iio: ep93xx: remove redundant return value check of platform_get_resource()
[linux-2.6/btrfs-unstable.git] / kernel / bpf / cpumap.c
blobce5b669003b279640313aaf9dbe9a91256070e8b
1 /* bpf/cpumap.c
3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4 * Released under terms in GPL version 2. See COPYING.
5 */
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
23 #include <linux/sched.h>
24 #include <linux/workqueue.h>
25 #include <linux/kthread.h>
26 #include <linux/capability.h>
27 #include <trace/events/xdp.h>
29 #include <linux/netdevice.h> /* netif_receive_skb_core */
30 #include <linux/etherdevice.h> /* eth_type_trans */
32 /* General idea: XDP packets getting XDP redirected to another CPU,
33 * will maximum be stored/queued for one driver ->poll() call. It is
34 * guaranteed that setting flush bit and flush operation happen on
35 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
36 * which queue in bpf_cpu_map_entry contains packets.
39 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
40 struct xdp_bulk_queue {
41 void *q[CPU_MAP_BULK_SIZE];
42 unsigned int count;
45 /* Struct for every remote "destination" CPU in map */
46 struct bpf_cpu_map_entry {
47 u32 cpu; /* kthread CPU and map index */
48 int map_id; /* Back reference to map */
49 u32 qsize; /* Queue size placeholder for map lookup */
51 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
52 struct xdp_bulk_queue __percpu *bulkq;
54 /* Queue with potential multi-producers, and single-consumer kthread */
55 struct ptr_ring *queue;
56 struct task_struct *kthread;
57 struct work_struct kthread_stop_wq;
59 atomic_t refcnt; /* Control when this struct can be free'ed */
60 struct rcu_head rcu;
63 struct bpf_cpu_map {
64 struct bpf_map map;
65 /* Below members specific for map type */
66 struct bpf_cpu_map_entry **cpu_map;
67 unsigned long __percpu *flush_needed;
70 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
71 struct xdp_bulk_queue *bq);
73 static u64 cpu_map_bitmap_size(const union bpf_attr *attr)
75 return BITS_TO_LONGS(attr->max_entries) * sizeof(unsigned long);
78 static struct bpf_map *cpu_map_alloc(union bpf_attr *attr)
80 struct bpf_cpu_map *cmap;
81 int err = -ENOMEM;
82 u64 cost;
83 int ret;
85 if (!capable(CAP_SYS_ADMIN))
86 return ERR_PTR(-EPERM);
88 /* check sanity of attributes */
89 if (attr->max_entries == 0 || attr->key_size != 4 ||
90 attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE)
91 return ERR_PTR(-EINVAL);
93 cmap = kzalloc(sizeof(*cmap), GFP_USER);
94 if (!cmap)
95 return ERR_PTR(-ENOMEM);
97 /* mandatory map attributes */
98 cmap->map.map_type = attr->map_type;
99 cmap->map.key_size = attr->key_size;
100 cmap->map.value_size = attr->value_size;
101 cmap->map.max_entries = attr->max_entries;
102 cmap->map.map_flags = attr->map_flags;
103 cmap->map.numa_node = bpf_map_attr_numa_node(attr);
105 /* Pre-limit array size based on NR_CPUS, not final CPU check */
106 if (cmap->map.max_entries > NR_CPUS) {
107 err = -E2BIG;
108 goto free_cmap;
111 /* make sure page count doesn't overflow */
112 cost = (u64) cmap->map.max_entries * sizeof(struct bpf_cpu_map_entry *);
113 cost += cpu_map_bitmap_size(attr) * num_possible_cpus();
114 if (cost >= U32_MAX - PAGE_SIZE)
115 goto free_cmap;
116 cmap->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT;
118 /* Notice returns -EPERM on if map size is larger than memlock limit */
119 ret = bpf_map_precharge_memlock(cmap->map.pages);
120 if (ret) {
121 err = ret;
122 goto free_cmap;
125 /* A per cpu bitfield with a bit per possible CPU in map */
126 cmap->flush_needed = __alloc_percpu(cpu_map_bitmap_size(attr),
127 __alignof__(unsigned long));
128 if (!cmap->flush_needed)
129 goto free_cmap;
131 /* Alloc array for possible remote "destination" CPUs */
132 cmap->cpu_map = bpf_map_area_alloc(cmap->map.max_entries *
133 sizeof(struct bpf_cpu_map_entry *),
134 cmap->map.numa_node);
135 if (!cmap->cpu_map)
136 goto free_percpu;
138 return &cmap->map;
139 free_percpu:
140 free_percpu(cmap->flush_needed);
141 free_cmap:
142 kfree(cmap);
143 return ERR_PTR(err);
146 void __cpu_map_queue_destructor(void *ptr)
148 /* The tear-down procedure should have made sure that queue is
149 * empty. See __cpu_map_entry_replace() and work-queue
150 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
151 * gracefully and warn once.
