DVB (2428): Fixes for the topuptv/SCM mediaguard CAM module in KNC1 CI module
[linux-2.6/btrfs-unstable.git] / mm / page_alloc.c
blobe0e84924171b4f28fc0c9c054d5668f4a7036916
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
41 #include <asm/tlbflush.h>
42 #include "internal.h"
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 struct pglist_data *pgdat_list __read_mostly;
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 long nr_swap_pages;
56 int percpu_pagelist_fraction;
58 static void fastcall free_hot_cold_page(struct page *page, int cold);
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
71 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73 EXPORT_SYMBOL(totalram_pages);
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
79 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
80 EXPORT_SYMBOL(zone_table);
82 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
83 int min_free_kbytes = 1024;
85 unsigned long __initdata nr_kernel_pages;
86 unsigned long __initdata nr_all_pages;
88 #ifdef CONFIG_DEBUG_VM
89 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
103 return ret;
106 static int page_is_consistent(struct zone *zone, struct page *page)
108 #ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
110 return 0;
111 #endif
112 if (zone != page_zone(page))
113 return 0;
115 return 1;
118 * Temporary debugging check for pages not lying within a given zone.
120 static int bad_range(struct zone *zone, struct page *page)
122 if (page_outside_zone_boundaries(zone, page))
123 return 1;
124 if (!page_is_consistent(zone, page))
125 return 1;
127 return 0;
130 #else
131 static inline int bad_range(struct zone *zone, struct page *page)
133 return 0;
135 #endif
137 static void bad_page(struct page *page)
139 printk(KERN_EMERG "Bad page state in process '%s'\n"
140 "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 "Trying to fix it up, but a reboot is needed\n"
142 "Backtrace:\n",
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
146 dump_stack();
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
149 1 << PG_locked |
150 1 << PG_active |
151 1 << PG_dirty |
152 1 << PG_reclaim |
153 1 << PG_slab |
154 1 << PG_swapcache |
155 1 << PG_writeback );
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
159 add_taint(TAINT_BAD_PAGE);
163 * Higher-order pages are called "compound pages". They are structured thusly:
165 * The first PAGE_SIZE page is called the "head page".
167 * The remaining PAGE_SIZE pages are called "tail pages".
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
172 * The first tail page's ->mapping, if non-zero, holds the address of the
173 * compound page's put_page() function.
175 * The order of the allocation is stored in the first tail page's ->index
176 * This is only for debug at present. This usage means that zero-order pages
177 * may not be compound.
179 static void prep_compound_page(struct page *page, unsigned long order)
181 int i;
182 int nr_pages = 1 << order;
184 page[1].mapping = NULL;
185 page[1].index = order;
186 for (i = 0; i < nr_pages; i++) {
187 struct page *p = page + i;
189 SetPageCompound(p);
190 set_page_private(p, (unsigned long)page);
194 static void destroy_compound_page(struct page *page, unsigned long order)
196 int i;
197 int nr_pages = 1 << order;
199 if (unlikely(page[1].index != order))
200 bad_page(page);
202 for (i = 0; i < nr_pages; i++) {
203 struct page *p = page + i;
205 if (unlikely(!PageCompound(p) |
206 (page_private(p) != (unsigned long)page)))
207 bad_page(page);
208 ClearPageCompound(p);
213 * function for dealing with page's order in buddy system.
214 * zone->lock is already acquired when we use these.
215 * So, we don't need atomic page->flags operations here.
217 static inline unsigned long page_order(struct page *page) {
218 return page_private(page);
221 static inline void set_page_order(struct page *page, int order) {
222 set_page_private(page, order);
223 __SetPagePrivate(page);
226 static inline void rmv_page_order(struct page *page)
228 __ClearPagePrivate(page);
229 set_page_private(page, 0);
233 * Locate the struct page for both the matching buddy in our
234 * pair (buddy1) and the combined O(n+1) page they form (page).
236 * 1) Any buddy B1 will have an order O twin B2 which satisfies
237 * the following equation:
238 * B2 = B1 ^ (1 << O)
239 * For example, if the starting buddy (buddy2) is #8 its order
240 * 1 buddy is #10:
241 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
243 * 2) Any buddy B will have an order O+1 parent P which
244 * satisfies the following equation:
245 * P = B & ~(1 << O)
247 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
249 static inline struct page *
250 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
252 unsigned long buddy_idx = page_idx ^ (1 << order);
254 return page + (buddy_idx - page_idx);
257 static inline unsigned long
258 __find_combined_index(unsigned long page_idx, unsigned int order)
260 return (page_idx & ~(1 << order));
264 * This function checks whether a page is free && is the buddy
265 * we can do coalesce a page and its buddy if
266 * (a) the buddy is not in a hole &&
267 * (b) the buddy is free &&
268 * (c) the buddy is on the buddy system &&
269 * (d) a page and its buddy have the same order.
270 * for recording page's order, we use page_private(page) and PG_private.
273 static inline int page_is_buddy(struct page *page, int order)
275 #ifdef CONFIG_HOLES_IN_ZONE
276 if (!pfn_valid(page_to_pfn(page)))
277 return 0;
278 #endif
280 if (PagePrivate(page) &&
281 (page_order(page) == order) &&
282 page_count(page) == 0)
283 return 1;
284 return 0;
288 * Freeing function for a buddy system allocator.
290 * The concept of a buddy system is to maintain direct-mapped table
291 * (containing bit values) for memory blocks of various "orders".
292 * The bottom level table contains the map for the smallest allocatable
293 * units of memory (here, pages), and each level above it describes
294 * pairs of units from the levels below, hence, "buddies".
295 * At a high level, all that happens here is marking the table entry
296 * at the bottom level available, and propagating the changes upward
297 * as necessary, plus some accounting needed to play nicely with other
298 * parts of the VM system.
299 * At each level, we keep a list of pages, which are heads of continuous
300 * free pages of length of (1 << order) and marked with PG_Private.Page's
301 * order is recorded in page_private(page) field.
302 * So when we are allocating or freeing one, we can derive the state of the
303 * other. That is, if we allocate a small block, and both were
304 * free, the remainder of the region must be split into blocks.
305 * If a block is freed, and its buddy is also free, then this
306 * triggers coalescing into a block of larger size.
308 * -- wli
311 static inline void __free_one_page(struct page *page,
312 struct zone *zone, unsigned int order)
314 unsigned long page_idx;
315 int order_size = 1 << order;
317 if (unlikely(PageCompound(page)))
318 destroy_compound_page(page, order);
320 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
322 BUG_ON(page_idx & (order_size - 1));
323 BUG_ON(bad_range(zone, page));
325 zone->free_pages += order_size;
326 while (order < MAX_ORDER-1) {
327 unsigned long combined_idx;
328 struct free_area *area;
329 struct page *buddy;
331 buddy = __page_find_buddy(page, page_idx, order);
332 if (!page_is_buddy(buddy, order))
333 break; /* Move the buddy up one level. */
335 list_del(&buddy->lru);
336 area = zone->free_area + order;
337 area->nr_free--;
338 rmv_page_order(buddy);
339 combined_idx = __find_combined_index(page_idx, order);
340 page = page + (combined_idx - page_idx);
341 page_idx = combined_idx;
342 order++;
344 set_page_order(page, order);
345 list_add(&page->lru, &zone->free_area[order].free_list);
346 zone->free_area[order].nr_free++;
349 static inline int free_pages_check(struct page *page)
351 if (unlikely(page_mapcount(page) |
352 (page->mapping != NULL) |
353 (page_count(page) != 0) |
354 (page->flags & (
355 1 << PG_lru |
356 1 << PG_private |
357 1 << PG_locked |
358 1 << PG_active |
359 1 << PG_reclaim |
360 1 << PG_slab |
361 1 << PG_swapcache |
362 1 << PG_writeback |
363 1 << PG_reserved ))))
364 bad_page(page);
365 if (PageDirty(page))
366 __ClearPageDirty(page);
368 * For now, we report if PG_reserved was found set, but do not
369 * clear it, and do not free the page. But we shall soon need
370 * to do more, for when the ZERO_PAGE count wraps negative.
372 return PageReserved(page);
376 * Frees a list of pages.
377 * Assumes all pages on list are in same zone, and of same order.
378 * count is the number of pages to free.
380 * If the zone was previously in an "all pages pinned" state then look to
381 * see if this freeing clears that state.
383 * And clear the zone's pages_scanned counter, to hold off the "all pages are
384 * pinned" detection logic.
