e1000e: specify max supported frame size in adapter struct
[linux-2.6/btrfs-unstable.git] / drivers / net / e1000e / ich8lan.c
blobb63d9878b0ac70b668f4279818d6c5bceba3361c
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
53 #include <linux/netdevice.h>
54 #include <linux/ethtool.h>
55 #include <linux/delay.h>
56 #include <linux/pci.h>
58 #include "e1000.h"
60 #define ICH_FLASH_GFPREG 0x0000
61 #define ICH_FLASH_HSFSTS 0x0004
62 #define ICH_FLASH_HSFCTL 0x0006
63 #define ICH_FLASH_FADDR 0x0008
64 #define ICH_FLASH_FDATA0 0x0010
65 #define ICH_FLASH_PR0 0x0074
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73 #define ICH_CYCLE_READ 0
74 #define ICH_CYCLE_WRITE 2
75 #define ICH_CYCLE_ERASE 3
77 #define FLASH_GFPREG_BASE_MASK 0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT 12
80 #define ICH_FLASH_SEG_SIZE_256 256
81 #define ICH_FLASH_SEG_SIZE_4K 4096
82 #define ICH_FLASH_SEG_SIZE_8K 8192
83 #define ICH_FLASH_SEG_SIZE_64K 65536
86 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 #define E1000_ICH_MNG_IAMT_MODE 0x2
90 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
91 (ID_LED_DEF1_OFF2 << 8) | \
92 (ID_LED_DEF1_ON2 << 4) | \
93 (ID_LED_DEF1_DEF2))
95 #define E1000_ICH_NVM_SIG_WORD 0x13
96 #define E1000_ICH_NVM_SIG_MASK 0xC000
97 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
98 #define E1000_ICH_NVM_SIG_VALUE 0x80
100 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
102 #define E1000_FEXTNVM_SW_CONFIG 1
103 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
105 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
107 #define E1000_ICH_RAR_ENTRIES 7
109 #define PHY_PAGE_SHIFT 5
110 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
111 ((reg) & MAX_PHY_REG_ADDRESS))
112 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
113 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
115 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
116 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
117 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
119 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
120 /* Offset 04h HSFSTS */
121 union ich8_hws_flash_status {
122 struct ich8_hsfsts {
123 u16 flcdone :1; /* bit 0 Flash Cycle Done */
124 u16 flcerr :1; /* bit 1 Flash Cycle Error */
125 u16 dael :1; /* bit 2 Direct Access error Log */
126 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
127 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
128 u16 reserved1 :2; /* bit 13:6 Reserved */
129 u16 reserved2 :6; /* bit 13:6 Reserved */
130 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
131 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
132 } hsf_status;
133 u16 regval;
136 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
137 /* Offset 06h FLCTL */
138 union ich8_hws_flash_ctrl {
139 struct ich8_hsflctl {
140 u16 flcgo :1; /* 0 Flash Cycle Go */
141 u16 flcycle :2; /* 2:1 Flash Cycle */
142 u16 reserved :5; /* 7:3 Reserved */
143 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
144 u16 flockdn :6; /* 15:10 Reserved */
145 } hsf_ctrl;
146 u16 regval;
149 /* ICH Flash Region Access Permissions */
150 union ich8_hws_flash_regacc {
151 struct ich8_flracc {
152 u32 grra :8; /* 0:7 GbE region Read Access */
153 u32 grwa :8; /* 8:15 GbE region Write Access */
154 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
155 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
156 } hsf_flregacc;
157 u16 regval;
160 /* ICH Flash Protected Region */
161 union ich8_flash_protected_range {
162 struct ich8_pr {
163 u32 base:13; /* 0:12 Protected Range Base */
164 u32 reserved1:2; /* 13:14 Reserved */
165 u32 rpe:1; /* 15 Read Protection Enable */
166 u32 limit:13; /* 16:28 Protected Range Limit */
167 u32 reserved2:2; /* 29:30 Reserved */
168 u32 wpe:1; /* 31 Write Protection Enable */
169 } range;
170 u32 regval;
173 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
174 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
175 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
176 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw);
177 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
178 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
179 u32 offset, u8 byte);
180 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
181 u8 *data);
182 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
183 u16 *data);
184 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
185 u8 size, u16 *data);
186 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
187 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
188 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
190 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
192 return readw(hw->flash_address + reg);
195 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
197 return readl(hw->flash_address + reg);
200 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
202 writew(val, hw->flash_address + reg);
205 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
207 writel(val, hw->flash_address + reg);
210 #define er16flash(reg) __er16flash(hw, (reg))
211 #define er32flash(reg) __er32flash(hw, (reg))
212 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
213 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
216 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
217 * @hw: pointer to the HW structure
219 * Initialize family-specific PHY parameters and function pointers.
221 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
223 struct e1000_phy_info *phy = &hw->phy;
224 s32 ret_val;
225 u16 i = 0;
227 phy->addr = 1;
228 phy->reset_delay_us = 100;
231 * We may need to do this twice - once for IGP and if that fails,
232 * we'll set BM func pointers and try again
234 ret_val = e1000e_determine_phy_address(hw);
235 if (ret_val) {
236 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
237 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
238 ret_val = e1000e_determine_phy_address(hw);
239 if (ret_val)
240 return ret_val;
243 phy->id = 0;
244 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
245 (i++ < 100)) {
246 msleep(1);
247 ret_val = e1000e_get_phy_id(hw);
248 if (ret_val)
249 return ret_val;
252 /* Verify phy id */
253 switch (phy->id) {
254 case IGP03E1000_E_PHY_ID:
255 phy->type = e1000_phy_igp_3;
256 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
257 break;
258 case IFE_E_PHY_ID:
259 case IFE_PLUS_E_PHY_ID:
260 case IFE_C_E_PHY_ID:
261 phy->type = e1000_phy_ife;
262 phy->autoneg_mask = E1000_ALL_NOT_GIG;
263 break;
264 case BME1000_E_PHY_ID:
265 phy->type = e1000_phy_bm;
266 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
267 hw->phy.ops.read_phy_reg = e1000e_read_phy_reg_bm;
268 hw->phy.ops.write_phy_reg = e1000e_write_phy_reg_bm;
269 hw->phy.ops.commit_phy = e1000e_phy_sw_reset;
270 break;
271 default:
272 return -E1000_ERR_PHY;
273 break;
276 return 0;
280 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
281 * @hw: pointer to the HW structure
283 * Initialize family-specific NVM parameters and function
284 * pointers.
286 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
288 struct e1000_nvm_info *nvm = &hw->nvm;
289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
290 u32 gfpreg;
291 u32 sector_base_addr;
292 u32 sector_end_addr;
293 u16 i;
295 /* Can't read flash registers if the register set isn't mapped. */
296 if (!hw->flash_address) {
297 hw_dbg(hw, "ERROR: Flash registers not mapped\n");
298 return -E1000_ERR_CONFIG;
301 nvm->type = e1000_nvm_flash_sw;
303 gfpreg = er32flash(ICH_FLASH_GFPREG);
306 * sector_X_addr is a "sector"-aligned address (4096 bytes)
307 * Add 1 to sector_end_addr since this sector is included in
308 * the overall size.
310 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
311 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
313 /* flash_base_addr is byte-aligned */
314 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
317 * find total size of the NVM, then cut in half since the total
318 * size represents two separate NVM banks.
320 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
321 << FLASH_SECTOR_ADDR_SHIFT;
322 nvm->flash_bank_size /= 2;
323 /* Adjust to word count */
324 nvm->flash_bank_size /= sizeof(u16);
326 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
328 /* Clear shadow ram */
329 for (i = 0; i < nvm->word_size; i++) {
330 dev_spec->shadow_ram[i].modified = 0;
331 dev_spec->shadow_ram[i].value = 0xFFFF;
334 return 0;
338 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
339 * @hw: pointer to the HW structure
341 * Initialize family-specific MAC parameters and function
342 * pointers.
344 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
346 struct e1000_hw *hw = &adapter->hw;
347 struct e1000_mac_info *mac = &hw->mac;
349 /* Set media type function pointer */
350 hw->phy.media_type = e1000_media_type_copper;
352 /* Set mta register count */
353 mac->mta_reg_count = 32;
354 /* Set rar entry count */
355 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
356 if (mac->type == e1000_ich8lan)
357 mac->rar_entry_count--;
358 /* Set if manageability features are enabled. */
359 mac->arc_subsystem_valid = 1;
361 /* Enable PCS Lock-loss workaround for ICH8 */
362 if (mac->type == e1000_ich8lan)
363 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, 1);
365 return 0;
368 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
370 struct e1000_hw *hw = &adapter->hw;
371 s32 rc;
373 rc = e1000_init_mac_params_ich8lan(adapter);
374 if (rc)
375 return rc;
377 rc = e1000_init_nvm_params_ich8lan(hw);
378 if (rc)
379 return rc;
381 rc = e1000_init_phy_params_ich8lan(hw);
382 if (rc)
383 return rc;
385 if (adapter->hw.phy.type == e1000_phy_ife) {
386 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
387 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
390 if ((adapter->hw.mac.type == e1000_ich8lan) &&
391 (adapter->hw.phy.type == e1000_phy_igp_3))
392 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
394 return 0;
397 static DEFINE_MUTEX(nvm_mutex);
400 * e1000_acquire_swflag_ich8lan - Acquire software control flag
401 * @hw: pointer to the HW structure
403 * Acquires the software control flag for performing NVM and PHY
404 * operations. This is a function pointer entry point only called by
405 * read/write routines for the PHY and NVM parts.
