iwlwifi: use the DMA state API instead of the pci equivalents
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000 / e1000_main.c
blobebdea0891665dbb81fbd6e7894abc4e97b6fd2c4
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k6-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
129 struct net_device *netdev);
130 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
131 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
132 static int e1000_set_mac(struct net_device *netdev, void *p);
133 static irqreturn_t e1000_intr(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int *work_done, int work_to_do);
143 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
144 struct e1000_rx_ring *rx_ring,
145 int cleaned_count);
146 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring,
148 int cleaned_count);
149 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
150 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
151 int cmd);
152 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
153 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
154 static void e1000_tx_timeout(struct net_device *dev);
155 static void e1000_reset_task(struct work_struct *work);
156 static void e1000_smartspeed(struct e1000_adapter *adapter);
157 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
158 struct sk_buff *skb);
160 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
161 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
162 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
163 static void e1000_restore_vlan(struct e1000_adapter *adapter);
165 #ifdef CONFIG_PM
166 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
167 static int e1000_resume(struct pci_dev *pdev);
168 #endif
169 static void e1000_shutdown(struct pci_dev *pdev);
171 #ifdef CONFIG_NET_POLL_CONTROLLER
172 /* for netdump / net console */
173 static void e1000_netpoll (struct net_device *netdev);
174 #endif
176 #define COPYBREAK_DEFAULT 256
177 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
178 module_param(copybreak, uint, 0644);
179 MODULE_PARM_DESC(copybreak,
180 "Maximum size of packet that is copied to a new buffer on receive");
182 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
183 pci_channel_state_t state);
184 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
185 static void e1000_io_resume(struct pci_dev *pdev);
187 static struct pci_error_handlers e1000_err_handler = {
188 .error_detected = e1000_io_error_detected,
189 .slot_reset = e1000_io_slot_reset,
190 .resume = e1000_io_resume,
193 static struct pci_driver e1000_driver = {
194 .name = e1000_driver_name,
195 .id_table = e1000_pci_tbl,
196 .probe = e1000_probe,
197 .remove = __devexit_p(e1000_remove),
198 #ifdef CONFIG_PM
199 /* Power Managment Hooks */
200 .suspend = e1000_suspend,
201 .resume = e1000_resume,
202 #endif
203 .shutdown = e1000_shutdown,
204 .err_handler = &e1000_err_handler
207 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
208 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
209 MODULE_LICENSE("GPL");
210 MODULE_VERSION(DRV_VERSION);
212 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
213 module_param(debug, int, 0);
214 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
217 * e1000_get_hw_dev - return device
218 * used by hardware layer to print debugging information
221 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
223 struct e1000_adapter *adapter = hw->back;
224 return adapter->netdev;
228 * e1000_init_module - Driver Registration Routine
230 * e1000_init_module is the first routine called when the driver is
231 * loaded. All it does is register with the PCI subsystem.
234 static int __init e1000_init_module(void)
236 int ret;
237 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
239 pr_info("%s\n", e1000_copyright);
241 ret = pci_register_driver(&e1000_driver);
242 if (copybreak != COPYBREAK_DEFAULT) {
243 if (copybreak == 0)
244 pr_info("copybreak disabled\n");
245 else
246 pr_info("copybreak enabled for "
247 "packets <= %u bytes\n", copybreak);
249 return ret;
252 module_init(e1000_init_module);
255 * e1000_exit_module - Driver Exit Cleanup Routine
257 * e1000_exit_module is called just before the driver is removed
258 * from memory.
261 static void __exit e1000_exit_module(void)
263 pci_unregister_driver(&e1000_driver);
266 module_exit(e1000_exit_module);
268 static int e1000_request_irq(struct e1000_adapter *adapter)
270 struct net_device *netdev = adapter->netdev;
271 irq_handler_t handler = e1000_intr;
272 int irq_flags = IRQF_SHARED;
273 int err;
275 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
276 netdev);
277 if (err) {
278 e_err("Unable to allocate interrupt Error: %d\n", err);
281 return err;
284 static void e1000_free_irq(struct e1000_adapter *adapter)
286 struct net_device *netdev = adapter->netdev;
288 free_irq(adapter->pdev->irq, netdev);
292 * e1000_irq_disable - Mask off interrupt generation on the NIC
293 * @adapter: board private structure
296 static void e1000_irq_disable(struct e1000_adapter *adapter)
298 struct e1000_hw *hw = &adapter->hw;
300 ew32(IMC, ~0);
301 E1000_WRITE_FLUSH();
302 synchronize_irq(adapter->pdev->irq);
306 * e1000_irq_enable - Enable default interrupt generation settings
307 * @adapter: board private structure
310 static void e1000_irq_enable(struct e1000_adapter *adapter)
312 struct e1000_hw *hw = &adapter->hw;
314 ew32(IMS, IMS_ENABLE_MASK);
315 E1000_WRITE_FLUSH();
318 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
320 struct e1000_hw *hw = &adapter->hw;
321 struct net_device *netdev = adapter->netdev;
322 u16 vid = hw->mng_cookie.vlan_id;
323 u16 old_vid = adapter->mng_vlan_id;
324 if (adapter->vlgrp) {
325 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
326 if (hw->mng_cookie.status &
327 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
328 e1000_vlan_rx_add_vid(netdev, vid);
329 adapter->mng_vlan_id = vid;
330 } else
331 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
333 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
334 (vid != old_vid) &&
335 !vlan_group_get_device(adapter->vlgrp, old_vid))
336 e1000_vlan_rx_kill_vid(netdev, old_vid);
337 } else
338 adapter->mng_vlan_id = vid;
342 static void e1000_init_manageability(struct e1000_adapter *adapter)
344 struct e1000_hw *hw = &adapter->hw;
346 if (adapter->en_mng_pt) {
347 u32 manc = er32(MANC);
349 /* disable hardware interception of ARP */
350 manc &= ~(E1000_MANC_ARP_EN);
352 ew32(MANC, manc);
356 static void e1000_release_manageability(struct e1000_adapter *adapter)
358 struct e1000_hw *hw = &adapter->hw;
360 if (adapter->en_mng_pt) {
361 u32 manc = er32(MANC);
363 /* re-enable hardware interception of ARP */
364 manc |= E1000_MANC_ARP_EN;
366 ew32(MANC, manc);
371 * e1000_configure - configure the hardware for RX and TX
372 * @adapter = private board structure
374 static void e1000_configure(struct e1000_adapter *adapter)
376 struct net_device *netdev = adapter->netdev;
377 int i;
379 e1000_set_rx_mode(netdev);
381 e1000_restore_vlan(adapter);
382 e1000_init_manageability(adapter);
384 e1000_configure_tx(adapter);
385 e1000_setup_rctl(adapter);
386 e1000_configure_rx(adapter);
387 /* call E1000_DESC_UNUSED which always leaves
388 * at least 1 descriptor unused to make sure
389 * next_to_use != next_to_clean */
390 for (i = 0; i < adapter->num_rx_queues; i++) {
391 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
392 adapter->alloc_rx_buf(adapter, ring,
393 E1000_DESC_UNUSED(ring));
397 int e1000_up(struct e1000_adapter *adapter)
399 struct e1000_hw *hw = &adapter->hw;
401 /* hardware has been reset, we need to reload some things */
402 e1000_configure(adapter);
404 clear_bit(__E1000_DOWN, &adapter->flags);
406 napi_enable(&adapter->napi);
408 e1000_irq_enable(adapter);
410 netif_wake_queue(adapter->netdev);
412 /* fire a link change interrupt to start the watchdog */
413 ew32(ICS, E1000_ICS_LSC);
414 return 0;
418 * e1000_power_up_phy - restore link in case the phy was powered down
419 * @adapter: address of board private structure
421 * The phy may be powered down to save power and turn off link when the
422 * driver is unloaded and wake on lan is not enabled (among others)
423 * *** this routine MUST be followed by a call to e1000_reset ***
427 void e1000_power_up_phy(struct e1000_adapter *adapter)
429 struct e1000_hw *hw = &adapter->hw;
430 u16 mii_reg = 0;
432 /* Just clear the power down bit to wake the phy back up */
433 if (hw->media_type == e1000_media_type_copper) {
434 /* according to the manual, the phy will retain its
435 * settings across a power-down/up cycle */
436 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
437 mii_reg &= ~MII_CR_POWER_DOWN;
438 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
442 static void e1000_power_down_phy(struct e1000_adapter *adapter)
444 struct e1000_hw *hw = &adapter->hw;
446 /* Power down the PHY so no link is implied when interface is down *
447 * The PHY cannot be powered down if any of the following is true *
448 * (a) WoL is enabled
449 * (b) AMT is active
450 * (c) SoL/IDER session is active */
451 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
452 hw->media_type == e1000_media_type_copper) {
453 u16 mii_reg = 0;
455 switch (hw->mac_type) {
456 case e1000_82540:
457 case e1000_82545:
458 case e1000_82545_rev_3:
459 case e1000_82546:
460 case e1000_82546_rev_3:
461 case e1000_82541:
462 case e1000_82541_rev_2:
463 case e1000_82547:
464 case e1000_82547_rev_2:
465 if (er32(MANC) & E1000_MANC_SMBUS_EN)
466 goto out;
467 break;
468 default:
469 goto out;
471 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
472 mii_reg |= MII_CR_POWER_DOWN;
473 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
474 mdelay(1);
476 out:
477 return;
480 void e1000_down(struct e1000_adapter *adapter)
482 struct e1000_hw *hw = &adapter->hw;
483 struct net_device *netdev = adapter->netdev;
484 u32 rctl, tctl;
486 /* signal that we're down so the interrupt handler does not
487 * reschedule our watchdog timer */
488 set_bit(__E1000_DOWN, &adapter->flags);
490 /* disable receives in the hardware */
491 rctl = er32(RCTL);
492 ew32(RCTL, rctl & ~E1000_RCTL_EN);
493 /* flush and sleep below */
495 netif_tx_disable(netdev);
497 /* disable transmits in the hardware */
498 tctl = er32(TCTL);
499 tctl &= ~E1000_TCTL_EN;
500 ew32(TCTL, tctl);
501 /* flush both disables and wait for them to finish */
502 E1000_WRITE_FLUSH();
503 msleep(10);
505 napi_disable(&adapter->napi);
507 e1000_irq_disable(adapter);
509 del_timer_sync(&adapter->tx_fifo_stall_timer);
510 del_timer_sync(&adapter->watchdog_timer);
511 del_timer_sync(&adapter->phy_info_timer);
513 adapter->link_speed = 0;
514 adapter->link_duplex = 0;
515 netif_carrier_off(netdev);
517 e1000_reset(adapter);
518 e1000_clean_all_tx_rings(adapter);
519 e1000_clean_all_rx_rings(adapter);
522 void e1000_reinit_locked(struct e1000_adapter *adapter)
524 WARN_ON(in_interrupt());
525 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
526 msleep(1);
527 e1000_down(adapter);
528 e1000_up(adapter);
529 clear_bit(__E1000_RESETTING, &adapter->flags);
532 void e1000_reset(struct e1000_adapter *adapter)
534 struct e1000_hw *hw = &adapter->hw;
535 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
536 bool legacy_pba_adjust = false;
537 u16 hwm;
539 /* Repartition Pba for greater than 9k mtu
540 * To take effect CTRL.RST is required.
543 switch (hw->mac_type) {
544 case e1000_82542_rev2_0:
545 case e1000_82542_rev2_1:
546 case e1000_82543:
547 case e1000_82544:
548 case e1000_82540:
549 case e1000_82541:
550 case e1000_82541_rev_2:
551 legacy_pba_adjust = true;
552 pba = E1000_PBA_48K;
553 break;
554 case e1000_82545:
555 case e1000_82545_rev_3:
556 case e1000_82546:
557 case e1000_82546_rev_3:
558 pba = E1000_PBA_48K;
559 break;
560 case e1000_82547:
561 case e1000_82547_rev_2:
562 legacy_pba_adjust = true;
563 pba = E1000_PBA_30K;
564 break;
565 case e1000_undefined:
566 case e1000_num_macs:
567 break;
570 if (legacy_pba_adjust) {
571 if (hw->max_frame_size > E1000_RXBUFFER_8192)
572 pba -= 8; /* allocate more FIFO for Tx */
574 if (hw->mac_type == e1000_82547) {
575 adapter->tx_fifo_head = 0;
576 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
577 adapter->tx_fifo_size =
578 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
579 atomic_set(&adapter->tx_fifo_stall, 0);
581 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
582 /* adjust PBA for jumbo frames */
583 ew32(PBA, pba);
585 /* To maintain wire speed transmits, the Tx FIFO should be
586 * large enough to accommodate two full transmit packets,
587 * rounded up to the next 1KB and expressed in KB. Likewise,
588 * the Rx FIFO should be large enough to accommodate at least
589 * one full receive packet and is similarly rounded up and
590 * expressed in KB. */
591 pba = er32(PBA);
592 /* upper 16 bits has Tx packet buffer allocation size in KB */
593 tx_space = pba >> 16;
594 /* lower 16 bits has Rx packet buffer allocation size in KB */
595 pba &= 0xffff;
597 * the tx fifo also stores 16 bytes of information about the tx
598 * but don't include ethernet FCS because hardware appends it
600 min_tx_space = (hw->max_frame_size +
601 sizeof(struct e1000_tx_desc) -
602 ETH_FCS_LEN) * 2;
603 min_tx_space = ALIGN(min_tx_space, 1024);
604 min_tx_space >>= 10;
605 /* software strips receive CRC, so leave room for it */
606 min_rx_space = hw->max_frame_size;
607 min_rx_space = ALIGN(min_rx_space, 1024);
608 min_rx_space >>= 10;
610 /* If current Tx allocation is less than the min Tx FIFO size,
611 * and the min Tx FIFO size is less than the current Rx FIFO
612 * allocation, take space away from current Rx allocation */
613 if (tx_space < min_tx_space &&
614 ((min_tx_space - tx_space) < pba)) {
615 pba = pba - (min_tx_space - tx_space);
617 /* PCI/PCIx hardware has PBA alignment constraints */
618 switch (hw->mac_type) {
619 case e1000_82545 ... e1000_82546_rev_3:
620 pba &= ~(E1000_PBA_8K - 1);
621 break;
622 default:
623 break;
626 /* if short on rx space, rx wins and must trump tx
627 * adjustment or use Early Receive if available */
628 if (pba < min_rx_space)
629 pba = min_rx_space;
633 ew32(PBA, pba);
636 * flow control settings:
637 * The high water mark must be low enough to fit one full frame
638 * (or the size used for early receive) above it in the Rx FIFO.