386 static void free_pages_bulk(struct zone *zone, int count,
387 struct list_head *list, int order)
389 spin_lock(&zone->lock);
390 zone->all_unreclaimable = 0;
391 zone->pages_scanned = 0;
392 while (count--) {
393 struct page *page;
395 BUG_ON(list_empty(list));
396 page = list_entry(list->prev, struct page, lru);
397 /* have to delete it as __free_one_page list manipulates */
398 list_del(&page->lru);
399 __free_one_page(page, zone, order);
401 spin_unlock(&zone->lock);
404 static void free_one_page(struct zone *zone, struct page *page, int order)
406 LIST_HEAD(list);
407 list_add(&page->lru, &list);
408 free_pages_bulk(zone, 1, &list, order);
411 static void __free_pages_ok(struct page *page, unsigned int order)
413 unsigned long flags;
414 int i;
415 int reserved = 0;
417 arch_free_page(page, order);
419 #ifndef CONFIG_MMU
420 for (i = 1 ; i < (1 << order) ; ++i)
421 __put_page(page + i);
422 #endif
424 for (i = 0 ; i < (1 << order) ; ++i)
425 reserved += free_pages_check(page + i);
426 if (reserved)
427 return;
429 kernel_map_pages(page, 1 << order, 0);
430 local_irq_save(flags);
431 __mod_page_state(pgfree, 1 << order);
432 free_one_page(page_zone(page), page, order);
433 local_irq_restore(flags);
437 * permit the bootmem allocator to evade page validation on high-order frees
439 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
441 if (order == 0) {
442 __ClearPageReserved(page);
443 set_page_count(page, 0);
445 free_hot_cold_page(page, 0);
446 } else {
447 LIST_HEAD(list);
448 int loop;
450 for (loop = 0; loop < BITS_PER_LONG; loop++) {
451 struct page *p = &page[loop];
453 if (loop + 16 < BITS_PER_LONG)
454 prefetchw(p + 16);
455 __ClearPageReserved(p);
456 set_page_count(p, 0);
459 arch_free_page(page, order);
461 mod_page_state(pgfree, 1 << order);
463 list_add(&page->lru, &list);
464 kernel_map_pages(page, 1 << order, 0);
465 free_pages_bulk(page_zone(page), 1, &list, order);
471 * The order of subdivision here is critical for the IO subsystem.
472 * Please do not alter this order without good reasons and regression
473 * testing. Specifically, as large blocks of memory are subdivided,
474 * the order in which smaller blocks are delivered depends on the order
475 * they're subdivided in this function. This is the primary factor
476 * influencing the order in which pages are delivered to the IO
477 * subsystem according to empirical testing, and this is also justified
478 * by considering the behavior of a buddy system containing a single
479 * large block of memory acted on by a series of small allocations.
480 * This behavior is a critical factor in sglist merging's success.
482 * -- wli
484 static inline void expand(struct zone *zone, struct page *page,
485 int low, int high, struct free_area *area)
487 unsigned long size = 1 << high;
489 while (high > low) {
490 area--;
491 high--;
492 size >>= 1;
493 BUG_ON(bad_range(zone, &page[size]));
494 list_add(&page[size].lru, &area->free_list);
495 area->nr_free++;
496 set_page_order(&page[size], high);
501 * This page is about to be returned from the page allocator
503 static int prep_new_page(struct page *page, int order)
505 if (unlikely(page_mapcount(page) |
506 (page->mapping != NULL) |
507 (page_count(page) != 0) |
508 (page->flags & (
509 1 << PG_lru |
510 1 << PG_private |
511 1 << PG_locked |
512 1 << PG_active |
513 1 << PG_dirty |
514 1 << PG_reclaim |
515 1 << PG_slab |
516 1 << PG_swapcache |
517 1 << PG_writeback |
518 1 << PG_reserved ))))
519 bad_page(page);
522 * For now, we report if PG_reserved was found set, but do not
523 * clear it, and do not allocate the page: as a safety net.
525 if (PageReserved(page))
526 return 1;
528 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
529 1 << PG_referenced | 1 << PG_arch_1 |
530 1 << PG_checked | 1 << PG_mappedtodisk);
531 set_page_private(page, 0);
532 set_page_refs(page, order);
533 kernel_map_pages(page, 1 << order, 1);
534 return 0;
538 * Do the hard work of removing an element from the buddy allocator.
539 * Call me with the zone->lock already held.
541 static struct page *__rmqueue(struct zone *zone, unsigned int order)
543 struct free_area * area;
544 unsigned int current_order;
545 struct page *page;
547 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
548 area = zone->free_area + current_order;
549 if (list_empty(&area->free_list))
550 continue;
552 page = list_entry(area->free_list.next, struct page, lru);
553 list_del(&page->lru);
554 rmv_page_order(page);
555 area->nr_free--;
556 zone->free_pages -= 1UL << order;
557 expand(zone, page, order, current_order, area);
558 return page;
561 return NULL;
565 * Obtain a specified number of elements from the buddy allocator, all under
566 * a single hold of the lock, for efficiency. Add them to the supplied list.
567 * Returns the number of new pages which were placed at *list.
569 static int rmqueue_bulk(struct zone *zone, unsigned int order,
570 unsigned long count, struct list_head *list)
572 int i;
574 spin_lock(&zone->lock);
575 for (i = 0; i < count; ++i) {
576 struct page *page = __rmqueue(zone, order);
577 if (unlikely(page == NULL))
578 break;
579 list_add_tail(&page->lru, list);
581 spin_unlock(&zone->lock);
582 return i;
585 #ifdef CONFIG_NUMA
586 /* Called from the slab reaper to drain remote pagesets */
587 void drain_remote_pages(void)
589 struct zone *zone;
590 int i;
591 unsigned long flags;
593 local_irq_save(flags);
594 for_each_zone(zone) {
595 struct per_cpu_pageset *pset;
597 /* Do not drain local pagesets */
598 if (zone->zone_pgdat->node_id == numa_node_id())
599 continue;
601 pset = zone_pcp(zone, smp_processor_id());
602 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
603 struct per_cpu_pages *pcp;
605 pcp = &pset->pcp[i];
606 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
607 pcp->count = 0;
610 local_irq_restore(flags);
612 #endif
614 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
615 static void __drain_pages(unsigned int cpu)
617 unsigned long flags;
618 struct zone *zone;
619 int i;
621 for_each_zone(zone) {
622 struct per_cpu_pageset *pset;
624 pset = zone_pcp(zone, cpu);
625 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
626 struct per_cpu_pages *pcp;
628 pcp = &pset->pcp[i];
629 local_irq_save(flags);
630 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
631 pcp->count = 0;
632 local_irq_restore(flags);
636 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
638 #ifdef CONFIG_PM
640 void mark_free_pages(struct zone *zone)
642 unsigned long zone_pfn, flags;
643 int order;
644 struct list_head *curr;
646 if (!zone->spanned_pages)
647 return;
649 spin_lock_irqsave(&zone->lock, flags);
650 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
651 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
653 for (order = MAX_ORDER - 1; order >= 0; --order)
654 list_for_each(curr, &zone->free_area[order].free_list) {
655 unsigned long start_pfn, i;
657 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
659 for (i=0; i < (1<<order); i++)
660 SetPageNosaveFree(pfn_to_page(start_pfn+i));
662 spin_unlock_irqrestore(&zone->lock, flags);
666 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
668 void drain_local_pages(void)
670 unsigned long flags;
672 local_irq_save(flags);
673 __drain_pages(smp_processor_id());
674 local_irq_restore(flags);
676 #endif /* CONFIG_PM */
678 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
680 #ifdef CONFIG_NUMA
681 pg_data_t *pg = z->zone_pgdat;
682 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
683 struct per_cpu_pageset *p;
685 p = zone_pcp(z, cpu);
686 if (pg == orig) {
687 p->numa_hit++;
688 } else {
689 p->numa_miss++;
690 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
692 if (pg == NODE_DATA(numa_node_id()))
693 p->local_node++;
694 else
695 p->other_node++;
696 #endif
700 * Free a 0-order page
702 static void fastcall free_hot_cold_page(struct page *page, int cold)
704 struct zone *zone = page_zone(page);
705 struct per_cpu_pages *pcp;
706 unsigned long flags;
708 arch_free_page(page, 0);
710 if (PageAnon(page))
711 page->mapping = NULL;
712 if (free_pages_check(page))
713 return;
715 kernel_map_pages(page, 1, 0);
717 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
718 local_irq_save(flags);
719 __inc_page_state(pgfree);
720 list_add(&page->lru, &pcp->list);
721 pcp->count++;
722 if (pcp->count >= pcp->high) {
723 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
724 pcp->count -= pcp->batch;
726 local_irq_restore(flags);
727 put_cpu();
730 void fastcall free_hot_page(struct page *page)
732 free_hot_cold_page(page, 0);
735 void fastcall free_cold_page(struct page *page)
737 free_hot_cold_page(page, 1);
740 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
742 int i;
744 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
745 for(i = 0; i < (1 << order); i++)
746 clear_highpage(page + i);
750 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
751 * we cheat by calling it from here, in the order > 0 path. Saves a branch
752 * or two.