407 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
409 u32 extcnf_ctrl;
410 u32 timeout = PHY_CFG_TIMEOUT;
412 might_sleep();
414 mutex_lock(&nvm_mutex);
416 while (timeout) {
417 extcnf_ctrl = er32(EXTCNF_CTRL);
418 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
419 ew32(EXTCNF_CTRL, extcnf_ctrl);
421 extcnf_ctrl = er32(EXTCNF_CTRL);
422 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
423 break;
424 mdelay(1);
425 timeout--;
428 if (!timeout) {
429 hw_dbg(hw, "FW or HW has locked the resource for too long.\n");
430 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
431 ew32(EXTCNF_CTRL, extcnf_ctrl);
432 mutex_unlock(&nvm_mutex);
433 return -E1000_ERR_CONFIG;
436 return 0;
440 * e1000_release_swflag_ich8lan - Release software control flag
441 * @hw: pointer to the HW structure
443 * Releases the software control flag for performing NVM and PHY operations.
444 * This is a function pointer entry point only called by read/write
445 * routines for the PHY and NVM parts.
447 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
449 u32 extcnf_ctrl;
451 extcnf_ctrl = er32(EXTCNF_CTRL);
452 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
453 ew32(EXTCNF_CTRL, extcnf_ctrl);
455 mutex_unlock(&nvm_mutex);
459 * e1000_check_mng_mode_ich8lan - Checks management mode
460 * @hw: pointer to the HW structure
462 * This checks if the adapter has manageability enabled.
463 * This is a function pointer entry point only called by read/write
464 * routines for the PHY and NVM parts.
466 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
468 u32 fwsm = er32(FWSM);
470 return (fwsm & E1000_FWSM_MODE_MASK) ==
471 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT);
475 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
476 * @hw: pointer to the HW structure
478 * Checks if firmware is blocking the reset of the PHY.
479 * This is a function pointer entry point only called by
480 * reset routines.
482 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
484 u32 fwsm;
486 fwsm = er32(FWSM);
488 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
492 * e1000_phy_force_speed_duplex_ich8lan - Force PHY speed & duplex
493 * @hw: pointer to the HW structure
495 * Forces the speed and duplex settings of the PHY.
496 * This is a function pointer entry point only called by
497 * PHY setup routines.
499 static s32 e1000_phy_force_speed_duplex_ich8lan(struct e1000_hw *hw)
501 struct e1000_phy_info *phy = &hw->phy;
502 s32 ret_val;
503 u16 data;
504 bool link;
506 if (phy->type != e1000_phy_ife) {
507 ret_val = e1000e_phy_force_speed_duplex_igp(hw);
508 return ret_val;
511 ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
512 if (ret_val)
513 return ret_val;
515 e1000e_phy_force_speed_duplex_setup(hw, &data);
517 ret_val = e1e_wphy(hw, PHY_CONTROL, data);
518 if (ret_val)
519 return ret_val;
521 /* Disable MDI-X support for 10/100 */
522 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
523 if (ret_val)
524 return ret_val;
526 data &= ~IFE_PMC_AUTO_MDIX;
527 data &= ~IFE_PMC_FORCE_MDIX;
529 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
530 if (ret_val)
531 return ret_val;
533 hw_dbg(hw, "IFE PMC: %X\n", data);
535 udelay(1);
537 if (phy->autoneg_wait_to_complete) {
538 hw_dbg(hw, "Waiting for forced speed/duplex link on IFE phy.\n");
540 ret_val = e1000e_phy_has_link_generic(hw,
541 PHY_FORCE_LIMIT,
542 100000,
543 &link);
544 if (ret_val)
545 return ret_val;
547 if (!link)
548 hw_dbg(hw, "Link taking longer than expected.\n");
550 /* Try once more */
551 ret_val = e1000e_phy_has_link_generic(hw,
552 PHY_FORCE_LIMIT,
553 100000,
554 &link);
555 if (ret_val)
556 return ret_val;
559 return 0;
563 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
564 * @hw: pointer to the HW structure
566 * Resets the PHY
567 * This is a function pointer entry point called by drivers
568 * or other shared routines.
570 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
572 struct e1000_phy_info *phy = &hw->phy;
573 u32 i;
574 u32 data, cnf_size, cnf_base_addr, sw_cfg_mask;
575 s32 ret_val;
576 u16 loop = E1000_ICH8_LAN_INIT_TIMEOUT;
577 u16 word_addr, reg_data, reg_addr, phy_page = 0;
579 ret_val = e1000e_phy_hw_reset_generic(hw);
580 if (ret_val)
581 return ret_val;
584 * Initialize the PHY from the NVM on ICH platforms. This
585 * is needed due to an issue where the NVM configuration is
586 * not properly autoloaded after power transitions.
587 * Therefore, after each PHY reset, we will load the
588 * configuration data out of the NVM manually.
590 if (hw->mac.type == e1000_ich8lan && phy->type == e1000_phy_igp_3) {
591 struct e1000_adapter *adapter = hw->adapter;
593 /* Check if SW needs configure the PHY */
594 if ((adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M_AMT) ||
595 (adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_M))
596 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
597 else
598 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
600 data = er32(FEXTNVM);
601 if (!(data & sw_cfg_mask))
602 return 0;
604 /* Wait for basic configuration completes before proceeding*/
605 do {
606 data = er32(STATUS);
607 data &= E1000_STATUS_LAN_INIT_DONE;
608 udelay(100);
609 } while ((!data) && --loop);
612 * If basic configuration is incomplete before the above loop
613 * count reaches 0, loading the configuration from NVM will
614 * leave the PHY in a bad state possibly resulting in no link.
616 if (loop == 0) {
617 hw_dbg(hw, "LAN_INIT_DONE not set, increase timeout\n");
620 /* Clear the Init Done bit for the next init event */
621 data = er32(STATUS);
622 data &= ~E1000_STATUS_LAN_INIT_DONE;
623 ew32(STATUS, data);
626 * Make sure HW does not configure LCD from PHY
627 * extended configuration before SW configuration
629 data = er32(EXTCNF_CTRL);
630 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
631 return 0;
633 cnf_size = er32(EXTCNF_SIZE);
634 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
635 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
636 if (!cnf_size)
637 return 0;
639 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
640 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
642 /* Configure LCD from extended configuration region. */
644 /* cnf_base_addr is in DWORD */
645 word_addr = (u16)(cnf_base_addr << 1);
647 for (i = 0; i < cnf_size; i++) {
648 ret_val = e1000_read_nvm(hw,
649 (word_addr + i * 2),
651 &reg_data);
652 if (ret_val)
653 return ret_val;
655 ret_val = e1000_read_nvm(hw,
656 (word_addr + i * 2 + 1),
658 &reg_addr);
659 if (ret_val)
660 return ret_val;
662 /* Save off the PHY page for future writes. */
663 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
664 phy_page = reg_data;
665 continue;
668 reg_addr |= phy_page;
670 ret_val = e1e_wphy(hw, (u32)reg_addr, reg_data);
671 if (ret_val)
672 return ret_val;
676 return 0;
680 * e1000_get_phy_info_ife_ich8lan - Retrieves various IFE PHY states
681 * @hw: pointer to the HW structure
683 * Populates "phy" structure with various feature states.
684 * This function is only called by other family-specific
685 * routines.
687 static s32 e1000_get_phy_info_ife_ich8lan(struct e1000_hw *hw)
689 struct e1000_phy_info *phy = &hw->phy;
690 s32 ret_val;
691 u16 data;
692 bool link;
694 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
695 if (ret_val)
696 return ret_val;
698 if (!link) {
699 hw_dbg(hw, "Phy info is only valid if link is up\n");
700 return -E1000_ERR_CONFIG;
703 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
704 if (ret_val)
705 return ret_val;
706 phy->polarity_correction = (!(data & IFE_PSC_AUTO_POLARITY_DISABLE));
708 if (phy->polarity_correction) {
709 ret_val = e1000_check_polarity_ife_ich8lan(hw);
710 if (ret_val)
711 return ret_val;
712 } else {
713 /* Polarity is forced */
714 phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
715 ? e1000_rev_polarity_reversed
716 : e1000_rev_polarity_normal;
719 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
720 if (ret_val)
721 return ret_val;
723 phy->is_mdix = (data & IFE_PMC_MDIX_STATUS);
725 /* The following parameters are undefined for 10/100 operation. */
726 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
727 phy->local_rx = e1000_1000t_rx_status_undefined;
728 phy->remote_rx = e1000_1000t_rx_status_undefined;
730 return 0;
734 * e1000_get_phy_info_ich8lan - Calls appropriate PHY type get_phy_info
735 * @hw: pointer to the HW structure
737 * Wrapper for calling the get_phy_info routines for the appropriate phy type.