639 * Set it to the lower of:
640 * - 90% of the Rx FIFO size, and
641 * - the full Rx FIFO size minus the early receive size (for parts
642 * with ERT support assuming ERT set to E1000_ERT_2048), or
643 * - the full Rx FIFO size minus one full frame
645 hwm = min(((pba << 10) * 9 / 10),
646 ((pba << 10) - hw->max_frame_size));
648 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
649 hw->fc_low_water = hw->fc_high_water - 8;
650 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
651 hw->fc_send_xon = 1;
652 hw->fc = hw->original_fc;
654 /* Allow time for pending master requests to run */
655 e1000_reset_hw(hw);
656 if (hw->mac_type >= e1000_82544)
657 ew32(WUC, 0);
659 if (e1000_init_hw(hw))
660 e_err("Hardware Error\n");
661 e1000_update_mng_vlan(adapter);
663 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
664 if (hw->mac_type >= e1000_82544 &&
665 hw->autoneg == 1 &&
666 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
667 u32 ctrl = er32(CTRL);
668 /* clear phy power management bit if we are in gig only mode,
669 * which if enabled will attempt negotiation to 100Mb, which
670 * can cause a loss of link at power off or driver unload */
671 ctrl &= ~E1000_CTRL_SWDPIN3;
672 ew32(CTRL, ctrl);
675 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
676 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
678 e1000_reset_adaptive(hw);
679 e1000_phy_get_info(hw, &adapter->phy_info);
681 e1000_release_manageability(adapter);
685 * Dump the eeprom for users having checksum issues
687 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
689 struct net_device *netdev = adapter->netdev;
690 struct ethtool_eeprom eeprom;
691 const struct ethtool_ops *ops = netdev->ethtool_ops;
692 u8 *data;
693 int i;
694 u16 csum_old, csum_new = 0;
696 eeprom.len = ops->get_eeprom_len(netdev);
697 eeprom.offset = 0;
699 data = kmalloc(eeprom.len, GFP_KERNEL);
700 if (!data) {
701 pr_err("Unable to allocate memory to dump EEPROM data\n");
702 return;
705 ops->get_eeprom(netdev, &eeprom, data);
707 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
708 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
709 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
710 csum_new += data[i] + (data[i + 1] << 8);
711 csum_new = EEPROM_SUM - csum_new;
713 pr_err("/*********************/\n");
714 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
715 pr_err("Calculated : 0x%04x\n", csum_new);
717 pr_err("Offset Values\n");
718 pr_err("======== ======\n");
719 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
721 pr_err("Include this output when contacting your support provider.\n");
722 pr_err("This is not a software error! Something bad happened to\n");
723 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
724 pr_err("result in further problems, possibly loss of data,\n");
725 pr_err("corruption or system hangs!\n");
726 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
727 pr_err("which is invalid and requires you to set the proper MAC\n");
728 pr_err("address manually before continuing to enable this network\n");
729 pr_err("device. Please inspect the EEPROM dump and report the\n");
730 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
731 pr_err("/*********************/\n");
733 kfree(data);
737 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
738 * @pdev: PCI device information struct
740 * Return true if an adapter needs ioport resources
742 static int e1000_is_need_ioport(struct pci_dev *pdev)
744 switch (pdev->device) {
745 case E1000_DEV_ID_82540EM:
746 case E1000_DEV_ID_82540EM_LOM:
747 case E1000_DEV_ID_82540EP:
748 case E1000_DEV_ID_82540EP_LOM:
749 case E1000_DEV_ID_82540EP_LP:
750 case E1000_DEV_ID_82541EI:
751 case E1000_DEV_ID_82541EI_MOBILE:
752 case E1000_DEV_ID_82541ER:
753 case E1000_DEV_ID_82541ER_LOM:
754 case E1000_DEV_ID_82541GI:
755 case E1000_DEV_ID_82541GI_LF:
756 case E1000_DEV_ID_82541GI_MOBILE:
757 case E1000_DEV_ID_82544EI_COPPER:
758 case E1000_DEV_ID_82544EI_FIBER:
759 case E1000_DEV_ID_82544GC_COPPER:
760 case E1000_DEV_ID_82544GC_LOM:
761 case E1000_DEV_ID_82545EM_COPPER:
762 case E1000_DEV_ID_82545EM_FIBER:
763 case E1000_DEV_ID_82546EB_COPPER:
764 case E1000_DEV_ID_82546EB_FIBER:
765 case E1000_DEV_ID_82546EB_QUAD_COPPER:
766 return true;
767 default:
768 return false;
772 static const struct net_device_ops e1000_netdev_ops = {
773 .ndo_open = e1000_open,
774 .ndo_stop = e1000_close,
775 .ndo_start_xmit = e1000_xmit_frame,
776 .ndo_get_stats = e1000_get_stats,
777 .ndo_set_rx_mode = e1000_set_rx_mode,
778 .ndo_set_mac_address = e1000_set_mac,
779 .ndo_tx_timeout = e1000_tx_timeout,
780 .ndo_change_mtu = e1000_change_mtu,
781 .ndo_do_ioctl = e1000_ioctl,
782 .ndo_validate_addr = eth_validate_addr,
784 .ndo_vlan_rx_register = e1000_vlan_rx_register,
785 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
786 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
787 #ifdef CONFIG_NET_POLL_CONTROLLER
788 .ndo_poll_controller = e1000_netpoll,
789 #endif
793 * e1000_probe - Device Initialization Routine
794 * @pdev: PCI device information struct
795 * @ent: entry in e1000_pci_tbl
797 * Returns 0 on success, negative on failure
799 * e1000_probe initializes an adapter identified by a pci_dev structure.
800 * The OS initialization, configuring of the adapter private structure,
801 * and a hardware reset occur.
803 static int __devinit e1000_probe(struct pci_dev *pdev,
804 const struct pci_device_id *ent)
806 struct net_device *netdev;
807 struct e1000_adapter *adapter;
808 struct e1000_hw *hw;
810 static int cards_found = 0;
811 static int global_quad_port_a = 0; /* global ksp3 port a indication */
812 int i, err, pci_using_dac;
813 u16 eeprom_data = 0;
814 u16 eeprom_apme_mask = E1000_EEPROM_APME;
815 int bars, need_ioport;
817 /* do not allocate ioport bars when not needed */
818 need_ioport = e1000_is_need_ioport(pdev);
819 if (need_ioport) {
820 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
821 err = pci_enable_device(pdev);
822 } else {
823 bars = pci_select_bars(pdev, IORESOURCE_MEM);
824 err = pci_enable_device_mem(pdev);
826 if (err)
827 return err;
829 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
830 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
831 pci_using_dac = 1;
832 } else {
833 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
834 if (err) {
835 err = dma_set_coherent_mask(&pdev->dev,
836 DMA_BIT_MASK(32));
837 if (err) {
838 pr_err("No usable DMA config, aborting\n");
839 goto err_dma;
842 pci_using_dac = 0;
845 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
846 if (err)
847 goto err_pci_reg;
849 pci_set_master(pdev);
850 err = pci_save_state(pdev);
851 if (err)
852 goto err_alloc_etherdev;
854 err = -ENOMEM;
855 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
856 if (!netdev)
857 goto err_alloc_etherdev;
859 SET_NETDEV_DEV(netdev, &pdev->dev);
861 pci_set_drvdata(pdev, netdev);
862 adapter = netdev_priv(netdev);
863 adapter->netdev = netdev;
864 adapter->pdev = pdev;
865 adapter->msg_enable = (1 << debug) - 1;
866 adapter->bars = bars;
867 adapter->need_ioport = need_ioport;
869 hw = &adapter->hw;
870 hw->back = adapter;
872 err = -EIO;
873 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
874 if (!hw->hw_addr)
875 goto err_ioremap;
877 if (adapter->need_ioport) {
878 for (i = BAR_1; i <= BAR_5; i++) {
879 if (pci_resource_len(pdev, i) == 0)
880 continue;
881 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
882 hw->io_base = pci_resource_start(pdev, i);
883 break;
888 netdev->netdev_ops = &e1000_netdev_ops;
889 e1000_set_ethtool_ops(netdev);
890 netdev->watchdog_timeo = 5 * HZ;
891 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
893 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
895 adapter->bd_number = cards_found;
897 /* setup the private structure */
899 err = e1000_sw_init(adapter);
900 if (err)
901 goto err_sw_init;
903 err = -EIO;
905 if (hw->mac_type >= e1000_82543) {
906 netdev->features = NETIF_F_SG |
907 NETIF_F_HW_CSUM |
908 NETIF_F_HW_VLAN_TX |
909 NETIF_F_HW_VLAN_RX |
910 NETIF_F_HW_VLAN_FILTER;
913 if ((hw->mac_type >= e1000_82544) &&
914 (hw->mac_type != e1000_82547))
915 netdev->features |= NETIF_F_TSO;
917 if (pci_using_dac)
918 netdev->features |= NETIF_F_HIGHDMA;
920 netdev->vlan_features |= NETIF_F_TSO;
921 netdev->vlan_features |= NETIF_F_HW_CSUM;
922 netdev->vlan_features |= NETIF_F_SG;
924 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
926 /* initialize eeprom parameters */
927 if (e1000_init_eeprom_params(hw)) {
928 e_err("EEPROM initialization failed\n");
929 goto err_eeprom;
932 /* before reading the EEPROM, reset the controller to
933 * put the device in a known good starting state */
935 e1000_reset_hw(hw);
937 /* make sure the EEPROM is good */
938 if (e1000_validate_eeprom_checksum(hw) < 0) {
939 e_err("The EEPROM Checksum Is Not Valid\n");
940 e1000_dump_eeprom(adapter);
942 * set MAC address to all zeroes to invalidate and temporary
943 * disable this device for the user. This blocks regular
944 * traffic while still permitting ethtool ioctls from reaching
945 * the hardware as well as allowing the user to run the
946 * interface after manually setting a hw addr using
947 * `ip set address`
949 memset(hw->mac_addr, 0, netdev->addr_len);
950 } else {
951 /* copy the MAC address out of the EEPROM */
952 if (e1000_read_mac_addr(hw))
953 e_err("EEPROM Read Error\n");
955 /* don't block initalization here due to bad MAC address */
956 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
957 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
959 if (!is_valid_ether_addr(netdev->perm_addr))
960 e_err("Invalid MAC Address\n");
962 e1000_get_bus_info(hw);
964 init_timer(&adapter->tx_fifo_stall_timer);
965 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
966 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
968 init_timer(&adapter->watchdog_timer);
969 adapter->watchdog_timer.function = &e1000_watchdog;
970 adapter->watchdog_timer.data = (unsigned long) adapter;
972 init_timer(&adapter->phy_info_timer);
973 adapter->phy_info_timer.function = &e1000_update_phy_info;
974 adapter->phy_info_timer.data = (unsigned long)adapter;
976 INIT_WORK(&adapter->reset_task, e1000_reset_task);
978 e1000_check_options(adapter);
980 /* Initial Wake on LAN setting
981 * If APM wake is enabled in the EEPROM,
982 * enable the ACPI Magic Packet filter
985 switch (hw->mac_type) {
986 case e1000_82542_rev2_0:
987 case e1000_82542_rev2_1:
988 case e1000_82543:
989 break;
990 case e1000_82544:
991 e1000_read_eeprom(hw,
992 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
993 eeprom_apme_mask = E1000_EEPROM_82544_APM;
994 break;
995 case e1000_82546:
996 case e1000_82546_rev_3:
997 if (er32(STATUS) & E1000_STATUS_FUNC_1){
998 e1000_read_eeprom(hw,
999 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1000 break;
1002 /* Fall Through */
1003 default:
1004 e1000_read_eeprom(hw,
1005 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1006 break;
1008 if (eeprom_data & eeprom_apme_mask)
1009 adapter->eeprom_wol |= E1000_WUFC_MAG;
1011 /* now that we have the eeprom settings, apply the special cases
1012 * where the eeprom may be wrong or the board simply won't support
1013 * wake on lan on a particular port */
1014 switch (pdev->device) {
1015 case E1000_DEV_ID_82546GB_PCIE:
1016 adapter->eeprom_wol = 0;
1017 break;
1018 case E1000_DEV_ID_82546EB_FIBER:
1019 case E1000_DEV_ID_82546GB_FIBER:
1020 /* Wake events only supported on port A for dual fiber
1021 * regardless of eeprom setting */
1022 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1023 adapter->eeprom_wol = 0;
1024 break;
1025 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1026 /* if quad port adapter, disable WoL on all but port A */
1027 if (global_quad_port_a != 0)
1028 adapter->eeprom_wol = 0;
1029 else
1030 adapter->quad_port_a = 1;
1031 /* Reset for multiple quad port adapters */
1032 if (++global_quad_port_a == 4)
1033 global_quad_port_a = 0;
1034 break;
1037 /* initialize the wol settings based on the eeprom settings */
1038 adapter->wol = adapter->eeprom_wol;
1039 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1041 /* reset the hardware with the new settings */
1042 e1000_reset(adapter);
1044 strcpy(netdev->name, "eth%d");
1045 err = register_netdev(netdev);
1046 if (err)
1047 goto err_register;
1049 /* print bus type/speed/width info */
1050 e_info("(PCI%s:%s:%s) ",
1051 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1052 ((hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1053 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1054 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1055 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1056 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" : "32-bit"));
1058 e_info("%pM\n", netdev->dev_addr);
1060 /* carrier off reporting is important to ethtool even BEFORE open */
1061 netif_carrier_off(netdev);
1063 e_info("Intel(R) PRO/1000 Network Connection\n");
1065 cards_found++;
1066 return 0;
1068 err_register:
1069 err_eeprom:
1070 e1000_phy_hw_reset(hw);
1072 if (hw->flash_address)
1073 iounmap(hw->flash_address);
1074 kfree(adapter->tx_ring);
1075 kfree(adapter->rx_ring);
1076 err_sw_init:
1077 iounmap(hw->hw_addr);
1078 err_ioremap:
1079 free_netdev(netdev);
1080 err_alloc_etherdev:
1081 pci_release_selected_regions(pdev, bars);
1082 err_pci_reg:
1083 err_dma:
1084 pci_disable_device(pdev);
1085 return err;
1089 * e1000_remove - Device Removal Routine
1090 * @pdev: PCI device information struct
1092 * e1000_remove is called by the PCI subsystem to alert the driver
1093 * that it should release a PCI device. The could be caused by a
1094 * Hot-Plug event, or because the driver is going to be removed from
1095 * memory.
1098 static void __devexit e1000_remove(struct pci_dev *pdev)
1100 struct net_device *netdev = pci_get_drvdata(pdev);
1101 struct e1000_adapter *adapter = netdev_priv(netdev);
1102 struct e1000_hw *hw = &adapter->hw;
1104 set_bit(__E1000_DOWN, &adapter->flags);
1105 del_timer_sync(&adapter->tx_fifo_stall_timer);
1106 del_timer_sync(&adapter->watchdog_timer);
1107 del_timer_sync(&adapter->phy_info_timer);
1109 cancel_work_sync(&adapter->reset_task);
1111 e1000_release_manageability(adapter);
1113 unregister_netdev(netdev);
1115 e1000_phy_hw_reset(hw);
1117 kfree(adapter->tx_ring);
1118 kfree(adapter->rx_ring);
1120 iounmap(hw->hw_addr);
1121 if (hw->flash_address)
1122 iounmap(hw->flash_address);
1123 pci_release_selected_regions(pdev, adapter->bars);
1125 free_netdev(netdev);
1127 pci_disable_device(pdev);
1131 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1132 * @adapter: board private structure to initialize
1134 * e1000_sw_init initializes the Adapter private data structure.
1135 * Fields are initialized based on PCI device information and
1136 * OS network device settings (MTU size).
1139 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1141 struct e1000_hw *hw = &adapter->hw;
1142 struct net_device *netdev = adapter->netdev;
1143 struct pci_dev *pdev = adapter->pdev;
1145 /* PCI config space info */
1147 hw->vendor_id = pdev->vendor;
1148 hw->device_id = pdev->device;
1149 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1150 hw->subsystem_id = pdev->subsystem_device;
1151 hw->revision_id = pdev->revision;
1153 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1155 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1156 hw->max_frame_size = netdev->mtu +
1157 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1158 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1160 /* identify the MAC */
1162 if (e1000_set_mac_type(hw)) {
1163 e_err("Unknown MAC Type\n");
1164 return -EIO;
1167 switch (hw->mac_type) {
1168 default:
1169 break;
1170 case e1000_82541:
1171 case e1000_82547:
1172 case e1000_82541_rev_2:
1173 case e1000_82547_rev_2:
1174 hw->phy_init_script = 1;
1175 break;
1178 e1000_set_media_type(hw);
1180 hw->wait_autoneg_complete = false;
1181 hw->tbi_compatibility_en = true;
1182 hw->adaptive_ifs = true;
1184 /* Copper options */
1186 if (hw->media_type == e1000_media_type_copper) {
1187 hw->mdix = AUTO_ALL_MODES;
1188 hw->disable_polarity_correction = false;
1189 hw->master_slave = E1000_MASTER_SLAVE;
1192 adapter->num_tx_queues = 1;
1193 adapter->num_rx_queues = 1;
1195 if (e1000_alloc_queues(adapter)) {
1196 e_err("Unable to allocate memory for queues\n");
1197 return -ENOMEM;
1200 /* Explicitly disable IRQ since the NIC can be in any state. */
1201 e1000_irq_disable(adapter);
1203 spin_lock_init(&adapter->stats_lock);
1205 set_bit(__E1000_DOWN, &adapter->flags);
1207 return 0;
1211 * e1000_alloc_queues - Allocate memory for all rings
1212 * @adapter: board private structure to initialize
1214 * We allocate one ring per queue at run-time since we don't know the
1215 * number of queues at compile-time.
1218 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1220 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1221 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1222 if (!adapter->tx_ring)
1223 return -ENOMEM;
1225 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1226 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1227 if (!adapter->rx_ring) {
1228 kfree(adapter->tx_ring);
1229 return -ENOMEM;
1232 return E1000_SUCCESS;
1236 * e1000_open - Called when a network interface is made active
1237 * @netdev: network interface device structure
1239 * Returns 0 on success, negative value on failure
1241 * The open entry point is called when a network interface is made
1242 * active by the system (IFF_UP). At this point all resources needed
1243 * for transmit and receive operations are allocated, the interrupt
1244 * handler is registered with the OS, the watchdog timer is started,
1245 * and the stack is notified that the interface is ready.
1248 static int e1000_open(struct net_device *netdev)
1250 struct e1000_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252 int err;
1254 /* disallow open during test */
1255 if (test_bit(__E1000_TESTING, &adapter->flags))
1256 return -EBUSY;
1258 netif_carrier_off(netdev);
1260 /* allocate transmit descriptors */
1261 err = e1000_setup_all_tx_resources(adapter);
1262 if (err)
1263 goto err_setup_tx;
1265 /* allocate receive descriptors */
1266 err = e1000_setup_all_rx_resources(adapter);
1267 if (err)
1268 goto err_setup_rx;
1270 e1000_power_up_phy(adapter);
1272 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1273 if ((hw->mng_cookie.status &
1274 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1275 e1000_update_mng_vlan(adapter);
1278 /* before we allocate an interrupt, we must be ready to handle it.
1279 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1280 * as soon as we call pci_request_irq, so we have to setup our
1281 * clean_rx handler before we do so. */
1282 e1000_configure(adapter);
1284 err = e1000_request_irq(adapter);
1285 if (err)
1286 goto err_req_irq;
1288 /* From here on the code is the same as e1000_up() */
1289 clear_bit(__E1000_DOWN, &adapter->flags);
1291 napi_enable(&adapter->napi);
1293 e1000_irq_enable(adapter);
1295 netif_start_queue(netdev);
1297 /* fire a link status change interrupt to start the watchdog */
1298 ew32(ICS, E1000_ICS_LSC);
1300 return E1000_SUCCESS;
1302 err_req_irq:
1303 e1000_power_down_phy(adapter);
1304 e1000_free_all_rx_resources(adapter);
1305 err_setup_rx:
1306 e1000_free_all_tx_resources(adapter);
1307 err_setup_tx:
1308 e1000_reset(adapter);
1310 return err;
1314 * e1000_close - Disables a network interface
1315 * @netdev: network interface device structure
1317 * Returns 0, this is not allowed to fail
1319 * The close entry point is called when an interface is de-activated
1320 * by the OS. The hardware is still under the drivers control, but
1321 * needs to be disabled. A global MAC reset is issued to stop the
1322 * hardware, and all transmit and receive resources are freed.