153 if (WARN_ON_ONCE(ptr))
154 page_frag_free(ptr);
157 static void put_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
159 if (atomic_dec_and_test(&rcpu->refcnt)) {
160 /* The queue should be empty at this point */
161 ptr_ring_cleanup(rcpu->queue, __cpu_map_queue_destructor);
162 kfree(rcpu->queue);
163 kfree(rcpu);
167 static void get_cpu_map_entry(struct bpf_cpu_map_entry *rcpu)
169 atomic_inc(&rcpu->refcnt);
172 /* called from workqueue, to workaround syscall using preempt_disable */
173 static void cpu_map_kthread_stop(struct work_struct *work)
175 struct bpf_cpu_map_entry *rcpu;
177 rcpu = container_of(work, struct bpf_cpu_map_entry, kthread_stop_wq);
179 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
180 * as it waits until all in-flight call_rcu() callbacks complete.
182 rcu_barrier();
184 /* kthread_stop will wake_up_process and wait for it to complete */
185 kthread_stop(rcpu->kthread);
188 /* For now, xdp_pkt is a cpumap internal data structure, with info
189 * carried between enqueue to dequeue. It is mapped into the top
190 * headroom of the packet, to avoid allocating separate mem.
192 struct xdp_pkt {
193 void *data;
194 u16 len;
195 u16 headroom;
196 u16 metasize;
197 struct net_device *dev_rx;
200 /* Convert xdp_buff to xdp_pkt */
201 static struct xdp_pkt *convert_to_xdp_pkt(struct xdp_buff *xdp)
203 struct xdp_pkt *xdp_pkt;
204 int metasize;
205 int headroom;
207 /* Assure headroom is available for storing info */
208 headroom = xdp->data - xdp->data_hard_start;
209 metasize = xdp->data - xdp->data_meta;
210 metasize = metasize > 0 ? metasize : 0;
211 if (unlikely((headroom - metasize) < sizeof(*xdp_pkt)))
212 return NULL;
214 /* Store info in top of packet */
215 xdp_pkt = xdp->data_hard_start;
217 xdp_pkt->data = xdp->data;
218 xdp_pkt->len = xdp->data_end - xdp->data;
219 xdp_pkt->headroom = headroom - sizeof(*xdp_pkt);
220 xdp_pkt->metasize = metasize;
222 return xdp_pkt;
225 struct sk_buff *cpu_map_build_skb(struct bpf_cpu_map_entry *rcpu,
226 struct xdp_pkt *xdp_pkt)
228 unsigned int frame_size;
229 void *pkt_data_start;
230 struct sk_buff *skb;
232 /* build_skb need to place skb_shared_info after SKB end, and
233 * also want to know the memory "truesize". Thus, need to
234 * know the memory frame size backing xdp_buff.
236 * XDP was designed to have PAGE_SIZE frames, but this
237 * assumption is not longer true with ixgbe and i40e. It
238 * would be preferred to set frame_size to 2048 or 4096
239 * depending on the driver.