738 * This is a function pointer entry point called by drivers
739 * or other shared routines.
741 static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
743 switch (hw->phy.type) {
744 case e1000_phy_ife:
745 return e1000_get_phy_info_ife_ich8lan(hw);
746 break;
747 case e1000_phy_igp_3:
748 case e1000_phy_bm:
749 return e1000e_get_phy_info_igp(hw);
750 break;
751 default:
752 break;
755 return -E1000_ERR_PHY_TYPE;
759 * e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
760 * @hw: pointer to the HW structure
762 * Polarity is determined on the polarity reversal feature being enabled.
763 * This function is only called by other family-specific
764 * routines.
766 static s32 e1000_check_polarity_ife_ich8lan(struct e1000_hw *hw)
768 struct e1000_phy_info *phy = &hw->phy;
769 s32 ret_val;
770 u16 phy_data, offset, mask;
773 * Polarity is determined based on the reversal feature being enabled.
775 if (phy->polarity_correction) {
776 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
777 mask = IFE_PESC_POLARITY_REVERSED;
778 } else {
779 offset = IFE_PHY_SPECIAL_CONTROL;
780 mask = IFE_PSC_FORCE_POLARITY;
783 ret_val = e1e_rphy(hw, offset, &phy_data);
785 if (!ret_val)
786 phy->cable_polarity = (phy_data & mask)
787 ? e1000_rev_polarity_reversed
788 : e1000_rev_polarity_normal;
790 return ret_val;
794 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
795 * @hw: pointer to the HW structure
796 * @active: TRUE to enable LPLU, FALSE to disable
798 * Sets the LPLU D0 state according to the active flag. When
799 * activating LPLU this function also disables smart speed
800 * and vice versa. LPLU will not be activated unless the
801 * device autonegotiation advertisement meets standards of
802 * either 10 or 10/100 or 10/100/1000 at all duplexes.
803 * This is a function pointer entry point only called by
804 * PHY setup routines.
806 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
808 struct e1000_phy_info *phy = &hw->phy;
809 u32 phy_ctrl;
810 s32 ret_val = 0;
811 u16 data;
813 if (phy->type == e1000_phy_ife)
814 return ret_val;
816 phy_ctrl = er32(PHY_CTRL);
818 if (active) {
819 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
820 ew32(PHY_CTRL, phy_ctrl);
823 * Call gig speed drop workaround on LPLU before accessing
824 * any PHY registers
826 if ((hw->mac.type == e1000_ich8lan) &&
827 (hw->phy.type == e1000_phy_igp_3))
828 e1000e_gig_downshift_workaround_ich8lan(hw);
830 /* When LPLU is enabled, we should disable SmartSpeed */
831 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
832 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
833 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
834 if (ret_val)
835 return ret_val;
836 } else {
837 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
838 ew32(PHY_CTRL, phy_ctrl);
841 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
842 * during Dx states where the power conservation is most
843 * important. During driver activity we should enable
844 * SmartSpeed, so performance is maintained.
846 if (phy->smart_speed == e1000_smart_speed_on) {
847 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
848 &data);
849 if (ret_val)
850 return ret_val;
852 data |= IGP01E1000_PSCFR_SMART_SPEED;
853 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
854 data);
855 if (ret_val)
856 return ret_val;
857 } else if (phy->smart_speed == e1000_smart_speed_off) {
858 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
859 &data);
860 if (ret_val)
861 return ret_val;
863 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
864 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
865 data);
866 if (ret_val)
867 return ret_val;
871 return 0;
875 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
876 * @hw: pointer to the HW structure
877 * @active: TRUE to enable LPLU, FALSE to disable
879 * Sets the LPLU D3 state according to the active flag. When
880 * activating LPLU this function also disables smart speed
881 * and vice versa. LPLU will not be activated unless the
882 * device autonegotiation advertisement meets standards of
883 * either 10 or 10/100 or 10/100/1000 at all duplexes.
884 * This is a function pointer entry point only called by
885 * PHY setup routines.
887 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
889 struct e1000_phy_info *phy = &hw->phy;
890 u32 phy_ctrl;
891 s32 ret_val;
892 u16 data;
894 phy_ctrl = er32(PHY_CTRL);
896 if (!active) {
897 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
898 ew32(PHY_CTRL, phy_ctrl);
900 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
901 * during Dx states where the power conservation is most
902 * important. During driver activity we should enable
903 * SmartSpeed, so performance is maintained.
905 if (phy->smart_speed == e1000_smart_speed_on) {
906 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
907 &data);
908 if (ret_val)
909 return ret_val;
911 data |= IGP01E1000_PSCFR_SMART_SPEED;
912 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
913 data);
914 if (ret_val)
915 return ret_val;
916 } else if (phy->smart_speed == e1000_smart_speed_off) {
917 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
918 &data);
919 if (ret_val)
920 return ret_val;
922 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
923 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
924 data);
925 if (ret_val)
926 return ret_val;
928 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
929 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
930 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
931 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
932 ew32(PHY_CTRL, phy_ctrl);
935 * Call gig speed drop workaround on LPLU before accessing
936 * any PHY registers
938 if ((hw->mac.type == e1000_ich8lan) &&
939 (hw->phy.type == e1000_phy_igp_3))
940 e1000e_gig_downshift_workaround_ich8lan(hw);
942 /* When LPLU is enabled, we should disable SmartSpeed */
943 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
944 if (ret_val)
945 return ret_val;
947 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
948 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
951 return 0;
955 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
956 * @hw: pointer to the HW structure
957 * @bank: pointer to the variable that returns the active bank
959 * Reads signature byte from the NVM using the flash access registers.
960 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
962 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
964 u32 eecd;
965 struct e1000_nvm_info *nvm = &hw->nvm;
966 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
967 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
968 u8 sig_byte = 0;
969 s32 ret_val = 0;
971 switch (hw->mac.type) {
972 case e1000_ich8lan:
973 case e1000_ich9lan:
974 eecd = er32(EECD);
975 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
976 E1000_EECD_SEC1VAL_VALID_MASK) {
977 if (eecd & E1000_EECD_SEC1VAL)
978 *bank = 1;
979 else
980 *bank = 0;
982 return 0;
984 hw_dbg(hw, "Unable to determine valid NVM bank via EEC - "
985 "reading flash signature\n");
986 /* fall-thru */
987 default:
988 /* set bank to 0 in case flash read fails */
989 *bank = 0;
991 /* Check bank 0 */
992 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
993 &sig_byte);
994 if (ret_val)
995 return ret_val;
996 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
997 E1000_ICH_NVM_SIG_VALUE) {
998 *bank = 0;
999 return 0;
1002 /* Check bank 1 */
1003 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
1004 bank1_offset,
1005 &sig_byte);
1006 if (ret_val)
1007 return ret_val;
1008 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
1009 E1000_ICH_NVM_SIG_VALUE) {
1010 *bank = 1;
1011 return 0;
1014 hw_dbg(hw, "ERROR: No valid NVM bank present\n");
1015 return -E1000_ERR_NVM;
1018 return 0;
1022 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
1023 * @hw: pointer to the HW structure
1024 * @offset: The offset (in bytes) of the word(s) to read.
1025 * @words: Size of data to read in words
1026 * @data: Pointer to the word(s) to read at offset.
1028 * Reads a word(s) from the NVM using the flash access registers.
1030 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1031 u16 *data)
1033 struct e1000_nvm_info *nvm = &hw->nvm;
1034 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1035 u32 act_offset;
1036 s32 ret_val;
1037 u32 bank = 0;
1038 u16 i, word;
1040 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1041 (words == 0)) {
1042 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1043 return -E1000_ERR_NVM;
1046 ret_val = e1000_acquire_swflag_ich8lan(hw);
1047 if (ret_val)
1048 goto out;
1050 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1051 if (ret_val)
1052 goto release;
1054 act_offset = (bank) ? nvm->flash_bank_size : 0;
1055 act_offset += offset;
1057 for (i = 0; i < words; i++) {
1058 if ((dev_spec->shadow_ram) &&
1059 (dev_spec->shadow_ram[offset+i].modified)) {
1060 data[i] = dev_spec->shadow_ram[offset+i].value;
1061 } else {
1062 ret_val = e1000_read_flash_word_ich8lan(hw,
1063 act_offset + i,
1064 &word);
1065 if (ret_val)
1066 break;
1067 data[i] = word;
1071 release:
1072 e1000_release_swflag_ich8lan(hw);
1074 out:
1075 if (ret_val)
1076 hw_dbg(hw, "NVM read error: %d\n", ret_val);
1078 return ret_val;
1082 * e1000_flash_cycle_init_ich8lan - Initialize flash
1083 * @hw: pointer to the HW structure
1085 * This function does initial flash setup so that a new read/write/erase cycle
1086 * can be started.
