perf: Fix time locking
[linux-2.6/btrfs-unstable.git] / kernel / perf_event.c
blobfdfae888a67ce9fe6a9b9df9010f47733ec382e9
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
250 * Add a event from the lists for its context.
251 * Must be called with ctx->mutex and ctx->lock held.
253 static void
254 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
256 struct perf_event *group_leader = event->group_leader;
259 * Depending on whether it is a standalone or sibling event,
260 * add it straight to the context's event list, or to the group
261 * leader's sibling list:
263 if (group_leader == event)
264 list_add_tail(&event->group_entry, &ctx->group_list);
265 else {
266 list_add_tail(&event->group_entry, &group_leader->sibling_list);
267 group_leader->nr_siblings++;
270 list_add_rcu(&event->event_entry, &ctx->event_list);
271 ctx->nr_events++;
272 if (event->attr.inherit_stat)
273 ctx->nr_stat++;
277 * Remove a event from the lists for its context.
278 * Must be called with ctx->mutex and ctx->lock held.
280 static void
281 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
283 struct perf_event *sibling, *tmp;
285 if (list_empty(&event->group_entry))
286 return;
287 ctx->nr_events--;
288 if (event->attr.inherit_stat)
289 ctx->nr_stat--;
291 list_del_init(&event->group_entry);
292 list_del_rcu(&event->event_entry);
294 if (event->group_leader != event)
295 event->group_leader->nr_siblings--;
298 * If this was a group event with sibling events then
299 * upgrade the siblings to singleton events by adding them
300 * to the context list directly:
302 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
304 list_move_tail(&sibling->group_entry, &ctx->group_list);
305 sibling->group_leader = sibling;
309 static void
310 event_sched_out(struct perf_event *event,
311 struct perf_cpu_context *cpuctx,
312 struct perf_event_context *ctx)
314 if (event->state != PERF_EVENT_STATE_ACTIVE)
315 return;
317 event->state = PERF_EVENT_STATE_INACTIVE;
318 if (event->pending_disable) {
319 event->pending_disable = 0;
320 event->state = PERF_EVENT_STATE_OFF;
322 event->tstamp_stopped = ctx->time;
323 event->pmu->disable(event);
324 event->oncpu = -1;
326 if (!is_software_event(event))
327 cpuctx->active_oncpu--;
328 ctx->nr_active--;
329 if (event->attr.exclusive || !cpuctx->active_oncpu)
330 cpuctx->exclusive = 0;
333 static void
334 group_sched_out(struct perf_event *group_event,
335 struct perf_cpu_context *cpuctx,
336 struct perf_event_context *ctx)
338 struct perf_event *event;
340 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
341 return;
343 event_sched_out(group_event, cpuctx, ctx);
346 * Schedule out siblings (if any):
348 list_for_each_entry(event, &group_event->sibling_list, group_entry)
349 event_sched_out(event, cpuctx, ctx);
351 if (group_event->attr.exclusive)
352 cpuctx->exclusive = 0;
356 * Cross CPU call to remove a performance event
358 * We disable the event on the hardware level first. After that we
359 * remove it from the context list.
361 static void __perf_event_remove_from_context(void *info)
363 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
364 struct perf_event *event = info;
365 struct perf_event_context *ctx = event->ctx;
368 * If this is a task context, we need to check whether it is
369 * the current task context of this cpu. If not it has been
370 * scheduled out before the smp call arrived.
372 if (ctx->task && cpuctx->task_ctx != ctx)
373 return;
375 spin_lock(&ctx->lock);
377 * Protect the list operation against NMI by disabling the
378 * events on a global level.
380 perf_disable();
382 event_sched_out(event, cpuctx, ctx);
384 list_del_event(event, ctx);
386 if (!ctx->task) {
388 * Allow more per task events with respect to the
389 * reservation:
391 cpuctx->max_pertask =
392 min(perf_max_events - ctx->nr_events,
393 perf_max_events - perf_reserved_percpu);
396 perf_enable();
397 spin_unlock(&ctx->lock);
402 * Remove the event from a task's (or a CPU's) list of events.
404 * Must be called with ctx->mutex held.
406 * CPU events are removed with a smp call. For task events we only
407 * call when the task is on a CPU.
409 * If event->ctx is a cloned context, callers must make sure that
410 * every task struct that event->ctx->task could possibly point to
411 * remains valid. This is OK when called from perf_release since
412 * that only calls us on the top-level context, which can't be a clone.
413 * When called from perf_event_exit_task, it's OK because the
414 * context has been detached from its task.
416 static void perf_event_remove_from_context(struct perf_event *event)
418 struct perf_event_context *ctx = event->ctx;
419 struct task_struct *task = ctx->task;
421 if (!task) {
423 * Per cpu events are removed via an smp call and
424 * the removal is always sucessful.
426 smp_call_function_single(event->cpu,
427 __perf_event_remove_from_context,
428 event, 1);
429 return;
432 retry:
433 task_oncpu_function_call(task, __perf_event_remove_from_context,
434 event);
436 spin_lock_irq(&ctx->lock);
438 * If the context is active we need to retry the smp call.
440 if (ctx->nr_active && !list_empty(&event->group_entry)) {
441 spin_unlock_irq(&ctx->lock);
442 goto retry;
446 * The lock prevents that this context is scheduled in so we
447 * can remove the event safely, if the call above did not
448 * succeed.
450 if (!list_empty(&event->group_entry)) {
451 list_del_event(event, ctx);
453 spin_unlock_irq(&ctx->lock);
456 static inline u64 perf_clock(void)
458 return cpu_clock(smp_processor_id());
462 * Update the record of the current time in a context.
464 static void update_context_time(struct perf_event_context *ctx)
466 u64 now = perf_clock();
468 ctx->time += now - ctx->timestamp;
469 ctx->timestamp = now;
473 * Update the total_time_enabled and total_time_running fields for a event.
475 static void update_event_times(struct perf_event *event)
477 struct perf_event_context *ctx = event->ctx;
478 u64 run_end;
480 if (event->state < PERF_EVENT_STATE_INACTIVE ||
481 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
482 return;
484 event->total_time_enabled = ctx->time - event->tstamp_enabled;
486 if (event->state == PERF_EVENT_STATE_INACTIVE)
487 run_end = event->tstamp_stopped;
488 else
489 run_end = ctx->time;
491 event->total_time_running = run_end - event->tstamp_running;
495 * Update total_time_enabled and total_time_running for all events in a group.
497 static void update_group_times(struct perf_event *leader)
499 struct perf_event *event;
501 update_event_times(leader);
502 list_for_each_entry(event, &leader->sibling_list, group_entry)
503 update_event_times(event);
507 * Cross CPU call to disable a performance event
509 static void __perf_event_disable(void *info)
511 struct perf_event *event = info;
512 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
513 struct perf_event_context *ctx = event->ctx;
516 * If this is a per-task event, need to check whether this
517 * event's task is the current task on this cpu.
519 if (ctx->task && cpuctx->task_ctx != ctx)
520 return;
522 spin_lock(&ctx->lock);
525 * If the event is on, turn it off.
526 * If it is in error state, leave it in error state.
528 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
529 update_context_time(ctx);
530 update_group_times(event);
531 if (event == event->group_leader)
532 group_sched_out(event, cpuctx, ctx);
533 else
534 event_sched_out(event, cpuctx, ctx);
535 event->state = PERF_EVENT_STATE_OFF;
538 spin_unlock(&ctx->lock);
542 * Disable a event.
544 * If event->ctx is a cloned context, callers must make sure that
545 * every task struct that event->ctx->task could possibly point to
546 * remains valid. This condition is satisifed when called through
547 * perf_event_for_each_child or perf_event_for_each because they
548 * hold the top-level event's child_mutex, so any descendant that
549 * goes to exit will block in sync_child_event.
550 * When called from perf_pending_event it's OK because event->ctx
551 * is the current context on this CPU and preemption is disabled,
552 * hence we can't get into perf_event_task_sched_out for this context.
554 static void perf_event_disable(struct perf_event *event)
556 struct perf_event_context *ctx = event->ctx;
557 struct task_struct *task = ctx->task;
559 if (!task) {
561 * Disable the event on the cpu that it's on
563 smp_call_function_single(event->cpu, __perf_event_disable,
564 event, 1);
565 return;
568 retry:
569 task_oncpu_function_call(task, __perf_event_disable, event);
571 spin_lock_irq(&ctx->lock);
573 * If the event is still active, we need to retry the cross-call.
575 if (event->state == PERF_EVENT_STATE_ACTIVE) {
576 spin_unlock_irq(&ctx->lock);
577 goto retry;
581 * Since we have the lock this context can't be scheduled
582 * in, so we can change the state safely.
584 if (event->state == PERF_EVENT_STATE_INACTIVE) {
585 update_group_times(event);
586 event->state = PERF_EVENT_STATE_OFF;
589 spin_unlock_irq(&ctx->lock);
592 static int
593 event_sched_in(struct perf_event *event,
594 struct perf_cpu_context *cpuctx,
595 struct perf_event_context *ctx,
596 int cpu)
598 if (event->state <= PERF_EVENT_STATE_OFF)
599 return 0;
601 event->state = PERF_EVENT_STATE_ACTIVE;
602 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
604 * The new state must be visible before we turn it on in the hardware:
606 smp_wmb();
608 if (event->pmu->enable(event)) {
609 event->state = PERF_EVENT_STATE_INACTIVE;
610 event->oncpu = -1;
611 return -EAGAIN;
614 event->tstamp_running += ctx->time - event->tstamp_stopped;
616 if (!is_software_event(event))
617 cpuctx->active_oncpu++;
618 ctx->nr_active++;
620 if (event->attr.exclusive)
621 cpuctx->exclusive = 1;
623 return 0;
626 static int
627 group_sched_in(struct perf_event *group_event,
628 struct perf_cpu_context *cpuctx,
629 struct perf_event_context *ctx,
630 int cpu)
632 struct perf_event *event, *partial_group;
633 int ret;
635 if (group_event->state == PERF_EVENT_STATE_OFF)
636 return 0;
638 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
639 if (ret)
640 return ret < 0 ? ret : 0;
642 if (event_sched_in(group_event, cpuctx, ctx, cpu))
643 return -EAGAIN;
646 * Schedule in siblings as one group (if any):
648 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
649 if (event_sched_in(event, cpuctx, ctx, cpu)) {
650 partial_group = event;
651 goto group_error;
655 return 0;
657 group_error:
659 * Groups can be scheduled in as one unit only, so undo any
660 * partial group before returning:
662 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
663 if (event == partial_group)
664 break;
665 event_sched_out(event, cpuctx, ctx);
667 event_sched_out(group_event, cpuctx, ctx);
669 return -EAGAIN;
673 * Return 1 for a group consisting entirely of software events,
674 * 0 if the group contains any hardware events.
676 static int is_software_only_group(struct perf_event *leader)
678 struct perf_event *event;
680 if (!is_software_event(leader))
681 return 0;
683 list_for_each_entry(event, &leader->sibling_list, group_entry)
684 if (!is_software_event(event))
685 return 0;
687 return 1;
691 * Work out whether we can put this event group on the CPU now.
693 static int group_can_go_on(struct perf_event *event,
694 struct perf_cpu_context *cpuctx,
695 int can_add_hw)
698 * Groups consisting entirely of software events can always go on.
700 if (is_software_only_group(event))
701 return 1;
703 * If an exclusive group is already on, no other hardware
704 * events can go on.
706 if (cpuctx->exclusive)
707 return 0;
709 * If this group is exclusive and there are already
710 * events on the CPU, it can't go on.
712 if (event->attr.exclusive && cpuctx->active_oncpu)
713 return 0;
715 * Otherwise, try to add it if all previous groups were able
716 * to go on.
718 return can_add_hw;
721 static void add_event_to_ctx(struct perf_event *event,
722 struct perf_event_context *ctx)
724 list_add_event(event, ctx);
725 event->tstamp_enabled = ctx->time;
726 event->tstamp_running = ctx->time;
727 event->tstamp_stopped = ctx->time;
731 * Cross CPU call to install and enable a performance event
733 * Must be called with ctx->mutex held
735 static void __perf_install_in_context(void *info)
737 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
738 struct perf_event *event = info;
739 struct perf_event_context *ctx = event->ctx;
740 struct perf_event *leader = event->group_leader;
741 int cpu = smp_processor_id();
742 int err;
745 * If this is a task context, we need to check whether it is
746 * the current task context of this cpu. If not it has been
747 * scheduled out before the smp call arrived.
748 * Or possibly this is the right context but it isn't
749 * on this cpu because it had no events.
751 if (ctx->task && cpuctx->task_ctx != ctx) {
752 if (cpuctx->task_ctx || ctx->task != current)
753 return;
754 cpuctx->task_ctx = ctx;
757 spin_lock(&ctx->lock);
758 ctx->is_active = 1;
759 update_context_time(ctx);
762 * Protect the list operation against NMI by disabling the
763 * events on a global level. NOP for non NMI based events.
765 perf_disable();
767 add_event_to_ctx(event, ctx);
770 * Don't put the event on if it is disabled or if
771 * it is in a group and the group isn't on.
773 if (event->state != PERF_EVENT_STATE_INACTIVE ||
774 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
775 goto unlock;
778 * An exclusive event can't go on if there are already active
779 * hardware events, and no hardware event can go on if there
780 * is already an exclusive event on.
782 if (!group_can_go_on(event, cpuctx, 1))
783 err = -EEXIST;
784 else
785 err = event_sched_in(event, cpuctx, ctx, cpu);
787 if (err) {
789 * This event couldn't go on. If it is in a group
790 * then we have to pull the whole group off.
791 * If the event group is pinned then put it in error state.
793 if (leader != event)
794 group_sched_out(leader, cpuctx, ctx);
795 if (leader->attr.pinned) {
796 update_group_times(leader);
797 leader->state = PERF_EVENT_STATE_ERROR;
801 if (!err && !ctx->task && cpuctx->max_pertask)
802 cpuctx->max_pertask--;
804 unlock:
805 perf_enable();
807 spin_unlock(&ctx->lock);
811 * Attach a performance event to a context
813 * First we add the event to the list with the hardware enable bit
814 * in event->hw_config cleared.
816 * If the event is attached to a task which is on a CPU we use a smp
817 * call to enable it in the task context. The task might have been
818 * scheduled away, but we check this in the smp call again.
820 * Must be called with ctx->mutex held.
822 static void
823 perf_install_in_context(struct perf_event_context *ctx,
824 struct perf_event *event,
825 int cpu)
827 struct task_struct *task = ctx->task;
829 if (!task) {
831 * Per cpu events are installed via an smp call and
832 * the install is always sucessful.
834 smp_call_function_single(cpu, __perf_install_in_context,
835 event, 1);
836 return;
839 retry:
840 task_oncpu_function_call(task, __perf_install_in_context,
841 event);
843 spin_lock_irq(&ctx->lock);
845 * we need to retry the smp call.
847 if (ctx->is_active && list_empty(&event->group_entry)) {
848 spin_unlock_irq(&ctx->lock);
849 goto retry;
853 * The lock prevents that this context is scheduled in so we
854 * can add the event safely, if it the call above did not
855 * succeed.
857 if (list_empty(&event->group_entry))
858 add_event_to_ctx(event, ctx);
859 spin_unlock_irq(&ctx->lock);
863 * Put a event into inactive state and update time fields.
864 * Enabling the leader of a group effectively enables all
865 * the group members that aren't explicitly disabled, so we
866 * have to update their ->tstamp_enabled also.
867 * Note: this works for group members as well as group leaders
868 * since the non-leader members' sibling_lists will be empty.
870 static void __perf_event_mark_enabled(struct perf_event *event,
871 struct perf_event_context *ctx)
873 struct perf_event *sub;
875 event->state = PERF_EVENT_STATE_INACTIVE;
876 event->tstamp_enabled = ctx->time - event->total_time_enabled;
877 list_for_each_entry(sub, &event->sibling_list, group_entry)
878 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
879 sub->tstamp_enabled =
880 ctx->time - sub->total_time_enabled;
884 * Cross CPU call to enable a performance event
886 static void __perf_event_enable(void *info)
888 struct perf_event *event = info;
889 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
890 struct perf_event_context *ctx = event->ctx;
891 struct perf_event *leader = event->group_leader;
892 int err;
895 * If this is a per-task event, need to check whether this
896 * event's task is the current task on this cpu.