1325 static int e1000_close(struct net_device *netdev)
1327 struct e1000_adapter *adapter = netdev_priv(netdev);
1328 struct e1000_hw *hw = &adapter->hw;
1330 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1331 e1000_down(adapter);
1332 e1000_power_down_phy(adapter);
1333 e1000_free_irq(adapter);
1335 e1000_free_all_tx_resources(adapter);
1336 e1000_free_all_rx_resources(adapter);
1338 /* kill manageability vlan ID if supported, but not if a vlan with
1339 * the same ID is registered on the host OS (let 8021q kill it) */
1340 if ((hw->mng_cookie.status &
1341 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1342 !(adapter->vlgrp &&
1343 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1344 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1347 return 0;
1351 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1352 * @adapter: address of board private structure
1353 * @start: address of beginning of memory
1354 * @len: length of memory
1356 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1357 unsigned long len)
1359 struct e1000_hw *hw = &adapter->hw;
1360 unsigned long begin = (unsigned long)start;
1361 unsigned long end = begin + len;
1363 /* First rev 82545 and 82546 need to not allow any memory
1364 * write location to cross 64k boundary due to errata 23 */
1365 if (hw->mac_type == e1000_82545 ||
1366 hw->mac_type == e1000_82546) {
1367 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1370 return true;
1374 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1375 * @adapter: board private structure
1376 * @txdr: tx descriptor ring (for a specific queue) to setup
1378 * Return 0 on success, negative on failure
1381 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1382 struct e1000_tx_ring *txdr)
1384 struct pci_dev *pdev = adapter->pdev;
1385 int size;
1387 size = sizeof(struct e1000_buffer) * txdr->count;
1388 txdr->buffer_info = vmalloc(size);
1389 if (!txdr->buffer_info) {
1390 e_err("Unable to allocate memory for the Tx descriptor ring\n");
1391 return -ENOMEM;
1393 memset(txdr->buffer_info, 0, size);
1395 /* round up to nearest 4K */
1397 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1398 txdr->size = ALIGN(txdr->size, 4096);
1400 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1401 GFP_KERNEL);
1402 if (!txdr->desc) {
1403 setup_tx_desc_die:
1404 vfree(txdr->buffer_info);
1405 e_err("Unable to allocate memory for the Tx descriptor ring\n");
1406 return -ENOMEM;
1409 /* Fix for errata 23, can't cross 64kB boundary */
1410 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1411 void *olddesc = txdr->desc;
1412 dma_addr_t olddma = txdr->dma;
1413 e_err("txdr align check failed: %u bytes at %p\n",
1414 txdr->size, txdr->desc);
1415 /* Try again, without freeing the previous */
1416 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1417 &txdr->dma, GFP_KERNEL);
1418 /* Failed allocation, critical failure */
1419 if (!txdr->desc) {
1420 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1421 olddma);
1422 goto setup_tx_desc_die;
1425 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1426 /* give up */
1427 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1428 txdr->dma);
1429 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1430 olddma);
1431 e_err("Unable to allocate aligned memory "
1432 "for the transmit descriptor ring\n");
1433 vfree(txdr->buffer_info);
1434 return -ENOMEM;
1435 } else {
1436 /* Free old allocation, new allocation was successful */
1437 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1438 olddma);
1441 memset(txdr->desc, 0, txdr->size);
1443 txdr->next_to_use = 0;
1444 txdr->next_to_clean = 0;
1446 return 0;
1450 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1451 * (Descriptors) for all queues
1452 * @adapter: board private structure
1454 * Return 0 on success, negative on failure
1457 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1459 int i, err = 0;
1461 for (i = 0; i < adapter->num_tx_queues; i++) {
1462 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1463 if (err) {
1464 e_err("Allocation for Tx Queue %u failed\n", i);
1465 for (i-- ; i >= 0; i--)
1466 e1000_free_tx_resources(adapter,
1467 &adapter->tx_ring[i]);
1468 break;
1472 return err;
1476 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1477 * @adapter: board private structure
1479 * Configure the Tx unit of the MAC after a reset.
1482 static void e1000_configure_tx(struct e1000_adapter *adapter)
1484 u64 tdba;
1485 struct e1000_hw *hw = &adapter->hw;
1486 u32 tdlen, tctl, tipg;
1487 u32 ipgr1, ipgr2;
1489 /* Setup the HW Tx Head and Tail descriptor pointers */
1491 switch (adapter->num_tx_queues) {
1492 case 1:
1493 default:
1494 tdba = adapter->tx_ring[0].dma;
1495 tdlen = adapter->tx_ring[0].count *
1496 sizeof(struct e1000_tx_desc);
1497 ew32(TDLEN, tdlen);
1498 ew32(TDBAH, (tdba >> 32));
1499 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1500 ew32(TDT, 0);
1501 ew32(TDH, 0);
1502 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1503 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1504 break;
1507 /* Set the default values for the Tx Inter Packet Gap timer */
1508 if ((hw->media_type == e1000_media_type_fiber ||
1509 hw->media_type == e1000_media_type_internal_serdes))
1510 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1511 else
1512 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1514 switch (hw->mac_type) {
1515 case e1000_82542_rev2_0:
1516 case e1000_82542_rev2_1:
1517 tipg = DEFAULT_82542_TIPG_IPGT;
1518 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1519 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1520 break;
1521 default:
1522 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1523 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1524 break;
1526 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1527 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1528 ew32(TIPG, tipg);
1530 /* Set the Tx Interrupt Delay register */
1532 ew32(TIDV, adapter->tx_int_delay);
1533 if (hw->mac_type >= e1000_82540)
1534 ew32(TADV, adapter->tx_abs_int_delay);
1536 /* Program the Transmit Control Register */
1538 tctl = er32(TCTL);
1539 tctl &= ~E1000_TCTL_CT;
1540 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1541 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1543 e1000_config_collision_dist(hw);
1545 /* Setup Transmit Descriptor Settings for eop descriptor */
1546 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1548 /* only set IDE if we are delaying interrupts using the timers */
1549 if (adapter->tx_int_delay)
1550 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1552 if (hw->mac_type < e1000_82543)
1553 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1554 else
1555 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1557 /* Cache if we're 82544 running in PCI-X because we'll
1558 * need this to apply a workaround later in the send path. */
1559 if (hw->mac_type == e1000_82544 &&
1560 hw->bus_type == e1000_bus_type_pcix)
1561 adapter->pcix_82544 = 1;
1563 ew32(TCTL, tctl);
1568 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1569 * @adapter: board private structure
1570 * @rxdr: rx descriptor ring (for a specific queue) to setup
1572 * Returns 0 on success, negative on failure
1575 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1576 struct e1000_rx_ring *rxdr)
1578 struct pci_dev *pdev = adapter->pdev;
1579 int size, desc_len;
1581 size = sizeof(struct e1000_buffer) * rxdr->count;
1582 rxdr->buffer_info = vmalloc(size);
1583 if (!rxdr->buffer_info) {
1584 e_err("Unable to allocate memory for the Rx descriptor ring\n");
1585 return -ENOMEM;
1587 memset(rxdr->buffer_info, 0, size);
1589 desc_len = sizeof(struct e1000_rx_desc);
1591 /* Round up to nearest 4K */
1593 rxdr->size = rxdr->count * desc_len;
1594 rxdr->size = ALIGN(rxdr->size, 4096);
1596 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1597 GFP_KERNEL);
1599 if (!rxdr->desc) {
1600 e_err("Unable to allocate memory for the Rx descriptor ring\n");
1601 setup_rx_desc_die:
1602 vfree(rxdr->buffer_info);
1603 return -ENOMEM;
1606 /* Fix for errata 23, can't cross 64kB boundary */
1607 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1608 void *olddesc = rxdr->desc;
1609 dma_addr_t olddma = rxdr->dma;
1610 e_err("rxdr align check failed: %u bytes at %p\n",
1611 rxdr->size, rxdr->desc);
1612 /* Try again, without freeing the previous */
1613 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1614 &rxdr->dma, GFP_KERNEL);
1615 /* Failed allocation, critical failure */
1616 if (!rxdr->desc) {
1617 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1618 olddma);
1619 e_err("Unable to allocate memory for the Rx descriptor "
1620 "ring\n");
1621 goto setup_rx_desc_die;
1624 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1625 /* give up */
1626 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1627 rxdr->dma);
1628 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1629 olddma);
1630 e_err("Unable to allocate aligned memory for the Rx "
1631 "descriptor ring\n");
1632 goto setup_rx_desc_die;
1633 } else {
1634 /* Free old allocation, new allocation was successful */
1635 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1636 olddma);
1639 memset(rxdr->desc, 0, rxdr->size);
1641 rxdr->next_to_clean = 0;
1642 rxdr->next_to_use = 0;
1643 rxdr->rx_skb_top = NULL;
1645 return 0;
1649 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1650 * (Descriptors) for all queues
1651 * @adapter: board private structure
1653 * Return 0 on success, negative on failure
1656 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1658 int i, err = 0;
1660 for (i = 0; i < adapter->num_rx_queues; i++) {
1661 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1662 if (err) {
1663 e_err("Allocation for Rx Queue %u failed\n", i);
1664 for (i-- ; i >= 0; i--)
1665 e1000_free_rx_resources(adapter,
1666 &adapter->rx_ring[i]);
1667 break;
1671 return err;
1675 * e1000_setup_rctl - configure the receive control registers
1676 * @adapter: Board private structure
1678 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1680 struct e1000_hw *hw = &adapter->hw;
1681 u32 rctl;
1683 rctl = er32(RCTL);
1685 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1687 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1688 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1689 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1691 if (hw->tbi_compatibility_on == 1)
1692 rctl |= E1000_RCTL_SBP;
1693 else
1694 rctl &= ~E1000_RCTL_SBP;
1696 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1697 rctl &= ~E1000_RCTL_LPE;
1698 else
1699 rctl |= E1000_RCTL_LPE;
1701 /* Setup buffer sizes */
1702 rctl &= ~E1000_RCTL_SZ_4096;
1703 rctl |= E1000_RCTL_BSEX;
1704 switch (adapter->rx_buffer_len) {
1705 case E1000_RXBUFFER_2048:
1706 default:
1707 rctl |= E1000_RCTL_SZ_2048;
1708 rctl &= ~E1000_RCTL_BSEX;
1709 break;
1710 case E1000_RXBUFFER_4096:
1711 rctl |= E1000_RCTL_SZ_4096;
1712 break;
1713 case E1000_RXBUFFER_8192:
1714 rctl |= E1000_RCTL_SZ_8192;
1715 break;
1716 case E1000_RXBUFFER_16384:
1717 rctl |= E1000_RCTL_SZ_16384;
1718 break;
1721 ew32(RCTL, rctl);
1725 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1726 * @adapter: board private structure
1728 * Configure the Rx unit of the MAC after a reset.
1731 static void e1000_configure_rx(struct e1000_adapter *adapter)
1733 u64 rdba;
1734 struct e1000_hw *hw = &adapter->hw;
1735 u32 rdlen, rctl, rxcsum;
1737 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1738 rdlen = adapter->rx_ring[0].count *
1739 sizeof(struct e1000_rx_desc);
1740 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1741 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1742 } else {
1743 rdlen = adapter->rx_ring[0].count *
1744 sizeof(struct e1000_rx_desc);
1745 adapter->clean_rx = e1000_clean_rx_irq;
1746 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1749 /* disable receives while setting up the descriptors */
1750 rctl = er32(RCTL);
1751 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1753 /* set the Receive Delay Timer Register */
1754 ew32(RDTR, adapter->rx_int_delay);
1756 if (hw->mac_type >= e1000_82540) {
1757 ew32(RADV, adapter->rx_abs_int_delay);
1758 if (adapter->itr_setting != 0)
1759 ew32(ITR, 1000000000 / (adapter->itr * 256));
1762 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1763 * the Base and Length of the Rx Descriptor Ring */
1764 switch (adapter->num_rx_queues) {
1765 case 1:
1766 default:
1767 rdba = adapter->rx_ring[0].dma;
1768 ew32(RDLEN, rdlen);
1769 ew32(RDBAH, (rdba >> 32));
1770 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1771 ew32(RDT, 0);
1772 ew32(RDH, 0);
1773 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1774 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1775 break;
1778 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1779 if (hw->mac_type >= e1000_82543) {
1780 rxcsum = er32(RXCSUM);
1781 if (adapter->rx_csum)
1782 rxcsum |= E1000_RXCSUM_TUOFL;
1783 else
1784 /* don't need to clear IPPCSE as it defaults to 0 */
1785 rxcsum &= ~E1000_RXCSUM_TUOFL;
1786 ew32(RXCSUM, rxcsum);
1789 /* Enable Receives */
1790 ew32(RCTL, rctl);
1794 * e1000_free_tx_resources - Free Tx Resources per Queue
1795 * @adapter: board private structure
1796 * @tx_ring: Tx descriptor ring for a specific queue
1798 * Free all transmit software resources
1801 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1802 struct e1000_tx_ring *tx_ring)
1804 struct pci_dev *pdev = adapter->pdev;
1806 e1000_clean_tx_ring(adapter, tx_ring);
1808 vfree(tx_ring->buffer_info);
1809 tx_ring->buffer_info = NULL;
1811 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1812 tx_ring->dma);
1814 tx_ring->desc = NULL;
1818 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1819 * @adapter: board private structure
1821 * Free all transmit software resources
1824 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1826 int i;
1828 for (i = 0; i < adapter->num_tx_queues; i++)
1829 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1832 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1833 struct e1000_buffer *buffer_info)
1835 if (buffer_info->dma) {
1836 if (buffer_info->mapped_as_page)
1837 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1838 buffer_info->length, DMA_TO_DEVICE);
1839 else
1840 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1841 buffer_info->length,
1842 DMA_TO_DEVICE);
1843 buffer_info->dma = 0;
1845 if (buffer_info->skb) {
1846 dev_kfree_skb_any(buffer_info->skb);
1847 buffer_info->skb = NULL;
1849 buffer_info->time_stamp = 0;
1850 /* buffer_info must be completely set up in the transmit path */
1854 * e1000_clean_tx_ring - Free Tx Buffers
1855 * @adapter: board private structure
1856 * @tx_ring: ring to be cleaned
1859 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1860 struct e1000_tx_ring *tx_ring)
1862 struct e1000_hw *hw = &adapter->hw;
1863 struct e1000_buffer *buffer_info;
1864 unsigned long size;
1865 unsigned int i;
1867 /* Free all the Tx ring sk_buffs */
1869 for (i = 0; i < tx_ring->count; i++) {
1870 buffer_info = &tx_ring->buffer_info[i];
1871 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1874 size = sizeof(struct e1000_buffer) * tx_ring->count;
1875 memset(tx_ring->buffer_info, 0, size);
1877 /* Zero out the descriptor ring */
1879 memset(tx_ring->desc, 0, tx_ring->size);
1881 tx_ring->next_to_use = 0;
1882 tx_ring->next_to_clean = 0;
1883 tx_ring->last_tx_tso = 0;
1885 writel(0, hw->hw_addr + tx_ring->tdh);
1886 writel(0, hw->hw_addr + tx_ring->tdt);
1890 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
1891 * @adapter: board private structure
1894 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
1896 int i;
1898 for (i = 0; i < adapter->num_tx_queues; i++)
1899 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1903 * e1000_free_rx_resources - Free Rx Resources
1904 * @adapter: board private structure
1905 * @rx_ring: ring to clean the resources from
1907 * Free all receive software resources
1910 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
1911 struct e1000_rx_ring *rx_ring)
1913 struct pci_dev *pdev = adapter->pdev;
1915 e1000_clean_rx_ring(adapter, rx_ring);
1917 vfree(rx_ring->buffer_info);
1918 rx_ring->buffer_info = NULL;
1920 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1921 rx_ring->dma);
1923 rx_ring->desc = NULL;
1927 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1928 * @adapter: board private structure
1930 * Free all receive software resources
1933 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
1935 int i;
1937 for (i = 0; i < adapter->num_rx_queues; i++)
1938 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
1942 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1943 * @adapter: board private structure
1944 * @rx_ring: ring to free buffers from
1947 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
1948 struct e1000_rx_ring *rx_ring)
1950 struct e1000_hw *hw = &adapter->hw;
1951 struct e1000_buffer *buffer_info;
1952 struct pci_dev *pdev = adapter->pdev;
1953 unsigned long size;
1954 unsigned int i;
1956 /* Free all the Rx ring sk_buffs */
1957 for (i = 0; i < rx_ring->count; i++) {
1958 buffer_info = &rx_ring->buffer_info[i];
1959 if (buffer_info->dma &&
1960 adapter->clean_rx == e1000_clean_rx_irq) {
1961 dma_unmap_single(&pdev->dev, buffer_info->dma,
1962 buffer_info->length,
1963 DMA_FROM_DEVICE);
1964 } else if (buffer_info->dma &&
1965 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
1966 dma_unmap_page(&pdev->dev, buffer_info->dma,
1967 buffer_info->length,
1968 DMA_FROM_DEVICE);
1971 buffer_info->dma = 0;
1972 if (buffer_info->page) {
1973 put_page(buffer_info->page);
1974 buffer_info->page = NULL;
1976 if (buffer_info->skb) {
1977 dev_kfree_skb(buffer_info->skb);
1978 buffer_info->skb = NULL;
1982 /* there also may be some cached data from a chained receive */
1983 if (rx_ring->rx_skb_top) {
1984 dev_kfree_skb(rx_ring->rx_skb_top);
1985 rx_ring->rx_skb_top = NULL;
1988 size = sizeof(struct e1000_buffer) * rx_ring->count;
1989 memset(rx_ring->buffer_info, 0, size);
1991 /* Zero out the descriptor ring */
1992 memset(rx_ring->desc, 0, rx_ring->size);
1994 rx_ring->next_to_clean = 0;
1995 rx_ring->next_to_use = 0;
1997 writel(0, hw->hw_addr + rx_ring->rdh);
1998 writel(0, hw->hw_addr + rx_ring->rdt);
2002 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2003 * @adapter: board private structure
2006 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2008 int i;
2010 for (i = 0; i < adapter->num_rx_queues; i++)
2011 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2014 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2015 * and memory write and invalidate disabled for certain operations
2017 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2019 struct e1000_hw *hw = &adapter->hw;
2020 struct net_device *netdev = adapter->netdev;
2021 u32 rctl;
2023 e1000_pci_clear_mwi(hw);
2025 rctl = er32(RCTL);
2026 rctl |= E1000_RCTL_RST;
2027 ew32(RCTL, rctl);
2028 E1000_WRITE_FLUSH();
2029 mdelay(5);
2031 if (netif_running(netdev))
2032 e1000_clean_all_rx_rings(adapter);
2035 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2037 struct e1000_hw *hw = &adapter->hw;
2038 struct net_device *netdev = adapter->netdev;
2039 u32 rctl;
2041 rctl = er32(RCTL);
2042 rctl &= ~E1000_RCTL_RST;
2043 ew32(RCTL, rctl);
2044 E1000_WRITE_FLUSH();
2045 mdelay(5);
2047 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2048 e1000_pci_set_mwi(hw);
2050 if (netif_running(netdev)) {
2051 /* No need to loop, because 82542 supports only 1 queue */
2052 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2053 e1000_configure_rx(adapter);
2054 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2059 * e1000_set_mac - Change the Ethernet Address of the NIC
2060 * @netdev: network interface device structure
2061 * @p: pointer to an address structure
2063 * Returns 0 on success, negative on failure
2066 static int e1000_set_mac(struct net_device *netdev, void *p)
2068 struct e1000_adapter *adapter = netdev_priv(netdev);
2069 struct e1000_hw *hw = &adapter->hw;
2070 struct sockaddr *addr = p;
2072 if (!is_valid_ether_addr(addr->sa_data))
2073 return -EADDRNOTAVAIL;
2075 /* 82542 2.0 needs to be in reset to write receive address registers */
2077 if (hw->mac_type == e1000_82542_rev2_0)
2078 e1000_enter_82542_rst(adapter);
2080 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2081 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2083 e1000_rar_set(hw, hw->mac_addr, 0);
2085 if (hw->mac_type == e1000_82542_rev2_0)
2086 e1000_leave_82542_rst(adapter);
2088 return 0;
2092 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2093 * @netdev: network interface device structure
2095 * The set_rx_mode entry point is called whenever the unicast or multicast
2096 * address lists or the network interface flags are updated. This routine is
2097 * responsible for configuring the hardware for proper unicast, multicast,
2098 * promiscuous mode, and all-multi behavior.
