return -EINVAL;
2977 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2978 vcpu->arch.dr6 = dbgregs->dr6;
2979 vcpu->arch.dr7 = dbgregs->dr7;
2981 return 0;
2984 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2985 struct kvm_xsave *guest_xsave)
2987 if (cpu_has_xsave)
2988 memcpy(guest_xsave->region,
2989 &vcpu->arch.guest_fpu.state->xsave,
2990 xstate_size);
2991 else {
2992 memcpy(guest_xsave->region,
2993 &vcpu->arch.guest_fpu.state->fxsave,
2994 sizeof(struct i387_fxsave_struct));
2995 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2996 XSTATE_FPSSE;
3000 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3001 struct kvm_xsave *guest_xsave)
3003 u64 xstate_bv =
3004 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3006 if (cpu_has_xsave)
3007 memcpy(&vcpu->arch.guest_fpu.state->xsave,
3008 guest_xsave->region, xstate_size);
3009 else {
3010 if (xstate_bv & ~XSTATE_FPSSE)
3011 return -EINVAL;
3012 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
3013 guest_xsave->region, sizeof(struct i387_fxsave_struct));
3015 return 0;
3018 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3019 struct kvm_xcrs *guest_xcrs)
3021 if (!cpu_has_xsave) {
3022 guest_xcrs->nr_xcrs = 0;
3023 return;
3026 guest_xcrs->nr_xcrs = 1;
3027 guest_xcrs->flags = 0;
3028 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3029 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3032 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3033 struct kvm_xcrs *guest_xcrs)
3035 int i, r = 0;
3037 if (!cpu_has_xsave)
3038 return -EINVAL;
3040 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3041 return -EINVAL;
3043 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3044 /* Only support XCR0 currently */
3045 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
3046 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3047 guest_xcrs->xcrs[0].value);
3048 break;
3050 if (r)
3051 r = -EINVAL;
3052 return r;
3056 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3057 * stopped by the hypervisor. This function will be called from the host only.
3058 * EINVAL is returned when the host attempts to set the flag for a guest that
3059 * does not support pv clocks.
3061 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3063 if (!vcpu->arch.pv_time_enabled)
3064 return -EINVAL;
3065 vcpu->arch.pvclock_set_guest_stopped_request = true;
3066 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3067 return 0;
3070 long kvm_arch_vcpu_ioctl(struct file *filp,
3071 unsigned int ioctl, unsigned long arg)
3073 struct kvm_vcpu *vcpu = filp->private_data;
3074 void __user *argp = (void __user *)arg;
3075 int r;
3076 union {
3077 struct kvm_lapic_state *lapic;
3078 struct kvm_xsave *xsave;
3079 struct kvm_xcrs *xcrs;
3080 void *buffer;
3081 } u;
3083 u.buffer = NULL;
3084 switch (ioctl) {
3085 case KVM_GET_LAPIC: {
3086 r = -EINVAL;
3087 if (!vcpu->arch.apic)
3088 goto out;
3089 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3091 r = -ENOMEM;
3092 if (!u.lapic)
3093 goto out;
3094 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3095 if (r)
3096 goto out;
3097 r = -EFAULT;
3098 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3099 goto out;
3100 r = 0;
3101 break;
3103 case KVM_SET_LAPIC: {
3104 r = -EINVAL;
3105 if (!vcpu->arch.apic)
3106 goto out;
3107 u.lapic = memdup_user(argp, sizeof(*u.lapic));
3108 if (IS_ERR(u.lapic))
3109 return PTR_ERR(u.lapic);
3111 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3112 break;
3114 case KVM_INTERRUPT: {
3115 struct kvm_interrupt irq;
3117 r = -EFAULT;
3118 if (copy_from_user(&irq, argp, sizeof irq))
3119 goto out;
3120 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3121 break;
3123 case KVM_NMI: {
3124 r = kvm_vcpu_ioctl_nmi(vcpu);
3125 break;
3127 case KVM_SET_CPUID: {
3128 struct kvm_cpuid __user *cpuid_arg = argp;
3129 struct kvm_cpuid cpuid;
3131 r = -EFAULT;
3132 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3133 goto out;
3134 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3135 break;
3137 case KVM_SET_CPUID2: {
3138 struct kvm_cpuid2 __user *cpuid_arg = argp;
3139 struct kvm_cpuid2 cpuid;
3141 r = -EFAULT;
3142 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3143 goto out;
3144 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3145 cpuid_arg->entries);
3146 break;
3148 case KVM_GET_CPUID2: {
3149 struct kvm_cpuid2 __user *cpuid_arg = argp;
3150 struct kvm_cpuid2 cpuid;
3152 r = -EFAULT;
3153 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3154 goto out;
3155 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3156 cpuid_arg->entries);
3157 if (r)
3158 goto out;
3159 r = -EFAULT;
3160 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3161 goto out;
3162 r = 0;
3163 break;
3165 case KVM_GET_MSRS:
3166 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3167 break;
3168 case KVM_SET_MSRS:
3169 r = msr_io(vcpu, argp, do_set_msr, 0);
3170 break;
3171 case KVM_TPR_ACCESS_REPORTING: {
3172 struct kvm_tpr_access_ctl tac;
3174 r = -EFAULT;
3175 if (copy_from_user(&tac, argp, sizeof tac))
3176 goto out;
3177 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3178 if (r)
3179 goto out;
3180 r = -EFAULT;
3181 if (copy_to_user(argp, &tac, sizeof tac))
3182 goto out;
3183 r = 0;
3184 break;
3186 case KVM_SET_VAPIC_ADDR: {
3187 struct kvm_vapic_addr va;
3189 r = -EINVAL;
3190 if (!irqchip_in_kernel(vcpu->kvm))
3191 goto out;
3192 r = -EFAULT;
3193 if (copy_from_user(&va, argp, sizeof va))
3194 goto out;
3195 r = 0;
3196 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3197 break;
3199 case KVM_X86_SETUP_MCE: {
3200 u64 mcg_cap;
3202 r = -EFAULT;
3203 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3204 goto out;
3205 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3206 break;
3208 case KVM_X86_SET_MCE: {
3209 struct kvm_x86_mce mce;
3211 r = -EFAULT;
3212 if (copy_from_user(&mce, argp, sizeof mce))
3213 goto out;
3214 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3215 break;
3217 case KVM_GET_VCPU_EVENTS: {
3218 struct kvm_vcpu_events events;
3220 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3222 r = -EFAULT;
3223 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3224 break;
3225 r = 0;
3226 break;
3228 case KVM_SET_VCPU_EVENTS: {
3229 struct kvm_vcpu_events events;
3231 r = -EFAULT;
3232 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3233 break;
3235 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3236 break;
3238 case KVM_GET_DEBUGREGS: {
3239 struct kvm_debugregs dbgregs;
3241 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3243 r = -EFAULT;
3244 if (copy_to_user(argp, &dbgregs,
3245 sizeof(struct kvm_debugregs)))
3246 break;
3247 r = 0;
3248 break;
3250 case KVM_SET_DEBUGREGS: {
3251 struct kvm_debugregs dbgregs;
3253 r = -EFAULT;
3254 if (copy_from_user(&dbgregs, argp,
3255 sizeof(struct kvm_debugregs)))
3256 break;
3258 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3259 break;
3261 case KVM_GET_XSAVE: {
3262 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3263 r = -ENOMEM;
3264 if (!u.xsave)
3265 break;
3267 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3269 r = -EFAULT;
3270 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3271 break;
3272 r = 0;
3273 break;
3275 case KVM_SET_XSAVE: {
3276 u.xsave = memdup_user(argp, sizeof(*u.xsave));
3277 if (IS_ERR(u.xsave))
3278 return PTR_ERR(u.xsave);
3280 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3281 break;
3283 case KVM_GET_XCRS: {
3284 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3285 r = -ENOMEM;
3286 if (!u.xcrs)
3287 break;
3289 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3291 r = -EFAULT;
3292 if (copy_to_user(argp, u.xcrs,
3293 sizeof(struct kvm_xcrs)))
3294 break;
3295 r = 0;
3296 break;
3298 case KVM_SET_XCRS: {
3299 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3300 if (IS_ERR(u.xcrs))
3301 return PTR_ERR(u.xcrs);
3303 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3304 break;
3306 case KVM_SET_TSC_KHZ: {
3307 u32 user_tsc_khz;
3309 r = -EINVAL;
3310 user_tsc_khz = (u32)arg;
3312 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3313 goto out;
3315 if (user_tsc_khz == 0)
3316 user_tsc_khz = tsc_khz;
3318 kvm_set_tsc_khz(vcpu, user_tsc_khz);
3320 r = 0;
3321 goto out;
3323 case KVM_GET_TSC_KHZ: {
3324 r = vcpu->arch.virtual_tsc_khz;
3325 goto out;
3327 case KVM_KVMCLOCK_CTRL: {
3328 r = kvm_set_guest_paused(vcpu);
3329 goto out;
3331 default:
3332 r = -EINVAL;
3334 out:
3335 kfree(u.buffer);
3336 return r;
3339 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3341 return VM_FAULT_SIGBUS;
3344 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3346 int ret;
3348 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3349 return -EINVAL;
3350 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3351 return ret;
3354 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3355 u64 ident_addr)
3357 kvm->arch.ept_identity_map_addr = ident_addr;
3358 return 0;
3361 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3362 u32 kvm_nr_mmu_pages)
3364 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3365 return -EINVAL;
3367 mutex_lock(&kvm->slots_lock);
3369 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3370 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3372 mutex_unlock(&kvm->slots_lock);
3373 return 0;
3376 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3378 return kvm->arch.n_max_mmu_pages;
3381 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3383 int r;
3385 r = 0;
3386 switch (chip->chip_id) {
3387 case KVM_IRQCHIP_PIC_MASTER:
3388 memcpy(&chip->chip.pic,
3389 &pic_irqchip(kvm)->pics[0],
3390 sizeof(struct kvm_pic_state));
3391 break;
3392 case KVM_IRQCHIP_PIC_SLAVE:
3393 memcpy(&chip->chip.pic,
3394 &pic_irqchip(kvm)->pics[1],
3395 sizeof(struct kvm_pic_state));
3396 break;
3397 case KVM_IRQCHIP_IOAPIC:
3398 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3399 break;
3400 default:
3401 r = -EINVAL;
3402 break;
3404 return r;
3407 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3409 int r;
3411 r = 0;
3412 switch (chip->chip_id) {
3413 case KVM_IRQCHIP_PIC_MASTER:
3414 spin_lock(&pic_irqchip(kvm)->lock);
3415 memcpy(&pic_irqchip(kvm)->pics[0],
3416 &chip->chip.pic,
3417 sizeof(struct kvm_pic_state));
3418 spin_unlock(&pic_irqchip(kvm)->lock);
3419 break;
3420 case KVM_IRQCHIP_PIC_SLAVE:
3421 spin_lock(&pic_irqchip(kvm)->lock);
3422 memcpy(&pic_irqchip(kvm)->pics[1],
3423 &chip->chip.pic,
3424 sizeof(struct kvm_pic_state));
3425 spin_unlock(&pic_irqchip(kvm)->lock);
3426 break;
3427 case KVM_IRQCHIP_IOAPIC:
3428 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3429 break;
3430 default:
3431 r = -EINVAL;
3432 break;
3434 kvm_pic_update_irq(pic_irqchip(kvm));
3435 return r;
3438 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3440 int r = 0;
3442 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3443 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3444 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3445 return r;
3448 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3450 int r = 0;
3452 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3453 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3454 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3455 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3456 return r;
3459 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3461 int r = 0;
3463 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3464 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3465 sizeof(ps->channels));
3466 ps->flags = kvm->arch.vpit->pit_state.flags;
3467 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3468 memset(&ps->reserved, 0, sizeof(ps->reserved));
3469 return r;
3472 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3474 int r = 0, start = 0;
3475 u32 prev_legacy, cur_legacy;
3476 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3477 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3478 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3479 if (!prev_legacy && cur_legacy)
3480 start = 1;
3481 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3482 sizeof(kvm->arch.vpit->pit_state.channels));
3483 kvm->arch.vpit->pit_state.flags = ps->flags;
3484 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3485 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3486 return r;
3489 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3490 struct kvm_reinject_control *control)
3492 if (!kvm->arch.vpit)
3493 return -ENXIO;
3494 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3495 kvm->arch.vpit->pit_state.reinject = control->pit_reinject;
3496 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3497 return 0;
3501 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3502 * @kvm: kvm instance
3503 * @log: slot id and address to which we copy the log
3505 * We need to keep it in mind that VCPU threads can write to the bitmap
3506 * concurrently. So, to avoid losing data, we keep the following order for
3507 * each bit:
3509 * 1. Take a snapshot of the bit and clear it if needed.
3510 * 2. Write protect the corresponding page.
3511 * 3. Flush TLB's if needed.
3512 * 4. Copy the snapshot to the userspace.
3514 * Between 2 and 3, the guest may write to the page using the remaining TLB
3515 * entry. This is not a problem because the page will be reported dirty at
3516 * step 4 using the snapshot taken before and step 3 ensures that successive
3517 * writes will be logged for the next call.
