mm, compaction: always skip all compound pages by order in migrate scanner
[linux-2.6/btrfs-unstable.git] / fs / btrfs / tree-log.c
blob1bbaace733838e6fc70dba1babafb6f9265c00f9
1 /*
2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/blkdev.h>
22 #include <linux/list_sort.h>
23 #include "tree-log.h"
24 #include "disk-io.h"
25 #include "locking.h"
26 #include "print-tree.h"
27 #include "backref.h"
28 #include "hash.h"
30 /* magic values for the inode_only field in btrfs_log_inode:
32 * LOG_INODE_ALL means to log everything
33 * LOG_INODE_EXISTS means to log just enough to recreate the inode
34 * during log replay
36 #define LOG_INODE_ALL 0
37 #define LOG_INODE_EXISTS 1
40 * directory trouble cases
42 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
43 * log, we must force a full commit before doing an fsync of the directory
44 * where the unlink was done.
45 * ---> record transid of last unlink/rename per directory
47 * mkdir foo/some_dir
48 * normal commit
49 * rename foo/some_dir foo2/some_dir
50 * mkdir foo/some_dir
51 * fsync foo/some_dir/some_file
53 * The fsync above will unlink the original some_dir without recording
54 * it in its new location (foo2). After a crash, some_dir will be gone
55 * unless the fsync of some_file forces a full commit
57 * 2) we must log any new names for any file or dir that is in the fsync
58 * log. ---> check inode while renaming/linking.
60 * 2a) we must log any new names for any file or dir during rename
61 * when the directory they are being removed from was logged.
62 * ---> check inode and old parent dir during rename
64 * 2a is actually the more important variant. With the extra logging
65 * a crash might unlink the old name without recreating the new one
67 * 3) after a crash, we must go through any directories with a link count
68 * of zero and redo the rm -rf
70 * mkdir f1/foo
71 * normal commit
72 * rm -rf f1/foo
73 * fsync(f1)
75 * The directory f1 was fully removed from the FS, but fsync was never
76 * called on f1, only its parent dir. After a crash the rm -rf must
77 * be replayed. This must be able to recurse down the entire
78 * directory tree. The inode link count fixup code takes care of the
79 * ugly details.
83 * stages for the tree walking. The first
84 * stage (0) is to only pin down the blocks we find
85 * the second stage (1) is to make sure that all the inodes
86 * we find in the log are created in the subvolume.
88 * The last stage is to deal with directories and links and extents
89 * and all the other fun semantics
91 #define LOG_WALK_PIN_ONLY 0
92 #define LOG_WALK_REPLAY_INODES 1
93 #define LOG_WALK_REPLAY_DIR_INDEX 2
94 #define LOG_WALK_REPLAY_ALL 3
96 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root, struct inode *inode,
98 int inode_only,
99 const loff_t start,
100 const loff_t end,
101 struct btrfs_log_ctx *ctx);
102 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
103 struct btrfs_root *root,
104 struct btrfs_path *path, u64 objectid);
105 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
106 struct btrfs_root *root,
107 struct btrfs_root *log,
108 struct btrfs_path *path,
109 u64 dirid, int del_all);
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
139 static int start_log_trans(struct btrfs_trans_handle *trans,
140 struct btrfs_root *root,
141 struct btrfs_log_ctx *ctx)
143 int ret = 0;
145 mutex_lock(&root->log_mutex);
147 if (root->log_root) {
148 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
149 ret = -EAGAIN;
150 goto out;
153 if (!root->log_start_pid) {
154 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
155 root->log_start_pid = current->pid;
156 } else if (root->log_start_pid != current->pid) {
157 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
159 } else {
160 mutex_lock(&root->fs_info->tree_log_mutex);
161 if (!root->fs_info->log_root_tree)
162 ret = btrfs_init_log_root_tree(trans, root->fs_info);
163 mutex_unlock(&root->fs_info->tree_log_mutex);
164 if (ret)
165 goto out;
167 ret = btrfs_add_log_tree(trans, root);
168 if (ret)
169 goto out;
171 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
172 root->log_start_pid = current->pid;
175 atomic_inc(&root->log_batch);
176 atomic_inc(&root->log_writers);
177 if (ctx) {
178 int index = root->log_transid % 2;
179 list_add_tail(&ctx->list, &root->log_ctxs[index]);
180 ctx->log_transid = root->log_transid;
183 out:
184 mutex_unlock(&root->log_mutex);
185 return ret;
189 * returns 0 if there was a log transaction running and we were able
190 * to join, or returns -ENOENT if there were not transactions
191 * in progress
193 static int join_running_log_trans(struct btrfs_root *root)
195 int ret = -ENOENT;
197 smp_mb();
198 if (!root->log_root)
199 return -ENOENT;
201 mutex_lock(&root->log_mutex);
202 if (root->log_root) {
203 ret = 0;
204 atomic_inc(&root->log_writers);
206 mutex_unlock(&root->log_mutex);
207 return ret;
211 * This either makes the current running log transaction wait
212 * until you call btrfs_end_log_trans() or it makes any future
213 * log transactions wait until you call btrfs_end_log_trans()
215 int btrfs_pin_log_trans(struct btrfs_root *root)
217 int ret = -ENOENT;
219 mutex_lock(&root->log_mutex);
220 atomic_inc(&root->log_writers);
221 mutex_unlock(&root->log_mutex);
222 return ret;
226 * indicate we're done making changes to the log tree
227 * and wake up anyone waiting to do a sync
229 void btrfs_end_log_trans(struct btrfs_root *root)
231 if (atomic_dec_and_test(&root->log_writers)) {
232 smp_mb();
233 if (waitqueue_active(&root->log_writer_wait))
234 wake_up(&root->log_writer_wait);
240 * the walk control struct is used to pass state down the chain when
241 * processing the log tree. The stage field tells us which part
242 * of the log tree processing we are currently doing. The others
243 * are state fields used for that specific part
245 struct walk_control {
246 /* should we free the extent on disk when done? This is used
247 * at transaction commit time while freeing a log tree
249 int free;
251 /* should we write out the extent buffer? This is used
252 * while flushing the log tree to disk during a sync
254 int write;
256 /* should we wait for the extent buffer io to finish? Also used
257 * while flushing the log tree to disk for a sync
259 int wait;
261 /* pin only walk, we record which extents on disk belong to the
262 * log trees
264 int pin;
266 /* what stage of the replay code we're currently in */
267 int stage;
269 /* the root we are currently replaying */
270 struct btrfs_root *replay_dest;
272 /* the trans handle for the current replay */
273 struct btrfs_trans_handle *trans;
275 /* the function that gets used to process blocks we find in the
276 * tree. Note the extent_buffer might not be up to date when it is
277 * passed in, and it must be checked or read if you need the data
278 * inside it
280 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
281 struct walk_control *wc, u64 gen);
285 * process_func used to pin down extents, write them or wait on them
287 static int process_one_buffer(struct btrfs_root *log,
288 struct extent_buffer *eb,
289 struct walk_control *wc, u64 gen)
291 int ret = 0;
294 * If this fs is mixed then we need to be able to process the leaves to
295 * pin down any logged extents, so we have to read the block.
297 if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
298 ret = btrfs_read_buffer(eb, gen);
299 if (ret)
300 return ret;
303 if (wc->pin)
304 ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
305 eb->start, eb->len);
307 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
308 if (wc->pin && btrfs_header_level(eb) == 0)
309 ret = btrfs_exclude_logged_extents(log, eb);
310 if (wc->write)
311 btrfs_write_tree_block(eb);
312 if (wc->wait)
313 btrfs_wait_tree_block_writeback(eb);
315 return ret;
319 * Item overwrite used by replay and tree logging. eb, slot and key all refer
320 * to the src data we are copying out.
322 * root is the tree we are copying into, and path is a scratch
323 * path for use in this function (it should be released on entry and
324 * will be released on exit).
326 * If the key is already in the destination tree the existing item is
327 * overwritten. If the existing item isn't big enough, it is extended.
328 * If it is too large, it is truncated.
330 * If the key isn't in the destination yet, a new item is inserted.
332 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
333 struct btrfs_root *root,
334 struct btrfs_path *path,
335 struct extent_buffer *eb, int slot,
336 struct btrfs_key *key)
338 int ret;
339 u32 item_size;
340 u64 saved_i_size = 0;
341 int save_old_i_size = 0;
342 unsigned long src_ptr;
343 unsigned long dst_ptr;
344 int overwrite_root = 0;
345 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
347 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
348 overwrite_root = 1;
350 item_size = btrfs_item_size_nr(eb, slot);
351 src_ptr = btrfs_item_ptr_offset(eb, slot);
353 /* look for the key in the destination tree */
354 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
355 if (ret < 0)
356 return ret;
358 if (ret == 0) {
359 char *src_copy;
360 char *dst_copy;
361 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
362 path->slots[0]);
363 if (dst_size != item_size)
364 goto insert;
366 if (item_size == 0) {
367 btrfs_release_path(path);
368 return 0;
370 dst_copy = kmalloc(item_size, GFP_NOFS);
371 src_copy = kmalloc(item_size, GFP_NOFS);
372 if (!dst_copy || !src_copy) {
373 btrfs_release_path(path);
374 kfree(dst_copy);
375 kfree(src_copy);
376 return -ENOMEM;
379 read_extent_buffer(eb, src_copy, src_ptr, item_size);
381 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
382 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
383 item_size);
384 ret = memcmp(dst_copy, src_copy, item_size);
386 kfree(dst_copy);
387 kfree(src_copy);
389 * they have the same contents, just return, this saves
390 * us from cowing blocks in the destination tree and doing
391 * extra writes that may not have been done by a previous
392 * sync
394 if (ret == 0) {
395 btrfs_release_path(path);
396 return 0;
400 * We need to load the old nbytes into the inode so when we
401 * replay the extents we've logged we get the right nbytes.
403 if (inode_item) {
404 struct btrfs_inode_item *item;
405 u64 nbytes;
406 u32 mode;
408 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
409 struct btrfs_inode_item);
410 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
411 item = btrfs_item_ptr(eb, slot,
412 struct btrfs_inode_item);
413 btrfs_set_inode_nbytes(eb, item, nbytes);
416 * If this is a directory we need to reset the i_size to
417 * 0 so that we can set it up properly when replaying
418 * the rest of the items in this log.
420 mode = btrfs_inode_mode(eb, item);
421 if (S_ISDIR(mode))
422 btrfs_set_inode_size(eb, item, 0);
424 } else if (inode_item) {
425 struct btrfs_inode_item *item;
426 u32 mode;
429 * New inode, set nbytes to 0 so that the nbytes comes out
430 * properly when we replay the extents.
432 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
433 btrfs_set_inode_nbytes(eb, item, 0);
436 * If this is a directory we need to reset the i_size to 0 so
437 * that we can set it up properly when replaying the rest of
438 * the items in this log.
440 mode = btrfs_inode_mode(eb, item);
441 if (S_ISDIR(mode))
442 btrfs_set_inode_size(eb, item, 0);
444 insert:
445 btrfs_release_path(path);
446 /* try to insert the key into the destination tree */
447 path->skip_release_on_error = 1;
448 ret = btrfs_insert_empty_item(trans, root, path,
449 key, item_size);
450 path->skip_release_on_error = 0;
452 /* make sure any existing item is the correct size */
453 if (ret == -EEXIST || ret == -EOVERFLOW) {
454 u32 found_size;
455 found_size = btrfs_item_size_nr(path->nodes[0],
456 path->slots[0]);
457 if (found_size > item_size)
458 btrfs_truncate_item(root, path, item_size, 1);
459 else if (found_size < item_size)
460 btrfs_extend_item(root, path,
461 item_size - found_size);
462 } else if (ret) {
463 return ret;
465 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
466 path->slots[0]);
468 /* don't overwrite an existing inode if the generation number
469 * was logged as zero. This is done when the tree logging code
470 * is just logging an inode to make sure it exists after recovery.
472 * Also, don't overwrite i_size on directories during replay.
473 * log replay inserts and removes directory items based on the
474 * state of the tree found in the subvolume, and i_size is modified
475 * as it goes
477 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
478 struct btrfs_inode_item *src_item;
479 struct btrfs_inode_item *dst_item;
481 src_item = (struct btrfs_inode_item *)src_ptr;
482 dst_item = (struct btrfs_inode_item *)dst_ptr;
484 if (btrfs_inode_generation(eb, src_item) == 0) {
485 struct extent_buffer *dst_eb = path->nodes[0];
486 const u64 ino_size = btrfs_inode_size(eb, src_item);
489 * For regular files an ino_size == 0 is used only when
490 * logging that an inode exists, as part of a directory
491 * fsync, and the inode wasn't fsynced before. In this
492 * case don't set the size of the inode in the fs/subvol
493 * tree, otherwise we would be throwing valid data away.
495 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
496 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
497 ino_size != 0) {
498 struct btrfs_map_token token;
500 btrfs_init_map_token(&token);
501 btrfs_set_token_inode_size(dst_eb, dst_item,
502 ino_size, &token);
504 goto no_copy;
507 if (overwrite_root &&
508 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
509 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
510 save_old_i_size = 1;
511 saved_i_size = btrfs_inode_size(path->nodes[0],
512 dst_item);
516 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
517 src_ptr, item_size);
519 if (save_old_i_size) {
520 struct btrfs_inode_item *dst_item;
521 dst_item = (struct btrfs_inode_item *)dst_ptr;
522 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
525 /* make sure the generation is filled in */
526 if (key->type == BTRFS_INODE_ITEM_KEY) {
527 struct btrfs_inode_item *dst_item;
528 dst_item = (struct btrfs_inode_item *)dst_ptr;
529 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
530 btrfs_set_inode_generation(path->nodes[0], dst_item,
531 trans->transid);
534 no_copy:
535 btrfs_mark_buffer_dirty(path->nodes[0]);
536 btrfs_release_path(path);
537 return 0;
541 * simple helper to read an inode off the disk from a given root
542 * This can only be called for subvolume roots and not for the log
544 static noinline struct inode *read_one_inode(struct btrfs_root *root,
545 u64 objectid)
547 struct btrfs_key key;
548 struct inode *inode;
550 key.objectid = objectid;
551 key.type = BTRFS_INODE_ITEM_KEY;
552 key.offset = 0;
553 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
554 if (IS_ERR(inode)) {
555 inode = NULL;
556 } else if (is_bad_inode(inode)) {
557 iput(inode);
558 inode = NULL;
560 return inode;
563 /* replays a single extent in 'eb' at 'slot' with 'key' into the
564 * subvolume 'root'. path is released on entry and should be released
565 * on exit.
567 * extents in the log tree have not been allocated out of the extent
568 * tree yet. So, this completes the allocation, taking a reference
569 * as required if the extent already exists or creating a new extent
570 * if it isn't in the extent allocation tree yet.
572 * The extent is inserted into the file, dropping any existing extents
573 * from the file that overlap the new one.
575 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
576 struct btrfs_root *root,
577 struct btrfs_path *path,
578 struct extent_buffer *eb, int slot,
579 struct btrfs_key *key)
581 int found_type;
582 u64 extent_end;
583 u64 start = key->offset;
584 u64 nbytes = 0;
585 struct btrfs_file_extent_item *item;
586 struct inode *inode = NULL;
587 unsigned long size;
588 int ret = 0;
590 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
591 found_type = btrfs_file_extent_type(eb, item);
593 if (found_type == BTRFS_FILE_EXTENT_REG ||
594 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
595 nbytes = btrfs_file_extent_num_bytes(eb, item);
596 extent_end = start + nbytes;
599 * We don't add to the inodes nbytes if we are prealloc or a
600 * hole.
602 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
603 nbytes = 0;
604 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
605 size = btrfs_file_extent_inline_len(eb, slot, item);
606 nbytes = btrfs_file_extent_ram_bytes(eb, item);
607 extent_end = ALIGN(start + size, root->sectorsize);
608 } else {
609 ret = 0;
610 goto out;
613 inode = read_one_inode(root, key->objectid);
614 if (!inode) {
615 ret = -EIO;
616 goto out;
620 * first check to see if we already have this extent in the
621 * file. This must be done before the btrfs_drop_extents run
622 * so we don't try to drop this extent.
624 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
625 start, 0);
627 if (ret == 0 &&
628 (found_type == BTRFS_FILE_EXTENT_REG ||
629 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
630 struct btrfs_file_extent_item cmp1;
631 struct btrfs_file_extent_item cmp2;
632 struct btrfs_file_extent_item *existing;
633 struct extent_buffer *leaf;
635 leaf = path->nodes[0];
636 existing = btrfs_item_ptr(leaf, path->slots[0],
637 struct btrfs_file_extent_item);
639 read_extent_buffer(eb, &cmp1, (unsigned long)item,
640 sizeof(cmp1));
641 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
642 sizeof(cmp2));
645 * we already have a pointer to this exact extent,
646 * we don't have to do anything
648 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
649 btrfs_release_path(path);
650 goto out;
653 btrfs_release_path(path);
655 /* drop any overlapping extents */
656 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
657 if (ret)
658 goto out;
660 if (found_type == BTRFS_FILE_EXTENT_REG ||
661 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
662 u64 offset;
663 unsigned long dest_offset;
664 struct btrfs_key ins;
666 ret = btrfs_insert_empty_item(trans, root, path, key,
667 sizeof(*item));
668 if (ret)
669 goto out;
670 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
671 path->slots[0]);
672 copy_extent_buffer(path->nodes[0], eb, dest_offset,
673 (unsigned long)item, sizeof(*item));
675 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
676 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
677 ins.type = BTRFS_EXTENT_ITEM_KEY;
678 offset = key->offset - btrfs_file_extent_offset(eb, item);
680 if (ins.objectid > 0) {
681 u64 csum_start;
682 u64 csum_end;
683 LIST_HEAD(ordered_sums);
685 * is this extent already allocated in the extent
686 * allocation tree? If so, just add a reference
688 ret = btrfs_lookup_data_extent(root, ins.objectid,
689 ins.offset);
690 if (ret == 0) {
691 ret = btrfs_inc_extent_ref(trans, root,
692 ins.objectid, ins.offset,
693 0, root->root_key.objectid,
694 key->objectid, offset, 0);
695 if (ret)
696 goto out;
697 } else {
699 * insert the extent pointer in the extent
700 * allocation tree
702 ret = btrfs_alloc_logged_file_extent(trans,
703 root, root->root_key.objectid,
704 key->objectid, offset, &ins);
705 if (ret)
706 goto out;
708 btrfs_release_path(path);
710 if (btrfs_file_extent_compression(eb, item)) {
711 csum_start = ins.objectid;
712 csum_end = csum_start + ins.offset;
713 } else {
714 csum_start = ins.objectid +
715 btrfs_file_extent_offset(eb, item);
716 csum_end = csum_start +
717 btrfs_file_extent_num_bytes(eb, item);
720 ret = btrfs_lookup_csums_range(root->log_root,
721 csum_start, csum_end - 1,
722 &ordered_sums, 0);
723 if (ret)
724 goto out;
726 * Now delete all existing cums in the csum root that
727 * cover our range. We do this because we can have an
728 * extent that is completely referenced by one file
729 * extent item and partially referenced by another
730 * file extent item (like after using the clone or
731 * extent_same ioctls). In this case if we end up doing
732 * the replay of the one that partially references the
733 * extent first, and we do not do the csum deletion
734 * below, we can get 2 csum items in the csum tree that
735 * overlap each other. For example, imagine our log has
736 * the two following file extent items:
738 * key (257 EXTENT_DATA 409600)
739 * extent data disk byte 12845056 nr 102400
740 * extent data offset 20480 nr 20480 ram 102400
742 * key (257 EXTENT_DATA 819200)
743 * extent data disk byte 12845056 nr 102400
744 * extent data offset 0 nr 102400 ram 102400
746 * Where the second one fully references the 100K extent
747 * that starts at disk byte 12845056, and the log tree
748 * has a single csum item that covers the entire range
749 * of the extent:
751 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
753 * After the first file extent item is replayed, the
754 * csum tree gets the following csum item:
756 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
758 * Which covers the 20K sub-range starting at offset 20K
759 * of our extent. Now when we replay the second file
760 * extent item, if we do not delete existing csum items
761 * that cover any of its blocks, we end up getting two
762 * csum items in our csum tree that overlap each other:
764 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
765 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
767 * Which is a problem, because after this anyone trying
768 * to lookup up for the checksum of any block of our
769 * extent starting at an offset of 40K or higher, will
770 * end up looking at the second csum item only, which
771 * does not contain the checksum for any block starting
772 * at offset 40K or higher of our extent.
