Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[linux-2.6/btrfs-unstable.git] / drivers / pinctrl / core.c
blobc0fe6091566a4766cffbe515ed796fe7e2a3bee5
1 /*
2 * Core driver for the pin control subsystem
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
8 * Author: Linus Walleij <linus.walleij@linaro.org>
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 * License terms: GNU General Public License (GPL) version 2
14 #define pr_fmt(fmt) "pinctrl core: " fmt
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
41 static bool pinctrl_dummy_state;
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
70 void pinctrl_provide_dummies(void)
72 pinctrl_dummy_state = true;
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
84 return dev_name(pctldev->dev);
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
90 return pctldev->driver_data;
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
103 struct pinctrl_dev *pctldev = NULL;
105 if (!devname)
106 return NULL;
108 mutex_lock(&pinctrldev_list_mutex);
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
118 mutex_unlock(&pinctrldev_list_mutex);
120 return NULL;
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
125 struct pinctrl_dev *pctldev;
127 mutex_lock(&pinctrldev_list_mutex);
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
135 mutex_unlock(&pinctrldev_list_mutex);
137 return NULL;
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
147 unsigned i, pin;
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
160 return -EINVAL;
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
170 const struct pin_desc *desc;
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
179 return desc->name;
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
192 struct pin_desc *pindesc;
194 if (pin < 0)
195 return false;
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
201 return pindesc != NULL;
203 EXPORT_SYMBOL_GPL(pin_is_valid);
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
210 int i;
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
223 kfree(pindesc);
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
230 struct pin_desc *pindesc;
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 pr_err("pin %d already registered on %s\n", number,
235 pctldev->desc->name);
236 return -EINVAL;
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (pindesc == NULL) {
241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 return -ENOMEM;
245 /* Set owner */
246 pindesc->pctldev = pctldev;
248 /* Copy basic pin info */
249 if (name) {
250 pindesc->name = name;
251 } else {
252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 if (pindesc->name == NULL) {
254 kfree(pindesc);
255 return -ENOMEM;
257 pindesc->dynamic_name = true;
260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 number, pindesc->name, pctldev->desc->name);
263 return 0;
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 struct pinctrl_pin_desc const *pins,
268 unsigned num_descs)
270 unsigned i;
271 int ret = 0;
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev,
275 pins[i].number, pins[i].name);
276 if (ret)
277 return ret;
280 return 0;
284 * gpio_to_pin() - GPIO range GPIO number to pin number translation
285 * @range: GPIO range used for the translation
286 * @gpio: gpio pin to translate to a pin number
288 * Finds the pin number for a given GPIO using the specified GPIO range
289 * as a base for translation. The distinction between linear GPIO ranges
290 * and pin list based GPIO ranges is managed correctly by this function.
292 * This function assumes the gpio is part of the specified GPIO range, use
293 * only after making sure this is the case (e.g. by calling it on the
294 * result of successful pinctrl_get_device_gpio_range calls)!
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 unsigned int gpio)
299 unsigned int offset = gpio - range->base;
300 if (range->pins)
301 return range->pins[offset];
302 else
303 return range->pin_base + offset;
307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308 * @pctldev: pin controller device to check
309 * @gpio: gpio pin to check taken from the global GPIO pin space
311 * Tries to match a GPIO pin number to the ranges handled by a certain pin
312 * controller, return the range or NULL
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
317 struct pinctrl_gpio_range *range = NULL;
319 mutex_lock(&pctldev->mutex);
320 /* Loop over the ranges */
321 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 /* Check if we're in the valid range */
323 if (gpio >= range->base &&
324 gpio < range->base + range->npins) {
325 mutex_unlock(&pctldev->mutex);
326 return range;
329 mutex_unlock(&pctldev->mutex);
330 return NULL;
334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335 * the same GPIO chip are in range
336 * @gpio: gpio pin to check taken from the global GPIO pin space
338 * This function is complement of pinctrl_match_gpio_range(). If the return
339 * value of pinctrl_match_gpio_range() is NULL, this function could be used
340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341 * of the same GPIO chip don't have back-end pinctrl interface.
342 * If the return value is true, it means that pinctrl device is ready & the
343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344 * is false, it means that pinctrl device may not be ready.
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
349 struct pinctrl_dev *pctldev;
350 struct pinctrl_gpio_range *range = NULL;
351 struct gpio_chip *chip = gpio_to_chip(gpio);
353 mutex_lock(&pinctrldev_list_mutex);
355 /* Loop over the pin controllers */
356 list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 /* Loop over the ranges */
358 mutex_lock(&pctldev->mutex);
359 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 /* Check if any gpio range overlapped with gpio chip */
361 if (range->base + range->npins - 1 < chip->base ||
362 range->base > chip->base + chip->ngpio - 1)
363 continue;
364 mutex_unlock(&pctldev->mutex);
365 mutex_unlock(&pinctrldev_list_mutex);
366 return true;
368 mutex_unlock(&pctldev->mutex);
371 mutex_unlock(&pinctrldev_list_mutex);
373 return false;
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
380 * pinctrl_get_device_gpio_range() - find device for GPIO range
381 * @gpio: the pin to locate the pin controller for
382 * @outdev: the pin control device if found
383 * @outrange: the GPIO range if found
385 * Find the pin controller handling a certain GPIO pin from the pinspace of
386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388 * may still have not been registered.