3519 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3521 int r;
3522 struct kvm_memory_slot *memslot;
3523 unsigned long n, i;
3524 unsigned long *dirty_bitmap;
3525 unsigned long *dirty_bitmap_buffer;
3526 bool is_dirty = false;
3528 mutex_lock(&kvm->slots_lock);
3530 r = -EINVAL;
3531 if (log->slot >= KVM_USER_MEM_SLOTS)
3532 goto out;
3534 memslot = id_to_memslot(kvm->memslots, log->slot);
3536 dirty_bitmap = memslot->dirty_bitmap;
3537 r = -ENOENT;
3538 if (!dirty_bitmap)
3539 goto out;
3541 n = kvm_dirty_bitmap_bytes(memslot);
3543 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
3544 memset(dirty_bitmap_buffer, 0, n);
3546 spin_lock(&kvm->mmu_lock);
3548 for (i = 0; i < n / sizeof(long); i++) {
3549 unsigned long mask;
3550 gfn_t offset;
3552 if (!dirty_bitmap[i])
3553 continue;
3555 is_dirty = true;
3557 mask = xchg(&dirty_bitmap[i], 0);
3558 dirty_bitmap_buffer[i] = mask;
3560 offset = i * BITS_PER_LONG;
3561 kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask);
3563 if (is_dirty)
3564 kvm_flush_remote_tlbs(kvm);
3566 spin_unlock(&kvm->mmu_lock);
3568 r = -EFAULT;
3569 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
3570 goto out;
3572 r = 0;
3573 out:
3574 mutex_unlock(&kvm->slots_lock);
3575 return r;
3578 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3579 bool line_status)
3581 if (!irqchip_in_kernel(kvm))
3582 return -ENXIO;
3584 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3585 irq_event->irq, irq_event->level,
3586 line_status);
3587 return 0;
3590 long kvm_arch_vm_ioctl(struct file *filp,
3591 unsigned int ioctl, unsigned long arg)
3593 struct kvm *kvm = filp->private_data;
3594 void __user *argp = (void __user *)arg;
3595 int r = -ENOTTY;
3597 * This union makes it completely explicit to gcc-3.x
3598 * that these two variables' stack usage should be
3599 * combined, not added together.
3601 union {
3602 struct kvm_pit_state ps;
3603 struct kvm_pit_state2 ps2;
3604 struct kvm_pit_config pit_config;
3605 } u;
3607 switch (ioctl) {
3608 case KVM_SET_TSS_ADDR:
3609 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3610 break;
3611 case KVM_SET_IDENTITY_MAP_ADDR: {
3612 u64 ident_addr;
3614 r = -EFAULT;
3615 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3616 goto out;
3617 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3618 break;
3620 case KVM_SET_NR_MMU_PAGES:
3621 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3622 break;
3623 case KVM_GET_NR_MMU_PAGES:
3624 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3625 break;
3626 case KVM_CREATE_IRQCHIP: {
3627 struct kvm_pic *vpic;
3629 mutex_lock(&kvm->lock);
3630 r = -EEXIST;
3631 if (kvm->arch.vpic)
3632 goto create_irqchip_unlock;
3633 r = -EINVAL;
3634 if (atomic_read(&kvm->online_vcpus))
3635 goto create_irqchip_unlock;
3636 r = -ENOMEM;
3637 vpic = kvm_create_pic(kvm);
3638 if (vpic) {
3639 r = kvm_ioapic_init(kvm);
3640 if (r) {
3641 mutex_lock(&kvm->slots_lock);
3642 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3643 &vpic->dev_master);
3644 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3645 &vpic->dev_slave);
3646 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3647 &vpic->dev_eclr);
3648 mutex_unlock(&kvm->slots_lock);
3649 kfree(vpic);
3650 goto create_irqchip_unlock;
3652 } else
3653 goto create_irqchip_unlock;
3654 smp_wmb();
3655 kvm->arch.vpic = vpic;
3656 smp_wmb();
3657 r = kvm_setup_default_irq_routing(kvm);
3658 if (r) {
3659 mutex_lock(&kvm->slots_lock);
3660 mutex_lock(&kvm->irq_lock);
3661 kvm_ioapic_destroy(kvm);
3662 kvm_destroy_pic(kvm);
3663 mutex_unlock(&kvm->irq_lock);
3664 mutex_unlock(&kvm->slots_lock);
3666 create_irqchip_unlock:
3667 mutex_unlock(&kvm->lock);
3668 break;
3670 case KVM_CREATE_PIT:
3671 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3672 goto create_pit;
3673 case KVM_CREATE_PIT2:
3674 r = -EFAULT;
3675 if (copy_from_user(&u.pit_config, argp,
3676 sizeof(struct kvm_pit_config)))
3677 goto out;
3678 create_pit:
3679 mutex_lock(&kvm->slots_lock);
3680 r = -EEXIST;
3681 if (kvm->arch.vpit)
3682 goto create_pit_unlock;
3683 r = -ENOMEM;
3684 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3685 if (kvm->arch.vpit)
3686 r = 0;
3687 create_pit_unlock:
3688 mutex_unlock(&kvm->slots_lock);
3689 break;
3690 case KVM_GET_IRQCHIP: {
3691 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3692 struct kvm_irqchip *chip;
3694 chip = memdup_user(argp, sizeof(*chip));
3695 if (IS_ERR(chip)) {
3696 r = PTR_ERR(chip);
3697 goto out;
3700 r = -ENXIO;
3701 if (!irqchip_in_kernel(kvm))
3702 goto get_irqchip_out;
3703 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3704 if (r)
3705 goto get_irqchip_out;
3706 r = -EFAULT;
3707 if (copy_to_user(argp, chip, sizeof *chip))
3708 goto get_irqchip_out;
3709 r = 0;
3710 get_irqchip_out:
3711 kfree(chip);
3712 break;
3714 case KVM_SET_IRQCHIP: {
3715 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3716 struct kvm_irqchip *chip;
3718 chip = memdup_user(argp, sizeof(*chip));
3719 if (IS_ERR(chip)) {
3720 r = PTR_ERR(chip);
3721 goto out;
3724 r = -ENXIO;
3725 if (!irqchip_in_kernel(kvm))
3726 goto set_irqchip_out;
3727 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3728 if (r)
3729 goto set_irqchip_out;
3730 r = 0;
3731 set_irqchip_out:
3732 kfree(chip);
3733 break;
3735 case KVM_GET_PIT: {
3736 r = -EFAULT;
3737 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3738 goto out;
3739 r = -ENXIO;
3740 if (!kvm->arch.vpit)
3741 goto out;
3742 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3743 if (r)
3744 goto out;
3745 r = -EFAULT;
3746 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3747 goto out;
3748 r = 0;
3749 break;
3751 case KVM_SET_PIT: {
3752 r = -EFAULT;
3753 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3754 goto out;
3755 r = -ENXIO;
3756 if (!kvm->arch.vpit)
3757 goto out;
3758 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3759 break;
3761 case KVM_GET_PIT2: {
3762 r = -ENXIO;
3763 if (!kvm->arch.vpit)
3764 goto out;
3765 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3766 if (r)
3767 goto out;
3768 r = -EFAULT;
3769 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3770 goto out;
3771 r = 0;
3772 break;
3774 case KVM_SET_PIT2: {
3775 r = -EFAULT;
3776 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3777 goto out;
3778 r = -ENXIO;
3779 if (!kvm->arch.vpit)
3780 goto out;
3781 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3782 break;
3784 case KVM_REINJECT_CONTROL: {
3785 struct kvm_reinject_control control;
3786 r = -EFAULT;
3787 if (copy_from_user(&control, argp, sizeof(control)))
3788 goto out;
3789 r = kvm_vm_ioctl_reinject(kvm, &control);
3790 break;
3792 case KVM_XEN_HVM_CONFIG: {
3793 r = -EFAULT;
3794 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3795 sizeof(struct kvm_xen_hvm_config)))
3796 goto out;
3797 r = -EINVAL;
3798 if (kvm->arch.xen_hvm_config.flags)
3799 goto out;
3800 r = 0;
3801 break;
3803 case KVM_SET_CLOCK: {
3804 struct kvm_clock_data user_ns;
3805 u64 now_ns;
3806 s64 delta;
3808 r = -EFAULT;
3809 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3810 goto out;
3812 r = -EINVAL;
3813 if (user_ns.flags)
3814 goto out;
3816 r = 0;
3817 local_irq_disable();
3818 now_ns = get_kernel_ns();
3819 delta = user_ns.clock - now_ns;
3820 local_irq_enable();
3821 kvm->arch.kvmclock_offset = delta;
3822 kvm_gen_update_masterclock(kvm);
3823 break;
3825 case KVM_GET_CLOCK: {
3826 struct kvm_clock_data user_ns;
3827 u64 now_ns;
3829 local_irq_disable();
3830 now_ns = get_kernel_ns();
3831 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3832 local_irq_enable();
3833 user_ns.flags = 0;
3834 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3836 r = -EFAULT;
3837 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3838 goto out;
3839 r = 0;
3840 break;
3843 default:
3846 out:
3847 return r;
3850 static void kvm_init_msr_list(void)
3852 u32 dummy[2];
3853 unsigned i, j;
3855 /* skip the first msrs in the list. KVM-specific */
3856 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3857 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3858 continue;
3859 if (j < i)
3860 msrs_to_save[j] = msrs_to_save[i];
3861 j++;
3863 num_msrs_to_save = j;
3866 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3867 const void *v)
3869 int handled = 0;
3870 int n;
3872 do {
3873 n = min(len, 8);
3874 if (!(vcpu->arch.apic &&
3875 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3876 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3877 break;
3878 handled += n;
3879 addr += n;
3880 len -= n;
3881 v += n;
3882 } while (len);
3884 return handled;
3887 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3889 int handled = 0;
3890 int n;
3892 do {
3893 n = min(len, 8);
3894 if (!(vcpu->arch.apic &&
3895 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3896 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3897 break;
3898 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3899 handled += n;
3900 addr += n;
3901 len -= n;
3902 v += n;
3903 } while (len);
3905 return handled;
3908 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3909 struct kvm_segment *var, int seg)
3911 kvm_x86_ops->set_segment(vcpu, var, seg);
3914 void kvm_get_segment(struct kvm_vcpu *vcpu,
3915 struct kvm_segment *var, int seg)
3917 kvm_x86_ops->get_segment(vcpu, var, seg);
3920 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3922 gpa_t t_gpa;
3923 struct x86_exception exception;
3925 BUG_ON(!mmu_is_nested(vcpu));
3927 /* NPT walks are always user-walks */
3928 access |= PFERR_USER_MASK;
3929 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3931 return t_gpa;
3934 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3935 struct x86_exception *exception)
3937 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3938 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3941 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3942 struct x86_exception *exception)
3944 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3945 access |= PFERR_FETCH_MASK;
3946 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3949 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3950 struct x86_exception *exception)
3952 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3953 access |= PFERR_WRITE_MASK;
3954 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3957 /* uses this to access any guest's mapped memory without checking CPL */
3958 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3959 struct x86_exception *exception)
3961 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3964 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3965 struct kvm_vcpu *vcpu, u32 access,
3966 struct x86_exception *exception)
3968 void *data = val;
3969 int r = X86EMUL_CONTINUE;
3971 while (bytes) {
3972 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3973 exception);
3974 unsigned offset = addr & (PAGE_SIZE-1);
3975 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3976 int ret;
3978 if (gpa == UNMAPPED_GVA)
3979 return X86EMUL_PROPAGATE_FAULT;
3980 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3981 if (ret < 0) {
3982 r = X86EMUL_IO_NEEDED;
3983 goto out;
3986 bytes -= toread;
3987 data += toread;
3988 addr += toread;
3990 out:
3991 return r;
3994 /* used for instruction fetching */
3995 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3996 gva_t addr, void *val, unsigned int bytes,
3997 struct x86_exception *exception)
3999 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4000 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4002 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
4003 access | PFERR_FETCH_MASK,
4004 exception);
4007 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4008 gva_t addr, void *val, unsigned int bytes,
4009 struct x86_exception *exception)
4011 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4012 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4014 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4015 exception);
4017 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4019 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4020 gva_t addr, void *val, unsigned int bytes,
4021 struct x86_exception *exception)
4023 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4024 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4027 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4028 gva_t addr, void *val,
4029 unsigned int bytes,
4030 struct x86_exception *exception)
4032 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4033 void *data = val;
4034 int r = X86EMUL_CONTINUE;
4036 while (bytes) {
4037 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4038 PFERR_WRITE_MASK,
4039 exception);
4040 unsigned offset = addr & (PAGE_SIZE-1);
4041 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4042 int ret;
4044 if (gpa == UNMAPPED_GVA)
4045 return X86EMUL_PROPAGATE_FAULT;
4046 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
4047 if (ret < 0) {
4048 r = X86EMUL_IO_NEEDED;
4049 goto out;
4052 bytes -= towrite;
4053 data += towrite;
4054 addr += towrite;
4056 out:
4057 return r;
4059 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4061 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4062 gpa_t *gpa, struct x86_exception *exception,
4063 bool write)
4065 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4066 | (write ? PFERR_WRITE_MASK : 0);
4068 if (vcpu_match_mmio_gva(vcpu, gva)
4069 && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) {
4070 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4071 (gva & (PAGE_SIZE - 1));
4072 trace_vcpu_match_mmio(gva, *gpa, write, false);
4073 return 1;
4076 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4078 if (*gpa == UNMAPPED_GVA)
4079 return -1;
4081 /* For APIC access vmexit */
4082 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4083 return 1;
4085 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4086 trace_vcpu_match_mmio(gva, *gpa, write, true);
4087 return 1;
4090 return 0;
4093 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4094 const void *val, int bytes)
4096 int ret;
4098 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4099 if (ret < 0)
4100 return 0;
4101 kvm_mmu_pte_write(vcpu, gpa, val, bytes);
4102 return 1;
4105 struct read_write_emulator_ops {
4106 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4107 int bytes);
4108 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4109 void *val, int bytes);
4110 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4111 int bytes, void *val);
4112 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4113 void *val, int bytes);
4114 bool write;
4117 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4119 if (vcpu->mmio_read_completed) {
4120 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4121 vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4122 vcpu->mmio_read_completed = 0;
4123 return 1;
4126 return 0;
4129 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4130 void *val, int bytes)
4132 return !kvm_read_guest(vcpu->kvm, gpa, val, bytes);
4135 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4136 void *val, int bytes)
4138 return emulator_write_phys(vcpu, gpa, val, bytes);
4141 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4143 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4144 return vcpu_mmio_write(vcpu, gpa, bytes, val);
4147 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4148 void *val, int bytes)
4150 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4151 return X86EMUL_IO_NEEDED;
4154 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4155 void *val, int bytes)
4157 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4159 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4160 return X86EMUL_CONTINUE;
4163 static const struct read_write_emulator_ops read_emultor = {
4164 .read_write_prepare = read_prepare,
4165 .read_write_emulate = read_emulate,
4166 .read_write_mmio = vcpu_mmio_read,
4167 .read_write_exit_mmio = read_exit_mmio,
4170 static const struct read_write_emulator_ops write_emultor = {
4171 .read_write_emulate = write_emulate,
4172 .read_write_mmio = write_mmio,
4173 .read_write_exit_mmio = write_exit_mmio,
4174 .write = true,
4177 static int emulator_read_write_onepage(unsigned long addr, void *val,
4178 unsigned int bytes,
4179 struct x86_exception *exception,
4180 struct kvm_vcpu *vcpu,
4181 const struct read_write_emulator_ops *ops)
4183 gpa_t gpa;
4184 int handled, ret;
4185 bool write = ops->write;
4186 struct kvm_mmio_fragment *frag;
4188 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4190 if (ret < 0)
4191 return X86EMUL_PROPAGATE_FAULT;
4193 /* For APIC access vmexit */
4194 if (ret)
4195 goto mmio;
4197 if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4198 return X86EMUL_CONTINUE;
4200 mmio:
4202 * Is this MMIO handled locally?