774 while (!list_empty(&ordered_sums)) {
775 struct btrfs_ordered_sum *sums;
776 sums = list_entry(ordered_sums.next,
777 struct btrfs_ordered_sum,
778 list);
779 if (!ret)
780 ret = btrfs_del_csums(trans,
781 root->fs_info->csum_root,
782 sums->bytenr,
783 sums->len);
784 if (!ret)
785 ret = btrfs_csum_file_blocks(trans,
786 root->fs_info->csum_root,
787 sums);
788 list_del(&sums->list);
789 kfree(sums);
791 if (ret)
792 goto out;
793 } else {
794 btrfs_release_path(path);
796 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
797 /* inline extents are easy, we just overwrite them */
798 ret = overwrite_item(trans, root, path, eb, slot, key);
799 if (ret)
800 goto out;
803 inode_add_bytes(inode, nbytes);
804 ret = btrfs_update_inode(trans, root, inode);
805 out:
806 if (inode)
807 iput(inode);
808 return ret;
812 * when cleaning up conflicts between the directory names in the
813 * subvolume, directory names in the log and directory names in the
814 * inode back references, we may have to unlink inodes from directories.
816 * This is a helper function to do the unlink of a specific directory
817 * item
819 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
820 struct btrfs_root *root,
821 struct btrfs_path *path,
822 struct inode *dir,
823 struct btrfs_dir_item *di)
825 struct inode *inode;
826 char *name;
827 int name_len;
828 struct extent_buffer *leaf;
829 struct btrfs_key location;
830 int ret;
832 leaf = path->nodes[0];
834 btrfs_dir_item_key_to_cpu(leaf, di, &location);
835 name_len = btrfs_dir_name_len(leaf, di);
836 name = kmalloc(name_len, GFP_NOFS);
837 if (!name)
838 return -ENOMEM;
840 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
841 btrfs_release_path(path);
843 inode = read_one_inode(root, location.objectid);
844 if (!inode) {
845 ret = -EIO;
846 goto out;
849 ret = link_to_fixup_dir(trans, root, path, location.objectid);
850 if (ret)
851 goto out;
853 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
854 if (ret)
855 goto out;
856 else
857 ret = btrfs_run_delayed_items(trans, root);
858 out:
859 kfree(name);
860 iput(inode);
861 return ret;
865 * helper function to see if a given name and sequence number found
866 * in an inode back reference are already in a directory and correctly
867 * point to this inode
869 static noinline int inode_in_dir(struct btrfs_root *root,
870 struct btrfs_path *path,
871 u64 dirid, u64 objectid, u64 index,
872 const char *name, int name_len)
874 struct btrfs_dir_item *di;
875 struct btrfs_key location;
876 int match = 0;
878 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
879 index, name, name_len, 0);
880 if (di && !IS_ERR(di)) {
881 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
882 if (location.objectid != objectid)
883 goto out;
884 } else
885 goto out;
886 btrfs_release_path(path);
888 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
889 if (di && !IS_ERR(di)) {
890 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
891 if (location.objectid != objectid)
892 goto out;
893 } else
894 goto out;
895 match = 1;
896 out:
897 btrfs_release_path(path);
898 return match;
902 * helper function to check a log tree for a named back reference in
903 * an inode. This is used to decide if a back reference that is
904 * found in the subvolume conflicts with what we find in the log.
906 * inode backreferences may have multiple refs in a single item,
907 * during replay we process one reference at a time, and we don't
908 * want to delete valid links to a file from the subvolume if that
909 * link is also in the log.
911 static noinline int backref_in_log(struct btrfs_root *log,
912 struct btrfs_key *key,
913 u64 ref_objectid,
914 const char *name, int namelen)
916 struct btrfs_path *path;
917 struct btrfs_inode_ref *ref;
918 unsigned long ptr;
919 unsigned long ptr_end;
920 unsigned long name_ptr;
921 int found_name_len;
922 int item_size;
923 int ret;
924 int match = 0;
926 path = btrfs_alloc_path();
927 if (!path)
928 return -ENOMEM;
930 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
931 if (ret != 0)
932 goto out;
934 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
936 if (key->type == BTRFS_INODE_EXTREF_KEY) {
937 if (btrfs_find_name_in_ext_backref(path, ref_objectid,
938 name, namelen, NULL))
939 match = 1;
941 goto out;
944 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
945 ptr_end = ptr + item_size;
946 while (ptr < ptr_end) {
947 ref = (struct btrfs_inode_ref *)ptr;
948 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
949 if (found_name_len == namelen) {
950 name_ptr = (unsigned long)(ref + 1);
951 ret = memcmp_extent_buffer(path->nodes[0], name,
952 name_ptr, namelen);
953 if (ret == 0) {
954 match = 1;
955 goto out;
958 ptr = (unsigned long)(ref + 1) + found_name_len;
960 out:
961 btrfs_free_path(path);
962 return match;
965 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
966 struct btrfs_root *root,
967 struct btrfs_path *path,
968 struct btrfs_root *log_root,
969 struct inode *dir, struct inode *inode,
970 struct extent_buffer *eb,
971 u64 inode_objectid, u64 parent_objectid,
972 u64 ref_index, char *name, int namelen,
973 int *search_done)
975 int ret;
976 char *victim_name;
977 int victim_name_len;
978 struct extent_buffer *leaf;
979 struct btrfs_dir_item *di;
980 struct btrfs_key search_key;
981 struct btrfs_inode_extref *extref;
983 again:
984 /* Search old style refs */
985 search_key.objectid = inode_objectid;
986 search_key.type = BTRFS_INODE_REF_KEY;
987 search_key.offset = parent_objectid;
988 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
989 if (ret == 0) {
990 struct btrfs_inode_ref *victim_ref;
991 unsigned long ptr;
992 unsigned long ptr_end;
994 leaf = path->nodes[0];
996 /* are we trying to overwrite a back ref for the root directory
997 * if so, just jump out, we're done
999 if (search_key.objectid == search_key.offset)
1000 return 1;
1002 /* check all the names in this back reference to see
1003 * if they are in the log. if so, we allow them to stay
1004 * otherwise they must be unlinked as a conflict
1006 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1007 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1008 while (ptr < ptr_end) {
1009 victim_ref = (struct btrfs_inode_ref *)ptr;
1010 victim_name_len = btrfs_inode_ref_name_len(leaf,
1011 victim_ref);
1012 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1013 if (!victim_name)
1014 return -ENOMEM;
1016 read_extent_buffer(leaf, victim_name,
1017 (unsigned long)(victim_ref + 1),
1018 victim_name_len);
1020 if (!backref_in_log(log_root, &search_key,
1021 parent_objectid,
1022 victim_name,
1023 victim_name_len)) {
1024 inc_nlink(inode);
1025 btrfs_release_path(path);
1027 ret = btrfs_unlink_inode(trans, root, dir,
1028 inode, victim_name,
1029 victim_name_len);
1030 kfree(victim_name);
1031 if (ret)
1032 return ret;
1033 ret = btrfs_run_delayed_items(trans, root);
1034 if (ret)
1035 return ret;
1036 *search_done = 1;
1037 goto again;
1039 kfree(victim_name);
1041 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1045 * NOTE: we have searched root tree and checked the
1046 * coresponding ref, it does not need to check again.
1048 *search_done = 1;
1050 btrfs_release_path(path);
1052 /* Same search but for extended refs */
1053 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1054 inode_objectid, parent_objectid, 0,
1056 if (!IS_ERR_OR_NULL(extref)) {
1057 u32 item_size;
1058 u32 cur_offset = 0;
1059 unsigned long base;
1060 struct inode *victim_parent;
1062 leaf = path->nodes[0];
1064 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1065 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1067 while (cur_offset < item_size) {
1068 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1070 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1072 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1073 goto next;
1075 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1076 if (!victim_name)
1077 return -ENOMEM;
1078 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1079 victim_name_len);
1081 search_key.objectid = inode_objectid;
1082 search_key.type = BTRFS_INODE_EXTREF_KEY;
1083 search_key.offset = btrfs_extref_hash(parent_objectid,
1084 victim_name,
1085 victim_name_len);
1086 ret = 0;
1087 if (!backref_in_log(log_root, &search_key,
1088 parent_objectid, victim_name,
1089 victim_name_len)) {
1090 ret = -ENOENT;
1091 victim_parent = read_one_inode(root,
1092 parent_objectid);
1093 if (victim_parent) {
1094 inc_nlink(inode);
1095 btrfs_release_path(path);
1097 ret = btrfs_unlink_inode(trans, root,
1098 victim_parent,
1099 inode,
1100 victim_name,
1101 victim_name_len);
1102 if (!ret)
1103 ret = btrfs_run_delayed_items(
1104 trans, root);
1106 iput(victim_parent);
1107 kfree(victim_name);
1108 if (ret)
1109 return ret;
1110 *search_done = 1;
1111 goto again;
1113 kfree(victim_name);
1114 if (ret)
1115 return ret;
1116 next:
1117 cur_offset += victim_name_len + sizeof(*extref);
1119 *search_done = 1;
1121 btrfs_release_path(path);
1123 /* look for a conflicting sequence number */
1124 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1125 ref_index, name, namelen, 0);
1126 if (di && !IS_ERR(di)) {
1127 ret = drop_one_dir_item(trans, root, path, dir, di);
1128 if (ret)
1129 return ret;
1131 btrfs_release_path(path);
1133 /* look for a conflicing name */
1134 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1135 name, namelen, 0);
1136 if (di && !IS_ERR(di)) {
1137 ret = drop_one_dir_item(trans, root, path, dir, di);
1138 if (ret)
1139 return ret;
1141 btrfs_release_path(path);
1143 return 0;
1146 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1147 u32 *namelen, char **name, u64 *index,
1148 u64 *parent_objectid)
1150 struct btrfs_inode_extref *extref;
1152 extref = (struct btrfs_inode_extref *)ref_ptr;
1154 *namelen = btrfs_inode_extref_name_len(eb, extref);
1155 *name = kmalloc(*namelen, GFP_NOFS);
1156 if (*name == NULL)
1157 return -ENOMEM;
1159 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1160 *namelen);
1162 *index = btrfs_inode_extref_index(eb, extref);
1163 if (parent_objectid)
1164 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1166 return 0;
1169 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1170 u32 *namelen, char **name, u64 *index)
1172 struct btrfs_inode_ref *ref;
1174 ref = (struct btrfs_inode_ref *)ref_ptr;
1176 *namelen = btrfs_inode_ref_name_len(eb, ref);
1177 *name = kmalloc(*namelen, GFP_NOFS);
1178 if (*name == NULL)
1179 return -ENOMEM;
1181 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1183 *index = btrfs_inode_ref_index(eb, ref);
1185 return 0;
1189 * replay one inode back reference item found in the log tree.
1190 * eb, slot and key refer to the buffer and key found in the log tree.
1191 * root is the destination we are replaying into, and path is for temp
1192 * use by this function. (it should be released on return).
1194 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root,
1196 struct btrfs_root *log,
1197 struct btrfs_path *path,
1198 struct extent_buffer *eb, int slot,
1199 struct btrfs_key *key)
1201 struct inode *dir = NULL;
1202 struct inode *inode = NULL;
1203 unsigned long ref_ptr;
1204 unsigned long ref_end;
1205 char *name = NULL;
1206 int namelen;
1207 int ret;
1208 int search_done = 0;
1209 int log_ref_ver = 0;
1210 u64 parent_objectid;
1211 u64 inode_objectid;
1212 u64 ref_index = 0;
1213 int ref_struct_size;
1215 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1216 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1218 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1219 struct btrfs_inode_extref *r;
1221 ref_struct_size = sizeof(struct btrfs_inode_extref);
1222 log_ref_ver = 1;
1223 r = (struct btrfs_inode_extref *)ref_ptr;
1224 parent_objectid = btrfs_inode_extref_parent(eb, r);
1225 } else {
1226 ref_struct_size = sizeof(struct btrfs_inode_ref);
1227 parent_objectid = key->offset;
1229 inode_objectid = key->objectid;
1232 * it is possible that we didn't log all the parent directories
1233 * for a given inode. If we don't find the dir, just don't
1234 * copy the back ref in. The link count fixup code will take
1235 * care of the rest
1237 dir = read_one_inode(root, parent_objectid);
1238 if (!dir) {
1239 ret = -ENOENT;
1240 goto out;
1243 inode = read_one_inode(root, inode_objectid);
1244 if (!inode) {
1245 ret = -EIO;
1246 goto out;
1249 while (ref_ptr < ref_end) {
1250 if (log_ref_ver) {
1251 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1252 &ref_index, &parent_objectid);
1254 * parent object can change from one array
1255 * item to another.
1257 if (!dir)
1258 dir = read_one_inode(root, parent_objectid);
1259 if (!dir) {
1260 ret = -ENOENT;
1261 goto out;
1263 } else {
1264 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1265 &ref_index);
1267 if (ret)
1268 goto out;
1270 /* if we already have a perfect match, we're done */
1271 if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
1272 ref_index, name, namelen)) {
1274 * look for a conflicting back reference in the
1275 * metadata. if we find one we have to unlink that name
1276 * of the file before we add our new link. Later on, we
1277 * overwrite any existing back reference, and we don't
1278 * want to create dangling pointers in the directory.
1281 if (!search_done) {
1282 ret = __add_inode_ref(trans, root, path, log,
1283 dir, inode, eb,
1284 inode_objectid,
1285 parent_objectid,
1286 ref_index, name, namelen,
1287 &search_done);
1288 if (ret) {
1289 if (ret == 1)
1290 ret = 0;
1291 goto out;
1295 /* insert our name */
1296 ret = btrfs_add_link(trans, dir, inode, name, namelen,
1297 0, ref_index);
1298 if (ret)
1299 goto out;
1301 btrfs_update_inode(trans, root, inode);
1304 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1305 kfree(name);
1306 name = NULL;
1307 if (log_ref_ver) {
1308 iput(dir);
1309 dir = NULL;
1313 /* finally write the back reference in the inode */
1314 ret = overwrite_item(trans, root, path, eb, slot, key);
1315 out:
1316 btrfs_release_path(path);
1317 kfree(name);
1318 iput(dir);
1319 iput(inode);
1320 return ret;
1323 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1324 struct btrfs_root *root, u64 ino)
1326 int ret;
1328 ret = btrfs_insert_orphan_item(trans, root, ino);
1329 if (ret == -EEXIST)
1330 ret = 0;
1332 return ret;
1335 static int count_inode_extrefs(struct btrfs_root *root,
1336 struct inode *inode, struct btrfs_path *path)
1338 int ret = 0;
1339 int name_len;
1340 unsigned int nlink = 0;
1341 u32 item_size;
1342 u32 cur_offset = 0;
1343 u64 inode_objectid = btrfs_ino(inode);
1344 u64 offset = 0;
1345 unsigned long ptr;
1346 struct btrfs_inode_extref *extref;
1347 struct extent_buffer *leaf;
1349 while (1) {
1350 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1351 &extref, &offset);
1352 if (ret)
1353 break;
1355 leaf = path->nodes[0];
1356 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1357 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1358 cur_offset = 0;
1360 while (cur_offset < item_size) {
1361 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1362 name_len = btrfs_inode_extref_name_len(leaf, extref);
1364 nlink++;
1366 cur_offset += name_len + sizeof(*extref);
1369 offset++;
1370 btrfs_release_path(path);
1372 btrfs_release_path(path);
1374 if (ret < 0 && ret != -ENOENT)
1375 return ret;
1376 return nlink;
1379 static int count_inode_refs(struct btrfs_root *root,
1380 struct inode *inode, struct btrfs_path *path)
1382 int ret;
1383 struct btrfs_key key;
1384 unsigned int nlink = 0;
1385 unsigned long ptr;
1386 unsigned long ptr_end;
1387 int name_len;
1388 u64 ino = btrfs_ino(inode);
1390 key.objectid = ino;
1391 key.type = BTRFS_INODE_REF_KEY;
1392 key.offset = (u64)-1;
1394 while (1) {
1395 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1396 if (ret < 0)
1397 break;
1398 if (ret > 0) {
1399 if (path->slots[0] == 0)
1400 break;
1401 path->slots[0]--;
1403 process_slot:
1404 btrfs_item_key_to_cpu(path->nodes[0], &key,
1405 path->slots[0]);
1406 if (key.objectid != ino ||
1407 key.type != BTRFS_INODE_REF_KEY)
1408 break;
1409 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1410 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1411 path->slots[0]);
1412 while (ptr < ptr_end) {
1413 struct btrfs_inode_ref *ref;
1415 ref = (struct btrfs_inode_ref *)ptr;
1416 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1417 ref);
1418 ptr = (unsigned long)(ref + 1) + name_len;
1419 nlink++;
1422 if (key.offset == 0)
1423 break;
1424 if (path->slots[0] > 0) {
1425 path->slots[0]--;
1426 goto process_slot;
1428 key.offset--;
1429 btrfs_release_path(path);
1431 btrfs_release_path(path);
1433 return nlink;
1437 * There are a few corners where the link count of the file can't
1438 * be properly maintained during replay. So, instead of adding
1439 * lots of complexity to the log code, we just scan the backrefs
1440 * for any file that has been through replay.
1442 * The scan will update the link count on the inode to reflect the
1443 * number of back refs found. If it goes down to zero, the iput
1444 * will free the inode.