754 static struct page *buffered_rmqueue(struct zonelist *zonelist,
755 struct zone *zone, int order, gfp_t gfp_flags)
757 unsigned long flags;
758 struct page *page;
759 int cold = !!(gfp_flags & __GFP_COLD);
760 int cpu;
762 again:
763 cpu = get_cpu();
764 if (likely(order == 0)) {
765 struct per_cpu_pages *pcp;
767 pcp = &zone_pcp(zone, cpu)->pcp[cold];
768 local_irq_save(flags);
769 if (!pcp->count) {
770 pcp->count += rmqueue_bulk(zone, 0,
771 pcp->batch, &pcp->list);
772 if (unlikely(!pcp->count))
773 goto failed;
775 page = list_entry(pcp->list.next, struct page, lru);
776 list_del(&page->lru);
777 pcp->count--;
778 } else {
779 spin_lock_irqsave(&zone->lock, flags);
780 page = __rmqueue(zone, order);
781 spin_unlock(&zone->lock);
782 if (!page)
783 goto failed;
786 __mod_page_state_zone(zone, pgalloc, 1 << order);
787 zone_statistics(zonelist, zone, cpu);
788 local_irq_restore(flags);
789 put_cpu();
791 BUG_ON(bad_range(zone, page));
792 if (prep_new_page(page, order))
793 goto again;
795 if (gfp_flags & __GFP_ZERO)
796 prep_zero_page(page, order, gfp_flags);
798 if (order && (gfp_flags & __GFP_COMP))
799 prep_compound_page(page, order);
800 return page;
802 failed:
803 local_irq_restore(flags);
804 put_cpu();
805 return NULL;
808 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
809 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
810 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
811 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
812 #define ALLOC_HARDER 0x10 /* try to alloc harder */
813 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
814 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
817 * Return 1 if free pages are above 'mark'. This takes into account the order
818 * of the allocation.
820 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
821 int classzone_idx, int alloc_flags)
823 /* free_pages my go negative - that's OK */
824 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
825 int o;
827 if (alloc_flags & ALLOC_HIGH)
828 min -= min / 2;
829 if (alloc_flags & ALLOC_HARDER)
830 min -= min / 4;
832 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
833 return 0;
834 for (o = 0; o < order; o++) {
835 /* At the next order, this order's pages become unavailable */
836 free_pages -= z->free_area[o].nr_free << o;
838 /* Require fewer higher order pages to be free */
839 min >>= 1;
841 if (free_pages <= min)
842 return 0;
844 return 1;
848 * get_page_from_freeliest goes through the zonelist trying to allocate
849 * a page.
851 static struct page *
852 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
853 struct zonelist *zonelist, int alloc_flags)
855 struct zone **z = zonelist->zones;
856 struct page *page = NULL;
857 int classzone_idx = zone_idx(*z);
860 * Go through the zonelist once, looking for a zone with enough free.
861 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
863 do {
864 if ((alloc_flags & ALLOC_CPUSET) &&
865 !cpuset_zone_allowed(*z, gfp_mask))
866 continue;
868 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
869 unsigned long mark;
870 if (alloc_flags & ALLOC_WMARK_MIN)
871 mark = (*z)->pages_min;
872 else if (alloc_flags & ALLOC_WMARK_LOW)
873 mark = (*z)->pages_low;
874 else
875 mark = (*z)->pages_high;
876 if (!zone_watermark_ok(*z, order, mark,
877 classzone_idx, alloc_flags))
878 continue;
881 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
882 if (page) {
883 break;
885 } while (*(++z) != NULL);
886 return page;
890 * This is the 'heart' of the zoned buddy allocator.
892 struct page * fastcall
893 __alloc_pages(gfp_t gfp_mask, unsigned int order,
894 struct zonelist *zonelist)
896 const gfp_t wait = gfp_mask & __GFP_WAIT;
897 struct zone **z;
898 struct page *page;
899 struct reclaim_state reclaim_state;
900 struct task_struct *p = current;
901 int do_retry;
902 int alloc_flags;
903 int did_some_progress;
905 might_sleep_if(wait);
907 restart:
908 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
910 if (unlikely(*z == NULL)) {
911 /* Should this ever happen?? */
912 return NULL;
915 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
916 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
917 if (page)
918 goto got_pg;
920 do {
921 wakeup_kswapd(*z, order);
922 } while (*(++z));
925 * OK, we're below the kswapd watermark and have kicked background
926 * reclaim. Now things get more complex, so set up alloc_flags according
927 * to how we want to proceed.
929 * The caller may dip into page reserves a bit more if the caller
930 * cannot run direct reclaim, or if the caller has realtime scheduling
931 * policy.
933 alloc_flags = ALLOC_WMARK_MIN;
934 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
935 alloc_flags |= ALLOC_HARDER;
936 if (gfp_mask & __GFP_HIGH)
937 alloc_flags |= ALLOC_HIGH;
938 alloc_flags |= ALLOC_CPUSET;
941 * Go through the zonelist again. Let __GFP_HIGH and allocations
942 * coming from realtime tasks go deeper into reserves.
944 * This is the last chance, in general, before the goto nopage.
945 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
946 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
948 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
949 if (page)
950 goto got_pg;
952 /* This allocation should allow future memory freeing. */
954 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
955 && !in_interrupt()) {
956 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
957 nofail_alloc:
958 /* go through the zonelist yet again, ignoring mins */
959 page = get_page_from_freelist(gfp_mask, order,
960 zonelist, ALLOC_NO_WATERMARKS);
961 if (page)
962 goto got_pg;
963 if (gfp_mask & __GFP_NOFAIL) {
964 blk_congestion_wait(WRITE, HZ/50);
965 goto nofail_alloc;
968 goto nopage;
971 /* Atomic allocations - we can't balance anything */
972 if (!wait)
973 goto nopage;
975 rebalance:
976 cond_resched();
978 /* We now go into synchronous reclaim */
979 cpuset_memory_pressure_bump();
980 p->flags |= PF_MEMALLOC;
981 reclaim_state.reclaimed_slab = 0;
982 p->reclaim_state = &reclaim_state;
984 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
986 p->reclaim_state = NULL;
987 p->flags &= ~PF_MEMALLOC;
989 cond_resched();
991 if (likely(did_some_progress)) {
992 page = get_page_from_freelist(gfp_mask, order,
993 zonelist, alloc_flags);
994 if (page)
995 goto got_pg;
996 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
998 * Go through the zonelist yet one more time, keep
999 * very high watermark here, this is only to catch
1000 * a parallel oom killing, we must fail if we're still
1001 * under heavy pressure.
1003 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1004 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1005 if (page)
1006 goto got_pg;
1008 out_of_memory(gfp_mask, order);
1009 goto restart;
1013 * Don't let big-order allocations loop unless the caller explicitly
1014 * requests that. Wait for some write requests to complete then retry.
1016 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1017 * <= 3, but that may not be true in other implementations.
1019 do_retry = 0;
1020 if (!(gfp_mask & __GFP_NORETRY)) {
1021 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1022 do_retry = 1;
1023 if (gfp_mask & __GFP_NOFAIL)
1024 do_retry = 1;
1026 if (do_retry) {
1027 blk_congestion_wait(WRITE, HZ/50);
1028 goto rebalance;
1031 nopage:
1032 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1033 printk(KERN_WARNING "%s: page allocation failure."
1034 " order:%d, mode:0x%x\n",
1035 p->comm, order, gfp_mask);
1036 dump_stack();
1037 show_mem();
1039 got_pg:
1040 return page;
1043 EXPORT_SYMBOL(__alloc_pages);
1046 * Common helper functions.