4204 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4205 if (handled == bytes)
4206 return X86EMUL_CONTINUE;
4208 gpa += handled;
4209 bytes -= handled;
4210 val += handled;
4212 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4213 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4214 frag->gpa = gpa;
4215 frag->data = val;
4216 frag->len = bytes;
4217 return X86EMUL_CONTINUE;
4220 int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr,
4221 void *val, unsigned int bytes,
4222 struct x86_exception *exception,
4223 const struct read_write_emulator_ops *ops)
4225 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4226 gpa_t gpa;
4227 int rc;
4229 if (ops->read_write_prepare &&
4230 ops->read_write_prepare(vcpu, val, bytes))
4231 return X86EMUL_CONTINUE;
4233 vcpu->mmio_nr_fragments = 0;
4235 /* Crossing a page boundary? */
4236 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4237 int now;
4239 now = -addr & ~PAGE_MASK;
4240 rc = emulator_read_write_onepage(addr, val, now, exception,
4241 vcpu, ops);
4243 if (rc != X86EMUL_CONTINUE)
4244 return rc;
4245 addr += now;
4246 val += now;
4247 bytes -= now;
4250 rc = emulator_read_write_onepage(addr, val, bytes, exception,
4251 vcpu, ops);
4252 if (rc != X86EMUL_CONTINUE)
4253 return rc;
4255 if (!vcpu->mmio_nr_fragments)
4256 return rc;
4258 gpa = vcpu->mmio_fragments[0].gpa;
4260 vcpu->mmio_needed = 1;
4261 vcpu->mmio_cur_fragment = 0;
4263 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4264 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4265 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4266 vcpu->run->mmio.phys_addr = gpa;
4268 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4271 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4272 unsigned long addr,
4273 void *val,
4274 unsigned int bytes,
4275 struct x86_exception *exception)
4277 return emulator_read_write(ctxt, addr, val, bytes,
4278 exception, &read_emultor);
4281 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4282 unsigned long addr,
4283 const void *val,
4284 unsigned int bytes,
4285 struct x86_exception *exception)
4287 return emulator_read_write(ctxt, addr, (void *)val, bytes,
4288 exception, &write_emultor);
4291 #define CMPXCHG_TYPE(t, ptr, old, new) \
4292 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4294 #ifdef CONFIG_X86_64
4295 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4296 #else
4297 # define CMPXCHG64(ptr, old, new) \
4298 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4299 #endif
4301 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4302 unsigned long addr,
4303 const void *old,
4304 const void *new,
4305 unsigned int bytes,
4306 struct x86_exception *exception)
4308 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4309 gpa_t gpa;
4310 struct page *page;
4311 char *kaddr;
4312 bool exchanged;
4314 /* guests cmpxchg8b have to be emulated atomically */
4315 if (bytes > 8 || (bytes & (bytes - 1)))
4316 goto emul_write;
4318 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4320 if (gpa == UNMAPPED_GVA ||
4321 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4322 goto emul_write;
4324 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4325 goto emul_write;
4327 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4328 if (is_error_page(page))
4329 goto emul_write;
4331 kaddr = kmap_atomic(page);
4332 kaddr += offset_in_page(gpa);
4333 switch (bytes) {
4334 case 1:
4335 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4336 break;
4337 case 2:
4338 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4339 break;
4340 case 4:
4341 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4342 break;
4343 case 8:
4344 exchanged = CMPXCHG64(kaddr, old, new);
4345 break;
4346 default:
4347 BUG();
4349 kunmap_atomic(kaddr);
4350 kvm_release_page_dirty(page);
4352 if (!exchanged)
4353 return X86EMUL_CMPXCHG_FAILED;
4355 kvm_mmu_pte_write(vcpu, gpa, new, bytes);
4357 return X86EMUL_CONTINUE;
4359 emul_write:
4360 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4362 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4365 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4367 /* TODO: String I/O for in kernel device */
4368 int r;
4370 if (vcpu->arch.pio.in)
4371 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4372 vcpu->arch.pio.size, pd);
4373 else
4374 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4375 vcpu->arch.pio.port, vcpu->arch.pio.size,
4376 pd);
4377 return r;
4380 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4381 unsigned short port, void *val,
4382 unsigned int count, bool in)
4384 trace_kvm_pio(!in, port, size, count);
4386 vcpu->arch.pio.port = port;
4387 vcpu->arch.pio.in = in;
4388 vcpu->arch.pio.count = count;
4389 vcpu->arch.pio.size = size;
4391 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4392 vcpu->arch.pio.count = 0;
4393 return 1;
4396 vcpu->run->exit_reason = KVM_EXIT_IO;
4397 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4398 vcpu->run->io.size = size;
4399 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4400 vcpu->run->io.count = count;
4401 vcpu->run->io.port = port;
4403 return 0;
4406 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4407 int size, unsigned short port, void *val,
4408 unsigned int count)
4410 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4411 int ret;
4413 if (vcpu->arch.pio.count)
4414 goto data_avail;
4416 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4417 if (ret) {
4418 data_avail:
4419 memcpy(val, vcpu->arch.pio_data, size * count);
4420 vcpu->arch.pio.count = 0;
4421 return 1;
4424 return 0;
4427 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4428 int size, unsigned short port,
4429 const void *val, unsigned int count)
4431 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4433 memcpy(vcpu->arch.pio_data, val, size * count);
4434 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4437 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4439 return kvm_x86_ops->get_segment_base(vcpu, seg);
4442 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4444 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4447 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4449 if (!need_emulate_wbinvd(vcpu))
4450 return X86EMUL_CONTINUE;
4452 if (kvm_x86_ops->has_wbinvd_exit()) {
4453 int cpu = get_cpu();
4455 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4456 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4457 wbinvd_ipi, NULL, 1);
4458 put_cpu();
4459 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4460 } else
4461 wbinvd();
4462 return X86EMUL_CONTINUE;
4464 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4466 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4468 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4471 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4473 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4476 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4479 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4482 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4484 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4487 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4489 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4490 unsigned long value;
4492 switch (cr) {
4493 case 0:
4494 value = kvm_read_cr0(vcpu);
4495 break;
4496 case 2:
4497 value = vcpu->arch.cr2;
4498 break;
4499 case 3:
4500 value = kvm_read_cr3(vcpu);
4501 break;
4502 case 4:
4503 value = kvm_read_cr4(vcpu);
4504 break;
4505 case 8:
4506 value = kvm_get_cr8(vcpu);
4507 break;
4508 default:
4509 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4510 return 0;
4513 return value;
4516 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519 int res = 0;
4521 switch (cr) {
4522 case 0:
4523 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4524 break;
4525 case 2:
4526 vcpu->arch.cr2 = val;
4527 break;
4528 case 3:
4529 res = kvm_set_cr3(vcpu, val);
4530 break;
4531 case 4:
4532 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4533 break;
4534 case 8:
4535 res = kvm_set_cr8(vcpu, val);
4536 break;
4537 default:
4538 kvm_err("%s: unexpected cr %u\n", __func__, cr);
4539 res = -1;
4542 return res;
4545 static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val)
4547 kvm_set_rflags(emul_to_vcpu(ctxt), val);
4550 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4552 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4555 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4557 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4560 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4562 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4565 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4567 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4570 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4572 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4575 static unsigned long emulator_get_cached_segment_base(
4576 struct x86_emulate_ctxt *ctxt, int seg)
4578 return get_segment_base(emul_to_vcpu(ctxt), seg);
4581 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4582 struct desc_struct *desc, u32 *base3,
4583 int seg)
4585 struct kvm_segment var;
4587 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4588 *selector = var.selector;
4590 if (var.unusable) {
4591 memset(desc, 0, sizeof(*desc));
4592 return false;
4595 if (var.g)
4596 var.limit >>= 12;
4597 set_desc_limit(desc, var.limit);
4598 set_desc_base(desc, (unsigned long)var.base);
4599 #ifdef CONFIG_X86_64
4600 if (base3)
4601 *base3 = var.base >> 32;
4602 #endif
4603 desc->type = var.type;
4604 desc->s = var.s;
4605 desc->dpl = var.dpl;
4606 desc->p = var.present;
4607 desc->avl = var.avl;
4608 desc->l = var.l;
4609 desc->d = var.db;
4610 desc->g = var.g;
4612 return true;
4615 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4616 struct desc_struct *desc, u32 base3,
4617 int seg)
4619 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4620 struct kvm_segment var;
4622 var.selector = selector;
4623 var.base = get_desc_base(desc);
4624 #ifdef CONFIG_X86_64
4625 var.base |= ((u64)base3) << 32;
4626 #endif
4627 var.limit = get_desc_limit(desc);
4628 if (desc->g)
4629 var.limit = (var.limit << 12) | 0xfff;
4630 var.type = desc->type;
4631 var.present = desc->p;
4632 var.dpl = desc->dpl;
4633 var.db = desc->d;
4634 var.s = desc->s;
4635 var.l = desc->l;
4636 var.g = desc->g;
4637 var.avl = desc->avl;
4638 var.present = desc->p;
4639 var.unusable = !var.present;
4640 var.padding = 0;
4642 kvm_set_segment(vcpu, &var, seg);
4643 return;
4646 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4647 u32 msr_index, u64 *pdata)
4649 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4652 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4653 u32 msr_index, u64 data)
4655 struct msr_data msr;
4657 msr.data = data;
4658 msr.index = msr_index;
4659 msr.host_initiated = false;
4660 return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4663 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
4664 u32 pmc, u64 *pdata)
4666 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata);
4669 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4671 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4674 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4676 preempt_disable();
4677 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4679 * CR0.TS may reference the host fpu state, not the guest fpu state,
4680 * so it may be clear at this point.
