Input: do not try to filter out events if handler is not a filter
[linux-2.6/btrfs-unstable.git] / mm / util.c
blob093c973f1697dd39545c6c93aeac8e9c3d60cf52
1 #include <linux/mm.h>
2 #include <linux/slab.h>
3 #include <linux/string.h>
4 #include <linux/compiler.h>
5 #include <linux/export.h>
6 #include <linux/err.h>
7 #include <linux/sched.h>
8 #include <linux/security.h>
9 #include <linux/swap.h>
10 #include <linux/swapops.h>
11 #include <linux/mman.h>
12 #include <linux/hugetlb.h>
13 #include <linux/vmalloc.h>
15 #include <asm/uaccess.h>
17 #include "internal.h"
19 /**
20 * kstrdup - allocate space for and copy an existing string
21 * @s: the string to duplicate
22 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
24 char *kstrdup(const char *s, gfp_t gfp)
26 size_t len;
27 char *buf;
29 if (!s)
30 return NULL;
32 len = strlen(s) + 1;
33 buf = kmalloc_track_caller(len, gfp);
34 if (buf)
35 memcpy(buf, s, len);
36 return buf;
38 EXPORT_SYMBOL(kstrdup);
40 /**
41 * kstrndup - allocate space for and copy an existing string
42 * @s: the string to duplicate
43 * @max: read at most @max chars from @s
44 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46 char *kstrndup(const char *s, size_t max, gfp_t gfp)
48 size_t len;
49 char *buf;
51 if (!s)
52 return NULL;
54 len = strnlen(s, max);
55 buf = kmalloc_track_caller(len+1, gfp);
56 if (buf) {
57 memcpy(buf, s, len);
58 buf[len] = '\0';
60 return buf;
62 EXPORT_SYMBOL(kstrndup);
64 /**
65 * kmemdup - duplicate region of memory
67 * @src: memory region to duplicate
68 * @len: memory region length
69 * @gfp: GFP mask to use
71 void *kmemdup(const void *src, size_t len, gfp_t gfp)
73 void *p;
75 p = kmalloc_track_caller(len, gfp);
76 if (p)
77 memcpy(p, src, len);
78 return p;
80 EXPORT_SYMBOL(kmemdup);
82 /**
83 * memdup_user - duplicate memory region from user space
85 * @src: source address in user space
86 * @len: number of bytes to copy
88 * Returns an ERR_PTR() on failure.
90 void *memdup_user(const void __user *src, size_t len)
92 void *p;
95 * Always use GFP_KERNEL, since copy_from_user() can sleep and
96 * cause pagefault, which makes it pointless to use GFP_NOFS
97 * or GFP_ATOMIC.
99 p = kmalloc_track_caller(len, GFP_KERNEL);
100 if (!p)
101 return ERR_PTR(-ENOMEM);
103 if (copy_from_user(p, src, len)) {
104 kfree(p);
105 return ERR_PTR(-EFAULT);
108 return p;
110 EXPORT_SYMBOL(memdup_user);
113 * strndup_user - duplicate an existing string from user space
114 * @s: The string to duplicate
115 * @n: Maximum number of bytes to copy, including the trailing NUL.
117 char *strndup_user(const char __user *s, long n)
119 char *p;
120 long length;
122 length = strnlen_user(s, n);
124 if (!length)
125 return ERR_PTR(-EFAULT);
127 if (length > n)
128 return ERR_PTR(-EINVAL);
130 p = memdup_user(s, length);
132 if (IS_ERR(p))
133 return p;
135 p[length - 1] = '\0';
137 return p;
139 EXPORT_SYMBOL(strndup_user);
141 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
142 struct vm_area_struct *prev, struct rb_node *rb_parent)
144 struct vm_area_struct *next;
146 vma->vm_prev = prev;
147 if (prev) {
148 next = prev->vm_next;
149 prev->vm_next = vma;
150 } else {
151 mm->mmap = vma;
152 if (rb_parent)
153 next = rb_entry(rb_parent,
154 struct vm_area_struct, vm_rb);
155 else
156 next = NULL;
158 vma->vm_next = next;
159 if (next)
160 next->vm_prev = vma;
163 /* Check if the vma is being used as a stack by this task */
164 static int vm_is_stack_for_task(struct task_struct *t,
165 struct vm_area_struct *vma)
167 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
171 * Check if the vma is being used as a stack.
172 * If is_group is non-zero, check in the entire thread group or else
173 * just check in the current task. Returns the pid of the task that
174 * the vma is stack for.
176 pid_t vm_is_stack(struct task_struct *task,
177 struct vm_area_struct *vma, int in_group)
179 pid_t ret = 0;
181 if (vm_is_stack_for_task(task, vma))
182 return task->pid;
184 if (in_group) {
185 struct task_struct *t;
187 rcu_read_lock();
188 for_each_thread(task, t) {
189 if (vm_is_stack_for_task(t, vma)) {
190 ret = t->pid;
191 goto done;
194 done:
195 rcu_read_unlock();
198 return ret;
201 #if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
202 void arch_pick_mmap_layout(struct mm_struct *mm)
204 mm->mmap_base = TASK_UNMAPPED_BASE;
205 mm->get_unmapped_area = arch_get_unmapped_area;
207 #endif
210 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
211 * back to the regular GUP.