2101 static void e1000_set_rx_mode(struct net_device *netdev)
2103 struct e1000_adapter *adapter = netdev_priv(netdev);
2104 struct e1000_hw *hw = &adapter->hw;
2105 struct netdev_hw_addr *ha;
2106 bool use_uc = false;
2107 u32 rctl;
2108 u32 hash_value;
2109 int i, rar_entries = E1000_RAR_ENTRIES;
2110 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2111 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2113 if (!mcarray) {
2114 e_err("memory allocation failed\n");
2115 return;
2118 /* Check for Promiscuous and All Multicast modes */
2120 rctl = er32(RCTL);
2122 if (netdev->flags & IFF_PROMISC) {
2123 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2124 rctl &= ~E1000_RCTL_VFE;
2125 } else {
2126 if (netdev->flags & IFF_ALLMULTI)
2127 rctl |= E1000_RCTL_MPE;
2128 else
2129 rctl &= ~E1000_RCTL_MPE;
2130 /* Enable VLAN filter if there is a VLAN */
2131 if (adapter->vlgrp)
2132 rctl |= E1000_RCTL_VFE;
2135 if (netdev_uc_count(netdev) > rar_entries - 1) {
2136 rctl |= E1000_RCTL_UPE;
2137 } else if (!(netdev->flags & IFF_PROMISC)) {
2138 rctl &= ~E1000_RCTL_UPE;
2139 use_uc = true;
2142 ew32(RCTL, rctl);
2144 /* 82542 2.0 needs to be in reset to write receive address registers */
2146 if (hw->mac_type == e1000_82542_rev2_0)
2147 e1000_enter_82542_rst(adapter);
2149 /* load the first 14 addresses into the exact filters 1-14. Unicast
2150 * addresses take precedence to avoid disabling unicast filtering
2151 * when possible.
2153 * RAR 0 is used for the station MAC adddress
2154 * if there are not 14 addresses, go ahead and clear the filters
2156 i = 1;
2157 if (use_uc)
2158 netdev_for_each_uc_addr(ha, netdev) {
2159 if (i == rar_entries)
2160 break;
2161 e1000_rar_set(hw, ha->addr, i++);
2164 netdev_for_each_mc_addr(ha, netdev) {
2165 if (i == rar_entries) {
2166 /* load any remaining addresses into the hash table */
2167 u32 hash_reg, hash_bit, mta;
2168 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2169 hash_reg = (hash_value >> 5) & 0x7F;
2170 hash_bit = hash_value & 0x1F;
2171 mta = (1 << hash_bit);
2172 mcarray[hash_reg] |= mta;
2173 } else {
2174 e1000_rar_set(hw, ha->addr, i++);
2178 for (; i < rar_entries; i++) {
2179 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2180 E1000_WRITE_FLUSH();
2181 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2182 E1000_WRITE_FLUSH();
2185 /* write the hash table completely, write from bottom to avoid
2186 * both stupid write combining chipsets, and flushing each write */
2187 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2189 * If we are on an 82544 has an errata where writing odd
2190 * offsets overwrites the previous even offset, but writing
2191 * backwards over the range solves the issue by always
2192 * writing the odd offset first
2194 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2196 E1000_WRITE_FLUSH();
2198 if (hw->mac_type == e1000_82542_rev2_0)
2199 e1000_leave_82542_rst(adapter);
2201 kfree(mcarray);
2204 /* Need to wait a few seconds after link up to get diagnostic information from
2205 * the phy */
2207 static void e1000_update_phy_info(unsigned long data)
2209 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2210 struct e1000_hw *hw = &adapter->hw;
2211 e1000_phy_get_info(hw, &adapter->phy_info);
2215 * e1000_82547_tx_fifo_stall - Timer Call-back
2216 * @data: pointer to adapter cast into an unsigned long
2219 static void e1000_82547_tx_fifo_stall(unsigned long data)
2221 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2222 struct e1000_hw *hw = &adapter->hw;
2223 struct net_device *netdev = adapter->netdev;
2224 u32 tctl;
2226 if (atomic_read(&adapter->tx_fifo_stall)) {
2227 if ((er32(TDT) == er32(TDH)) &&
2228 (er32(TDFT) == er32(TDFH)) &&
2229 (er32(TDFTS) == er32(TDFHS))) {
2230 tctl = er32(TCTL);
2231 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2232 ew32(TDFT, adapter->tx_head_addr);
2233 ew32(TDFH, adapter->tx_head_addr);
2234 ew32(TDFTS, adapter->tx_head_addr);
2235 ew32(TDFHS, adapter->tx_head_addr);
2236 ew32(TCTL, tctl);
2237 E1000_WRITE_FLUSH();
2239 adapter->tx_fifo_head = 0;
2240 atomic_set(&adapter->tx_fifo_stall, 0);
2241 netif_wake_queue(netdev);
2242 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2243 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2248 bool e1000_has_link(struct e1000_adapter *adapter)
2250 struct e1000_hw *hw = &adapter->hw;
2251 bool link_active = false;
2253 /* get_link_status is set on LSC (link status) interrupt or
2254 * rx sequence error interrupt. get_link_status will stay
2255 * false until the e1000_check_for_link establishes link
2256 * for copper adapters ONLY
2258 switch (hw->media_type) {
2259 case e1000_media_type_copper:
2260 if (hw->get_link_status) {
2261 e1000_check_for_link(hw);
2262 link_active = !hw->get_link_status;
2263 } else {
2264 link_active = true;
2266 break;
2267 case e1000_media_type_fiber:
2268 e1000_check_for_link(hw);
2269 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2270 break;
2271 case e1000_media_type_internal_serdes:
2272 e1000_check_for_link(hw);
2273 link_active = hw->serdes_has_link;
2274 break;
2275 default:
2276 break;
2279 return link_active;
2283 * e1000_watchdog - Timer Call-back
2284 * @data: pointer to adapter cast into an unsigned long
2286 static void e1000_watchdog(unsigned long data)
2288 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2289 struct e1000_hw *hw = &adapter->hw;
2290 struct net_device *netdev = adapter->netdev;
2291 struct e1000_tx_ring *txdr = adapter->tx_ring;
2292 u32 link, tctl;
2294 link = e1000_has_link(adapter);
2295 if ((netif_carrier_ok(netdev)) && link)
2296 goto link_up;
2298 if (link) {
2299 if (!netif_carrier_ok(netdev)) {
2300 u32 ctrl;
2301 bool txb2b = true;
2302 /* update snapshot of PHY registers on LSC */
2303 e1000_get_speed_and_duplex(hw,
2304 &adapter->link_speed,
2305 &adapter->link_duplex);
2307 ctrl = er32(CTRL);
2308 pr_info("%s NIC Link is Up %d Mbps %s, "
2309 "Flow Control: %s\n",
2310 netdev->name,
2311 adapter->link_speed,
2312 adapter->link_duplex == FULL_DUPLEX ?
2313 "Full Duplex" : "Half Duplex",
2314 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2315 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2316 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2317 E1000_CTRL_TFCE) ? "TX" : "None")));
2319 /* adjust timeout factor according to speed/duplex */
2320 adapter->tx_timeout_factor = 1;
2321 switch (adapter->link_speed) {
2322 case SPEED_10:
2323 txb2b = false;
2324 adapter->tx_timeout_factor = 16;
2325 break;
2326 case SPEED_100:
2327 txb2b = false;
2328 /* maybe add some timeout factor ? */
2329 break;
2332 /* enable transmits in the hardware */
2333 tctl = er32(TCTL);
2334 tctl |= E1000_TCTL_EN;
2335 ew32(TCTL, tctl);
2337 netif_carrier_on(netdev);
2338 if (!test_bit(__E1000_DOWN, &adapter->flags))
2339 mod_timer(&adapter->phy_info_timer,
2340 round_jiffies(jiffies + 2 * HZ));
2341 adapter->smartspeed = 0;
2343 } else {
2344 if (netif_carrier_ok(netdev)) {
2345 adapter->link_speed = 0;
2346 adapter->link_duplex = 0;
2347 pr_info("%s NIC Link is Down\n",
2348 netdev->name);
2349 netif_carrier_off(netdev);
2351 if (!test_bit(__E1000_DOWN, &adapter->flags))
2352 mod_timer(&adapter->phy_info_timer,
2353 round_jiffies(jiffies + 2 * HZ));
2356 e1000_smartspeed(adapter);
2359 link_up:
2360 e1000_update_stats(adapter);
2362 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2363 adapter->tpt_old = adapter->stats.tpt;
2364 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2365 adapter->colc_old = adapter->stats.colc;
2367 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2368 adapter->gorcl_old = adapter->stats.gorcl;
2369 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2370 adapter->gotcl_old = adapter->stats.gotcl;
2372 e1000_update_adaptive(hw);
2374 if (!netif_carrier_ok(netdev)) {
2375 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2376 /* We've lost link, so the controller stops DMA,
2377 * but we've got queued Tx work that's never going
2378 * to get done, so reset controller to flush Tx.
2379 * (Do the reset outside of interrupt context). */
2380 adapter->tx_timeout_count++;
2381 schedule_work(&adapter->reset_task);
2382 /* return immediately since reset is imminent */
2383 return;
2387 /* Simple mode for Interrupt Throttle Rate (ITR) */
2388 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2390 * Symmetric Tx/Rx gets a reduced ITR=2000;
2391 * Total asymmetrical Tx or Rx gets ITR=8000;
2392 * everyone else is between 2000-8000.
2394 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2395 u32 dif = (adapter->gotcl > adapter->gorcl ?
2396 adapter->gotcl - adapter->gorcl :
2397 adapter->gorcl - adapter->gotcl) / 10000;
2398 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2400 ew32(ITR, 1000000000 / (itr * 256));
2403 /* Cause software interrupt to ensure rx ring is cleaned */
2404 ew32(ICS, E1000_ICS_RXDMT0);
2406 /* Force detection of hung controller every watchdog period */
2407 adapter->detect_tx_hung = true;
2409 /* Reset the timer */
2410 if (!test_bit(__E1000_DOWN, &adapter->flags))
2411 mod_timer(&adapter->watchdog_timer,
2412 round_jiffies(jiffies + 2 * HZ));
2415 enum latency_range {
2416 lowest_latency = 0,
2417 low_latency = 1,
2418 bulk_latency = 2,
2419 latency_invalid = 255
2423 * e1000_update_itr - update the dynamic ITR value based on statistics
2424 * @adapter: pointer to adapter
2425 * @itr_setting: current adapter->itr
2426 * @packets: the number of packets during this measurement interval
2427 * @bytes: the number of bytes during this measurement interval
2429 * Stores a new ITR value based on packets and byte
2430 * counts during the last interrupt. The advantage of per interrupt
2431 * computation is faster updates and more accurate ITR for the current
2432 * traffic pattern. Constants in this function were computed
2433 * based on theoretical maximum wire speed and thresholds were set based
2434 * on testing data as well as attempting to minimize response time
2435 * while increasing bulk throughput.
2436 * this functionality is controlled by the InterruptThrottleRate module
2437 * parameter (see e1000_param.c)
2439 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2440 u16 itr_setting, int packets, int bytes)
2442 unsigned int retval = itr_setting;
2443 struct e1000_hw *hw = &adapter->hw;
2445 if (unlikely(hw->mac_type < e1000_82540))
2446 goto update_itr_done;
2448 if (packets == 0)
2449 goto update_itr_done;
2451 switch (itr_setting) {
2452 case lowest_latency:
2453 /* jumbo frames get bulk treatment*/
2454 if (bytes/packets > 8000)
2455 retval = bulk_latency;
2456 else if ((packets < 5) && (bytes > 512))
2457 retval = low_latency;
2458 break;
2459 case low_latency: /* 50 usec aka 20000 ints/s */
2460 if (bytes > 10000) {
2461 /* jumbo frames need bulk latency setting */
2462 if (bytes/packets > 8000)
2463 retval = bulk_latency;
2464 else if ((packets < 10) || ((bytes/packets) > 1200))
2465 retval = bulk_latency;
2466 else if ((packets > 35))
2467 retval = lowest_latency;
2468 } else if (bytes/packets > 2000)
2469 retval = bulk_latency;
2470 else if (packets <= 2 && bytes < 512)
2471 retval = lowest_latency;
2472 break;
2473 case bulk_latency: /* 250 usec aka 4000 ints/s */
2474 if (bytes > 25000) {
2475 if (packets > 35)
2476 retval = low_latency;
2477 } else if (bytes < 6000) {
2478 retval = low_latency;
2480 break;
2483 update_itr_done:
2484 return retval;
2487 static void e1000_set_itr(struct e1000_adapter *adapter)
2489 struct e1000_hw *hw = &adapter->hw;
2490 u16 current_itr;
2491 u32 new_itr = adapter->itr;
2493 if (unlikely(hw->mac_type < e1000_82540))
2494 return;
2496 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2497 if (unlikely(adapter->link_speed != SPEED_1000)) {
2498 current_itr = 0;
2499 new_itr = 4000;
2500 goto set_itr_now;
2503 adapter->tx_itr = e1000_update_itr(adapter,
2504 adapter->tx_itr,
2505 adapter->total_tx_packets,
2506 adapter->total_tx_bytes);
2507 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2508 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2509 adapter->tx_itr = low_latency;
2511 adapter->rx_itr = e1000_update_itr(adapter,
2512 adapter->rx_itr,
2513 adapter->total_rx_packets,
2514 adapter->total_rx_bytes);
2515 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2516 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2517 adapter->rx_itr = low_latency;
2519 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2521 switch (current_itr) {
2522 /* counts and packets in update_itr are dependent on these numbers */
2523 case lowest_latency:
2524 new_itr = 70000;
2525 break;
2526 case low_latency:
2527 new_itr = 20000; /* aka hwitr = ~200 */
2528 break;
2529 case bulk_latency:
2530 new_itr = 4000;
2531 break;
2532 default:
2533 break;
2536 set_itr_now:
2537 if (new_itr != adapter->itr) {
2538 /* this attempts to bias the interrupt rate towards Bulk
2539 * by adding intermediate steps when interrupt rate is
2540 * increasing */
2541 new_itr = new_itr > adapter->itr ?