4682 clts();
4685 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4687 preempt_enable();
4690 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4691 struct x86_instruction_info *info,
4692 enum x86_intercept_stage stage)
4694 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4697 static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
4698 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
4700 kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
4703 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
4705 return kvm_register_read(emul_to_vcpu(ctxt), reg);
4708 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
4710 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
4713 static const struct x86_emulate_ops emulate_ops = {
4714 .read_gpr = emulator_read_gpr,
4715 .write_gpr = emulator_write_gpr,
4716 .read_std = kvm_read_guest_virt_system,
4717 .write_std = kvm_write_guest_virt_system,
4718 .fetch = kvm_fetch_guest_virt,
4719 .read_emulated = emulator_read_emulated,
4720 .write_emulated = emulator_write_emulated,
4721 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4722 .invlpg = emulator_invlpg,
4723 .pio_in_emulated = emulator_pio_in_emulated,
4724 .pio_out_emulated = emulator_pio_out_emulated,
4725 .get_segment = emulator_get_segment,
4726 .set_segment = emulator_set_segment,
4727 .get_cached_segment_base = emulator_get_cached_segment_base,
4728 .get_gdt = emulator_get_gdt,
4729 .get_idt = emulator_get_idt,
4730 .set_gdt = emulator_set_gdt,
4731 .set_idt = emulator_set_idt,
4732 .get_cr = emulator_get_cr,
4733 .set_cr = emulator_set_cr,
4734 .set_rflags = emulator_set_rflags,
4735 .cpl = emulator_get_cpl,
4736 .get_dr = emulator_get_dr,
4737 .set_dr = emulator_set_dr,
4738 .set_msr = emulator_set_msr,
4739 .get_msr = emulator_get_msr,
4740 .read_pmc = emulator_read_pmc,
4741 .halt = emulator_halt,
4742 .wbinvd = emulator_wbinvd,
4743 .fix_hypercall = emulator_fix_hypercall,
4744 .get_fpu = emulator_get_fpu,
4745 .put_fpu = emulator_put_fpu,
4746 .intercept = emulator_intercept,
4747 .get_cpuid = emulator_get_cpuid,
4750 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4752 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4754 * an sti; sti; sequence only disable interrupts for the first
4755 * instruction. So, if the last instruction, be it emulated or
4756 * not, left the system with the INT_STI flag enabled, it
4757 * means that the last instruction is an sti. We should not
4758 * leave the flag on in this case. The same goes for mov ss
4760 if (!(int_shadow & mask))
4761 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4764 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4766 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4767 if (ctxt->exception.vector == PF_VECTOR)
4768 kvm_propagate_fault(vcpu, &ctxt->exception);
4769 else if (ctxt->exception.error_code_valid)
4770 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4771 ctxt->exception.error_code);
4772 else
4773 kvm_queue_exception(vcpu, ctxt->exception.vector);
4776 static void init_decode_cache(struct x86_emulate_ctxt *ctxt)
4778 memset(&ctxt->twobyte, 0,
4779 (void *)&ctxt->_regs - (void *)&ctxt->twobyte);
4781 ctxt->fetch.start = 0;
4782 ctxt->fetch.end = 0;
4783 ctxt->io_read.pos = 0;
4784 ctxt->io_read.end = 0;
4785 ctxt->mem_read.pos = 0;
4786 ctxt->mem_read.end = 0;
4789 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4791 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4792 int cs_db, cs_l;
4794 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4796 ctxt->eflags = kvm_get_rflags(vcpu);
4797 ctxt->eip = kvm_rip_read(vcpu);
4798 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4799 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4800 cs_l ? X86EMUL_MODE_PROT64 :
4801 cs_db ? X86EMUL_MODE_PROT32 :
4802 X86EMUL_MODE_PROT16;
4803 ctxt->guest_mode = is_guest_mode(vcpu);
4805 init_decode_cache(ctxt);
4806 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4809 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4811 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4812 int ret;
4814 init_emulate_ctxt(vcpu);
4816 ctxt->op_bytes = 2;
4817 ctxt->ad_bytes = 2;
4818 ctxt->_eip = ctxt->eip + inc_eip;
4819 ret = emulate_int_real(ctxt, irq);
4821 if (ret != X86EMUL_CONTINUE)
4822 return EMULATE_FAIL;
4824 ctxt->eip = ctxt->_eip;
4825 kvm_rip_write(vcpu, ctxt->eip);
4826 kvm_set_rflags(vcpu, ctxt->eflags);
4828 if (irq == NMI_VECTOR)
4829 vcpu->arch.nmi_pending = 0;
4830 else
4831 vcpu->arch.interrupt.pending = false;
4833 return EMULATE_DONE;
4835 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4837 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4839 int r = EMULATE_DONE;
4841 ++vcpu->stat.insn_emulation_fail;
4842 trace_kvm_emulate_insn_failed(vcpu);
4843 if (!is_guest_mode(vcpu)) {
4844 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4845 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4846 vcpu->run->internal.ndata = 0;
4847 r = EMULATE_FAIL;
4849 kvm_queue_exception(vcpu, UD_VECTOR);
4851 return r;
4854 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
4855 bool write_fault_to_shadow_pgtable,
4856 int emulation_type)
4858 gpa_t gpa = cr2;
4859 pfn_t pfn;
4861 if (emulation_type & EMULTYPE_NO_REEXECUTE)
4862 return false;
4864 if (!vcpu->arch.mmu.direct_map) {
4866 * Write permission should be allowed since only
4867 * write access need to be emulated.
4869 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4872 * If the mapping is invalid in guest, let cpu retry
4873 * it to generate fault.
4875 if (gpa == UNMAPPED_GVA)
4876 return true;
4880 * Do not retry the unhandleable instruction if it faults on the
4881 * readonly host memory, otherwise it will goto a infinite loop:
4882 * retry instruction -> write #PF -> emulation fail -> retry
4883 * instruction -> ...
4885 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
4888 * If the instruction failed on the error pfn, it can not be fixed,
4889 * report the error to userspace.
4891 if (is_error_noslot_pfn(pfn))
4892 return false;
4894 kvm_release_pfn_clean(pfn);
4896 /* The instructions are well-emulated on direct mmu. */
4897 if (vcpu->arch.mmu.direct_map) {
4898 unsigned int indirect_shadow_pages;
4900 spin_lock(&vcpu->kvm->mmu_lock);
4901 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
4902 spin_unlock(&vcpu->kvm->mmu_lock);
4904 if (indirect_shadow_pages)
4905 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4907 return true;
4911 * if emulation was due to access to shadowed page table
4912 * and it failed try to unshadow page and re-enter the
4913 * guest to let CPU execute the instruction.
4915 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4918 * If the access faults on its page table, it can not
4919 * be fixed by unprotecting shadow page and it should
4920 * be reported to userspace.
4922 return !write_fault_to_shadow_pgtable;
4925 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
4926 unsigned long cr2, int emulation_type)
4928 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4929 unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
4931 last_retry_eip = vcpu->arch.last_retry_eip;
4932 last_retry_addr = vcpu->arch.last_retry_addr;
4935 * If the emulation is caused by #PF and it is non-page_table
4936 * writing instruction, it means the VM-EXIT is caused by shadow
4937 * page protected, we can zap the shadow page and retry this
4938 * instruction directly.
4940 * Note: if the guest uses a non-page-table modifying instruction
4941 * on the PDE that points to the instruction, then we will unmap
4942 * the instruction and go to an infinite loop. So, we cache the
4943 * last retried eip and the last fault address, if we meet the eip
4944 * and the address again, we can break out of the potential infinite
4945 * loop.
4947 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
4949 if (!(emulation_type & EMULTYPE_RETRY))
4950 return false;
4952 if (x86_page_table_writing_insn(ctxt))
4953 return false;
4955 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
4956 return false;
4958 vcpu->arch.last_retry_eip = ctxt->eip;
4959 vcpu->arch.last_retry_addr = cr2;
4961 if (!vcpu->arch.mmu.direct_map)
4962 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
4964 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
4966 return true;
4969 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
4970 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
4972 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
4973 unsigned long *db)
4975 u32 dr6 = 0;
4976 int i;
4977 u32 enable, rwlen;
4979 enable = dr7;
4980 rwlen = dr7 >> 16;
4981 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
4982 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
4983 dr6 |= (1 << i);
4984 return dr6;
4987 static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, int *r)
4989 struct kvm_run *kvm_run = vcpu->run;
4992 * Use the "raw" value to see if TF was passed to the processor.
4993 * Note that the new value of the flags has not been saved yet.
4995 * This is correct even for TF set by the guest, because "the
4996 * processor will not generate this exception after the instruction
4997 * that sets the TF flag".
4999 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5001 if (unlikely(rflags & X86_EFLAGS_TF)) {
5002 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5003 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1;
5004 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5005 kvm_run->debug.arch.exception = DB_VECTOR;
5006 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5007 *r = EMULATE_USER_EXIT;
5008 } else {
5009 vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5011 * "Certain debug exceptions may clear bit 0-3. The
5012 * remaining contents of the DR6 register are never
5013 * cleared by the processor".
5015 vcpu->arch.dr6 &= ~15;
5016 vcpu->arch.dr6 |= DR6_BS;
5017 kvm_queue_exception(vcpu, DB_VECTOR);
5022 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5024 struct kvm_run *kvm_run = vcpu->run;
5025 unsigned long eip = vcpu->arch.emulate_ctxt.eip;
5026 u32 dr6 = 0;
5028 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5029 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5030 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5031 vcpu->arch.guest_debug_dr7,
5032 vcpu->arch.eff_db);
5034 if (dr6 != 0) {
5035 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5036 kvm_run->debug.arch.pc = kvm_rip_read(vcpu) +
5037 get_segment_base(vcpu, VCPU_SREG_CS);
5039 kvm_run->debug.arch.exception = DB_VECTOR;
5040 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5041 *r = EMULATE_USER_EXIT;
5042 return true;
5046 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK)) {
5047 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5048 vcpu->arch.dr7,
5049 vcpu->arch.db);
5051 if (dr6 != 0) {
5052 vcpu->arch.dr6 &= ~15;
5053 vcpu->arch.dr6 |= dr6;
5054 kvm_queue_exception(vcpu, DB_VECTOR);
5055 *r = EMULATE_DONE;
5056 return true;
5060 return false;
5063 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5064 unsigned long cr2,
5065 int emulation_type,
5066 void *insn,
5067 int insn_len)
5069 int r;
5070 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5071 bool writeback = true;
5072 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5075 * Clear write_fault_to_shadow_pgtable here to ensure it is
5076 * never reused.
5078 vcpu->arch.write_fault_to_shadow_pgtable = false;
5079 kvm_clear_exception_queue(vcpu);
5081 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5082 init_emulate_ctxt(vcpu);
5085 * We will reenter on the same instruction since
5086 * we do not set complete_userspace_io. This does not
5087 * handle watchpoints yet, those would be handled in
5088 * the emulate_ops.
5090 if (kvm_vcpu_check_breakpoint(vcpu, &r))
5091 return r;
5093 ctxt->interruptibility = 0;
5094 ctxt->have_exception = false;
5095 ctxt->perm_ok = false;
5097 ctxt->only_vendor_specific_insn
5098 = emulation_type & EMULTYPE_TRAP_UD;
5100 r = x86_decode_insn(ctxt, insn, insn_len);
5102 trace_kvm_emulate_insn_start(vcpu);
5103 ++vcpu->stat.insn_emulation;
5104 if (r != EMULATION_OK) {
5105 if (emulation_type & EMULTYPE_TRAP_UD)
5106 return EMULATE_FAIL;
5107 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5108 emulation_type))
5109 return EMULATE_DONE;
5110 if (emulation_type & EMULTYPE_SKIP)
5111 return EMULATE_FAIL;
5112 return handle_emulation_failure(vcpu);
5116 if (emulation_type & EMULTYPE_SKIP) {
5117 kvm_rip_write(vcpu, ctxt->_eip);
5118 return EMULATE_DONE;
5121 if (retry_instruction(ctxt, cr2, emulation_type))
5122 return EMULATE_DONE;
5124 /* this is needed for vmware backdoor interface to work since it
5125 changes registers values during IO operation */
5126 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5127 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5128 emulator_invalidate_register_cache(ctxt);
5131 restart:
5132 r = x86_emulate_insn(ctxt);
5134 if (r == EMULATION_INTERCEPTED)
5135 return EMULATE_DONE;
5137 if (r == EMULATION_FAILED) {
5138 if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5139 emulation_type))
5140 return EMULATE_DONE;
5142 return handle_emulation_failure(vcpu);
5145 if (ctxt->have_exception) {
5146 inject_emulated_exception(vcpu);
5147 r = EMULATE_DONE;
5148 } else if (vcpu->arch.pio.count) {
5149 if (!vcpu->arch.pio.in) {
5150 /* FIXME: return into emulator if single-stepping. */
5151 vcpu->arch.pio.count = 0;
5152 } else {
5153 writeback = false;
5154 vcpu->arch.complete_userspace_io = complete_emulated_pio;
5156 r = EMULATE_USER_EXIT;
5157 } else if (vcpu->mmio_needed) {
5158 if (!vcpu->mmio_is_write)
5159 writeback = false;
5160 r = EMULATE_USER_EXIT;
5161 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5162 } else if (r == EMULATION_RESTART)
5163 goto restart;
5164 else
5165 r = EMULATE_DONE;
5167 if (writeback) {
5168 toggle_interruptibility(vcpu, ctxt->interruptibility);
5169 kvm_make_request(KVM_REQ_EVENT, vcpu);
5170 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5171 kvm_rip_write(vcpu, ctxt->eip);
5172 if (r == EMULATE_DONE)
5173 kvm_vcpu_check_singlestep(vcpu, &r);
5174 kvm_set_rflags(vcpu, ctxt->eflags);
5175 } else
5176 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5178 return r;
5180 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5182 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5184 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5185 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5186 size, port, &val, 1);
5187 /* do not return to emulator after return from userspace */
5188 vcpu->arch.pio.count = 0;
5189 return ret;
5191 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5193 static void tsc_bad(void *info)
5195 __this_cpu_write(cpu_tsc_khz, 0);
5198 static void tsc_khz_changed(void *data)
5200 struct cpufreq_freqs *freq = data;
5201 unsigned long khz = 0;
5203 if (data)
5204 khz = freq->new;
5205 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5206 khz = cpufreq_quick_get(raw_smp_processor_id());
5207 if (!khz)
5208 khz = tsc_khz;
5209 __this_cpu_write(cpu_tsc_khz, khz);
5212 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5213 void *data)
5215 struct cpufreq_freqs *freq = data;
5216 struct kvm *kvm;
5217 struct kvm_vcpu *vcpu;
5218 int i, send_ipi = 0;
5221 * We allow guests to temporarily run on slowing clocks,
5222 * provided we notify them after, or to run on accelerating
5223 * clocks, provided we notify them before. Thus time never
5224 * goes backwards.
5226 * However, we have a problem. We can't atomically update
5227 * the frequency of a given CPU from this function; it is
5228 * merely a notifier, which can be called from any CPU.
5229 * Changing the TSC frequency at arbitrary points in time
5230 * requires a recomputation of local variables related to
5231 * the TSC for each VCPU. We must flag these local variables
5232 * to be updated and be sure the update takes place with the
5233 * new frequency before any guests proceed.
5235 * Unfortunately, the combination of hotplug CPU and frequency
5236 * change creates an intractable locking scenario; the order
5237 * of when these callouts happen is undefined with respect to
5238 * CPU hotplug, and they can race with each other. As such,
5239 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5240 * undefined; you can actually have a CPU frequency change take
5241 * place in between the computation of X and the setting of the
5242 * variable. To protect against this problem, all updates of
5243 * the per_cpu tsc_khz variable are done in an interrupt
5244 * protected IPI, and all callers wishing to update the value
5245 * must wait for a synchronous IPI to complete (which is trivial
5246 * if the caller is on the CPU already). This establishes the
5247 * necessary total order on variable updates.
5249 * Note that because a guest time update may take place
5250 * anytime after the setting of the VCPU's request bit, the
5251 * correct TSC value must be set before the request. However,
5252 * to ensure the update actually makes it to any guest which
5253 * starts running in hardware virtualization between the set
5254 * and the acquisition of the spinlock, we must also ping the
5255 * CPU after setting the request bit.