898 if (ctx->task && cpuctx->task_ctx != ctx) {
899 if (cpuctx->task_ctx || ctx->task != current)
900 return;
901 cpuctx->task_ctx = ctx;
904 spin_lock(&ctx->lock);
905 ctx->is_active = 1;
906 update_context_time(ctx);
908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
909 goto unlock;
910 __perf_event_mark_enabled(event, ctx);
913 * If the event is in a group and isn't the group leader,
914 * then don't put it on unless the group is on.
916 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
917 goto unlock;
919 if (!group_can_go_on(event, cpuctx, 1)) {
920 err = -EEXIST;
921 } else {
922 perf_disable();
923 if (event == leader)
924 err = group_sched_in(event, cpuctx, ctx,
925 smp_processor_id());
926 else
927 err = event_sched_in(event, cpuctx, ctx,
928 smp_processor_id());
929 perf_enable();
932 if (err) {
934 * If this event can't go on and it's part of a
935 * group, then the whole group has to come off.
937 if (leader != event)
938 group_sched_out(leader, cpuctx, ctx);
939 if (leader->attr.pinned) {
940 update_group_times(leader);
941 leader->state = PERF_EVENT_STATE_ERROR;
945 unlock:
946 spin_unlock(&ctx->lock);
950 * Enable a event.
952 * If event->ctx is a cloned context, callers must make sure that
953 * every task struct that event->ctx->task could possibly point to
954 * remains valid. This condition is satisfied when called through
955 * perf_event_for_each_child or perf_event_for_each as described
956 * for perf_event_disable.
958 static void perf_event_enable(struct perf_event *event)
960 struct perf_event_context *ctx = event->ctx;
961 struct task_struct *task = ctx->task;
963 if (!task) {
965 * Enable the event on the cpu that it's on
967 smp_call_function_single(event->cpu, __perf_event_enable,
968 event, 1);
969 return;
972 spin_lock_irq(&ctx->lock);
973 if (event->state >= PERF_EVENT_STATE_INACTIVE)
974 goto out;
977 * If the event is in error state, clear that first.
978 * That way, if we see the event in error state below, we
979 * know that it has gone back into error state, as distinct
980 * from the task having been scheduled away before the
981 * cross-call arrived.
983 if (event->state == PERF_EVENT_STATE_ERROR)
984 event->state = PERF_EVENT_STATE_OFF;
986 retry:
987 spin_unlock_irq(&ctx->lock);
988 task_oncpu_function_call(task, __perf_event_enable, event);
990 spin_lock_irq(&ctx->lock);
993 * If the context is active and the event is still off,
994 * we need to retry the cross-call.
996 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
997 goto retry;
1000 * Since we have the lock this context can't be scheduled
1001 * in, so we can change the state safely.
1003 if (event->state == PERF_EVENT_STATE_OFF)
1004 __perf_event_mark_enabled(event, ctx);
1006 out:
1007 spin_unlock_irq(&ctx->lock);
1010 static int perf_event_refresh(struct perf_event *event, int refresh)
1013 * not supported on inherited events
1015 if (event->attr.inherit)
1016 return -EINVAL;
1018 atomic_add(refresh, &event->event_limit);
1019 perf_event_enable(event);
1021 return 0;
1024 void __perf_event_sched_out(struct perf_event_context *ctx,
1025 struct perf_cpu_context *cpuctx)
1027 struct perf_event *event;
1029 spin_lock(&ctx->lock);
1030 ctx->is_active = 0;
1031 if (likely(!ctx->nr_events))
1032 goto out;
1033 update_context_time(ctx);
1035 perf_disable();
1036 if (ctx->nr_active)
1037 list_for_each_entry(event, &ctx->group_list, group_entry)
1038 group_sched_out(event, cpuctx, ctx);
1040 perf_enable();
1041 out:
1042 spin_unlock(&ctx->lock);
1046 * Test whether two contexts are equivalent, i.e. whether they
1047 * have both been cloned from the same version of the same context
1048 * and they both have the same number of enabled events.
1049 * If the number of enabled events is the same, then the set
1050 * of enabled events should be the same, because these are both
1051 * inherited contexts, therefore we can't access individual events
1052 * in them directly with an fd; we can only enable/disable all
1053 * events via prctl, or enable/disable all events in a family
1054 * via ioctl, which will have the same effect on both contexts.
1056 static int context_equiv(struct perf_event_context *ctx1,
1057 struct perf_event_context *ctx2)
1059 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1060 && ctx1->parent_gen == ctx2->parent_gen
1061 && !ctx1->pin_count && !ctx2->pin_count;
1064 static void __perf_event_sync_stat(struct perf_event *event,
1065 struct perf_event *next_event)
1067 u64 value;
1069 if (!event->attr.inherit_stat)
1070 return;
1073 * Update the event value, we cannot use perf_event_read()
1074 * because we're in the middle of a context switch and have IRQs
1075 * disabled, which upsets smp_call_function_single(), however
1076 * we know the event must be on the current CPU, therefore we
1077 * don't need to use it.
1079 switch (event->state) {
1080 case PERF_EVENT_STATE_ACTIVE:
1081 event->pmu->read(event);
1082 /* fall-through */
1084 case PERF_EVENT_STATE_INACTIVE:
1085 update_event_times(event);
1086 break;
1088 default:
1089 break;
1093 * In order to keep per-task stats reliable we need to flip the event
1094 * values when we flip the contexts.
1096 value = atomic64_read(&next_event->count);
1097 value = atomic64_xchg(&event->count, value);
1098 atomic64_set(&next_event->count, value);
1100 swap(event->total_time_enabled, next_event->total_time_enabled);
1101 swap(event->total_time_running, next_event->total_time_running);
1104 * Since we swizzled the values, update the user visible data too.
1106 perf_event_update_userpage(event);
1107 perf_event_update_userpage(next_event);
1110 #define list_next_entry(pos, member) \
1111 list_entry(pos->member.next, typeof(*pos), member)
1113 static void perf_event_sync_stat(struct perf_event_context *ctx,
1114 struct perf_event_context *next_ctx)
1116 struct perf_event *event, *next_event;
1118 if (!ctx->nr_stat)
1119 return;
1121 update_context_time(ctx);
1123 event = list_first_entry(&ctx->event_list,
1124 struct perf_event, event_entry);
1126 next_event = list_first_entry(&next_ctx->event_list,
1127 struct perf_event, event_entry);
1129 while (&event->event_entry != &ctx->event_list &&
1130 &next_event->event_entry != &next_ctx->event_list) {
1132 __perf_event_sync_stat(event, next_event);
1134 event = list_next_entry(event, event_entry);
1135 next_event = list_next_entry(next_event, event_entry);
1140 * Called from scheduler to remove the events of the current task,
1141 * with interrupts disabled.
1143 * We stop each event and update the event value in event->count.
1145 * This does not protect us against NMI, but disable()
1146 * sets the disabled bit in the control field of event _before_
1147 * accessing the event control register. If a NMI hits, then it will
1148 * not restart the event.
1150 void perf_event_task_sched_out(struct task_struct *task,
1151 struct task_struct *next, int cpu)
1153 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1154 struct perf_event_context *ctx = task->perf_event_ctxp;
1155 struct perf_event_context *next_ctx;
1156 struct perf_event_context *parent;
1157 struct pt_regs *regs;
1158 int do_switch = 1;
1160 regs = task_pt_regs(task);
1161 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1163 if (likely(!ctx || !cpuctx->task_ctx))
1164 return;
1166 rcu_read_lock();
1167 parent = rcu_dereference(ctx->parent_ctx);
1168 next_ctx = next->perf_event_ctxp;
1169 if (parent && next_ctx &&
1170 rcu_dereference(next_ctx->parent_ctx) == parent) {
1172 * Looks like the two contexts are clones, so we might be
1173 * able to optimize the context switch. We lock both
1174 * contexts and check that they are clones under the
1175 * lock (including re-checking that neither has been
1176 * uncloned in the meantime). It doesn't matter which
1177 * order we take the locks because no other cpu could
1178 * be trying to lock both of these tasks.
1180 spin_lock(&ctx->lock);
1181 spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1182 if (context_equiv(ctx, next_ctx)) {
1184 * XXX do we need a memory barrier of sorts
1185 * wrt to rcu_dereference() of perf_event_ctxp
1187 task->perf_event_ctxp = next_ctx;
1188 next->perf_event_ctxp = ctx;
1189 ctx->task = next;
1190 next_ctx->task = task;
1191 do_switch = 0;
1193 perf_event_sync_stat(ctx, next_ctx);
1195 spin_unlock(&next_ctx->lock);
1196 spin_unlock(&ctx->lock);
1198 rcu_read_unlock();
1200 if (do_switch) {
1201 __perf_event_sched_out(ctx, cpuctx);
1202 cpuctx->task_ctx = NULL;
1207 * Called with IRQs disabled
1209 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1211 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1213 if (!cpuctx->task_ctx)
1214 return;
1216 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1217 return;
1219 __perf_event_sched_out(ctx, cpuctx);
1220 cpuctx->task_ctx = NULL;
1224 * Called with IRQs disabled
1226 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1228 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1231 static void
1232 __perf_event_sched_in(struct perf_event_context *ctx,
1233 struct perf_cpu_context *cpuctx, int cpu)
1235 struct perf_event *event;
1236 int can_add_hw = 1;
1238 spin_lock(&ctx->lock);
1239 ctx->is_active = 1;
1240 if (likely(!ctx->nr_events))
1241 goto out;
1243 ctx->timestamp = perf_clock();
1245 perf_disable();
1248 * First go through the list and put on any pinned groups
1249 * in order to give them the best chance of going on.
1251 list_for_each_entry(event, &ctx->group_list, group_entry) {
1252 if (event->state <= PERF_EVENT_STATE_OFF ||
1253 !event->attr.pinned)
1254 continue;
1255 if (event->cpu != -1 && event->cpu != cpu)
1256 continue;
1258 if (group_can_go_on(event, cpuctx, 1))
1259 group_sched_in(event, cpuctx, ctx, cpu);
1262 * If this pinned group hasn't been scheduled,
1263 * put it in error state.
1265 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1266 update_group_times(event);
1267 event->state = PERF_EVENT_STATE_ERROR;
1271 list_for_each_entry(event, &ctx->group_list, group_entry) {
1273 * Ignore events in OFF or ERROR state, and
1274 * ignore pinned events since we did them already.
1276 if (event->state <= PERF_EVENT_STATE_OFF ||
1277 event->attr.pinned)
1278 continue;
1281 * Listen to the 'cpu' scheduling filter constraint
1282 * of events:
1284 if (event->cpu != -1 && event->cpu != cpu)
1285 continue;
1287 if (group_can_go_on(event, cpuctx, can_add_hw))
1288 if (group_sched_in(event, cpuctx, ctx, cpu))
1289 can_add_hw = 0;
1291 perf_enable();
1292 out:
1293 spin_unlock(&ctx->lock);
1297 * Called from scheduler to add the events of the current task
1298 * with interrupts disabled.
1300 * We restore the event value and then enable it.
1302 * This does not protect us against NMI, but enable()
1303 * sets the enabled bit in the control field of event _before_
1304 * accessing the event control register. If a NMI hits, then it will
1305 * keep the event running.
1307 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1309 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1310 struct perf_event_context *ctx = task->perf_event_ctxp;
1312 if (likely(!ctx))
1313 return;
1314 if (cpuctx->task_ctx == ctx)
1315 return;
1316 __perf_event_sched_in(ctx, cpuctx, cpu);
1317 cpuctx->task_ctx = ctx;
1320 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1322 struct perf_event_context *ctx = &cpuctx->ctx;
1324 __perf_event_sched_in(ctx, cpuctx, cpu);
1327 #define MAX_INTERRUPTS (~0ULL)
1329 static void perf_log_throttle(struct perf_event *event, int enable);
1331 static void perf_adjust_period(struct perf_event *event, u64 events)
1333 struct hw_perf_event *hwc = &event->hw;
1334 u64 period, sample_period;
1335 s64 delta;
1337 events *= hwc->sample_period;
1338 period = div64_u64(events, event->attr.sample_freq);
1340 delta = (s64)(period - hwc->sample_period);
1341 delta = (delta + 7) / 8; /* low pass filter */
1343 sample_period = hwc->sample_period + delta;
1345 if (!sample_period)
1346 sample_period = 1;
1348 hwc->sample_period = sample_period;
1351 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1353 struct perf_event *event;
1354 struct hw_perf_event *hwc;
1355 u64 interrupts, freq;
1357 spin_lock(&ctx->lock);
1358 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1359 if (event->state != PERF_EVENT_STATE_ACTIVE)
1360 continue;
1362 hwc = &event->hw;
1364 interrupts = hwc->interrupts;
1365 hwc->interrupts = 0;
1368 * unthrottle events on the tick
1370 if (interrupts == MAX_INTERRUPTS) {
1371 perf_log_throttle(event, 1);
1372 event->pmu->unthrottle(event);
1373 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1376 if (!event->attr.freq || !event->attr.sample_freq)
1377 continue;
1380 * if the specified freq < HZ then we need to skip ticks
1382 if (event->attr.sample_freq < HZ) {
1383 freq = event->attr.sample_freq;
1385 hwc->freq_count += freq;
1386 hwc->freq_interrupts += interrupts;
1388 if (hwc->freq_count < HZ)
1389 continue;
1391 interrupts = hwc->freq_interrupts;
1392 hwc->freq_interrupts = 0;
1393 hwc->freq_count -= HZ;
1394 } else
1395 freq = HZ;
1397 perf_adjust_period(event, freq * interrupts);
1400 * In order to avoid being stalled by an (accidental) huge
1401 * sample period, force reset the sample period if we didn't
1402 * get any events in this freq period.
1404 if (!interrupts) {
1405 perf_disable();
1406 event->pmu->disable(event);
1407 atomic64_set(&hwc->period_left, 0);
1408 event->pmu->enable(event);
1409 perf_enable();
1412 spin_unlock(&ctx->lock);
1416 * Round-robin a context's events:
1418 static void rotate_ctx(struct perf_event_context *ctx)
1420 struct perf_event *event;
1422 if (!ctx->nr_events)
1423 return;
1425 spin_lock(&ctx->lock);
1427 * Rotate the first entry last (works just fine for group events too):
1429 perf_disable();
1430 list_for_each_entry(event, &ctx->group_list, group_entry) {
1431 list_move_tail(&event->group_entry, &ctx->group_list);
1432 break;
1434 perf_enable();
1436 spin_unlock(&ctx->lock);
1439 void perf_event_task_tick(struct task_struct *curr, int cpu)
1441 struct perf_cpu_context *cpuctx;
1442 struct perf_event_context *ctx;
1444 if (!atomic_read(&nr_events))
1445 return;
1447 cpuctx = &per_cpu(perf_cpu_context, cpu);
1448 ctx = curr->perf_event_ctxp;
1450 perf_ctx_adjust_freq(&cpuctx->ctx);
1451 if (ctx)
1452 perf_ctx_adjust_freq(ctx);
1454 perf_event_cpu_sched_out(cpuctx);
1455 if (ctx)
1456 __perf_event_task_sched_out(ctx);
1458 rotate_ctx(&cpuctx->ctx);
1459 if (ctx)
1460 rotate_ctx(ctx);
1462 perf_event_cpu_sched_in(cpuctx, cpu);
1463 if (ctx)
1464 perf_event_task_sched_in(curr, cpu);
1468 * Enable all of a task's events that have been marked enable-on-exec.
1469 * This expects task == current.