1446 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1447 struct btrfs_root *root,
1448 struct inode *inode)
1450 struct btrfs_path *path;
1451 int ret;
1452 u64 nlink = 0;
1453 u64 ino = btrfs_ino(inode);
1455 path = btrfs_alloc_path();
1456 if (!path)
1457 return -ENOMEM;
1459 ret = count_inode_refs(root, inode, path);
1460 if (ret < 0)
1461 goto out;
1463 nlink = ret;
1465 ret = count_inode_extrefs(root, inode, path);
1466 if (ret < 0)
1467 goto out;
1469 nlink += ret;
1471 ret = 0;
1473 if (nlink != inode->i_nlink) {
1474 set_nlink(inode, nlink);
1475 btrfs_update_inode(trans, root, inode);
1477 BTRFS_I(inode)->index_cnt = (u64)-1;
1479 if (inode->i_nlink == 0) {
1480 if (S_ISDIR(inode->i_mode)) {
1481 ret = replay_dir_deletes(trans, root, NULL, path,
1482 ino, 1);
1483 if (ret)
1484 goto out;
1486 ret = insert_orphan_item(trans, root, ino);
1489 out:
1490 btrfs_free_path(path);
1491 return ret;
1494 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1495 struct btrfs_root *root,
1496 struct btrfs_path *path)
1498 int ret;
1499 struct btrfs_key key;
1500 struct inode *inode;
1502 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1503 key.type = BTRFS_ORPHAN_ITEM_KEY;
1504 key.offset = (u64)-1;
1505 while (1) {
1506 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1507 if (ret < 0)
1508 break;
1510 if (ret == 1) {
1511 if (path->slots[0] == 0)
1512 break;
1513 path->slots[0]--;
1516 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1517 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1518 key.type != BTRFS_ORPHAN_ITEM_KEY)
1519 break;
1521 ret = btrfs_del_item(trans, root, path);
1522 if (ret)
1523 goto out;
1525 btrfs_release_path(path);
1526 inode = read_one_inode(root, key.offset);
1527 if (!inode)
1528 return -EIO;
1530 ret = fixup_inode_link_count(trans, root, inode);
1531 iput(inode);
1532 if (ret)
1533 goto out;
1536 * fixup on a directory may create new entries,
1537 * make sure we always look for the highset possible
1538 * offset
1540 key.offset = (u64)-1;
1542 ret = 0;
1543 out:
1544 btrfs_release_path(path);
1545 return ret;
1550 * record a given inode in the fixup dir so we can check its link
1551 * count when replay is done. The link count is incremented here
1552 * so the inode won't go away until we check it
1554 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1555 struct btrfs_root *root,
1556 struct btrfs_path *path,
1557 u64 objectid)
1559 struct btrfs_key key;
1560 int ret = 0;
1561 struct inode *inode;
1563 inode = read_one_inode(root, objectid);
1564 if (!inode)
1565 return -EIO;
1567 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1568 key.type = BTRFS_ORPHAN_ITEM_KEY;
1569 key.offset = objectid;
1571 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1573 btrfs_release_path(path);
1574 if (ret == 0) {
1575 if (!inode->i_nlink)
1576 set_nlink(inode, 1);
1577 else
1578 inc_nlink(inode);
1579 ret = btrfs_update_inode(trans, root, inode);
1580 } else if (ret == -EEXIST) {
1581 ret = 0;
1582 } else {
1583 BUG(); /* Logic Error */
1585 iput(inode);
1587 return ret;
1591 * when replaying the log for a directory, we only insert names
1592 * for inodes that actually exist. This means an fsync on a directory
1593 * does not implicitly fsync all the new files in it
1595 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1596 struct btrfs_root *root,
1597 u64 dirid, u64 index,
1598 char *name, int name_len,
1599 struct btrfs_key *location)
1601 struct inode *inode;
1602 struct inode *dir;
1603 int ret;
1605 inode = read_one_inode(root, location->objectid);
1606 if (!inode)
1607 return -ENOENT;
1609 dir = read_one_inode(root, dirid);
1610 if (!dir) {
1611 iput(inode);
1612 return -EIO;
1615 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1617 /* FIXME, put inode into FIXUP list */
1619 iput(inode);
1620 iput(dir);
1621 return ret;
1625 * Return true if an inode reference exists in the log for the given name,
1626 * inode and parent inode.
1628 static bool name_in_log_ref(struct btrfs_root *log_root,
1629 const char *name, const int name_len,
1630 const u64 dirid, const u64 ino)
1632 struct btrfs_key search_key;
1634 search_key.objectid = ino;
1635 search_key.type = BTRFS_INODE_REF_KEY;
1636 search_key.offset = dirid;
1637 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1638 return true;
1640 search_key.type = BTRFS_INODE_EXTREF_KEY;
1641 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1642 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1643 return true;
1645 return false;
1649 * take a single entry in a log directory item and replay it into
1650 * the subvolume.
1652 * if a conflicting item exists in the subdirectory already,
1653 * the inode it points to is unlinked and put into the link count
1654 * fix up tree.
1656 * If a name from the log points to a file or directory that does
1657 * not exist in the FS, it is skipped. fsyncs on directories
1658 * do not force down inodes inside that directory, just changes to the
1659 * names or unlinks in a directory.
1661 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1662 * non-existing inode) and 1 if the name was replayed.
1664 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1665 struct btrfs_root *root,
1666 struct btrfs_path *path,
1667 struct extent_buffer *eb,
1668 struct btrfs_dir_item *di,
1669 struct btrfs_key *key)
1671 char *name;
1672 int name_len;
1673 struct btrfs_dir_item *dst_di;
1674 struct btrfs_key found_key;
1675 struct btrfs_key log_key;
1676 struct inode *dir;
1677 u8 log_type;
1678 int exists;
1679 int ret = 0;
1680 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1681 bool name_added = false;
1683 dir = read_one_inode(root, key->objectid);
1684 if (!dir)
1685 return -EIO;
1687 name_len = btrfs_dir_name_len(eb, di);
1688 name = kmalloc(name_len, GFP_NOFS);
1689 if (!name) {
1690 ret = -ENOMEM;
1691 goto out;
1694 log_type = btrfs_dir_type(eb, di);
1695 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1696 name_len);
1698 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1699 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1700 if (exists == 0)
1701 exists = 1;
1702 else
1703 exists = 0;
1704 btrfs_release_path(path);
1706 if (key->type == BTRFS_DIR_ITEM_KEY) {
1707 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1708 name, name_len, 1);
1709 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1710 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1711 key->objectid,
1712 key->offset, name,
1713 name_len, 1);
1714 } else {
1715 /* Corruption */
1716 ret = -EINVAL;
1717 goto out;
1719 if (IS_ERR_OR_NULL(dst_di)) {
1720 /* we need a sequence number to insert, so we only
1721 * do inserts for the BTRFS_DIR_INDEX_KEY types
1723 if (key->type != BTRFS_DIR_INDEX_KEY)
1724 goto out;
1725 goto insert;
1728 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1729 /* the existing item matches the logged item */
1730 if (found_key.objectid == log_key.objectid &&
1731 found_key.type == log_key.type &&
1732 found_key.offset == log_key.offset &&
1733 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1734 update_size = false;
1735 goto out;
1739 * don't drop the conflicting directory entry if the inode
1740 * for the new entry doesn't exist
1742 if (!exists)
1743 goto out;
1745 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1746 if (ret)
1747 goto out;
1749 if (key->type == BTRFS_DIR_INDEX_KEY)
1750 goto insert;
1751 out:
1752 btrfs_release_path(path);
1753 if (!ret && update_size) {
1754 btrfs_i_size_write(dir, dir->i_size + name_len * 2);
1755 ret = btrfs_update_inode(trans, root, dir);
1757 kfree(name);
1758 iput(dir);
1759 if (!ret && name_added)
1760 ret = 1;
1761 return ret;
1763 insert:
1764 if (name_in_log_ref(root->log_root, name, name_len,
1765 key->objectid, log_key.objectid)) {
1766 /* The dentry will be added later. */
1767 ret = 0;
1768 update_size = false;
1769 goto out;
1771 btrfs_release_path(path);
1772 ret = insert_one_name(trans, root, key->objectid, key->offset,
1773 name, name_len, &log_key);
1774 if (ret && ret != -ENOENT && ret != -EEXIST)
1775 goto out;
1776 if (!ret)
1777 name_added = true;
1778 update_size = false;
1779 ret = 0;
1780 goto out;
1784 * find all the names in a directory item and reconcile them into
1785 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1786 * one name in a directory item, but the same code gets used for
1787 * both directory index types
1789 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1790 struct btrfs_root *root,
1791 struct btrfs_path *path,
1792 struct extent_buffer *eb, int slot,
1793 struct btrfs_key *key)
1795 int ret = 0;
1796 u32 item_size = btrfs_item_size_nr(eb, slot);
1797 struct btrfs_dir_item *di;
1798 int name_len;
1799 unsigned long ptr;
1800 unsigned long ptr_end;
1801 struct btrfs_path *fixup_path = NULL;
1803 ptr = btrfs_item_ptr_offset(eb, slot);
1804 ptr_end = ptr + item_size;
1805 while (ptr < ptr_end) {
1806 di = (struct btrfs_dir_item *)ptr;
1807 if (verify_dir_item(root, eb, di))
1808 return -EIO;
1809 name_len = btrfs_dir_name_len(eb, di);
1810 ret = replay_one_name(trans, root, path, eb, di, key);
1811 if (ret < 0)
1812 break;
1813 ptr = (unsigned long)(di + 1);
1814 ptr += name_len;
1817 * If this entry refers to a non-directory (directories can not
1818 * have a link count > 1) and it was added in the transaction
1819 * that was not committed, make sure we fixup the link count of
1820 * the inode it the entry points to. Otherwise something like
1821 * the following would result in a directory pointing to an
1822 * inode with a wrong link that does not account for this dir
1823 * entry:
1825 * mkdir testdir
1826 * touch testdir/foo
1827 * touch testdir/bar
1828 * sync
1830 * ln testdir/bar testdir/bar_link
1831 * ln testdir/foo testdir/foo_link
1832 * xfs_io -c "fsync" testdir/bar
1834 * <power failure>
1836 * mount fs, log replay happens
1838 * File foo would remain with a link count of 1 when it has two
1839 * entries pointing to it in the directory testdir. This would
1840 * make it impossible to ever delete the parent directory has
1841 * it would result in stale dentries that can never be deleted.
1843 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1844 struct btrfs_key di_key;
1846 if (!fixup_path) {
1847 fixup_path = btrfs_alloc_path();
1848 if (!fixup_path) {
1849 ret = -ENOMEM;
1850 break;
1854 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1855 ret = link_to_fixup_dir(trans, root, fixup_path,
1856 di_key.objectid);
1857 if (ret)
1858 break;
1860 ret = 0;
1862 btrfs_free_path(fixup_path);
1863 return ret;
1867 * directory replay has two parts. There are the standard directory
1868 * items in the log copied from the subvolume, and range items
1869 * created in the log while the subvolume was logged.
1871 * The range items tell us which parts of the key space the log
1872 * is authoritative for. During replay, if a key in the subvolume
1873 * directory is in a logged range item, but not actually in the log
1874 * that means it was deleted from the directory before the fsync
1875 * and should be removed.
1877 static noinline int find_dir_range(struct btrfs_root *root,
1878 struct btrfs_path *path,
1879 u64 dirid, int key_type,
1880 u64 *start_ret, u64 *end_ret)
1882 struct btrfs_key key;
1883 u64 found_end;
1884 struct btrfs_dir_log_item *item;
1885 int ret;
1886 int nritems;
1888 if (*start_ret == (u64)-1)
1889 return 1;
1891 key.objectid = dirid;
1892 key.type = key_type;
1893 key.offset = *start_ret;
1895 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1896 if (ret < 0)
1897 goto out;
1898 if (ret > 0) {
1899 if (path->slots[0] == 0)
1900 goto out;
1901 path->slots[0]--;
1903 if (ret != 0)
1904 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1906 if (key.type != key_type || key.objectid != dirid) {
1907 ret = 1;
1908 goto next;
1910 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1911 struct btrfs_dir_log_item);
1912 found_end = btrfs_dir_log_end(path->nodes[0], item);
1914 if (*start_ret >= key.offset && *start_ret <= found_end) {
1915 ret = 0;
1916 *start_ret = key.offset;
1917 *end_ret = found_end;
1918 goto out;
1920 ret = 1;
1921 next:
1922 /* check the next slot in the tree to see if it is a valid item */
1923 nritems = btrfs_header_nritems(path->nodes[0]);
1924 if (path->slots[0] >= nritems) {
1925 ret = btrfs_next_leaf(root, path);
1926 if (ret)
1927 goto out;
1928 } else {
1929 path->slots[0]++;
1932 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1934 if (key.type != key_type || key.objectid != dirid) {
1935 ret = 1;
1936 goto out;
1938 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1939 struct btrfs_dir_log_item);
1940 found_end = btrfs_dir_log_end(path->nodes[0], item);
1941 *start_ret = key.offset;
1942 *end_ret = found_end;
1943 ret = 0;
1944 out:
1945 btrfs_release_path(path);
1946 return ret;
1950 * this looks for a given directory item in the log. If the directory
1951 * item is not in the log, the item is removed and the inode it points
1952 * to is unlinked
1954 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1955 struct btrfs_root *root,
1956 struct btrfs_root *log,
1957 struct btrfs_path *path,
1958 struct btrfs_path *log_path,
1959 struct inode *dir,
1960 struct btrfs_key *dir_key)
1962 int ret;
1963 struct extent_buffer *eb;
1964 int slot;
1965 u32 item_size;
1966 struct btrfs_dir_item *di;
1967 struct btrfs_dir_item *log_di;
1968 int name_len;
1969 unsigned long ptr;
1970 unsigned long ptr_end;
1971 char *name;
1972 struct inode *inode;
1973 struct btrfs_key location;
1975 again:
1976 eb = path->nodes[0];
1977 slot = path->slots[0];
1978 item_size = btrfs_item_size_nr(eb, slot);
1979 ptr = btrfs_item_ptr_offset(eb, slot);
1980 ptr_end = ptr + item_size;
1981 while (ptr < ptr_end) {
1982 di = (struct btrfs_dir_item *)ptr;
1983 if (verify_dir_item(root, eb, di)) {
1984 ret = -EIO;
1985 goto out;
1988 name_len = btrfs_dir_name_len(eb, di);
1989 name = kmalloc(name_len, GFP_NOFS);
1990 if (!name) {
1991 ret = -ENOMEM;
1992 goto out;
1994 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1995 name_len);
1996 log_di = NULL;
1997 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
1998 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1999 dir_key->objectid,
2000 name, name_len, 0);
2001 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2002 log_di = btrfs_lookup_dir_index_item(trans, log,
2003 log_path,
2004 dir_key->objectid,
2005 dir_key->offset,
2006 name, name_len, 0);
2008 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
2009 btrfs_dir_item_key_to_cpu(eb, di, &location);
2010 btrfs_release_path(path);
2011 btrfs_release_path(log_path);
2012 inode = read_one_inode(root, location.objectid);
2013 if (!inode) {
2014 kfree(name);
2015 return -EIO;
2018 ret = link_to_fixup_dir(trans, root,
2019 path, location.objectid);
2020 if (ret) {
2021 kfree(name);
2022 iput(inode);
2023 goto out;
2026 inc_nlink(inode);
2027 ret = btrfs_unlink_inode(trans, root, dir, inode,
2028 name, name_len);
2029 if (!ret)
2030 ret = btrfs_run_delayed_items(trans, root);
2031 kfree(name);
2032 iput(inode);
2033 if (ret)
2034 goto out;
2036 /* there might still be more names under this key
2037 * check and repeat if required
2039 ret = btrfs_search_slot(NULL, root, dir_key, path,
2040 0, 0);
2041 if (ret == 0)
2042 goto again;
2043 ret = 0;
2044 goto out;
2045 } else if (IS_ERR(log_di)) {
2046 kfree(name);
2047 return PTR_ERR(log_di);
2049 btrfs_release_path(log_path);
2050 kfree(name);
2052 ptr = (unsigned long)(di + 1);
2053 ptr += name_len;
2055 ret = 0;
2056 out:
2057 btrfs_release_path(path);
2058 btrfs_release_path(log_path);
2059 return ret;
2062 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2063 struct btrfs_root *root,
2064 struct btrfs_root *log,
2065 struct btrfs_path *path,
2066 const u64 ino)
2068 struct btrfs_key search_key;
2069 struct btrfs_path *log_path;
2070 int i;
2071 int nritems;
2072 int ret;
2074 log_path = btrfs_alloc_path();
2075 if (!log_path)
2076 return -ENOMEM;
2078 search_key.objectid = ino;
2079 search_key.type = BTRFS_XATTR_ITEM_KEY;
2080 search_key.offset = 0;
2081 again:
2082 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2083 if (ret < 0)
2084 goto out;
2085 process_leaf:
2086 nritems = btrfs_header_nritems(path->nodes[0]);
2087 for (i = path->slots[0]; i < nritems; i++) {
2088 struct btrfs_key key;
2089 struct btrfs_dir_item *di;
2090 struct btrfs_dir_item *log_di;
2091 u32 total_size;
2092 u32 cur;
2094 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2095 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2096 ret = 0;
2097 goto out;
2100 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2101 total_size = btrfs_item_size_nr(path->nodes[0], i);
2102 cur = 0;
2103 while (cur < total_size) {
2104 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2105 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2106 u32 this_len = sizeof(*di) + name_len + data_len;
2107 char *name;
2109 name = kmalloc(name_len, GFP_NOFS);
2110 if (!name) {
2111 ret = -ENOMEM;
2112 goto out;
2114 read_extent_buffer(path->nodes[0], name,
2115 (unsigned long)(di + 1), name_len);
2117 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2118 name, name_len, 0);
2119 btrfs_release_path(log_path);
2120 if (!log_di) {
2121 /* Doesn't exist in log tree, so delete it. */
2122 btrfs_release_path(path);
2123 di = btrfs_lookup_xattr(trans, root, path, ino,
2124 name, name_len, -1);
2125 kfree(name);
2126 if (IS_ERR(di)) {
2127 ret = PTR_ERR(di);
2128 goto out;
2130 ASSERT(di);
2131 ret = btrfs_delete_one_dir_name(trans, root,
2132 path, di);
2133 if (ret)
2134 goto out;
2135 btrfs_release_path(path);
2136 search_key = key;
2137 goto again;
2139 kfree(name);
2140 if (IS_ERR(log_di)) {
2141 ret = PTR_ERR(log_di);
2142 goto out;
2144 cur += this_len;
2145 di = (struct btrfs_dir_item *)((char *)di + this_len);
2148 ret = btrfs_next_leaf(root, path);
2149 if (ret > 0)
2150 ret = 0;
2151 else if (ret == 0)
2152 goto process_leaf;
2153 out:
2154 btrfs_free_path(log_path);
2155 btrfs_release_path(path);
2156 return ret;
2161 * deletion replay happens before we copy any new directory items
2162 * out of the log or out of backreferences from inodes. It
2163 * scans the log to find ranges of keys that log is authoritative for,
2164 * and then scans the directory to find items in those ranges that are
2165 * not present in the log.