5259 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5260 return 0;
5261 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5262 return 0;
5264 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5266 spin_lock(&kvm_lock);
5267 list_for_each_entry(kvm, &vm_list, vm_list) {
5268 kvm_for_each_vcpu(i, vcpu, kvm) {
5269 if (vcpu->cpu != freq->cpu)
5270 continue;
5271 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5272 if (vcpu->cpu != smp_processor_id())
5273 send_ipi = 1;
5276 spin_unlock(&kvm_lock);
5278 if (freq->old < freq->new && send_ipi) {
5280 * We upscale the frequency. Must make the guest
5281 * doesn't see old kvmclock values while running with
5282 * the new frequency, otherwise we risk the guest sees
5283 * time go backwards.
5285 * In case we update the frequency for another cpu
5286 * (which might be in guest context) send an interrupt
5287 * to kick the cpu out of guest context. Next time
5288 * guest context is entered kvmclock will be updated,
5289 * so the guest will not see stale values.
5291 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5293 return 0;
5296 static struct notifier_block kvmclock_cpufreq_notifier_block = {
5297 .notifier_call = kvmclock_cpufreq_notifier
5300 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
5301 unsigned long action, void *hcpu)
5303 unsigned int cpu = (unsigned long)hcpu;
5305 switch (action) {
5306 case CPU_ONLINE:
5307 case CPU_DOWN_FAILED:
5308 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5309 break;
5310 case CPU_DOWN_PREPARE:
5311 smp_call_function_single(cpu, tsc_bad, NULL, 1);
5312 break;
5314 return NOTIFY_OK;
5317 static struct notifier_block kvmclock_cpu_notifier_block = {
5318 .notifier_call = kvmclock_cpu_notifier,
5319 .priority = -INT_MAX
5322 static void kvm_timer_init(void)
5324 int cpu;
5326 max_tsc_khz = tsc_khz;
5327 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5328 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5329 #ifdef CONFIG_CPU_FREQ
5330 struct cpufreq_policy policy;
5331 memset(&policy, 0, sizeof(policy));
5332 cpu = get_cpu();
5333 cpufreq_get_policy(&policy, cpu);
5334 if (policy.cpuinfo.max_freq)
5335 max_tsc_khz = policy.cpuinfo.max_freq;
5336 put_cpu();
5337 #endif
5338 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5339 CPUFREQ_TRANSITION_NOTIFIER);
5341 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5342 for_each_online_cpu(cpu)
5343 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5346 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5348 int kvm_is_in_guest(void)
5350 return __this_cpu_read(current_vcpu) != NULL;
5353 static int kvm_is_user_mode(void)
5355 int user_mode = 3;
5357 if (__this_cpu_read(current_vcpu))
5358 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5360 return user_mode != 0;
5363 static unsigned long kvm_get_guest_ip(void)
5365 unsigned long ip = 0;
5367 if (__this_cpu_read(current_vcpu))
5368 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5370 return ip;
5373 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5374 .is_in_guest = kvm_is_in_guest,
5375 .is_user_mode = kvm_is_user_mode,
5376 .get_guest_ip = kvm_get_guest_ip,
5379 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5381 __this_cpu_write(current_vcpu, vcpu);
5383 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5385 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5387 __this_cpu_write(current_vcpu, NULL);
5389 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5391 static void kvm_set_mmio_spte_mask(void)
5393 u64 mask;
5394 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5397 * Set the reserved bits and the present bit of an paging-structure
5398 * entry to generate page fault with PFER.RSV = 1.
5400 /* Mask the reserved physical address bits. */
5401 mask = ((1ull << (51 - maxphyaddr + 1)) - 1) << maxphyaddr;
5403 /* Bit 62 is always reserved for 32bit host. */
5404 mask |= 0x3ull << 62;
5406 /* Set the present bit. */
5407 mask |= 1ull;
5409 #ifdef CONFIG_X86_64
5411 * If reserved bit is not supported, clear the present bit to disable
5412 * mmio page fault.
5414 if (maxphyaddr == 52)
5415 mask &= ~1ull;
5416 #endif
5418 kvm_mmu_set_mmio_spte_mask(mask);
5421 #ifdef CONFIG_X86_64
5422 static void pvclock_gtod_update_fn(struct work_struct *work)
5424 struct kvm *kvm;
5426 struct kvm_vcpu *vcpu;
5427 int i;
5429 spin_lock(&kvm_lock);
5430 list_for_each_entry(kvm, &vm_list, vm_list)
5431 kvm_for_each_vcpu(i, vcpu, kvm)
5432 set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests);
5433 atomic_set(&kvm_guest_has_master_clock, 0);
5434 spin_unlock(&kvm_lock);
5437 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5440 * Notification about pvclock gtod data update.
5442 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5443 void *priv)
5445 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5446 struct timekeeper *tk = priv;
5448 update_pvclock_gtod(tk);
5450 /* disable master clock if host does not trust, or does not
5451 * use, TSC clocksource
5453 if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5454 atomic_read(&kvm_guest_has_master_clock) != 0)
5455 queue_work(system_long_wq, &pvclock_gtod_work);
5457 return 0;
5460 static struct notifier_block pvclock_gtod_notifier = {
5461 .notifier_call = pvclock_gtod_notify,
5463 #endif
5465 int kvm_arch_init(void *opaque)
5467 int r;
5468 struct kvm_x86_ops *ops = opaque;
5470 if (kvm_x86_ops) {
5471 printk(KERN_ERR "kvm: already loaded the other module\n");
5472 r = -EEXIST;
5473 goto out;
5476 if (!ops->cpu_has_kvm_support()) {
5477 printk(KERN_ERR "kvm: no hardware support\n");
5478 r = -EOPNOTSUPP;
5479 goto out;
5481 if (ops->disabled_by_bios()) {
5482 printk(KERN_ERR "kvm: disabled by bios\n");
5483 r = -EOPNOTSUPP;
5484 goto out;
5487 r = -ENOMEM;
5488 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5489 if (!shared_msrs) {
5490 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5491 goto out;
5494 r = kvm_mmu_module_init();
5495 if (r)
5496 goto out_free_percpu;
5498 kvm_set_mmio_spte_mask();
5499 kvm_init_msr_list();
5501 kvm_x86_ops = ops;
5502 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5503 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5505 kvm_timer_init();
5507 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5509 if (cpu_has_xsave)
5510 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5512 kvm_lapic_init();
5513 #ifdef CONFIG_X86_64
5514 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5515 #endif
5517 return 0;
5519 out_free_percpu:
5520 free_percpu(shared_msrs);
5521 out:
5522 return r;
5525 void kvm_arch_exit(void)
5527 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5529 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5530 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5531 CPUFREQ_TRANSITION_NOTIFIER);
5532 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5533 #ifdef CONFIG_X86_64
5534 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5535 #endif
5536 kvm_x86_ops = NULL;
5537 kvm_mmu_module_exit();
5538 free_percpu(shared_msrs);
5541 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5543 ++vcpu->stat.halt_exits;
5544 if (irqchip_in_kernel(vcpu->kvm)) {
5545 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5546 return 1;
5547 } else {
5548 vcpu->run->exit_reason = KVM_EXIT_HLT;
5549 return 0;
5552 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5554 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5556 u64 param, ingpa, outgpa, ret;
5557 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5558 bool fast, longmode;
5559 int cs_db, cs_l;
5562 * hypercall generates UD from non zero cpl and real mode
5563 * per HYPER-V spec
5565 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5566 kvm_queue_exception(vcpu, UD_VECTOR);
5567 return 0;
5570 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5571 longmode = is_long_mode(vcpu) && cs_l == 1;
5573 if (!longmode) {
5574 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5575 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5576 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5577 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5578 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5579 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5581 #ifdef CONFIG_X86_64
5582 else {
5583 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5584 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5585 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5587 #endif
5589 code = param & 0xffff;
5590 fast = (param >> 16) & 0x1;
5591 rep_cnt = (param >> 32) & 0xfff;
5592 rep_idx = (param >> 48) & 0xfff;
5594 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5596 switch (code) {
5597 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5598 kvm_vcpu_on_spin(vcpu);
5599 break;
5600 default:
5601 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5602 break;
5605 ret = res | (((u64)rep_done & 0xfff) << 32);
5606 if (longmode) {
5607 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5608 } else {
5609 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5610 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5613 return 1;
5617 * kvm_pv_kick_cpu_op: Kick a vcpu.
5619 * @apicid - apicid of vcpu to be kicked.
5621 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5623 struct kvm_lapic_irq lapic_irq;
5625 lapic_irq.shorthand = 0;
5626 lapic_irq.dest_mode = 0;
5627 lapic_irq.dest_id = apicid;
5629 lapic_irq.delivery_mode = APIC_DM_REMRD;
5630 kvm_irq_delivery_to_apic(kvm, 0, &lapic_irq, NULL);
5633 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5635 unsigned long nr, a0, a1, a2, a3, ret;
5636 int r = 1;
5638 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5639 return kvm_hv_hypercall(vcpu);
5641 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5642 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5643 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5644 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5645 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5647 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5649 if (!is_long_mode(vcpu)) {
5650 nr &= 0xFFFFFFFF;
5651 a0 &= 0xFFFFFFFF;
5652 a1 &= 0xFFFFFFFF;
5653 a2 &= 0xFFFFFFFF;
5654 a3 &= 0xFFFFFFFF;
5657 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5658 ret = -KVM_EPERM;
5659 goto out;
5662 switch (nr) {
5663 case KVM_HC_VAPIC_POLL_IRQ:
5664 ret = 0;
5665 break;
5666 case KVM_HC_KICK_CPU:
5667 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5668 ret = 0;
5669 break;
5670 default:
5671 ret = -KVM_ENOSYS;
5672 break;
5674 out:
5675 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5676 ++vcpu->stat.hypercalls;
5677 return r;
5679 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5681 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5683 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5684 char instruction[3];
5685 unsigned long rip = kvm_rip_read(vcpu);
5687 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5689 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5693 * Check if userspace requested an interrupt window, and that the
5694 * interrupt window is open.
5696 * No need to exit to userspace if we already have an interrupt queued.
5698 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5700 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5701 vcpu->run->request_interrupt_window &&
5702 kvm_arch_interrupt_allowed(vcpu));
5705 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5707 struct kvm_run *kvm_run = vcpu->run;
5709 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5710 kvm_run->cr8 = kvm_get_cr8(vcpu);
5711 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5712 if (irqchip_in_kernel(vcpu->kvm))
5713 kvm_run->ready_for_interrupt_injection = 1;
5714 else
5715 kvm_run->ready_for_interrupt_injection =
5716 kvm_arch_interrupt_allowed(vcpu) &&
5717 !kvm_cpu_has_interrupt(vcpu) &&
5718 !kvm_event_needs_reinjection(vcpu);
5721 static int vapic_enter(struct kvm_vcpu *vcpu)
5723 struct kvm_lapic *apic = vcpu->arch.apic;
5724 struct page *page;
5726 if (!apic || !apic->vapic_addr)
5727 return 0;
5729 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5730 if (is_error_page(page))
5731 return -EFAULT;
5733 vcpu->arch.apic->vapic_page = page;
5734 return 0;
5737 static void vapic_exit(struct kvm_vcpu *vcpu)
5739 struct kvm_lapic *apic = vcpu->arch.apic;
5740 int idx;
5742 if (!apic || !apic->vapic_addr)
5743 return;
5745 idx = srcu_read_lock(&vcpu->kvm->srcu);
5746 kvm_release_page_dirty(apic->vapic_page);
5747 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5748 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5751 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5753 int max_irr, tpr;
5755 if (!kvm_x86_ops->update_cr8_intercept)
5756 return;
5758 if (!vcpu->arch.apic)
5759 return;
5761 if (!vcpu->arch.apic->vapic_addr)
5762 max_irr = kvm_lapic_find_highest_irr(vcpu);
5763 else
5764 max_irr = -1;
5766 if (max_irr != -1)
5767 max_irr >>= 4;
5769 tpr = kvm_lapic_get_cr8(vcpu);
5771 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5774 static void inject_pending_event(struct kvm_vcpu *vcpu)
5776 /* try to reinject previous events if any */
5777 if (vcpu->arch.exception.pending) {
5778 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5779 vcpu->arch.exception.has_error_code,
5780 vcpu->arch.exception.error_code);
5781 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5782 vcpu->arch.exception.has_error_code,
5783 vcpu->arch.exception.error_code,
5784 vcpu->arch.exception.reinject);
5785 return;
5788 if (vcpu->arch.nmi_injected) {
5789 kvm_x86_ops->set_nmi(vcpu);
5790 return;
5793 if (vcpu->arch.interrupt.pending) {
5794 kvm_x86_ops->set_irq(vcpu);
5795 return;
5798 /* try to inject new event if pending */
5799 if (vcpu->arch.nmi_pending) {
5800 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5801 --vcpu->arch.nmi_pending;
5802 vcpu->arch.nmi_injected = true;
5803 kvm_x86_ops->set_nmi(vcpu);
5805 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
5806 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5807 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5808 false);
5809 kvm_x86_ops->set_irq(vcpu);
5814 static void process_nmi(struct kvm_vcpu *vcpu)
5816 unsigned limit = 2;
5819 * x86 is limited to one NMI running, and one NMI pending after it.
5820 * If an NMI is already in progress, limit further NMIs to just one.
5821 * Otherwise, allow two (and we'll inject the first one immediately).