1471 static void perf_event_enable_on_exec(struct task_struct *task)
1473 struct perf_event_context *ctx;
1474 struct perf_event *event;
1475 unsigned long flags;
1476 int enabled = 0;
1478 local_irq_save(flags);
1479 ctx = task->perf_event_ctxp;
1480 if (!ctx || !ctx->nr_events)
1481 goto out;
1483 __perf_event_task_sched_out(ctx);
1485 spin_lock(&ctx->lock);
1487 list_for_each_entry(event, &ctx->group_list, group_entry) {
1488 if (!event->attr.enable_on_exec)
1489 continue;
1490 event->attr.enable_on_exec = 0;
1491 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1492 continue;
1493 __perf_event_mark_enabled(event, ctx);
1494 enabled = 1;
1498 * Unclone this context if we enabled any event.
1500 if (enabled)
1501 unclone_ctx(ctx);
1503 spin_unlock(&ctx->lock);
1505 perf_event_task_sched_in(task, smp_processor_id());
1506 out:
1507 local_irq_restore(flags);
1511 * Cross CPU call to read the hardware event
1513 static void __perf_event_read(void *info)
1515 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1516 struct perf_event *event = info;
1517 struct perf_event_context *ctx = event->ctx;
1520 * If this is a task context, we need to check whether it is
1521 * the current task context of this cpu. If not it has been
1522 * scheduled out before the smp call arrived. In that case
1523 * event->count would have been updated to a recent sample
1524 * when the event was scheduled out.
1526 if (ctx->task && cpuctx->task_ctx != ctx)
1527 return;
1529 spin_lock(&ctx->lock);
1530 update_context_time(ctx);
1531 update_event_times(event);
1532 spin_unlock(&ctx->lock);
1534 event->pmu->read(event);
1537 static u64 perf_event_read(struct perf_event *event)
1540 * If event is enabled and currently active on a CPU, update the
1541 * value in the event structure:
1543 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1544 smp_call_function_single(event->oncpu,
1545 __perf_event_read, event, 1);
1546 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1547 struct perf_event_context *ctx = event->ctx;
1548 unsigned long flags;
1550 spin_lock_irqsave(&ctx->lock, flags);
1551 update_context_time(ctx);
1552 update_event_times(event);
1553 spin_unlock_irqrestore(&ctx->lock, flags);
1556 return atomic64_read(&event->count);
1560 * Initialize the perf_event context in a task_struct:
1562 static void
1563 __perf_event_init_context(struct perf_event_context *ctx,
1564 struct task_struct *task)
1566 memset(ctx, 0, sizeof(*ctx));
1567 spin_lock_init(&ctx->lock);
1568 mutex_init(&ctx->mutex);
1569 INIT_LIST_HEAD(&ctx->group_list);
1570 INIT_LIST_HEAD(&ctx->event_list);
1571 atomic_set(&ctx->refcount, 1);
1572 ctx->task = task;
1575 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1577 struct perf_event_context *ctx;
1578 struct perf_cpu_context *cpuctx;
1579 struct task_struct *task;
1580 unsigned long flags;
1581 int err;
1584 * If cpu is not a wildcard then this is a percpu event:
1586 if (cpu != -1) {
1587 /* Must be root to operate on a CPU event: */
1588 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1589 return ERR_PTR(-EACCES);
1591 if (cpu < 0 || cpu > num_possible_cpus())
1592 return ERR_PTR(-EINVAL);
1595 * We could be clever and allow to attach a event to an
1596 * offline CPU and activate it when the CPU comes up, but
1597 * that's for later.
1599 if (!cpu_isset(cpu, cpu_online_map))
1600 return ERR_PTR(-ENODEV);
1602 cpuctx = &per_cpu(perf_cpu_context, cpu);
1603 ctx = &cpuctx->ctx;
1604 get_ctx(ctx);
1606 return ctx;
1609 rcu_read_lock();
1610 if (!pid)
1611 task = current;
1612 else
1613 task = find_task_by_vpid(pid);
1614 if (task)
1615 get_task_struct(task);
1616 rcu_read_unlock();
1618 if (!task)
1619 return ERR_PTR(-ESRCH);
1622 * Can't attach events to a dying task.
1624 err = -ESRCH;
1625 if (task->flags & PF_EXITING)
1626 goto errout;
1628 /* Reuse ptrace permission checks for now. */
1629 err = -EACCES;
1630 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1631 goto errout;
1633 retry:
1634 ctx = perf_lock_task_context(task, &flags);
1635 if (ctx) {
1636 unclone_ctx(ctx);
1637 spin_unlock_irqrestore(&ctx->lock, flags);
1640 if (!ctx) {
1641 ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1642 err = -ENOMEM;
1643 if (!ctx)
1644 goto errout;
1645 __perf_event_init_context(ctx, task);
1646 get_ctx(ctx);
1647 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1649 * We raced with some other task; use
1650 * the context they set.
1652 kfree(ctx);
1653 goto retry;
1655 get_task_struct(task);
1658 put_task_struct(task);
1659 return ctx;
1661 errout:
1662 put_task_struct(task);
1663 return ERR_PTR(err);
1666 static void perf_event_free_filter(struct perf_event *event);
1668 static void free_event_rcu(struct rcu_head *head)
1670 struct perf_event *event;
1672 event = container_of(head, struct perf_event, rcu_head);
1673 if (event->ns)
1674 put_pid_ns(event->ns);
1675 perf_event_free_filter(event);
1676 kfree(event);
1679 static void perf_pending_sync(struct perf_event *event);
1681 static void free_event(struct perf_event *event)
1683 perf_pending_sync(event);
1685 if (!event->parent) {
1686 atomic_dec(&nr_events);
1687 if (event->attr.mmap)
1688 atomic_dec(&nr_mmap_events);
1689 if (event->attr.comm)
1690 atomic_dec(&nr_comm_events);
1691 if (event->attr.task)
1692 atomic_dec(&nr_task_events);
1695 if (event->output) {
1696 fput(event->output->filp);
1697 event->output = NULL;
1700 if (event->destroy)
1701 event->destroy(event);
1703 put_ctx(event->ctx);
1704 call_rcu(&event->rcu_head, free_event_rcu);
1708 * Called when the last reference to the file is gone.
1710 static int perf_release(struct inode *inode, struct file *file)
1712 struct perf_event *event = file->private_data;
1713 struct perf_event_context *ctx = event->ctx;
1715 file->private_data = NULL;
1717 WARN_ON_ONCE(ctx->parent_ctx);
1718 mutex_lock(&ctx->mutex);
1719 perf_event_remove_from_context(event);
1720 mutex_unlock(&ctx->mutex);
1722 mutex_lock(&event->owner->perf_event_mutex);
1723 list_del_init(&event->owner_entry);
1724 mutex_unlock(&event->owner->perf_event_mutex);
1725 put_task_struct(event->owner);
1727 free_event(event);
1729 return 0;
1732 int perf_event_release_kernel(struct perf_event *event)
1734 struct perf_event_context *ctx = event->ctx;
1736 WARN_ON_ONCE(ctx->parent_ctx);
1737 mutex_lock(&ctx->mutex);
1738 perf_event_remove_from_context(event);
1739 mutex_unlock(&ctx->mutex);
1741 mutex_lock(&event->owner->perf_event_mutex);
1742 list_del_init(&event->owner_entry);
1743 mutex_unlock(&event->owner->perf_event_mutex);
1744 put_task_struct(event->owner);
1746 free_event(event);
1748 return 0;
1750 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1752 static int perf_event_read_size(struct perf_event *event)
1754 int entry = sizeof(u64); /* value */
1755 int size = 0;
1756 int nr = 1;
1758 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1759 size += sizeof(u64);
1761 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1762 size += sizeof(u64);
1764 if (event->attr.read_format & PERF_FORMAT_ID)
1765 entry += sizeof(u64);
1767 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1768 nr += event->group_leader->nr_siblings;
1769 size += sizeof(u64);
1772 size += entry * nr;
1774 return size;
1777 u64 perf_event_read_value(struct perf_event *event)
1779 struct perf_event *child;
1780 u64 total = 0;
1782 total += perf_event_read(event);
1783 list_for_each_entry(child, &event->child_list, child_list)
1784 total += perf_event_read(child);
1786 return total;
1788 EXPORT_SYMBOL_GPL(perf_event_read_value);
1790 static int perf_event_read_group(struct perf_event *event,
1791 u64 read_format, char __user *buf)
1793 struct perf_event *leader = event->group_leader, *sub;
1794 int n = 0, size = 0, ret = 0;
1795 u64 values[5];
1796 u64 count;
1798 count = perf_event_read_value(leader);
1800 values[n++] = 1 + leader->nr_siblings;
1801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1802 values[n++] = leader->total_time_enabled +
1803 atomic64_read(&leader->child_total_time_enabled);
1805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1806 values[n++] = leader->total_time_running +
1807 atomic64_read(&leader->child_total_time_running);
1809 values[n++] = count;
1810 if (read_format & PERF_FORMAT_ID)
1811 values[n++] = primary_event_id(leader);
1813 size = n * sizeof(u64);
1815 if (copy_to_user(buf, values, size))
1816 return -EFAULT;
1818 ret += size;
1820 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1821 n = 0;
1823 values[n++] = perf_event_read_value(sub);
1824 if (read_format & PERF_FORMAT_ID)
1825 values[n++] = primary_event_id(sub);
1827 size = n * sizeof(u64);
1829 if (copy_to_user(buf + size, values, size))
1830 return -EFAULT;
1832 ret += size;
1835 return ret;
1838 static int perf_event_read_one(struct perf_event *event,
1839 u64 read_format, char __user *buf)
1841 u64 values[4];
1842 int n = 0;
1844 values[n++] = perf_event_read_value(event);
1845 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1846 values[n++] = event->total_time_enabled +
1847 atomic64_read(&event->child_total_time_enabled);
1849 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1850 values[n++] = event->total_time_running +
1851 atomic64_read(&event->child_total_time_running);
1853 if (read_format & PERF_FORMAT_ID)
1854 values[n++] = primary_event_id(event);
1856 if (copy_to_user(buf, values, n * sizeof(u64)))
1857 return -EFAULT;
1859 return n * sizeof(u64);
1863 * Read the performance event - simple non blocking version for now
1865 static ssize_t
1866 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1868 u64 read_format = event->attr.read_format;
1869 int ret;
1872 * Return end-of-file for a read on a event that is in
1873 * error state (i.e. because it was pinned but it couldn't be
1874 * scheduled on to the CPU at some point).
1876 if (event->state == PERF_EVENT_STATE_ERROR)
1877 return 0;
1879 if (count < perf_event_read_size(event))
1880 return -ENOSPC;
1882 WARN_ON_ONCE(event->ctx->parent_ctx);
1883 mutex_lock(&event->child_mutex);
1884 if (read_format & PERF_FORMAT_GROUP)
1885 ret = perf_event_read_group(event, read_format, buf);
1886 else
1887 ret = perf_event_read_one(event, read_format, buf);
1888 mutex_unlock(&event->child_mutex);
1890 return ret;
1893 static ssize_t
1894 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1896 struct perf_event *event = file->private_data;
1898 return perf_read_hw(event, buf, count);
1901 static unsigned int perf_poll(struct file *file, poll_table *wait)
1903 struct perf_event *event = file->private_data;
1904 struct perf_mmap_data *data;
1905 unsigned int events = POLL_HUP;
1907 rcu_read_lock();
1908 data = rcu_dereference(event->data);
1909 if (data)
1910 events = atomic_xchg(&data->poll, 0);
1911 rcu_read_unlock();
1913 poll_wait(file, &event->waitq, wait);
1915 return events;
1918 static void perf_event_reset(struct perf_event *event)
1920 (void)perf_event_read(event);
1921 atomic64_set(&event->count, 0);
1922 perf_event_update_userpage(event);
1926 * Holding the top-level event's child_mutex means that any
1927 * descendant process that has inherited this event will block
1928 * in sync_child_event if it goes to exit, thus satisfying the
1929 * task existence requirements of perf_event_enable/disable.
1931 static void perf_event_for_each_child(struct perf_event *event,
1932 void (*func)(struct perf_event *))
1934 struct perf_event *child;
1936 WARN_ON_ONCE(event->ctx->parent_ctx);
1937 mutex_lock(&event->child_mutex);
1938 func(event);
1939 list_for_each_entry(child, &event->child_list, child_list)
1940 func(child);
1941 mutex_unlock(&event->child_mutex);
1944 static void perf_event_for_each(struct perf_event *event,
1945 void (*func)(struct perf_event *))
1947 struct perf_event_context *ctx = event->ctx;
1948 struct perf_event *sibling;
1950 WARN_ON_ONCE(ctx->parent_ctx);
1951 mutex_lock(&ctx->mutex);
1952 event = event->group_leader;
1954 perf_event_for_each_child(event, func);
1955 func(event);
1956 list_for_each_entry(sibling, &event->sibling_list, group_entry)
1957 perf_event_for_each_child(event, func);
1958 mutex_unlock(&ctx->mutex);
1961 static int perf_event_period(struct perf_event *event, u64 __user *arg)
1963 struct perf_event_context *ctx = event->ctx;
1964 unsigned long size;
1965 int ret = 0;
1966 u64 value;
1968 if (!event->attr.sample_period)
1969 return -EINVAL;
1971 size = copy_from_user(&value, arg, sizeof(value));
1972 if (size != sizeof(value))
1973 return -EFAULT;
1975 if (!value)
1976 return -EINVAL;
1978 spin_lock_irq(&ctx->lock);
1979 if (event->attr.freq) {
1980 if (value > sysctl_perf_event_sample_rate) {
1981 ret = -EINVAL;
1982 goto unlock;
1985 event->attr.sample_freq = value;
1986 } else {
1987 event->attr.sample_period = value;
1988 event->hw.sample_period = value;
1990 unlock:
1991 spin_unlock_irq(&ctx->lock);
1993 return ret;
1996 static int perf_event_set_output(struct perf_event *event, int output_fd);
1997 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
1999 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2001 struct perf_event *event = file->private_data;
2002 void (*func)(struct perf_event *);
2003 u32 flags = arg;
2005 switch (cmd) {
2006 case PERF_EVENT_IOC_ENABLE:
2007 func = perf_event_enable;
2008 break;
2009 case PERF_EVENT_IOC_DISABLE:
2010 func = perf_event_disable;
2011 break;
2012 case PERF_EVENT_IOC_RESET:
2013 func = perf_event_reset;
2014 break;
2016 case PERF_EVENT_IOC_REFRESH:
2017 return perf_event_refresh(event, arg);
2019 case PERF_EVENT_IOC_PERIOD:
2020 return perf_event_period(event, (u64 __user *)arg);
2022 case PERF_EVENT_IOC_SET_OUTPUT:
2023 return perf_event_set_output(event, arg);
2025 case PERF_EVENT_IOC_SET_FILTER:
2026 return perf_event_set_filter(event, (void __user *)arg);
2028 default:
2029 return -ENOTTY;
2032 if (flags & PERF_IOC_FLAG_GROUP)
2033 perf_event_for_each(event, func);
2034 else
2035 perf_event_for_each_child(event, func);
2037 return 0;
2040 int perf_event_task_enable(void)
2042 struct perf_event *event;
2044 mutex_lock(&current->perf_event_mutex);
2045 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2046 perf_event_for_each_child(event, perf_event_enable);
2047 mutex_unlock(&current->perf_event_mutex);
2049 return 0;
2052 int perf_event_task_disable(void)
2054 struct perf_event *event;
2056 mutex_lock(&current->perf_event_mutex);
2057 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2058 perf_event_for_each_child(event, perf_event_disable);
2059 mutex_unlock(&current->perf_event_mutex);
2061 return 0;
2064 #ifndef PERF_EVENT_INDEX_OFFSET
2065 # define PERF_EVENT_INDEX_OFFSET 0
2066 #endif
2068 static int perf_event_index(struct perf_event *event)
2070 if (event->state != PERF_EVENT_STATE_ACTIVE)
2071 return 0;
2073 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2077 * Callers need to ensure there can be no nesting of this function, otherwise
2078 * the seqlock logic goes bad. We can not serialize this because the arch
2079 * code calls this from NMI context.