1088 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
1090 union ich8_hws_flash_status hsfsts;
1091 s32 ret_val = -E1000_ERR_NVM;
1092 s32 i = 0;
1094 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1096 /* Check if the flash descriptor is valid */
1097 if (hsfsts.hsf_status.fldesvalid == 0) {
1098 hw_dbg(hw, "Flash descriptor invalid. "
1099 "SW Sequencing must be used.");
1100 return -E1000_ERR_NVM;
1103 /* Clear FCERR and DAEL in hw status by writing 1 */
1104 hsfsts.hsf_status.flcerr = 1;
1105 hsfsts.hsf_status.dael = 1;
1107 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1110 * Either we should have a hardware SPI cycle in progress
1111 * bit to check against, in order to start a new cycle or
1112 * FDONE bit should be changed in the hardware so that it
1113 * is 1 after hardware reset, which can then be used as an
1114 * indication whether a cycle is in progress or has been
1115 * completed.
1118 if (hsfsts.hsf_status.flcinprog == 0) {
1120 * There is no cycle running at present,
1121 * so we can start a cycle
1122 * Begin by setting Flash Cycle Done.
1124 hsfsts.hsf_status.flcdone = 1;
1125 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1126 ret_val = 0;
1127 } else {
1129 * otherwise poll for sometime so the current
1130 * cycle has a chance to end before giving up.
1132 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
1133 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
1134 if (hsfsts.hsf_status.flcinprog == 0) {
1135 ret_val = 0;
1136 break;
1138 udelay(1);
1140 if (ret_val == 0) {
1142 * Successful in waiting for previous cycle to timeout,
1143 * now set the Flash Cycle Done.
1145 hsfsts.hsf_status.flcdone = 1;
1146 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1147 } else {
1148 hw_dbg(hw, "Flash controller busy, cannot get access");
1152 return ret_val;
1156 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
1157 * @hw: pointer to the HW structure
1158 * @timeout: maximum time to wait for completion
1160 * This function starts a flash cycle and waits for its completion.
1162 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
1164 union ich8_hws_flash_ctrl hsflctl;
1165 union ich8_hws_flash_status hsfsts;
1166 s32 ret_val = -E1000_ERR_NVM;
1167 u32 i = 0;
1169 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
1170 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1171 hsflctl.hsf_ctrl.flcgo = 1;
1172 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1174 /* wait till FDONE bit is set to 1 */
1175 do {
1176 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1177 if (hsfsts.hsf_status.flcdone == 1)
1178 break;
1179 udelay(1);
1180 } while (i++ < timeout);
1182 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
1183 return 0;
1185 return ret_val;
1189 * e1000_read_flash_word_ich8lan - Read word from flash
1190 * @hw: pointer to the HW structure
1191 * @offset: offset to data location
1192 * @data: pointer to the location for storing the data
1194 * Reads the flash word at offset into data. Offset is converted
1195 * to bytes before read.
1197 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
1198 u16 *data)
1200 /* Must convert offset into bytes. */
1201 offset <<= 1;
1203 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
1207 * e1000_read_flash_byte_ich8lan - Read byte from flash
1208 * @hw: pointer to the HW structure
1209 * @offset: The offset of the byte to read.
1210 * @data: Pointer to a byte to store the value read.
1212 * Reads a single byte from the NVM using the flash access registers.
1214 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1215 u8 *data)
1217 s32 ret_val;
1218 u16 word = 0;
1220 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
1221 if (ret_val)
1222 return ret_val;
1224 *data = (u8)word;
1226 return 0;
1230 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
1231 * @hw: pointer to the HW structure
1232 * @offset: The offset (in bytes) of the byte or word to read.
1233 * @size: Size of data to read, 1=byte 2=word
1234 * @data: Pointer to the word to store the value read.
1236 * Reads a byte or word from the NVM using the flash access registers.
1238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1239 u8 size, u16 *data)
1241 union ich8_hws_flash_status hsfsts;
1242 union ich8_hws_flash_ctrl hsflctl;
1243 u32 flash_linear_addr;
1244 u32 flash_data = 0;
1245 s32 ret_val = -E1000_ERR_NVM;
1246 u8 count = 0;
1248 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
1249 return -E1000_ERR_NVM;
1251 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1252 hw->nvm.flash_base_addr;
1254 do {
1255 udelay(1);
1256 /* Steps */
1257 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1258 if (ret_val != 0)
1259 break;
1261 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1262 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1263 hsflctl.hsf_ctrl.fldbcount = size - 1;
1264 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
1265 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1267 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1269 ret_val = e1000_flash_cycle_ich8lan(hw,
1270 ICH_FLASH_READ_COMMAND_TIMEOUT);
1273 * Check if FCERR is set to 1, if set to 1, clear it
1274 * and try the whole sequence a few more times, else
1275 * read in (shift in) the Flash Data0, the order is
1276 * least significant byte first msb to lsb
1278 if (ret_val == 0) {
1279 flash_data = er32flash(ICH_FLASH_FDATA0);
1280 if (size == 1) {
1281 *data = (u8)(flash_data & 0x000000FF);
1282 } else if (size == 2) {
1283 *data = (u16)(flash_data & 0x0000FFFF);
1285 break;
1286 } else {
1288 * If we've gotten here, then things are probably
1289 * completely hosed, but if the error condition is
1290 * detected, it won't hurt to give it another try...
1291 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
1293 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1294 if (hsfsts.hsf_status.flcerr == 1) {
1295 /* Repeat for some time before giving up. */
1296 continue;
1297 } else if (hsfsts.hsf_status.flcdone == 0) {
1298 hw_dbg(hw, "Timeout error - flash cycle "
1299 "did not complete.");
1300 break;
1303 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1305 return ret_val;
1309 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
1310 * @hw: pointer to the HW structure
1311 * @offset: The offset (in bytes) of the word(s) to write.
1312 * @words: Size of data to write in words
1313 * @data: Pointer to the word(s) to write at offset.
1315 * Writes a byte or word to the NVM using the flash access registers.
1317 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
1318 u16 *data)
1320 struct e1000_nvm_info *nvm = &hw->nvm;
1321 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1322 s32 ret_val;
1323 u16 i;
1325 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
1326 (words == 0)) {
1327 hw_dbg(hw, "nvm parameter(s) out of bounds\n");
1328 return -E1000_ERR_NVM;
1331 ret_val = e1000_acquire_swflag_ich8lan(hw);
1332 if (ret_val)
1333 return ret_val;
1335 for (i = 0; i < words; i++) {
1336 dev_spec->shadow_ram[offset+i].modified = 1;
1337 dev_spec->shadow_ram[offset+i].value = data[i];
1340 e1000_release_swflag_ich8lan(hw);
1342 return 0;
1346 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
1347 * @hw: pointer to the HW structure
1349 * The NVM checksum is updated by calling the generic update_nvm_checksum,
1350 * which writes the checksum to the shadow ram. The changes in the shadow
1351 * ram are then committed to the EEPROM by processing each bank at a time
1352 * checking for the modified bit and writing only the pending changes.
1353 * After a successful commit, the shadow ram is cleared and is ready for
1354 * future writes.
1356 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
1358 struct e1000_nvm_info *nvm = &hw->nvm;
1359 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
1360 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
1361 s32 ret_val;
1362 u16 data;
1364 ret_val = e1000e_update_nvm_checksum_generic(hw);
1365 if (ret_val)
1366 goto out;
1368 if (nvm->type != e1000_nvm_flash_sw)
1369 goto out;
1371 ret_val = e1000_acquire_swflag_ich8lan(hw);
1372 if (ret_val)
1373 goto out;
1376 * We're writing to the opposite bank so if we're on bank 1,
1377 * write to bank 0 etc. We also need to erase the segment that
1378 * is going to be written
1380 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
1381 if (ret_val) {
1382 e1000_release_swflag_ich8lan(hw);
1383 goto out;
1386 if (bank == 0) {
1387 new_bank_offset = nvm->flash_bank_size;
1388 old_bank_offset = 0;
1389 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
1390 if (ret_val) {
1391 e1000_release_swflag_ich8lan(hw);
1392 goto out;
1394 } else {
1395 old_bank_offset = nvm->flash_bank_size;
1396 new_bank_offset = 0;
1397 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
1398 if (ret_val) {
1399 e1000_release_swflag_ich8lan(hw);
1400 goto out;
1404 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1406 * Determine whether to write the value stored
1407 * in the other NVM bank or a modified value stored
1408 * in the shadow RAM
1410 if (dev_spec->shadow_ram[i].modified) {
1411 data = dev_spec->shadow_ram[i].value;
1412 } else {
1413 ret_val = e1000_read_flash_word_ich8lan(hw, i +
1414 old_bank_offset,
1415 &data);
1416 if (ret_val)
1417 break;
1421 * If the word is 0x13, then make sure the signature bits
1422 * (15:14) are 11b until the commit has completed.