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 struct pinctrl_dev **outdev,
392 struct pinctrl_gpio_range **outrange)
394 struct pinctrl_dev *pctldev = NULL;
396 mutex_lock(&pinctrldev_list_mutex);
398 /* Loop over the pin controllers */
399 list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 struct pinctrl_gpio_range *range;
402 range = pinctrl_match_gpio_range(pctldev, gpio);
403 if (range != NULL) {
404 *outdev = pctldev;
405 *outrange = range;
406 mutex_unlock(&pinctrldev_list_mutex);
407 return 0;
411 mutex_unlock(&pinctrldev_list_mutex);
413 return -EPROBE_DEFER;
417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
418 * @pctldev: pin controller device to add the range to
419 * @range: the GPIO range to add
421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
422 * this to register handled ranges after registering your pin controller.
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 struct pinctrl_gpio_range *range)
427 mutex_lock(&pctldev->mutex);
428 list_add_tail(&range->node, &pctldev->gpio_ranges);
429 mutex_unlock(&pctldev->mutex);
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 struct pinctrl_gpio_range *ranges,
435 unsigned nranges)
437 int i;
439 for (i = 0; i < nranges; i++)
440 pinctrl_add_gpio_range(pctldev, &ranges[i]);
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 struct pinctrl_gpio_range *range)
447 struct pinctrl_dev *pctldev;
449 pctldev = get_pinctrl_dev_from_devname(devname);
452 * If we can't find this device, let's assume that is because
453 * it has not probed yet, so the driver trying to register this
454 * range need to defer probing.
456 if (!pctldev) {
457 return ERR_PTR(-EPROBE_DEFER);
459 pinctrl_add_gpio_range(pctldev, range);
461 return pctldev;
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 const unsigned **pins, unsigned *num_pins)
468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 int gs;
471 gs = pinctrl_get_group_selector(pctldev, pin_group);
472 if (gs < 0)
473 return gs;
475 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
477 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
480 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
481 * @pctldev: the pin controller device to look in
482 * @pin: a controller-local number to find the range for
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
486 unsigned int pin)
488 struct pinctrl_gpio_range *range;
490 mutex_lock(&pctldev->mutex);
491 /* Loop over the ranges */
492 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
493 /* Check if we're in the valid range */
494 if (range->pins) {
495 int a;
496 for (a = 0; a < range->npins; a++) {
497 if (range->pins[a] == pin)
498 goto out;
500 } else if (pin >= range->pin_base &&
501 pin < range->pin_base + range->npins)
502 goto out;
504 range = NULL;
505 out:
506 mutex_unlock(&pctldev->mutex);
507 return range;
509 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
512 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
513 * @pctldev: pin controller device to remove the range from
514 * @range: the GPIO range to remove
516 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
517 struct pinctrl_gpio_range *range)
519 mutex_lock(&pctldev->mutex);
520 list_del(&range->node);
521 mutex_unlock(&pctldev->mutex);
523 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
526 * pinctrl_get_group_selector() - returns the group selector for a group
527 * @pctldev: the pin controller handling the group
528 * @pin_group: the pin group to look up
530 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
531 const char *pin_group)
533 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
534 unsigned ngroups = pctlops->get_groups_count(pctldev);
535 unsigned group_selector = 0;
537 while (group_selector < ngroups) {
538 const char *gname = pctlops->get_group_name(pctldev,
539 group_selector);
540 if (!strcmp(gname, pin_group)) {
541 dev_dbg(pctldev->dev,
542 "found group selector %u for %s\n",
543 group_selector,
544 pin_group);
545 return group_selector;
548 group_selector++;
551 dev_err(pctldev->dev, "does not have pin group %s\n",
552 pin_group);
554 return -EINVAL;
558 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
559 * @gpio: the GPIO pin number from the GPIO subsystem number space
561 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
562 * as part of their gpio_request() semantics, platforms and individual drivers
563 * shall *NOT* request GPIO pins to be muxed in.
565 int pinctrl_request_gpio(unsigned gpio)
567 struct pinctrl_dev *pctldev;
568 struct pinctrl_gpio_range *range;
569 int ret;
570 int pin;
572 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
573 if (ret) {
574 if (pinctrl_ready_for_gpio_range(gpio))
575 ret = 0;
576 return ret;
579 mutex_lock(&pctldev->mutex);
581 /* Convert to the pin controllers number space */
582 pin = gpio_to_pin(range, gpio);
584 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
586 mutex_unlock(&pctldev->mutex);
588 return ret;
590 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
593 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
594 * @gpio: the GPIO pin number from the GPIO subsystem number space
596 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
597 * as part of their gpio_free() semantics, platforms and individual drivers
598 * shall *NOT* request GPIO pins to be muxed out.