2167 * Anything we don't find in the log is unlinked and removed from the
2168 * directory.
2170 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2171 struct btrfs_root *root,
2172 struct btrfs_root *log,
2173 struct btrfs_path *path,
2174 u64 dirid, int del_all)
2176 u64 range_start;
2177 u64 range_end;
2178 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2179 int ret = 0;
2180 struct btrfs_key dir_key;
2181 struct btrfs_key found_key;
2182 struct btrfs_path *log_path;
2183 struct inode *dir;
2185 dir_key.objectid = dirid;
2186 dir_key.type = BTRFS_DIR_ITEM_KEY;
2187 log_path = btrfs_alloc_path();
2188 if (!log_path)
2189 return -ENOMEM;
2191 dir = read_one_inode(root, dirid);
2192 /* it isn't an error if the inode isn't there, that can happen
2193 * because we replay the deletes before we copy in the inode item
2194 * from the log
2196 if (!dir) {
2197 btrfs_free_path(log_path);
2198 return 0;
2200 again:
2201 range_start = 0;
2202 range_end = 0;
2203 while (1) {
2204 if (del_all)
2205 range_end = (u64)-1;
2206 else {
2207 ret = find_dir_range(log, path, dirid, key_type,
2208 &range_start, &range_end);
2209 if (ret != 0)
2210 break;
2213 dir_key.offset = range_start;
2214 while (1) {
2215 int nritems;
2216 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2217 0, 0);
2218 if (ret < 0)
2219 goto out;
2221 nritems = btrfs_header_nritems(path->nodes[0]);
2222 if (path->slots[0] >= nritems) {
2223 ret = btrfs_next_leaf(root, path);
2224 if (ret)
2225 break;
2227 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2228 path->slots[0]);
2229 if (found_key.objectid != dirid ||
2230 found_key.type != dir_key.type)
2231 goto next_type;
2233 if (found_key.offset > range_end)
2234 break;
2236 ret = check_item_in_log(trans, root, log, path,
2237 log_path, dir,
2238 &found_key);
2239 if (ret)
2240 goto out;
2241 if (found_key.offset == (u64)-1)
2242 break;
2243 dir_key.offset = found_key.offset + 1;
2245 btrfs_release_path(path);
2246 if (range_end == (u64)-1)
2247 break;
2248 range_start = range_end + 1;
2251 next_type:
2252 ret = 0;
2253 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2254 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2255 dir_key.type = BTRFS_DIR_INDEX_KEY;
2256 btrfs_release_path(path);
2257 goto again;
2259 out:
2260 btrfs_release_path(path);
2261 btrfs_free_path(log_path);
2262 iput(dir);
2263 return ret;
2267 * the process_func used to replay items from the log tree. This
2268 * gets called in two different stages. The first stage just looks
2269 * for inodes and makes sure they are all copied into the subvolume.
2271 * The second stage copies all the other item types from the log into
2272 * the subvolume. The two stage approach is slower, but gets rid of
2273 * lots of complexity around inodes referencing other inodes that exist
2274 * only in the log (references come from either directory items or inode
2275 * back refs).
2277 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2278 struct walk_control *wc, u64 gen)
2280 int nritems;
2281 struct btrfs_path *path;
2282 struct btrfs_root *root = wc->replay_dest;
2283 struct btrfs_key key;
2284 int level;
2285 int i;
2286 int ret;
2288 ret = btrfs_read_buffer(eb, gen);
2289 if (ret)
2290 return ret;
2292 level = btrfs_header_level(eb);
2294 if (level != 0)
2295 return 0;
2297 path = btrfs_alloc_path();
2298 if (!path)
2299 return -ENOMEM;
2301 nritems = btrfs_header_nritems(eb);
2302 for (i = 0; i < nritems; i++) {
2303 btrfs_item_key_to_cpu(eb, &key, i);
2305 /* inode keys are done during the first stage */
2306 if (key.type == BTRFS_INODE_ITEM_KEY &&
2307 wc->stage == LOG_WALK_REPLAY_INODES) {
2308 struct btrfs_inode_item *inode_item;
2309 u32 mode;
2311 inode_item = btrfs_item_ptr(eb, i,
2312 struct btrfs_inode_item);
2313 ret = replay_xattr_deletes(wc->trans, root, log,
2314 path, key.objectid);
2315 if (ret)
2316 break;
2317 mode = btrfs_inode_mode(eb, inode_item);
2318 if (S_ISDIR(mode)) {
2319 ret = replay_dir_deletes(wc->trans,
2320 root, log, path, key.objectid, 0);
2321 if (ret)
2322 break;
2324 ret = overwrite_item(wc->trans, root, path,
2325 eb, i, &key);
2326 if (ret)
2327 break;
2329 /* for regular files, make sure corresponding
2330 * orhpan item exist. extents past the new EOF
2331 * will be truncated later by orphan cleanup.
2333 if (S_ISREG(mode)) {
2334 ret = insert_orphan_item(wc->trans, root,
2335 key.objectid);
2336 if (ret)
2337 break;
2340 ret = link_to_fixup_dir(wc->trans, root,
2341 path, key.objectid);
2342 if (ret)
2343 break;
2346 if (key.type == BTRFS_DIR_INDEX_KEY &&
2347 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2348 ret = replay_one_dir_item(wc->trans, root, path,
2349 eb, i, &key);
2350 if (ret)
2351 break;
2354 if (wc->stage < LOG_WALK_REPLAY_ALL)
2355 continue;
2357 /* these keys are simply copied */
2358 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2359 ret = overwrite_item(wc->trans, root, path,
2360 eb, i, &key);
2361 if (ret)
2362 break;
2363 } else if (key.type == BTRFS_INODE_REF_KEY ||
2364 key.type == BTRFS_INODE_EXTREF_KEY) {
2365 ret = add_inode_ref(wc->trans, root, log, path,
2366 eb, i, &key);
2367 if (ret && ret != -ENOENT)
2368 break;
2369 ret = 0;
2370 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2371 ret = replay_one_extent(wc->trans, root, path,
2372 eb, i, &key);
2373 if (ret)
2374 break;
2375 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2376 ret = replay_one_dir_item(wc->trans, root, path,
2377 eb, i, &key);
2378 if (ret)
2379 break;
2382 btrfs_free_path(path);
2383 return ret;
2386 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2387 struct btrfs_root *root,
2388 struct btrfs_path *path, int *level,
2389 struct walk_control *wc)
2391 u64 root_owner;
2392 u64 bytenr;
2393 u64 ptr_gen;
2394 struct extent_buffer *next;
2395 struct extent_buffer *cur;
2396 struct extent_buffer *parent;
2397 u32 blocksize;
2398 int ret = 0;
2400 WARN_ON(*level < 0);
2401 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2403 while (*level > 0) {
2404 WARN_ON(*level < 0);
2405 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2406 cur = path->nodes[*level];
2408 WARN_ON(btrfs_header_level(cur) != *level);
2410 if (path->slots[*level] >=
2411 btrfs_header_nritems(cur))
2412 break;
2414 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2415 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2416 blocksize = root->nodesize;
2418 parent = path->nodes[*level];
2419 root_owner = btrfs_header_owner(parent);
2421 next = btrfs_find_create_tree_block(root, bytenr);
2422 if (!next)
2423 return -ENOMEM;
2425 if (*level == 1) {
2426 ret = wc->process_func(root, next, wc, ptr_gen);
2427 if (ret) {
2428 free_extent_buffer(next);
2429 return ret;
2432 path->slots[*level]++;
2433 if (wc->free) {
2434 ret = btrfs_read_buffer(next, ptr_gen);
2435 if (ret) {
2436 free_extent_buffer(next);
2437 return ret;
2440 if (trans) {
2441 btrfs_tree_lock(next);
2442 btrfs_set_lock_blocking(next);
2443 clean_tree_block(trans, root->fs_info,
2444 next);
2445 btrfs_wait_tree_block_writeback(next);
2446 btrfs_tree_unlock(next);
2449 WARN_ON(root_owner !=
2450 BTRFS_TREE_LOG_OBJECTID);
2451 ret = btrfs_free_and_pin_reserved_extent(root,
2452 bytenr, blocksize);
2453 if (ret) {
2454 free_extent_buffer(next);
2455 return ret;
2458 free_extent_buffer(next);
2459 continue;
2461 ret = btrfs_read_buffer(next, ptr_gen);
2462 if (ret) {
2463 free_extent_buffer(next);
2464 return ret;
2467 WARN_ON(*level <= 0);
2468 if (path->nodes[*level-1])
2469 free_extent_buffer(path->nodes[*level-1]);
2470 path->nodes[*level-1] = next;
2471 *level = btrfs_header_level(next);
2472 path->slots[*level] = 0;
2473 cond_resched();
2475 WARN_ON(*level < 0);
2476 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2478 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2480 cond_resched();
2481 return 0;
2484 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2485 struct btrfs_root *root,
2486 struct btrfs_path *path, int *level,
2487 struct walk_control *wc)
2489 u64 root_owner;
2490 int i;
2491 int slot;
2492 int ret;
2494 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2495 slot = path->slots[i];
2496 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2497 path->slots[i]++;
2498 *level = i;
2499 WARN_ON(*level == 0);
2500 return 0;
2501 } else {
2502 struct extent_buffer *parent;
2503 if (path->nodes[*level] == root->node)
2504 parent = path->nodes[*level];
2505 else
2506 parent = path->nodes[*level + 1];
2508 root_owner = btrfs_header_owner(parent);
2509 ret = wc->process_func(root, path->nodes[*level], wc,
2510 btrfs_header_generation(path->nodes[*level]));
2511 if (ret)
2512 return ret;
2514 if (wc->free) {
2515 struct extent_buffer *next;
2517 next = path->nodes[*level];
2519 if (trans) {
2520 btrfs_tree_lock(next);
2521 btrfs_set_lock_blocking(next);
2522 clean_tree_block(trans, root->fs_info,
2523 next);
2524 btrfs_wait_tree_block_writeback(next);
2525 btrfs_tree_unlock(next);
2528 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2529 ret = btrfs_free_and_pin_reserved_extent(root,
2530 path->nodes[*level]->start,
2531 path->nodes[*level]->len);
2532 if (ret)
2533 return ret;
2535 free_extent_buffer(path->nodes[*level]);
2536 path->nodes[*level] = NULL;
2537 *level = i + 1;
2540 return 1;
2544 * drop the reference count on the tree rooted at 'snap'. This traverses
2545 * the tree freeing any blocks that have a ref count of zero after being
2546 * decremented.
2548 static int walk_log_tree(struct btrfs_trans_handle *trans,
2549 struct btrfs_root *log, struct walk_control *wc)
2551 int ret = 0;
2552 int wret;
2553 int level;
2554 struct btrfs_path *path;
2555 int orig_level;
2557 path = btrfs_alloc_path();
2558 if (!path)
2559 return -ENOMEM;
2561 level = btrfs_header_level(log->node);
2562 orig_level = level;
2563 path->nodes[level] = log->node;
2564 extent_buffer_get(log->node);
2565 path->slots[level] = 0;
2567 while (1) {
2568 wret = walk_down_log_tree(trans, log, path, &level, wc);
2569 if (wret > 0)
2570 break;
2571 if (wret < 0) {
2572 ret = wret;
2573 goto out;
2576 wret = walk_up_log_tree(trans, log, path, &level, wc);
2577 if (wret > 0)
2578 break;
2579 if (wret < 0) {
2580 ret = wret;
2581 goto out;
2585 /* was the root node processed? if not, catch it here */
2586 if (path->nodes[orig_level]) {
2587 ret = wc->process_func(log, path->nodes[orig_level], wc,
2588 btrfs_header_generation(path->nodes[orig_level]));
2589 if (ret)
2590 goto out;
2591 if (wc->free) {
2592 struct extent_buffer *next;
2594 next = path->nodes[orig_level];
2596 if (trans) {
2597 btrfs_tree_lock(next);
2598 btrfs_set_lock_blocking(next);
2599 clean_tree_block(trans, log->fs_info, next);
2600 btrfs_wait_tree_block_writeback(next);
2601 btrfs_tree_unlock(next);
2604 WARN_ON(log->root_key.objectid !=
2605 BTRFS_TREE_LOG_OBJECTID);
2606 ret = btrfs_free_and_pin_reserved_extent(log, next->start,
2607 next->len);
2608 if (ret)
2609 goto out;
2613 out:
2614 btrfs_free_path(path);
2615 return ret;
2619 * helper function to update the item for a given subvolumes log root
2620 * in the tree of log roots
2622 static int update_log_root(struct btrfs_trans_handle *trans,
2623 struct btrfs_root *log)
2625 int ret;
2627 if (log->log_transid == 1) {
2628 /* insert root item on the first sync */
2629 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
2630 &log->root_key, &log->root_item);
2631 } else {
2632 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2633 &log->root_key, &log->root_item);
2635 return ret;
2638 static void wait_log_commit(struct btrfs_root *root, int transid)
2640 DEFINE_WAIT(wait);
2641 int index = transid % 2;
2644 * we only allow two pending log transactions at a time,
2645 * so we know that if ours is more than 2 older than the
2646 * current transaction, we're done
2648 do {
2649 prepare_to_wait(&root->log_commit_wait[index],
2650 &wait, TASK_UNINTERRUPTIBLE);
2651 mutex_unlock(&root->log_mutex);
2653 if (root->log_transid_committed < transid &&
2654 atomic_read(&root->log_commit[index]))
2655 schedule();
2657 finish_wait(&root->log_commit_wait[index], &wait);
2658 mutex_lock(&root->log_mutex);
2659 } while (root->log_transid_committed < transid &&
2660 atomic_read(&root->log_commit[index]));
2663 static void wait_for_writer(struct btrfs_root *root)
2665 DEFINE_WAIT(wait);
2667 while (atomic_read(&root->log_writers)) {
2668 prepare_to_wait(&root->log_writer_wait,
2669 &wait, TASK_UNINTERRUPTIBLE);
2670 mutex_unlock(&root->log_mutex);
2671 if (atomic_read(&root->log_writers))
2672 schedule();
2673 finish_wait(&root->log_writer_wait, &wait);
2674 mutex_lock(&root->log_mutex);
2678 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2679 struct btrfs_log_ctx *ctx)
2681 if (!ctx)
2682 return;
2684 mutex_lock(&root->log_mutex);
2685 list_del_init(&ctx->list);
2686 mutex_unlock(&root->log_mutex);
2690 * Invoked in log mutex context, or be sure there is no other task which
2691 * can access the list.
2693 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2694 int index, int error)
2696 struct btrfs_log_ctx *ctx;
2698 if (!error) {
2699 INIT_LIST_HEAD(&root->log_ctxs[index]);
2700 return;
2703 list_for_each_entry(ctx, &root->log_ctxs[index], list)
2704 ctx->log_ret = error;
2706 INIT_LIST_HEAD(&root->log_ctxs[index]);
2710 * btrfs_sync_log does sends a given tree log down to the disk and
2711 * updates the super blocks to record it. When this call is done,
2712 * you know that any inodes previously logged are safely on disk only
2713 * if it returns 0.
2715 * Any other return value means you need to call btrfs_commit_transaction.
2716 * Some of the edge cases for fsyncing directories that have had unlinks
2717 * or renames done in the past mean that sometimes the only safe
2718 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2719 * that has happened.
2721 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2722 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2724 int index1;
2725 int index2;
2726 int mark;
2727 int ret;
2728 struct btrfs_root *log = root->log_root;
2729 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
2730 int log_transid = 0;
2731 struct btrfs_log_ctx root_log_ctx;
2732 struct blk_plug plug;
2734 mutex_lock(&root->log_mutex);
2735 log_transid = ctx->log_transid;
2736 if (root->log_transid_committed >= log_transid) {
2737 mutex_unlock(&root->log_mutex);
2738 return ctx->log_ret;
2741 index1 = log_transid % 2;
2742 if (atomic_read(&root->log_commit[index1])) {
2743 wait_log_commit(root, log_transid);
2744 mutex_unlock(&root->log_mutex);
2745 return ctx->log_ret;
2747 ASSERT(log_transid == root->log_transid);
2748 atomic_set(&root->log_commit[index1], 1);
2750 /* wait for previous tree log sync to complete */
2751 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2752 wait_log_commit(root, log_transid - 1);
2754 while (1) {
2755 int batch = atomic_read(&root->log_batch);
2756 /* when we're on an ssd, just kick the log commit out */
2757 if (!btrfs_test_opt(root, SSD) &&
2758 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2759 mutex_unlock(&root->log_mutex);
2760 schedule_timeout_uninterruptible(1);
2761 mutex_lock(&root->log_mutex);
2763 wait_for_writer(root);
2764 if (batch == atomic_read(&root->log_batch))
2765 break;
2768 /* bail out if we need to do a full commit */
2769 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2770 ret = -EAGAIN;
2771 btrfs_free_logged_extents(log, log_transid);
2772 mutex_unlock(&root->log_mutex);
2773 goto out;
2776 if (log_transid % 2 == 0)
2777 mark = EXTENT_DIRTY;
2778 else
2779 mark = EXTENT_NEW;
2781 /* we start IO on all the marked extents here, but we don't actually
2782 * wait for them until later.
2784 blk_start_plug(&plug);
2785 ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
2786 if (ret) {
2787 blk_finish_plug(&plug);
2788 btrfs_abort_transaction(trans, root, ret);
2789 btrfs_free_logged_extents(log, log_transid);
2790 btrfs_set_log_full_commit(root->fs_info, trans);
2791 mutex_unlock(&root->log_mutex);
2792 goto out;
2795 btrfs_set_root_node(&log->root_item, log->node);
2797 root->log_transid++;
2798 log->log_transid = root->log_transid;
2799 root->log_start_pid = 0;
2801 * IO has been started, blocks of the log tree have WRITTEN flag set
2802 * in their headers. new modifications of the log will be written to
2803 * new positions. so it's safe to allow log writers to go in.