1423 * This will allow us to write 10b which indicates the
1424 * signature is valid. We want to do this after the write
1425 * has completed so that we don't mark the segment valid
1426 * while the write is still in progress
1428 if (i == E1000_ICH_NVM_SIG_WORD)
1429 data |= E1000_ICH_NVM_SIG_MASK;
1431 /* Convert offset to bytes. */
1432 act_offset = (i + new_bank_offset) << 1;
1434 udelay(100);
1435 /* Write the bytes to the new bank. */
1436 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1437 act_offset,
1438 (u8)data);
1439 if (ret_val)
1440 break;
1442 udelay(100);
1443 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1444 act_offset + 1,
1445 (u8)(data >> 8));
1446 if (ret_val)
1447 break;
1451 * Don't bother writing the segment valid bits if sector
1452 * programming failed.
1454 if (ret_val) {
1455 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
1456 hw_dbg(hw, "Flash commit failed.\n");
1457 e1000_release_swflag_ich8lan(hw);
1458 goto out;
1462 * Finally validate the new segment by setting bit 15:14
1463 * to 10b in word 0x13 , this can be done without an
1464 * erase as well since these bits are 11 to start with
1465 * and we need to change bit 14 to 0b
1467 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
1468 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
1469 if (ret_val) {
1470 e1000_release_swflag_ich8lan(hw);
1471 goto out;
1473 data &= 0xBFFF;
1474 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
1475 act_offset * 2 + 1,
1476 (u8)(data >> 8));
1477 if (ret_val) {
1478 e1000_release_swflag_ich8lan(hw);
1479 goto out;
1483 * And invalidate the previously valid segment by setting
1484 * its signature word (0x13) high_byte to 0b. This can be
1485 * done without an erase because flash erase sets all bits
1486 * to 1's. We can write 1's to 0's without an erase
1488 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
1489 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
1490 if (ret_val) {
1491 e1000_release_swflag_ich8lan(hw);
1492 goto out;
1495 /* Great! Everything worked, we can now clear the cached entries. */
1496 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
1497 dev_spec->shadow_ram[i].modified = 0;
1498 dev_spec->shadow_ram[i].value = 0xFFFF;
1501 e1000_release_swflag_ich8lan(hw);
1504 * Reload the EEPROM, or else modifications will not appear
1505 * until after the next adapter reset.
1507 e1000e_reload_nvm(hw);
1508 msleep(10);
1510 out:
1511 if (ret_val)
1512 hw_dbg(hw, "NVM update error: %d\n", ret_val);
1514 return ret_val;
1518 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
1519 * @hw: pointer to the HW structure
1521 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
1522 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
1523 * calculated, in which case we need to calculate the checksum and set bit 6.
1525 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
1527 s32 ret_val;
1528 u16 data;
1531 * Read 0x19 and check bit 6. If this bit is 0, the checksum
1532 * needs to be fixed. This bit is an indication that the NVM
1533 * was prepared by OEM software and did not calculate the
1534 * checksum...a likely scenario.
1536 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
1537 if (ret_val)
1538 return ret_val;
1540 if ((data & 0x40) == 0) {
1541 data |= 0x40;
1542 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
1543 if (ret_val)
1544 return ret_val;
1545 ret_val = e1000e_update_nvm_checksum(hw);
1546 if (ret_val)
1547 return ret_val;
1550 return e1000e_validate_nvm_checksum_generic(hw);
1554 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
1555 * @hw: pointer to the HW structure
1557 * To prevent malicious write/erase of the NVM, set it to be read-only
1558 * so that the hardware ignores all write/erase cycles of the NVM via
1559 * the flash control registers. The shadow-ram copy of the NVM will
1560 * still be updated, however any updates to this copy will not stick
1561 * across driver reloads.
1563 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
1565 union ich8_flash_protected_range pr0;
1566 union ich8_hws_flash_status hsfsts;
1567 u32 gfpreg;
1568 s32 ret_val;
1570 ret_val = e1000_acquire_swflag_ich8lan(hw);
1571 if (ret_val)
1572 return;
1574 gfpreg = er32flash(ICH_FLASH_GFPREG);
1576 /* Write-protect GbE Sector of NVM */
1577 pr0.regval = er32flash(ICH_FLASH_PR0);
1578 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
1579 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
1580 pr0.range.wpe = true;
1581 ew32flash(ICH_FLASH_PR0, pr0.regval);
1584 * Lock down a subset of GbE Flash Control Registers, e.g.
1585 * PR0 to prevent the write-protection from being lifted.
1586 * Once FLOCKDN is set, the registers protected by it cannot
1587 * be written until FLOCKDN is cleared by a hardware reset.
1589 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1590 hsfsts.hsf_status.flockdn = true;
1591 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
1593 e1000_release_swflag_ich8lan(hw);
1597 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
1598 * @hw: pointer to the HW structure
1599 * @offset: The offset (in bytes) of the byte/word to read.
1600 * @size: Size of data to read, 1=byte 2=word
1601 * @data: The byte(s) to write to the NVM.
1603 * Writes one/two bytes to the NVM using the flash access registers.
1605 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
1606 u8 size, u16 data)
1608 union ich8_hws_flash_status hsfsts;
1609 union ich8_hws_flash_ctrl hsflctl;
1610 u32 flash_linear_addr;
1611 u32 flash_data = 0;
1612 s32 ret_val;
1613 u8 count = 0;
1615 if (size < 1 || size > 2 || data > size * 0xff ||
1616 offset > ICH_FLASH_LINEAR_ADDR_MASK)
1617 return -E1000_ERR_NVM;
1619 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
1620 hw->nvm.flash_base_addr;
1622 do {
1623 udelay(1);
1624 /* Steps */
1625 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1626 if (ret_val)
1627 break;
1629 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1630 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
1631 hsflctl.hsf_ctrl.fldbcount = size -1;
1632 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
1633 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1635 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1637 if (size == 1)
1638 flash_data = (u32)data & 0x00FF;
1639 else
1640 flash_data = (u32)data;
1642 ew32flash(ICH_FLASH_FDATA0, flash_data);
1645 * check if FCERR is set to 1 , if set to 1, clear it
1646 * and try the whole sequence a few more times else done
1648 ret_val = e1000_flash_cycle_ich8lan(hw,
1649 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
1650 if (!ret_val)
1651 break;
1654 * If we're here, then things are most likely
1655 * completely hosed, but if the error condition
1656 * is detected, it won't hurt to give it another
1657 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
1659 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1660 if (hsfsts.hsf_status.flcerr == 1)
1661 /* Repeat for some time before giving up. */
1662 continue;
1663 if (hsfsts.hsf_status.flcdone == 0) {
1664 hw_dbg(hw, "Timeout error - flash cycle "
1665 "did not complete.");
1666 break;
1668 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
1670 return ret_val;
1674 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
1675 * @hw: pointer to the HW structure
1676 * @offset: The index of the byte to read.
1677 * @data: The byte to write to the NVM.
1679 * Writes a single byte to the NVM using the flash access registers.
1681 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
1682 u8 data)
1684 u16 word = (u16)data;
1686 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
1690 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
1691 * @hw: pointer to the HW structure
1692 * @offset: The offset of the byte to write.
1693 * @byte: The byte to write to the NVM.
1695 * Writes a single byte to the NVM using the flash access registers.
1696 * Goes through a retry algorithm before giving up.
1698 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
1699 u32 offset, u8 byte)
1701 s32 ret_val;
1702 u16 program_retries;
1704 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1705 if (!ret_val)
1706 return ret_val;
1708 for (program_retries = 0; program_retries < 100; program_retries++) {
1709 hw_dbg(hw, "Retrying Byte %2.2X at offset %u\n", byte, offset);
1710 udelay(100);
1711 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
1712 if (!ret_val)
1713 break;
1715 if (program_retries == 100)
1716 return -E1000_ERR_NVM;
1718 return 0;
1722 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
1723 * @hw: pointer to the HW structure
1724 * @bank: 0 for first bank, 1 for second bank, etc.
1726 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
1727 * bank N is 4096 * N + flash_reg_addr.