2542 min(adapter->itr + (new_itr >> 2), new_itr) :
2543 new_itr;
2544 adapter->itr = new_itr;
2545 ew32(ITR, 1000000000 / (new_itr * 256));
2549 #define E1000_TX_FLAGS_CSUM 0x00000001
2550 #define E1000_TX_FLAGS_VLAN 0x00000002
2551 #define E1000_TX_FLAGS_TSO 0x00000004
2552 #define E1000_TX_FLAGS_IPV4 0x00000008
2553 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2554 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2556 static int e1000_tso(struct e1000_adapter *adapter,
2557 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2559 struct e1000_context_desc *context_desc;
2560 struct e1000_buffer *buffer_info;
2561 unsigned int i;
2562 u32 cmd_length = 0;
2563 u16 ipcse = 0, tucse, mss;
2564 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2565 int err;
2567 if (skb_is_gso(skb)) {
2568 if (skb_header_cloned(skb)) {
2569 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2570 if (err)
2571 return err;
2574 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2575 mss = skb_shinfo(skb)->gso_size;
2576 if (skb->protocol == htons(ETH_P_IP)) {
2577 struct iphdr *iph = ip_hdr(skb);
2578 iph->tot_len = 0;
2579 iph->check = 0;
2580 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2581 iph->daddr, 0,
2582 IPPROTO_TCP,
2584 cmd_length = E1000_TXD_CMD_IP;
2585 ipcse = skb_transport_offset(skb) - 1;
2586 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2587 ipv6_hdr(skb)->payload_len = 0;
2588 tcp_hdr(skb)->check =
2589 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2590 &ipv6_hdr(skb)->daddr,
2591 0, IPPROTO_TCP, 0);
2592 ipcse = 0;
2594 ipcss = skb_network_offset(skb);
2595 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2596 tucss = skb_transport_offset(skb);
2597 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2598 tucse = 0;
2600 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2601 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2603 i = tx_ring->next_to_use;
2604 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2605 buffer_info = &tx_ring->buffer_info[i];
2607 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2608 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2609 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2610 context_desc->upper_setup.tcp_fields.tucss = tucss;
2611 context_desc->upper_setup.tcp_fields.tucso = tucso;
2612 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2613 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2614 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2615 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2617 buffer_info->time_stamp = jiffies;
2618 buffer_info->next_to_watch = i;
2620 if (++i == tx_ring->count) i = 0;
2621 tx_ring->next_to_use = i;
2623 return true;
2625 return false;
2628 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2629 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2631 struct e1000_context_desc *context_desc;
2632 struct e1000_buffer *buffer_info;
2633 unsigned int i;
2634 u8 css;
2635 u32 cmd_len = E1000_TXD_CMD_DEXT;
2637 if (skb->ip_summed != CHECKSUM_PARTIAL)
2638 return false;
2640 switch (skb->protocol) {
2641 case cpu_to_be16(ETH_P_IP):
2642 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2643 cmd_len |= E1000_TXD_CMD_TCP;
2644 break;
2645 case cpu_to_be16(ETH_P_IPV6):
2646 /* XXX not handling all IPV6 headers */
2647 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2648 cmd_len |= E1000_TXD_CMD_TCP;
2649 break;
2650 default:
2651 if (unlikely(net_ratelimit()))
2652 e_warn("checksum_partial proto=%x!\n", skb->protocol);
2653 break;
2656 css = skb_transport_offset(skb);
2658 i = tx_ring->next_to_use;
2659 buffer_info = &tx_ring->buffer_info[i];
2660 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2662 context_desc->lower_setup.ip_config = 0;
2663 context_desc->upper_setup.tcp_fields.tucss = css;
2664 context_desc->upper_setup.tcp_fields.tucso =
2665 css + skb->csum_offset;
2666 context_desc->upper_setup.tcp_fields.tucse = 0;
2667 context_desc->tcp_seg_setup.data = 0;
2668 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2670 buffer_info->time_stamp = jiffies;
2671 buffer_info->next_to_watch = i;
2673 if (unlikely(++i == tx_ring->count)) i = 0;
2674 tx_ring->next_to_use = i;
2676 return true;
2679 #define E1000_MAX_TXD_PWR 12
2680 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2682 static int e1000_tx_map(struct e1000_adapter *adapter,
2683 struct e1000_tx_ring *tx_ring,
2684 struct sk_buff *skb, unsigned int first,
2685 unsigned int max_per_txd, unsigned int nr_frags,
2686 unsigned int mss)
2688 struct e1000_hw *hw = &adapter->hw;
2689 struct pci_dev *pdev = adapter->pdev;
2690 struct e1000_buffer *buffer_info;
2691 unsigned int len = skb_headlen(skb);
2692 unsigned int offset = 0, size, count = 0, i;
2693 unsigned int f;
2695 i = tx_ring->next_to_use;
2697 while (len) {
2698 buffer_info = &tx_ring->buffer_info[i];
2699 size = min(len, max_per_txd);
2700 /* Workaround for Controller erratum --
2701 * descriptor for non-tso packet in a linear SKB that follows a
2702 * tso gets written back prematurely before the data is fully
2703 * DMA'd to the controller */
2704 if (!skb->data_len && tx_ring->last_tx_tso &&
2705 !skb_is_gso(skb)) {
2706 tx_ring->last_tx_tso = 0;
2707 size -= 4;
2710 /* Workaround for premature desc write-backs
2711 * in TSO mode. Append 4-byte sentinel desc */
2712 if (unlikely(mss && !nr_frags && size == len && size > 8))
2713 size -= 4;
2714 /* work-around for errata 10 and it applies
2715 * to all controllers in PCI-X mode
2716 * The fix is to make sure that the first descriptor of a
2717 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2719 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2720 (size > 2015) && count == 0))
2721 size = 2015;
2723 /* Workaround for potential 82544 hang in PCI-X. Avoid
2724 * terminating buffers within evenly-aligned dwords. */
2725 if (unlikely(adapter->pcix_82544 &&
2726 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2727 size > 4))
2728 size -= 4;
2730 buffer_info->length = size;
2731 /* set time_stamp *before* dma to help avoid a possible race */
2732 buffer_info->time_stamp = jiffies;
2733 buffer_info->mapped_as_page = false;
2734 buffer_info->dma = dma_map_single(&pdev->dev,
2735 skb->data + offset,
2736 size, DMA_TO_DEVICE);
2737 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2738 goto dma_error;
2739 buffer_info->next_to_watch = i;
2741 len -= size;
2742 offset += size;
2743 count++;
2744 if (len) {
2745 i++;
2746 if (unlikely(i == tx_ring->count))
2747 i = 0;
2751 for (f = 0; f < nr_frags; f++) {
2752 struct skb_frag_struct *frag;
2754 frag = &skb_shinfo(skb)->frags[f];
2755 len = frag->size;
2756 offset = frag->page_offset;
2758 while (len) {
2759 i++;
2760 if (unlikely(i == tx_ring->count))
2761 i = 0;
2763 buffer_info = &tx_ring->buffer_info[i];
2764 size = min(len, max_per_txd);
2765 /* Workaround for premature desc write-backs
2766 * in TSO mode. Append 4-byte sentinel desc */
2767 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2768 size -= 4;
2769 /* Workaround for potential 82544 hang in PCI-X.
2770 * Avoid terminating buffers within evenly-aligned
2771 * dwords. */
2772 if (unlikely(adapter->pcix_82544 &&
2773 !((unsigned long)(page_to_phys(frag->page) + offset
2774 + size - 1) & 4) &&
2775 size > 4))
2776 size -= 4;
2778 buffer_info->length = size;
2779 buffer_info->time_stamp = jiffies;
2780 buffer_info->mapped_as_page = true;
2781 buffer_info->dma = dma_map_page(&pdev->dev, frag->page,
2782 offset, size,
2783 DMA_TO_DEVICE);
2784 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2785 goto dma_error;
2786 buffer_info->next_to_watch = i;
2788 len -= size;
2789 offset += size;
2790 count++;
2794 tx_ring->buffer_info[i].skb = skb;
2795 tx_ring->buffer_info[first].next_to_watch = i;
2797 return count;
2799 dma_error:
2800 dev_err(&pdev->dev, "TX DMA map failed\n");
2801 buffer_info->dma = 0;
2802 if (count)
2803 count--;
2805 while (count--) {
2806 if (i==0)
2807 i += tx_ring->count;
2808 i--;
2809 buffer_info = &tx_ring->buffer_info[i];
2810 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2813 return 0;
2816 static void e1000_tx_queue(struct e1000_adapter *adapter,
2817 struct e1000_tx_ring *tx_ring, int tx_flags,
2818 int count)
2820 struct e1000_hw *hw = &adapter->hw;
2821 struct e1000_tx_desc *tx_desc = NULL;
2822 struct e1000_buffer *buffer_info;
2823 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2824 unsigned int i;
2826 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2827 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2828 E1000_TXD_CMD_TSE;
2829 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2831 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2832 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2835 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2836 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2837 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2840 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2841 txd_lower |= E1000_TXD_CMD_VLE;
2842 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2845 i = tx_ring->next_to_use;
2847 while (count--) {
2848 buffer_info = &tx_ring->buffer_info[i];
2849 tx_desc = E1000_TX_DESC(*tx_ring, i);
2850 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2851 tx_desc->lower.data =
2852 cpu_to_le32(txd_lower | buffer_info->length);
2853 tx_desc->upper.data = cpu_to_le32(txd_upper);
2854 if (unlikely(++i == tx_ring->count)) i = 0;
2857 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2859 /* Force memory writes to complete before letting h/w
2860 * know there are new descriptors to fetch. (Only
2861 * applicable for weak-ordered memory model archs,
2862 * such as IA-64). */
2863 wmb();
2865 tx_ring->next_to_use = i;
2866 writel(i, hw->hw_addr + tx_ring->tdt);
2867 /* we need this if more than one processor can write to our tail
2868 * at a time, it syncronizes IO on IA64/Altix systems */
2869 mmiowb();
2873 * 82547 workaround to avoid controller hang in half-duplex environment.
2874 * The workaround is to avoid queuing a large packet that would span
2875 * the internal Tx FIFO ring boundary by notifying the stack to resend
2876 * the packet at a later time. This gives the Tx FIFO an opportunity to
2877 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2878 * to the beginning of the Tx FIFO.
2881 #define E1000_FIFO_HDR 0x10
2882 #define E1000_82547_PAD_LEN 0x3E0
2884 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
2885 struct sk_buff *skb)
2887 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2888 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
2890 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
2892 if (adapter->link_duplex != HALF_DUPLEX)
2893 goto no_fifo_stall_required;
2895 if (atomic_read(&adapter->tx_fifo_stall))
2896 return 1;
2898 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2899 atomic_set(&adapter->tx_fifo_stall, 1);
2900 return 1;
2903 no_fifo_stall_required:
2904 adapter->tx_fifo_head += skb_fifo_len;
2905 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2906 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2907 return 0;
2910 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2912 struct e1000_adapter *adapter = netdev_priv(netdev);
2913 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2915 netif_stop_queue(netdev);
2916 /* Herbert's original patch had:
2917 * smp_mb__after_netif_stop_queue();
2918 * but since that doesn't exist yet, just open code it. */
2919 smp_mb();
2921 /* We need to check again in a case another CPU has just
2922 * made room available. */
2923 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2924 return -EBUSY;
2926 /* A reprieve! */
2927 netif_start_queue(netdev);
2928 ++adapter->restart_queue;
2929 return 0;
2932 static int e1000_maybe_stop_tx(struct net_device *netdev,
2933 struct e1000_tx_ring *tx_ring, int size)
2935 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2936 return 0;
2937 return __e1000_maybe_stop_tx(netdev, size);
2940 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2941 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
2942 struct net_device *netdev)
2944 struct e1000_adapter *adapter = netdev_priv(netdev);
2945 struct e1000_hw *hw = &adapter->hw;
2946 struct e1000_tx_ring *tx_ring;
2947 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2948 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2949 unsigned int tx_flags = 0;
2950 unsigned int len = skb_headlen(skb);
2951 unsigned int nr_frags;
2952 unsigned int mss;
2953 int count = 0;
2954 int tso;
2955 unsigned int f;
2957 /* This goes back to the question of how to logically map a tx queue
2958 * to a flow. Right now, performance is impacted slightly negatively
2959 * if using multiple tx queues. If the stack breaks away from a
2960 * single qdisc implementation, we can look at this again. */
2961 tx_ring = adapter->tx_ring;
2963 if (unlikely(skb->len <= 0)) {
2964 dev_kfree_skb_any(skb);
2965 return NETDEV_TX_OK;
2968 mss = skb_shinfo(skb)->gso_size;
2969 /* The controller does a simple calculation to
2970 * make sure there is enough room in the FIFO before
2971 * initiating the DMA for each buffer. The calc is:
2972 * 4 = ceil(buffer len/mss). To make sure we don't
2973 * overrun the FIFO, adjust the max buffer len if mss
2974 * drops. */
2975 if (mss) {
2976 u8 hdr_len;
2977 max_per_txd = min(mss << 2, max_per_txd);
2978 max_txd_pwr = fls(max_per_txd) - 1;
2980 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2981 if (skb->data_len && hdr_len == len) {
2982 switch (hw->mac_type) {
2983 unsigned int pull_size;
2984 case e1000_82544:
2985 /* Make sure we have room to chop off 4 bytes,
2986 * and that the end alignment will work out to
2987 * this hardware's requirements
2988 * NOTE: this is a TSO only workaround
2989 * if end byte alignment not correct move us
2990 * into the next dword */
2991 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
2992 break;
2993 /* fall through */
2994 pull_size = min((unsigned int)4, skb->data_len);
2995 if (!__pskb_pull_tail(skb, pull_size)) {
2996 e_err("__pskb_pull_tail failed.\n");
2997 dev_kfree_skb_any(skb);
2998 return NETDEV_TX_OK;
3000 len = skb_headlen(skb);
3001 break;
3002 default:
3003 /* do nothing */
3004 break;
3009 /* reserve a descriptor for the offload context */
3010 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3011 count++;
3012 count++;
3014 /* Controller Erratum workaround */
3015 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3016 count++;
3018 count += TXD_USE_COUNT(len, max_txd_pwr);
3020 if (adapter->pcix_82544)
3021 count++;
3023 /* work-around for errata 10 and it applies to all controllers
3024 * in PCI-X mode, so add one more descriptor to the count
3026 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3027 (len > 2015)))
3028 count++;
3030 nr_frags = skb_shinfo(skb)->nr_frags;
3031 for (f = 0; f < nr_frags; f++)
3032 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3033 max_txd_pwr);
3034 if (adapter->pcix_82544)
3035 count += nr_frags;
3037 /* need: count + 2 desc gap to keep tail from touching
3038 * head, otherwise try next time */
3039 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3040 return NETDEV_TX_BUSY;
3042 if (unlikely(hw->mac_type == e1000_82547)) {
3043 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3044 netif_stop_queue(netdev);
3045 if (!test_bit(__E1000_DOWN, &adapter->flags))
3046 mod_timer(&adapter->tx_fifo_stall_timer,
3047 jiffies + 1);
3048 return NETDEV_TX_BUSY;
3052 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3053 tx_flags |= E1000_TX_FLAGS_VLAN;
3054 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3057 first = tx_ring->next_to_use;
3059 tso = e1000_tso(adapter, tx_ring, skb);
3060 if (tso < 0) {
3061 dev_kfree_skb_any(skb);
3062 return NETDEV_TX_OK;
3065 if (likely(tso)) {
3066 if (likely(hw->mac_type != e1000_82544))
3067 tx_ring->last_tx_tso = 1;
3068 tx_flags |= E1000_TX_FLAGS_TSO;
3069 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3070 tx_flags |= E1000_TX_FLAGS_CSUM;
3072 if (likely(skb->protocol == htons(ETH_P_IP)))
3073 tx_flags |= E1000_TX_FLAGS_IPV4;
3075 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3076 nr_frags, mss);
3078 if (count) {
3079 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3080 /* Make sure there is space in the ring for the next send. */
3081 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3083 } else {
3084 dev_kfree_skb_any(skb);
3085 tx_ring->buffer_info[first].time_stamp = 0;
3086 tx_ring->next_to_use = first;
3089 return NETDEV_TX_OK;
3093 * e1000_tx_timeout - Respond to a Tx Hang
3094 * @netdev: network interface device structure
3097 static void e1000_tx_timeout(struct net_device *netdev)
3099 struct e1000_adapter *adapter = netdev_priv(netdev);
3101 /* Do the reset outside of interrupt context */
3102 adapter->tx_timeout_count++;
3103 schedule_work(&adapter->reset_task);
3106 static void e1000_reset_task(struct work_struct *work)
3108 struct e1000_adapter *adapter =
3109 container_of(work, struct e1000_adapter, reset_task);
3111 e1000_reinit_locked(adapter);
3115 * e1000_get_stats - Get System Network Statistics
3116 * @netdev: network interface device structure
3118 * Returns the address of the device statistics structure.