2805 mutex_unlock(&root->log_mutex);
2807 btrfs_init_log_ctx(&root_log_ctx);
2809 mutex_lock(&log_root_tree->log_mutex);
2810 atomic_inc(&log_root_tree->log_batch);
2811 atomic_inc(&log_root_tree->log_writers);
2813 index2 = log_root_tree->log_transid % 2;
2814 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2815 root_log_ctx.log_transid = log_root_tree->log_transid;
2817 mutex_unlock(&log_root_tree->log_mutex);
2819 ret = update_log_root(trans, log);
2821 mutex_lock(&log_root_tree->log_mutex);
2822 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2823 smp_mb();
2824 if (waitqueue_active(&log_root_tree->log_writer_wait))
2825 wake_up(&log_root_tree->log_writer_wait);
2828 if (ret) {
2829 if (!list_empty(&root_log_ctx.list))
2830 list_del_init(&root_log_ctx.list);
2832 blk_finish_plug(&plug);
2833 btrfs_set_log_full_commit(root->fs_info, trans);
2835 if (ret != -ENOSPC) {
2836 btrfs_abort_transaction(trans, root, ret);
2837 mutex_unlock(&log_root_tree->log_mutex);
2838 goto out;
2840 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2841 btrfs_free_logged_extents(log, log_transid);
2842 mutex_unlock(&log_root_tree->log_mutex);
2843 ret = -EAGAIN;
2844 goto out;
2847 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
2848 blk_finish_plug(&plug);
2849 mutex_unlock(&log_root_tree->log_mutex);
2850 ret = root_log_ctx.log_ret;
2851 goto out;
2854 index2 = root_log_ctx.log_transid % 2;
2855 if (atomic_read(&log_root_tree->log_commit[index2])) {
2856 blk_finish_plug(&plug);
2857 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
2858 mark);
2859 btrfs_wait_logged_extents(trans, log, log_transid);
2860 wait_log_commit(log_root_tree,
2861 root_log_ctx.log_transid);
2862 mutex_unlock(&log_root_tree->log_mutex);
2863 if (!ret)
2864 ret = root_log_ctx.log_ret;
2865 goto out;
2867 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
2868 atomic_set(&log_root_tree->log_commit[index2], 1);
2870 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2871 wait_log_commit(log_root_tree,
2872 root_log_ctx.log_transid - 1);
2875 wait_for_writer(log_root_tree);
2878 * now that we've moved on to the tree of log tree roots,
2879 * check the full commit flag again
2881 if (btrfs_need_log_full_commit(root->fs_info, trans)) {
2882 blk_finish_plug(&plug);
2883 btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2884 btrfs_free_logged_extents(log, log_transid);
2885 mutex_unlock(&log_root_tree->log_mutex);
2886 ret = -EAGAIN;
2887 goto out_wake_log_root;
2890 ret = btrfs_write_marked_extents(log_root_tree,
2891 &log_root_tree->dirty_log_pages,
2892 EXTENT_DIRTY | EXTENT_NEW);
2893 blk_finish_plug(&plug);
2894 if (ret) {
2895 btrfs_set_log_full_commit(root->fs_info, trans);
2896 btrfs_abort_transaction(trans, root, ret);
2897 btrfs_free_logged_extents(log, log_transid);
2898 mutex_unlock(&log_root_tree->log_mutex);
2899 goto out_wake_log_root;
2901 ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
2902 if (!ret)
2903 ret = btrfs_wait_marked_extents(log_root_tree,
2904 &log_root_tree->dirty_log_pages,
2905 EXTENT_NEW | EXTENT_DIRTY);
2906 if (ret) {
2907 btrfs_set_log_full_commit(root->fs_info, trans);
2908 btrfs_free_logged_extents(log, log_transid);
2909 mutex_unlock(&log_root_tree->log_mutex);
2910 goto out_wake_log_root;
2912 btrfs_wait_logged_extents(trans, log, log_transid);
2914 btrfs_set_super_log_root(root->fs_info->super_for_commit,
2915 log_root_tree->node->start);
2916 btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
2917 btrfs_header_level(log_root_tree->node));
2919 log_root_tree->log_transid++;
2920 mutex_unlock(&log_root_tree->log_mutex);
2923 * nobody else is going to jump in and write the the ctree
2924 * super here because the log_commit atomic below is protecting
2925 * us. We must be called with a transaction handle pinning
2926 * the running transaction open, so a full commit can't hop
2927 * in and cause problems either.
2929 ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
2930 if (ret) {
2931 btrfs_set_log_full_commit(root->fs_info, trans);
2932 btrfs_abort_transaction(trans, root, ret);
2933 goto out_wake_log_root;
2936 mutex_lock(&root->log_mutex);
2937 if (root->last_log_commit < log_transid)
2938 root->last_log_commit = log_transid;
2939 mutex_unlock(&root->log_mutex);
2941 out_wake_log_root:
2943 * We needn't get log_mutex here because we are sure all
2944 * the other tasks are blocked.
2946 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
2948 mutex_lock(&log_root_tree->log_mutex);
2949 log_root_tree->log_transid_committed++;
2950 atomic_set(&log_root_tree->log_commit[index2], 0);
2951 mutex_unlock(&log_root_tree->log_mutex);
2953 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2954 wake_up(&log_root_tree->log_commit_wait[index2]);
2955 out:
2956 /* See above. */
2957 btrfs_remove_all_log_ctxs(root, index1, ret);
2959 mutex_lock(&root->log_mutex);
2960 root->log_transid_committed++;
2961 atomic_set(&root->log_commit[index1], 0);
2962 mutex_unlock(&root->log_mutex);
2964 if (waitqueue_active(&root->log_commit_wait[index1]))
2965 wake_up(&root->log_commit_wait[index1]);
2966 return ret;
2969 static void free_log_tree(struct btrfs_trans_handle *trans,
2970 struct btrfs_root *log)
2972 int ret;
2973 u64 start;
2974 u64 end;
2975 struct walk_control wc = {
2976 .free = 1,
2977 .process_func = process_one_buffer
2980 ret = walk_log_tree(trans, log, &wc);
2981 /* I don't think this can happen but just in case */
2982 if (ret)
2983 btrfs_abort_transaction(trans, log, ret);
2985 while (1) {
2986 ret = find_first_extent_bit(&log->dirty_log_pages,
2987 0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
2988 NULL);
2989 if (ret)
2990 break;
2992 clear_extent_bits(&log->dirty_log_pages, start, end,
2993 EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
2997 * We may have short-circuited the log tree with the full commit logic
2998 * and left ordered extents on our list, so clear these out to keep us
2999 * from leaking inodes and memory.
3001 btrfs_free_logged_extents(log, 0);
3002 btrfs_free_logged_extents(log, 1);
3004 free_extent_buffer(log->node);
3005 kfree(log);
3009 * free all the extents used by the tree log. This should be called
3010 * at commit time of the full transaction
3012 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3014 if (root->log_root) {
3015 free_log_tree(trans, root->log_root);
3016 root->log_root = NULL;
3018 return 0;
3021 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3022 struct btrfs_fs_info *fs_info)
3024 if (fs_info->log_root_tree) {
3025 free_log_tree(trans, fs_info->log_root_tree);
3026 fs_info->log_root_tree = NULL;
3028 return 0;
3032 * If both a file and directory are logged, and unlinks or renames are
3033 * mixed in, we have a few interesting corners:
3035 * create file X in dir Y
3036 * link file X to X.link in dir Y
3037 * fsync file X
3038 * unlink file X but leave X.link
3039 * fsync dir Y
3041 * After a crash we would expect only X.link to exist. But file X
3042 * didn't get fsync'd again so the log has back refs for X and X.link.
3044 * We solve this by removing directory entries and inode backrefs from the
3045 * log when a file that was logged in the current transaction is
3046 * unlinked. Any later fsync will include the updated log entries, and
3047 * we'll be able to reconstruct the proper directory items from backrefs.
3049 * This optimizations allows us to avoid relogging the entire inode
3050 * or the entire directory.
3052 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3053 struct btrfs_root *root,
3054 const char *name, int name_len,
3055 struct inode *dir, u64 index)
3057 struct btrfs_root *log;
3058 struct btrfs_dir_item *di;
3059 struct btrfs_path *path;
3060 int ret;
3061 int err = 0;
3062 int bytes_del = 0;
3063 u64 dir_ino = btrfs_ino(dir);
3065 if (BTRFS_I(dir)->logged_trans < trans->transid)
3066 return 0;
3068 ret = join_running_log_trans(root);
3069 if (ret)
3070 return 0;
3072 mutex_lock(&BTRFS_I(dir)->log_mutex);
3074 log = root->log_root;
3075 path = btrfs_alloc_path();
3076 if (!path) {
3077 err = -ENOMEM;
3078 goto out_unlock;
3081 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3082 name, name_len, -1);
3083 if (IS_ERR(di)) {
3084 err = PTR_ERR(di);
3085 goto fail;
3087 if (di) {
3088 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3089 bytes_del += name_len;
3090 if (ret) {
3091 err = ret;
3092 goto fail;
3095 btrfs_release_path(path);
3096 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3097 index, name, name_len, -1);
3098 if (IS_ERR(di)) {
3099 err = PTR_ERR(di);
3100 goto fail;
3102 if (di) {
3103 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3104 bytes_del += name_len;
3105 if (ret) {
3106 err = ret;
3107 goto fail;
3111 /* update the directory size in the log to reflect the names
3112 * we have removed
3114 if (bytes_del) {
3115 struct btrfs_key key;
3117 key.objectid = dir_ino;
3118 key.offset = 0;
3119 key.type = BTRFS_INODE_ITEM_KEY;
3120 btrfs_release_path(path);
3122 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3123 if (ret < 0) {
3124 err = ret;
3125 goto fail;
3127 if (ret == 0) {
3128 struct btrfs_inode_item *item;
3129 u64 i_size;
3131 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3132 struct btrfs_inode_item);
3133 i_size = btrfs_inode_size(path->nodes[0], item);
3134 if (i_size > bytes_del)
3135 i_size -= bytes_del;
3136 else
3137 i_size = 0;
3138 btrfs_set_inode_size(path->nodes[0], item, i_size);
3139 btrfs_mark_buffer_dirty(path->nodes[0]);
3140 } else
3141 ret = 0;
3142 btrfs_release_path(path);
3144 fail:
3145 btrfs_free_path(path);
3146 out_unlock:
3147 mutex_unlock(&BTRFS_I(dir)->log_mutex);
3148 if (ret == -ENOSPC) {
3149 btrfs_set_log_full_commit(root->fs_info, trans);
3150 ret = 0;
3151 } else if (ret < 0)
3152 btrfs_abort_transaction(trans, root, ret);
3154 btrfs_end_log_trans(root);
3156 return err;
3159 /* see comments for btrfs_del_dir_entries_in_log */
3160 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 const char *name, int name_len,
3163 struct inode *inode, u64 dirid)
3165 struct btrfs_root *log;
3166 u64 index;
3167 int ret;
3169 if (BTRFS_I(inode)->logged_trans < trans->transid)
3170 return 0;
3172 ret = join_running_log_trans(root);
3173 if (ret)
3174 return 0;
3175 log = root->log_root;
3176 mutex_lock(&BTRFS_I(inode)->log_mutex);
3178 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3179 dirid, &index);
3180 mutex_unlock(&BTRFS_I(inode)->log_mutex);
3181 if (ret == -ENOSPC) {
3182 btrfs_set_log_full_commit(root->fs_info, trans);
3183 ret = 0;
3184 } else if (ret < 0 && ret != -ENOENT)
3185 btrfs_abort_transaction(trans, root, ret);
3186 btrfs_end_log_trans(root);
3188 return ret;
3192 * creates a range item in the log for 'dirid'. first_offset and
3193 * last_offset tell us which parts of the key space the log should
3194 * be considered authoritative for.
3196 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3197 struct btrfs_root *log,
3198 struct btrfs_path *path,
3199 int key_type, u64 dirid,
3200 u64 first_offset, u64 last_offset)
3202 int ret;
3203 struct btrfs_key key;
3204 struct btrfs_dir_log_item *item;
3206 key.objectid = dirid;
3207 key.offset = first_offset;
3208 if (key_type == BTRFS_DIR_ITEM_KEY)
3209 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3210 else
3211 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3212 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3213 if (ret)
3214 return ret;
3216 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3217 struct btrfs_dir_log_item);
3218 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3219 btrfs_mark_buffer_dirty(path->nodes[0]);
3220 btrfs_release_path(path);
3221 return 0;
3225 * log all the items included in the current transaction for a given
3226 * directory. This also creates the range items in the log tree required
3227 * to replay anything deleted before the fsync
3229 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3230 struct btrfs_root *root, struct inode *inode,
3231 struct btrfs_path *path,
3232 struct btrfs_path *dst_path, int key_type,
3233 struct btrfs_log_ctx *ctx,
3234 u64 min_offset, u64 *last_offset_ret)
3236 struct btrfs_key min_key;
3237 struct btrfs_root *log = root->log_root;
3238 struct extent_buffer *src;
3239 int err = 0;
3240 int ret;
3241 int i;
3242 int nritems;
3243 u64 first_offset = min_offset;
3244 u64 last_offset = (u64)-1;
3245 u64 ino = btrfs_ino(inode);
3247 log = root->log_root;
3249 min_key.objectid = ino;
3250 min_key.type = key_type;
3251 min_key.offset = min_offset;
3253 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3256 * we didn't find anything from this transaction, see if there
3257 * is anything at all
3259 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3260 min_key.objectid = ino;
3261 min_key.type = key_type;
3262 min_key.offset = (u64)-1;
3263 btrfs_release_path(path);
3264 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3265 if (ret < 0) {
3266 btrfs_release_path(path);
3267 return ret;
3269 ret = btrfs_previous_item(root, path, ino, key_type);
3271 /* if ret == 0 there are items for this type,
3272 * create a range to tell us the last key of this type.
3273 * otherwise, there are no items in this directory after
3274 * *min_offset, and we create a range to indicate that.
3276 if (ret == 0) {
3277 struct btrfs_key tmp;
3278 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3279 path->slots[0]);
3280 if (key_type == tmp.type)
3281 first_offset = max(min_offset, tmp.offset) + 1;
3283 goto done;
3286 /* go backward to find any previous key */
3287 ret = btrfs_previous_item(root, path, ino, key_type);
3288 if (ret == 0) {
3289 struct btrfs_key tmp;
3290 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3291 if (key_type == tmp.type) {
3292 first_offset = tmp.offset;
3293 ret = overwrite_item(trans, log, dst_path,
3294 path->nodes[0], path->slots[0],
3295 &tmp);
3296 if (ret) {
3297 err = ret;
3298 goto done;
3302 btrfs_release_path(path);
3304 /* find the first key from this transaction again */
3305 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3306 if (WARN_ON(ret != 0))
3307 goto done;
3310 * we have a block from this transaction, log every item in it
3311 * from our directory
3313 while (1) {
3314 struct btrfs_key tmp;
3315 src = path->nodes[0];
3316 nritems = btrfs_header_nritems(src);
3317 for (i = path->slots[0]; i < nritems; i++) {
3318 struct btrfs_dir_item *di;
3320 btrfs_item_key_to_cpu(src, &min_key, i);
3322 if (min_key.objectid != ino || min_key.type != key_type)
3323 goto done;
3324 ret = overwrite_item(trans, log, dst_path, src, i,
3325 &min_key);
3326 if (ret) {
3327 err = ret;
3328 goto done;
3332 * We must make sure that when we log a directory entry,
3333 * the corresponding inode, after log replay, has a
3334 * matching link count. For example:
3336 * touch foo
3337 * mkdir mydir
3338 * sync
3339 * ln foo mydir/bar
3340 * xfs_io -c "fsync" mydir
3341 * <crash>
3342 * <mount fs and log replay>
3344 * Would result in a fsync log that when replayed, our
3345 * file inode would have a link count of 1, but we get
3346 * two directory entries pointing to the same inode.
3347 * After removing one of the names, it would not be
3348 * possible to remove the other name, which resulted
3349 * always in stale file handle errors, and would not
3350 * be possible to rmdir the parent directory, since
3351 * its i_size could never decrement to the value
3352 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3354 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3355 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3356 if (ctx &&
3357 (btrfs_dir_transid(src, di) == trans->transid ||
3358 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3359 tmp.type != BTRFS_ROOT_ITEM_KEY)
3360 ctx->log_new_dentries = true;
3362 path->slots[0] = nritems;
3365 * look ahead to the next item and see if it is also
3366 * from this directory and from this transaction
3368 ret = btrfs_next_leaf(root, path);
3369 if (ret == 1) {
3370 last_offset = (u64)-1;
3371 goto done;
3373 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3374 if (tmp.objectid != ino || tmp.type != key_type) {
3375 last_offset = (u64)-1;
3376 goto done;
3378 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3379 ret = overwrite_item(trans, log, dst_path,
3380 path->nodes[0], path->slots[0],
3381 &tmp);
3382 if (ret)
3383 err = ret;
3384 else
3385 last_offset = tmp.offset;
3386 goto done;
3389 done:
3390 btrfs_release_path(path);
3391 btrfs_release_path(dst_path);
3393 if (err == 0) {
3394 *last_offset_ret = last_offset;
3396 * insert the log range keys to indicate where the log
3397 * is valid
3399 ret = insert_dir_log_key(trans, log, path, key_type,
3400 ino, first_offset, last_offset);
3401 if (ret)
3402 err = ret;
3404 return err;
3408 * logging directories is very similar to logging inodes, We find all the items
3409 * from the current transaction and write them to the log.
3411 * The recovery code scans the directory in the subvolume, and if it finds a
3412 * key in the range logged that is not present in the log tree, then it means
3413 * that dir entry was unlinked during the transaction.
3415 * In order for that scan to work, we must include one key smaller than
3416 * the smallest logged by this transaction and one key larger than the largest
3417 * key logged by this transaction.
3419 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3420 struct btrfs_root *root, struct inode *inode,
3421 struct btrfs_path *path,
3422 struct btrfs_path *dst_path,
3423 struct btrfs_log_ctx *ctx)
3425 u64 min_key;
3426 u64 max_key;
3427 int ret;
3428 int key_type = BTRFS_DIR_ITEM_KEY;
3430 again:
3431 min_key = 0;
3432 max_key = 0;
3433 while (1) {
3434 ret = log_dir_items(trans, root, inode, path,
3435 dst_path, key_type, ctx, min_key,
3436 &max_key);
3437 if (ret)
3438 return ret;
3439 if (max_key == (u64)-1)
3440 break;
3441 min_key = max_key + 1;
3444 if (key_type == BTRFS_DIR_ITEM_KEY) {
3445 key_type = BTRFS_DIR_INDEX_KEY;
3446 goto again;
3448 return 0;
3452 * a helper function to drop items from the log before we relog an
3453 * inode. max_key_type indicates the highest item type to remove.
3454 * This cannot be run for file data extents because it does not
3455 * free the extents they point to.
3457 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3458 struct btrfs_root *log,
3459 struct btrfs_path *path,
3460 u64 objectid, int max_key_type)
3462 int ret;
3463 struct btrfs_key key;
3464 struct btrfs_key found_key;
3465 int start_slot;
3467 key.objectid = objectid;
3468 key.type = max_key_type;
3469 key.offset = (u64)-1;
3471 while (1) {
3472 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3473 BUG_ON(ret == 0); /* Logic error */
3474 if (ret < 0)
3475 break;
3477 if (path->slots[0] == 0)
3478 break;
3480 path->slots[0]--;
3481 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3482 path->slots[0]);
3484 if (found_key.objectid != objectid)
3485 break;
3487 found_key.offset = 0;
3488 found_key.type = 0;
3489 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3490 &start_slot);
3492 ret = btrfs_del_items(trans, log, path, start_slot,
3493 path->slots[0] - start_slot + 1);
3495 * If start slot isn't 0 then we don't need to re-search, we've
3496 * found the last guy with the objectid in this tree.