1048 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1050 struct page * page;
1051 page = alloc_pages(gfp_mask, order);
1052 if (!page)
1053 return 0;
1054 return (unsigned long) page_address(page);
1057 EXPORT_SYMBOL(__get_free_pages);
1059 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1061 struct page * page;
1064 * get_zeroed_page() returns a 32-bit address, which cannot represent
1065 * a highmem page
1067 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1069 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1070 if (page)
1071 return (unsigned long) page_address(page);
1072 return 0;
1075 EXPORT_SYMBOL(get_zeroed_page);
1077 void __pagevec_free(struct pagevec *pvec)
1079 int i = pagevec_count(pvec);
1081 while (--i >= 0)
1082 free_hot_cold_page(pvec->pages[i], pvec->cold);
1085 fastcall void __free_pages(struct page *page, unsigned int order)
1087 if (put_page_testzero(page)) {
1088 if (order == 0)
1089 free_hot_page(page);
1090 else
1091 __free_pages_ok(page, order);
1095 EXPORT_SYMBOL(__free_pages);
1097 fastcall void free_pages(unsigned long addr, unsigned int order)
1099 if (addr != 0) {
1100 BUG_ON(!virt_addr_valid((void *)addr));
1101 __free_pages(virt_to_page((void *)addr), order);
1105 EXPORT_SYMBOL(free_pages);
1108 * Total amount of free (allocatable) RAM:
1110 unsigned int nr_free_pages(void)
1112 unsigned int sum = 0;
1113 struct zone *zone;
1115 for_each_zone(zone)
1116 sum += zone->free_pages;
1118 return sum;
1121 EXPORT_SYMBOL(nr_free_pages);
1123 #ifdef CONFIG_NUMA
1124 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1126 unsigned int i, sum = 0;
1128 for (i = 0; i < MAX_NR_ZONES; i++)
1129 sum += pgdat->node_zones[i].free_pages;
1131 return sum;
1133 #endif
1135 static unsigned int nr_free_zone_pages(int offset)
1137 /* Just pick one node, since fallback list is circular */
1138 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1139 unsigned int sum = 0;
1141 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1142 struct zone **zonep = zonelist->zones;
1143 struct zone *zone;
1145 for (zone = *zonep++; zone; zone = *zonep++) {
1146 unsigned long size = zone->present_pages;
1147 unsigned long high = zone->pages_high;
1148 if (size > high)
1149 sum += size - high;
1152 return sum;
1156 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1158 unsigned int nr_free_buffer_pages(void)
1160 return nr_free_zone_pages(gfp_zone(GFP_USER));
1164 * Amount of free RAM allocatable within all zones
1166 unsigned int nr_free_pagecache_pages(void)
1168 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1171 #ifdef CONFIG_HIGHMEM
1172 unsigned int nr_free_highpages (void)
1174 pg_data_t *pgdat;
1175 unsigned int pages = 0;
1177 for_each_pgdat(pgdat)
1178 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1180 return pages;
1182 #endif
1184 #ifdef CONFIG_NUMA
1185 static void show_node(struct zone *zone)
1187 printk("Node %d ", zone->zone_pgdat->node_id);
1189 #else
1190 #define show_node(zone) do { } while (0)
1191 #endif
1194 * Accumulate the page_state information across all CPUs.
1195 * The result is unavoidably approximate - it can change
1196 * during and after execution of this function.
1198 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1200 atomic_t nr_pagecache = ATOMIC_INIT(0);
1201 EXPORT_SYMBOL(nr_pagecache);
1202 #ifdef CONFIG_SMP
1203 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1204 #endif
1206 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1208 int cpu = 0;
1210 memset(ret, 0, sizeof(*ret));
1211 cpus_and(*cpumask, *cpumask, cpu_online_map);
1213 cpu = first_cpu(*cpumask);
1214 while (cpu < NR_CPUS) {
1215 unsigned long *in, *out, off;
1217 in = (unsigned long *)&per_cpu(page_states, cpu);
1219 cpu = next_cpu(cpu, *cpumask);
1221 if (cpu < NR_CPUS)
1222 prefetch(&per_cpu(page_states, cpu));
1224 out = (unsigned long *)ret;
1225 for (off = 0; off < nr; off++)
1226 *out++ += *in++;
1230 void get_page_state_node(struct page_state *ret, int node)
1232 int nr;
1233 cpumask_t mask = node_to_cpumask(node);
1235 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1236 nr /= sizeof(unsigned long);
1238 __get_page_state(ret, nr+1, &mask);
1241 void get_page_state(struct page_state *ret)
1243 int nr;
1244 cpumask_t mask = CPU_MASK_ALL;
1246 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1247 nr /= sizeof(unsigned long);
1249 __get_page_state(ret, nr + 1, &mask);
1252 void get_full_page_state(struct page_state *ret)
1254 cpumask_t mask = CPU_MASK_ALL;
1256 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1259 unsigned long read_page_state_offset(unsigned long offset)
1261 unsigned long ret = 0;
1262 int cpu;
1264 for_each_online_cpu(cpu) {
1265 unsigned long in;
1267 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1268 ret += *((unsigned long *)in);
1270 return ret;
1273 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1275 void *ptr;
1277 ptr = &__get_cpu_var(page_states);
1278 *(unsigned long *)(ptr + offset) += delta;
1280 EXPORT_SYMBOL(__mod_page_state_offset);
1282 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1284 unsigned long flags;
1285 void *ptr;
1287 local_irq_save(flags);
1288 ptr = &__get_cpu_var(page_states);
1289 *(unsigned long *)(ptr + offset) += delta;
1290 local_irq_restore(flags);
1292 EXPORT_SYMBOL(mod_page_state_offset);
1294 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1295 unsigned long *free, struct pglist_data *pgdat)
1297 struct zone *zones = pgdat->node_zones;
1298 int i;
1300 *active = 0;
1301 *inactive = 0;
1302 *free = 0;
1303 for (i = 0; i < MAX_NR_ZONES; i++) {
1304 *active += zones[i].nr_active;
1305 *inactive += zones[i].nr_inactive;
1306 *free += zones[i].free_pages;
1310 void get_zone_counts(unsigned long *active,
1311 unsigned long *inactive, unsigned long *free)
1313 struct pglist_data *pgdat;
1315 *active = 0;
1316 *inactive = 0;
1317 *free = 0;
1318 for_each_pgdat(pgdat) {
1319 unsigned long l, m, n;
1320 __get_zone_counts(&l, &m, &n, pgdat);
1321 *active += l;
1322 *inactive += m;
1323 *free += n;
1327 void si_meminfo(struct sysinfo *val)
1329 val->totalram = totalram_pages;
1330 val->sharedram = 0;
1331 val->freeram = nr_free_pages();
1332 val->bufferram = nr_blockdev_pages();
1333 #ifdef CONFIG_HIGHMEM
1334 val->totalhigh = totalhigh_pages;
1335 val->freehigh = nr_free_highpages();
1336 #else
1337 val->totalhigh = 0;
1338 val->freehigh = 0;
1339 #endif
1340 val->mem_unit = PAGE_SIZE;
1343 EXPORT_SYMBOL(si_meminfo);
1345 #ifdef CONFIG_NUMA
1346 void si_meminfo_node(struct sysinfo *val, int nid)
1348 pg_data_t *pgdat = NODE_DATA(nid);
1350 val->totalram = pgdat->node_present_pages;
1351 val->freeram = nr_free_pages_pgdat(pgdat);
1352 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1353 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1354 val->mem_unit = PAGE_SIZE;
1356 #endif
1358 #define K(x) ((x) << (PAGE_SHIFT-10))
1361 * Show free area list (used inside shift_scroll-lock stuff)
1362 * We also calculate the percentage fragmentation. We do this by counting the
1363 * memory on each free list with the exception of the first item on the list.
1365 void show_free_areas(void)
1367 struct page_state ps;
1368 int cpu, temperature;
1369 unsigned long active;
1370 unsigned long inactive;
1371 unsigned long free;
1372 struct zone *zone;
1374 for_each_zone(zone) {
1375 show_node(zone);
1376 printk("%s per-cpu:", zone->name);
1378 if (!populated_zone(zone)) {
1379 printk(" empty\n");
1380 continue;
1381 } else
1382 printk("\n");
1384 for_each_online_cpu(cpu) {
1385 struct per_cpu_pageset *pageset;
1387 pageset = zone_pcp(zone, cpu);
1389 for (temperature = 0; temperature < 2; temperature++)
1390 printk("cpu %d %s: high %d, batch %d used:%d\n",
1391 cpu,
1392 temperature ? "cold" : "hot",
1393 pageset->pcp[temperature].high,
1394 pageset->pcp[temperature].batch,
1395 pageset->pcp[temperature].count);
1399 get_page_state(&ps);
1400 get_zone_counts(&active, &inactive, &free);
1402 printk("Free pages: %11ukB (%ukB HighMem)\n",
1403 K(nr_free_pages()),
1404 K(nr_free_highpages()));
1406 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1407 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1408 active,
1409 inactive,
1410 ps.nr_dirty,
1411 ps.nr_writeback,
1412 ps.nr_unstable,
1413 nr_free_pages(),
1414 ps.nr_slab,
1415 ps.nr_mapped,
1416 ps.nr_page_table_pages);
1418 for_each_zone(zone) {
1419 int i;
1421 show_node(zone);
1422 printk("%s"
1423 " free:%lukB"
1424 " min:%lukB"
1425 " low:%lukB"
1426 " high:%lukB"
1427 " active:%lukB"
1428 " inactive:%lukB"
1429 " present:%lukB"
1430 " pages_scanned:%lu"
1431 " all_unreclaimable? %s"
1432 "\n",
1433 zone->name,
1434 K(zone->free_pages),
1435 K(zone->pages_min),
1436 K(zone->pages_low),
1437 K(zone->pages_high),
1438 K(zone->nr_active),
1439 K(zone->nr_inactive),
1440 K(zone->present_pages),
1441 zone->pages_scanned,
1442 (zone->all_unreclaimable ? "yes" : "no")
1444 printk("lowmem_reserve[]:");
1445 for (i = 0; i < MAX_NR_ZONES; i++)
1446 printk(" %lu", zone->lowmem_reserve[i]);
1447 printk("\n");
1450 for_each_zone(zone) {
1451 unsigned long nr, flags, order, total = 0;
1453 show_node(zone);
1454 printk("%s: ", zone->name);
1455 if (!populated_zone(zone)) {
1456 printk("empty\n");
1457 continue;
1460 spin_lock_irqsave(&zone->lock, flags);
1461 for (order = 0; order < MAX_ORDER; order++) {
1462 nr = zone->free_area[order].nr_free;
1463 total += nr << order;
1464 printk("%lu*%lukB ", nr, K(1UL) << order);
1466 spin_unlock_irqrestore(&zone->lock, flags);
1467 printk("= %lukB\n", K(total));
1470 show_swap_cache_info();
1474 * Builds allocation fallback zone lists.