600 void pinctrl_free_gpio(unsigned gpio)
602 struct pinctrl_dev *pctldev;
603 struct pinctrl_gpio_range *range;
604 int ret;
605 int pin;
607 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
608 if (ret) {
609 return;
611 mutex_lock(&pctldev->mutex);
613 /* Convert to the pin controllers number space */
614 pin = gpio_to_pin(range, gpio);
616 pinmux_free_gpio(pctldev, pin, range);
618 mutex_unlock(&pctldev->mutex);
620 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
622 static int pinctrl_gpio_direction(unsigned gpio, bool input)
624 struct pinctrl_dev *pctldev;
625 struct pinctrl_gpio_range *range;
626 int ret;
627 int pin;
629 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
630 if (ret) {
631 return ret;
634 mutex_lock(&pctldev->mutex);
636 /* Convert to the pin controllers number space */
637 pin = gpio_to_pin(range, gpio);
638 ret = pinmux_gpio_direction(pctldev, range, pin, input);
640 mutex_unlock(&pctldev->mutex);
642 return ret;
646 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
647 * @gpio: the GPIO pin number from the GPIO subsystem number space
649 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
650 * as part of their gpio_direction_input() semantics, platforms and individual
651 * drivers shall *NOT* touch pin control GPIO calls.
653 int pinctrl_gpio_direction_input(unsigned gpio)
655 return pinctrl_gpio_direction(gpio, true);
657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
660 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
661 * @gpio: the GPIO pin number from the GPIO subsystem number space
663 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
664 * as part of their gpio_direction_output() semantics, platforms and individual
665 * drivers shall *NOT* touch pin control GPIO calls.
667 int pinctrl_gpio_direction_output(unsigned gpio)
669 return pinctrl_gpio_direction(gpio, false);
671 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
673 static struct pinctrl_state *find_state(struct pinctrl *p,
674 const char *name)
676 struct pinctrl_state *state;
678 list_for_each_entry(state, &p->states, node)
679 if (!strcmp(state->name, name))
680 return state;
682 return NULL;
685 static struct pinctrl_state *create_state(struct pinctrl *p,
686 const char *name)
688 struct pinctrl_state *state;
690 state = kzalloc(sizeof(*state), GFP_KERNEL);
691 if (state == NULL) {
692 dev_err(p->dev,
693 "failed to alloc struct pinctrl_state\n");
694 return ERR_PTR(-ENOMEM);
697 state->name = name;
698 INIT_LIST_HEAD(&state->settings);
700 list_add_tail(&state->node, &p->states);
702 return state;
705 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
707 struct pinctrl_state *state;
708 struct pinctrl_setting *setting;
709 int ret;
711 state = find_state(p, map->name);
712 if (!state)
713 state = create_state(p, map->name);
714 if (IS_ERR(state))
715 return PTR_ERR(state);
717 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
718 return 0;
720 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
721 if (setting == NULL) {
722 dev_err(p->dev,
723 "failed to alloc struct pinctrl_setting\n");
724 return -ENOMEM;
727 setting->type = map->type;
729 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
730 if (setting->pctldev == NULL) {
731 kfree(setting);
732 /* Do not defer probing of hogs (circular loop) */
733 if (!strcmp(map->ctrl_dev_name, map->dev_name))
734 return -ENODEV;
736 * OK let us guess that the driver is not there yet, and
737 * let's defer obtaining this pinctrl handle to later...
739 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
740 map->ctrl_dev_name);
741 return -EPROBE_DEFER;
744 setting->dev_name = map->dev_name;
746 switch (map->type) {
747 case PIN_MAP_TYPE_MUX_GROUP:
748 ret = pinmux_map_to_setting(map, setting);
749 break;
750 case PIN_MAP_TYPE_CONFIGS_PIN:
751 case PIN_MAP_TYPE_CONFIGS_GROUP:
752 ret = pinconf_map_to_setting(map, setting);
753 break;
754 default:
755 ret = -EINVAL;
756 break;
758 if (ret < 0) {
759 kfree(setting);
760 return ret;
763 list_add_tail(&setting->node, &state->settings);
765 return 0;
768 static struct pinctrl *find_pinctrl(struct device *dev)
770 struct pinctrl *p;
772 mutex_lock(&pinctrl_list_mutex);
773 list_for_each_entry(p, &pinctrl_list, node)
774 if (p->dev == dev) {
775 mutex_unlock(&pinctrl_list_mutex);
776 return p;
779 mutex_unlock(&pinctrl_list_mutex);
780 return NULL;
783 static void pinctrl_free(struct pinctrl *p, bool inlist);
785 static struct pinctrl *create_pinctrl(struct device *dev)
787 struct pinctrl *p;
788 const char *devname;
789 struct pinctrl_maps *maps_node;
790 int i;
791 struct pinctrl_map const *map;
792 int ret;
795 * create the state cookie holder struct pinctrl for each
796 * mapping, this is what consumers will get when requesting
797 * a pin control handle with pinctrl_get()
799 p = kzalloc(sizeof(*p), GFP_KERNEL);
800 if (p == NULL) {
801 dev_err(dev, "failed to alloc struct pinctrl\n");
802 return ERR_PTR(-ENOMEM);
804 p->dev = dev;
805 INIT_LIST_HEAD(&p->states);
806 INIT_LIST_HEAD(&p->dt_maps);
808 ret = pinctrl_dt_to_map(p);
809 if (ret < 0) {
810 kfree(p);
811 return ERR_PTR(ret);
814 devname = dev_name(dev);
816 mutex_lock(&pinctrl_maps_mutex);
817 /* Iterate over the pin control maps to locate the right ones */
818 for_each_maps(maps_node, i, map) {
819 /* Map must be for this device */
820 if (strcmp(map->dev_name, devname))
821 continue;
823 ret = add_setting(p, map);
825 * At this point the adding of a setting may:
827 * - Defer, if the pinctrl device is not yet available
828 * - Fail, if the pinctrl device is not yet available,
829 * AND the setting is a hog. We cannot defer that, since
830 * the hog will kick in immediately after the device
831 * is registered.