3119 * The statistics are actually updated from the timer callback.
3122 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3124 /* only return the current stats */
3125 return &netdev->stats;
3129 * e1000_change_mtu - Change the Maximum Transfer Unit
3130 * @netdev: network interface device structure
3131 * @new_mtu: new value for maximum frame size
3133 * Returns 0 on success, negative on failure
3136 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3138 struct e1000_adapter *adapter = netdev_priv(netdev);
3139 struct e1000_hw *hw = &adapter->hw;
3140 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3142 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3143 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3144 e_err("Invalid MTU setting\n");
3145 return -EINVAL;
3148 /* Adapter-specific max frame size limits. */
3149 switch (hw->mac_type) {
3150 case e1000_undefined ... e1000_82542_rev2_1:
3151 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3152 e_err("Jumbo Frames not supported.\n");
3153 return -EINVAL;
3155 break;
3156 default:
3157 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3158 break;
3161 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3162 msleep(1);
3163 /* e1000_down has a dependency on max_frame_size */
3164 hw->max_frame_size = max_frame;
3165 if (netif_running(netdev))
3166 e1000_down(adapter);
3168 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3169 * means we reserve 2 more, this pushes us to allocate from the next
3170 * larger slab size.
3171 * i.e. RXBUFFER_2048 --> size-4096 slab
3172 * however with the new *_jumbo_rx* routines, jumbo receives will use
3173 * fragmented skbs */
3175 if (max_frame <= E1000_RXBUFFER_2048)
3176 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3177 else
3178 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3179 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3180 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3181 adapter->rx_buffer_len = PAGE_SIZE;
3182 #endif
3184 /* adjust allocation if LPE protects us, and we aren't using SBP */
3185 if (!hw->tbi_compatibility_on &&
3186 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3187 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3188 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3190 pr_info("%s changing MTU from %d to %d\n",
3191 netdev->name, netdev->mtu, new_mtu);
3192 netdev->mtu = new_mtu;
3194 if (netif_running(netdev))
3195 e1000_up(adapter);
3196 else
3197 e1000_reset(adapter);
3199 clear_bit(__E1000_RESETTING, &adapter->flags);
3201 return 0;
3205 * e1000_update_stats - Update the board statistics counters
3206 * @adapter: board private structure
3209 void e1000_update_stats(struct e1000_adapter *adapter)
3211 struct net_device *netdev = adapter->netdev;
3212 struct e1000_hw *hw = &adapter->hw;
3213 struct pci_dev *pdev = adapter->pdev;
3214 unsigned long flags;
3215 u16 phy_tmp;
3217 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3220 * Prevent stats update while adapter is being reset, or if the pci
3221 * connection is down.
3223 if (adapter->link_speed == 0)
3224 return;
3225 if (pci_channel_offline(pdev))
3226 return;
3228 spin_lock_irqsave(&adapter->stats_lock, flags);
3230 /* these counters are modified from e1000_tbi_adjust_stats,
3231 * called from the interrupt context, so they must only
3232 * be written while holding adapter->stats_lock
3235 adapter->stats.crcerrs += er32(CRCERRS);
3236 adapter->stats.gprc += er32(GPRC);
3237 adapter->stats.gorcl += er32(GORCL);
3238 adapter->stats.gorch += er32(GORCH);
3239 adapter->stats.bprc += er32(BPRC);
3240 adapter->stats.mprc += er32(MPRC);
3241 adapter->stats.roc += er32(ROC);
3243 adapter->stats.prc64 += er32(PRC64);
3244 adapter->stats.prc127 += er32(PRC127);
3245 adapter->stats.prc255 += er32(PRC255);
3246 adapter->stats.prc511 += er32(PRC511);
3247 adapter->stats.prc1023 += er32(PRC1023);
3248 adapter->stats.prc1522 += er32(PRC1522);
3250 adapter->stats.symerrs += er32(SYMERRS);
3251 adapter->stats.mpc += er32(MPC);
3252 adapter->stats.scc += er32(SCC);
3253 adapter->stats.ecol += er32(ECOL);
3254 adapter->stats.mcc += er32(MCC);
3255 adapter->stats.latecol += er32(LATECOL);
3256 adapter->stats.dc += er32(DC);
3257 adapter->stats.sec += er32(SEC);
3258 adapter->stats.rlec += er32(RLEC);
3259 adapter->stats.xonrxc += er32(XONRXC);
3260 adapter->stats.xontxc += er32(XONTXC);
3261 adapter->stats.xoffrxc += er32(XOFFRXC);
3262 adapter->stats.xofftxc += er32(XOFFTXC);
3263 adapter->stats.fcruc += er32(FCRUC);
3264 adapter->stats.gptc += er32(GPTC);
3265 adapter->stats.gotcl += er32(GOTCL);
3266 adapter->stats.gotch += er32(GOTCH);
3267 adapter->stats.rnbc += er32(RNBC);
3268 adapter->stats.ruc += er32(RUC);
3269 adapter->stats.rfc += er32(RFC);
3270 adapter->stats.rjc += er32(RJC);
3271 adapter->stats.torl += er32(TORL);
3272 adapter->stats.torh += er32(TORH);
3273 adapter->stats.totl += er32(TOTL);
3274 adapter->stats.toth += er32(TOTH);
3275 adapter->stats.tpr += er32(TPR);
3277 adapter->stats.ptc64 += er32(PTC64);
3278 adapter->stats.ptc127 += er32(PTC127);
3279 adapter->stats.ptc255 += er32(PTC255);
3280 adapter->stats.ptc511 += er32(PTC511);
3281 adapter->stats.ptc1023 += er32(PTC1023);
3282 adapter->stats.ptc1522 += er32(PTC1522);
3284 adapter->stats.mptc += er32(MPTC);
3285 adapter->stats.bptc += er32(BPTC);
3287 /* used for adaptive IFS */
3289 hw->tx_packet_delta = er32(TPT);
3290 adapter->stats.tpt += hw->tx_packet_delta;
3291 hw->collision_delta = er32(COLC);
3292 adapter->stats.colc += hw->collision_delta;
3294 if (hw->mac_type >= e1000_82543) {
3295 adapter->stats.algnerrc += er32(ALGNERRC);
3296 adapter->stats.rxerrc += er32(RXERRC);
3297 adapter->stats.tncrs += er32(TNCRS);
3298 adapter->stats.cexterr += er32(CEXTERR);
3299 adapter->stats.tsctc += er32(TSCTC);
3300 adapter->stats.tsctfc += er32(TSCTFC);
3303 /* Fill out the OS statistics structure */
3304 netdev->stats.multicast = adapter->stats.mprc;
3305 netdev->stats.collisions = adapter->stats.colc;
3307 /* Rx Errors */
3309 /* RLEC on some newer hardware can be incorrect so build
3310 * our own version based on RUC and ROC */
3311 netdev->stats.rx_errors = adapter->stats.rxerrc +
3312 adapter->stats.crcerrs + adapter->stats.algnerrc +
3313 adapter->stats.ruc + adapter->stats.roc +
3314 adapter->stats.cexterr;
3315 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3316 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3317 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3318 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3319 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3321 /* Tx Errors */
3322 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3323 netdev->stats.tx_errors = adapter->stats.txerrc;
3324 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3325 netdev->stats.tx_window_errors = adapter->stats.latecol;
3326 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3327 if (hw->bad_tx_carr_stats_fd &&
3328 adapter->link_duplex == FULL_DUPLEX) {
3329 netdev->stats.tx_carrier_errors = 0;
3330 adapter->stats.tncrs = 0;
3333 /* Tx Dropped needs to be maintained elsewhere */
3335 /* Phy Stats */
3336 if (hw->media_type == e1000_media_type_copper) {
3337 if ((adapter->link_speed == SPEED_1000) &&
3338 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3339 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3340 adapter->phy_stats.idle_errors += phy_tmp;
3343 if ((hw->mac_type <= e1000_82546) &&
3344 (hw->phy_type == e1000_phy_m88) &&
3345 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3346 adapter->phy_stats.receive_errors += phy_tmp;
3349 /* Management Stats */
3350 if (hw->has_smbus) {
3351 adapter->stats.mgptc += er32(MGTPTC);
3352 adapter->stats.mgprc += er32(MGTPRC);
3353 adapter->stats.mgpdc += er32(MGTPDC);
3356 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3360 * e1000_intr - Interrupt Handler
3361 * @irq: interrupt number
3362 * @data: pointer to a network interface device structure
3365 static irqreturn_t e1000_intr(int irq, void *data)
3367 struct net_device *netdev = data;
3368 struct e1000_adapter *adapter = netdev_priv(netdev);
3369 struct e1000_hw *hw = &adapter->hw;
3370 u32 icr = er32(ICR);
3372 if (unlikely((!icr) || test_bit(__E1000_DOWN, &adapter->flags)))
3373 return IRQ_NONE; /* Not our interrupt */
3375 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3376 hw->get_link_status = 1;
3377 /* guard against interrupt when we're going down */
3378 if (!test_bit(__E1000_DOWN, &adapter->flags))
3379 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3382 /* disable interrupts, without the synchronize_irq bit */
3383 ew32(IMC, ~0);
3384 E1000_WRITE_FLUSH();
3386 if (likely(napi_schedule_prep(&adapter->napi))) {
3387 adapter->total_tx_bytes = 0;
3388 adapter->total_tx_packets = 0;
3389 adapter->total_rx_bytes = 0;
3390 adapter->total_rx_packets = 0;
3391 __napi_schedule(&adapter->napi);
3392 } else {
3393 /* this really should not happen! if it does it is basically a
3394 * bug, but not a hard error, so enable ints and continue */
3395 if (!test_bit(__E1000_DOWN, &adapter->flags))
3396 e1000_irq_enable(adapter);
3399 return IRQ_HANDLED;
3403 * e1000_clean - NAPI Rx polling callback
3404 * @adapter: board private structure
3406 static int e1000_clean(struct napi_struct *napi, int budget)
3408 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3409 int tx_clean_complete = 0, work_done = 0;
3411 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3413 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3415 if (!tx_clean_complete)
3416 work_done = budget;
3418 /* If budget not fully consumed, exit the polling mode */
3419 if (work_done < budget) {
3420 if (likely(adapter->itr_setting & 3))
3421 e1000_set_itr(adapter);
3422 napi_complete(napi);
3423 if (!test_bit(__E1000_DOWN, &adapter->flags))
3424 e1000_irq_enable(adapter);
3427 return work_done;
3431 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3432 * @adapter: board private structure
3434 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3435 struct e1000_tx_ring *tx_ring)
3437 struct e1000_hw *hw = &adapter->hw;
3438 struct net_device *netdev = adapter->netdev;
3439 struct e1000_tx_desc *tx_desc, *eop_desc;
3440 struct e1000_buffer *buffer_info;
3441 unsigned int i, eop;
3442 unsigned int count = 0;
3443 unsigned int total_tx_bytes=0, total_tx_packets=0;
3445 i = tx_ring->next_to_clean;
3446 eop = tx_ring->buffer_info[i].next_to_watch;
3447 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3449 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3450 (count < tx_ring->count)) {
3451 bool cleaned = false;
3452 for ( ; !cleaned; count++) {
3453 tx_desc = E1000_TX_DESC(*tx_ring, i);
3454 buffer_info = &tx_ring->buffer_info[i];
3455 cleaned = (i == eop);
3457 if (cleaned) {
3458 struct sk_buff *skb = buffer_info->skb;
3459 unsigned int segs, bytecount;
3460 segs = skb_shinfo(skb)->gso_segs ?: 1;
3461 /* multiply data chunks by size of headers */
3462 bytecount = ((segs - 1) * skb_headlen(skb)) +
3463 skb->len;
3464 total_tx_packets += segs;
3465 total_tx_bytes += bytecount;
3467 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3468 tx_desc->upper.data = 0;
3470 if (unlikely(++i == tx_ring->count)) i = 0;
3473 eop = tx_ring->buffer_info[i].next_to_watch;
3474 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3477 tx_ring->next_to_clean = i;
3479 #define TX_WAKE_THRESHOLD 32
3480 if (unlikely(count && netif_carrier_ok(netdev) &&
3481 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3482 /* Make sure that anybody stopping the queue after this
3483 * sees the new next_to_clean.