240 * frame_size = 2048;
241 * frame_len = frame_size - sizeof(*xdp_pkt);
243 * Instead, with info avail, skb_shared_info in placed after
244 * packet len. This, unfortunately fakes the truesize.
245 * Another disadvantage of this approach, the skb_shared_info
246 * is not at a fixed memory location, with mixed length
247 * packets, which is bad for cache-line hotness.
249 frame_size = SKB_DATA_ALIGN(xdp_pkt->len) + xdp_pkt->headroom +
250 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
252 pkt_data_start = xdp_pkt->data - xdp_pkt->headroom;
253 skb = build_skb(pkt_data_start, frame_size);
254 if (!skb)
255 return NULL;
257 skb_reserve(skb, xdp_pkt->headroom);
258 __skb_put(skb, xdp_pkt->len);
259 if (xdp_pkt->metasize)
260 skb_metadata_set(skb, xdp_pkt->metasize);
262 /* Essential SKB info: protocol and skb->dev */
263 skb->protocol = eth_type_trans(skb, xdp_pkt->dev_rx);
265 /* Optional SKB info, currently missing:
266 * - HW checksum info (skb->ip_summed)
267 * - HW RX hash (skb_set_hash)
268 * - RX ring dev queue index (skb_record_rx_queue)
271 return skb;
274 static int cpu_map_kthread_run(void *data)
276 struct bpf_cpu_map_entry *rcpu = data;
278 set_current_state(TASK_INTERRUPTIBLE);
280 /* When kthread gives stop order, then rcpu have been disconnected
281 * from map, thus no new packets can enter. Remaining in-flight
282 * per CPU stored packets are flushed to this queue. Wait honoring
283 * kthread_stop signal until queue is empty.
285 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu->queue)) {
286 unsigned int processed = 0, drops = 0, sched = 0;
287 struct xdp_pkt *xdp_pkt;
289 /* Release CPU reschedule checks */
290 if (__ptr_ring_empty(rcpu->queue)) {
291 set_current_state(TASK_INTERRUPTIBLE);
292 /* Recheck to avoid lost wake-up */
293 if (__ptr_ring_empty(rcpu->queue)) {
294 schedule();
295 sched = 1;
296 } else {
297 __set_current_state(TASK_RUNNING);
299 } else {
300 sched = cond_resched();
303 /* Process packets in rcpu->queue */
304 local_bh_disable();
306 * The bpf_cpu_map_entry is single consumer, with this
307 * kthread CPU pinned. Lockless access to ptr_ring
308 * consume side valid as no-resize allowed of queue.
310 while ((xdp_pkt = __ptr_ring_consume(rcpu->queue))) {
311 struct sk_buff *skb;
312 int ret;
314 skb = cpu_map_build_skb(rcpu, xdp_pkt);
315 if (!skb) {
316 page_frag_free(xdp_pkt);
317 continue;
320 /* Inject into network stack */
321 ret = netif_receive_skb_core(skb);
322 if (ret == NET_RX_DROP)
323 drops++;
325 /* Limit BH-disable period */
326 if (++processed == 8)
327 break;
329 /* Feedback loop via tracepoint */
330 trace_xdp_cpumap_kthread(rcpu->map_id, processed, drops, sched);
332 local_bh_enable(); /* resched point, may call do_softirq() */
334 __set_current_state(TASK_RUNNING);
336 put_cpu_map_entry(rcpu);
337 return 0;
340 struct bpf_cpu_map_entry *__cpu_map_entry_alloc(u32 qsize, u32 cpu, int map_id)
342 gfp_t gfp = GFP_ATOMIC|__GFP_NOWARN;
343 struct bpf_cpu_map_entry *rcpu;
344 int numa, err;