833 * If the error returned was not -EPROBE_DEFER then we
834 * accumulate the errors to see if we end up with
835 * an -EPROBE_DEFER later, as that is the worst case.
837 if (ret == -EPROBE_DEFER) {
838 pinctrl_free(p, false);
839 mutex_unlock(&pinctrl_maps_mutex);
840 return ERR_PTR(ret);
843 mutex_unlock(&pinctrl_maps_mutex);
845 if (ret < 0) {
846 /* If some other error than deferral occured, return here */
847 pinctrl_free(p, false);
848 return ERR_PTR(ret);
851 kref_init(&p->users);
853 /* Add the pinctrl handle to the global list */
854 mutex_lock(&pinctrl_list_mutex);
855 list_add_tail(&p->node, &pinctrl_list);
856 mutex_unlock(&pinctrl_list_mutex);
858 return p;
862 * pinctrl_get() - retrieves the pinctrl handle for a device
863 * @dev: the device to obtain the handle for
865 struct pinctrl *pinctrl_get(struct device *dev)
867 struct pinctrl *p;
869 if (WARN_ON(!dev))
870 return ERR_PTR(-EINVAL);
873 * See if somebody else (such as the device core) has already
874 * obtained a handle to the pinctrl for this device. In that case,
875 * return another pointer to it.
877 p = find_pinctrl(dev);
878 if (p != NULL) {
879 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
880 kref_get(&p->users);
881 return p;
884 return create_pinctrl(dev);
886 EXPORT_SYMBOL_GPL(pinctrl_get);
888 static void pinctrl_free_setting(bool disable_setting,
889 struct pinctrl_setting *setting)
891 switch (setting->type) {
892 case PIN_MAP_TYPE_MUX_GROUP:
893 if (disable_setting)
894 pinmux_disable_setting(setting);
895 pinmux_free_setting(setting);
896 break;
897 case PIN_MAP_TYPE_CONFIGS_PIN:
898 case PIN_MAP_TYPE_CONFIGS_GROUP:
899 pinconf_free_setting(setting);
900 break;
901 default:
902 break;
906 static void pinctrl_free(struct pinctrl *p, bool inlist)
908 struct pinctrl_state *state, *n1;
909 struct pinctrl_setting *setting, *n2;
911 mutex_lock(&pinctrl_list_mutex);
912 list_for_each_entry_safe(state, n1, &p->states, node) {
913 list_for_each_entry_safe(setting, n2, &state->settings, node) {
914 pinctrl_free_setting(state == p->state, setting);
915 list_del(&setting->node);
916 kfree(setting);
918 list_del(&state->node);
919 kfree(state);
922 pinctrl_dt_free_maps(p);
924 if (inlist)
925 list_del(&p->node);
926 kfree(p);
927 mutex_unlock(&pinctrl_list_mutex);
931 * pinctrl_release() - release the pinctrl handle
932 * @kref: the kref in the pinctrl being released
934 static void pinctrl_release(struct kref *kref)
936 struct pinctrl *p = container_of(kref, struct pinctrl, users);
938 pinctrl_free(p, true);
942 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
943 * @p: the pinctrl handle to release
945 void pinctrl_put(struct pinctrl *p)
947 kref_put(&p->users, pinctrl_release);
949 EXPORT_SYMBOL_GPL(pinctrl_put);
952 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
953 * @p: the pinctrl handle to retrieve the state from
954 * @name: the state name to retrieve
956 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
957 const char *name)
959 struct pinctrl_state *state;
961 state = find_state(p, name);
962 if (!state) {
963 if (pinctrl_dummy_state) {
964 /* create dummy state */
965 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
966 name);
967 state = create_state(p, name);
968 } else
969 state = ERR_PTR(-ENODEV);
972 return state;
974 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
977 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
978 * @p: the pinctrl handle for the device that requests configuration
979 * @state: the state handle to select/activate/program
981 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
983 struct pinctrl_setting *setting, *setting2;
984 struct pinctrl_state *old_state = p->state;
985 int ret;
987 if (p->state == state)
988 return 0;
990 if (p->state) {
992 * The set of groups with a mux configuration in the old state
993 * may not be identical to the set of groups with a mux setting
994 * in the new state. While this might be unusual, it's entirely
995 * possible for the "user"-supplied mapping table to be written
996 * that way. For each group that was configured in the old state
997 * but not in the new state, this code puts that group into a
998 * safe/disabled state.
1000 list_for_each_entry(setting, &p->state->settings, node) {
1001 bool found = false;
1002 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1003 continue;
1004 list_for_each_entry(setting2, &state->settings, node) {
1005 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
1006 continue;
1007 if (setting2->data.mux.group ==
1008 setting->data.mux.group) {
1009 found = true;
1010 break;
1013 if (!found)
1014 pinmux_disable_setting(setting);
1018 p->state = NULL;
1020 /* Apply all the settings for the new state */
1021 list_for_each_entry(setting, &state->settings, node) {
1022 switch (setting->type) {
1023 case PIN_MAP_TYPE_MUX_GROUP:
1024 ret = pinmux_enable_setting(setting);
1025 break;
1026 case PIN_MAP_TYPE_CONFIGS_PIN:
1027 case PIN_MAP_TYPE_CONFIGS_GROUP:
1028 ret = pinconf_apply_setting(setting);
1029 break;
1030 default:
1031 ret = -EINVAL;
1032 break;
1035 if (ret < 0) {
1036 goto unapply_new_state;
1040 p->state = state;
1042 return 0;
1044 unapply_new_state:
1045 dev_err(p->dev, "Error applying setting, reverse things back\n");
1047 list_for_each_entry(setting2, &state->settings, node) {
1048 if (&setting2->node == &setting->node)
1049 break;
1051 * All we can do here is pinmux_disable_setting.