1476 * Add all populated zones of a node to the zonelist.
1478 static int __init build_zonelists_node(pg_data_t *pgdat,
1479 struct zonelist *zonelist, int nr_zones, int zone_type)
1481 struct zone *zone;
1483 BUG_ON(zone_type > ZONE_HIGHMEM);
1485 do {
1486 zone = pgdat->node_zones + zone_type;
1487 if (populated_zone(zone)) {
1488 #ifndef CONFIG_HIGHMEM
1489 BUG_ON(zone_type > ZONE_NORMAL);
1490 #endif
1491 zonelist->zones[nr_zones++] = zone;
1492 check_highest_zone(zone_type);
1494 zone_type--;
1496 } while (zone_type >= 0);
1497 return nr_zones;
1500 static inline int highest_zone(int zone_bits)
1502 int res = ZONE_NORMAL;
1503 if (zone_bits & (__force int)__GFP_HIGHMEM)
1504 res = ZONE_HIGHMEM;
1505 if (zone_bits & (__force int)__GFP_DMA32)
1506 res = ZONE_DMA32;
1507 if (zone_bits & (__force int)__GFP_DMA)
1508 res = ZONE_DMA;
1509 return res;
1512 #ifdef CONFIG_NUMA
1513 #define MAX_NODE_LOAD (num_online_nodes())
1514 static int __initdata node_load[MAX_NUMNODES];
1516 * find_next_best_node - find the next node that should appear in a given node's fallback list
1517 * @node: node whose fallback list we're appending
1518 * @used_node_mask: nodemask_t of already used nodes
1520 * We use a number of factors to determine which is the next node that should
1521 * appear on a given node's fallback list. The node should not have appeared
1522 * already in @node's fallback list, and it should be the next closest node
1523 * according to the distance array (which contains arbitrary distance values
1524 * from each node to each node in the system), and should also prefer nodes
1525 * with no CPUs, since presumably they'll have very little allocation pressure
1526 * on them otherwise.
1527 * It returns -1 if no node is found.
1529 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1531 int i, n, val;
1532 int min_val = INT_MAX;
1533 int best_node = -1;
1535 for_each_online_node(i) {
1536 cpumask_t tmp;
1538 /* Start from local node */
1539 n = (node+i) % num_online_nodes();
1541 /* Don't want a node to appear more than once */
1542 if (node_isset(n, *used_node_mask))
1543 continue;
1545 /* Use the local node if we haven't already */
1546 if (!node_isset(node, *used_node_mask)) {
1547 best_node = node;
1548 break;
1551 /* Use the distance array to find the distance */
1552 val = node_distance(node, n);
1554 /* Give preference to headless and unused nodes */
1555 tmp = node_to_cpumask(n);
1556 if (!cpus_empty(tmp))
1557 val += PENALTY_FOR_NODE_WITH_CPUS;
1559 /* Slight preference for less loaded node */
1560 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1561 val += node_load[n];
1563 if (val < min_val) {
1564 min_val = val;
1565 best_node = n;
1569 if (best_node >= 0)
1570 node_set(best_node, *used_node_mask);
1572 return best_node;
1575 static void __init build_zonelists(pg_data_t *pgdat)
1577 int i, j, k, node, local_node;
1578 int prev_node, load;
1579 struct zonelist *zonelist;
1580 nodemask_t used_mask;
1582 /* initialize zonelists */
1583 for (i = 0; i < GFP_ZONETYPES; i++) {
1584 zonelist = pgdat->node_zonelists + i;
1585 zonelist->zones[0] = NULL;
1588 /* NUMA-aware ordering of nodes */
1589 local_node = pgdat->node_id;
1590 load = num_online_nodes();
1591 prev_node = local_node;
1592 nodes_clear(used_mask);
1593 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1595 * We don't want to pressure a particular node.
1596 * So adding penalty to the first node in same
1597 * distance group to make it round-robin.
1599 if (node_distance(local_node, node) !=
1600 node_distance(local_node, prev_node))
1601 node_load[node] += load;
1602 prev_node = node;
1603 load--;
1604 for (i = 0; i < GFP_ZONETYPES; i++) {
1605 zonelist = pgdat->node_zonelists + i;
1606 for (j = 0; zonelist->zones[j] != NULL; j++);
1608 k = highest_zone(i);
1610 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1611 zonelist->zones[j] = NULL;
1616 #else /* CONFIG_NUMA */
1618 static void __init build_zonelists(pg_data_t *pgdat)
1620 int i, j, k, node, local_node;
1622 local_node = pgdat->node_id;
1623 for (i = 0; i < GFP_ZONETYPES; i++) {
1624 struct zonelist *zonelist;
1626 zonelist = pgdat->node_zonelists + i;
1628 j = 0;
1629 k = highest_zone(i);
1630 j = build_zonelists_node(pgdat, zonelist, j, k);
1632 * Now we build the zonelist so that it contains the zones
1633 * of all the other nodes.
1634 * We don't want to pressure a particular node, so when
1635 * building the zones for node N, we make sure that the
1636 * zones coming right after the local ones are those from
1637 * node N+1 (modulo N)
1639 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1640 if (!node_online(node))
1641 continue;
1642 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1644 for (node = 0; node < local_node; node++) {
1645 if (!node_online(node))
1646 continue;
1647 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1650 zonelist->zones[j] = NULL;
1654 #endif /* CONFIG_NUMA */
1656 void __init build_all_zonelists(void)
1658 int i;
1660 for_each_online_node(i)
1661 build_zonelists(NODE_DATA(i));
1662 printk("Built %i zonelists\n", num_online_nodes());
1663 cpuset_init_current_mems_allowed();
1667 * Helper functions to size the waitqueue hash table.
1668 * Essentially these want to choose hash table sizes sufficiently
1669 * large so that collisions trying to wait on pages are rare.
1670 * But in fact, the number of active page waitqueues on typical
1671 * systems is ridiculously low, less than 200. So this is even
1672 * conservative, even though it seems large.
1674 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1675 * waitqueues, i.e. the size of the waitq table given the number of pages.
1677 #define PAGES_PER_WAITQUEUE 256
1679 static inline unsigned long wait_table_size(unsigned long pages)
1681 unsigned long size = 1;
1683 pages /= PAGES_PER_WAITQUEUE;
1685 while (size < pages)
1686 size <<= 1;
1689 * Once we have dozens or even hundreds of threads sleeping
1690 * on IO we've got bigger problems than wait queue collision.
1691 * Limit the size of the wait table to a reasonable size.
1693 size = min(size, 4096UL);
1695 return max(size, 4UL);
1699 * This is an integer logarithm so that shifts can be used later
1700 * to extract the more random high bits from the multiplicative
1701 * hash function before the remainder is taken.
1703 static inline unsigned long wait_table_bits(unsigned long size)
1705 return ffz(~size);
1708 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1710 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1711 unsigned long *zones_size, unsigned long *zholes_size)
1713 unsigned long realtotalpages, totalpages = 0;
1714 int i;
1716 for (i = 0; i < MAX_NR_ZONES; i++)
1717 totalpages += zones_size[i];
1718 pgdat->node_spanned_pages = totalpages;
1720 realtotalpages = totalpages;
1721 if (zholes_size)
1722 for (i = 0; i < MAX_NR_ZONES; i++)
1723 realtotalpages -= zholes_size[i];
1724 pgdat->node_present_pages = realtotalpages;
1725 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1730 * Initially all pages are reserved - free ones are freed
1731 * up by free_all_bootmem() once the early boot process is
1732 * done. Non-atomic initialization, single-pass.