2081 void perf_event_update_userpage(struct perf_event *event)
2083 struct perf_event_mmap_page *userpg;
2084 struct perf_mmap_data *data;
2086 rcu_read_lock();
2087 data = rcu_dereference(event->data);
2088 if (!data)
2089 goto unlock;
2091 userpg = data->user_page;
2094 * Disable preemption so as to not let the corresponding user-space
2095 * spin too long if we get preempted.
2097 preempt_disable();
2098 ++userpg->lock;
2099 barrier();
2100 userpg->index = perf_event_index(event);
2101 userpg->offset = atomic64_read(&event->count);
2102 if (event->state == PERF_EVENT_STATE_ACTIVE)
2103 userpg->offset -= atomic64_read(&event->hw.prev_count);
2105 userpg->time_enabled = event->total_time_enabled +
2106 atomic64_read(&event->child_total_time_enabled);
2108 userpg->time_running = event->total_time_running +
2109 atomic64_read(&event->child_total_time_running);
2111 barrier();
2112 ++userpg->lock;
2113 preempt_enable();
2114 unlock:
2115 rcu_read_unlock();
2118 static unsigned long perf_data_size(struct perf_mmap_data *data)
2120 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2123 #ifndef CONFIG_PERF_USE_VMALLOC
2126 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2129 static struct page *
2130 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2132 if (pgoff > data->nr_pages)
2133 return NULL;
2135 if (pgoff == 0)
2136 return virt_to_page(data->user_page);
2138 return virt_to_page(data->data_pages[pgoff - 1]);
2141 static struct perf_mmap_data *
2142 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2144 struct perf_mmap_data *data;
2145 unsigned long size;
2146 int i;
2148 WARN_ON(atomic_read(&event->mmap_count));
2150 size = sizeof(struct perf_mmap_data);
2151 size += nr_pages * sizeof(void *);
2153 data = kzalloc(size, GFP_KERNEL);
2154 if (!data)
2155 goto fail;
2157 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2158 if (!data->user_page)
2159 goto fail_user_page;
2161 for (i = 0; i < nr_pages; i++) {
2162 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2163 if (!data->data_pages[i])
2164 goto fail_data_pages;
2167 data->data_order = 0;
2168 data->nr_pages = nr_pages;
2170 return data;
2172 fail_data_pages:
2173 for (i--; i >= 0; i--)
2174 free_page((unsigned long)data->data_pages[i]);
2176 free_page((unsigned long)data->user_page);
2178 fail_user_page:
2179 kfree(data);
2181 fail:
2182 return NULL;
2185 static void perf_mmap_free_page(unsigned long addr)
2187 struct page *page = virt_to_page((void *)addr);
2189 page->mapping = NULL;
2190 __free_page(page);
2193 static void perf_mmap_data_free(struct perf_mmap_data *data)
2195 int i;
2197 perf_mmap_free_page((unsigned long)data->user_page);
2198 for (i = 0; i < data->nr_pages; i++)
2199 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2202 #else
2205 * Back perf_mmap() with vmalloc memory.
2207 * Required for architectures that have d-cache aliasing issues.
2210 static struct page *
2211 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2213 if (pgoff > (1UL << data->data_order))
2214 return NULL;
2216 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2219 static void perf_mmap_unmark_page(void *addr)
2221 struct page *page = vmalloc_to_page(addr);
2223 page->mapping = NULL;
2226 static void perf_mmap_data_free_work(struct work_struct *work)
2228 struct perf_mmap_data *data;
2229 void *base;
2230 int i, nr;
2232 data = container_of(work, struct perf_mmap_data, work);
2233 nr = 1 << data->data_order;
2235 base = data->user_page;
2236 for (i = 0; i < nr + 1; i++)
2237 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2239 vfree(base);
2242 static void perf_mmap_data_free(struct perf_mmap_data *data)
2244 schedule_work(&data->work);
2247 static struct perf_mmap_data *
2248 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2250 struct perf_mmap_data *data;
2251 unsigned long size;
2252 void *all_buf;
2254 WARN_ON(atomic_read(&event->mmap_count));
2256 size = sizeof(struct perf_mmap_data);
2257 size += sizeof(void *);
2259 data = kzalloc(size, GFP_KERNEL);
2260 if (!data)
2261 goto fail;
2263 INIT_WORK(&data->work, perf_mmap_data_free_work);
2265 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2266 if (!all_buf)
2267 goto fail_all_buf;
2269 data->user_page = all_buf;
2270 data->data_pages[0] = all_buf + PAGE_SIZE;
2271 data->data_order = ilog2(nr_pages);
2272 data->nr_pages = 1;
2274 return data;
2276 fail_all_buf:
2277 kfree(data);
2279 fail:
2280 return NULL;
2283 #endif
2285 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2287 struct perf_event *event = vma->vm_file->private_data;
2288 struct perf_mmap_data *data;
2289 int ret = VM_FAULT_SIGBUS;
2291 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2292 if (vmf->pgoff == 0)
2293 ret = 0;
2294 return ret;
2297 rcu_read_lock();
2298 data = rcu_dereference(event->data);
2299 if (!data)
2300 goto unlock;
2302 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2303 goto unlock;
2305 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2306 if (!vmf->page)
2307 goto unlock;
2309 get_page(vmf->page);
2310 vmf->page->mapping = vma->vm_file->f_mapping;
2311 vmf->page->index = vmf->pgoff;
2313 ret = 0;
2314 unlock:
2315 rcu_read_unlock();
2317 return ret;
2320 static void
2321 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2323 long max_size = perf_data_size(data);
2325 atomic_set(&data->lock, -1);
2327 if (event->attr.watermark) {
2328 data->watermark = min_t(long, max_size,
2329 event->attr.wakeup_watermark);
2332 if (!data->watermark)
2333 data->watermark = max_t(long, PAGE_SIZE, max_size / 2);
2336 rcu_assign_pointer(event->data, data);
2339 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2341 struct perf_mmap_data *data;
2343 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2344 perf_mmap_data_free(data);
2345 kfree(data);
2348 static void perf_mmap_data_release(struct perf_event *event)
2350 struct perf_mmap_data *data = event->data;
2352 WARN_ON(atomic_read(&event->mmap_count));
2354 rcu_assign_pointer(event->data, NULL);
2355 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2358 static void perf_mmap_open(struct vm_area_struct *vma)
2360 struct perf_event *event = vma->vm_file->private_data;
2362 atomic_inc(&event->mmap_count);
2365 static void perf_mmap_close(struct vm_area_struct *vma)
2367 struct perf_event *event = vma->vm_file->private_data;
2369 WARN_ON_ONCE(event->ctx->parent_ctx);
2370 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2371 unsigned long size = perf_data_size(event->data);
2372 struct user_struct *user = current_user();
2374 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2375 vma->vm_mm->locked_vm -= event->data->nr_locked;
2376 perf_mmap_data_release(event);
2377 mutex_unlock(&event->mmap_mutex);
2381 static const struct vm_operations_struct perf_mmap_vmops = {
2382 .open = perf_mmap_open,
2383 .close = perf_mmap_close,
2384 .fault = perf_mmap_fault,
2385 .page_mkwrite = perf_mmap_fault,
2388 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2390 struct perf_event *event = file->private_data;
2391 unsigned long user_locked, user_lock_limit;
2392 struct user_struct *user = current_user();
2393 unsigned long locked, lock_limit;
2394 struct perf_mmap_data *data;
2395 unsigned long vma_size;
2396 unsigned long nr_pages;
2397 long user_extra, extra;
2398 int ret = 0;
2400 if (!(vma->vm_flags & VM_SHARED))
2401 return -EINVAL;
2403 vma_size = vma->vm_end - vma->vm_start;
2404 nr_pages = (vma_size / PAGE_SIZE) - 1;
2407 * If we have data pages ensure they're a power-of-two number, so we
2408 * can do bitmasks instead of modulo.
2410 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2411 return -EINVAL;
2413 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2414 return -EINVAL;
2416 if (vma->vm_pgoff != 0)
2417 return -EINVAL;
2419 WARN_ON_ONCE(event->ctx->parent_ctx);
2420 mutex_lock(&event->mmap_mutex);
2421 if (event->output) {
2422 ret = -EINVAL;
2423 goto unlock;
2426 if (atomic_inc_not_zero(&event->mmap_count)) {
2427 if (nr_pages != event->data->nr_pages)
2428 ret = -EINVAL;
2429 goto unlock;
2432 user_extra = nr_pages + 1;
2433 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2436 * Increase the limit linearly with more CPUs:
2438 user_lock_limit *= num_online_cpus();
2440 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2442 extra = 0;
2443 if (user_locked > user_lock_limit)
2444 extra = user_locked - user_lock_limit;
2446 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2447 lock_limit >>= PAGE_SHIFT;
2448 locked = vma->vm_mm->locked_vm + extra;
2450 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2451 !capable(CAP_IPC_LOCK)) {
2452 ret = -EPERM;
2453 goto unlock;
2456 WARN_ON(event->data);
2458 data = perf_mmap_data_alloc(event, nr_pages);
2459 ret = -ENOMEM;
2460 if (!data)
2461 goto unlock;
2463 ret = 0;
2464 perf_mmap_data_init(event, data);
2466 atomic_set(&event->mmap_count, 1);
2467 atomic_long_add(user_extra, &user->locked_vm);
2468 vma->vm_mm->locked_vm += extra;
2469 event->data->nr_locked = extra;
2470 if (vma->vm_flags & VM_WRITE)
2471 event->data->writable = 1;
2473 unlock:
2474 mutex_unlock(&event->mmap_mutex);
2476 vma->vm_flags |= VM_RESERVED;
2477 vma->vm_ops = &perf_mmap_vmops;
2479 return ret;
2482 static int perf_fasync(int fd, struct file *filp, int on)
2484 struct inode *inode = filp->f_path.dentry->d_inode;
2485 struct perf_event *event = filp->private_data;
2486 int retval;
2488 mutex_lock(&inode->i_mutex);
2489 retval = fasync_helper(fd, filp, on, &event->fasync);
2490 mutex_unlock(&inode->i_mutex);
2492 if (retval < 0)
2493 return retval;
2495 return 0;
2498 static const struct file_operations perf_fops = {
2499 .release = perf_release,
2500 .read = perf_read,
2501 .poll = perf_poll,
2502 .unlocked_ioctl = perf_ioctl,
2503 .compat_ioctl = perf_ioctl,
2504 .mmap = perf_mmap,
2505 .fasync = perf_fasync,
2509 * Perf event wakeup
2511 * If there's data, ensure we set the poll() state and publish everything
2512 * to user-space before waking everybody up.
2515 void perf_event_wakeup(struct perf_event *event)
2517 wake_up_all(&event->waitq);
2519 if (event->pending_kill) {
2520 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2521 event->pending_kill = 0;
2526 * Pending wakeups
2528 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2530 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2531 * single linked list and use cmpxchg() to add entries lockless.
2534 static void perf_pending_event(struct perf_pending_entry *entry)
2536 struct perf_event *event = container_of(entry,
2537 struct perf_event, pending);
2539 if (event->pending_disable) {
2540 event->pending_disable = 0;
2541 __perf_event_disable(event);
2544 if (event->pending_wakeup) {
2545 event->pending_wakeup = 0;
2546 perf_event_wakeup(event);
2550 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2552 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2553 PENDING_TAIL,
2556 static void perf_pending_queue(struct perf_pending_entry *entry,
2557 void (*func)(struct perf_pending_entry *))
2559 struct perf_pending_entry **head;
2561 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2562 return;
2564 entry->func = func;
2566 head = &get_cpu_var(perf_pending_head);
2568 do {
2569 entry->next = *head;
2570 } while (cmpxchg(head, entry->next, entry) != entry->next);
2572 set_perf_event_pending();
2574 put_cpu_var(perf_pending_head);
2577 static int __perf_pending_run(void)
2579 struct perf_pending_entry *list;
2580 int nr = 0;
2582 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2583 while (list != PENDING_TAIL) {
2584 void (*func)(struct perf_pending_entry *);
2585 struct perf_pending_entry *entry = list;
2587 list = list->next;
2589 func = entry->func;
2590 entry->next = NULL;
2592 * Ensure we observe the unqueue before we issue the wakeup,
2593 * so that we won't be waiting forever.
2594 * -- see perf_not_pending().
2596 smp_wmb();
2598 func(entry);
2599 nr++;
2602 return nr;
2605 static inline int perf_not_pending(struct perf_event *event)
2608 * If we flush on whatever cpu we run, there is a chance we don't
2609 * need to wait.
2611 get_cpu();
2612 __perf_pending_run();
2613 put_cpu();
2616 * Ensure we see the proper queue state before going to sleep
2617 * so that we do not miss the wakeup. -- see perf_pending_handle()
2619 smp_rmb();
2620 return event->pending.next == NULL;
2623 static void perf_pending_sync(struct perf_event *event)
2625 wait_event(event->waitq, perf_not_pending(event));
2628 void perf_event_do_pending(void)
2630 __perf_pending_run();
2634 * Callchain support -- arch specific
2637 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2639 return NULL;
2643 * Output
2645 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2646 unsigned long offset, unsigned long head)
2648 unsigned long mask;
2650 if (!data->writable)
2651 return true;
2653 mask = perf_data_size(data) - 1;
2655 offset = (offset - tail) & mask;
2656 head = (head - tail) & mask;
2658 if ((int)(head - offset) < 0)
2659 return false;
2661 return true;
2664 static void perf_output_wakeup(struct perf_output_handle *handle)
2666 atomic_set(&handle->data->poll, POLL_IN);
2668 if (handle->nmi) {
2669 handle->event->pending_wakeup = 1;
2670 perf_pending_queue(&handle->event->pending,
2671 perf_pending_event);
2672 } else
2673 perf_event_wakeup(handle->event);
2677 * Curious locking construct.
2679 * We need to ensure a later event_id doesn't publish a head when a former
2680 * event_id isn't done writing. However since we need to deal with NMIs we
2681 * cannot fully serialize things.
2683 * What we do is serialize between CPUs so we only have to deal with NMI
2684 * nesting on a single CPU.
2686 * We only publish the head (and generate a wakeup) when the outer-most
2687 * event_id completes.
2689 static void perf_output_lock(struct perf_output_handle *handle)
2691 struct perf_mmap_data *data = handle->data;
2692 int cur, cpu = get_cpu();
2694 handle->locked = 0;
2696 for (;;) {
2697 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2698 if (cur == -1) {
2699 handle->locked = 1;
2700 break;
2702 if (cur == cpu)
2703 break;
2705 cpu_relax();
2709 static void perf_output_unlock(struct perf_output_handle *handle)
2711 struct perf_mmap_data *data = handle->data;
2712 unsigned long head;
2713 int cpu;
2715 data->done_head = data->head;
2717 if (!handle->locked)
2718 goto out;
2720 again:
2722 * The xchg implies a full barrier that ensures all writes are done
2723 * before we publish the new head, matched by a rmb() in userspace when
2724 * reading this position.
2726 while ((head = atomic_long_xchg(&data->done_head, 0)))
2727 data->user_page->data_head = head;
2730 * NMI can happen here, which means we can miss a done_head update.
2733 cpu = atomic_xchg(&data->lock, -1);
2734 WARN_ON_ONCE(cpu != smp_processor_id());
2737 * Therefore we have to validate we did not indeed do so.
2739 if (unlikely(atomic_long_read(&data->done_head))) {
2741 * Since we had it locked, we can lock it again.
2743 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2744 cpu_relax();
2746 goto again;
2749 if (atomic_xchg(&data->wakeup, 0))
2750 perf_output_wakeup(handle);
2751 out:
2752 put_cpu();
2755 void perf_output_copy(struct perf_output_handle *handle,
2756 const void *buf, unsigned int len)
2758 unsigned int pages_mask;
2759 unsigned long offset;
2760 unsigned int size;
2761 void **pages;
2763 offset = handle->offset;
2764 pages_mask = handle->data->nr_pages - 1;
2765 pages = handle->data->data_pages;
2767 do {
2768 unsigned long page_offset;
2769 unsigned long page_size;
2770 int nr;
2772 nr = (offset >> PAGE_SHIFT) & pages_mask;
2773 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2774 page_offset = offset & (page_size - 1);
2775 size = min_t(unsigned int, page_size - page_offset, len);
2777 memcpy(pages[nr] + page_offset, buf, size);
2779 len -= size;
2780 buf += size;
2781 offset += size;
2782 } while (len);
2784 handle->offset = offset;
2787 * Check we didn't copy past our reservation window, taking the
2788 * possible unsigned int wrap into account.