3485 smp_mb();
3487 if (netif_queue_stopped(netdev) &&
3488 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3489 netif_wake_queue(netdev);
3490 ++adapter->restart_queue;
3494 if (adapter->detect_tx_hung) {
3495 /* Detect a transmit hang in hardware, this serializes the
3496 * check with the clearing of time_stamp and movement of i */
3497 adapter->detect_tx_hung = false;
3498 if (tx_ring->buffer_info[eop].time_stamp &&
3499 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3500 (adapter->tx_timeout_factor * HZ)) &&
3501 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3503 /* detected Tx unit hang */
3504 e_err("Detected Tx Unit Hang\n"
3505 " Tx Queue <%lu>\n"
3506 " TDH <%x>\n"
3507 " TDT <%x>\n"
3508 " next_to_use <%x>\n"
3509 " next_to_clean <%x>\n"
3510 "buffer_info[next_to_clean]\n"
3511 " time_stamp <%lx>\n"
3512 " next_to_watch <%x>\n"
3513 " jiffies <%lx>\n"
3514 " next_to_watch.status <%x>\n",
3515 (unsigned long)((tx_ring - adapter->tx_ring) /
3516 sizeof(struct e1000_tx_ring)),
3517 readl(hw->hw_addr + tx_ring->tdh),
3518 readl(hw->hw_addr + tx_ring->tdt),
3519 tx_ring->next_to_use,
3520 tx_ring->next_to_clean,
3521 tx_ring->buffer_info[eop].time_stamp,
3522 eop,
3523 jiffies,
3524 eop_desc->upper.fields.status);
3525 netif_stop_queue(netdev);
3528 adapter->total_tx_bytes += total_tx_bytes;
3529 adapter->total_tx_packets += total_tx_packets;
3530 netdev->stats.tx_bytes += total_tx_bytes;
3531 netdev->stats.tx_packets += total_tx_packets;
3532 return (count < tx_ring->count);
3536 * e1000_rx_checksum - Receive Checksum Offload for 82543
3537 * @adapter: board private structure
3538 * @status_err: receive descriptor status and error fields
3539 * @csum: receive descriptor csum field
3540 * @sk_buff: socket buffer with received data
3543 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3544 u32 csum, struct sk_buff *skb)
3546 struct e1000_hw *hw = &adapter->hw;
3547 u16 status = (u16)status_err;
3548 u8 errors = (u8)(status_err >> 24);
3549 skb->ip_summed = CHECKSUM_NONE;
3551 /* 82543 or newer only */
3552 if (unlikely(hw->mac_type < e1000_82543)) return;
3553 /* Ignore Checksum bit is set */
3554 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3555 /* TCP/UDP checksum error bit is set */
3556 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3557 /* let the stack verify checksum errors */
3558 adapter->hw_csum_err++;
3559 return;
3561 /* TCP/UDP Checksum has not been calculated */
3562 if (!(status & E1000_RXD_STAT_TCPCS))
3563 return;
3565 /* It must be a TCP or UDP packet with a valid checksum */
3566 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3567 /* TCP checksum is good */
3568 skb->ip_summed = CHECKSUM_UNNECESSARY;
3570 adapter->hw_csum_good++;
3574 * e1000_consume_page - helper function
3576 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3577 u16 length)
3579 bi->page = NULL;
3580 skb->len += length;
3581 skb->data_len += length;
3582 skb->truesize += length;
3586 * e1000_receive_skb - helper function to handle rx indications
3587 * @adapter: board private structure
3588 * @status: descriptor status field as written by hardware
3589 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3590 * @skb: pointer to sk_buff to be indicated to stack
3592 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3593 __le16 vlan, struct sk_buff *skb)
3595 if (unlikely(adapter->vlgrp && (status & E1000_RXD_STAT_VP))) {
3596 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3597 le16_to_cpu(vlan) &
3598 E1000_RXD_SPC_VLAN_MASK);
3599 } else {
3600 netif_receive_skb(skb);
3605 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3606 * @adapter: board private structure
3607 * @rx_ring: ring to clean
3608 * @work_done: amount of napi work completed this call
3609 * @work_to_do: max amount of work allowed for this call to do
3611 * the return value indicates whether actual cleaning was done, there
3612 * is no guarantee that everything was cleaned
3614 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
3615 struct e1000_rx_ring *rx_ring,
3616 int *work_done, int work_to_do)
3618 struct e1000_hw *hw = &adapter->hw;
3619 struct net_device *netdev = adapter->netdev;
3620 struct pci_dev *pdev = adapter->pdev;
3621 struct e1000_rx_desc *rx_desc, *next_rxd;
3622 struct e1000_buffer *buffer_info, *next_buffer;
3623 unsigned long irq_flags;
3624 u32 length;
3625 unsigned int i;
3626 int cleaned_count = 0;
3627 bool cleaned = false;
3628 unsigned int total_rx_bytes=0, total_rx_packets=0;
3630 i = rx_ring->next_to_clean;
3631 rx_desc = E1000_RX_DESC(*rx_ring, i);
3632 buffer_info = &rx_ring->buffer_info[i];
3634 while (rx_desc->status & E1000_RXD_STAT_DD) {
3635 struct sk_buff *skb;
3636 u8 status;
3638 if (*work_done >= work_to_do)
3639 break;
3640 (*work_done)++;
3642 status = rx_desc->status;
3643 skb = buffer_info->skb;
3644 buffer_info->skb = NULL;
3646 if (++i == rx_ring->count) i = 0;
3647 next_rxd = E1000_RX_DESC(*rx_ring, i);
3648 prefetch(next_rxd);
3650 next_buffer = &rx_ring->buffer_info[i];
3652 cleaned = true;
3653 cleaned_count++;
3654 dma_unmap_page(&pdev->dev, buffer_info->dma,
3655 buffer_info->length, DMA_FROM_DEVICE);
3656 buffer_info->dma = 0;
3658 length = le16_to_cpu(rx_desc->length);
3660 /* errors is only valid for DD + EOP descriptors */
3661 if (unlikely((status & E1000_RXD_STAT_EOP) &&
3662 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
3663 u8 last_byte = *(skb->data + length - 1);
3664 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3665 last_byte)) {
3666 spin_lock_irqsave(&adapter->stats_lock,
3667 irq_flags);
3668 e1000_tbi_adjust_stats(hw, &adapter->stats,
3669 length, skb->data);
3670 spin_unlock_irqrestore(&adapter->stats_lock,
3671 irq_flags);
3672 length--;
3673 } else {
3674 /* recycle both page and skb */
3675 buffer_info->skb = skb;
3676 /* an error means any chain goes out the window
3677 * too */
3678 if (rx_ring->rx_skb_top)
3679 dev_kfree_skb(rx_ring->rx_skb_top);
3680 rx_ring->rx_skb_top = NULL;
3681 goto next_desc;
3685 #define rxtop rx_ring->rx_skb_top
3686 if (!(status & E1000_RXD_STAT_EOP)) {
3687 /* this descriptor is only the beginning (or middle) */
3688 if (!rxtop) {
3689 /* this is the beginning of a chain */
3690 rxtop = skb;
3691 skb_fill_page_desc(rxtop, 0, buffer_info->page,
3692 0, length);
3693 } else {
3694 /* this is the middle of a chain */
3695 skb_fill_page_desc(rxtop,
3696 skb_shinfo(rxtop)->nr_frags,
3697 buffer_info->page, 0, length);
3698 /* re-use the skb, only consumed the page */
3699 buffer_info->skb = skb;
3701 e1000_consume_page(buffer_info, rxtop, length);
3702 goto next_desc;
3703 } else {
3704 if (rxtop) {
3705 /* end of the chain */
3706 skb_fill_page_desc(rxtop,
3707 skb_shinfo(rxtop)->nr_frags,
3708 buffer_info->page, 0, length);
3709 /* re-use the current skb, we only consumed the
3710 * page */
3711 buffer_info->skb = skb;
3712 skb = rxtop;
3713 rxtop = NULL;
3714 e1000_consume_page(buffer_info, skb, length);
3715 } else {
3716 /* no chain, got EOP, this buf is the packet
3717 * copybreak to save the put_page/alloc_page */
3718 if (length <= copybreak &&
3719 skb_tailroom(skb) >= length) {
3720 u8 *vaddr;
3721 vaddr = kmap_atomic(buffer_info->page,
3722 KM_SKB_DATA_SOFTIRQ);
3723 memcpy(skb_tail_pointer(skb), vaddr, length);
3724 kunmap_atomic(vaddr,
3725 KM_SKB_DATA_SOFTIRQ);
3726 /* re-use the page, so don't erase
3727 * buffer_info->page */
3728 skb_put(skb, length);
3729 } else {
3730 skb_fill_page_desc(skb, 0,
3731 buffer_info->page, 0,
3732 length);
3733 e1000_consume_page(buffer_info, skb,
3734 length);
3739 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3740 e1000_rx_checksum(adapter,
3741 (u32)(status) |
3742 ((u32)(rx_desc->errors) << 24),
3743 le16_to_cpu(rx_desc->csum), skb);
3745 pskb_trim(skb, skb->len - 4);
3747 /* probably a little skewed due to removing CRC */
3748 total_rx_bytes += skb->len;
3749 total_rx_packets++;
3751 /* eth type trans needs skb->data to point to something */
3752 if (!pskb_may_pull(skb, ETH_HLEN)) {
3753 e_err("pskb_may_pull failed.\n");
3754 dev_kfree_skb(skb);
3755 goto next_desc;
3758 skb->protocol = eth_type_trans(skb, netdev);
3760 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3762 next_desc:
3763 rx_desc->status = 0;
3765 /* return some buffers to hardware, one at a time is too slow */
3766 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3767 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3768 cleaned_count = 0;
3771 /* use prefetched values */
3772 rx_desc = next_rxd;
3773 buffer_info = next_buffer;
3775 rx_ring->next_to_clean = i;
3777 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3778 if (cleaned_count)
3779 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3781 adapter->total_rx_packets += total_rx_packets;
3782 adapter->total_rx_bytes += total_rx_bytes;
3783 netdev->stats.rx_bytes += total_rx_bytes;
3784 netdev->stats.rx_packets += total_rx_packets;
3785 return cleaned;
3789 * this should improve performance for small packets with large amounts
3790 * of reassembly being done in the stack
3792 static void e1000_check_copybreak(struct net_device *netdev,
3793 struct e1000_buffer *buffer_info,
3794 u32 length, struct sk_buff **skb)
3796 struct sk_buff *new_skb;
3798 if (length > copybreak)
3799 return;
3801 new_skb = netdev_alloc_skb_ip_align(netdev, length);
3802 if (!new_skb)
3803 return;
3805 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
3806 (*skb)->data - NET_IP_ALIGN,
3807 length + NET_IP_ALIGN);
3808 /* save the skb in buffer_info as good */
3809 buffer_info->skb = *skb;
3810 *skb = new_skb;
3814 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3815 * @adapter: board private structure
3816 * @rx_ring: ring to clean
3817 * @work_done: amount of napi work completed this call
3818 * @work_to_do: max amount of work allowed for this call to do
3820 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3821 struct e1000_rx_ring *rx_ring,
3822 int *work_done, int work_to_do)
3824 struct e1000_hw *hw = &adapter->hw;
3825 struct net_device *netdev = adapter->netdev;
3826 struct pci_dev *pdev = adapter->pdev;
3827 struct e1000_rx_desc *rx_desc, *next_rxd;
3828 struct e1000_buffer *buffer_info, *next_buffer;
3829 unsigned long flags;
3830 u32 length;
3831 unsigned int i;
3832 int cleaned_count = 0;
3833 bool cleaned = false;
3834 unsigned int total_rx_bytes=0, total_rx_packets=0;
3836 i = rx_ring->next_to_clean;
3837 rx_desc = E1000_RX_DESC(*rx_ring, i);
3838 buffer_info = &rx_ring->buffer_info[i];
3840 while (rx_desc->status & E1000_RXD_STAT_DD) {
3841 struct sk_buff *skb;
3842 u8 status;
3844 if (*work_done >= work_to_do)
3845 break;
3846 (*work_done)++;
3848 status = rx_desc->status;
3849 skb = buffer_info->skb;
3850 buffer_info->skb = NULL;
3852 prefetch(skb->data - NET_IP_ALIGN);
3854 if (++i == rx_ring->count) i = 0;
3855 next_rxd = E1000_RX_DESC(*rx_ring, i);
3856 prefetch(next_rxd);
3858 next_buffer = &rx_ring->buffer_info[i];
3860 cleaned = true;
3861 cleaned_count++;
3862 dma_unmap_single(&pdev->dev, buffer_info->dma,
3863 buffer_info->length, DMA_FROM_DEVICE);
3864 buffer_info->dma = 0;
3866 length = le16_to_cpu(rx_desc->length);
3867 /* !EOP means multiple descriptors were used to store a single
3868 * packet, if thats the case we need to toss it. In fact, we
3869 * to toss every packet with the EOP bit clear and the next
3870 * frame that _does_ have the EOP bit set, as it is by
3871 * definition only a frame fragment
3873 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
3874 adapter->discarding = true;
3876 if (adapter->discarding) {
3877 /* All receives must fit into a single buffer */
3878 e_info("Receive packet consumed multiple buffers\n");
3879 /* recycle */
3880 buffer_info->skb = skb;
3881 if (status & E1000_RXD_STAT_EOP)
3882 adapter->discarding = false;
3883 goto next_desc;
3886 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3887 u8 last_byte = *(skb->data + length - 1);
3888 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
3889 last_byte)) {
3890 spin_lock_irqsave(&adapter->stats_lock, flags);
3891 e1000_tbi_adjust_stats(hw, &adapter->stats,
3892 length, skb->data);
3893 spin_unlock_irqrestore(&adapter->stats_lock,
3894 flags);
3895 length--;
3896 } else {
3897 /* recycle */
3898 buffer_info->skb = skb;
3899 goto next_desc;
3903 /* adjust length to remove Ethernet CRC, this must be
3904 * done after the TBI_ACCEPT workaround above */
3905 length -= 4;
3907 /* probably a little skewed due to removing CRC */
3908 total_rx_bytes += length;
3909 total_rx_packets++;
3911 e1000_check_copybreak(netdev, buffer_info, length, &skb);
3913 skb_put(skb, length);
3915 /* Receive Checksum Offload */
3916 e1000_rx_checksum(adapter,
3917 (u32)(status) |
3918 ((u32)(rx_desc->errors) << 24),
3919 le16_to_cpu(rx_desc->csum), skb);
3921 skb->protocol = eth_type_trans(skb, netdev);
3923 e1000_receive_skb(adapter, status, rx_desc->special, skb);
3925 next_desc:
3926 rx_desc->status = 0;
3928 /* return some buffers to hardware, one at a time is too slow */
3929 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3930 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3931 cleaned_count = 0;
3934 /* use prefetched values */
3935 rx_desc = next_rxd;
3936 buffer_info = next_buffer;
3938 rx_ring->next_to_clean = i;
3940 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3941 if (cleaned_count)
3942 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3944 adapter->total_rx_packets += total_rx_packets;
3945 adapter->total_rx_bytes += total_rx_bytes;
3946 netdev->stats.rx_bytes += total_rx_bytes;
3947 netdev->stats.rx_packets += total_rx_packets;
3948 return cleaned;
3952 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
3953 * @adapter: address of board private structure
3954 * @rx_ring: pointer to receive ring structure
3955 * @cleaned_count: number of buffers to allocate this pass
3958 static void
3959 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
3960 struct e1000_rx_ring *rx_ring, int cleaned_count)
3962 struct net_device *netdev = adapter->netdev;
3963 struct pci_dev *pdev = adapter->pdev;
3964 struct e1000_rx_desc *rx_desc;
3965 struct e1000_buffer *buffer_info;
3966 struct sk_buff *skb;
3967 unsigned int i;
3968 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
3970 i = rx_ring->next_to_use;
3971 buffer_info = &rx_ring->buffer_info[i];
3973 while (cleaned_count--) {
3974 skb = buffer_info->skb;
3975 if (skb) {
3976 skb_trim(skb, 0);
3977 goto check_page;
3980 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3981 if (unlikely(!skb)) {
3982 /* Better luck next round */
3983 adapter->alloc_rx_buff_failed++;
3984 break;
3987 /* Fix for errata 23, can't cross 64kB boundary */
3988 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
3989 struct sk_buff *oldskb = skb;
3990 e_err("skb align check failed: %u bytes at %p\n",
3991 bufsz, skb->data);
3992 /* Try again, without freeing the previous */
3993 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
3994 /* Failed allocation, critical failure */
3995 if (!skb) {
3996 dev_kfree_skb(oldskb);
3997 adapter->alloc_rx_buff_failed++;
3998 break;
4001 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4002 /* give up */
4003 dev_kfree_skb(skb);
4004 dev_kfree_skb(oldskb);
4005 break; /* while (cleaned_count--) */
4008 /* Use new allocation */
4009 dev_kfree_skb(oldskb);
4011 buffer_info->skb = skb;
4012 buffer_info->length = adapter->rx_buffer_len;
4013 check_page:
4014 /* allocate a new page if necessary */
4015 if (!buffer_info->page) {
4016 buffer_info->page = alloc_page(GFP_ATOMIC);
4017 if (unlikely(!buffer_info->page)) {
4018 adapter->alloc_rx_buff_failed++;
4019 break;
4023 if (!buffer_info->dma) {
4024 buffer_info->dma = dma_map_page(&pdev->dev,
4025 buffer_info->page, 0,
4026 buffer_info->length,
4027 DMA_FROM_DEVICE);
4028 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4029 put_page(buffer_info->page);
4030 dev_kfree_skb(skb);
4031 buffer_info->page = NULL;
4032 buffer_info->skb = NULL;
4033 buffer_info->dma = 0;
4034 adapter->alloc_rx_buff_failed++;
4035 break; /* while !buffer_info->skb */
4039 rx_desc = E1000_RX_DESC(*rx_ring, i);
4040 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4042 if (unlikely(++i == rx_ring->count))
4043 i = 0;
4044 buffer_info = &rx_ring->buffer_info[i];
4047 if (likely(rx_ring->next_to_use != i)) {
4048 rx_ring->next_to_use = i;
4049 if (unlikely(i-- == 0))
4050 i = (rx_ring->count - 1);
4052 /* Force memory writes to complete before letting h/w
4053 * know there are new descriptors to fetch. (Only
4054 * applicable for weak-ordered memory model archs,
4055 * such as IA-64). */
4056 wmb();
4057 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4062 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4063 * @adapter: address of board private structure
4066 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4067 struct e1000_rx_ring *rx_ring,
4068 int cleaned_count)
4070 struct e1000_hw *hw = &adapter->hw;
4071 struct net_device *netdev = adapter->netdev;
4072 struct pci_dev *pdev = adapter->pdev;
4073 struct e1000_rx_desc *rx_desc;
4074 struct e1000_buffer *buffer_info;
4075 struct sk_buff *skb;
4076 unsigned int i;
4077 unsigned int bufsz = adapter->rx_buffer_len;
4079 i = rx_ring->next_to_use;
4080 buffer_info = &rx_ring->buffer_info[i];
4082 while (cleaned_count--) {
4083 skb = buffer_info->skb;
4084 if (skb) {
4085 skb_trim(skb, 0);
4086 goto map_skb;
4089 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4090 if (unlikely(!skb)) {
4091 /* Better luck next round */
4092 adapter->alloc_rx_buff_failed++;
4093 break;
4096 /* Fix for errata 23, can't cross 64kB boundary */