1729 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
1731 struct e1000_nvm_info *nvm = &hw->nvm;
1732 union ich8_hws_flash_status hsfsts;
1733 union ich8_hws_flash_ctrl hsflctl;
1734 u32 flash_linear_addr;
1735 /* bank size is in 16bit words - adjust to bytes */
1736 u32 flash_bank_size = nvm->flash_bank_size * 2;
1737 s32 ret_val;
1738 s32 count = 0;
1739 s32 iteration;
1740 s32 sector_size;
1741 s32 j;
1743 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1746 * Determine HW Sector size: Read BERASE bits of hw flash status
1747 * register
1748 * 00: The Hw sector is 256 bytes, hence we need to erase 16
1749 * consecutive sectors. The start index for the nth Hw sector
1750 * can be calculated as = bank * 4096 + n * 256
1751 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
1752 * The start index for the nth Hw sector can be calculated
1753 * as = bank * 4096
1754 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
1755 * (ich9 only, otherwise error condition)
1756 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
1758 switch (hsfsts.hsf_status.berasesz) {
1759 case 0:
1760 /* Hw sector size 256 */
1761 sector_size = ICH_FLASH_SEG_SIZE_256;
1762 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
1763 break;
1764 case 1:
1765 sector_size = ICH_FLASH_SEG_SIZE_4K;
1766 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_4K;
1767 break;
1768 case 2:
1769 if (hw->mac.type == e1000_ich9lan) {
1770 sector_size = ICH_FLASH_SEG_SIZE_8K;
1771 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_8K;
1772 } else {
1773 return -E1000_ERR_NVM;
1775 break;
1776 case 3:
1777 sector_size = ICH_FLASH_SEG_SIZE_64K;
1778 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_64K;
1779 break;
1780 default:
1781 return -E1000_ERR_NVM;
1784 /* Start with the base address, then add the sector offset. */
1785 flash_linear_addr = hw->nvm.flash_base_addr;
1786 flash_linear_addr += (bank) ? (sector_size * iteration) : 0;
1788 for (j = 0; j < iteration ; j++) {
1789 do {
1790 /* Steps */
1791 ret_val = e1000_flash_cycle_init_ich8lan(hw);
1792 if (ret_val)
1793 return ret_val;
1796 * Write a value 11 (block Erase) in Flash
1797 * Cycle field in hw flash control
1799 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
1800 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
1801 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
1804 * Write the last 24 bits of an index within the
1805 * block into Flash Linear address field in Flash
1806 * Address.
1808 flash_linear_addr += (j * sector_size);
1809 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
1811 ret_val = e1000_flash_cycle_ich8lan(hw,
1812 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
1813 if (ret_val == 0)
1814 break;
1817 * Check if FCERR is set to 1. If 1,
1818 * clear it and try the whole sequence
1819 * a few more times else Done
1821 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
1822 if (hsfsts.hsf_status.flcerr == 1)
1823 /* repeat for some time before giving up */
1824 continue;
1825 else if (hsfsts.hsf_status.flcdone == 0)
1826 return ret_val;
1827 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
1830 return 0;
1834 * e1000_valid_led_default_ich8lan - Set the default LED settings
1835 * @hw: pointer to the HW structure
1836 * @data: Pointer to the LED settings
1838 * Reads the LED default settings from the NVM to data. If the NVM LED
1839 * settings is all 0's or F's, set the LED default to a valid LED default
1840 * setting.
1842 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
1844 s32 ret_val;
1846 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1847 if (ret_val) {
1848 hw_dbg(hw, "NVM Read Error\n");
1849 return ret_val;
1852 if (*data == ID_LED_RESERVED_0000 ||
1853 *data == ID_LED_RESERVED_FFFF)
1854 *data = ID_LED_DEFAULT_ICH8LAN;
1856 return 0;
1860 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
1861 * @hw: pointer to the HW structure
1863 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
1864 * register, so the the bus width is hard coded.
1866 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
1868 struct e1000_bus_info *bus = &hw->bus;
1869 s32 ret_val;
1871 ret_val = e1000e_get_bus_info_pcie(hw);
1874 * ICH devices are "PCI Express"-ish. They have
1875 * a configuration space, but do not contain
1876 * PCI Express Capability registers, so bus width
1877 * must be hardcoded.
1879 if (bus->width == e1000_bus_width_unknown)
1880 bus->width = e1000_bus_width_pcie_x1;
1882 return ret_val;
1886 * e1000_reset_hw_ich8lan - Reset the hardware
1887 * @hw: pointer to the HW structure
1889 * Does a full reset of the hardware which includes a reset of the PHY and
1890 * MAC.
1892 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
1894 u32 ctrl, icr, kab;
1895 s32 ret_val;
1898 * Prevent the PCI-E bus from sticking if there is no TLP connection
1899 * on the last TLP read/write transaction when MAC is reset.
1901 ret_val = e1000e_disable_pcie_master(hw);
1902 if (ret_val) {
1903 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
1906 hw_dbg(hw, "Masking off all interrupts\n");
1907 ew32(IMC, 0xffffffff);
1910 * Disable the Transmit and Receive units. Then delay to allow
1911 * any pending transactions to complete before we hit the MAC
1912 * with the global reset.
1914 ew32(RCTL, 0);
1915 ew32(TCTL, E1000_TCTL_PSP);
1916 e1e_flush();
1918 msleep(10);
1920 /* Workaround for ICH8 bit corruption issue in FIFO memory */
1921 if (hw->mac.type == e1000_ich8lan) {
1922 /* Set Tx and Rx buffer allocation to 8k apiece. */
1923 ew32(PBA, E1000_PBA_8K);
1924 /* Set Packet Buffer Size to 16k. */
1925 ew32(PBS, E1000_PBS_16K);
1928 ctrl = er32(CTRL);
1930 if (!e1000_check_reset_block(hw)) {
1932 * PHY HW reset requires MAC CORE reset at the same
1933 * time to make sure the interface between MAC and the
1934 * external PHY is reset.
1936 ctrl |= E1000_CTRL_PHY_RST;
1938 ret_val = e1000_acquire_swflag_ich8lan(hw);
1939 /* Whether or not the swflag was acquired, we need to reset the part */
1940 hw_dbg(hw, "Issuing a global reset to ich8lan\n");
1941 ew32(CTRL, (ctrl | E1000_CTRL_RST));
1942 msleep(20);
1944 if (!ret_val) {
1945 /* release the swflag because it is not reset by
1946 * hardware reset
1948 e1000_release_swflag_ich8lan(hw);
1951 ret_val = e1000e_get_auto_rd_done(hw);
1952 if (ret_val) {
1954 * When auto config read does not complete, do not
1955 * return with an error. This can happen in situations
1956 * where there is no eeprom and prevents getting link.
1958 hw_dbg(hw, "Auto Read Done did not complete\n");
1961 ew32(IMC, 0xffffffff);
1962 icr = er32(ICR);
1964 kab = er32(KABGTXD);
1965 kab |= E1000_KABGTXD_BGSQLBIAS;
1966 ew32(KABGTXD, kab);
1968 return ret_val;
1972 * e1000_init_hw_ich8lan - Initialize the hardware
1973 * @hw: pointer to the HW structure
1975 * Prepares the hardware for transmit and receive by doing the following:
1976 * - initialize hardware bits
1977 * - initialize LED identification
1978 * - setup receive address registers
1979 * - setup flow control
1980 * - setup transmit descriptors
1981 * - clear statistics
1983 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
1985 struct e1000_mac_info *mac = &hw->mac;
1986 u32 ctrl_ext, txdctl, snoop;
1987 s32 ret_val;
1988 u16 i;
1990 e1000_initialize_hw_bits_ich8lan(hw);
1992 /* Initialize identification LED */
1993 ret_val = e1000e_id_led_init(hw);
1994 if (ret_val) {
1995 hw_dbg(hw, "Error initializing identification LED\n");
1996 return ret_val;
1999 /* Setup the receive address. */
2000 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
2002 /* Zero out the Multicast HASH table */
2003 hw_dbg(hw, "Zeroing the MTA\n");
2004 for (i = 0; i < mac->mta_reg_count; i++)
2005 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
2007 /* Setup link and flow control */
2008 ret_val = e1000_setup_link_ich8lan(hw);
2010 /* Set the transmit descriptor write-back policy for both queues */
2011 txdctl = er32(TXDCTL(0));
2012 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2013 E1000_TXDCTL_FULL_TX_DESC_WB;
2014 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2015 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2016 ew32(TXDCTL(0), txdctl);
2017 txdctl = er32(TXDCTL(1));
2018 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
2019 E1000_TXDCTL_FULL_TX_DESC_WB;
2020 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
2021 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
2022 ew32(TXDCTL(1), txdctl);
2025 * ICH8 has opposite polarity of no_snoop bits.
2026 * By default, we should use snoop behavior.
2028 if (mac->type == e1000_ich8lan)
2029 snoop = PCIE_ICH8_SNOOP_ALL;
2030 else
2031 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
2032 e1000e_set_pcie_no_snoop(hw, snoop);
2034 ctrl_ext = er32(CTRL_EXT);
2035 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
2036 ew32(CTRL_EXT, ctrl_ext);
2039 * Clear all of the statistics registers (clear on read). It is
2040 * important that we do this after we have tried to establish link
2041 * because the symbol error count will increment wildly if there
2042 * is no link.
2044 e1000_clear_hw_cntrs_ich8lan(hw);
2046 return 0;
2049 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
2050 * @hw: pointer to the HW structure
2052 * Sets/Clears required hardware bits necessary for correctly setting up the
2053 * hardware for transmit and receive.