2790 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2793 int perf_output_begin(struct perf_output_handle *handle,
2794 struct perf_event *event, unsigned int size,
2795 int nmi, int sample)
2797 struct perf_event *output_event;
2798 struct perf_mmap_data *data;
2799 unsigned long tail, offset, head;
2800 int have_lost;
2801 struct {
2802 struct perf_event_header header;
2803 u64 id;
2804 u64 lost;
2805 } lost_event;
2807 rcu_read_lock();
2809 * For inherited events we send all the output towards the parent.
2811 if (event->parent)
2812 event = event->parent;
2814 output_event = rcu_dereference(event->output);
2815 if (output_event)
2816 event = output_event;
2818 data = rcu_dereference(event->data);
2819 if (!data)
2820 goto out;
2822 handle->data = data;
2823 handle->event = event;
2824 handle->nmi = nmi;
2825 handle->sample = sample;
2827 if (!data->nr_pages)
2828 goto fail;
2830 have_lost = atomic_read(&data->lost);
2831 if (have_lost)
2832 size += sizeof(lost_event);
2834 perf_output_lock(handle);
2836 do {
2838 * Userspace could choose to issue a mb() before updating the
2839 * tail pointer. So that all reads will be completed before the
2840 * write is issued.
2842 tail = ACCESS_ONCE(data->user_page->data_tail);
2843 smp_rmb();
2844 offset = head = atomic_long_read(&data->head);
2845 head += size;
2846 if (unlikely(!perf_output_space(data, tail, offset, head)))
2847 goto fail;
2848 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2850 handle->offset = offset;
2851 handle->head = head;
2853 if (head - tail > data->watermark)
2854 atomic_set(&data->wakeup, 1);
2856 if (have_lost) {
2857 lost_event.header.type = PERF_RECORD_LOST;
2858 lost_event.header.misc = 0;
2859 lost_event.header.size = sizeof(lost_event);
2860 lost_event.id = event->id;
2861 lost_event.lost = atomic_xchg(&data->lost, 0);
2863 perf_output_put(handle, lost_event);
2866 return 0;
2868 fail:
2869 atomic_inc(&data->lost);
2870 perf_output_unlock(handle);
2871 out:
2872 rcu_read_unlock();
2874 return -ENOSPC;
2877 void perf_output_end(struct perf_output_handle *handle)
2879 struct perf_event *event = handle->event;
2880 struct perf_mmap_data *data = handle->data;
2882 int wakeup_events = event->attr.wakeup_events;
2884 if (handle->sample && wakeup_events) {
2885 int events = atomic_inc_return(&data->events);
2886 if (events >= wakeup_events) {
2887 atomic_sub(wakeup_events, &data->events);
2888 atomic_set(&data->wakeup, 1);
2892 perf_output_unlock(handle);
2893 rcu_read_unlock();
2896 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2899 * only top level events have the pid namespace they were created in
2901 if (event->parent)
2902 event = event->parent;
2904 return task_tgid_nr_ns(p, event->ns);
2907 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2910 * only top level events have the pid namespace they were created in
2912 if (event->parent)
2913 event = event->parent;
2915 return task_pid_nr_ns(p, event->ns);
2918 static void perf_output_read_one(struct perf_output_handle *handle,
2919 struct perf_event *event)
2921 u64 read_format = event->attr.read_format;
2922 u64 values[4];
2923 int n = 0;
2925 values[n++] = atomic64_read(&event->count);
2926 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2927 values[n++] = event->total_time_enabled +
2928 atomic64_read(&event->child_total_time_enabled);
2930 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2931 values[n++] = event->total_time_running +
2932 atomic64_read(&event->child_total_time_running);
2934 if (read_format & PERF_FORMAT_ID)
2935 values[n++] = primary_event_id(event);
2937 perf_output_copy(handle, values, n * sizeof(u64));
2941 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2943 static void perf_output_read_group(struct perf_output_handle *handle,
2944 struct perf_event *event)
2946 struct perf_event *leader = event->group_leader, *sub;
2947 u64 read_format = event->attr.read_format;
2948 u64 values[5];
2949 int n = 0;
2951 values[n++] = 1 + leader->nr_siblings;
2953 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2954 values[n++] = leader->total_time_enabled;
2956 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2957 values[n++] = leader->total_time_running;
2959 if (leader != event)
2960 leader->pmu->read(leader);
2962 values[n++] = atomic64_read(&leader->count);
2963 if (read_format & PERF_FORMAT_ID)
2964 values[n++] = primary_event_id(leader);
2966 perf_output_copy(handle, values, n * sizeof(u64));
2968 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2969 n = 0;
2971 if (sub != event)
2972 sub->pmu->read(sub);
2974 values[n++] = atomic64_read(&sub->count);
2975 if (read_format & PERF_FORMAT_ID)
2976 values[n++] = primary_event_id(sub);
2978 perf_output_copy(handle, values, n * sizeof(u64));
2982 static void perf_output_read(struct perf_output_handle *handle,
2983 struct perf_event *event)
2985 if (event->attr.read_format & PERF_FORMAT_GROUP)
2986 perf_output_read_group(handle, event);
2987 else
2988 perf_output_read_one(handle, event);
2991 void perf_output_sample(struct perf_output_handle *handle,
2992 struct perf_event_header *header,
2993 struct perf_sample_data *data,
2994 struct perf_event *event)
2996 u64 sample_type = data->type;
2998 perf_output_put(handle, *header);
3000 if (sample_type & PERF_SAMPLE_IP)
3001 perf_output_put(handle, data->ip);
3003 if (sample_type & PERF_SAMPLE_TID)
3004 perf_output_put(handle, data->tid_entry);
3006 if (sample_type & PERF_SAMPLE_TIME)
3007 perf_output_put(handle, data->time);
3009 if (sample_type & PERF_SAMPLE_ADDR)
3010 perf_output_put(handle, data->addr);
3012 if (sample_type & PERF_SAMPLE_ID)
3013 perf_output_put(handle, data->id);
3015 if (sample_type & PERF_SAMPLE_STREAM_ID)
3016 perf_output_put(handle, data->stream_id);
3018 if (sample_type & PERF_SAMPLE_CPU)
3019 perf_output_put(handle, data->cpu_entry);
3021 if (sample_type & PERF_SAMPLE_PERIOD)
3022 perf_output_put(handle, data->period);
3024 if (sample_type & PERF_SAMPLE_READ)
3025 perf_output_read(handle, event);
3027 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3028 if (data->callchain) {
3029 int size = 1;
3031 if (data->callchain)
3032 size += data->callchain->nr;
3034 size *= sizeof(u64);
3036 perf_output_copy(handle, data->callchain, size);
3037 } else {
3038 u64 nr = 0;
3039 perf_output_put(handle, nr);
3043 if (sample_type & PERF_SAMPLE_RAW) {
3044 if (data->raw) {
3045 perf_output_put(handle, data->raw->size);
3046 perf_output_copy(handle, data->raw->data,
3047 data->raw->size);
3048 } else {
3049 struct {
3050 u32 size;
3051 u32 data;
3052 } raw = {
3053 .size = sizeof(u32),
3054 .data = 0,
3056 perf_output_put(handle, raw);
3061 void perf_prepare_sample(struct perf_event_header *header,
3062 struct perf_sample_data *data,
3063 struct perf_event *event,
3064 struct pt_regs *regs)
3066 u64 sample_type = event->attr.sample_type;
3068 data->type = sample_type;
3070 header->type = PERF_RECORD_SAMPLE;
3071 header->size = sizeof(*header);
3073 header->misc = 0;
3074 header->misc |= perf_misc_flags(regs);
3076 if (sample_type & PERF_SAMPLE_IP) {
3077 data->ip = perf_instruction_pointer(regs);
3079 header->size += sizeof(data->ip);
3082 if (sample_type & PERF_SAMPLE_TID) {
3083 /* namespace issues */
3084 data->tid_entry.pid = perf_event_pid(event, current);
3085 data->tid_entry.tid = perf_event_tid(event, current);
3087 header->size += sizeof(data->tid_entry);
3090 if (sample_type & PERF_SAMPLE_TIME) {
3091 data->time = perf_clock();
3093 header->size += sizeof(data->time);
3096 if (sample_type & PERF_SAMPLE_ADDR)
3097 header->size += sizeof(data->addr);
3099 if (sample_type & PERF_SAMPLE_ID) {
3100 data->id = primary_event_id(event);
3102 header->size += sizeof(data->id);
3105 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3106 data->stream_id = event->id;
3108 header->size += sizeof(data->stream_id);
3111 if (sample_type & PERF_SAMPLE_CPU) {
3112 data->cpu_entry.cpu = raw_smp_processor_id();
3113 data->cpu_entry.reserved = 0;
3115 header->size += sizeof(data->cpu_entry);
3118 if (sample_type & PERF_SAMPLE_PERIOD)
3119 header->size += sizeof(data->period);
3121 if (sample_type & PERF_SAMPLE_READ)
3122 header->size += perf_event_read_size(event);
3124 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3125 int size = 1;
3127 data->callchain = perf_callchain(regs);
3129 if (data->callchain)
3130 size += data->callchain->nr;
3132 header->size += size * sizeof(u64);
3135 if (sample_type & PERF_SAMPLE_RAW) {
3136 int size = sizeof(u32);
3138 if (data->raw)
3139 size += data->raw->size;
3140 else
3141 size += sizeof(u32);
3143 WARN_ON_ONCE(size & (sizeof(u64)-1));
3144 header->size += size;
3148 static void perf_event_output(struct perf_event *event, int nmi,
3149 struct perf_sample_data *data,
3150 struct pt_regs *regs)
3152 struct perf_output_handle handle;
3153 struct perf_event_header header;
3155 perf_prepare_sample(&header, data, event, regs);
3157 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3158 return;
3160 perf_output_sample(&handle, &header, data, event);
3162 perf_output_end(&handle);
3166 * read event_id
3169 struct perf_read_event {
3170 struct perf_event_header header;
3172 u32 pid;
3173 u32 tid;
3176 static void
3177 perf_event_read_event(struct perf_event *event,
3178 struct task_struct *task)
3180 struct perf_output_handle handle;
3181 struct perf_read_event read_event = {
3182 .header = {
3183 .type = PERF_RECORD_READ,
3184 .misc = 0,
3185 .size = sizeof(read_event) + perf_event_read_size(event),
3187 .pid = perf_event_pid(event, task),
3188 .tid = perf_event_tid(event, task),
3190 int ret;
3192 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3193 if (ret)
3194 return;
3196 perf_output_put(&handle, read_event);
3197 perf_output_read(&handle, event);
3199 perf_output_end(&handle);
3203 * task tracking -- fork/exit
3205 * enabled by: attr.comm | attr.mmap | attr.task
3208 struct perf_task_event {
3209 struct task_struct *task;
3210 struct perf_event_context *task_ctx;
3212 struct {
3213 struct perf_event_header header;
3215 u32 pid;
3216 u32 ppid;
3217 u32 tid;
3218 u32 ptid;
3219 u64 time;
3220 } event_id;
3223 static void perf_event_task_output(struct perf_event *event,
3224 struct perf_task_event *task_event)
3226 struct perf_output_handle handle;
3227 int size;
3228 struct task_struct *task = task_event->task;
3229 int ret;
3231 size = task_event->event_id.header.size;
3232 ret = perf_output_begin(&handle, event, size, 0, 0);
3234 if (ret)
3235 return;
3237 task_event->event_id.pid = perf_event_pid(event, task);
3238 task_event->event_id.ppid = perf_event_pid(event, current);
3240 task_event->event_id.tid = perf_event_tid(event, task);
3241 task_event->event_id.ptid = perf_event_tid(event, current);
3243 task_event->event_id.time = perf_clock();
3245 perf_output_put(&handle, task_event->event_id);
3247 perf_output_end(&handle);
3250 static int perf_event_task_match(struct perf_event *event)
3252 if (event->attr.comm || event->attr.mmap || event->attr.task)
3253 return 1;
3255 return 0;
3258 static void perf_event_task_ctx(struct perf_event_context *ctx,
3259 struct perf_task_event *task_event)
3261 struct perf_event *event;
3263 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3264 if (perf_event_task_match(event))
3265 perf_event_task_output(event, task_event);
3269 static void perf_event_task_event(struct perf_task_event *task_event)
3271 struct perf_cpu_context *cpuctx;
3272 struct perf_event_context *ctx = task_event->task_ctx;
3274 rcu_read_lock();
3275 cpuctx = &get_cpu_var(perf_cpu_context);
3276 perf_event_task_ctx(&cpuctx->ctx, task_event);
3277 put_cpu_var(perf_cpu_context);
3279 if (!ctx)
3280 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3281 if (ctx)
3282 perf_event_task_ctx(ctx, task_event);
3283 rcu_read_unlock();
3286 static void perf_event_task(struct task_struct *task,
3287 struct perf_event_context *task_ctx,
3288 int new)
3290 struct perf_task_event task_event;
3292 if (!atomic_read(&nr_comm_events) &&
3293 !atomic_read(&nr_mmap_events) &&
3294 !atomic_read(&nr_task_events))
3295 return;
3297 task_event = (struct perf_task_event){
3298 .task = task,
3299 .task_ctx = task_ctx,
3300 .event_id = {
3301 .header = {
3302 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3303 .misc = 0,
3304 .size = sizeof(task_event.event_id),
3306 /* .pid */
3307 /* .ppid */
3308 /* .tid */
3309 /* .ptid */
3313 perf_event_task_event(&task_event);
3316 void perf_event_fork(struct task_struct *task)
3318 perf_event_task(task, NULL, 1);
3322 * comm tracking
3325 struct perf_comm_event {
3326 struct task_struct *task;
3327 char *comm;
3328 int comm_size;
3330 struct {
3331 struct perf_event_header header;
3333 u32 pid;
3334 u32 tid;
3335 } event_id;
3338 static void perf_event_comm_output(struct perf_event *event,
3339 struct perf_comm_event *comm_event)
3341 struct perf_output_handle handle;
3342 int size = comm_event->event_id.header.size;
3343 int ret = perf_output_begin(&handle, event, size, 0, 0);
3345 if (ret)
3346 return;
3348 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3349 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3351 perf_output_put(&handle, comm_event->event_id);
3352 perf_output_copy(&handle, comm_event->comm,
3353 comm_event->comm_size);
3354 perf_output_end(&handle);
3357 static int perf_event_comm_match(struct perf_event *event)
3359 if (event->attr.comm)
3360 return 1;
3362 return 0;
3365 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3366 struct perf_comm_event *comm_event)
3368 struct perf_event *event;
3370 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3371 if (perf_event_comm_match(event))
3372 perf_event_comm_output(event, comm_event);
3376 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3378 struct perf_cpu_context *cpuctx;
3379 struct perf_event_context *ctx;
3380 unsigned int size;
3381 char comm[TASK_COMM_LEN];
3383 memset(comm, 0, sizeof(comm));
3384 strncpy(comm, comm_event->task->comm, sizeof(comm));
3385 size = ALIGN(strlen(comm)+1, sizeof(u64));
3387 comm_event->comm = comm;
3388 comm_event->comm_size = size;
3390 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3392 rcu_read_lock();
3393 cpuctx = &get_cpu_var(perf_cpu_context);
3394 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3395 put_cpu_var(perf_cpu_context);
3398 * doesn't really matter which of the child contexts the
3399 * events ends up in.