5823 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
5824 limit = 1;
5826 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
5827 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
5828 kvm_make_request(KVM_REQ_EVENT, vcpu);
5831 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
5833 u64 eoi_exit_bitmap[4];
5834 u32 tmr[8];
5836 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
5837 return;
5839 memset(eoi_exit_bitmap, 0, 32);
5840 memset(tmr, 0, 32);
5842 kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr);
5843 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
5844 kvm_apic_update_tmr(vcpu, tmr);
5847 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5849 int r;
5850 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5851 vcpu->run->request_interrupt_window;
5852 bool req_immediate_exit = false;
5854 if (vcpu->requests) {
5855 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5856 kvm_mmu_unload(vcpu);
5857 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5858 __kvm_migrate_timers(vcpu);
5859 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
5860 kvm_gen_update_masterclock(vcpu->kvm);
5861 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
5862 kvm_gen_kvmclock_update(vcpu);
5863 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5864 r = kvm_guest_time_update(vcpu);
5865 if (unlikely(r))
5866 goto out;
5868 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5869 kvm_mmu_sync_roots(vcpu);
5870 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5871 kvm_x86_ops->tlb_flush(vcpu);
5872 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5873 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5874 r = 0;
5875 goto out;
5877 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5878 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5879 r = 0;
5880 goto out;
5882 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5883 vcpu->fpu_active = 0;
5884 kvm_x86_ops->fpu_deactivate(vcpu);
5886 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5887 /* Page is swapped out. Do synthetic halt */
5888 vcpu->arch.apf.halted = true;
5889 r = 1;
5890 goto out;
5892 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5893 record_steal_time(vcpu);
5894 if (kvm_check_request(KVM_REQ_NMI, vcpu))
5895 process_nmi(vcpu);
5896 if (kvm_check_request(KVM_REQ_PMU, vcpu))
5897 kvm_handle_pmu_event(vcpu);
5898 if (kvm_check_request(KVM_REQ_PMI, vcpu))
5899 kvm_deliver_pmi(vcpu);
5900 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
5901 vcpu_scan_ioapic(vcpu);
5904 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5905 kvm_apic_accept_events(vcpu);
5906 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
5907 r = 1;
5908 goto out;
5911 inject_pending_event(vcpu);
5913 /* enable NMI/IRQ window open exits if needed */
5914 if (vcpu->arch.nmi_pending)
5915 req_immediate_exit =
5916 kvm_x86_ops->enable_nmi_window(vcpu) != 0;
5917 else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
5918 req_immediate_exit =
5919 kvm_x86_ops->enable_irq_window(vcpu) != 0;
5921 if (kvm_lapic_enabled(vcpu)) {
5923 * Update architecture specific hints for APIC
5924 * virtual interrupt delivery.
5926 if (kvm_x86_ops->hwapic_irr_update)
5927 kvm_x86_ops->hwapic_irr_update(vcpu,
5928 kvm_lapic_find_highest_irr(vcpu));
5929 update_cr8_intercept(vcpu);
5930 kvm_lapic_sync_to_vapic(vcpu);
5934 r = kvm_mmu_reload(vcpu);
5935 if (unlikely(r)) {
5936 goto cancel_injection;
5939 preempt_disable();
5941 kvm_x86_ops->prepare_guest_switch(vcpu);
5942 if (vcpu->fpu_active)
5943 kvm_load_guest_fpu(vcpu);
5944 kvm_load_guest_xcr0(vcpu);
5946 vcpu->mode = IN_GUEST_MODE;
5948 /* We should set ->mode before check ->requests,
5949 * see the comment in make_all_cpus_request.
5951 smp_mb();
5953 local_irq_disable();
5955 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5956 || need_resched() || signal_pending(current)) {
5957 vcpu->mode = OUTSIDE_GUEST_MODE;
5958 smp_wmb();
5959 local_irq_enable();
5960 preempt_enable();
5961 r = 1;
5962 goto cancel_injection;
5965 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5967 if (req_immediate_exit)
5968 smp_send_reschedule(vcpu->cpu);
5970 kvm_guest_enter();
5972 if (unlikely(vcpu->arch.switch_db_regs)) {
5973 set_debugreg(0, 7);
5974 set_debugreg(vcpu->arch.eff_db[0], 0);
5975 set_debugreg(vcpu->arch.eff_db[1], 1);
5976 set_debugreg(vcpu->arch.eff_db[2], 2);
5977 set_debugreg(vcpu->arch.eff_db[3], 3);
5980 trace_kvm_entry(vcpu->vcpu_id);
5981 kvm_x86_ops->run(vcpu);
5984 * If the guest has used debug registers, at least dr7
5985 * will be disabled while returning to the host.
5986 * If we don't have active breakpoints in the host, we don't
5987 * care about the messed up debug address registers. But if
5988 * we have some of them active, restore the old state.
5990 if (hw_breakpoint_active())
5991 hw_breakpoint_restore();
5993 vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu,
5994 native_read_tsc());
5996 vcpu->mode = OUTSIDE_GUEST_MODE;
5997 smp_wmb();
5999 /* Interrupt is enabled by handle_external_intr() */
6000 kvm_x86_ops->handle_external_intr(vcpu);
6002 ++vcpu->stat.exits;
6005 * We must have an instruction between local_irq_enable() and
6006 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6007 * the interrupt shadow. The stat.exits increment will do nicely.
6008 * But we need to prevent reordering, hence this barrier():
6010 barrier();
6012 kvm_guest_exit();
6014 preempt_enable();
6016 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6019 * Profile KVM exit RIPs:
6021 if (unlikely(prof_on == KVM_PROFILING)) {
6022 unsigned long rip = kvm_rip_read(vcpu);
6023 profile_hit(KVM_PROFILING, (void *)rip);
6026 if (unlikely(vcpu->arch.tsc_always_catchup))
6027 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6029 if (vcpu->arch.apic_attention)
6030 kvm_lapic_sync_from_vapic(vcpu);
6032 r = kvm_x86_ops->handle_exit(vcpu);
6033 return r;
6035 cancel_injection:
6036 kvm_x86_ops->cancel_injection(vcpu);
6037 if (unlikely(vcpu->arch.apic_attention))
6038 kvm_lapic_sync_from_vapic(vcpu);
6039 out:
6040 return r;
6044 static int __vcpu_run(struct kvm_vcpu *vcpu)
6046 int r;
6047 struct kvm *kvm = vcpu->kvm;
6049 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6050 r = vapic_enter(vcpu);
6051 if (r) {
6052 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6053 return r;
6056 r = 1;
6057 while (r > 0) {
6058 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6059 !vcpu->arch.apf.halted)
6060 r = vcpu_enter_guest(vcpu);
6061 else {
6062 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6063 kvm_vcpu_block(vcpu);
6064 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6065 if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
6066 kvm_apic_accept_events(vcpu);
6067 switch(vcpu->arch.mp_state) {
6068 case KVM_MP_STATE_HALTED:
6069 vcpu->arch.pv.pv_unhalted = false;
6070 vcpu->arch.mp_state =
6071 KVM_MP_STATE_RUNNABLE;
6072 case KVM_MP_STATE_RUNNABLE:
6073 vcpu->arch.apf.halted = false;
6074 break;
6075 case KVM_MP_STATE_INIT_RECEIVED:
6076 break;
6077 default:
6078 r = -EINTR;
6079 break;
6084 if (r <= 0)
6085 break;
6087 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6088 if (kvm_cpu_has_pending_timer(vcpu))
6089 kvm_inject_pending_timer_irqs(vcpu);
6091 if (dm_request_for_irq_injection(vcpu)) {
6092 r = -EINTR;
6093 vcpu->run->exit_reason = KVM_EXIT_INTR;
6094 ++vcpu->stat.request_irq_exits;
6097 kvm_check_async_pf_completion(vcpu);
6099 if (signal_pending(current)) {
6100 r = -EINTR;
6101 vcpu->run->exit_reason = KVM_EXIT_INTR;
6102 ++vcpu->stat.signal_exits;
6104 if (need_resched()) {
6105 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6106 kvm_resched(vcpu);
6107 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6111 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6113 vapic_exit(vcpu);
6115 return r;
6118 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6120 int r;
6121 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6122 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6123 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6124 if (r != EMULATE_DONE)
6125 return 0;
6126 return 1;
6129 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6131 BUG_ON(!vcpu->arch.pio.count);
6133 return complete_emulated_io(vcpu);
6137 * Implements the following, as a state machine:
6139 * read:
6140 * for each fragment
6141 * for each mmio piece in the fragment
6142 * write gpa, len
6143 * exit
6144 * copy data
6145 * execute insn
6147 * write:
6148 * for each fragment
6149 * for each mmio piece in the fragment
6150 * write gpa, len
6151 * copy data
6152 * exit
6154 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6156 struct kvm_run *run = vcpu->run;
6157 struct kvm_mmio_fragment *frag;
6158 unsigned len;
6160 BUG_ON(!vcpu->mmio_needed);
6162 /* Complete previous fragment */
6163 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6164 len = min(8u, frag->len);
6165 if (!vcpu->mmio_is_write)
6166 memcpy(frag->data, run->mmio.data, len);
6168 if (frag->len <= 8) {
6169 /* Switch to the next fragment. */
6170 frag++;
6171 vcpu->mmio_cur_fragment++;
6172 } else {
6173 /* Go forward to the next mmio piece. */
6174 frag->data += len;
6175 frag->gpa += len;
6176 frag->len -= len;
6179 if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) {
6180 vcpu->mmio_needed = 0;
6182 /* FIXME: return into emulator if single-stepping. */
6183 if (vcpu->mmio_is_write)
6184 return 1;
6185 vcpu->mmio_read_completed = 1;
6186 return complete_emulated_io(vcpu);
6189 run->exit_reason = KVM_EXIT_MMIO;
6190 run->mmio.phys_addr = frag->gpa;
6191 if (vcpu->mmio_is_write)
6192 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6193 run->mmio.len = min(8u, frag->len);
6194 run->mmio.is_write = vcpu->mmio_is_write;
6195 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6196 return 0;
6200 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6202 int r;
6203 sigset_t sigsaved;
6205 if (!tsk_used_math(current) && init_fpu(current))
6206 return -ENOMEM;
6208 if (vcpu->sigset_active)
6209 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6211 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6212 kvm_vcpu_block(vcpu);
6213 kvm_apic_accept_events(vcpu);
6214 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6215 r = -EAGAIN;
6216 goto out;
6219 /* re-sync apic's tpr */
6220 if (!irqchip_in_kernel(vcpu->kvm)) {
6221 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6222 r = -EINVAL;
6223 goto out;
6227 if (unlikely(vcpu->arch.complete_userspace_io)) {
6228 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6229 vcpu->arch.complete_userspace_io = NULL;
6230 r = cui(vcpu);
6231 if (r <= 0)
6232 goto out;
6233 } else
6234 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6236 r = __vcpu_run(vcpu);
6238 out:
6239 post_kvm_run_save(vcpu);
6240 if (vcpu->sigset_active)
6241 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6243 return r;
6246 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6248 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6250 * We are here if userspace calls get_regs() in the middle of
6251 * instruction emulation. Registers state needs to be copied
6252 * back from emulation context to vcpu. Userspace shouldn't do
6253 * that usually, but some bad designed PV devices (vmware
6254 * backdoor interface) need this to work
6256 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6257 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6259 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6260 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6261 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6262 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6263 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6264 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6265 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6266 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6267 #ifdef CONFIG_X86_64
6268 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6269 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6270 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6271 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6272 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6273 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6274 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6275 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6276 #endif
6278 regs->rip = kvm_rip_read(vcpu);
6279 regs->rflags = kvm_get_rflags(vcpu);
6281 return 0;
6284 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6286 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6287 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6289 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
6290 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
6291 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
6292 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
6293 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
6294 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
6295 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
6296 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
6297 #ifdef CONFIG_X86_64
6298 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
6299 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
6300 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
6301 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
6302 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
6303 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
6304 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
6305 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
6306 #endif
6308 kvm_rip_write(vcpu, regs->rip);
6309 kvm_set_rflags(vcpu, regs->rflags);
6311 vcpu->arch.exception.pending = false;
6313 kvm_make_request(KVM_REQ_EVENT, vcpu);
6315 return 0;
6318 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
6320 struct kvm_segment cs;
6322 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6323 *db = cs.db;
6324 *l = cs.l;
6326 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
6328 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
6329 struct kvm_sregs *sregs)
6331 struct desc_ptr dt;
6333 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6334 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6335 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6336 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6337 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6338 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6340 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6341 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6343 kvm_x86_ops->get_idt(vcpu, &dt);
6344 sregs->idt.limit = dt.size;
6345 sregs->idt.base = dt.address;
6346 kvm_x86_ops->get_gdt(vcpu, &dt);
6347 sregs->gdt.limit = dt.size;
6348 sregs->gdt.base = dt.address;
6350 sregs->cr0 = kvm_read_cr0(vcpu);
6351 sregs->cr2 = vcpu->arch.cr2;
6352 sregs->cr3 = kvm_read_cr3(vcpu);
6353 sregs->cr4 = kvm_read_cr4(vcpu);
6354 sregs->cr8 = kvm_get_cr8(vcpu);
6355 sregs->efer = vcpu->arch.efer;
6356 sregs->apic_base = kvm_get_apic_base(vcpu);
6358 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
6360 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
6361 set_bit(vcpu->arch.interrupt.nr,
6362 (unsigned long *)sregs->interrupt_bitmap);
6364 return 0;
6367 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6368 struct kvm_mp_state *mp_state)
6370 kvm_apic_accept_events(vcpu);
6371 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
6372 vcpu->arch.pv.pv_unhalted)
6373 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
6374 else
6375 mp_state->mp_state = vcpu->arch.mp_state;
6377 return 0;
6380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6381 struct kvm_mp_state *mp_state)
6383 if (!kvm_vcpu_has_lapic(vcpu) &&
6384 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
6385 return -EINVAL;
6387 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
6388 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
6389 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
6390 } else
6391 vcpu->arch.mp_state = mp_state->mp_state;
6392 kvm_make_request(KVM_REQ_EVENT, vcpu);
6393 return 0;
6396 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
6397 int reason, bool has_error_code, u32 error_code)
6399 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6400 int ret;
6402 init_emulate_ctxt(vcpu);
6404 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
6405 has_error_code, error_code);
6407 if (ret)
6408 return EMULATE_FAIL;
6410 kvm_rip_write(vcpu, ctxt->eip);
6411 kvm_set_rflags(vcpu, ctxt->eflags);
6412 kvm_make_request(KVM_REQ_EVENT, vcpu);
6413 return EMULATE_DONE;
6415 EXPORT_SYMBOL_GPL(kvm_task_switch);
6417 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6418 struct kvm_sregs *sregs)
6420 int mmu_reset_needed = 0;
6421 int pending_vec, max_bits, idx;
6422 struct desc_ptr dt;
6424 if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
6425 return -EINVAL;
6427 dt.size = sregs->idt.limit;
6428 dt.address = sregs->idt.base;
6429 kvm_x86_ops->set_idt(vcpu, &dt);
6430 dt.size = sregs->gdt.limit;
6431 dt.address = sregs->gdt.base;
6432 kvm_x86_ops->set_gdt(vcpu, &dt);
6434 vcpu->arch.cr2 = sregs->cr2;
6435 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6436 vcpu->arch.cr3 = sregs->cr3;
6437 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6439 kvm_set_cr8(vcpu, sregs->cr8);
6441 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6442 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6443 kvm_set_apic_base(vcpu, sregs->apic_base);
6445 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6446 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6447 vcpu->arch.cr0 = sregs->cr0;
6449 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6450 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6451 if (sregs->cr4 & X86_CR4_OSXSAVE)
6452 kvm_update_cpuid(vcpu);
6454 idx = srcu_read_lock(&vcpu->kvm->srcu);
6455 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6456 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6457 mmu_reset_needed = 1;
6459 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6461 if (mmu_reset_needed)
6462 kvm_mmu_reset_context(vcpu);
6464 max_bits = KVM_NR_INTERRUPTS;
6465 pending_vec = find_first_bit(
6466 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6467 if (pending_vec < max_bits) {
6468 kvm_queue_interrupt(vcpu, pending_vec, false);
6469 pr_debug("Set back pending irq %d\n", pending_vec);
6472 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6473 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6474 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6475 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6476 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6477 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6479 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6480 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6482 update_cr8_intercept(vcpu);
6484 /* Older userspace won't unhalt the vcpu on reset. */
6485 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6486 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6487 !is_protmode(vcpu))
6488 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6490 kvm_make_request(KVM_REQ_EVENT, vcpu);
6492 return 0;
6495 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6496 struct kvm_guest_debug *dbg)
6498 unsigned long rflags;
6499 int i, r;
6501 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6502 r = -EBUSY;
6503 if (vcpu->arch.exception.pending)
6504 goto out;
6505 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6506 kvm_queue_exception(vcpu, DB_VECTOR);
6507 else
6508 kvm_queue_exception(vcpu, BP_VECTOR);
6512 * Read rflags as long as potentially injected trace flags are still
6513 * filtered out.