1052 * That means that some pins are muxed differently now
1053 * than they were before applying the setting (We can't
1054 * "unmux a pin"!), but it's not a big deal since the pins
1055 * are free to be muxed by another apply_setting.
1057 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1058 pinmux_disable_setting(setting2);
1061 /* There's no infinite recursive loop here because p->state is NULL */
1062 if (old_state)
1063 pinctrl_select_state(p, old_state);
1065 return ret;
1067 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1069 static void devm_pinctrl_release(struct device *dev, void *res)
1071 pinctrl_put(*(struct pinctrl **)res);
1075 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1076 * @dev: the device to obtain the handle for
1078 * If there is a need to explicitly destroy the returned struct pinctrl,
1079 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1081 struct pinctrl *devm_pinctrl_get(struct device *dev)
1083 struct pinctrl **ptr, *p;
1085 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1086 if (!ptr)
1087 return ERR_PTR(-ENOMEM);
1089 p = pinctrl_get(dev);
1090 if (!IS_ERR(p)) {
1091 *ptr = p;
1092 devres_add(dev, ptr);
1093 } else {
1094 devres_free(ptr);
1097 return p;
1099 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1101 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1103 struct pinctrl **p = res;
1105 return *p == data;
1109 * devm_pinctrl_put() - Resource managed pinctrl_put()
1110 * @p: the pinctrl handle to release
1112 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1113 * this function will not need to be called and the resource management
1114 * code will ensure that the resource is freed.
1116 void devm_pinctrl_put(struct pinctrl *p)
1118 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1119 devm_pinctrl_match, p));
1121 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1123 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1124 bool dup, bool locked)
1126 int i, ret;
1127 struct pinctrl_maps *maps_node;
1129 pr_debug("add %d pinmux maps\n", num_maps);
1131 /* First sanity check the new mapping */
1132 for (i = 0; i < num_maps; i++) {
1133 if (!maps[i].dev_name) {
1134 pr_err("failed to register map %s (%d): no device given\n",
1135 maps[i].name, i);
1136 return -EINVAL;
1139 if (!maps[i].name) {
1140 pr_err("failed to register map %d: no map name given\n",
1142 return -EINVAL;
1145 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1146 !maps[i].ctrl_dev_name) {
1147 pr_err("failed to register map %s (%d): no pin control device given\n",
1148 maps[i].name, i);
1149 return -EINVAL;
1152 switch (maps[i].type) {
1153 case PIN_MAP_TYPE_DUMMY_STATE:
1154 break;
1155 case PIN_MAP_TYPE_MUX_GROUP:
1156 ret = pinmux_validate_map(&maps[i], i);
1157 if (ret < 0)
1158 return ret;
1159 break;
1160 case PIN_MAP_TYPE_CONFIGS_PIN:
1161 case PIN_MAP_TYPE_CONFIGS_GROUP:
1162 ret = pinconf_validate_map(&maps[i], i);
1163 if (ret < 0)
1164 return ret;
1165 break;
1166 default:
1167 pr_err("failed to register map %s (%d): invalid type given\n",
1168 maps[i].name, i);
1169 return -EINVAL;
1173 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1174 if (!maps_node) {
1175 pr_err("failed to alloc struct pinctrl_maps\n");
1176 return -ENOMEM;
1179 maps_node->num_maps = num_maps;
1180 if (dup) {
1181 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1182 GFP_KERNEL);
1183 if (!maps_node->maps) {
1184 pr_err("failed to duplicate mapping table\n");
1185 kfree(maps_node);
1186 return -ENOMEM;
1188 } else {
1189 maps_node->maps = maps;
1192 if (!locked)
1193 mutex_lock(&pinctrl_maps_mutex);
1194 list_add_tail(&maps_node->node, &pinctrl_maps);
1195 if (!locked)
1196 mutex_unlock(&pinctrl_maps_mutex);
1198 return 0;
1202 * pinctrl_register_mappings() - register a set of pin controller mappings
1203 * @maps: the pincontrol mappings table to register. This should probably be
1204 * marked with __initdata so it can be discarded after boot. This
1205 * function will perform a shallow copy for the mapping entries.