4097 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4098 struct sk_buff *oldskb = skb;
4099 e_err("skb align check failed: %u bytes at %p\n",
4100 bufsz, skb->data);
4101 /* Try again, without freeing the previous */
4102 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4103 /* Failed allocation, critical failure */
4104 if (!skb) {
4105 dev_kfree_skb(oldskb);
4106 adapter->alloc_rx_buff_failed++;
4107 break;
4110 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4111 /* give up */
4112 dev_kfree_skb(skb);
4113 dev_kfree_skb(oldskb);
4114 adapter->alloc_rx_buff_failed++;
4115 break; /* while !buffer_info->skb */
4118 /* Use new allocation */
4119 dev_kfree_skb(oldskb);
4121 buffer_info->skb = skb;
4122 buffer_info->length = adapter->rx_buffer_len;
4123 map_skb:
4124 buffer_info->dma = dma_map_single(&pdev->dev,
4125 skb->data,
4126 buffer_info->length,
4127 DMA_FROM_DEVICE);
4128 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4129 dev_kfree_skb(skb);
4130 buffer_info->skb = NULL;
4131 buffer_info->dma = 0;
4132 adapter->alloc_rx_buff_failed++;
4133 break; /* while !buffer_info->skb */
4137 * XXX if it was allocated cleanly it will never map to a
4138 * boundary crossing
4141 /* Fix for errata 23, can't cross 64kB boundary */
4142 if (!e1000_check_64k_bound(adapter,
4143 (void *)(unsigned long)buffer_info->dma,
4144 adapter->rx_buffer_len)) {
4145 e_err("dma align check failed: %u bytes at %p\n",
4146 adapter->rx_buffer_len,
4147 (void *)(unsigned long)buffer_info->dma);
4148 dev_kfree_skb(skb);
4149 buffer_info->skb = NULL;
4151 dma_unmap_single(&pdev->dev, buffer_info->dma,
4152 adapter->rx_buffer_len,
4153 DMA_FROM_DEVICE);
4154 buffer_info->dma = 0;
4156 adapter->alloc_rx_buff_failed++;
4157 break; /* while !buffer_info->skb */
4159 rx_desc = E1000_RX_DESC(*rx_ring, i);
4160 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4162 if (unlikely(++i == rx_ring->count))
4163 i = 0;
4164 buffer_info = &rx_ring->buffer_info[i];
4167 if (likely(rx_ring->next_to_use != i)) {
4168 rx_ring->next_to_use = i;
4169 if (unlikely(i-- == 0))
4170 i = (rx_ring->count - 1);
4172 /* Force memory writes to complete before letting h/w
4173 * know there are new descriptors to fetch. (Only
4174 * applicable for weak-ordered memory model archs,
4175 * such as IA-64). */
4176 wmb();
4177 writel(i, hw->hw_addr + rx_ring->rdt);
4182 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4183 * @adapter:
4186 static void e1000_smartspeed(struct e1000_adapter *adapter)
4188 struct e1000_hw *hw = &adapter->hw;
4189 u16 phy_status;
4190 u16 phy_ctrl;
4192 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4193 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4194 return;
4196 if (adapter->smartspeed == 0) {
4197 /* If Master/Slave config fault is asserted twice,
4198 * we assume back-to-back */
4199 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4200 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4201 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4202 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4203 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4204 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4205 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4206 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4207 phy_ctrl);
4208 adapter->smartspeed++;
4209 if (!e1000_phy_setup_autoneg(hw) &&
4210 !e1000_read_phy_reg(hw, PHY_CTRL,
4211 &phy_ctrl)) {
4212 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4213 MII_CR_RESTART_AUTO_NEG);
4214 e1000_write_phy_reg(hw, PHY_CTRL,
4215 phy_ctrl);
4218 return;
4219 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4220 /* If still no link, perhaps using 2/3 pair cable */
4221 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4222 phy_ctrl |= CR_1000T_MS_ENABLE;
4223 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4224 if (!e1000_phy_setup_autoneg(hw) &&
4225 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4226 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4227 MII_CR_RESTART_AUTO_NEG);
4228 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4231 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4232 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4233 adapter->smartspeed = 0;
4237 * e1000_ioctl -
4238 * @netdev:
4239 * @ifreq:
4240 * @cmd:
4243 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4245 switch (cmd) {
4246 case SIOCGMIIPHY:
4247 case SIOCGMIIREG:
4248 case SIOCSMIIREG:
4249 return e1000_mii_ioctl(netdev, ifr, cmd);
4250 default:
4251 return -EOPNOTSUPP;
4256 * e1000_mii_ioctl -
4257 * @netdev:
4258 * @ifreq:
4259 * @cmd:
4262 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4263 int cmd)
4265 struct e1000_adapter *adapter = netdev_priv(netdev);
4266 struct e1000_hw *hw = &adapter->hw;
4267 struct mii_ioctl_data *data = if_mii(ifr);
4268 int retval;
4269 u16 mii_reg;
4270 u16 spddplx;
4271 unsigned long flags;
4273 if (hw->media_type != e1000_media_type_copper)
4274 return -EOPNOTSUPP;
4276 switch (cmd) {
4277 case SIOCGMIIPHY:
4278 data->phy_id = hw->phy_addr;
4279 break;
4280 case SIOCGMIIREG:
4281 spin_lock_irqsave(&adapter->stats_lock, flags);
4282 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4283 &data->val_out)) {
4284 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4285 return -EIO;
4287 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4288 break;
4289 case SIOCSMIIREG:
4290 if (data->reg_num & ~(0x1F))
4291 return -EFAULT;
4292 mii_reg = data->val_in;
4293 spin_lock_irqsave(&adapter->stats_lock, flags);
4294 if (e1000_write_phy_reg(hw, data->reg_num,
4295 mii_reg)) {
4296 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4297 return -EIO;
4299 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4300 if (hw->media_type == e1000_media_type_copper) {
4301 switch (data->reg_num) {
4302 case PHY_CTRL:
4303 if (mii_reg & MII_CR_POWER_DOWN)
4304 break;
4305 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4306 hw->autoneg = 1;
4307 hw->autoneg_advertised = 0x2F;
4308 } else {
4309 if (mii_reg & 0x40)
4310 spddplx = SPEED_1000;
4311 else if (mii_reg & 0x2000)
4312 spddplx = SPEED_100;
4313 else
4314 spddplx = SPEED_10;
4315 spddplx += (mii_reg & 0x100)
4316 ? DUPLEX_FULL :
4317 DUPLEX_HALF;
4318 retval = e1000_set_spd_dplx(adapter,
4319 spddplx);
4320 if (retval)
4321 return retval;
4323 if (netif_running(adapter->netdev))
4324 e1000_reinit_locked(adapter);
4325 else
4326 e1000_reset(adapter);
4327 break;
4328 case M88E1000_PHY_SPEC_CTRL:
4329 case M88E1000_EXT_PHY_SPEC_CTRL:
4330 if (e1000_phy_reset(hw))
4331 return -EIO;
4332 break;
4334 } else {
4335 switch (data->reg_num) {
4336 case PHY_CTRL:
4337 if (mii_reg & MII_CR_POWER_DOWN)
4338 break;
4339 if (netif_running(adapter->netdev))
4340 e1000_reinit_locked(adapter);
4341 else
4342 e1000_reset(adapter);
4343 break;
4346 break;
4347 default:
4348 return -EOPNOTSUPP;
4350 return E1000_SUCCESS;
4353 void e1000_pci_set_mwi(struct e1000_hw *hw)
4355 struct e1000_adapter *adapter = hw->back;
4356 int ret_val = pci_set_mwi(adapter->pdev);
4358 if (ret_val)
4359 e_err("Error in setting MWI\n");
4362 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4364 struct e1000_adapter *adapter = hw->back;
4366 pci_clear_mwi(adapter->pdev);
4369 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4371 struct e1000_adapter *adapter = hw->back;
4372 return pcix_get_mmrbc(adapter->pdev);
4375 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4377 struct e1000_adapter *adapter = hw->back;
4378 pcix_set_mmrbc(adapter->pdev, mmrbc);
4381 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4383 outl(value, port);
4386 static void e1000_vlan_rx_register(struct net_device *netdev,
4387 struct vlan_group *grp)
4389 struct e1000_adapter *adapter = netdev_priv(netdev);
4390 struct e1000_hw *hw = &adapter->hw;
4391 u32 ctrl, rctl;
4393 if (!test_bit(__E1000_DOWN, &adapter->flags))
4394 e1000_irq_disable(adapter);
4395 adapter->vlgrp = grp;
4397 if (grp) {
4398 /* enable VLAN tag insert/strip */
4399 ctrl = er32(CTRL);
4400 ctrl |= E1000_CTRL_VME;
4401 ew32(CTRL, ctrl);
4403 /* enable VLAN receive filtering */
4404 rctl = er32(RCTL);
4405 rctl &= ~E1000_RCTL_CFIEN;
4406 if (!(netdev->flags & IFF_PROMISC))
4407 rctl |= E1000_RCTL_VFE;
4408 ew32(RCTL, rctl);
4409 e1000_update_mng_vlan(adapter);
4410 } else {
4411 /* disable VLAN tag insert/strip */
4412 ctrl = er32(CTRL);
4413 ctrl &= ~E1000_CTRL_VME;
4414 ew32(CTRL, ctrl);
4416 /* disable VLAN receive filtering */
4417 rctl = er32(RCTL);
4418 rctl &= ~E1000_RCTL_VFE;
4419 ew32(RCTL, rctl);
4421 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
4422 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4423 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4427 if (!test_bit(__E1000_DOWN, &adapter->flags))
4428 e1000_irq_enable(adapter);
4431 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4433 struct e1000_adapter *adapter = netdev_priv(netdev);
4434 struct e1000_hw *hw = &adapter->hw;
4435 u32 vfta, index;
4437 if ((hw->mng_cookie.status &
4438 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4439 (vid == adapter->mng_vlan_id))
4440 return;
4441 /* add VID to filter table */
4442 index = (vid >> 5) & 0x7F;
4443 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4444 vfta |= (1 << (vid & 0x1F));
4445 e1000_write_vfta(hw, index, vfta);
4448 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4450 struct e1000_adapter *adapter = netdev_priv(netdev);
4451 struct e1000_hw *hw = &adapter->hw;
4452 u32 vfta, index;
4454 if (!test_bit(__E1000_DOWN, &adapter->flags))
4455 e1000_irq_disable(adapter);
4456 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4457 if (!test_bit(__E1000_DOWN, &adapter->flags))
4458 e1000_irq_enable(adapter);
4460 /* remove VID from filter table */
4461 index = (vid >> 5) & 0x7F;
4462 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4463 vfta &= ~(1 << (vid & 0x1F));
4464 e1000_write_vfta(hw, index, vfta);
4467 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4469 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4471 if (adapter->vlgrp) {
4472 u16 vid;
4473 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4474 if (!vlan_group_get_device(adapter->vlgrp, vid))
4475 continue;
4476 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4481 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4483 struct e1000_hw *hw = &adapter->hw;
4485 hw->autoneg = 0;
4487 /* Fiber NICs only allow 1000 gbps Full duplex */
4488 if ((hw->media_type == e1000_media_type_fiber) &&
4489 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4490 e_err("Unsupported Speed/Duplex configuration\n");
4491 return -EINVAL;
4494 switch (spddplx) {
4495 case SPEED_10 + DUPLEX_HALF:
4496 hw->forced_speed_duplex = e1000_10_half;
4497 break;
4498 case SPEED_10 + DUPLEX_FULL:
4499 hw->forced_speed_duplex = e1000_10_full;
4500 break;
4501 case SPEED_100 + DUPLEX_HALF:
4502 hw->forced_speed_duplex = e1000_100_half;
4503 break;
4504 case SPEED_100 + DUPLEX_FULL:
4505 hw->forced_speed_duplex = e1000_100_full;
4506 break;
4507 case SPEED_1000 + DUPLEX_FULL:
4508 hw->autoneg = 1;
4509 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4510 break;
4511 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4512 default:
4513 e_err("Unsupported Speed/Duplex configuration\n");
4514 return -EINVAL;
4516 return 0;
4519 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4521 struct net_device *netdev = pci_get_drvdata(pdev);
4522 struct e1000_adapter *adapter = netdev_priv(netdev);
4523 struct e1000_hw *hw = &adapter->hw;
4524 u32 ctrl, ctrl_ext, rctl, status;
4525 u32 wufc = adapter->wol;
4526 #ifdef CONFIG_PM
4527 int retval = 0;
4528 #endif
4530 netif_device_detach(netdev);
4532 if (netif_running(netdev)) {
4533 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4534 e1000_down(adapter);
4537 #ifdef CONFIG_PM
4538 retval = pci_save_state(pdev);
4539 if (retval)
4540 return retval;
4541 #endif
4543 status = er32(STATUS);
4544 if (status & E1000_STATUS_LU)
4545 wufc &= ~E1000_WUFC_LNKC;
4547 if (wufc) {
4548 e1000_setup_rctl(adapter);
4549 e1000_set_rx_mode(netdev);
4551 /* turn on all-multi mode if wake on multicast is enabled */
4552 if (wufc & E1000_WUFC_MC) {
4553 rctl = er32(RCTL);
4554 rctl |= E1000_RCTL_MPE;
4555 ew32(RCTL, rctl);
4558 if (hw->mac_type >= e1000_82540) {
4559 ctrl = er32(CTRL);
4560 /* advertise wake from D3Cold */
4561 #define E1000_CTRL_ADVD3WUC 0x00100000
4562 /* phy power management enable */
4563 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4564 ctrl |= E1000_CTRL_ADVD3WUC |
4565 E1000_CTRL_EN_PHY_PWR_MGMT;
4566 ew32(CTRL, ctrl);
4569 if (hw->media_type == e1000_media_type_fiber ||
4570 hw->media_type == e1000_media_type_internal_serdes) {
4571 /* keep the laser running in D3 */
4572 ctrl_ext = er32(CTRL_EXT);
4573 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4574 ew32(CTRL_EXT, ctrl_ext);
4577 ew32(WUC, E1000_WUC_PME_EN);
4578 ew32(WUFC, wufc);
4579 } else {
4580 ew32(WUC, 0);
4581 ew32(WUFC, 0);
4584 e1000_release_manageability(adapter);
4586 *enable_wake = !!wufc;
4588 /* make sure adapter isn't asleep if manageability is enabled */
4589 if (adapter->en_mng_pt)
4590 *enable_wake = true;
4592 if (netif_running(netdev))
4593 e1000_free_irq(adapter);
4595 pci_disable_device(pdev);
4597 return 0;
4600 #ifdef CONFIG_PM
4601 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4603 int retval;
4604 bool wake;
4606 retval = __e1000_shutdown(pdev, &wake);
4607 if (retval)
4608 return retval;
4610 if (wake) {
4611 pci_prepare_to_sleep(pdev);
4612 } else {
4613 pci_wake_from_d3(pdev, false);
4614 pci_set_power_state(pdev, PCI_D3hot);
4617 return 0;
4620 static int e1000_resume(struct pci_dev *pdev)
4622 struct net_device *netdev = pci_get_drvdata(pdev);
4623 struct e1000_adapter *adapter = netdev_priv(netdev);
4624 struct e1000_hw *hw = &adapter->hw;
4625 u32 err;
4627 pci_set_power_state(pdev, PCI_D0);
4628 pci_restore_state(pdev);
4629 pci_save_state(pdev);
4631 if (adapter->need_ioport)
4632 err = pci_enable_device(pdev);
4633 else
4634 err = pci_enable_device_mem(pdev);
4635 if (err) {
4636 pr_err("Cannot enable PCI device from suspend\n");
4637 return err;
4639 pci_set_master(pdev);
4641 pci_enable_wake(pdev, PCI_D3hot, 0);
4642 pci_enable_wake(pdev, PCI_D3cold, 0);
4644 if (netif_running(netdev)) {
4645 err = e1000_request_irq(adapter);
4646 if (err)
4647 return err;
4650 e1000_power_up_phy(adapter);
4651 e1000_reset(adapter);
4652 ew32(WUS, ~0);
4654 e1000_init_manageability(adapter);
4656 if (netif_running(netdev))
4657 e1000_up(adapter);
4659 netif_device_attach(netdev);
4661 return 0;
4663 #endif
4665 static void e1000_shutdown(struct pci_dev *pdev)
4667 bool wake;
4669 __e1000_shutdown(pdev, &wake);
4671 if (system_state == SYSTEM_POWER_OFF) {
4672 pci_wake_from_d3(pdev, wake);
4673 pci_set_power_state(pdev, PCI_D3hot);
4677 #ifdef CONFIG_NET_POLL_CONTROLLER
4679 * Polling 'interrupt' - used by things like netconsole to send skbs
4680 * without having to re-enable interrupts. It's not called while
4681 * the interrupt routine is executing.
4683 static void e1000_netpoll(struct net_device *netdev)
4685 struct e1000_adapter *adapter = netdev_priv(netdev);
4687 disable_irq(adapter->pdev->irq);
4688 e1000_intr(adapter->pdev->irq, netdev);
4689 enable_irq(adapter->pdev->irq);
4691 #endif
4694 * e1000_io_error_detected - called when PCI error is detected
4695 * @pdev: Pointer to PCI device
4696 * @state: The current pci connection state
4698 * This function is called after a PCI bus error affecting
4699 * this device has been detected.
4701 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4702 pci_channel_state_t state)
4704 struct net_device *netdev = pci_get_drvdata(pdev);
4705 struct e1000_adapter *adapter = netdev_priv(netdev);
4707 netif_device_detach(netdev);
4709 if (state == pci_channel_io_perm_failure)
4710 return PCI_ERS_RESULT_DISCONNECT;
4712 if (netif_running(netdev))
4713 e1000_down(adapter);
4714 pci_disable_device(pdev);
4716 /* Request a slot slot reset. */
4717 return PCI_ERS_RESULT_NEED_RESET;
4721 * e1000_io_slot_reset - called after the pci bus has been reset.
4722 * @pdev: Pointer to PCI device
4724 * Restart the card from scratch, as if from a cold-boot. Implementation
4725 * resembles the first-half of the e1000_resume routine.
4727 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4729 struct net_device *netdev = pci_get_drvdata(pdev);
4730 struct e1000_adapter *adapter = netdev_priv(netdev);
4731 struct e1000_hw *hw = &adapter->hw;
4732 int err;
4734 if (adapter->need_ioport)
4735 err = pci_enable_device(pdev);
4736 else
4737 err = pci_enable_device_mem(pdev);
4738 if (err) {
4739 pr_err("Cannot re-enable PCI device after reset.\n");
4740 return PCI_ERS_RESULT_DISCONNECT;
4742 pci_set_master(pdev);
4744 pci_enable_wake(pdev, PCI_D3hot, 0);
4745 pci_enable_wake(pdev, PCI_D3cold, 0);
4747 e1000_reset(adapter);
4748 ew32(WUS, ~0);
4750 return PCI_ERS_RESULT_RECOVERED;
4754 * e1000_io_resume - called when traffic can start flowing again.
4755 * @pdev: Pointer to PCI device
4757 * This callback is called when the error recovery driver tells us that
4758 * its OK to resume normal operation. Implementation resembles the
4759 * second-half of the e1000_resume routine.
4761 static void e1000_io_resume(struct pci_dev *pdev)
4763 struct net_device *netdev = pci_get_drvdata(pdev);
4764 struct e1000_adapter *adapter = netdev_priv(netdev);
4766 e1000_init_manageability(adapter);
4768 if (netif_running(netdev)) {
4769 if (e1000_up(adapter)) {
4770 pr_info("can't bring device back up after reset\n");
4771 return;
4775 netif_device_attach(netdev);
4778 /* e1000_main.c */