1734 void __devinit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1735 unsigned long start_pfn)
1737 struct page *page;
1738 unsigned long end_pfn = start_pfn + size;
1739 unsigned long pfn;
1741 for (pfn = start_pfn; pfn < end_pfn; pfn++, page++) {
1742 if (!early_pfn_valid(pfn))
1743 continue;
1744 page = pfn_to_page(pfn);
1745 set_page_links(page, zone, nid, pfn);
1746 set_page_count(page, 1);
1747 reset_page_mapcount(page);
1748 SetPageReserved(page);
1749 INIT_LIST_HEAD(&page->lru);
1750 #ifdef WANT_PAGE_VIRTUAL
1751 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1752 if (!is_highmem_idx(zone))
1753 set_page_address(page, __va(pfn << PAGE_SHIFT));
1754 #endif
1758 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1759 unsigned long size)
1761 int order;
1762 for (order = 0; order < MAX_ORDER ; order++) {
1763 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1764 zone->free_area[order].nr_free = 0;
1768 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1769 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1770 unsigned long size)
1772 unsigned long snum = pfn_to_section_nr(pfn);
1773 unsigned long end = pfn_to_section_nr(pfn + size);
1775 if (FLAGS_HAS_NODE)
1776 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1777 else
1778 for (; snum <= end; snum++)
1779 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1782 #ifndef __HAVE_ARCH_MEMMAP_INIT
1783 #define memmap_init(size, nid, zone, start_pfn) \
1784 memmap_init_zone((size), (nid), (zone), (start_pfn))
1785 #endif
1787 static int __devinit zone_batchsize(struct zone *zone)
1789 int batch;
1792 * The per-cpu-pages pools are set to around 1000th of the
1793 * size of the zone. But no more than 1/2 of a meg.
1795 * OK, so we don't know how big the cache is. So guess.
1797 batch = zone->present_pages / 1024;
1798 if (batch * PAGE_SIZE > 512 * 1024)
1799 batch = (512 * 1024) / PAGE_SIZE;
1800 batch /= 4; /* We effectively *= 4 below */
1801 if (batch < 1)
1802 batch = 1;
1805 * Clamp the batch to a 2^n - 1 value. Having a power
1806 * of 2 value was found to be more likely to have
1807 * suboptimal cache aliasing properties in some cases.
1809 * For example if 2 tasks are alternately allocating
1810 * batches of pages, one task can end up with a lot
1811 * of pages of one half of the possible page colors
1812 * and the other with pages of the other colors.
1814 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1816 return batch;
1819 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1821 struct per_cpu_pages *pcp;
1823 memset(p, 0, sizeof(*p));
1825 pcp = &p->pcp[0]; /* hot */
1826 pcp->count = 0;
1827 pcp->high = 6 * batch;
1828 pcp->batch = max(1UL, 1 * batch);
1829 INIT_LIST_HEAD(&pcp->list);
1831 pcp = &p->pcp[1]; /* cold*/
1832 pcp->count = 0;
1833 pcp->high = 2 * batch;
1834 pcp->batch = max(1UL, batch/2);
1835 INIT_LIST_HEAD(&pcp->list);
1839 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1840 * to the value high for the pageset p.
1843 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1844 unsigned long high)
1846 struct per_cpu_pages *pcp;
1848 pcp = &p->pcp[0]; /* hot list */
1849 pcp->high = high;
1850 pcp->batch = max(1UL, high/4);
1851 if ((high/4) > (PAGE_SHIFT * 8))
1852 pcp->batch = PAGE_SHIFT * 8;
1856 #ifdef CONFIG_NUMA
1858 * Boot pageset table. One per cpu which is going to be used for all
1859 * zones and all nodes. The parameters will be set in such a way
1860 * that an item put on a list will immediately be handed over to
1861 * the buddy list. This is safe since pageset manipulation is done
1862 * with interrupts disabled.
1864 * Some NUMA counter updates may also be caught by the boot pagesets.
1866 * The boot_pagesets must be kept even after bootup is complete for
1867 * unused processors and/or zones. They do play a role for bootstrapping
1868 * hotplugged processors.
1870 * zoneinfo_show() and maybe other functions do
1871 * not check if the processor is online before following the pageset pointer.
1872 * Other parts of the kernel may not check if the zone is available.
1874 static struct per_cpu_pageset
1875 boot_pageset[NR_CPUS];
1878 * Dynamically allocate memory for the
1879 * per cpu pageset array in struct zone.
1881 static int __devinit process_zones(int cpu)
1883 struct zone *zone, *dzone;
1885 for_each_zone(zone) {
1887 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1888 GFP_KERNEL, cpu_to_node(cpu));
1889 if (!zone_pcp(zone, cpu))
1890 goto bad;
1892 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1894 if (percpu_pagelist_fraction)
1895 setup_pagelist_highmark(zone_pcp(zone, cpu),
1896 (zone->present_pages / percpu_pagelist_fraction));
1899 return 0;
1900 bad:
1901 for_each_zone(dzone) {
1902 if (dzone == zone)
1903 break;
1904 kfree(zone_pcp(dzone, cpu));
1905 zone_pcp(dzone, cpu) = NULL;
1907 return -ENOMEM;
1910 static inline void free_zone_pagesets(int cpu)
1912 struct zone *zone;
1914 for_each_zone(zone) {
1915 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1917 zone_pcp(zone, cpu) = NULL;
1918 kfree(pset);
1922 static int __devinit pageset_cpuup_callback(struct notifier_block *nfb,
1923 unsigned long action,
1924 void *hcpu)
1926 int cpu = (long)hcpu;
1927 int ret = NOTIFY_OK;
1929 switch (action) {
1930 case CPU_UP_PREPARE:
1931 if (process_zones(cpu))
1932 ret = NOTIFY_BAD;
1933 break;
1934 case CPU_UP_CANCELED:
1935 case CPU_DEAD:
1936 free_zone_pagesets(cpu);
1937 break;
1938 default:
1939 break;
1941 return ret;
1944 static struct notifier_block pageset_notifier =
1945 { &pageset_cpuup_callback, NULL, 0 };
1947 void __init setup_per_cpu_pageset(void)
1949 int err;
1951 /* Initialize per_cpu_pageset for cpu 0.
1952 * A cpuup callback will do this for every cpu
1953 * as it comes online
1955 err = process_zones(smp_processor_id());
1956 BUG_ON(err);
1957 register_cpu_notifier(&pageset_notifier);
1960 #endif
1962 static __devinit
1963 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1965 int i;
1966 struct pglist_data *pgdat = zone->zone_pgdat;
1969 * The per-page waitqueue mechanism uses hashed waitqueues
1970 * per zone.
1972 zone->wait_table_size = wait_table_size(zone_size_pages);
1973 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
1974 zone->wait_table = (wait_queue_head_t *)
1975 alloc_bootmem_node(pgdat, zone->wait_table_size
1976 * sizeof(wait_queue_head_t));
1978 for(i = 0; i < zone->wait_table_size; ++i)
1979 init_waitqueue_head(zone->wait_table + i);
1982 static __devinit void zone_pcp_init(struct zone *zone)
1984 int cpu;
1985 unsigned long batch = zone_batchsize(zone);
1987 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1988 #ifdef CONFIG_NUMA
1989 /* Early boot. Slab allocator not functional yet */
1990 zone_pcp(zone, cpu) = &boot_pageset[cpu];
1991 setup_pageset(&boot_pageset[cpu],0);
1992 #else
1993 setup_pageset(zone_pcp(zone,cpu), batch);
1994 #endif
1996 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
1997 zone->name, zone->present_pages, batch);
2000 static __devinit void init_currently_empty_zone(struct zone *zone,
2001 unsigned long zone_start_pfn, unsigned long size)
2003 struct pglist_data *pgdat = zone->zone_pgdat;
2005 zone_wait_table_init(zone, size);
2006 pgdat->nr_zones = zone_idx(zone) + 1;
2008 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2009 zone->zone_start_pfn = zone_start_pfn;
2011 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2013 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2017 * Set up the zone data structures:
2018 * - mark all pages reserved
2019 * - mark all memory queues empty
2020 * - clear the memory bitmaps
2022 static void __init free_area_init_core(struct pglist_data *pgdat,
2023 unsigned long *zones_size, unsigned long *zholes_size)
2025 unsigned long j;
2026 int nid = pgdat->node_id;
2027 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2029 pgdat_resize_init(pgdat);
2030 pgdat->nr_zones = 0;
2031 init_waitqueue_head(&pgdat->kswapd_wait);
2032 pgdat->kswapd_max_order = 0;
2034 for (j = 0; j < MAX_NR_ZONES; j++) {
2035 struct zone *zone = pgdat->node_zones + j;
2036 unsigned long size, realsize;
2038 realsize = size = zones_size[j];
2039 if (zholes_size)
2040 realsize -= zholes_size[j];
2042 if (j < ZONE_HIGHMEM)
2043 nr_kernel_pages += realsize;
2044 nr_all_pages += realsize;
2046 zone->spanned_pages = size;
2047 zone->present_pages = realsize;
2048 zone->name = zone_names[j];
2049 spin_lock_init(&zone->lock);
2050 spin_lock_init(&zone->lru_lock);
2051 zone_seqlock_init(zone);
2052 zone->zone_pgdat = pgdat;
2053 zone->free_pages = 0;
2055 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2057 zone_pcp_init(zone);
2058 INIT_LIST_HEAD(&zone->active_list);
2059 INIT_LIST_HEAD(&zone->inactive_list);
2060 zone->nr_scan_active = 0;
2061 zone->nr_scan_inactive = 0;
2062 zone->nr_active = 0;
2063 zone->nr_inactive = 0;
2064 atomic_set(&zone->reclaim_in_progress, 0);
2065 if (!size)
2066 continue;
2068 zonetable_add(zone, nid, j, zone_start_pfn, size);
2069 init_currently_empty_zone(zone, zone_start_pfn, size);
2070 zone_start_pfn += size;
2074 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2076 /* Skip empty nodes */
2077 if (!pgdat->node_spanned_pages)
2078 return;
2080 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2081 /* ia64 gets its own node_mem_map, before this, without bootmem */
2082 if (!pgdat->node_mem_map) {
2083 unsigned long size;
2084 struct page *map;
2086 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2087 map = alloc_remap(pgdat->node_id, size);
2088 if (!map)
2089 map = alloc_bootmem_node(pgdat, size);
2090 pgdat->node_mem_map = map;
2092 #ifdef CONFIG_FLATMEM
2094 * With no DISCONTIG, the global mem_map is just set as node 0's
2096 if (pgdat == NODE_DATA(0))
2097 mem_map = NODE_DATA(0)->node_mem_map;
2098 #endif
2099 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2102 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2103 unsigned long *zones_size, unsigned long node_start_pfn,
2104 unsigned long *zholes_size)
2106 pgdat->node_id = nid;
2107 pgdat->node_start_pfn = node_start_pfn;
2108 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2110 alloc_node_mem_map(pgdat);
2112 free_area_init_core(pgdat, zones_size, zholes_size);
2115 #ifndef CONFIG_NEED_MULTIPLE_NODES
2116 static bootmem_data_t contig_bootmem_data;
2117 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2119 EXPORT_SYMBOL(contig_page_data);
2120 #endif
2122 void __init free_area_init(unsigned long *zones_size)
2124 free_area_init_node(0, NODE_DATA(0), zones_size,
2125 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2128 #ifdef CONFIG_PROC_FS
2130 #include <linux/seq_file.h>
2132 static void *frag_start(struct seq_file *m, loff_t *pos)
2134 pg_data_t *pgdat;
2135 loff_t node = *pos;
2137 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2138 --node;
2140 return pgdat;
2143 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2145 pg_data_t *pgdat = (pg_data_t *)arg;
2147 (*pos)++;
2148 return pgdat->pgdat_next;
2151 static void frag_stop(struct seq_file *m, void *arg)
2156 * This walks the free areas for each zone.