3498 if (ret || start_slot != 0)
3499 break;
3500 btrfs_release_path(path);
3502 btrfs_release_path(path);
3503 if (ret > 0)
3504 ret = 0;
3505 return ret;
3508 static void fill_inode_item(struct btrfs_trans_handle *trans,
3509 struct extent_buffer *leaf,
3510 struct btrfs_inode_item *item,
3511 struct inode *inode, int log_inode_only,
3512 u64 logged_isize)
3514 struct btrfs_map_token token;
3516 btrfs_init_map_token(&token);
3518 if (log_inode_only) {
3519 /* set the generation to zero so the recover code
3520 * can tell the difference between an logging
3521 * just to say 'this inode exists' and a logging
3522 * to say 'update this inode with these values'
3524 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3525 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3526 } else {
3527 btrfs_set_token_inode_generation(leaf, item,
3528 BTRFS_I(inode)->generation,
3529 &token);
3530 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3533 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3534 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3535 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3536 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3538 btrfs_set_token_timespec_sec(leaf, &item->atime,
3539 inode->i_atime.tv_sec, &token);
3540 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3541 inode->i_atime.tv_nsec, &token);
3543 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3544 inode->i_mtime.tv_sec, &token);
3545 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3546 inode->i_mtime.tv_nsec, &token);
3548 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3549 inode->i_ctime.tv_sec, &token);
3550 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3551 inode->i_ctime.tv_nsec, &token);
3553 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3554 &token);
3556 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3557 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3558 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3559 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3560 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3563 static int log_inode_item(struct btrfs_trans_handle *trans,
3564 struct btrfs_root *log, struct btrfs_path *path,
3565 struct inode *inode)
3567 struct btrfs_inode_item *inode_item;
3568 int ret;
3570 ret = btrfs_insert_empty_item(trans, log, path,
3571 &BTRFS_I(inode)->location,
3572 sizeof(*inode_item));
3573 if (ret && ret != -EEXIST)
3574 return ret;
3575 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3576 struct btrfs_inode_item);
3577 fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
3578 btrfs_release_path(path);
3579 return 0;
3582 static noinline int copy_items(struct btrfs_trans_handle *trans,
3583 struct inode *inode,
3584 struct btrfs_path *dst_path,
3585 struct btrfs_path *src_path, u64 *last_extent,
3586 int start_slot, int nr, int inode_only,
3587 u64 logged_isize)
3589 unsigned long src_offset;
3590 unsigned long dst_offset;
3591 struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
3592 struct btrfs_file_extent_item *extent;
3593 struct btrfs_inode_item *inode_item;
3594 struct extent_buffer *src = src_path->nodes[0];
3595 struct btrfs_key first_key, last_key, key;
3596 int ret;
3597 struct btrfs_key *ins_keys;
3598 u32 *ins_sizes;
3599 char *ins_data;
3600 int i;
3601 struct list_head ordered_sums;
3602 int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3603 bool has_extents = false;
3604 bool need_find_last_extent = true;
3605 bool done = false;
3607 INIT_LIST_HEAD(&ordered_sums);
3609 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3610 nr * sizeof(u32), GFP_NOFS);
3611 if (!ins_data)
3612 return -ENOMEM;
3614 first_key.objectid = (u64)-1;
3616 ins_sizes = (u32 *)ins_data;
3617 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3619 for (i = 0; i < nr; i++) {
3620 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3621 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3623 ret = btrfs_insert_empty_items(trans, log, dst_path,
3624 ins_keys, ins_sizes, nr);
3625 if (ret) {
3626 kfree(ins_data);
3627 return ret;
3630 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3631 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3632 dst_path->slots[0]);
3634 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3636 if ((i == (nr - 1)))
3637 last_key = ins_keys[i];
3639 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3640 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3641 dst_path->slots[0],
3642 struct btrfs_inode_item);
3643 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3644 inode, inode_only == LOG_INODE_EXISTS,
3645 logged_isize);
3646 } else {
3647 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3648 src_offset, ins_sizes[i]);
3652 * We set need_find_last_extent here in case we know we were
3653 * processing other items and then walk into the first extent in
3654 * the inode. If we don't hit an extent then nothing changes,
3655 * we'll do the last search the next time around.
3657 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3658 has_extents = true;
3659 if (first_key.objectid == (u64)-1)
3660 first_key = ins_keys[i];
3661 } else {
3662 need_find_last_extent = false;
3665 /* take a reference on file data extents so that truncates
3666 * or deletes of this inode don't have to relog the inode
3667 * again
3669 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3670 !skip_csum) {
3671 int found_type;
3672 extent = btrfs_item_ptr(src, start_slot + i,
3673 struct btrfs_file_extent_item);
3675 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3676 continue;
3678 found_type = btrfs_file_extent_type(src, extent);
3679 if (found_type == BTRFS_FILE_EXTENT_REG) {
3680 u64 ds, dl, cs, cl;
3681 ds = btrfs_file_extent_disk_bytenr(src,
3682 extent);
3683 /* ds == 0 is a hole */
3684 if (ds == 0)
3685 continue;
3687 dl = btrfs_file_extent_disk_num_bytes(src,
3688 extent);
3689 cs = btrfs_file_extent_offset(src, extent);
3690 cl = btrfs_file_extent_num_bytes(src,
3691 extent);
3692 if (btrfs_file_extent_compression(src,
3693 extent)) {
3694 cs = 0;
3695 cl = dl;
3698 ret = btrfs_lookup_csums_range(
3699 log->fs_info->csum_root,
3700 ds + cs, ds + cs + cl - 1,
3701 &ordered_sums, 0);
3702 if (ret) {
3703 btrfs_release_path(dst_path);
3704 kfree(ins_data);
3705 return ret;
3711 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3712 btrfs_release_path(dst_path);
3713 kfree(ins_data);
3716 * we have to do this after the loop above to avoid changing the
3717 * log tree while trying to change the log tree.
3719 ret = 0;
3720 while (!list_empty(&ordered_sums)) {
3721 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3722 struct btrfs_ordered_sum,
3723 list);
3724 if (!ret)
3725 ret = btrfs_csum_file_blocks(trans, log, sums);
3726 list_del(&sums->list);
3727 kfree(sums);
3730 if (!has_extents)
3731 return ret;
3733 if (need_find_last_extent && *last_extent == first_key.offset) {
3735 * We don't have any leafs between our current one and the one
3736 * we processed before that can have file extent items for our
3737 * inode (and have a generation number smaller than our current
3738 * transaction id).
3740 need_find_last_extent = false;
3744 * Because we use btrfs_search_forward we could skip leaves that were
3745 * not modified and then assume *last_extent is valid when it really
3746 * isn't. So back up to the previous leaf and read the end of the last
3747 * extent before we go and fill in holes.
3749 if (need_find_last_extent) {
3750 u64 len;
3752 ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
3753 if (ret < 0)
3754 return ret;
3755 if (ret)
3756 goto fill_holes;
3757 if (src_path->slots[0])
3758 src_path->slots[0]--;
3759 src = src_path->nodes[0];
3760 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3761 if (key.objectid != btrfs_ino(inode) ||
3762 key.type != BTRFS_EXTENT_DATA_KEY)
3763 goto fill_holes;
3764 extent = btrfs_item_ptr(src, src_path->slots[0],
3765 struct btrfs_file_extent_item);
3766 if (btrfs_file_extent_type(src, extent) ==
3767 BTRFS_FILE_EXTENT_INLINE) {
3768 len = btrfs_file_extent_inline_len(src,
3769 src_path->slots[0],
3770 extent);
3771 *last_extent = ALIGN(key.offset + len,
3772 log->sectorsize);
3773 } else {
3774 len = btrfs_file_extent_num_bytes(src, extent);
3775 *last_extent = key.offset + len;
3778 fill_holes:
3779 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3780 * things could have happened
3782 * 1) A merge could have happened, so we could currently be on a leaf
3783 * that holds what we were copying in the first place.
3784 * 2) A split could have happened, and now not all of the items we want
3785 * are on the same leaf.
3787 * So we need to adjust how we search for holes, we need to drop the
3788 * path and re-search for the first extent key we found, and then walk
3789 * forward until we hit the last one we copied.
3791 if (need_find_last_extent) {
3792 /* btrfs_prev_leaf could return 1 without releasing the path */
3793 btrfs_release_path(src_path);
3794 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
3795 src_path, 0, 0);
3796 if (ret < 0)
3797 return ret;
3798 ASSERT(ret == 0);
3799 src = src_path->nodes[0];
3800 i = src_path->slots[0];
3801 } else {
3802 i = start_slot;
3806 * Ok so here we need to go through and fill in any holes we may have
3807 * to make sure that holes are punched for those areas in case they had
3808 * extents previously.
3810 while (!done) {
3811 u64 offset, len;
3812 u64 extent_end;
3814 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
3815 ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
3816 if (ret < 0)
3817 return ret;
3818 ASSERT(ret == 0);
3819 src = src_path->nodes[0];
3820 i = 0;
3823 btrfs_item_key_to_cpu(src, &key, i);
3824 if (!btrfs_comp_cpu_keys(&key, &last_key))
3825 done = true;
3826 if (key.objectid != btrfs_ino(inode) ||
3827 key.type != BTRFS_EXTENT_DATA_KEY) {
3828 i++;
3829 continue;
3831 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
3832 if (btrfs_file_extent_type(src, extent) ==
3833 BTRFS_FILE_EXTENT_INLINE) {
3834 len = btrfs_file_extent_inline_len(src, i, extent);
3835 extent_end = ALIGN(key.offset + len, log->sectorsize);
3836 } else {
3837 len = btrfs_file_extent_num_bytes(src, extent);
3838 extent_end = key.offset + len;
3840 i++;
3842 if (*last_extent == key.offset) {
3843 *last_extent = extent_end;
3844 continue;
3846 offset = *last_extent;
3847 len = key.offset - *last_extent;
3848 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
3849 offset, 0, 0, len, 0, len, 0,
3850 0, 0);
3851 if (ret)
3852 break;
3853 *last_extent = extent_end;
3856 * Need to let the callers know we dropped the path so they should
3857 * re-search.
3859 if (!ret && need_find_last_extent)
3860 ret = 1;
3861 return ret;
3864 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
3866 struct extent_map *em1, *em2;
3868 em1 = list_entry(a, struct extent_map, list);
3869 em2 = list_entry(b, struct extent_map, list);
3871 if (em1->start < em2->start)
3872 return -1;
3873 else if (em1->start > em2->start)
3874 return 1;
3875 return 0;
3878 static int wait_ordered_extents(struct btrfs_trans_handle *trans,
3879 struct inode *inode,
3880 struct btrfs_root *root,
3881 const struct extent_map *em,
3882 const struct list_head *logged_list,
3883 bool *ordered_io_error)
3885 struct btrfs_ordered_extent *ordered;
3886 struct btrfs_root *log = root->log_root;
3887 u64 mod_start = em->mod_start;
3888 u64 mod_len = em->mod_len;
3889 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
3890 u64 csum_offset;
3891 u64 csum_len;
3892 LIST_HEAD(ordered_sums);
3893 int ret = 0;
3895 *ordered_io_error = false;
3897 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
3898 em->block_start == EXTENT_MAP_HOLE)
3899 return 0;
3902 * Wait far any ordered extent that covers our extent map. If it
3903 * finishes without an error, first check and see if our csums are on
3904 * our outstanding ordered extents.
3906 list_for_each_entry(ordered, logged_list, log_list) {
3907 struct btrfs_ordered_sum *sum;
3909 if (!mod_len)
3910 break;
3912 if (ordered->file_offset + ordered->len <= mod_start ||
3913 mod_start + mod_len <= ordered->file_offset)
3914 continue;
3916 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
3917 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
3918 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
3919 const u64 start = ordered->file_offset;
3920 const u64 end = ordered->file_offset + ordered->len - 1;
3922 WARN_ON(ordered->inode != inode);
3923 filemap_fdatawrite_range(inode->i_mapping, start, end);
3926 wait_event(ordered->wait,
3927 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
3928 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
3930 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
3932 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
3933 * i_mapping flags, so that the next fsync won't get
3934 * an outdated io error too.
3936 btrfs_inode_check_errors(inode);
3937 *ordered_io_error = true;
3938 break;
3941 * We are going to copy all the csums on this ordered extent, so
3942 * go ahead and adjust mod_start and mod_len in case this
3943 * ordered extent has already been logged.
3945 if (ordered->file_offset > mod_start) {
3946 if (ordered->file_offset + ordered->len >=
3947 mod_start + mod_len)
3948 mod_len = ordered->file_offset - mod_start;
3950 * If we have this case
3952 * |--------- logged extent ---------|
3953 * |----- ordered extent ----|
3955 * Just don't mess with mod_start and mod_len, we'll
3956 * just end up logging more csums than we need and it
3957 * will be ok.
3959 } else {
3960 if (ordered->file_offset + ordered->len <
3961 mod_start + mod_len) {
3962 mod_len = (mod_start + mod_len) -
3963 (ordered->file_offset + ordered->len);
3964 mod_start = ordered->file_offset +
3965 ordered->len;
3966 } else {
3967 mod_len = 0;
3971 if (skip_csum)
3972 continue;
3975 * To keep us from looping for the above case of an ordered
3976 * extent that falls inside of the logged extent.
3978 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
3979 &ordered->flags))
3980 continue;
3982 list_for_each_entry(sum, &ordered->list, list) {
3983 ret = btrfs_csum_file_blocks(trans, log, sum);
3984 if (ret)
3985 break;
3989 if (*ordered_io_error || !mod_len || ret || skip_csum)
3990 return ret;
3992 if (em->compress_type) {
3993 csum_offset = 0;
3994 csum_len = max(em->block_len, em->orig_block_len);
3995 } else {
3996 csum_offset = mod_start - em->start;
3997 csum_len = mod_len;
4000 /* block start is already adjusted for the file extent offset. */
4001 ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
4002 em->block_start + csum_offset,
4003 em->block_start + csum_offset +
4004 csum_len - 1, &ordered_sums, 0);
4005 if (ret)
4006 return ret;
4008 while (!list_empty(&ordered_sums)) {
4009 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4010 struct btrfs_ordered_sum,
4011 list);
4012 if (!ret)
4013 ret = btrfs_csum_file_blocks(trans, log, sums);
4014 list_del(&sums->list);
4015 kfree(sums);
4018 return ret;
4021 static int log_one_extent(struct btrfs_trans_handle *trans,
4022 struct inode *inode, struct btrfs_root *root,
4023 const struct extent_map *em,
4024 struct btrfs_path *path,
4025 const struct list_head *logged_list,
4026 struct btrfs_log_ctx *ctx)
4028 struct btrfs_root *log = root->log_root;
4029 struct btrfs_file_extent_item *fi;
4030 struct extent_buffer *leaf;
4031 struct btrfs_map_token token;
4032 struct btrfs_key key;
4033 u64 extent_offset = em->start - em->orig_start;
4034 u64 block_len;
4035 int ret;
4036 int extent_inserted = 0;
4037 bool ordered_io_err = false;
4039 ret = wait_ordered_extents(trans, inode, root, em, logged_list,
4040 &ordered_io_err);
4041 if (ret)
4042 return ret;
4044 if (ordered_io_err) {
4045 ctx->io_err = -EIO;
4046 return 0;
4049 btrfs_init_map_token(&token);
4051 ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
4052 em->start + em->len, NULL, 0, 1,
4053 sizeof(*fi), &extent_inserted);
4054 if (ret)
4055 return ret;
4057 if (!extent_inserted) {
4058 key.objectid = btrfs_ino(inode);
4059 key.type = BTRFS_EXTENT_DATA_KEY;
4060 key.offset = em->start;
4062 ret = btrfs_insert_empty_item(trans, log, path, &key,
4063 sizeof(*fi));
4064 if (ret)
4065 return ret;
4067 leaf = path->nodes[0];
4068 fi = btrfs_item_ptr(leaf, path->slots[0],
4069 struct btrfs_file_extent_item);
4071 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4072 &token);
4073 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4074 btrfs_set_token_file_extent_type(leaf, fi,
4075 BTRFS_FILE_EXTENT_PREALLOC,
4076 &token);
4077 else
4078 btrfs_set_token_file_extent_type(leaf, fi,
4079 BTRFS_FILE_EXTENT_REG,
4080 &token);
4082 block_len = max(em->block_len, em->orig_block_len);
4083 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4084 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4085 em->block_start,
4086 &token);
4087 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4088 &token);
4089 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4090 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4091 em->block_start -
4092 extent_offset, &token);
4093 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4094 &token);
4095 } else {
4096 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4097 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4098 &token);
4101 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4102 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4103 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4104 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4105 &token);
4106 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4107 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4108 btrfs_mark_buffer_dirty(leaf);
4110 btrfs_release_path(path);
4112 return ret;
4115 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4116 struct btrfs_root *root,
4117 struct inode *inode,
4118 struct btrfs_path *path,
4119 struct list_head *logged_list,
4120 struct btrfs_log_ctx *ctx)
4122 struct extent_map *em, *n;
4123 struct list_head extents;
4124 struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
4125 u64 test_gen;
4126 int ret = 0;
4127 int num = 0;
4129 INIT_LIST_HEAD(&extents);
4131 write_lock(&tree->lock);
4132 test_gen = root->fs_info->last_trans_committed;
4134 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4135 list_del_init(&em->list);
4138 * Just an arbitrary number, this can be really CPU intensive
4139 * once we start getting a lot of extents, and really once we
4140 * have a bunch of extents we just want to commit since it will
4141 * be faster.
4143 if (++num > 32768) {
4144 list_del_init(&tree->modified_extents);
4145 ret = -EFBIG;
4146 goto process;
4149 if (em->generation <= test_gen)
4150 continue;
4151 /* Need a ref to keep it from getting evicted from cache */
4152 atomic_inc(&em->refs);
4153 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4154 list_add_tail(&em->list, &extents);
4155 num++;
4158 list_sort(NULL, &extents, extent_cmp);
4160 process:
4161 while (!list_empty(&extents)) {
4162 em = list_entry(extents.next, struct extent_map, list);
4164 list_del_init(&em->list);
4167 * If we had an error we just need to delete everybody from our
4168 * private list.
4170 if (ret) {
4171 clear_em_logging(tree, em);
4172 free_extent_map(em);
4173 continue;
4176 write_unlock(&tree->lock);
4178 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4179 ctx);
4180 write_lock(&tree->lock);
4181 clear_em_logging(tree, em);
4182 free_extent_map(em);
4184 WARN_ON(!list_empty(&extents));
4185 write_unlock(&tree->lock);
4187 btrfs_release_path(path);
4188 return ret;
4191 static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
4192 struct btrfs_path *path, u64 *size_ret)
4194 struct btrfs_key key;
4195 int ret;
4197 key.objectid = btrfs_ino(inode);
4198 key.type = BTRFS_INODE_ITEM_KEY;
4199 key.offset = 0;
4201 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4202 if (ret < 0) {
4203 return ret;
4204 } else if (ret > 0) {
4205 *size_ret = 0;
4206 } else {
4207 struct btrfs_inode_item *item;
4209 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4210 struct btrfs_inode_item);
4211 *size_ret = btrfs_inode_size(path->nodes[0], item);
4214 btrfs_release_path(path);
4215 return 0;
4219 * At the moment we always log all xattrs. This is to figure out at log replay
4220 * time which xattrs must have their deletion replayed. If a xattr is missing
4221 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4222 * because if a xattr is deleted, the inode is fsynced and a power failure
4223 * happens, causing the log to be replayed the next time the fs is mounted,
4224 * we want the xattr to not exist anymore (same behaviour as other filesystems
4225 * with a journal, ext3/4, xfs, f2fs, etc).