346 /* Have map->numa_node, but choose node of redirect target CPU */
347 numa = cpu_to_node(cpu);
349 rcpu = kzalloc_node(sizeof(*rcpu), gfp, numa);
350 if (!rcpu)
351 return NULL;
353 /* Alloc percpu bulkq */
354 rcpu->bulkq = __alloc_percpu_gfp(sizeof(*rcpu->bulkq),
355 sizeof(void *), gfp);
356 if (!rcpu->bulkq)
357 goto free_rcu;
359 /* Alloc queue */
360 rcpu->queue = kzalloc_node(sizeof(*rcpu->queue), gfp, numa);
361 if (!rcpu->queue)
362 goto free_bulkq;
364 err = ptr_ring_init(rcpu->queue, qsize, gfp);
365 if (err)
366 goto free_queue;
368 rcpu->cpu = cpu;
369 rcpu->map_id = map_id;
370 rcpu->qsize = qsize;
372 /* Setup kthread */
373 rcpu->kthread = kthread_create_on_node(cpu_map_kthread_run, rcpu, numa,
374 "cpumap/%d/map:%d", cpu, map_id);
375 if (IS_ERR(rcpu->kthread))
376 goto free_ptr_ring;
378 get_cpu_map_entry(rcpu); /* 1-refcnt for being in cmap->cpu_map[] */
379 get_cpu_map_entry(rcpu); /* 1-refcnt for kthread */
381 /* Make sure kthread runs on a single CPU */
382 kthread_bind(rcpu->kthread, cpu);
383 wake_up_process(rcpu->kthread);
385 return rcpu;
387 free_ptr_ring:
388 ptr_ring_cleanup(rcpu->queue, NULL);
389 free_queue:
390 kfree(rcpu->queue);
391 free_bulkq:
392 free_percpu(rcpu->bulkq);
393 free_rcu:
394 kfree(rcpu);
395 return NULL;
398 void __cpu_map_entry_free(struct rcu_head *rcu)
400 struct bpf_cpu_map_entry *rcpu;
401 int cpu;
403 /* This cpu_map_entry have been disconnected from map and one
404 * RCU graze-period have elapsed. Thus, XDP cannot queue any
405 * new packets and cannot change/set flush_needed that can
406 * find this entry.
408 rcpu = container_of(rcu, struct bpf_cpu_map_entry, rcu);
410 /* Flush remaining packets in percpu bulkq */
411 for_each_online_cpu(cpu) {
412 struct xdp_bulk_queue *bq = per_cpu_ptr(rcpu->bulkq, cpu);
414 /* No concurrent bq_enqueue can run at this point */
415 bq_flush_to_queue(rcpu, bq);
417 free_percpu(rcpu->bulkq);
418 /* Cannot kthread_stop() here, last put free rcpu resources */
419 put_cpu_map_entry(rcpu);
422 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
423 * ensure any driver rcu critical sections have completed, but this
424 * does not guarantee a flush has happened yet. Because driver side
425 * rcu_read_lock/unlock only protects the running XDP program. The
426 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
427 * pending flush op doesn't fail.
429 * The bpf_cpu_map_entry is still used by the kthread, and there can
430 * still be pending packets (in queue and percpu bulkq). A refcnt
431 * makes sure to last user (kthread_stop vs. call_rcu) free memory
432 * resources.
434 * The rcu callback __cpu_map_entry_free flush remaining packets in
435 * percpu bulkq to queue. Due to caller map_delete_elem() disable
436 * preemption, cannot call kthread_stop() to make sure queue is empty.
437 * Instead a work_queue is started for stopping kthread,
438 * cpu_map_kthread_stop, which waits for an RCU graze period before
439 * stopping kthread, emptying the queue.