2158 static int frag_show(struct seq_file *m, void *arg)
2160 pg_data_t *pgdat = (pg_data_t *)arg;
2161 struct zone *zone;
2162 struct zone *node_zones = pgdat->node_zones;
2163 unsigned long flags;
2164 int order;
2166 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2167 if (!populated_zone(zone))
2168 continue;
2170 spin_lock_irqsave(&zone->lock, flags);
2171 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2172 for (order = 0; order < MAX_ORDER; ++order)
2173 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2174 spin_unlock_irqrestore(&zone->lock, flags);
2175 seq_putc(m, '\n');
2177 return 0;
2180 struct seq_operations fragmentation_op = {
2181 .start = frag_start,
2182 .next = frag_next,
2183 .stop = frag_stop,
2184 .show = frag_show,
2188 * Output information about zones in @pgdat.
2190 static int zoneinfo_show(struct seq_file *m, void *arg)
2192 pg_data_t *pgdat = arg;
2193 struct zone *zone;
2194 struct zone *node_zones = pgdat->node_zones;
2195 unsigned long flags;
2197 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2198 int i;
2200 if (!populated_zone(zone))
2201 continue;
2203 spin_lock_irqsave(&zone->lock, flags);
2204 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2205 seq_printf(m,
2206 "\n pages free %lu"
2207 "\n min %lu"
2208 "\n low %lu"
2209 "\n high %lu"
2210 "\n active %lu"
2211 "\n inactive %lu"
2212 "\n scanned %lu (a: %lu i: %lu)"
2213 "\n spanned %lu"
2214 "\n present %lu",
2215 zone->free_pages,
2216 zone->pages_min,
2217 zone->pages_low,
2218 zone->pages_high,
2219 zone->nr_active,
2220 zone->nr_inactive,
2221 zone->pages_scanned,
2222 zone->nr_scan_active, zone->nr_scan_inactive,
2223 zone->spanned_pages,
2224 zone->present_pages);
2225 seq_printf(m,
2226 "\n protection: (%lu",
2227 zone->lowmem_reserve[0]);
2228 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2229 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2230 seq_printf(m,
2232 "\n pagesets");
2233 for_each_online_cpu(i) {
2234 struct per_cpu_pageset *pageset;
2235 int j;
2237 pageset = zone_pcp(zone, i);
2238 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2239 if (pageset->pcp[j].count)
2240 break;
2242 if (j == ARRAY_SIZE(pageset->pcp))
2243 continue;
2244 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2245 seq_printf(m,
2246 "\n cpu: %i pcp: %i"
2247 "\n count: %i"
2248 "\n high: %i"
2249 "\n batch: %i",
2250 i, j,
2251 pageset->pcp[j].count,
2252 pageset->pcp[j].high,
2253 pageset->pcp[j].batch);
2255 #ifdef CONFIG_NUMA
2256 seq_printf(m,
2257 "\n numa_hit: %lu"
2258 "\n numa_miss: %lu"
2259 "\n numa_foreign: %lu"
2260 "\n interleave_hit: %lu"
2261 "\n local_node: %lu"
2262 "\n other_node: %lu",
2263 pageset->numa_hit,
2264 pageset->numa_miss,
2265 pageset->numa_foreign,
2266 pageset->interleave_hit,
2267 pageset->local_node,
2268 pageset->other_node);
2269 #endif
2271 seq_printf(m,
2272 "\n all_unreclaimable: %u"
2273 "\n prev_priority: %i"
2274 "\n temp_priority: %i"
2275 "\n start_pfn: %lu",
2276 zone->all_unreclaimable,
2277 zone->prev_priority,
2278 zone->temp_priority,
2279 zone->zone_start_pfn);
2280 spin_unlock_irqrestore(&zone->lock, flags);
2281 seq_putc(m, '\n');
2283 return 0;
2286 struct seq_operations zoneinfo_op = {
2287 .start = frag_start, /* iterate over all zones. The same as in
2288 * fragmentation. */
2289 .next = frag_next,
2290 .stop = frag_stop,
2291 .show = zoneinfo_show,
2294 static char *vmstat_text[] = {
2295 "nr_dirty",
2296 "nr_writeback",
2297 "nr_unstable",
2298 "nr_page_table_pages",
2299 "nr_mapped",
2300 "nr_slab",
2302 "pgpgin",
2303 "pgpgout",
2304 "pswpin",
2305 "pswpout",
2307 "pgalloc_high",
2308 "pgalloc_normal",
2309 "pgalloc_dma32",
2310 "pgalloc_dma",
2312 "pgfree",
2313 "pgactivate",
2314 "pgdeactivate",
2316 "pgfault",
2317 "pgmajfault",
2319 "pgrefill_high",
2320 "pgrefill_normal",
2321 "pgrefill_dma32",
2322 "pgrefill_dma",
2324 "pgsteal_high",
2325 "pgsteal_normal",
2326 "pgsteal_dma32",
2327 "pgsteal_dma",
2329 "pgscan_kswapd_high",
2330 "pgscan_kswapd_normal",
2331 "pgscan_kswapd_dma32",
2332 "pgscan_kswapd_dma",
2334 "pgscan_direct_high",
2335 "pgscan_direct_normal",
2336 "pgscan_direct_dma32",
2337 "pgscan_direct_dma",
2339 "pginodesteal",
2340 "slabs_scanned",
2341 "kswapd_steal",
2342 "kswapd_inodesteal",
2343 "pageoutrun",
2344 "allocstall",
2346 "pgrotated",
2347 "nr_bounce",
2350 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2352 struct page_state *ps;
2354 if (*pos >= ARRAY_SIZE(vmstat_text))
2355 return NULL;
2357 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2358 m->private = ps;
2359 if (!ps)
2360 return ERR_PTR(-ENOMEM);
2361 get_full_page_state(ps);
2362 ps->pgpgin /= 2; /* sectors -> kbytes */
2363 ps->pgpgout /= 2;
2364 return (unsigned long *)ps + *pos;
2367 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2369 (*pos)++;
2370 if (*pos >= ARRAY_SIZE(vmstat_text))
2371 return NULL;
2372 return (unsigned long *)m->private + *pos;
2375 static int vmstat_show(struct seq_file *m, void *arg)
2377 unsigned long *l = arg;
2378 unsigned long off = l - (unsigned long *)m->private;
2380 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2381 return 0;
2384 static void vmstat_stop(struct seq_file *m, void *arg)
2386 kfree(m->private);
2387 m->private = NULL;
2390 struct seq_operations vmstat_op = {
2391 .start = vmstat_start,
2392 .next = vmstat_next,
2393 .stop = vmstat_stop,
2394 .show = vmstat_show,
2397 #endif /* CONFIG_PROC_FS */
2399 #ifdef CONFIG_HOTPLUG_CPU
2400 static int page_alloc_cpu_notify(struct notifier_block *self,
2401 unsigned long action, void *hcpu)
2403 int cpu = (unsigned long)hcpu;
2404 long *count;
2405 unsigned long *src, *dest;
2407 if (action == CPU_DEAD) {
2408 int i;
2410 /* Drain local pagecache count. */
2411 count = &per_cpu(nr_pagecache_local, cpu);
2412 atomic_add(*count, &nr_pagecache);
2413 *count = 0;
2414 local_irq_disable();
2415 __drain_pages(cpu);
2417 /* Add dead cpu's page_states to our own. */
2418 dest = (unsigned long *)&__get_cpu_var(page_states);
2419 src = (unsigned long *)&per_cpu(page_states, cpu);
2421 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2422 i++) {
2423 dest[i] += src[i];
2424 src[i] = 0;
2427 local_irq_enable();
2429 return NOTIFY_OK;
2431 #endif /* CONFIG_HOTPLUG_CPU */
2433 void __init page_alloc_init(void)
2435 hotcpu_notifier(page_alloc_cpu_notify, 0);
2439 * setup_per_zone_lowmem_reserve - called whenever
2440 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2441 * has a correct pages reserved value, so an adequate number of
2442 * pages are left in the zone after a successful __alloc_pages().