4227 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root,
4229 struct inode *inode,
4230 struct btrfs_path *path,
4231 struct btrfs_path *dst_path)
4233 int ret;
4234 struct btrfs_key key;
4235 const u64 ino = btrfs_ino(inode);
4236 int ins_nr = 0;
4237 int start_slot = 0;
4239 key.objectid = ino;
4240 key.type = BTRFS_XATTR_ITEM_KEY;
4241 key.offset = 0;
4243 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4244 if (ret < 0)
4245 return ret;
4247 while (true) {
4248 int slot = path->slots[0];
4249 struct extent_buffer *leaf = path->nodes[0];
4250 int nritems = btrfs_header_nritems(leaf);
4252 if (slot >= nritems) {
4253 if (ins_nr > 0) {
4254 u64 last_extent = 0;
4256 ret = copy_items(trans, inode, dst_path, path,
4257 &last_extent, start_slot,
4258 ins_nr, 1, 0);
4259 /* can't be 1, extent items aren't processed */
4260 ASSERT(ret <= 0);
4261 if (ret < 0)
4262 return ret;
4263 ins_nr = 0;
4265 ret = btrfs_next_leaf(root, path);
4266 if (ret < 0)
4267 return ret;
4268 else if (ret > 0)
4269 break;
4270 continue;
4273 btrfs_item_key_to_cpu(leaf, &key, slot);
4274 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4275 break;
4277 if (ins_nr == 0)
4278 start_slot = slot;
4279 ins_nr++;
4280 path->slots[0]++;
4281 cond_resched();
4283 if (ins_nr > 0) {
4284 u64 last_extent = 0;
4286 ret = copy_items(trans, inode, dst_path, path,
4287 &last_extent, start_slot,
4288 ins_nr, 1, 0);
4289 /* can't be 1, extent items aren't processed */
4290 ASSERT(ret <= 0);
4291 if (ret < 0)
4292 return ret;
4295 return 0;
4299 * If the no holes feature is enabled we need to make sure any hole between the
4300 * last extent and the i_size of our inode is explicitly marked in the log. This
4301 * is to make sure that doing something like:
4303 * 1) create file with 128Kb of data
4304 * 2) truncate file to 64Kb
4305 * 3) truncate file to 256Kb
4306 * 4) fsync file
4307 * 5) <crash/power failure>
4308 * 6) mount fs and trigger log replay
4310 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4311 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4312 * file correspond to a hole. The presence of explicit holes in a log tree is
4313 * what guarantees that log replay will remove/adjust file extent items in the
4314 * fs/subvol tree.
4316 * Here we do not need to care about holes between extents, that is already done
4317 * by copy_items(). We also only need to do this in the full sync path, where we
4318 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4319 * lookup the list of modified extent maps and if any represents a hole, we
4320 * insert a corresponding extent representing a hole in the log tree.
4322 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4323 struct btrfs_root *root,
4324 struct inode *inode,
4325 struct btrfs_path *path)
4327 int ret;
4328 struct btrfs_key key;
4329 u64 hole_start;
4330 u64 hole_size;
4331 struct extent_buffer *leaf;
4332 struct btrfs_root *log = root->log_root;
4333 const u64 ino = btrfs_ino(inode);
4334 const u64 i_size = i_size_read(inode);
4336 if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
4337 return 0;
4339 key.objectid = ino;
4340 key.type = BTRFS_EXTENT_DATA_KEY;
4341 key.offset = (u64)-1;
4343 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4344 ASSERT(ret != 0);
4345 if (ret < 0)
4346 return ret;
4348 ASSERT(path->slots[0] > 0);
4349 path->slots[0]--;
4350 leaf = path->nodes[0];
4351 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4353 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4354 /* inode does not have any extents */
4355 hole_start = 0;
4356 hole_size = i_size;
4357 } else {
4358 struct btrfs_file_extent_item *extent;
4359 u64 len;
4362 * If there's an extent beyond i_size, an explicit hole was
4363 * already inserted by copy_items().
4365 if (key.offset >= i_size)
4366 return 0;
4368 extent = btrfs_item_ptr(leaf, path->slots[0],
4369 struct btrfs_file_extent_item);
4371 if (btrfs_file_extent_type(leaf, extent) ==
4372 BTRFS_FILE_EXTENT_INLINE) {
4373 len = btrfs_file_extent_inline_len(leaf,
4374 path->slots[0],
4375 extent);
4376 ASSERT(len == i_size);
4377 return 0;
4380 len = btrfs_file_extent_num_bytes(leaf, extent);
4381 /* Last extent goes beyond i_size, no need to log a hole. */
4382 if (key.offset + len > i_size)
4383 return 0;
4384 hole_start = key.offset + len;
4385 hole_size = i_size - hole_start;
4387 btrfs_release_path(path);
4389 /* Last extent ends at i_size. */
4390 if (hole_size == 0)
4391 return 0;
4393 hole_size = ALIGN(hole_size, root->sectorsize);
4394 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4395 hole_size, 0, hole_size, 0, 0, 0);
4396 return ret;
4399 /* log a single inode in the tree log.
4400 * At least one parent directory for this inode must exist in the tree
4401 * or be logged already.
4403 * Any items from this inode changed by the current transaction are copied
4404 * to the log tree. An extra reference is taken on any extents in this
4405 * file, allowing us to avoid a whole pile of corner cases around logging
4406 * blocks that have been removed from the tree.
4408 * See LOG_INODE_ALL and related defines for a description of what inode_only
4409 * does.
4411 * This handles both files and directories.
4413 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4414 struct btrfs_root *root, struct inode *inode,
4415 int inode_only,
4416 const loff_t start,
4417 const loff_t end,
4418 struct btrfs_log_ctx *ctx)
4420 struct btrfs_path *path;
4421 struct btrfs_path *dst_path;
4422 struct btrfs_key min_key;
4423 struct btrfs_key max_key;
4424 struct btrfs_root *log = root->log_root;
4425 struct extent_buffer *src = NULL;
4426 LIST_HEAD(logged_list);
4427 u64 last_extent = 0;
4428 int err = 0;
4429 int ret;
4430 int nritems;
4431 int ins_start_slot = 0;
4432 int ins_nr;
4433 bool fast_search = false;
4434 u64 ino = btrfs_ino(inode);
4435 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4436 u64 logged_isize = 0;
4437 bool need_log_inode_item = true;
4439 path = btrfs_alloc_path();
4440 if (!path)
4441 return -ENOMEM;
4442 dst_path = btrfs_alloc_path();
4443 if (!dst_path) {
4444 btrfs_free_path(path);
4445 return -ENOMEM;
4448 min_key.objectid = ino;
4449 min_key.type = BTRFS_INODE_ITEM_KEY;
4450 min_key.offset = 0;
4452 max_key.objectid = ino;
4455 /* today the code can only do partial logging of directories */
4456 if (S_ISDIR(inode->i_mode) ||
4457 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4458 &BTRFS_I(inode)->runtime_flags) &&
4459 inode_only == LOG_INODE_EXISTS))
4460 max_key.type = BTRFS_XATTR_ITEM_KEY;
4461 else
4462 max_key.type = (u8)-1;
4463 max_key.offset = (u64)-1;
4466 * Only run delayed items if we are a dir or a new file.
4467 * Otherwise commit the delayed inode only, which is needed in
4468 * order for the log replay code to mark inodes for link count
4469 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4471 if (S_ISDIR(inode->i_mode) ||
4472 BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
4473 ret = btrfs_commit_inode_delayed_items(trans, inode);
4474 else
4475 ret = btrfs_commit_inode_delayed_inode(inode);
4477 if (ret) {
4478 btrfs_free_path(path);
4479 btrfs_free_path(dst_path);
4480 return ret;
4483 mutex_lock(&BTRFS_I(inode)->log_mutex);
4485 btrfs_get_logged_extents(inode, &logged_list, start, end);
4488 * a brute force approach to making sure we get the most uptodate
4489 * copies of everything.
4491 if (S_ISDIR(inode->i_mode)) {
4492 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4494 if (inode_only == LOG_INODE_EXISTS)
4495 max_key_type = BTRFS_XATTR_ITEM_KEY;
4496 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4497 } else {
4498 if (inode_only == LOG_INODE_EXISTS) {
4500 * Make sure the new inode item we write to the log has
4501 * the same isize as the current one (if it exists).
4502 * This is necessary to prevent data loss after log
4503 * replay, and also to prevent doing a wrong expanding
4504 * truncate - for e.g. create file, write 4K into offset
4505 * 0, fsync, write 4K into offset 4096, add hard link,
4506 * fsync some other file (to sync log), power fail - if
4507 * we use the inode's current i_size, after log replay
4508 * we get a 8Kb file, with the last 4Kb extent as a hole
4509 * (zeroes), as if an expanding truncate happened,
4510 * instead of getting a file of 4Kb only.
4512 err = logged_inode_size(log, inode, path,
4513 &logged_isize);
4514 if (err)
4515 goto out_unlock;
4517 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4518 &BTRFS_I(inode)->runtime_flags)) {
4519 if (inode_only == LOG_INODE_EXISTS) {
4520 max_key.type = BTRFS_XATTR_ITEM_KEY;
4521 ret = drop_objectid_items(trans, log, path, ino,
4522 max_key.type);
4523 } else {
4524 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4525 &BTRFS_I(inode)->runtime_flags);
4526 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4527 &BTRFS_I(inode)->runtime_flags);
4528 while(1) {
4529 ret = btrfs_truncate_inode_items(trans,
4530 log, inode, 0, 0);
4531 if (ret != -EAGAIN)
4532 break;
4535 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4536 &BTRFS_I(inode)->runtime_flags) ||
4537 inode_only == LOG_INODE_EXISTS) {
4538 if (inode_only == LOG_INODE_ALL)
4539 fast_search = true;
4540 max_key.type = BTRFS_XATTR_ITEM_KEY;
4541 ret = drop_objectid_items(trans, log, path, ino,
4542 max_key.type);
4543 } else {
4544 if (inode_only == LOG_INODE_ALL)
4545 fast_search = true;
4546 goto log_extents;
4550 if (ret) {
4551 err = ret;
4552 goto out_unlock;
4555 while (1) {
4556 ins_nr = 0;
4557 ret = btrfs_search_forward(root, &min_key,
4558 path, trans->transid);
4559 if (ret != 0)
4560 break;
4561 again:
4562 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4563 if (min_key.objectid != ino)
4564 break;
4565 if (min_key.type > max_key.type)
4566 break;
4568 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4569 need_log_inode_item = false;
4571 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
4572 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
4573 if (ins_nr == 0)
4574 goto next_slot;
4575 ret = copy_items(trans, inode, dst_path, path,
4576 &last_extent, ins_start_slot,
4577 ins_nr, inode_only, logged_isize);
4578 if (ret < 0) {
4579 err = ret;
4580 goto out_unlock;
4582 ins_nr = 0;
4583 if (ret) {
4584 btrfs_release_path(path);
4585 continue;
4587 goto next_slot;
4590 src = path->nodes[0];
4591 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
4592 ins_nr++;
4593 goto next_slot;
4594 } else if (!ins_nr) {
4595 ins_start_slot = path->slots[0];
4596 ins_nr = 1;
4597 goto next_slot;
4600 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4601 ins_start_slot, ins_nr, inode_only,
4602 logged_isize);
4603 if (ret < 0) {
4604 err = ret;
4605 goto out_unlock;
4607 if (ret) {
4608 ins_nr = 0;
4609 btrfs_release_path(path);
4610 continue;
4612 ins_nr = 1;
4613 ins_start_slot = path->slots[0];
4614 next_slot:
4616 nritems = btrfs_header_nritems(path->nodes[0]);
4617 path->slots[0]++;
4618 if (path->slots[0] < nritems) {
4619 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
4620 path->slots[0]);
4621 goto again;
4623 if (ins_nr) {
4624 ret = copy_items(trans, inode, dst_path, path,
4625 &last_extent, ins_start_slot,
4626 ins_nr, inode_only, logged_isize);
4627 if (ret < 0) {
4628 err = ret;
4629 goto out_unlock;
4631 ret = 0;
4632 ins_nr = 0;
4634 btrfs_release_path(path);
4636 if (min_key.offset < (u64)-1) {
4637 min_key.offset++;
4638 } else if (min_key.type < max_key.type) {
4639 min_key.type++;
4640 min_key.offset = 0;
4641 } else {
4642 break;
4645 if (ins_nr) {
4646 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4647 ins_start_slot, ins_nr, inode_only,
4648 logged_isize);
4649 if (ret < 0) {
4650 err = ret;
4651 goto out_unlock;
4653 ret = 0;
4654 ins_nr = 0;
4657 btrfs_release_path(path);
4658 btrfs_release_path(dst_path);
4659 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
4660 if (err)
4661 goto out_unlock;
4662 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
4663 btrfs_release_path(path);
4664 btrfs_release_path(dst_path);
4665 err = btrfs_log_trailing_hole(trans, root, inode, path);
4666 if (err)
4667 goto out_unlock;
4669 log_extents:
4670 btrfs_release_path(path);
4671 btrfs_release_path(dst_path);
4672 if (need_log_inode_item) {
4673 err = log_inode_item(trans, log, dst_path, inode);
4674 if (err)
4675 goto out_unlock;
4677 if (fast_search) {
4679 * Some ordered extents started by fsync might have completed
4680 * before we collected the ordered extents in logged_list, which
4681 * means they're gone, not in our logged_list nor in the inode's
4682 * ordered tree. We want the application/user space to know an
4683 * error happened while attempting to persist file data so that
4684 * it can take proper action. If such error happened, we leave
4685 * without writing to the log tree and the fsync must report the
4686 * file data write error and not commit the current transaction.
4688 err = btrfs_inode_check_errors(inode);
4689 if (err) {
4690 ctx->io_err = err;
4691 goto out_unlock;
4693 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
4694 &logged_list, ctx);
4695 if (ret) {
4696 err = ret;
4697 goto out_unlock;
4699 } else if (inode_only == LOG_INODE_ALL) {
4700 struct extent_map *em, *n;
4702 write_lock(&em_tree->lock);
4704 * We can't just remove every em if we're called for a ranged
4705 * fsync - that is, one that doesn't cover the whole possible
4706 * file range (0 to LLONG_MAX). This is because we can have
4707 * em's that fall outside the range we're logging and therefore
4708 * their ordered operations haven't completed yet
4709 * (btrfs_finish_ordered_io() not invoked yet). This means we
4710 * didn't get their respective file extent item in the fs/subvol
4711 * tree yet, and need to let the next fast fsync (one which
4712 * consults the list of modified extent maps) find the em so
4713 * that it logs a matching file extent item and waits for the
4714 * respective ordered operation to complete (if it's still
4715 * running).
4717 * Removing every em outside the range we're logging would make
4718 * the next fast fsync not log their matching file extent items,
4719 * therefore making us lose data after a log replay.
4721 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
4722 list) {
4723 const u64 mod_end = em->mod_start + em->mod_len - 1;
4725 if (em->mod_start >= start && mod_end <= end)
4726 list_del_init(&em->list);
4728 write_unlock(&em_tree->lock);
4731 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
4732 ret = log_directory_changes(trans, root, inode, path, dst_path,
4733 ctx);
4734 if (ret) {
4735 err = ret;
4736 goto out_unlock;
4740 spin_lock(&BTRFS_I(inode)->lock);
4741 BTRFS_I(inode)->logged_trans = trans->transid;
4742 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
4743 spin_unlock(&BTRFS_I(inode)->lock);
4744 out_unlock:
4745 if (unlikely(err))
4746 btrfs_put_logged_extents(&logged_list);
4747 else
4748 btrfs_submit_logged_extents(&logged_list, log);
4749 mutex_unlock(&BTRFS_I(inode)->log_mutex);
4751 btrfs_free_path(path);
4752 btrfs_free_path(dst_path);
4753 return err;
4757 * follow the dentry parent pointers up the chain and see if any
4758 * of the directories in it require a full commit before they can
4759 * be logged. Returns zero if nothing special needs to be done or 1 if
4760 * a full commit is required.
4762 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
4763 struct inode *inode,
4764 struct dentry *parent,
4765 struct super_block *sb,
4766 u64 last_committed)
4768 int ret = 0;
4769 struct btrfs_root *root;
4770 struct dentry *old_parent = NULL;
4771 struct inode *orig_inode = inode;
4774 * for regular files, if its inode is already on disk, we don't
4775 * have to worry about the parents at all. This is because
4776 * we can use the last_unlink_trans field to record renames
4777 * and other fun in this file.
4779 if (S_ISREG(inode->i_mode) &&
4780 BTRFS_I(inode)->generation <= last_committed &&
4781 BTRFS_I(inode)->last_unlink_trans <= last_committed)
4782 goto out;
4784 if (!S_ISDIR(inode->i_mode)) {
4785 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4786 goto out;
4787 inode = d_inode(parent);
4790 while (1) {
4792 * If we are logging a directory then we start with our inode,
4793 * not our parents inode, so we need to skipp setting the
4794 * logged_trans so that further down in the log code we don't
4795 * think this inode has already been logged.
4797 if (inode != orig_inode)
4798 BTRFS_I(inode)->logged_trans = trans->transid;
4799 smp_mb();
4801 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
4802 root = BTRFS_I(inode)->root;
4805 * make sure any commits to the log are forced
4806 * to be full commits
4808 btrfs_set_log_full_commit(root->fs_info, trans);
4809 ret = 1;
4810 break;
4813 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
4814 break;
4816 if (IS_ROOT(parent))
4817 break;
4819 parent = dget_parent(parent);
4820 dput(old_parent);
4821 old_parent = parent;
4822 inode = d_inode(parent);
4825 dput(old_parent);
4826 out:
4827 return ret;
4830 struct btrfs_dir_list {
4831 u64 ino;
4832 struct list_head list;
4836 * Log the inodes of the new dentries of a directory. See log_dir_items() for
4837 * details about the why it is needed.
4838 * This is a recursive operation - if an existing dentry corresponds to a
4839 * directory, that directory's new entries are logged too (same behaviour as
4840 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
4841 * the dentries point to we do not lock their i_mutex, otherwise lockdep
4842 * complains about the following circular lock dependency / possible deadlock:
4844 * CPU0 CPU1
4845 * ---- ----
4846 * lock(&type->i_mutex_dir_key#3/2);
4847 * lock(sb_internal#2);
4848 * lock(&type->i_mutex_dir_key#3/2);
4849 * lock(&sb->s_type->i_mutex_key#14);
4851 * Where sb_internal is the lock (a counter that works as a lock) acquired by
4852 * sb_start_intwrite() in btrfs_start_transaction().