1206 * @num_maps: the number of maps in the mapping table
1208 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1209 unsigned num_maps)
1211 return pinctrl_register_map(maps, num_maps, true, false);
1214 void pinctrl_unregister_map(struct pinctrl_map const *map)
1216 struct pinctrl_maps *maps_node;
1218 mutex_lock(&pinctrl_maps_mutex);
1219 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1220 if (maps_node->maps == map) {
1221 list_del(&maps_node->node);
1222 kfree(maps_node);
1223 mutex_unlock(&pinctrl_maps_mutex);
1224 return;
1227 mutex_unlock(&pinctrl_maps_mutex);
1231 * pinctrl_force_sleep() - turn a given controller device into sleep state
1232 * @pctldev: pin controller device
1234 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1238 return 0;
1240 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1243 * pinctrl_force_default() - turn a given controller device into default state
1244 * @pctldev: pin controller device
1246 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1250 return 0;
1252 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1254 #ifdef CONFIG_PM
1257 * pinctrl_pm_select_state() - select pinctrl state for PM
1258 * @dev: device to select default state for
1259 * @state: state to set
1261 static int pinctrl_pm_select_state(struct device *dev,
1262 struct pinctrl_state *state)
1264 struct dev_pin_info *pins = dev->pins;
1265 int ret;
1267 if (IS_ERR(state))
1268 return 0; /* No such state */
1269 ret = pinctrl_select_state(pins->p, state);
1270 if (ret)
1271 dev_err(dev, "failed to activate pinctrl state %s\n",
1272 state->name);
1273 return ret;
1277 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1278 * @dev: device to select default state for
1280 int pinctrl_pm_select_default_state(struct device *dev)
1282 if (!dev->pins)
1283 return 0;
1285 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1287 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1290 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1291 * @dev: device to select sleep state for
1293 int pinctrl_pm_select_sleep_state(struct device *dev)
1295 if (!dev->pins)
1296 return 0;
1298 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1300 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1303 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1304 * @dev: device to select idle state for
1306 int pinctrl_pm_select_idle_state(struct device *dev)
1308 if (!dev->pins)
1309 return 0;
1311 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1313 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1314 #endif
1316 #ifdef CONFIG_DEBUG_FS
1318 static int pinctrl_pins_show(struct seq_file *s, void *what)
1320 struct pinctrl_dev *pctldev = s->private;
1321 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1322 unsigned i, pin;
1324 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1326 mutex_lock(&pctldev->mutex);
1328 /* The pin number can be retrived from the pin controller descriptor */
1329 for (i = 0; i < pctldev->desc->npins; i++) {
1330 struct pin_desc *desc;
1332 pin = pctldev->desc->pins[i].number;
1333 desc = pin_desc_get(pctldev, pin);
1334 /* Pin space may be sparse */
1335 if (desc == NULL)
1336 continue;
1338 seq_printf(s, "pin %d (%s) ", pin,
1339 desc->name ? desc->name : "unnamed");
1341 /* Driver-specific info per pin */
1342 if (ops->pin_dbg_show)
1343 ops->pin_dbg_show(pctldev, s, pin);
1345 seq_puts(s, "\n");
1348 mutex_unlock(&pctldev->mutex);
1350 return 0;
1353 static int pinctrl_groups_show(struct seq_file *s, void *what)
1355 struct pinctrl_dev *pctldev = s->private;
1356 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1357 unsigned ngroups, selector = 0;
1359 mutex_lock(&pctldev->mutex);
1361 ngroups = ops->get_groups_count(pctldev);
1363 seq_puts(s, "registered pin groups:\n");
1364 while (selector < ngroups) {
1365 const unsigned *pins;
1366 unsigned num_pins;
1367 const char *gname = ops->get_group_name(pctldev, selector);
1368 const char *pname;
1369 int ret;
1370 int i;
1372 ret = ops->get_group_pins(pctldev, selector,
1373 &pins, &num_pins);
1374 if (ret)
1375 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1376 gname);
1377 else {
1378 seq_printf(s, "group: %s\n", gname);
1379 for (i = 0; i < num_pins; i++) {
1380 pname = pin_get_name(pctldev, pins[i]);
1381 if (WARN_ON(!pname)) {
1382 mutex_unlock(&pctldev->mutex);
1383 return -EINVAL;
1385 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1387 seq_puts(s, "\n");
1389 selector++;
1392 mutex_unlock(&pctldev->mutex);
1394 return 0;
1397 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1399 struct pinctrl_dev *pctldev = s->private;
1400 struct pinctrl_gpio_range *range = NULL;
1402 seq_puts(s, "GPIO ranges handled:\n");
1404 mutex_lock(&pctldev->mutex);
1406 /* Loop over the ranges */
1407 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1408 if (range->pins) {
1409 int a;
1410 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1411 range->id, range->name,
1412 range->base, (range->base + range->npins - 1));
1413 for (a = 0; a < range->npins - 1; a++)
1414 seq_printf(s, "%u, ", range->pins[a]);
1415 seq_printf(s, "%u}\n", range->pins[a]);
1417 else
1418 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1419 range->id, range->name,
1420 range->base, (range->base + range->npins - 1),
1421 range->pin_base,