212 * If the architecture not support this function, simply return with no
213 * page pinned
215 int __weak __get_user_pages_fast(unsigned long start,
216 int nr_pages, int write, struct page **pages)
218 return 0;
220 EXPORT_SYMBOL_GPL(__get_user_pages_fast);
223 * get_user_pages_fast() - pin user pages in memory
224 * @start: starting user address
225 * @nr_pages: number of pages from start to pin
226 * @write: whether pages will be written to
227 * @pages: array that receives pointers to the pages pinned.
228 * Should be at least nr_pages long.
230 * Returns number of pages pinned. This may be fewer than the number
231 * requested. If nr_pages is 0 or negative, returns 0. If no pages
232 * were pinned, returns -errno.
234 * get_user_pages_fast provides equivalent functionality to get_user_pages,
235 * operating on current and current->mm, with force=0 and vma=NULL. However
236 * unlike get_user_pages, it must be called without mmap_sem held.
238 * get_user_pages_fast may take mmap_sem and page table locks, so no
239 * assumptions can be made about lack of locking. get_user_pages_fast is to be
240 * implemented in a way that is advantageous (vs get_user_pages()) when the
241 * user memory area is already faulted in and present in ptes. However if the
242 * pages have to be faulted in, it may turn out to be slightly slower so
243 * callers need to carefully consider what to use. On many architectures,
244 * get_user_pages_fast simply falls back to get_user_pages.
246 int __weak get_user_pages_fast(unsigned long start,
247 int nr_pages, int write, struct page **pages)
249 struct mm_struct *mm = current->mm;
250 int ret;
252 down_read(&mm->mmap_sem);
253 ret = get_user_pages(current, mm, start, nr_pages,
254 write, 0, pages, NULL);
255 up_read(&mm->mmap_sem);
257 return ret;
259 EXPORT_SYMBOL_GPL(get_user_pages_fast);
261 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
262 unsigned long len, unsigned long prot,
263 unsigned long flag, unsigned long pgoff)
265 unsigned long ret;
266 struct mm_struct *mm = current->mm;
267 unsigned long populate;
269 ret = security_mmap_file(file, prot, flag);
270 if (!ret) {
271 down_write(&mm->mmap_sem);
272 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
273 &populate);
274 up_write(&mm->mmap_sem);
275 if (populate)
276 mm_populate(ret, populate);
278 return ret;
281 unsigned long vm_mmap(struct file *file, unsigned long addr,
282 unsigned long len, unsigned long prot,
283 unsigned long flag, unsigned long offset)
285 if (unlikely(offset + PAGE_ALIGN(len) < offset))
286 return -EINVAL;
287 if (unlikely(offset & ~PAGE_MASK))
288 return -EINVAL;
290 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
292 EXPORT_SYMBOL(vm_mmap);
294 void kvfree(const void *addr)
296 if (is_vmalloc_addr(addr))
297 vfree(addr);
298 else
299 kfree(addr);
301 EXPORT_SYMBOL(kvfree);
303 struct address_space *page_mapping(struct page *page)
305 struct address_space *mapping = page->mapping;
307 /* This happens if someone calls flush_dcache_page on slab page */
308 if (unlikely(PageSlab(page)))
309 return NULL;
311 if (unlikely(PageSwapCache(page))) {
312 swp_entry_t entry;
314 entry.val = page_private(page);
315 mapping = swap_address_space(entry);
316 } else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
317 mapping = NULL;
318 return mapping;
321 int overcommit_ratio_handler(struct ctl_table *table, int write,
322 void __user *buffer, size_t *lenp,
323 loff_t *ppos)
325 int ret;
327 ret = proc_dointvec(table, write, buffer, lenp, ppos);
328 if (ret == 0 && write)
329 sysctl_overcommit_kbytes = 0;
330 return ret;
333 int overcommit_kbytes_handler(struct ctl_table *table, int write,
334 void __user *buffer, size_t *lenp,
335 loff_t *ppos)
337 int ret;
339 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
340 if (ret == 0 && write)
341 sysctl_overcommit_ratio = 0;
342 return ret;
346 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
348 unsigned long vm_commit_limit(void)
350 unsigned long allowed;
352 if (sysctl_overcommit_kbytes)
353 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
354 else
355 allowed = ((totalram_pages - hugetlb_total_pages())
356 * sysctl_overcommit_ratio / 100);
357 allowed += total_swap_pages;
359 return allowed;
363 * get_cmdline() - copy the cmdline value to a buffer.
364 * @task: the task whose cmdline value to copy.
365 * @buffer: the buffer to copy to.
366 * @buflen: the length of the buffer. Larger cmdline values are truncated
367 * to this length.
368 * Returns the size of the cmdline field copied. Note that the copy does
369 * not guarantee an ending NULL byte.
371 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
373 int res = 0;
374 unsigned int len;
375 struct mm_struct *mm = get_task_mm(task);
376 if (!mm)
377 goto out;
378 if (!mm->arg_end)
379 goto out_mm; /* Shh! No looking before we're done */
381 len = mm->arg_end - mm->arg_start;
383 if (len > buflen)
384 len = buflen;
386 res = access_process_vm(task, mm->arg_start, buffer, len, 0);
389 * If the nul at the end of args has been overwritten, then
390 * assume application is using setproctitle(3).
392 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
393 len = strnlen(buffer, res);
394 if (len < res) {
395 res = len;
396 } else {
397 len = mm->env_end - mm->env_start;
398 if (len > buflen - res)
399 len = buflen - res;
400 res += access_process_vm(task, mm->env_start,
401 buffer+res, len, 0);
402 res = strnlen(buffer, res);
405 out_mm:
406 mmput(mm);
407 out:
408 return res;