2055 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
2057 u32 reg;
2059 /* Extended Device Control */
2060 reg = er32(CTRL_EXT);
2061 reg |= (1 << 22);
2062 ew32(CTRL_EXT, reg);
2064 /* Transmit Descriptor Control 0 */
2065 reg = er32(TXDCTL(0));
2066 reg |= (1 << 22);
2067 ew32(TXDCTL(0), reg);
2069 /* Transmit Descriptor Control 1 */
2070 reg = er32(TXDCTL(1));
2071 reg |= (1 << 22);
2072 ew32(TXDCTL(1), reg);
2074 /* Transmit Arbitration Control 0 */
2075 reg = er32(TARC(0));
2076 if (hw->mac.type == e1000_ich8lan)
2077 reg |= (1 << 28) | (1 << 29);
2078 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
2079 ew32(TARC(0), reg);
2081 /* Transmit Arbitration Control 1 */
2082 reg = er32(TARC(1));
2083 if (er32(TCTL) & E1000_TCTL_MULR)
2084 reg &= ~(1 << 28);
2085 else
2086 reg |= (1 << 28);
2087 reg |= (1 << 24) | (1 << 26) | (1 << 30);
2088 ew32(TARC(1), reg);
2090 /* Device Status */
2091 if (hw->mac.type == e1000_ich8lan) {
2092 reg = er32(STATUS);
2093 reg &= ~(1 << 31);
2094 ew32(STATUS, reg);
2099 * e1000_setup_link_ich8lan - Setup flow control and link settings
2100 * @hw: pointer to the HW structure
2102 * Determines which flow control settings to use, then configures flow
2103 * control. Calls the appropriate media-specific link configuration
2104 * function. Assuming the adapter has a valid link partner, a valid link
2105 * should be established. Assumes the hardware has previously been reset
2106 * and the transmitter and receiver are not enabled.
2108 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
2110 s32 ret_val;
2112 if (e1000_check_reset_block(hw))
2113 return 0;
2116 * ICH parts do not have a word in the NVM to determine
2117 * the default flow control setting, so we explicitly
2118 * set it to full.
2120 if (hw->fc.requested_mode == e1000_fc_default)
2121 hw->fc.requested_mode = e1000_fc_full;
2124 * Save off the requested flow control mode for use later. Depending
2125 * on the link partner's capabilities, we may or may not use this mode.
2127 hw->fc.current_mode = hw->fc.requested_mode;
2129 hw_dbg(hw, "After fix-ups FlowControl is now = %x\n",
2130 hw->fc.current_mode);
2132 /* Continue to configure the copper link. */
2133 ret_val = e1000_setup_copper_link_ich8lan(hw);
2134 if (ret_val)
2135 return ret_val;
2137 ew32(FCTTV, hw->fc.pause_time);
2139 return e1000e_set_fc_watermarks(hw);
2143 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
2144 * @hw: pointer to the HW structure
2146 * Configures the kumeran interface to the PHY to wait the appropriate time
2147 * when polling the PHY, then call the generic setup_copper_link to finish
2148 * configuring the copper link.
2150 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
2152 u32 ctrl;
2153 s32 ret_val;
2154 u16 reg_data;
2156 ctrl = er32(CTRL);
2157 ctrl |= E1000_CTRL_SLU;
2158 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
2159 ew32(CTRL, ctrl);
2162 * Set the mac to wait the maximum time between each iteration
2163 * and increase the max iterations when polling the phy;
2164 * this fixes erroneous timeouts at 10Mbps.
2166 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
2167 if (ret_val)
2168 return ret_val;
2169 ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
2170 if (ret_val)
2171 return ret_val;
2172 reg_data |= 0x3F;
2173 ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
2174 if (ret_val)
2175 return ret_val;
2177 if (hw->phy.type == e1000_phy_igp_3) {
2178 ret_val = e1000e_copper_link_setup_igp(hw);
2179 if (ret_val)
2180 return ret_val;
2181 } else if (hw->phy.type == e1000_phy_bm) {
2182 ret_val = e1000e_copper_link_setup_m88(hw);
2183 if (ret_val)
2184 return ret_val;
2187 if (hw->phy.type == e1000_phy_ife) {
2188 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
2189 if (ret_val)
2190 return ret_val;
2192 reg_data &= ~IFE_PMC_AUTO_MDIX;
2194 switch (hw->phy.mdix) {
2195 case 1:
2196 reg_data &= ~IFE_PMC_FORCE_MDIX;
2197 break;
2198 case 2:
2199 reg_data |= IFE_PMC_FORCE_MDIX;
2200 break;
2201 case 0:
2202 default:
2203 reg_data |= IFE_PMC_AUTO_MDIX;
2204 break;
2206 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
2207 if (ret_val)
2208 return ret_val;
2210 return e1000e_setup_copper_link(hw);
2214 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
2215 * @hw: pointer to the HW structure
2216 * @speed: pointer to store current link speed
2217 * @duplex: pointer to store the current link duplex
2219 * Calls the generic get_speed_and_duplex to retrieve the current link
2220 * information and then calls the Kumeran lock loss workaround for links at
2221 * gigabit speeds.
2223 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
2224 u16 *duplex)
2226 s32 ret_val;
2228 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
2229 if (ret_val)
2230 return ret_val;
2232 if ((hw->mac.type == e1000_ich8lan) &&
2233 (hw->phy.type == e1000_phy_igp_3) &&
2234 (*speed == SPEED_1000)) {
2235 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
2238 return ret_val;
2242 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
2243 * @hw: pointer to the HW structure
2245 * Work-around for 82566 Kumeran PCS lock loss:
2246 * On link status change (i.e. PCI reset, speed change) and link is up and
2247 * speed is gigabit-
2248 * 0) if workaround is optionally disabled do nothing
2249 * 1) wait 1ms for Kumeran link to come up
2250 * 2) check Kumeran Diagnostic register PCS lock loss bit
2251 * 3) if not set the link is locked (all is good), otherwise...
2252 * 4) reset the PHY
2253 * 5) repeat up to 10 times
2254 * Note: this is only called for IGP3 copper when speed is 1gb.
2256 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
2258 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2259 u32 phy_ctrl;
2260 s32 ret_val;
2261 u16 i, data;
2262 bool link;
2264 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
2265 return 0;
2268 * Make sure link is up before proceeding. If not just return.
2269 * Attempting this while link is negotiating fouled up link
2270 * stability
2272 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2273 if (!link)
2274 return 0;
2276 for (i = 0; i < 10; i++) {
2277 /* read once to clear */
2278 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2279 if (ret_val)
2280 return ret_val;
2281 /* and again to get new status */
2282 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
2283 if (ret_val)
2284 return ret_val;
2286 /* check for PCS lock */
2287 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
2288 return 0;
2290 /* Issue PHY reset */
2291 e1000_phy_hw_reset(hw);
2292 mdelay(5);
2294 /* Disable GigE link negotiation */
2295 phy_ctrl = er32(PHY_CTRL);
2296 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
2297 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2298 ew32(PHY_CTRL, phy_ctrl);
2301 * Call gig speed drop workaround on Gig disable before accessing
2302 * any PHY registers
2304 e1000e_gig_downshift_workaround_ich8lan(hw);
2306 /* unable to acquire PCS lock */
2307 return -E1000_ERR_PHY;
2311 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
2312 * @hw: pointer to the HW structure
2313 * @state: boolean value used to set the current Kumeran workaround state
2315 * If ICH8, set the current Kumeran workaround state (enabled - TRUE
2316 * /disabled - FALSE).
2318 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
2319 bool state)
2321 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2323 if (hw->mac.type != e1000_ich8lan) {
2324 hw_dbg(hw, "Workaround applies to ICH8 only.\n");
2325 return;
2328 dev_spec->kmrn_lock_loss_workaround_enabled = state;
2332 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
2333 * @hw: pointer to the HW structure
2335 * Workaround for 82566 power-down on D3 entry:
2336 * 1) disable gigabit link
2337 * 2) write VR power-down enable
2338 * 3) read it back
2339 * Continue if successful, else issue LCD reset and repeat
2341 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
2343 u32 reg;
2344 u16 data;
2345 u8 retry = 0;
2347 if (hw->phy.type != e1000_phy_igp_3)
2348 return;
2350 /* Try the workaround twice (if needed) */
2351 do {
2352 /* Disable link */
2353 reg = er32(PHY_CTRL);
2354 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
2355 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
2356 ew32(PHY_CTRL, reg);
2359 * Call gig speed drop workaround on Gig disable before
2360 * accessing any PHY registers
2362 if (hw->mac.type == e1000_ich8lan)
2363 e1000e_gig_downshift_workaround_ich8lan(hw);
2365 /* Write VR power-down enable */
2366 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2367 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2368 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
2370 /* Read it back and test */
2371 e1e_rphy(hw, IGP3_VR_CTRL, &data);
2372 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
2373 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
2374 break;
2376 /* Issue PHY reset and repeat at most one more time */
2377 reg = er32(CTRL);
2378 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
2379 retry++;
2380 } while (retry);
2384 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
2385 * @hw: pointer to the HW structure
2387 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
2388 * LPLU, Gig disable, MDIC PHY reset):
2389 * 1) Set Kumeran Near-end loopback
2390 * 2) Clear Kumeran Near-end loopback
2391 * Should only be called for ICH8[m] devices with IGP_3 Phy.