4853 * Not locking i_mutex of the inodes is still safe because:
4855 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
4856 * that while logging the inode new references (names) are added or removed
4857 * from the inode, leaving the logged inode item with a link count that does
4858 * not match the number of logged inode reference items. This is fine because
4859 * at log replay time we compute the real number of links and correct the
4860 * link count in the inode item (see replay_one_buffer() and
4861 * link_to_fixup_dir());
4863 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
4864 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
4865 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
4866 * has a size that doesn't match the sum of the lengths of all the logged
4867 * names. This does not result in a problem because if a dir_item key is
4868 * logged but its matching dir_index key is not logged, at log replay time we
4869 * don't use it to replay the respective name (see replay_one_name()). On the
4870 * other hand if only the dir_index key ends up being logged, the respective
4871 * name is added to the fs/subvol tree with both the dir_item and dir_index
4872 * keys created (see replay_one_name()).
4873 * The directory's inode item with a wrong i_size is not a problem as well,
4874 * since we don't use it at log replay time to set the i_size in the inode
4875 * item of the fs/subvol tree (see overwrite_item()).
4877 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
4878 struct btrfs_root *root,
4879 struct inode *start_inode,
4880 struct btrfs_log_ctx *ctx)
4882 struct btrfs_root *log = root->log_root;
4883 struct btrfs_path *path;
4884 LIST_HEAD(dir_list);
4885 struct btrfs_dir_list *dir_elem;
4886 int ret = 0;
4888 path = btrfs_alloc_path();
4889 if (!path)
4890 return -ENOMEM;
4892 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
4893 if (!dir_elem) {
4894 btrfs_free_path(path);
4895 return -ENOMEM;
4897 dir_elem->ino = btrfs_ino(start_inode);
4898 list_add_tail(&dir_elem->list, &dir_list);
4900 while (!list_empty(&dir_list)) {
4901 struct extent_buffer *leaf;
4902 struct btrfs_key min_key;
4903 int nritems;
4904 int i;
4906 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
4907 list);
4908 if (ret)
4909 goto next_dir_inode;
4911 min_key.objectid = dir_elem->ino;
4912 min_key.type = BTRFS_DIR_ITEM_KEY;
4913 min_key.offset = 0;
4914 again:
4915 btrfs_release_path(path);
4916 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
4917 if (ret < 0) {
4918 goto next_dir_inode;
4919 } else if (ret > 0) {
4920 ret = 0;
4921 goto next_dir_inode;
4924 process_leaf:
4925 leaf = path->nodes[0];
4926 nritems = btrfs_header_nritems(leaf);
4927 for (i = path->slots[0]; i < nritems; i++) {
4928 struct btrfs_dir_item *di;
4929 struct btrfs_key di_key;
4930 struct inode *di_inode;
4931 struct btrfs_dir_list *new_dir_elem;
4932 int log_mode = LOG_INODE_EXISTS;
4933 int type;
4935 btrfs_item_key_to_cpu(leaf, &min_key, i);
4936 if (min_key.objectid != dir_elem->ino ||
4937 min_key.type != BTRFS_DIR_ITEM_KEY)
4938 goto next_dir_inode;
4940 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
4941 type = btrfs_dir_type(leaf, di);
4942 if (btrfs_dir_transid(leaf, di) < trans->transid &&
4943 type != BTRFS_FT_DIR)
4944 continue;
4945 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
4946 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
4947 continue;
4949 di_inode = btrfs_iget(root->fs_info->sb, &di_key,
4950 root, NULL);
4951 if (IS_ERR(di_inode)) {
4952 ret = PTR_ERR(di_inode);
4953 goto next_dir_inode;
4956 if (btrfs_inode_in_log(di_inode, trans->transid)) {
4957 iput(di_inode);
4958 continue;
4961 ctx->log_new_dentries = false;
4962 if (type == BTRFS_FT_DIR)
4963 log_mode = LOG_INODE_ALL;
4964 btrfs_release_path(path);
4965 ret = btrfs_log_inode(trans, root, di_inode,
4966 log_mode, 0, LLONG_MAX, ctx);
4967 iput(di_inode);
4968 if (ret)
4969 goto next_dir_inode;
4970 if (ctx->log_new_dentries) {
4971 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
4972 GFP_NOFS);
4973 if (!new_dir_elem) {
4974 ret = -ENOMEM;
4975 goto next_dir_inode;
4977 new_dir_elem->ino = di_key.objectid;
4978 list_add_tail(&new_dir_elem->list, &dir_list);
4980 break;
4982 if (i == nritems) {
4983 ret = btrfs_next_leaf(log, path);
4984 if (ret < 0) {
4985 goto next_dir_inode;
4986 } else if (ret > 0) {
4987 ret = 0;
4988 goto next_dir_inode;
4990 goto process_leaf;
4992 if (min_key.offset < (u64)-1) {
4993 min_key.offset++;
4994 goto again;
4996 next_dir_inode:
4997 list_del(&dir_elem->list);
4998 kfree(dir_elem);
5001 btrfs_free_path(path);
5002 return ret;
5005 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5006 struct inode *inode,
5007 struct btrfs_log_ctx *ctx)
5009 int ret;
5010 struct btrfs_path *path;
5011 struct btrfs_key key;
5012 struct btrfs_root *root = BTRFS_I(inode)->root;
5013 const u64 ino = btrfs_ino(inode);
5015 path = btrfs_alloc_path();
5016 if (!path)
5017 return -ENOMEM;
5018 path->skip_locking = 1;
5019 path->search_commit_root = 1;
5021 key.objectid = ino;
5022 key.type = BTRFS_INODE_REF_KEY;
5023 key.offset = 0;
5024 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5025 if (ret < 0)
5026 goto out;
5028 while (true) {
5029 struct extent_buffer *leaf = path->nodes[0];
5030 int slot = path->slots[0];
5031 u32 cur_offset = 0;
5032 u32 item_size;
5033 unsigned long ptr;
5035 if (slot >= btrfs_header_nritems(leaf)) {
5036 ret = btrfs_next_leaf(root, path);
5037 if (ret < 0)
5038 goto out;
5039 else if (ret > 0)
5040 break;
5041 continue;
5044 btrfs_item_key_to_cpu(leaf, &key, slot);
5045 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5046 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5047 break;
5049 item_size = btrfs_item_size_nr(leaf, slot);
5050 ptr = btrfs_item_ptr_offset(leaf, slot);
5051 while (cur_offset < item_size) {
5052 struct btrfs_key inode_key;
5053 struct inode *dir_inode;
5055 inode_key.type = BTRFS_INODE_ITEM_KEY;
5056 inode_key.offset = 0;
5058 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5059 struct btrfs_inode_extref *extref;
5061 extref = (struct btrfs_inode_extref *)
5062 (ptr + cur_offset);
5063 inode_key.objectid = btrfs_inode_extref_parent(
5064 leaf, extref);
5065 cur_offset += sizeof(*extref);
5066 cur_offset += btrfs_inode_extref_name_len(leaf,
5067 extref);
5068 } else {
5069 inode_key.objectid = key.offset;
5070 cur_offset = item_size;
5073 dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
5074 root, NULL);
5075 /* If parent inode was deleted, skip it. */
5076 if (IS_ERR(dir_inode))
5077 continue;
5079 ret = btrfs_log_inode(trans, root, dir_inode,
5080 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5081 iput(dir_inode);
5082 if (ret)
5083 goto out;
5085 path->slots[0]++;
5087 ret = 0;
5088 out:
5089 btrfs_free_path(path);
5090 return ret;
5094 * helper function around btrfs_log_inode to make sure newly created
5095 * parent directories also end up in the log. A minimal inode and backref
5096 * only logging is done of any parent directories that are older than
5097 * the last committed transaction
5099 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5100 struct btrfs_root *root, struct inode *inode,
5101 struct dentry *parent,
5102 const loff_t start,
5103 const loff_t end,
5104 int exists_only,
5105 struct btrfs_log_ctx *ctx)
5107 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
5108 struct super_block *sb;
5109 struct dentry *old_parent = NULL;
5110 int ret = 0;
5111 u64 last_committed = root->fs_info->last_trans_committed;
5112 bool log_dentries = false;
5113 struct inode *orig_inode = inode;
5115 sb = inode->i_sb;
5117 if (btrfs_test_opt(root, NOTREELOG)) {
5118 ret = 1;
5119 goto end_no_trans;
5123 * The prev transaction commit doesn't complete, we need do
5124 * full commit by ourselves.
5126 if (root->fs_info->last_trans_log_full_commit >
5127 root->fs_info->last_trans_committed) {
5128 ret = 1;
5129 goto end_no_trans;
5132 if (root != BTRFS_I(inode)->root ||
5133 btrfs_root_refs(&root->root_item) == 0) {
5134 ret = 1;
5135 goto end_no_trans;
5138 ret = check_parent_dirs_for_sync(trans, inode, parent,
5139 sb, last_committed);
5140 if (ret)
5141 goto end_no_trans;
5143 if (btrfs_inode_in_log(inode, trans->transid)) {
5144 ret = BTRFS_NO_LOG_SYNC;
5145 goto end_no_trans;
5148 ret = start_log_trans(trans, root, ctx);
5149 if (ret)
5150 goto end_no_trans;
5152 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5153 if (ret)
5154 goto end_trans;
5157 * for regular files, if its inode is already on disk, we don't
5158 * have to worry about the parents at all. This is because
5159 * we can use the last_unlink_trans field to record renames
5160 * and other fun in this file.
5162 if (S_ISREG(inode->i_mode) &&
5163 BTRFS_I(inode)->generation <= last_committed &&
5164 BTRFS_I(inode)->last_unlink_trans <= last_committed) {
5165 ret = 0;
5166 goto end_trans;
5169 if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
5170 log_dentries = true;
5173 * On unlink we must make sure all our current and old parent directores
5174 * inodes are fully logged. This is to prevent leaving dangling
5175 * directory index entries in directories that were our parents but are
5176 * not anymore. Not doing this results in old parent directory being
5177 * impossible to delete after log replay (rmdir will always fail with
5178 * error -ENOTEMPTY).
5180 * Example 1:
5182 * mkdir testdir
5183 * touch testdir/foo
5184 * ln testdir/foo testdir/bar
5185 * sync
5186 * unlink testdir/bar
5187 * xfs_io -c fsync testdir/foo
5188 * <power failure>
5189 * mount fs, triggers log replay
5191 * If we don't log the parent directory (testdir), after log replay the
5192 * directory still has an entry pointing to the file inode using the bar
5193 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5194 * the file inode has a link count of 1.
5196 * Example 2:
5198 * mkdir testdir
5199 * touch foo
5200 * ln foo testdir/foo2
5201 * ln foo testdir/foo3
5202 * sync
5203 * unlink testdir/foo3
5204 * xfs_io -c fsync foo
5205 * <power failure>
5206 * mount fs, triggers log replay
5208 * Similar as the first example, after log replay the parent directory
5209 * testdir still has an entry pointing to the inode file with name foo3
5210 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5211 * and has a link count of 2.
5213 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
5214 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5215 if (ret)
5216 goto end_trans;
5219 while (1) {
5220 if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
5221 break;
5223 inode = d_inode(parent);
5224 if (root != BTRFS_I(inode)->root)
5225 break;
5227 if (BTRFS_I(inode)->generation > last_committed) {
5228 ret = btrfs_log_inode(trans, root, inode,
5229 LOG_INODE_EXISTS,
5230 0, LLONG_MAX, ctx);
5231 if (ret)
5232 goto end_trans;
5234 if (IS_ROOT(parent))
5235 break;
5237 parent = dget_parent(parent);
5238 dput(old_parent);
5239 old_parent = parent;
5241 if (log_dentries)
5242 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5243 else
5244 ret = 0;
5245 end_trans:
5246 dput(old_parent);
5247 if (ret < 0) {
5248 btrfs_set_log_full_commit(root->fs_info, trans);
5249 ret = 1;
5252 if (ret)
5253 btrfs_remove_log_ctx(root, ctx);
5254 btrfs_end_log_trans(root);
5255 end_no_trans:
5256 return ret;
5260 * it is not safe to log dentry if the chunk root has added new
5261 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5262 * If this returns 1, you must commit the transaction to safely get your
5263 * data on disk.
5265 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5266 struct btrfs_root *root, struct dentry *dentry,
5267 const loff_t start,
5268 const loff_t end,
5269 struct btrfs_log_ctx *ctx)
5271 struct dentry *parent = dget_parent(dentry);
5272 int ret;
5274 ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
5275 start, end, 0, ctx);
5276 dput(parent);
5278 return ret;
5282 * should be called during mount to recover any replay any log trees
5283 * from the FS
5285 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5287 int ret;
5288 struct btrfs_path *path;
5289 struct btrfs_trans_handle *trans;
5290 struct btrfs_key key;
5291 struct btrfs_key found_key;
5292 struct btrfs_key tmp_key;
5293 struct btrfs_root *log;
5294 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5295 struct walk_control wc = {
5296 .process_func = process_one_buffer,
5297 .stage = 0,
5300 path = btrfs_alloc_path();
5301 if (!path)
5302 return -ENOMEM;
5304 fs_info->log_root_recovering = 1;
5306 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5307 if (IS_ERR(trans)) {
5308 ret = PTR_ERR(trans);
5309 goto error;
5312 wc.trans = trans;
5313 wc.pin = 1;
5315 ret = walk_log_tree(trans, log_root_tree, &wc);
5316 if (ret) {
5317 btrfs_error(fs_info, ret, "Failed to pin buffers while "
5318 "recovering log root tree.");
5319 goto error;
5322 again:
5323 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5324 key.offset = (u64)-1;
5325 key.type = BTRFS_ROOT_ITEM_KEY;
5327 while (1) {
5328 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5330 if (ret < 0) {
5331 btrfs_error(fs_info, ret,
5332 "Couldn't find tree log root.");
5333 goto error;
5335 if (ret > 0) {
5336 if (path->slots[0] == 0)
5337 break;
5338 path->slots[0]--;
5340 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5341 path->slots[0]);
5342 btrfs_release_path(path);
5343 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5344 break;
5346 log = btrfs_read_fs_root(log_root_tree, &found_key);
5347 if (IS_ERR(log)) {
5348 ret = PTR_ERR(log);
5349 btrfs_error(fs_info, ret,
5350 "Couldn't read tree log root.");
5351 goto error;
5354 tmp_key.objectid = found_key.offset;
5355 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5356 tmp_key.offset = (u64)-1;
5358 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5359 if (IS_ERR(wc.replay_dest)) {
5360 ret = PTR_ERR(wc.replay_dest);
5361 free_extent_buffer(log->node);
5362 free_extent_buffer(log->commit_root);
5363 kfree(log);
5364 btrfs_error(fs_info, ret, "Couldn't read target root "
5365 "for tree log recovery.");
5366 goto error;
5369 wc.replay_dest->log_root = log;
5370 btrfs_record_root_in_trans(trans, wc.replay_dest);
5371 ret = walk_log_tree(trans, log, &wc);
5373 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5374 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5375 path);
5378 key.offset = found_key.offset - 1;
5379 wc.replay_dest->log_root = NULL;
5380 free_extent_buffer(log->node);
5381 free_extent_buffer(log->commit_root);
5382 kfree(log);
5384 if (ret)
5385 goto error;
5387 if (found_key.offset == 0)
5388 break;
5390 btrfs_release_path(path);
5392 /* step one is to pin it all, step two is to replay just inodes */
5393 if (wc.pin) {
5394 wc.pin = 0;
5395 wc.process_func = replay_one_buffer;
5396 wc.stage = LOG_WALK_REPLAY_INODES;
5397 goto again;
5399 /* step three is to replay everything */
5400 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5401 wc.stage++;
5402 goto again;
5405 btrfs_free_path(path);
5407 /* step 4: commit the transaction, which also unpins the blocks */
5408 ret = btrfs_commit_transaction(trans, fs_info->tree_root);
5409 if (ret)
5410 return ret;
5412 free_extent_buffer(log_root_tree->node);
5413 log_root_tree->log_root = NULL;
5414 fs_info->log_root_recovering = 0;
5415 kfree(log_root_tree);
5417 return 0;
5418 error:
5419 if (wc.trans)
5420 btrfs_end_transaction(wc.trans, fs_info->tree_root);
5421 btrfs_free_path(path);
5422 return ret;
5426 * there are some corner cases where we want to force a full
5427 * commit instead of allowing a directory to be logged.
5429 * They revolve around files there were unlinked from the directory, and
5430 * this function updates the parent directory so that a full commit is
5431 * properly done if it is fsync'd later after the unlinks are done.
5433 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
5434 struct inode *dir, struct inode *inode,
5435 int for_rename)
5438 * when we're logging a file, if it hasn't been renamed
5439 * or unlinked, and its inode is fully committed on disk,
5440 * we don't have to worry about walking up the directory chain
5441 * to log its parents.
5443 * So, we use the last_unlink_trans field to put this transid
5444 * into the file. When the file is logged we check it and
5445 * don't log the parents if the file is fully on disk.
5447 if (S_ISREG(inode->i_mode))
5448 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5451 * if this directory was already logged any new
5452 * names for this file/dir will get recorded
5454 smp_mb();
5455 if (BTRFS_I(dir)->logged_trans == trans->transid)
5456 return;
5459 * if the inode we're about to unlink was logged,
5460 * the log will be properly updated for any new names
5462 if (BTRFS_I(inode)->logged_trans == trans->transid)
5463 return;
5466 * when renaming files across directories, if the directory
5467 * there we're unlinking from gets fsync'd later on, there's
5468 * no way to find the destination directory later and fsync it
5469 * properly. So, we have to be conservative and force commits
5470 * so the new name gets discovered.
5472 if (for_rename)
5473 goto record;
5475 /* we can safely do the unlink without any special recording */
5476 return;
5478 record:
5479 BTRFS_I(dir)->last_unlink_trans = trans->transid;
5483 * Call this after adding a new name for a file and it will properly
5484 * update the log to reflect the new name.
5486 * It will return zero if all goes well, and it will return 1 if a
5487 * full transaction commit is required.
5489 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
5490 struct inode *inode, struct inode *old_dir,
5491 struct dentry *parent)
5493 struct btrfs_root * root = BTRFS_I(inode)->root;
5496 * this will force the logging code to walk the dentry chain
5497 * up for the file
5499 if (S_ISREG(inode->i_mode))
5500 BTRFS_I(inode)->last_unlink_trans = trans->transid;
5503 * if this inode hasn't been logged and directory we're renaming it
5504 * from hasn't been logged, we don't need to log it
5506 if (BTRFS_I(inode)->logged_trans <=
5507 root->fs_info->last_trans_committed &&
5508 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
5509 root->fs_info->last_trans_committed))
5510 return 0;
5512 return btrfs_log_inode_parent(trans, root, inode, parent, 0,
5513 LLONG_MAX, 1, NULL);