3401 ctx = rcu_dereference(current->perf_event_ctxp);
3402 if (ctx)
3403 perf_event_comm_ctx(ctx, comm_event);
3404 rcu_read_unlock();
3407 void perf_event_comm(struct task_struct *task)
3409 struct perf_comm_event comm_event;
3411 if (task->perf_event_ctxp)
3412 perf_event_enable_on_exec(task);
3414 if (!atomic_read(&nr_comm_events))
3415 return;
3417 comm_event = (struct perf_comm_event){
3418 .task = task,
3419 /* .comm */
3420 /* .comm_size */
3421 .event_id = {
3422 .header = {
3423 .type = PERF_RECORD_COMM,
3424 .misc = 0,
3425 /* .size */
3427 /* .pid */
3428 /* .tid */
3432 perf_event_comm_event(&comm_event);
3436 * mmap tracking
3439 struct perf_mmap_event {
3440 struct vm_area_struct *vma;
3442 const char *file_name;
3443 int file_size;
3445 struct {
3446 struct perf_event_header header;
3448 u32 pid;
3449 u32 tid;
3450 u64 start;
3451 u64 len;
3452 u64 pgoff;
3453 } event_id;
3456 static void perf_event_mmap_output(struct perf_event *event,
3457 struct perf_mmap_event *mmap_event)
3459 struct perf_output_handle handle;
3460 int size = mmap_event->event_id.header.size;
3461 int ret = perf_output_begin(&handle, event, size, 0, 0);
3463 if (ret)
3464 return;
3466 mmap_event->event_id.pid = perf_event_pid(event, current);
3467 mmap_event->event_id.tid = perf_event_tid(event, current);
3469 perf_output_put(&handle, mmap_event->event_id);
3470 perf_output_copy(&handle, mmap_event->file_name,
3471 mmap_event->file_size);
3472 perf_output_end(&handle);
3475 static int perf_event_mmap_match(struct perf_event *event,
3476 struct perf_mmap_event *mmap_event)
3478 if (event->attr.mmap)
3479 return 1;
3481 return 0;
3484 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3485 struct perf_mmap_event *mmap_event)
3487 struct perf_event *event;
3489 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3490 if (perf_event_mmap_match(event, mmap_event))
3491 perf_event_mmap_output(event, mmap_event);
3495 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3497 struct perf_cpu_context *cpuctx;
3498 struct perf_event_context *ctx;
3499 struct vm_area_struct *vma = mmap_event->vma;
3500 struct file *file = vma->vm_file;
3501 unsigned int size;
3502 char tmp[16];
3503 char *buf = NULL;
3504 const char *name;
3506 memset(tmp, 0, sizeof(tmp));
3508 if (file) {
3510 * d_path works from the end of the buffer backwards, so we
3511 * need to add enough zero bytes after the string to handle
3512 * the 64bit alignment we do later.
3514 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3515 if (!buf) {
3516 name = strncpy(tmp, "//enomem", sizeof(tmp));
3517 goto got_name;
3519 name = d_path(&file->f_path, buf, PATH_MAX);
3520 if (IS_ERR(name)) {
3521 name = strncpy(tmp, "//toolong", sizeof(tmp));
3522 goto got_name;
3524 } else {
3525 if (arch_vma_name(mmap_event->vma)) {
3526 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3527 sizeof(tmp));
3528 goto got_name;
3531 if (!vma->vm_mm) {
3532 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3533 goto got_name;
3536 name = strncpy(tmp, "//anon", sizeof(tmp));
3537 goto got_name;
3540 got_name:
3541 size = ALIGN(strlen(name)+1, sizeof(u64));
3543 mmap_event->file_name = name;
3544 mmap_event->file_size = size;
3546 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3548 rcu_read_lock();
3549 cpuctx = &get_cpu_var(perf_cpu_context);
3550 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3551 put_cpu_var(perf_cpu_context);
3554 * doesn't really matter which of the child contexts the
3555 * events ends up in.
3557 ctx = rcu_dereference(current->perf_event_ctxp);
3558 if (ctx)
3559 perf_event_mmap_ctx(ctx, mmap_event);
3560 rcu_read_unlock();
3562 kfree(buf);
3565 void __perf_event_mmap(struct vm_area_struct *vma)
3567 struct perf_mmap_event mmap_event;
3569 if (!atomic_read(&nr_mmap_events))
3570 return;
3572 mmap_event = (struct perf_mmap_event){
3573 .vma = vma,
3574 /* .file_name */
3575 /* .file_size */
3576 .event_id = {
3577 .header = {
3578 .type = PERF_RECORD_MMAP,
3579 .misc = 0,
3580 /* .size */
3582 /* .pid */
3583 /* .tid */
3584 .start = vma->vm_start,
3585 .len = vma->vm_end - vma->vm_start,
3586 .pgoff = vma->vm_pgoff,
3590 perf_event_mmap_event(&mmap_event);
3594 * IRQ throttle logging
3597 static void perf_log_throttle(struct perf_event *event, int enable)
3599 struct perf_output_handle handle;
3600 int ret;
3602 struct {
3603 struct perf_event_header header;
3604 u64 time;
3605 u64 id;
3606 u64 stream_id;
3607 } throttle_event = {
3608 .header = {
3609 .type = PERF_RECORD_THROTTLE,
3610 .misc = 0,
3611 .size = sizeof(throttle_event),
3613 .time = perf_clock(),
3614 .id = primary_event_id(event),
3615 .stream_id = event->id,
3618 if (enable)
3619 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3621 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3622 if (ret)
3623 return;
3625 perf_output_put(&handle, throttle_event);
3626 perf_output_end(&handle);
3630 * Generic event overflow handling, sampling.
3633 static int __perf_event_overflow(struct perf_event *event, int nmi,
3634 int throttle, struct perf_sample_data *data,
3635 struct pt_regs *regs)
3637 int events = atomic_read(&event->event_limit);
3638 struct hw_perf_event *hwc = &event->hw;
3639 int ret = 0;
3641 throttle = (throttle && event->pmu->unthrottle != NULL);
3643 if (!throttle) {
3644 hwc->interrupts++;
3645 } else {
3646 if (hwc->interrupts != MAX_INTERRUPTS) {
3647 hwc->interrupts++;
3648 if (HZ * hwc->interrupts >
3649 (u64)sysctl_perf_event_sample_rate) {
3650 hwc->interrupts = MAX_INTERRUPTS;
3651 perf_log_throttle(event, 0);
3652 ret = 1;
3654 } else {
3656 * Keep re-disabling events even though on the previous
3657 * pass we disabled it - just in case we raced with a
3658 * sched-in and the event got enabled again:
3660 ret = 1;
3664 if (event->attr.freq) {
3665 u64 now = perf_clock();
3666 s64 delta = now - hwc->freq_stamp;
3668 hwc->freq_stamp = now;
3670 if (delta > 0 && delta < TICK_NSEC)
3671 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3675 * XXX event_limit might not quite work as expected on inherited
3676 * events
3679 event->pending_kill = POLL_IN;
3680 if (events && atomic_dec_and_test(&event->event_limit)) {
3681 ret = 1;
3682 event->pending_kill = POLL_HUP;
3683 if (nmi) {
3684 event->pending_disable = 1;
3685 perf_pending_queue(&event->pending,
3686 perf_pending_event);
3687 } else
3688 perf_event_disable(event);
3691 if (event->overflow_handler)
3692 event->overflow_handler(event, nmi, data, regs);
3693 else
3694 perf_event_output(event, nmi, data, regs);
3696 return ret;
3699 int perf_event_overflow(struct perf_event *event, int nmi,
3700 struct perf_sample_data *data,
3701 struct pt_regs *regs)
3703 return __perf_event_overflow(event, nmi, 1, data, regs);
3707 * Generic software event infrastructure
3711 * We directly increment event->count and keep a second value in
3712 * event->hw.period_left to count intervals. This period event
3713 * is kept in the range [-sample_period, 0] so that we can use the
3714 * sign as trigger.
3717 static u64 perf_swevent_set_period(struct perf_event *event)
3719 struct hw_perf_event *hwc = &event->hw;
3720 u64 period = hwc->last_period;
3721 u64 nr, offset;
3722 s64 old, val;
3724 hwc->last_period = hwc->sample_period;
3726 again:
3727 old = val = atomic64_read(&hwc->period_left);
3728 if (val < 0)
3729 return 0;
3731 nr = div64_u64(period + val, period);
3732 offset = nr * period;
3733 val -= offset;
3734 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3735 goto again;
3737 return nr;
3740 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3741 int nmi, struct perf_sample_data *data,
3742 struct pt_regs *regs)
3744 struct hw_perf_event *hwc = &event->hw;
3745 int throttle = 0;
3747 data->period = event->hw.last_period;
3748 if (!overflow)
3749 overflow = perf_swevent_set_period(event);
3751 if (hwc->interrupts == MAX_INTERRUPTS)
3752 return;
3754 for (; overflow; overflow--) {
3755 if (__perf_event_overflow(event, nmi, throttle,
3756 data, regs)) {
3758 * We inhibit the overflow from happening when
3759 * hwc->interrupts == MAX_INTERRUPTS.
3761 break;
3763 throttle = 1;
3767 static void perf_swevent_unthrottle(struct perf_event *event)
3770 * Nothing to do, we already reset hwc->interrupts.
3774 static void perf_swevent_add(struct perf_event *event, u64 nr,
3775 int nmi, struct perf_sample_data *data,
3776 struct pt_regs *regs)
3778 struct hw_perf_event *hwc = &event->hw;
3780 atomic64_add(nr, &event->count);
3782 if (!regs)
3783 return;
3785 if (!hwc->sample_period)
3786 return;
3788 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3789 return perf_swevent_overflow(event, 1, nmi, data, regs);
3791 if (atomic64_add_negative(nr, &hwc->period_left))
3792 return;
3794 perf_swevent_overflow(event, 0, nmi, data, regs);
3797 static int perf_swevent_is_counting(struct perf_event *event)
3800 * The event is active, we're good!
3802 if (event->state == PERF_EVENT_STATE_ACTIVE)
3803 return 1;
3806 * The event is off/error, not counting.
3808 if (event->state != PERF_EVENT_STATE_INACTIVE)
3809 return 0;
3812 * The event is inactive, if the context is active
3813 * we're part of a group that didn't make it on the 'pmu',
3814 * not counting.
3816 if (event->ctx->is_active)
3817 return 0;
3820 * We're inactive and the context is too, this means the
3821 * task is scheduled out, we're counting events that happen
3822 * to us, like migration events.
3824 return 1;
3827 static int perf_tp_event_match(struct perf_event *event,
3828 struct perf_sample_data *data);
3830 static int perf_swevent_match(struct perf_event *event,
3831 enum perf_type_id type,
3832 u32 event_id,
3833 struct perf_sample_data *data,
3834 struct pt_regs *regs)
3836 if (!perf_swevent_is_counting(event))
3837 return 0;
3839 if (event->attr.type != type)
3840 return 0;
3841 if (event->attr.config != event_id)
3842 return 0;
3844 if (regs) {
3845 if (event->attr.exclude_user && user_mode(regs))
3846 return 0;
3848 if (event->attr.exclude_kernel && !user_mode(regs))
3849 return 0;
3852 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3853 !perf_tp_event_match(event, data))
3854 return 0;
3856 return 1;
3859 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3860 enum perf_type_id type,
3861 u32 event_id, u64 nr, int nmi,
3862 struct perf_sample_data *data,
3863 struct pt_regs *regs)
3865 struct perf_event *event;
3867 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3868 if (perf_swevent_match(event, type, event_id, data, regs))
3869 perf_swevent_add(event, nr, nmi, data, regs);
3873 static int *perf_swevent_recursion_context(struct perf_cpu_context *cpuctx)
3875 if (in_nmi())
3876 return &cpuctx->recursion[3];
3878 if (in_irq())
3879 return &cpuctx->recursion[2];
3881 if (in_softirq())
3882 return &cpuctx->recursion[1];
3884 return &cpuctx->recursion[0];
3887 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3888 u64 nr, int nmi,
3889 struct perf_sample_data *data,
3890 struct pt_regs *regs)
3892 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3893 int *recursion = perf_swevent_recursion_context(cpuctx);
3894 struct perf_event_context *ctx;
3896 if (*recursion)
3897 goto out;
3899 (*recursion)++;
3900 barrier();
3902 rcu_read_lock();
3903 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3904 nr, nmi, data, regs);
3906 * doesn't really matter which of the child contexts the
3907 * events ends up in.
3909 ctx = rcu_dereference(current->perf_event_ctxp);
3910 if (ctx)
3911 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3912 rcu_read_unlock();
3914 barrier();
3915 (*recursion)--;
3917 out:
3918 put_cpu_var(perf_cpu_context);
3921 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3922 struct pt_regs *regs, u64 addr)
3924 struct perf_sample_data data = {
3925 .addr = addr,
3928 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi,
3929 &data, regs);
3932 static void perf_swevent_read(struct perf_event *event)
3936 static int perf_swevent_enable(struct perf_event *event)
3938 struct hw_perf_event *hwc = &event->hw;
3940 if (hwc->sample_period) {
3941 hwc->last_period = hwc->sample_period;
3942 perf_swevent_set_period(event);
3944 return 0;
3947 static void perf_swevent_disable(struct perf_event *event)
3951 static const struct pmu perf_ops_generic = {
3952 .enable = perf_swevent_enable,
3953 .disable = perf_swevent_disable,
3954 .read = perf_swevent_read,
3955 .unthrottle = perf_swevent_unthrottle,
3959 * hrtimer based swevent callback
3962 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
3964 enum hrtimer_restart ret = HRTIMER_RESTART;
3965 struct perf_sample_data data;
3966 struct pt_regs *regs;
3967 struct perf_event *event;
3968 u64 period;
3970 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
3971 event->pmu->read(event);
3973 data.addr = 0;
3974 regs = get_irq_regs();
3976 * In case we exclude kernel IPs or are somehow not in interrupt
3977 * context, provide the next best thing, the user IP.