441 void __cpu_map_entry_replace(struct bpf_cpu_map *cmap,
442 u32 key_cpu, struct bpf_cpu_map_entry *rcpu)
444 struct bpf_cpu_map_entry *old_rcpu;
446 old_rcpu = xchg(&cmap->cpu_map[key_cpu], rcpu);
447 if (old_rcpu) {
448 call_rcu(&old_rcpu->rcu, __cpu_map_entry_free);
449 INIT_WORK(&old_rcpu->kthread_stop_wq, cpu_map_kthread_stop);
450 schedule_work(&old_rcpu->kthread_stop_wq);
454 int cpu_map_delete_elem(struct bpf_map *map, void *key)
456 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
457 u32 key_cpu = *(u32 *)key;
459 if (key_cpu >= map->max_entries)
460 return -EINVAL;
462 /* notice caller map_delete_elem() use preempt_disable() */
463 __cpu_map_entry_replace(cmap, key_cpu, NULL);
464 return 0;
467 int cpu_map_update_elem(struct bpf_map *map, void *key, void *value,
468 u64 map_flags)
470 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
471 struct bpf_cpu_map_entry *rcpu;
473 /* Array index key correspond to CPU number */
474 u32 key_cpu = *(u32 *)key;
475 /* Value is the queue size */
476 u32 qsize = *(u32 *)value;
478 if (unlikely(map_flags > BPF_EXIST))
479 return -EINVAL;
480 if (unlikely(key_cpu >= cmap->map.max_entries))
481 return -E2BIG;
482 if (unlikely(map_flags == BPF_NOEXIST))
483 return -EEXIST;
484 if (unlikely(qsize > 16384)) /* sanity limit on qsize */
485 return -EOVERFLOW;
487 /* Make sure CPU is a valid possible cpu */
488 if (!cpu_possible(key_cpu))
489 return -ENODEV;
491 if (qsize == 0) {
492 rcpu = NULL; /* Same as deleting */
493 } else {
494 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
495 rcpu = __cpu_map_entry_alloc(qsize, key_cpu, map->id);
496 if (!rcpu)
497 return -ENOMEM;
499 rcu_read_lock();
500 __cpu_map_entry_replace(cmap, key_cpu, rcpu);
501 rcu_read_unlock();
502 return 0;
505 void cpu_map_free(struct bpf_map *map)
507 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
508 int cpu;
509 u32 i;
511 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
512 * so the bpf programs (can be more than one that used this map) were
513 * disconnected from events. Wait for outstanding critical sections in
514 * these programs to complete. The rcu critical section only guarantees
515 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
516 * It does __not__ ensure pending flush operations (if any) are
517 * complete.
519 synchronize_rcu();
521 /* To ensure all pending flush operations have completed wait for flush
522 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
523 * Because the above synchronize_rcu() ensures the map is disconnected
524 * from the program we can assume no new bits will be set.
526 for_each_online_cpu(cpu) {
527 unsigned long *bitmap = per_cpu_ptr(cmap->flush_needed, cpu);
529 while (!bitmap_empty(bitmap, cmap->map.max_entries))
530 cond_resched();
533 /* For cpu_map the remote CPUs can still be using the entries
534 * (struct bpf_cpu_map_entry).
536 for (i = 0; i < cmap->map.max_entries; i++) {
537 struct bpf_cpu_map_entry *rcpu;
539 rcpu = READ_ONCE(cmap->cpu_map[i]);
540 if (!rcpu)
541 continue;
543 /* bq flush and cleanup happens after RCU graze-period */
544 __cpu_map_entry_replace(cmap, i, NULL); /* call_rcu */
546 free_percpu(cmap->flush_needed);
547 bpf_map_area_free(cmap->cpu_map);
548 kfree(cmap);
551 struct bpf_cpu_map_entry *__cpu_map_lookup_elem(struct bpf_map *map, u32 key)
553 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
554 struct bpf_cpu_map_entry *rcpu;
556 if (key >= map->max_entries)
557 return NULL;
559 rcpu = READ_ONCE(cmap->cpu_map[key]);
560 return rcpu;
563 static void *cpu_map_lookup_elem(struct bpf_map *map, void *key)
565 struct bpf_cpu_map_entry *rcpu =
566 __cpu_map_lookup_elem(map, *(u32 *)key);