1422 (range->pin_base + range->npins - 1));
1425 mutex_unlock(&pctldev->mutex);
1427 return 0;
1430 static int pinctrl_devices_show(struct seq_file *s, void *what)
1432 struct pinctrl_dev *pctldev;
1434 seq_puts(s, "name [pinmux] [pinconf]\n");
1436 mutex_lock(&pinctrldev_list_mutex);
1438 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1439 seq_printf(s, "%s ", pctldev->desc->name);
1440 if (pctldev->desc->pmxops)
1441 seq_puts(s, "yes ");
1442 else
1443 seq_puts(s, "no ");
1444 if (pctldev->desc->confops)
1445 seq_puts(s, "yes");
1446 else
1447 seq_puts(s, "no");
1448 seq_puts(s, "\n");
1451 mutex_unlock(&pinctrldev_list_mutex);
1453 return 0;
1456 static inline const char *map_type(enum pinctrl_map_type type)
1458 static const char * const names[] = {
1459 "INVALID",
1460 "DUMMY_STATE",
1461 "MUX_GROUP",
1462 "CONFIGS_PIN",
1463 "CONFIGS_GROUP",
1466 if (type >= ARRAY_SIZE(names))
1467 return "UNKNOWN";
1469 return names[type];
1472 static int pinctrl_maps_show(struct seq_file *s, void *what)
1474 struct pinctrl_maps *maps_node;
1475 int i;
1476 struct pinctrl_map const *map;
1478 seq_puts(s, "Pinctrl maps:\n");
1480 mutex_lock(&pinctrl_maps_mutex);
1481 for_each_maps(maps_node, i, map) {
1482 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1483 map->dev_name, map->name, map_type(map->type),
1484 map->type);
1486 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1487 seq_printf(s, "controlling device %s\n",
1488 map->ctrl_dev_name);
1490 switch (map->type) {
1491 case PIN_MAP_TYPE_MUX_GROUP:
1492 pinmux_show_map(s, map);
1493 break;
1494 case PIN_MAP_TYPE_CONFIGS_PIN:
1495 case PIN_MAP_TYPE_CONFIGS_GROUP:
1496 pinconf_show_map(s, map);
1497 break;
1498 default:
1499 break;
1502 seq_printf(s, "\n");
1504 mutex_unlock(&pinctrl_maps_mutex);
1506 return 0;
1509 static int pinctrl_show(struct seq_file *s, void *what)
1511 struct pinctrl *p;
1512 struct pinctrl_state *state;
1513 struct pinctrl_setting *setting;
1515 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1517 mutex_lock(&pinctrl_list_mutex);
1519 list_for_each_entry(p, &pinctrl_list, node) {
1520 seq_printf(s, "device: %s current state: %s\n",
1521 dev_name(p->dev),
1522 p->state ? p->state->name : "none");
1524 list_for_each_entry(state, &p->states, node) {
1525 seq_printf(s, " state: %s\n", state->name);
1527 list_for_each_entry(setting, &state->settings, node) {
1528 struct pinctrl_dev *pctldev = setting->pctldev;
1530 seq_printf(s, " type: %s controller %s ",
1531 map_type(setting->type),
1532 pinctrl_dev_get_name(pctldev));
1534 switch (setting->type) {
1535 case PIN_MAP_TYPE_MUX_GROUP:
1536 pinmux_show_setting(s, setting);
1537 break;
1538 case PIN_MAP_TYPE_CONFIGS_PIN:
1539 case PIN_MAP_TYPE_CONFIGS_GROUP:
1540 pinconf_show_setting(s, setting);
1541 break;
1542 default:
1543 break;
1549 mutex_unlock(&pinctrl_list_mutex);
1551 return 0;
1554 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1556 return single_open(file, pinctrl_pins_show, inode->i_private);
1559 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1561 return single_open(file, pinctrl_groups_show, inode->i_private);
1564 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1566 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1569 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1571 return single_open(file, pinctrl_devices_show, NULL);
1574 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1576 return single_open(file, pinctrl_maps_show, NULL);
1579 static int pinctrl_open(struct inode *inode, struct file *file)
1581 return single_open(file, pinctrl_show, NULL);
1584 static const struct file_operations pinctrl_pins_ops = {
1585 .open = pinctrl_pins_open,
1586 .read = seq_read,
1587 .llseek = seq_lseek,
1588 .release = single_release,
1591 static const struct file_operations pinctrl_groups_ops = {
1592 .open = pinctrl_groups_open,
1593 .read = seq_read,
1594 .llseek = seq_lseek,
1595 .release = single_release,
1598 static const struct file_operations pinctrl_gpioranges_ops = {
1599 .open = pinctrl_gpioranges_open,
1600 .read = seq_read,
1601 .llseek = seq_lseek,
1602 .release = single_release,
1605 static const struct file_operations pinctrl_devices_ops = {
1606 .open = pinctrl_devices_open,
1607 .read = seq_read,
1608 .llseek = seq_lseek,
1609 .release = single_release,
1612 static const struct file_operations pinctrl_maps_ops = {
1613 .open = pinctrl_maps_open,
1614 .read = seq_read,
1615 .llseek = seq_lseek,
1616 .release = single_release,
1619 static const struct file_operations pinctrl_ops = {
1620 .open = pinctrl_open,
1621 .read = seq_read,
1622 .llseek = seq_lseek,
1623 .release = single_release,
1626 static struct dentry *debugfs_root;
1628 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1630 struct dentry *device_root;
1632 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1633 debugfs_root);
1634 pctldev->device_root = device_root;
1636 if (IS_ERR(device_root) || !device_root) {
1637 pr_warn("failed to create debugfs directory for %s\n",
1638 dev_name(pctldev->dev));
1639 return;
1641 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1642 device_root, pctldev, &pinctrl_pins_ops);
1643 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1644 device_root, pctldev, &pinctrl_groups_ops);
1645 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1646 device_root, pctldev, &pinctrl_gpioranges_ops);