3979 if ((event->attr.exclude_kernel || !regs) &&
3980 !event->attr.exclude_user)
3981 regs = task_pt_regs(current);
3983 if (regs) {
3984 if (!(event->attr.exclude_idle && current->pid == 0))
3985 if (perf_event_overflow(event, 0, &data, regs))
3986 ret = HRTIMER_NORESTART;
3989 period = max_t(u64, 10000, event->hw.sample_period);
3990 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
3992 return ret;
3995 static void perf_swevent_start_hrtimer(struct perf_event *event)
3997 struct hw_perf_event *hwc = &event->hw;
3999 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4000 hwc->hrtimer.function = perf_swevent_hrtimer;
4001 if (hwc->sample_period) {
4002 u64 period;
4004 if (hwc->remaining) {
4005 if (hwc->remaining < 0)
4006 period = 10000;
4007 else
4008 period = hwc->remaining;
4009 hwc->remaining = 0;
4010 } else {
4011 period = max_t(u64, 10000, hwc->sample_period);
4013 __hrtimer_start_range_ns(&hwc->hrtimer,
4014 ns_to_ktime(period), 0,
4015 HRTIMER_MODE_REL, 0);
4019 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4021 struct hw_perf_event *hwc = &event->hw;
4023 if (hwc->sample_period) {
4024 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4025 hwc->remaining = ktime_to_ns(remaining);
4027 hrtimer_cancel(&hwc->hrtimer);
4032 * Software event: cpu wall time clock
4035 static void cpu_clock_perf_event_update(struct perf_event *event)
4037 int cpu = raw_smp_processor_id();
4038 s64 prev;
4039 u64 now;
4041 now = cpu_clock(cpu);
4042 prev = atomic64_read(&event->hw.prev_count);
4043 atomic64_set(&event->hw.prev_count, now);
4044 atomic64_add(now - prev, &event->count);
4047 static int cpu_clock_perf_event_enable(struct perf_event *event)
4049 struct hw_perf_event *hwc = &event->hw;
4050 int cpu = raw_smp_processor_id();
4052 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4053 perf_swevent_start_hrtimer(event);
4055 return 0;
4058 static void cpu_clock_perf_event_disable(struct perf_event *event)
4060 perf_swevent_cancel_hrtimer(event);
4061 cpu_clock_perf_event_update(event);
4064 static void cpu_clock_perf_event_read(struct perf_event *event)
4066 cpu_clock_perf_event_update(event);
4069 static const struct pmu perf_ops_cpu_clock = {
4070 .enable = cpu_clock_perf_event_enable,
4071 .disable = cpu_clock_perf_event_disable,
4072 .read = cpu_clock_perf_event_read,
4076 * Software event: task time clock
4079 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4081 u64 prev;
4082 s64 delta;
4084 prev = atomic64_xchg(&event->hw.prev_count, now);
4085 delta = now - prev;
4086 atomic64_add(delta, &event->count);
4089 static int task_clock_perf_event_enable(struct perf_event *event)
4091 struct hw_perf_event *hwc = &event->hw;
4092 u64 now;
4094 now = event->ctx->time;
4096 atomic64_set(&hwc->prev_count, now);
4098 perf_swevent_start_hrtimer(event);
4100 return 0;
4103 static void task_clock_perf_event_disable(struct perf_event *event)
4105 perf_swevent_cancel_hrtimer(event);
4106 task_clock_perf_event_update(event, event->ctx->time);
4110 static void task_clock_perf_event_read(struct perf_event *event)
4112 u64 time;
4114 if (!in_nmi()) {
4115 update_context_time(event->ctx);
4116 time = event->ctx->time;
4117 } else {
4118 u64 now = perf_clock();
4119 u64 delta = now - event->ctx->timestamp;
4120 time = event->ctx->time + delta;
4123 task_clock_perf_event_update(event, time);
4126 static const struct pmu perf_ops_task_clock = {
4127 .enable = task_clock_perf_event_enable,
4128 .disable = task_clock_perf_event_disable,
4129 .read = task_clock_perf_event_read,
4132 #ifdef CONFIG_EVENT_PROFILE
4134 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4135 int entry_size)
4137 struct perf_raw_record raw = {
4138 .size = entry_size,
4139 .data = record,
4142 struct perf_sample_data data = {
4143 .addr = addr,
4144 .raw = &raw,
4147 struct pt_regs *regs = get_irq_regs();
4149 if (!regs)
4150 regs = task_pt_regs(current);
4152 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4153 &data, regs);
4155 EXPORT_SYMBOL_GPL(perf_tp_event);
4157 static int perf_tp_event_match(struct perf_event *event,
4158 struct perf_sample_data *data)
4160 void *record = data->raw->data;
4162 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4163 return 1;
4164 return 0;
4167 static void tp_perf_event_destroy(struct perf_event *event)
4169 ftrace_profile_disable(event->attr.config);
4172 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4175 * Raw tracepoint data is a severe data leak, only allow root to
4176 * have these.
4178 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4179 perf_paranoid_tracepoint_raw() &&
4180 !capable(CAP_SYS_ADMIN))
4181 return ERR_PTR(-EPERM);
4183 if (ftrace_profile_enable(event->attr.config))
4184 return NULL;
4186 event->destroy = tp_perf_event_destroy;
4188 return &perf_ops_generic;
4191 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4193 char *filter_str;
4194 int ret;
4196 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4197 return -EINVAL;
4199 filter_str = strndup_user(arg, PAGE_SIZE);
4200 if (IS_ERR(filter_str))
4201 return PTR_ERR(filter_str);
4203 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4205 kfree(filter_str);
4206 return ret;
4209 static void perf_event_free_filter(struct perf_event *event)
4211 ftrace_profile_free_filter(event);
4214 #else
4216 static int perf_tp_event_match(struct perf_event *event,
4217 struct perf_sample_data *data)
4219 return 1;
4222 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4224 return NULL;
4227 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4229 return -ENOENT;
4232 static void perf_event_free_filter(struct perf_event *event)
4236 #endif /* CONFIG_EVENT_PROFILE */
4238 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4239 static void bp_perf_event_destroy(struct perf_event *event)
4241 release_bp_slot(event);
4244 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4246 int err;
4248 * The breakpoint is already filled if we haven't created the counter
4249 * through perf syscall
4250 * FIXME: manage to get trigerred to NULL if it comes from syscalls
4252 if (!bp->callback)
4253 err = register_perf_hw_breakpoint(bp);
4254 else
4255 err = __register_perf_hw_breakpoint(bp);
4256 if (err)
4257 return ERR_PTR(err);
4259 bp->destroy = bp_perf_event_destroy;
4261 return &perf_ops_bp;
4264 void perf_bp_event(struct perf_event *bp, void *regs)
4266 /* TODO */
4268 #else
4269 static void bp_perf_event_destroy(struct perf_event *event)
4273 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4275 return NULL;
4278 void perf_bp_event(struct perf_event *bp, void *regs)
4281 #endif
4283 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4285 static void sw_perf_event_destroy(struct perf_event *event)
4287 u64 event_id = event->attr.config;
4289 WARN_ON(event->parent);
4291 atomic_dec(&perf_swevent_enabled[event_id]);
4294 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4296 const struct pmu *pmu = NULL;
4297 u64 event_id = event->attr.config;
4300 * Software events (currently) can't in general distinguish
4301 * between user, kernel and hypervisor events.
4302 * However, context switches and cpu migrations are considered
4303 * to be kernel events, and page faults are never hypervisor
4304 * events.
4306 switch (event_id) {
4307 case PERF_COUNT_SW_CPU_CLOCK:
4308 pmu = &perf_ops_cpu_clock;
4310 break;
4311 case PERF_COUNT_SW_TASK_CLOCK:
4313 * If the user instantiates this as a per-cpu event,
4314 * use the cpu_clock event instead.
4316 if (event->ctx->task)
4317 pmu = &perf_ops_task_clock;
4318 else
4319 pmu = &perf_ops_cpu_clock;
4321 break;
4322 case PERF_COUNT_SW_PAGE_FAULTS:
4323 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4324 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4325 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4326 case PERF_COUNT_SW_CPU_MIGRATIONS:
4327 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4328 case PERF_COUNT_SW_EMULATION_FAULTS:
4329 if (!event->parent) {
4330 atomic_inc(&perf_swevent_enabled[event_id]);
4331 event->destroy = sw_perf_event_destroy;
4333 pmu = &perf_ops_generic;
4334 break;
4337 return pmu;
4341 * Allocate and initialize a event structure
4343 static struct perf_event *
4344 perf_event_alloc(struct perf_event_attr *attr,
4345 int cpu,
4346 struct perf_event_context *ctx,
4347 struct perf_event *group_leader,
4348 struct perf_event *parent_event,
4349 perf_callback_t callback,
4350 gfp_t gfpflags)
4352 const struct pmu *pmu;
4353 struct perf_event *event;
4354 struct hw_perf_event *hwc;
4355 long err;
4357 event = kzalloc(sizeof(*event), gfpflags);
4358 if (!event)
4359 return ERR_PTR(-ENOMEM);
4362 * Single events are their own group leaders, with an
4363 * empty sibling list:
4365 if (!group_leader)
4366 group_leader = event;
4368 mutex_init(&event->child_mutex);
4369 INIT_LIST_HEAD(&event->child_list);
4371 INIT_LIST_HEAD(&event->group_entry);
4372 INIT_LIST_HEAD(&event->event_entry);
4373 INIT_LIST_HEAD(&event->sibling_list);
4374 init_waitqueue_head(&event->waitq);
4376 mutex_init(&event->mmap_mutex);
4378 event->cpu = cpu;
4379 event->attr = *attr;
4380 event->group_leader = group_leader;
4381 event->pmu = NULL;
4382 event->ctx = ctx;
4383 event->oncpu = -1;
4385 event->parent = parent_event;
4387 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4388 event->id = atomic64_inc_return(&perf_event_id);
4390 event->state = PERF_EVENT_STATE_INACTIVE;
4392 if (!callback && parent_event)
4393 callback = parent_event->callback;
4395 event->callback = callback;
4397 if (attr->disabled)
4398 event->state = PERF_EVENT_STATE_OFF;
4400 pmu = NULL;
4402 hwc = &event->hw;
4403 hwc->sample_period = attr->sample_period;
4404 if (attr->freq && attr->sample_freq)
4405 hwc->sample_period = 1;
4406 hwc->last_period = hwc->sample_period;
4408 atomic64_set(&hwc->period_left, hwc->sample_period);
4411 * we currently do not support PERF_FORMAT_GROUP on inherited events
4413 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4414 goto done;
4416 switch (attr->type) {
4417 case PERF_TYPE_RAW:
4418 case PERF_TYPE_HARDWARE:
4419 case PERF_TYPE_HW_CACHE:
4420 pmu = hw_perf_event_init(event);
4421 break;
4423 case PERF_TYPE_SOFTWARE:
4424 pmu = sw_perf_event_init(event);
4425 break;
4427 case PERF_TYPE_TRACEPOINT:
4428 pmu = tp_perf_event_init(event);
4429 break;
4431 case PERF_TYPE_BREAKPOINT:
4432 pmu = bp_perf_event_init(event);
4433 break;
4436 default:
4437 break;
4439 done:
4440 err = 0;
4441 if (!pmu)
4442 err = -EINVAL;
4443 else if (IS_ERR(pmu))
4444 err = PTR_ERR(pmu);
4446 if (err) {
4447 if (event->ns)
4448 put_pid_ns(event->ns);
4449 kfree(event);
4450 return ERR_PTR(err);
4453 event->pmu = pmu;
4455 if (!event->parent) {
4456 atomic_inc(&nr_events);
4457 if (event->attr.mmap)
4458 atomic_inc(&nr_mmap_events);
4459 if (event->attr.comm)
4460 atomic_inc(&nr_comm_events);
4461 if (event->attr.task)
4462 atomic_inc(&nr_task_events);
4465 return event;
4468 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4469 struct perf_event_attr *attr)
4471 u32 size;
4472 int ret;
4474 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4475 return -EFAULT;
4478 * zero the full structure, so that a short copy will be nice.
4480 memset(attr, 0, sizeof(*attr));
4482 ret = get_user(size, &uattr->size);
4483 if (ret)
4484 return ret;
4486 if (size > PAGE_SIZE) /* silly large */
4487 goto err_size;
4489 if (!size) /* abi compat */
4490 size = PERF_ATTR_SIZE_VER0;
4492 if (size < PERF_ATTR_SIZE_VER0)
4493 goto err_size;
4496 * If we're handed a bigger struct than we know of,
4497 * ensure all the unknown bits are 0 - i.e. new
4498 * user-space does not rely on any kernel feature
4499 * extensions we dont know about yet.
4501 if (size > sizeof(*attr)) {
4502 unsigned char __user *addr;
4503 unsigned char __user *end;
4504 unsigned char val;
4506 addr = (void __user *)uattr + sizeof(*attr);
4507 end = (void __user *)uattr + size;
4509 for (; addr < end; addr++) {
4510 ret = get_user(val, addr);
4511 if (ret)
4512 return ret;
4513 if (val)
4514 goto err_size;
4516 size = sizeof(*attr);
4519 ret = copy_from_user(attr, uattr, size);
4520 if (ret)
4521 return -EFAULT;
4524 * If the type exists, the corresponding creation will verify
4525 * the attr->config.
4527 if (attr->type >= PERF_TYPE_MAX)
4528 return -EINVAL;
4530 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
4531 return -EINVAL;
4533 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4534 return -EINVAL;
4536 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4537 return -EINVAL;
4539 out:
4540 return ret;
4542 err_size:
4543 put_user(sizeof(*attr), &uattr->size);
4544 ret = -E2BIG;
4545 goto out;
4548 static int perf_event_set_output(struct perf_event *event, int output_fd)
4550 struct perf_event *output_event = NULL;
4551 struct file *output_file = NULL;
4552 struct perf_event *old_output;
4553 int fput_needed = 0;
4554 int ret = -EINVAL;
4556 if (!output_fd)
4557 goto set;
4559 output_file = fget_light(output_fd, &fput_needed);
4560 if (!output_file)
4561 return -EBADF;
4563 if (output_file->f_op != &perf_fops)
4564 goto out;
4566 output_event = output_file->private_data;
4568 /* Don't chain output fds */
4569 if (output_event->output)
4570 goto out;
4572 /* Don't set an output fd when we already have an output channel */
4573 if (event->data)
4574 goto out;
4576 atomic_long_inc(&output_file->f_count);
4578 set:
4579 mutex_lock(&event->mmap_mutex);
4580 old_output = event->output;
4581 rcu_assign_pointer(event->output, output_event);
4582 mutex_unlock(&event->mmap_mutex);
4584 if (old_output) {
4586 * we need to make sure no existing perf_output_*()
4587 * is still referencing this event.
4589 synchronize_rcu();
4590 fput(old_output->filp);
4593 ret = 0;
4594 out:
4595 fput_light(output_file, fput_needed);
4596 return ret;
4600 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4602 * @attr_uptr: event_id type attributes for monitoring/sampling
4603 * @pid: target pid
4604 * @cpu: target cpu
4605 * @group_fd: group leader event fd
4607 SYSCALL_DEFINE5(perf_event_open,
4608 struct perf_event_attr __user *, attr_uptr,
4609 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4611 struct perf_event *event, *group_leader;
4612 struct perf_event_attr attr;
4613 struct perf_event_context *ctx;
4614 struct file *event_file = NULL;
4615 struct file *group_file = NULL;
4616 int fput_needed = 0;
4617 int fput_needed2 = 0;
4618 int err;
4620 /* for future expandability... */
4621 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4622 return -EINVAL;
4624 err = perf_copy_attr(attr_uptr, &attr);
4625 if (err)
4626 return err;
4628 if (!attr.exclude_kernel) {
4629 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4630 return -EACCES;
4633 if (attr.freq) {
4634 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4635 return -EINVAL;
4639 * Get the target context (task or percpu):
4641 ctx = find_get_context(pid, cpu);
4642 if (IS_ERR(ctx))
4643 return PTR_ERR(ctx);
4646 * Look up the group leader (we will attach this event to it):
4648 group_leader = NULL;
4649 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4650 err = -EINVAL;
4651 group_file = fget_light(group_fd, &fput_needed);
4652 if (!group_file)
4653 goto err_put_context;
4654 if (group_file->f_op != &perf_fops)
4655 goto err_put_context;
4657 group_leader = group_file->private_data;
4659 * Do not allow a recursive hierarchy (this new sibling
4660 * becoming part of another group-sibling):
4662 if (group_leader->group_leader != group_leader)
4663 goto err_put_context;
4665 * Do not allow to attach to a group in a different
4666 * task or CPU context:
4668 if (group_leader->ctx != ctx)
4669 goto err_put_context;
4671 * Only a group leader can be exclusive or pinned
4673 if (attr.exclusive || attr.pinned)
4674 goto err_put_context;
4677 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4678 NULL, NULL, GFP_KERNEL);
4679 err = PTR_ERR(event);
4680 if (IS_ERR(event))
4681 goto err_put_context;
4683 err = anon_inode_getfd("[perf_event]", &perf_fops, event, 0);
4684 if (err < 0)
4685 goto err_free_put_context;
4687 event_file = fget_light(err, &fput_needed2);
4688 if (!event_file)
4689 goto err_free_put_context;
4691 if (flags & PERF_FLAG_FD_OUTPUT) {
4692 err = perf_event_set_output(event, group_fd);
4693 if (err)
4694 goto err_fput_free_put_context;
4697 event->filp = event_file;
4698 WARN_ON_ONCE(ctx->parent_ctx);
4699 mutex_lock(&ctx->mutex);
4700 perf_install_in_context(ctx, event, cpu);
4701 ++ctx->generation;
4702 mutex_unlock(&ctx->mutex);
4704 event->owner = current;
4705 get_task_struct(current);
4706 mutex_lock(&current->perf_event_mutex);
4707 list_add_tail(&event->owner_entry, &current->perf_event_list);
4708 mutex_unlock(&current->perf_event_mutex);
4710 err_fput_free_put_context:
4711 fput_light(event_file, fput_needed2);
4713 err_free_put_context:
4714 if (err < 0)
4715 kfree(event);
4717 err_put_context:
4718 if (err < 0)
4719 put_ctx(ctx);
4721 fput_light(group_file, fput_needed);
4723 return err;
4727 * perf_event_create_kernel_counter
4729 * @attr: attributes of the counter to create
4730 * @cpu: cpu in which the counter is bound
4731 * @pid: task to profile
4733 struct perf_event *
4734 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4735 pid_t pid, perf_callback_t callback)
4737 struct perf_event *event;
4738 struct perf_event_context *ctx;
4739 int err;
4742 * Get the target context (task or percpu):
4745 ctx = find_get_context(pid, cpu);
4746 if (IS_ERR(ctx))
4747 return NULL;
4749 event = perf_event_alloc(attr, cpu, ctx, NULL,
4750 NULL, callback, GFP_KERNEL);
4751 err = PTR_ERR(event);
4752 if (IS_ERR(event))
4753 goto err_put_context;
4755 event->filp = NULL;
4756 WARN_ON_ONCE(ctx->parent_ctx);
4757 mutex_lock(&ctx->mutex);
4758 perf_install_in_context(ctx, event, cpu);
4759 ++ctx->generation;
4760 mutex_unlock(&ctx->mutex);
4762 event->owner = current;
4763 get_task_struct(current);
4764 mutex_lock(&current->perf_event_mutex);
4765 list_add_tail(&event->owner_entry, &current->perf_event_list);
4766 mutex_unlock(&current->perf_event_mutex);
4768 return event;
4770 err_put_context:
4771 if (err < 0)
4772 put_ctx(ctx);
4774 return NULL;
4776 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4779 * inherit a event from parent task to child task:
4781 static struct perf_event *
4782 inherit_event(struct perf_event *parent_event,
4783 struct task_struct *parent,
4784 struct perf_event_context *parent_ctx,
4785 struct task_struct *child,
4786 struct perf_event *group_leader,
4787 struct perf_event_context *child_ctx)
4789 struct perf_event *child_event;
4792 * Instead of creating recursive hierarchies of events,
4793 * we link inherited events back to the original parent,
4794 * which has a filp for sure, which we use as the reference
4795 * count:
4797 if (parent_event->parent)
4798 parent_event = parent_event->parent;
4800 child_event = perf_event_alloc(&parent_event->attr,
4801 parent_event->cpu, child_ctx,
4802 group_leader, parent_event,
4803 NULL, GFP_KERNEL);
4804 if (IS_ERR(child_event))
4805 return child_event;
4806 get_ctx(child_ctx);
4809 * Make the child state follow the state of the parent event,
4810 * not its attr.disabled bit. We hold the parent's mutex,
4811 * so we won't race with perf_event_{en, dis}able_family.