2393 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
2395 s32 ret_val;
2396 u16 reg_data;
2398 if ((hw->mac.type != e1000_ich8lan) ||
2399 (hw->phy.type != e1000_phy_igp_3))
2400 return;
2402 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2403 &reg_data);
2404 if (ret_val)
2405 return;
2406 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
2407 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2408 reg_data);
2409 if (ret_val)
2410 return;
2411 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
2412 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
2413 reg_data);
2417 * e1000e_disable_gig_wol_ich8lan - disable gig during WoL
2418 * @hw: pointer to the HW structure
2420 * During S0 to Sx transition, it is possible the link remains at gig
2421 * instead of negotiating to a lower speed. Before going to Sx, set
2422 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
2423 * to a lower speed.
2425 * Should only be called for ICH9 and ICH10 devices.
2427 void e1000e_disable_gig_wol_ich8lan(struct e1000_hw *hw)
2429 u32 phy_ctrl;
2431 if ((hw->mac.type == e1000_ich10lan) ||
2432 (hw->mac.type == e1000_ich9lan)) {
2433 phy_ctrl = er32(PHY_CTRL);
2434 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU |
2435 E1000_PHY_CTRL_GBE_DISABLE;
2436 ew32(PHY_CTRL, phy_ctrl);
2439 return;
2443 * e1000_cleanup_led_ich8lan - Restore the default LED operation
2444 * @hw: pointer to the HW structure
2446 * Return the LED back to the default configuration.
2448 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
2450 if (hw->phy.type == e1000_phy_ife)
2451 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
2453 ew32(LEDCTL, hw->mac.ledctl_default);
2454 return 0;
2458 * e1000_led_on_ich8lan - Turn LEDs on
2459 * @hw: pointer to the HW structure
2461 * Turn on the LEDs.
2463 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
2465 if (hw->phy.type == e1000_phy_ife)
2466 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2467 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
2469 ew32(LEDCTL, hw->mac.ledctl_mode2);
2470 return 0;
2474 * e1000_led_off_ich8lan - Turn LEDs off
2475 * @hw: pointer to the HW structure
2477 * Turn off the LEDs.
2479 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
2481 if (hw->phy.type == e1000_phy_ife)
2482 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
2483 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF));
2485 ew32(LEDCTL, hw->mac.ledctl_mode1);
2486 return 0;
2490 * e1000_get_cfg_done_ich8lan - Read config done bit
2491 * @hw: pointer to the HW structure
2493 * Read the management control register for the config done bit for
2494 * completion status. NOTE: silicon which is EEPROM-less will fail trying
2495 * to read the config done bit, so an error is *ONLY* logged and returns
2496 * E1000_SUCCESS. If we were to return with error, EEPROM-less silicon
2497 * would not be able to be reset or change link.
2499 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
2501 u32 bank = 0;
2503 e1000e_get_cfg_done(hw);
2505 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
2506 if (hw->mac.type != e1000_ich10lan) {
2507 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
2508 (hw->phy.type == e1000_phy_igp_3)) {
2509 e1000e_phy_init_script_igp3(hw);
2511 } else {
2512 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
2513 /* Maybe we should do a basic PHY config */
2514 hw_dbg(hw, "EEPROM not present\n");
2515 return -E1000_ERR_CONFIG;
2519 return 0;
2523 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
2524 * @hw: pointer to the HW structure
2526 * Clears hardware counters specific to the silicon family and calls
2527 * clear_hw_cntrs_generic to clear all general purpose counters.
2529 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
2531 u32 temp;
2533 e1000e_clear_hw_cntrs_base(hw);
2535 temp = er32(ALGNERRC);
2536 temp = er32(RXERRC);
2537 temp = er32(TNCRS);
2538 temp = er32(CEXTERR);
2539 temp = er32(TSCTC);
2540 temp = er32(TSCTFC);
2542 temp = er32(MGTPRC);
2543 temp = er32(MGTPDC);
2544 temp = er32(MGTPTC);
2546 temp = er32(IAC);
2547 temp = er32(ICRXOC);
2551 static struct e1000_mac_operations ich8_mac_ops = {
2552 .check_mng_mode = e1000_check_mng_mode_ich8lan,
2553 .check_for_link = e1000e_check_for_copper_link,
2554 .cleanup_led = e1000_cleanup_led_ich8lan,
2555 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
2556 .get_bus_info = e1000_get_bus_info_ich8lan,
2557 .get_link_up_info = e1000_get_link_up_info_ich8lan,
2558 .led_on = e1000_led_on_ich8lan,
2559 .led_off = e1000_led_off_ich8lan,
2560 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
2561 .reset_hw = e1000_reset_hw_ich8lan,
2562 .init_hw = e1000_init_hw_ich8lan,
2563 .setup_link = e1000_setup_link_ich8lan,
2564 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
2567 static struct e1000_phy_operations ich8_phy_ops = {
2568 .acquire_phy = e1000_acquire_swflag_ich8lan,
2569 .check_reset_block = e1000_check_reset_block_ich8lan,
2570 .commit_phy = NULL,
2571 .force_speed_duplex = e1000_phy_force_speed_duplex_ich8lan,
2572 .get_cfg_done = e1000_get_cfg_done_ich8lan,
2573 .get_cable_length = e1000e_get_cable_length_igp_2,
2574 .get_phy_info = e1000_get_phy_info_ich8lan,
2575 .read_phy_reg = e1000e_read_phy_reg_igp,
2576 .release_phy = e1000_release_swflag_ich8lan,
2577 .reset_phy = e1000_phy_hw_reset_ich8lan,
2578 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
2579 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
2580 .write_phy_reg = e1000e_write_phy_reg_igp,
2583 static struct e1000_nvm_operations ich8_nvm_ops = {
2584 .acquire_nvm = e1000_acquire_swflag_ich8lan,
2585 .read_nvm = e1000_read_nvm_ich8lan,
2586 .release_nvm = e1000_release_swflag_ich8lan,
2587 .update_nvm = e1000_update_nvm_checksum_ich8lan,
2588 .valid_led_default = e1000_valid_led_default_ich8lan,
2589 .validate_nvm = e1000_validate_nvm_checksum_ich8lan,
2590 .write_nvm = e1000_write_nvm_ich8lan,
2593 struct e1000_info e1000_ich8_info = {
2594 .mac = e1000_ich8lan,
2595 .flags = FLAG_HAS_WOL
2596 | FLAG_IS_ICH
2597 | FLAG_RX_CSUM_ENABLED
2598 | FLAG_HAS_CTRLEXT_ON_LOAD
2599 | FLAG_HAS_AMT
2600 | FLAG_HAS_FLASH
2601 | FLAG_APME_IN_WUC,
2602 .pba = 8,
2603 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
2604 .get_variants = e1000_get_variants_ich8lan,
2605 .mac_ops = &ich8_mac_ops,
2606 .phy_ops = &ich8_phy_ops,
2607 .nvm_ops = &ich8_nvm_ops,
2610 struct e1000_info e1000_ich9_info = {
2611 .mac = e1000_ich9lan,
2612 .flags = FLAG_HAS_JUMBO_FRAMES
2613 | FLAG_IS_ICH
2614 | FLAG_HAS_WOL
2615 | FLAG_RX_CSUM_ENABLED
2616 | FLAG_HAS_CTRLEXT_ON_LOAD
2617 | FLAG_HAS_AMT
2618 | FLAG_HAS_ERT
2619 | FLAG_HAS_FLASH
2620 | FLAG_APME_IN_WUC,
2621 .pba = 10,
2622 .max_hw_frame_size = DEFAULT_JUMBO,
2623 .get_variants = e1000_get_variants_ich8lan,
2624 .mac_ops = &ich8_mac_ops,
2625 .phy_ops = &ich8_phy_ops,
2626 .nvm_ops = &ich8_nvm_ops,
2629 struct e1000_info e1000_ich10_info = {
2630 .mac = e1000_ich10lan,
2631 .flags = FLAG_HAS_JUMBO_FRAMES
2632 | FLAG_IS_ICH
2633 | FLAG_HAS_WOL
2634 | FLAG_RX_CSUM_ENABLED
2635 | FLAG_HAS_CTRLEXT_ON_LOAD
2636 | FLAG_HAS_AMT
2637 | FLAG_HAS_ERT
2638 | FLAG_HAS_FLASH
2639 | FLAG_APME_IN_WUC,
2640 .pba = 10,
2641 .max_hw_frame_size = DEFAULT_JUMBO,
2642 .get_variants = e1000_get_variants_ich8lan,
2643 .mac_ops = &ich8_mac_ops,
2644 .phy_ops = &ich8_phy_ops,
2645 .nvm_ops = &ich8_nvm_ops,