6515 rflags = kvm_get_rflags(vcpu);
6517 vcpu->guest_debug = dbg->control;
6518 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6519 vcpu->guest_debug = 0;
6521 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6522 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6523 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6524 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
6525 } else {
6526 for (i = 0; i < KVM_NR_DB_REGS; i++)
6527 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6529 kvm_update_dr7(vcpu);
6531 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6532 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6533 get_segment_base(vcpu, VCPU_SREG_CS);
6536 * Trigger an rflags update that will inject or remove the trace
6537 * flags.
6539 kvm_set_rflags(vcpu, rflags);
6541 kvm_x86_ops->update_db_bp_intercept(vcpu);
6543 r = 0;
6545 out:
6547 return r;
6551 * Translate a guest virtual address to a guest physical address.
6553 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6554 struct kvm_translation *tr)
6556 unsigned long vaddr = tr->linear_address;
6557 gpa_t gpa;
6558 int idx;
6560 idx = srcu_read_lock(&vcpu->kvm->srcu);
6561 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6562 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6563 tr->physical_address = gpa;
6564 tr->valid = gpa != UNMAPPED_GVA;
6565 tr->writeable = 1;
6566 tr->usermode = 0;
6568 return 0;
6571 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6573 struct i387_fxsave_struct *fxsave =
6574 &vcpu->arch.guest_fpu.state->fxsave;
6576 memcpy(fpu->fpr, fxsave->st_space, 128);
6577 fpu->fcw = fxsave->cwd;
6578 fpu->fsw = fxsave->swd;
6579 fpu->ftwx = fxsave->twd;
6580 fpu->last_opcode = fxsave->fop;
6581 fpu->last_ip = fxsave->rip;
6582 fpu->last_dp = fxsave->rdp;
6583 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6585 return 0;
6588 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6590 struct i387_fxsave_struct *fxsave =
6591 &vcpu->arch.guest_fpu.state->fxsave;
6593 memcpy(fxsave->st_space, fpu->fpr, 128);
6594 fxsave->cwd = fpu->fcw;
6595 fxsave->swd = fpu->fsw;
6596 fxsave->twd = fpu->ftwx;
6597 fxsave->fop = fpu->last_opcode;
6598 fxsave->rip = fpu->last_ip;
6599 fxsave->rdp = fpu->last_dp;
6600 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6602 return 0;
6605 int fx_init(struct kvm_vcpu *vcpu)
6607 int err;
6609 err = fpu_alloc(&vcpu->arch.guest_fpu);
6610 if (err)
6611 return err;
6613 fpu_finit(&vcpu->arch.guest_fpu);
6616 * Ensure guest xcr0 is valid for loading
6618 vcpu->arch.xcr0 = XSTATE_FP;
6620 vcpu->arch.cr0 |= X86_CR0_ET;
6622 return 0;
6624 EXPORT_SYMBOL_GPL(fx_init);
6626 static void fx_free(struct kvm_vcpu *vcpu)
6628 fpu_free(&vcpu->arch.guest_fpu);
6631 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6633 if (vcpu->guest_fpu_loaded)
6634 return;
6637 * Restore all possible states in the guest,
6638 * and assume host would use all available bits.
6639 * Guest xcr0 would be loaded later.
6641 kvm_put_guest_xcr0(vcpu);
6642 vcpu->guest_fpu_loaded = 1;
6643 __kernel_fpu_begin();
6644 fpu_restore_checking(&vcpu->arch.guest_fpu);
6645 trace_kvm_fpu(1);
6648 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6650 kvm_put_guest_xcr0(vcpu);
6652 if (!vcpu->guest_fpu_loaded)
6653 return;
6655 vcpu->guest_fpu_loaded = 0;
6656 fpu_save_init(&vcpu->arch.guest_fpu);
6657 __kernel_fpu_end();
6658 ++vcpu->stat.fpu_reload;
6659 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6660 trace_kvm_fpu(0);
6663 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6665 kvmclock_reset(vcpu);
6667 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6668 fx_free(vcpu);
6669 kvm_x86_ops->vcpu_free(vcpu);
6672 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6673 unsigned int id)
6675 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6676 printk_once(KERN_WARNING
6677 "kvm: SMP vm created on host with unstable TSC; "
6678 "guest TSC will not be reliable\n");
6679 return kvm_x86_ops->vcpu_create(kvm, id);
6682 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6684 int r;
6686 vcpu->arch.mtrr_state.have_fixed = 1;
6687 r = vcpu_load(vcpu);
6688 if (r)
6689 return r;
6690 kvm_vcpu_reset(vcpu);
6691 r = kvm_mmu_setup(vcpu);
6692 vcpu_put(vcpu);
6694 return r;
6697 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
6699 int r;
6700 struct msr_data msr;
6702 r = vcpu_load(vcpu);
6703 if (r)
6704 return r;
6705 msr.data = 0x0;
6706 msr.index = MSR_IA32_TSC;
6707 msr.host_initiated = true;
6708 kvm_write_tsc(vcpu, &msr);
6709 vcpu_put(vcpu);
6711 return r;
6714 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6716 int r;
6717 vcpu->arch.apf.msr_val = 0;
6719 r = vcpu_load(vcpu);
6720 BUG_ON(r);
6721 kvm_mmu_unload(vcpu);
6722 vcpu_put(vcpu);
6724 fx_free(vcpu);
6725 kvm_x86_ops->vcpu_free(vcpu);
6728 void kvm_vcpu_reset(struct kvm_vcpu *vcpu)
6730 atomic_set(&vcpu->arch.nmi_queued, 0);
6731 vcpu->arch.nmi_pending = 0;
6732 vcpu->arch.nmi_injected = false;
6734 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6735 vcpu->arch.dr6 = DR6_FIXED_1;
6736 vcpu->arch.dr7 = DR7_FIXED_1;
6737 kvm_update_dr7(vcpu);
6739 kvm_make_request(KVM_REQ_EVENT, vcpu);
6740 vcpu->arch.apf.msr_val = 0;
6741 vcpu->arch.st.msr_val = 0;
6743 kvmclock_reset(vcpu);
6745 kvm_clear_async_pf_completion_queue(vcpu);
6746 kvm_async_pf_hash_reset(vcpu);
6747 vcpu->arch.apf.halted = false;
6749 kvm_pmu_reset(vcpu);
6751 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
6752 vcpu->arch.regs_avail = ~0;
6753 vcpu->arch.regs_dirty = ~0;
6755 kvm_x86_ops->vcpu_reset(vcpu);
6758 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector)
6760 struct kvm_segment cs;
6762 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
6763 cs.selector = vector << 8;
6764 cs.base = vector << 12;
6765 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6766 kvm_rip_write(vcpu, 0);
6769 int kvm_arch_hardware_enable(void *garbage)
6771 struct kvm *kvm;
6772 struct kvm_vcpu *vcpu;
6773 int i;
6774 int ret;
6775 u64 local_tsc;
6776 u64 max_tsc = 0;
6777 bool stable, backwards_tsc = false;
6779 kvm_shared_msr_cpu_online();
6780 ret = kvm_x86_ops->hardware_enable(garbage);
6781 if (ret != 0)
6782 return ret;
6784 local_tsc = native_read_tsc();
6785 stable = !check_tsc_unstable();
6786 list_for_each_entry(kvm, &vm_list, vm_list) {
6787 kvm_for_each_vcpu(i, vcpu, kvm) {
6788 if (!stable && vcpu->cpu == smp_processor_id())
6789 set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests);
6790 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
6791 backwards_tsc = true;
6792 if (vcpu->arch.last_host_tsc > max_tsc)
6793 max_tsc = vcpu->arch.last_host_tsc;
6799 * Sometimes, even reliable TSCs go backwards. This happens on
6800 * platforms that reset TSC during suspend or hibernate actions, but
6801 * maintain synchronization. We must compensate. Fortunately, we can
6802 * detect that condition here, which happens early in CPU bringup,
6803 * before any KVM threads can be running. Unfortunately, we can't
6804 * bring the TSCs fully up to date with real time, as we aren't yet far
6805 * enough into CPU bringup that we know how much real time has actually
6806 * elapsed; our helper function, get_kernel_ns() will be using boot
6807 * variables that haven't been updated yet.
6809 * So we simply find the maximum observed TSC above, then record the
6810 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
6811 * the adjustment will be applied. Note that we accumulate
6812 * adjustments, in case multiple suspend cycles happen before some VCPU
6813 * gets a chance to run again. In the event that no KVM threads get a
6814 * chance to run, we will miss the entire elapsed period, as we'll have
6815 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
6816 * loose cycle time. This isn't too big a deal, since the loss will be
6817 * uniform across all VCPUs (not to mention the scenario is extremely
6818 * unlikely). It is possible that a second hibernate recovery happens
6819 * much faster than a first, causing the observed TSC here to be
6820 * smaller; this would require additional padding adjustment, which is
6821 * why we set last_host_tsc to the local tsc observed here.
6823 * N.B. - this code below runs only on platforms with reliable TSC,
6824 * as that is the only way backwards_tsc is set above. Also note
6825 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
6826 * have the same delta_cyc adjustment applied if backwards_tsc
6827 * is detected. Note further, this adjustment is only done once,
6828 * as we reset last_host_tsc on all VCPUs to stop this from being
6829 * called multiple times (one for each physical CPU bringup).
6831 * Platforms with unreliable TSCs don't have to deal with this, they
6832 * will be compensated by the logic in vcpu_load, which sets the TSC to
6833 * catchup mode. This will catchup all VCPUs to real time, but cannot
6834 * guarantee that they stay in perfect synchronization.
6836 if (backwards_tsc) {
6837 u64 delta_cyc = max_tsc - local_tsc;
6838 list_for_each_entry(kvm, &vm_list, vm_list) {
6839 kvm_for_each_vcpu(i, vcpu, kvm) {
6840 vcpu->arch.tsc_offset_adjustment += delta_cyc;
6841 vcpu->arch.last_host_tsc = local_tsc;
6842 set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
6843 &vcpu->requests);
6847 * We have to disable TSC offset matching.. if you were
6848 * booting a VM while issuing an S4 host suspend....
6849 * you may have some problem. Solving this issue is
6850 * left as an exercise to the reader.