4813 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4814 child_event->state = PERF_EVENT_STATE_INACTIVE;
4815 else
4816 child_event->state = PERF_EVENT_STATE_OFF;
4818 if (parent_event->attr.freq)
4819 child_event->hw.sample_period = parent_event->hw.sample_period;
4821 child_event->overflow_handler = parent_event->overflow_handler;
4824 * Link it up in the child's context:
4826 add_event_to_ctx(child_event, child_ctx);
4829 * Get a reference to the parent filp - we will fput it
4830 * when the child event exits. This is safe to do because
4831 * we are in the parent and we know that the filp still
4832 * exists and has a nonzero count:
4834 atomic_long_inc(&parent_event->filp->f_count);
4837 * Link this into the parent event's child list
4839 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4840 mutex_lock(&parent_event->child_mutex);
4841 list_add_tail(&child_event->child_list, &parent_event->child_list);
4842 mutex_unlock(&parent_event->child_mutex);
4844 return child_event;
4847 static int inherit_group(struct perf_event *parent_event,
4848 struct task_struct *parent,
4849 struct perf_event_context *parent_ctx,
4850 struct task_struct *child,
4851 struct perf_event_context *child_ctx)
4853 struct perf_event *leader;
4854 struct perf_event *sub;
4855 struct perf_event *child_ctr;
4857 leader = inherit_event(parent_event, parent, parent_ctx,
4858 child, NULL, child_ctx);
4859 if (IS_ERR(leader))
4860 return PTR_ERR(leader);
4861 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4862 child_ctr = inherit_event(sub, parent, parent_ctx,
4863 child, leader, child_ctx);
4864 if (IS_ERR(child_ctr))
4865 return PTR_ERR(child_ctr);
4867 return 0;
4870 static void sync_child_event(struct perf_event *child_event,
4871 struct task_struct *child)
4873 struct perf_event *parent_event = child_event->parent;
4874 u64 child_val;
4876 if (child_event->attr.inherit_stat)
4877 perf_event_read_event(child_event, child);
4879 child_val = atomic64_read(&child_event->count);
4882 * Add back the child's count to the parent's count:
4884 atomic64_add(child_val, &parent_event->count);
4885 atomic64_add(child_event->total_time_enabled,
4886 &parent_event->child_total_time_enabled);
4887 atomic64_add(child_event->total_time_running,
4888 &parent_event->child_total_time_running);
4891 * Remove this event from the parent's list
4893 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4894 mutex_lock(&parent_event->child_mutex);
4895 list_del_init(&child_event->child_list);
4896 mutex_unlock(&parent_event->child_mutex);
4899 * Release the parent event, if this was the last
4900 * reference to it.
4902 fput(parent_event->filp);
4905 static void
4906 __perf_event_exit_task(struct perf_event *child_event,
4907 struct perf_event_context *child_ctx,
4908 struct task_struct *child)
4910 struct perf_event *parent_event;
4912 update_event_times(child_event);
4913 perf_event_remove_from_context(child_event);
4915 parent_event = child_event->parent;
4917 * It can happen that parent exits first, and has events
4918 * that are still around due to the child reference. These
4919 * events need to be zapped - but otherwise linger.
4921 if (parent_event) {
4922 sync_child_event(child_event, child);
4923 free_event(child_event);
4928 * When a child task exits, feed back event values to parent events.
4930 void perf_event_exit_task(struct task_struct *child)
4932 struct perf_event *child_event, *tmp;
4933 struct perf_event_context *child_ctx;
4934 unsigned long flags;
4936 if (likely(!child->perf_event_ctxp)) {
4937 perf_event_task(child, NULL, 0);
4938 return;
4941 local_irq_save(flags);
4943 * We can't reschedule here because interrupts are disabled,
4944 * and either child is current or it is a task that can't be
4945 * scheduled, so we are now safe from rescheduling changing
4946 * our context.
4948 child_ctx = child->perf_event_ctxp;
4949 __perf_event_task_sched_out(child_ctx);
4952 * Take the context lock here so that if find_get_context is
4953 * reading child->perf_event_ctxp, we wait until it has
4954 * incremented the context's refcount before we do put_ctx below.
4956 spin_lock(&child_ctx->lock);
4957 child->perf_event_ctxp = NULL;
4959 * If this context is a clone; unclone it so it can't get
4960 * swapped to another process while we're removing all
4961 * the events from it.
4963 unclone_ctx(child_ctx);
4964 spin_unlock_irqrestore(&child_ctx->lock, flags);
4967 * Report the task dead after unscheduling the events so that we
4968 * won't get any samples after PERF_RECORD_EXIT. We can however still
4969 * get a few PERF_RECORD_READ events.
4971 perf_event_task(child, child_ctx, 0);
4974 * We can recurse on the same lock type through:
4976 * __perf_event_exit_task()
4977 * sync_child_event()
4978 * fput(parent_event->filp)
4979 * perf_release()
4980 * mutex_lock(&ctx->mutex)
4982 * But since its the parent context it won't be the same instance.
4984 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
4986 again:
4987 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
4988 group_entry)
4989 __perf_event_exit_task(child_event, child_ctx, child);
4992 * If the last event was a group event, it will have appended all
4993 * its siblings to the list, but we obtained 'tmp' before that which
4994 * will still point to the list head terminating the iteration.
4996 if (!list_empty(&child_ctx->group_list))
4997 goto again;
4999 mutex_unlock(&child_ctx->mutex);
5001 put_ctx(child_ctx);
5005 * free an unexposed, unused context as created by inheritance by
5006 * init_task below, used by fork() in case of fail.
5008 void perf_event_free_task(struct task_struct *task)
5010 struct perf_event_context *ctx = task->perf_event_ctxp;
5011 struct perf_event *event, *tmp;
5013 if (!ctx)
5014 return;
5016 mutex_lock(&ctx->mutex);
5017 again:
5018 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5019 struct perf_event *parent = event->parent;
5021 if (WARN_ON_ONCE(!parent))
5022 continue;
5024 mutex_lock(&parent->child_mutex);
5025 list_del_init(&event->child_list);
5026 mutex_unlock(&parent->child_mutex);
5028 fput(parent->filp);
5030 list_del_event(event, ctx);
5031 free_event(event);
5034 if (!list_empty(&ctx->group_list))
5035 goto again;
5037 mutex_unlock(&ctx->mutex);
5039 put_ctx(ctx);
5043 * Initialize the perf_event context in task_struct
5045 int perf_event_init_task(struct task_struct *child)
5047 struct perf_event_context *child_ctx, *parent_ctx;
5048 struct perf_event_context *cloned_ctx;
5049 struct perf_event *event;
5050 struct task_struct *parent = current;
5051 int inherited_all = 1;
5052 int ret = 0;
5054 child->perf_event_ctxp = NULL;
5056 mutex_init(&child->perf_event_mutex);
5057 INIT_LIST_HEAD(&child->perf_event_list);
5059 if (likely(!parent->perf_event_ctxp))
5060 return 0;
5063 * This is executed from the parent task context, so inherit
5064 * events that have been marked for cloning.
5065 * First allocate and initialize a context for the child.
5068 child_ctx = kmalloc(sizeof(struct perf_event_context), GFP_KERNEL);
5069 if (!child_ctx)
5070 return -ENOMEM;
5072 __perf_event_init_context(child_ctx, child);
5073 child->perf_event_ctxp = child_ctx;
5074 get_task_struct(child);
5077 * If the parent's context is a clone, pin it so it won't get
5078 * swapped under us.
5080 parent_ctx = perf_pin_task_context(parent);
5083 * No need to check if parent_ctx != NULL here; since we saw
5084 * it non-NULL earlier, the only reason for it to become NULL
5085 * is if we exit, and since we're currently in the middle of
5086 * a fork we can't be exiting at the same time.
5090 * Lock the parent list. No need to lock the child - not PID
5091 * hashed yet and not running, so nobody can access it.
5093 mutex_lock(&parent_ctx->mutex);
5096 * We dont have to disable NMIs - we are only looking at
5097 * the list, not manipulating it:
5099 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5101 if (!event->attr.inherit) {
5102 inherited_all = 0;
5103 continue;
5106 ret = inherit_group(event, parent, parent_ctx,
5107 child, child_ctx);
5108 if (ret) {
5109 inherited_all = 0;
5110 break;
5114 if (inherited_all) {
5116 * Mark the child context as a clone of the parent
5117 * context, or of whatever the parent is a clone of.
5118 * Note that if the parent is a clone, it could get
5119 * uncloned at any point, but that doesn't matter
5120 * because the list of events and the generation
5121 * count can't have changed since we took the mutex.
5123 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5124 if (cloned_ctx) {
5125 child_ctx->parent_ctx = cloned_ctx;
5126 child_ctx->parent_gen = parent_ctx->parent_gen;
5127 } else {
5128 child_ctx->parent_ctx = parent_ctx;
5129 child_ctx->parent_gen = parent_ctx->generation;
5131 get_ctx(child_ctx->parent_ctx);
5134 mutex_unlock(&parent_ctx->mutex);
5136 perf_unpin_context(parent_ctx);
5138 return ret;
5141 static void __cpuinit perf_event_init_cpu(int cpu)
5143 struct perf_cpu_context *cpuctx;
5145 cpuctx = &per_cpu(perf_cpu_context, cpu);
5146 __perf_event_init_context(&cpuctx->ctx, NULL);
5148 spin_lock(&perf_resource_lock);
5149 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5150 spin_unlock(&perf_resource_lock);
5152 hw_perf_event_setup(cpu);
5155 #ifdef CONFIG_HOTPLUG_CPU
5156 static void __perf_event_exit_cpu(void *info)
5158 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5159 struct perf_event_context *ctx = &cpuctx->ctx;
5160 struct perf_event *event, *tmp;
5162 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5163 __perf_event_remove_from_context(event);
5165 static void perf_event_exit_cpu(int cpu)
5167 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5168 struct perf_event_context *ctx = &cpuctx->ctx;
5170 mutex_lock(&ctx->mutex);
5171 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5172 mutex_unlock(&ctx->mutex);
5174 #else
5175 static inline void perf_event_exit_cpu(int cpu) { }
5176 #endif
5178 static int __cpuinit
5179 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5181 unsigned int cpu = (long)hcpu;
5183 switch (action) {
5185 case CPU_UP_PREPARE:
5186 case CPU_UP_PREPARE_FROZEN:
5187 perf_event_init_cpu(cpu);
5188 break;
5190 case CPU_ONLINE:
5191 case CPU_ONLINE_FROZEN:
5192 hw_perf_event_setup_online(cpu);
5193 break;
5195 case CPU_DOWN_PREPARE:
5196 case CPU_DOWN_PREPARE_FROZEN:
5197 perf_event_exit_cpu(cpu);
5198 break;
5200 default:
5201 break;
5204 return NOTIFY_OK;
5208 * This has to have a higher priority than migration_notifier in sched.c.
5210 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5211 .notifier_call = perf_cpu_notify,
5212 .priority = 20,
5215 void __init perf_event_init(void)
5217 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5218 (void *)(long)smp_processor_id());
5219 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5220 (void *)(long)smp_processor_id());
5221 register_cpu_notifier(&perf_cpu_nb);
5224 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5226 return sprintf(buf, "%d\n", perf_reserved_percpu);
5229 static ssize_t
5230 perf_set_reserve_percpu(struct sysdev_class *class,
5231 const char *buf,
5232 size_t count)
5234 struct perf_cpu_context *cpuctx;
5235 unsigned long val;
5236 int err, cpu, mpt;
5238 err = strict_strtoul(buf, 10, &val);
5239 if (err)
5240 return err;
5241 if (val > perf_max_events)
5242 return -EINVAL;
5244 spin_lock(&perf_resource_lock);
5245 perf_reserved_percpu = val;
5246 for_each_online_cpu(cpu) {
5247 cpuctx = &per_cpu(perf_cpu_context, cpu);
5248 spin_lock_irq(&cpuctx->ctx.lock);
5249 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5250 perf_max_events - perf_reserved_percpu);
5251 cpuctx->max_pertask = mpt;
5252 spin_unlock_irq(&cpuctx->ctx.lock);
5254 spin_unlock(&perf_resource_lock);
5256 return count;
5259 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5261 return sprintf(buf, "%d\n", perf_overcommit);
5264 static ssize_t
5265 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5267 unsigned long val;
5268 int err;
5270 err = strict_strtoul(buf, 10, &val);
5271 if (err)
5272 return err;
5273 if (val > 1)
5274 return -EINVAL;
5276 spin_lock(&perf_resource_lock);
5277 perf_overcommit = val;
5278 spin_unlock(&perf_resource_lock);
5280 return count;
5283 static SYSDEV_CLASS_ATTR(
5284 reserve_percpu,
5285 0644,
5286 perf_show_reserve_percpu,
5287 perf_set_reserve_percpu
5290 static SYSDEV_CLASS_ATTR(
5291 overcommit,
5292 0644,
5293 perf_show_overcommit,
5294 perf_set_overcommit
5297 static struct attribute *perfclass_attrs[] = {
5298 &attr_reserve_percpu.attr,
5299 &attr_overcommit.attr,
5300 NULL
5303 static struct attribute_group perfclass_attr_group = {
5304 .attrs = perfclass_attrs,
5305 .name = "perf_events",
5308 static int __init perf_event_sysfs_init(void)
5310 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5311 &perfclass_attr_group);
5313 device_initcall(perf_event_sysfs_init);