1647 if (pctldev->desc->pmxops)
1648 pinmux_init_device_debugfs(device_root, pctldev);
1649 if (pctldev->desc->confops)
1650 pinconf_init_device_debugfs(device_root, pctldev);
1653 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1655 debugfs_remove_recursive(pctldev->device_root);
1658 static void pinctrl_init_debugfs(void)
1660 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1661 if (IS_ERR(debugfs_root) || !debugfs_root) {
1662 pr_warn("failed to create debugfs directory\n");
1663 debugfs_root = NULL;
1664 return;
1667 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1668 debugfs_root, NULL, &pinctrl_devices_ops);
1669 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1670 debugfs_root, NULL, &pinctrl_maps_ops);
1671 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1672 debugfs_root, NULL, &pinctrl_ops);
1675 #else /* CONFIG_DEBUG_FS */
1677 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1681 static void pinctrl_init_debugfs(void)
1685 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1689 #endif
1691 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1693 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1695 if (!ops ||
1696 !ops->get_groups_count ||
1697 !ops->get_group_name ||
1698 !ops->get_group_pins)
1699 return -EINVAL;
1701 if (ops->dt_node_to_map && !ops->dt_free_map)
1702 return -EINVAL;
1704 return 0;
1708 * pinctrl_register() - register a pin controller device
1709 * @pctldesc: descriptor for this pin controller
1710 * @dev: parent device for this pin controller
1711 * @driver_data: private pin controller data for this pin controller
1713 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1714 struct device *dev, void *driver_data)
1716 struct pinctrl_dev *pctldev;
1717 int ret;
1719 if (!pctldesc)
1720 return NULL;
1721 if (!pctldesc->name)
1722 return NULL;
1724 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1725 if (pctldev == NULL) {
1726 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1727 return NULL;
1730 /* Initialize pin control device struct */
1731 pctldev->owner = pctldesc->owner;
1732 pctldev->desc = pctldesc;
1733 pctldev->driver_data = driver_data;
1734 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1735 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1736 pctldev->dev = dev;
1737 mutex_init(&pctldev->mutex);
1739 /* check core ops for sanity */
1740 if (pinctrl_check_ops(pctldev)) {
1741 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1742 goto out_err;
1745 /* If we're implementing pinmuxing, check the ops for sanity */
1746 if (pctldesc->pmxops) {
1747 if (pinmux_check_ops(pctldev))
1748 goto out_err;
1751 /* If we're implementing pinconfig, check the ops for sanity */
1752 if (pctldesc->confops) {
1753 if (pinconf_check_ops(pctldev))
1754 goto out_err;
1757 /* Register all the pins */
1758 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1759 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1760 if (ret) {
1761 dev_err(dev, "error during pin registration\n");
1762 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1763 pctldesc->npins);
1764 goto out_err;
1767 mutex_lock(&pinctrldev_list_mutex);
1768 list_add_tail(&pctldev->node, &pinctrldev_list);
1769 mutex_unlock(&pinctrldev_list_mutex);
1771 pctldev->p = pinctrl_get(pctldev->dev);
1773 if (!IS_ERR(pctldev->p)) {
1774 pctldev->hog_default =
1775 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1776 if (IS_ERR(pctldev->hog_default)) {
1777 dev_dbg(dev, "failed to lookup the default state\n");
1778 } else {
1779 if (pinctrl_select_state(pctldev->p,
1780 pctldev->hog_default))
1781 dev_err(dev,
1782 "failed to select default state\n");
1785 pctldev->hog_sleep =
1786 pinctrl_lookup_state(pctldev->p,
1787 PINCTRL_STATE_SLEEP);
1788 if (IS_ERR(pctldev->hog_sleep))
1789 dev_dbg(dev, "failed to lookup the sleep state\n");
1792 pinctrl_init_device_debugfs(pctldev);
1794 return pctldev;
1796 out_err:
1797 mutex_destroy(&pctldev->mutex);
1798 kfree(pctldev);
1799 return NULL;
1801 EXPORT_SYMBOL_GPL(pinctrl_register);
1804 * pinctrl_unregister() - unregister pinmux
1805 * @pctldev: pin controller to unregister
1807 * Called by pinmux drivers to unregister a pinmux.
1809 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1811 struct pinctrl_gpio_range *range, *n;
1812 if (pctldev == NULL)
1813 return;
1815 mutex_lock(&pinctrldev_list_mutex);
1816 mutex_lock(&pctldev->mutex);
1818 pinctrl_remove_device_debugfs(pctldev);
1820 if (!IS_ERR(pctldev->p))
1821 pinctrl_put(pctldev->p);
1823 /* TODO: check that no pinmuxes are still active? */
1824 list_del(&pctldev->node);
1825 /* Destroy descriptor tree */
1826 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1827 pctldev->desc->npins);
1828 /* remove gpio ranges map */
1829 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1830 list_del(&range->node);
1832 mutex_unlock(&pctldev->mutex);
1833 mutex_destroy(&pctldev->mutex);
1834 kfree(pctldev);
1835 mutex_unlock(&pinctrldev_list_mutex);
1837 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1839 static int __init pinctrl_init(void)
1841 pr_info("initialized pinctrl subsystem\n");
1842 pinctrl_init_debugfs();
1843 return 0;
1846 /* init early since many drivers really need to initialized pinmux early */
1847 core_initcall(pinctrl_init);