6852 kvm->arch.last_tsc_nsec = 0;
6853 kvm->arch.last_tsc_write = 0;
6857 return 0;
6860 void kvm_arch_hardware_disable(void *garbage)
6862 kvm_x86_ops->hardware_disable(garbage);
6863 drop_user_return_notifiers(garbage);
6866 int kvm_arch_hardware_setup(void)
6868 return kvm_x86_ops->hardware_setup();
6871 void kvm_arch_hardware_unsetup(void)
6873 kvm_x86_ops->hardware_unsetup();
6876 void kvm_arch_check_processor_compat(void *rtn)
6878 kvm_x86_ops->check_processor_compatibility(rtn);
6881 bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
6883 return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL);
6886 struct static_key kvm_no_apic_vcpu __read_mostly;
6888 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6890 struct page *page;
6891 struct kvm *kvm;
6892 int r;
6894 BUG_ON(vcpu->kvm == NULL);
6895 kvm = vcpu->kvm;
6897 vcpu->arch.pv.pv_unhalted = false;
6898 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6899 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6900 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6901 else
6902 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6904 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6905 if (!page) {
6906 r = -ENOMEM;
6907 goto fail;
6909 vcpu->arch.pio_data = page_address(page);
6911 kvm_set_tsc_khz(vcpu, max_tsc_khz);
6913 r = kvm_mmu_create(vcpu);
6914 if (r < 0)
6915 goto fail_free_pio_data;
6917 if (irqchip_in_kernel(kvm)) {
6918 r = kvm_create_lapic(vcpu);
6919 if (r < 0)
6920 goto fail_mmu_destroy;
6921 } else
6922 static_key_slow_inc(&kvm_no_apic_vcpu);
6924 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6925 GFP_KERNEL);
6926 if (!vcpu->arch.mce_banks) {
6927 r = -ENOMEM;
6928 goto fail_free_lapic;
6930 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6932 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
6933 r = -ENOMEM;
6934 goto fail_free_mce_banks;
6937 r = fx_init(vcpu);
6938 if (r)
6939 goto fail_free_wbinvd_dirty_mask;
6941 vcpu->arch.ia32_tsc_adjust_msr = 0x0;
6942 vcpu->arch.pv_time_enabled = false;
6943 kvm_async_pf_hash_reset(vcpu);
6944 kvm_pmu_init(vcpu);
6946 return 0;
6947 fail_free_wbinvd_dirty_mask:
6948 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6949 fail_free_mce_banks:
6950 kfree(vcpu->arch.mce_banks);
6951 fail_free_lapic:
6952 kvm_free_lapic(vcpu);
6953 fail_mmu_destroy:
6954 kvm_mmu_destroy(vcpu);
6955 fail_free_pio_data:
6956 free_page((unsigned long)vcpu->arch.pio_data);
6957 fail:
6958 return r;
6961 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6963 int idx;
6965 kvm_pmu_destroy(vcpu);
6966 kfree(vcpu->arch.mce_banks);
6967 kvm_free_lapic(vcpu);
6968 idx = srcu_read_lock(&vcpu->kvm->srcu);
6969 kvm_mmu_destroy(vcpu);
6970 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6971 free_page((unsigned long)vcpu->arch.pio_data);
6972 if (!irqchip_in_kernel(vcpu->kvm))
6973 static_key_slow_dec(&kvm_no_apic_vcpu);
6976 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
6978 if (type)
6979 return -EINVAL;
6981 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6982 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
6983 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6985 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6986 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6987 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
6988 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
6989 &kvm->arch.irq_sources_bitmap);
6991 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6992 mutex_init(&kvm->arch.apic_map_lock);
6993 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
6995 pvclock_update_vm_gtod_copy(kvm);
6997 return 0;
7000 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7002 int r;
7003 r = vcpu_load(vcpu);
7004 BUG_ON(r);
7005 kvm_mmu_unload(vcpu);
7006 vcpu_put(vcpu);
7009 static void kvm_free_vcpus(struct kvm *kvm)
7011 unsigned int i;
7012 struct kvm_vcpu *vcpu;
7015 * Unpin any mmu pages first.
7017 kvm_for_each_vcpu(i, vcpu, kvm) {
7018 kvm_clear_async_pf_completion_queue(vcpu);
7019 kvm_unload_vcpu_mmu(vcpu);
7021 kvm_for_each_vcpu(i, vcpu, kvm)
7022 kvm_arch_vcpu_free(vcpu);
7024 mutex_lock(&kvm->lock);
7025 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7026 kvm->vcpus[i] = NULL;
7028 atomic_set(&kvm->online_vcpus, 0);
7029 mutex_unlock(&kvm->lock);
7032 void kvm_arch_sync_events(struct kvm *kvm)
7034 kvm_free_all_assigned_devices(kvm);
7035 kvm_free_pit(kvm);
7038 void kvm_arch_destroy_vm(struct kvm *kvm)
7040 if (current->mm == kvm->mm) {
7042 * Free memory regions allocated on behalf of userspace,
7043 * unless the the memory map has changed due to process exit
7044 * or fd copying.
7046 struct kvm_userspace_memory_region mem;
7047 memset(&mem, 0, sizeof(mem));
7048 mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
7049 kvm_set_memory_region(kvm, &mem);
7051 mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
7052 kvm_set_memory_region(kvm, &mem);
7054 mem.slot = TSS_PRIVATE_MEMSLOT;
7055 kvm_set_memory_region(kvm, &mem);
7057 kvm_iommu_unmap_guest(kvm);
7058 kfree(kvm->arch.vpic);
7059 kfree(kvm->arch.vioapic);
7060 kvm_free_vcpus(kvm);
7061 if (kvm->arch.apic_access_page)
7062 put_page(kvm->arch.apic_access_page);
7063 if (kvm->arch.ept_identity_pagetable)
7064 put_page(kvm->arch.ept_identity_pagetable);
7065 kfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7068 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
7069 struct kvm_memory_slot *dont)
7071 int i;
7073 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7074 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7075 kvm_kvfree(free->arch.rmap[i]);
7076 free->arch.rmap[i] = NULL;
7078 if (i == 0)
7079 continue;
7081 if (!dont || free->arch.lpage_info[i - 1] !=
7082 dont->arch.lpage_info[i - 1]) {
7083 kvm_kvfree(free->arch.lpage_info[i - 1]);
7084 free->arch.lpage_info[i - 1] = NULL;
7089 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
7091 int i;
7093 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7094 unsigned long ugfn;
7095 int lpages;
7096 int level = i + 1;
7098 lpages = gfn_to_index(slot->base_gfn + npages - 1,
7099 slot->base_gfn, level) + 1;
7101 slot->arch.rmap[i] =
7102 kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7103 if (!slot->arch.rmap[i])
7104 goto out_free;
7105 if (i == 0)
7106 continue;
7108 slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages *
7109 sizeof(*slot->arch.lpage_info[i - 1]));
7110 if (!slot->arch.lpage_info[i - 1])
7111 goto out_free;
7113 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7114 slot->arch.lpage_info[i - 1][0].write_count = 1;
7115 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7116 slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1;
7117 ugfn = slot->userspace_addr >> PAGE_SHIFT;
7119 * If the gfn and userspace address are not aligned wrt each
7120 * other, or if explicitly asked to, disable large page
7121 * support for this slot
7123 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7124 !kvm_largepages_enabled()) {
7125 unsigned long j;
7127 for (j = 0; j < lpages; ++j)
7128 slot->arch.lpage_info[i - 1][j].write_count = 1;
7132 return 0;
7134 out_free:
7135 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7136 kvm_kvfree(slot->arch.rmap[i]);
7137 slot->arch.rmap[i] = NULL;
7138 if (i == 0)
7139 continue;
7141 kvm_kvfree(slot->arch.lpage_info[i - 1]);
7142 slot->arch.lpage_info[i - 1] = NULL;
7144 return -ENOMEM;
7147 void kvm_arch_memslots_updated(struct kvm *kvm)
7150 * memslots->generation has been incremented.
7151 * mmio generation may have reached its maximum value.
7153 kvm_mmu_invalidate_mmio_sptes(kvm);
7156 int kvm_arch_prepare_memory_region(struct kvm *kvm,
7157 struct kvm_memory_slot *memslot,
7158 struct kvm_userspace_memory_region *mem,
7159 enum kvm_mr_change change)
7162 * Only private memory slots need to be mapped here since
7163 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7165 if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) {
7166 unsigned long userspace_addr;
7169 * MAP_SHARED to prevent internal slot pages from being moved
7170 * by fork()/COW.
7172 userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE,
7173 PROT_READ | PROT_WRITE,
7174 MAP_SHARED | MAP_ANONYMOUS, 0);
7176 if (IS_ERR((void *)userspace_addr))
7177 return PTR_ERR((void *)userspace_addr);
7179 memslot->userspace_addr = userspace_addr;
7182 return 0;
7185 void kvm_arch_commit_memory_region(struct kvm *kvm,
7186 struct kvm_userspace_memory_region *mem,
7187 const struct kvm_memory_slot *old,
7188 enum kvm_mr_change change)
7191 int nr_mmu_pages = 0;
7193 if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) {
7194 int ret;
7196 ret = vm_munmap(old->userspace_addr,
7197 old->npages * PAGE_SIZE);
7198 if (ret < 0)
7199 printk(KERN_WARNING
7200 "kvm_vm_ioctl_set_memory_region: "
7201 "failed to munmap memory\n");
7204 if (!kvm->arch.n_requested_mmu_pages)
7205 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
7207 if (nr_mmu_pages)
7208 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
7210 * Write protect all pages for dirty logging.
7211 * Existing largepage mappings are destroyed here and new ones will
7212 * not be created until the end of the logging.
7214 if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES))
7215 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
7218 void kvm_arch_flush_shadow_all(struct kvm *kvm)
7220 kvm_mmu_invalidate_zap_all_pages(kvm);
7223 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
7224 struct kvm_memory_slot *slot)
7226 kvm_mmu_invalidate_zap_all_pages(kvm);
7229 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
7231 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
7232 !vcpu->arch.apf.halted)
7233 || !list_empty_careful(&vcpu->async_pf.done)
7234 || kvm_apic_has_events(vcpu)
7235 || vcpu->arch.pv.pv_unhalted
7236 || atomic_read(&vcpu->arch.nmi_queued) ||
7237 (kvm_arch_interrupt_allowed(vcpu) &&
7238 kvm_cpu_has_interrupt(vcpu));
7241 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
7243 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
7246 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
7248 return kvm_x86_ops->interrupt_allowed(vcpu);
7251 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
7253 unsigned long current_rip = kvm_rip_read(vcpu) +
7254 get_segment_base(vcpu, VCPU_SREG_CS);
7256 return current_rip == linear_rip;
7258 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
7260 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
7262 unsigned long rflags;
7264 rflags = kvm_x86_ops->get_rflags(vcpu);
7265 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7266 rflags &= ~X86_EFLAGS_TF;
7267 return rflags;
7269 EXPORT_SYMBOL_GPL(kvm_get_rflags);
7271 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
7273 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
7274 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
7275 rflags |= X86_EFLAGS_TF;
7276 kvm_x86_ops->set_rflags(vcpu, rflags);
7277 kvm_make_request(KVM_REQ_EVENT, vcpu);
7279 EXPORT_SYMBOL_GPL(kvm_set_rflags);
7281 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
7283 int r;
7285 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
7286 is_error_page(work->page))
7287 return;
7289 r = kvm_mmu_reload(vcpu);
7290 if (unlikely(r))
7291 return;
7293 if (!vcpu->arch.mmu.direct_map &&
7294 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
7295 return;
7297 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
7300 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
7302 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
7305 static inline u32 kvm_async_pf_next_probe(u32 key)
7307 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
7310 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7312 u32 key = kvm_async_pf_hash_fn(gfn);
7314 while (vcpu->arch.apf.gfns[key] != ~0)
7315 key = kvm_async_pf_next_probe(key);
7317 vcpu->arch.apf.gfns[key] = gfn;
7320 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
7322 int i;
7323 u32 key = kvm_async_pf_hash_fn(gfn);
7325 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
7326 (vcpu->arch.apf.gfns[key] != gfn &&
7327 vcpu->arch.apf.gfns[key] != ~0); i++)
7328 key = kvm_async_pf_next_probe(key);
7330 return key;
7333 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7335 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
7338 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
7340 u32 i, j, k;
7342 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
7343 while (true) {
7344 vcpu->arch.apf.gfns[i] = ~0;
7345 do {
7346 j = kvm_async_pf_next_probe(j);
7347 if (vcpu->arch.apf.gfns[j] == ~0)
7348 return;
7349 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
7351 * k lies cyclically in ]i,j]
7352 * | i.k.j |
7353 * |....j i.k.| or |.k..j i...|
7355 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
7356 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
7357 i = j;
7361 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
7364 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
7365 sizeof(val));
7368 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
7369 struct kvm_async_pf *work)
7371 struct x86_exception fault;
7373 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
7374 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7376 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
7377 (vcpu->arch.apf.send_user_only &&
7378 kvm_x86_ops->get_cpl(vcpu) == 0))
7379 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
7380 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
7381 fault.vector = PF_VECTOR;
7382 fault.error_code_valid = true;
7383 fault.error_code = 0;
7384 fault.nested_page_fault = false;
7385 fault.address = work->arch.token;
7386 kvm_inject_page_fault(vcpu, &fault);
7390 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
7391 struct kvm_async_pf *work)
7393 struct x86_exception fault;
7395 trace_kvm_async_pf_ready(work->arch.token, work->gva);
7396 if (is_error_page(work->page))
7397 work->arch.token = ~0; /* broadcast wakeup */
7398 else
7399 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
7401 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
7402 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
7403 fault.vector = PF_VECTOR;
7404 fault.error_code_valid = true;
7405 fault.error_code = 0;
7406 fault.nested_page_fault = false;
7407 fault.address = work->arch.token;
7408 kvm_inject_page_fault(vcpu, &fault);
7410 vcpu->arch.apf.halted = false;
7411 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7414 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
7416 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
7417 return true;
7418 else
7419 return !kvm_event_needs_reinjection(vcpu) &&
7420 kvm_x86_ops->interrupt_allowed(vcpu);
7423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
7424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
7425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
7426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
7427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
7428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
7429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
7430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
7431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
7432 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
7433 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
7434 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
7435 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);