2444 static void setup_per_zone_lowmem_reserve(void)
2446 struct pglist_data *pgdat;
2447 int j, idx;
2449 for_each_pgdat(pgdat) {
2450 for (j = 0; j < MAX_NR_ZONES; j++) {
2451 struct zone *zone = pgdat->node_zones + j;
2452 unsigned long present_pages = zone->present_pages;
2454 zone->lowmem_reserve[j] = 0;
2456 for (idx = j-1; idx >= 0; idx--) {
2457 struct zone *lower_zone;
2459 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2460 sysctl_lowmem_reserve_ratio[idx] = 1;
2462 lower_zone = pgdat->node_zones + idx;
2463 lower_zone->lowmem_reserve[j] = present_pages /
2464 sysctl_lowmem_reserve_ratio[idx];
2465 present_pages += lower_zone->present_pages;
2472 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2473 * that the pages_{min,low,high} values for each zone are set correctly
2474 * with respect to min_free_kbytes.
2476 void setup_per_zone_pages_min(void)
2478 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2479 unsigned long lowmem_pages = 0;
2480 struct zone *zone;
2481 unsigned long flags;
2483 /* Calculate total number of !ZONE_HIGHMEM pages */
2484 for_each_zone(zone) {
2485 if (!is_highmem(zone))
2486 lowmem_pages += zone->present_pages;
2489 for_each_zone(zone) {
2490 unsigned long tmp;
2491 spin_lock_irqsave(&zone->lru_lock, flags);
2492 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2493 if (is_highmem(zone)) {
2495 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2496 * need highmem pages, so cap pages_min to a small
2497 * value here.
2499 * The (pages_high-pages_low) and (pages_low-pages_min)
2500 * deltas controls asynch page reclaim, and so should
2501 * not be capped for highmem.
2503 int min_pages;
2505 min_pages = zone->present_pages / 1024;
2506 if (min_pages < SWAP_CLUSTER_MAX)
2507 min_pages = SWAP_CLUSTER_MAX;
2508 if (min_pages > 128)
2509 min_pages = 128;
2510 zone->pages_min = min_pages;
2511 } else {
2513 * If it's a lowmem zone, reserve a number of pages
2514 * proportionate to the zone's size.
2516 zone->pages_min = tmp;
2519 zone->pages_low = zone->pages_min + tmp / 4;
2520 zone->pages_high = zone->pages_min + tmp / 2;
2521 spin_unlock_irqrestore(&zone->lru_lock, flags);
2526 * Initialise min_free_kbytes.
2528 * For small machines we want it small (128k min). For large machines
2529 * we want it large (64MB max). But it is not linear, because network
2530 * bandwidth does not increase linearly with machine size. We use
2532 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2533 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2535 * which yields
2537 * 16MB: 512k
2538 * 32MB: 724k
2539 * 64MB: 1024k
2540 * 128MB: 1448k
2541 * 256MB: 2048k
2542 * 512MB: 2896k
2543 * 1024MB: 4096k
2544 * 2048MB: 5792k
2545 * 4096MB: 8192k
2546 * 8192MB: 11584k
2547 * 16384MB: 16384k
2549 static int __init init_per_zone_pages_min(void)
2551 unsigned long lowmem_kbytes;
2553 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2555 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2556 if (min_free_kbytes < 128)
2557 min_free_kbytes = 128;
2558 if (min_free_kbytes > 65536)
2559 min_free_kbytes = 65536;
2560 setup_per_zone_pages_min();
2561 setup_per_zone_lowmem_reserve();
2562 return 0;
2564 module_init(init_per_zone_pages_min)
2567 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2568 * that we can call two helper functions whenever min_free_kbytes
2569 * changes.
2571 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2572 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2574 proc_dointvec(table, write, file, buffer, length, ppos);
2575 setup_per_zone_pages_min();
2576 return 0;
2580 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2581 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2582 * whenever sysctl_lowmem_reserve_ratio changes.
2584 * The reserve ratio obviously has absolutely no relation with the
2585 * pages_min watermarks. The lowmem reserve ratio can only make sense
2586 * if in function of the boot time zone sizes.
2588 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2589 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2591 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2592 setup_per_zone_lowmem_reserve();
2593 return 0;
2597 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2598 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2599 * can have before it gets flushed back to buddy allocator.
2602 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2603 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2605 struct zone *zone;
2606 unsigned int cpu;
2607 int ret;
2609 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2610 if (!write || (ret == -EINVAL))
2611 return ret;
2612 for_each_zone(zone) {
2613 for_each_online_cpu(cpu) {
2614 unsigned long high;
2615 high = zone->present_pages / percpu_pagelist_fraction;
2616 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2619 return 0;
2622 __initdata int hashdist = HASHDIST_DEFAULT;
2624 #ifdef CONFIG_NUMA
2625 static int __init set_hashdist(char *str)
2627 if (!str)
2628 return 0;
2629 hashdist = simple_strtoul(str, &str, 0);
2630 return 1;
2632 __setup("hashdist=", set_hashdist);
2633 #endif
2636 * allocate a large system hash table from bootmem
2637 * - it is assumed that the hash table must contain an exact power-of-2
2638 * quantity of entries
2639 * - limit is the number of hash buckets, not the total allocation size
2641 void *__init alloc_large_system_hash(const char *tablename,
2642 unsigned long bucketsize,
2643 unsigned long numentries,
2644 int scale,
2645 int flags,
2646 unsigned int *_hash_shift,
2647 unsigned int *_hash_mask,
2648 unsigned long limit)
2650 unsigned long long max = limit;
2651 unsigned long log2qty, size;
2652 void *table = NULL;
2654 /* allow the kernel cmdline to have a say */
2655 if (!numentries) {
2656 /* round applicable memory size up to nearest megabyte */
2657 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2658 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2659 numentries >>= 20 - PAGE_SHIFT;
2660 numentries <<= 20 - PAGE_SHIFT;
2662 /* limit to 1 bucket per 2^scale bytes of low memory */
2663 if (scale > PAGE_SHIFT)
2664 numentries >>= (scale - PAGE_SHIFT);
2665 else
2666 numentries <<= (PAGE_SHIFT - scale);
2668 /* rounded up to nearest power of 2 in size */
2669 numentries = 1UL << (long_log2(numentries) + 1);
2671 /* limit allocation size to 1/16 total memory by default */
2672 if (max == 0) {
2673 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2674 do_div(max, bucketsize);
2677 if (numentries > max)
2678 numentries = max;
2680 log2qty = long_log2(numentries);
2682 do {
2683 size = bucketsize << log2qty;
2684 if (flags & HASH_EARLY)
2685 table = alloc_bootmem(size);
2686 else if (hashdist)
2687 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2688 else {
2689 unsigned long order;
2690 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2692 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2694 } while (!table && size > PAGE_SIZE && --log2qty);
2696 if (!table)
2697 panic("Failed to allocate %s hash table\n", tablename);
2699 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2700 tablename,
2701 (1U << log2qty),
2702 long_log2(size) - PAGE_SHIFT,
2703 size);
2705 if (_hash_shift)
2706 *_hash_shift = log2qty;
2707 if (_hash_mask)
2708 *_hash_mask = (1 << log2qty) - 1;
2710 return table;