568 return rcpu ? &rcpu->qsize : NULL;
571 static int cpu_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
573 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
574 u32 index = key ? *(u32 *)key : U32_MAX;
575 u32 *next = next_key;
577 if (index >= cmap->map.max_entries) {
578 *next = 0;
579 return 0;
582 if (index == cmap->map.max_entries - 1)
583 return -ENOENT;
584 *next = index + 1;
585 return 0;
588 const struct bpf_map_ops cpu_map_ops = {
589 .map_alloc = cpu_map_alloc,
590 .map_free = cpu_map_free,
591 .map_delete_elem = cpu_map_delete_elem,
592 .map_update_elem = cpu_map_update_elem,
593 .map_lookup_elem = cpu_map_lookup_elem,
594 .map_get_next_key = cpu_map_get_next_key,
597 static int bq_flush_to_queue(struct bpf_cpu_map_entry *rcpu,
598 struct xdp_bulk_queue *bq)
600 unsigned int processed = 0, drops = 0;
601 const int to_cpu = rcpu->cpu;
602 struct ptr_ring *q;
603 int i;
605 if (unlikely(!bq->count))
606 return 0;
608 q = rcpu->queue;
609 spin_lock(&q->producer_lock);
611 for (i = 0; i < bq->count; i++) {
612 void *xdp_pkt = bq->q[i];
613 int err;
615 err = __ptr_ring_produce(q, xdp_pkt);
616 if (err) {
617 drops++;
618 page_frag_free(xdp_pkt); /* Free xdp_pkt */
620 processed++;
622 bq->count = 0;
623 spin_unlock(&q->producer_lock);
625 /* Feedback loop via tracepoints */
626 trace_xdp_cpumap_enqueue(rcpu->map_id, processed, drops, to_cpu);
627 return 0;
630 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
631 * Thus, safe percpu variable access.
633 static int bq_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_pkt *xdp_pkt)
635 struct xdp_bulk_queue *bq = this_cpu_ptr(rcpu->bulkq);
637 if (unlikely(bq->count == CPU_MAP_BULK_SIZE))
638 bq_flush_to_queue(rcpu, bq);
640 /* Notice, xdp_buff/page MUST be queued here, long enough for
641 * driver to code invoking us to finished, due to driver
642 * (e.g. ixgbe) recycle tricks based on page-refcnt.
644 * Thus, incoming xdp_pkt is always queued here (else we race
645 * with another CPU on page-refcnt and remaining driver code).
646 * Queue time is very short, as driver will invoke flush
647 * operation, when completing napi->poll call.
649 bq->q[bq->count++] = xdp_pkt;
650 return 0;
653 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_buff *xdp,
654 struct net_device *dev_rx)
656 struct xdp_pkt *xdp_pkt;
658 xdp_pkt = convert_to_xdp_pkt(xdp);
659 if (unlikely(!xdp_pkt))
660 return -EOVERFLOW;
662 /* Info needed when constructing SKB on remote CPU */
663 xdp_pkt->dev_rx = dev_rx;
665 bq_enqueue(rcpu, xdp_pkt);
666 return 0;
669 void __cpu_map_insert_ctx(struct bpf_map *map, u32 bit)
671 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
672 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
674 __set_bit(bit, bitmap);
677 void __cpu_map_flush(struct bpf_map *map)
679 struct bpf_cpu_map *cmap = container_of(map, struct bpf_cpu_map, map);
680 unsigned long *bitmap = this_cpu_ptr(cmap->flush_needed);
681 u32 bit;
683 /* The napi->poll softirq makes sure __cpu_map_insert_ctx()
684 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
685 * bitmap indicate which percpu bulkq have packets.
687 for_each_set_bit(bit, bitmap, map->max_entries) {
688 struct bpf_cpu_map_entry *rcpu = READ_ONCE(cmap->cpu_map[bit]);
689 struct xdp_bulk_queue *bq;
691 /* This is possible if entry is removed by user space
692 * between xdp redirect and flush op.
694 if (unlikely(!rcpu))
695 continue;
697 __clear_bit(bit, bitmap);
699 /* Flush all frames in bulkq to real queue */
700 bq = this_cpu_ptr(rcpu->bulkq);
701 bq_flush_to_queue(rcpu, bq);
703 /* If already running, costs spin_lock_irqsave + smb_mb */
704 wake_up_process(rcpu->kthread);