sparc32: use the common implementation of alloc_thread_info_node()
[linux-2.6/btrfs-unstable.git] / arch / sparc / mm / srmmu.c
blob256db6b22c54ed7cf2cc26412d5013930896703b
1 /*
2 * srmmu.c: SRMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
11 #include <linux/kernel.h>
12 #include <linux/mm.h>
13 #include <linux/vmalloc.h>
14 #include <linux/pagemap.h>
15 #include <linux/init.h>
16 #include <linux/spinlock.h>
17 #include <linux/bootmem.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kdebug.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
24 #include <asm/bitext.h>
25 #include <asm/page.h>
26 #include <asm/pgalloc.h>
27 #include <asm/pgtable.h>
28 #include <asm/io.h>
29 #include <asm/vaddrs.h>
30 #include <asm/traps.h>
31 #include <asm/smp.h>
32 #include <asm/mbus.h>
33 #include <asm/cache.h>
34 #include <asm/oplib.h>
35 #include <asm/asi.h>
36 #include <asm/msi.h>
37 #include <asm/mmu_context.h>
38 #include <asm/io-unit.h>
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
42 /* Now the cpu specific definitions. */
43 #include <asm/viking.h>
44 #include <asm/mxcc.h>
45 #include <asm/ross.h>
46 #include <asm/tsunami.h>
47 #include <asm/swift.h>
48 #include <asm/turbosparc.h>
49 #include <asm/leon.h>
51 #include "srmmu.h"
53 enum mbus_module srmmu_modtype;
54 static unsigned int hwbug_bitmask;
55 int vac_cache_size;
56 int vac_line_size;
58 struct ctx_list *ctx_list_pool;
59 struct ctx_list ctx_free;
60 struct ctx_list ctx_used;
62 extern struct resource sparc_iomap;
64 extern unsigned long last_valid_pfn;
66 static pgd_t *srmmu_swapper_pg_dir;
68 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
70 #ifdef CONFIG_SMP
71 const struct sparc32_cachetlb_ops *local_ops;
73 #define FLUSH_BEGIN(mm)
74 #define FLUSH_END
75 #else
76 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
77 #define FLUSH_END }
78 #endif
80 int flush_page_for_dma_global = 1;
82 char *srmmu_name;
84 ctxd_t *srmmu_ctx_table_phys;
85 static ctxd_t *srmmu_context_table;
87 int viking_mxcc_present;
88 static DEFINE_SPINLOCK(srmmu_context_spinlock);
90 static int is_hypersparc;
92 static int srmmu_cache_pagetables;
94 /* these will be initialized in srmmu_nocache_calcsize() */
95 static unsigned long srmmu_nocache_size;
96 static unsigned long srmmu_nocache_end;
98 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
99 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
101 /* The context table is a nocache user with the biggest alignment needs. */
102 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
104 void *srmmu_nocache_pool;
105 void *srmmu_nocache_bitmap;
106 static struct bit_map srmmu_nocache_map;
108 static inline int srmmu_pmd_none(pmd_t pmd)
109 { return !(pmd_val(pmd) & 0xFFFFFFF); }
111 /* XXX should we hyper_flush_whole_icache here - Anton */
112 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
113 { set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
115 void pmd_set(pmd_t *pmdp, pte_t *ptep)
117 unsigned long ptp; /* Physical address, shifted right by 4 */
118 int i;
120 ptp = __nocache_pa((unsigned long) ptep) >> 4;
121 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
122 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
123 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
127 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
129 unsigned long ptp; /* Physical address, shifted right by 4 */
130 int i;
132 ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4); /* watch for overflow */
133 for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
134 set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
135 ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
139 /* Find an entry in the third-level page table.. */
140 pte_t *pte_offset_kernel(pmd_t * dir, unsigned long address)
142 void *pte;
144 pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
145 return (pte_t *) pte +
146 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
150 * size: bytes to allocate in the nocache area.
151 * align: bytes, number to align at.
152 * Returns the virtual address of the allocated area.
154 static unsigned long __srmmu_get_nocache(int size, int align)
156 int offset;
158 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
159 printk("Size 0x%x too small for nocache request\n", size);
160 size = SRMMU_NOCACHE_BITMAP_SHIFT;
162 if (size & (SRMMU_NOCACHE_BITMAP_SHIFT-1)) {
163 printk("Size 0x%x unaligned int nocache request\n", size);
164 size += SRMMU_NOCACHE_BITMAP_SHIFT-1;
166 BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
168 offset = bit_map_string_get(&srmmu_nocache_map,
169 size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170 align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171 if (offset == -1) {
172 printk("srmmu: out of nocache %d: %d/%d\n",
173 size, (int) srmmu_nocache_size,
174 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175 return 0;
178 return (SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT));
181 unsigned long srmmu_get_nocache(int size, int align)
183 unsigned long tmp;
185 tmp = __srmmu_get_nocache(size, align);
187 if (tmp)
188 memset((void *)tmp, 0, size);
190 return tmp;
193 void srmmu_free_nocache(unsigned long vaddr, int size)
195 int offset;
197 if (vaddr < SRMMU_NOCACHE_VADDR) {
198 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
199 vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
200 BUG();
202 if (vaddr+size > srmmu_nocache_end) {
203 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
204 vaddr, srmmu_nocache_end);
205 BUG();
207 if (!is_power_of_2(size)) {
208 printk("Size 0x%x is not a power of 2\n", size);
209 BUG();
211 if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
212 printk("Size 0x%x is too small\n", size);
213 BUG();
215 if (vaddr & (size-1)) {
216 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
217 BUG();
220 offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
221 size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
223 bit_map_clear(&srmmu_nocache_map, offset, size);
226 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
227 unsigned long end);
229 extern unsigned long probe_memory(void); /* in fault.c */
232 * Reserve nocache dynamically proportionally to the amount of
233 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
235 static void srmmu_nocache_calcsize(void)
237 unsigned long sysmemavail = probe_memory() / 1024;
238 int srmmu_nocache_npages;
240 srmmu_nocache_npages =
241 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
243 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
244 // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
245 if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
246 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
248 /* anything above 1280 blows up */
249 if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
250 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
252 srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
253 srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
256 static void __init srmmu_nocache_init(void)
258 unsigned int bitmap_bits;
259 pgd_t *pgd;
260 pmd_t *pmd;
261 pte_t *pte;
262 unsigned long paddr, vaddr;
263 unsigned long pteval;
265 bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
267 srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
268 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
269 memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
271 srmmu_nocache_bitmap = __alloc_bootmem(bitmap_bits >> 3, SMP_CACHE_BYTES, 0UL);
272 bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
274 srmmu_swapper_pg_dir = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
275 memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
276 init_mm.pgd = srmmu_swapper_pg_dir;
278 srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
280 paddr = __pa((unsigned long)srmmu_nocache_pool);
281 vaddr = SRMMU_NOCACHE_VADDR;
283 while (vaddr < srmmu_nocache_end) {
284 pgd = pgd_offset_k(vaddr);
285 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
286 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
288 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
290 if (srmmu_cache_pagetables)
291 pteval |= SRMMU_CACHE;
293 set_pte(__nocache_fix(pte), __pte(pteval));
295 vaddr += PAGE_SIZE;
296 paddr += PAGE_SIZE;
299 flush_cache_all();
300 flush_tlb_all();
303 pgd_t *get_pgd_fast(void)
305 pgd_t *pgd = NULL;
307 pgd = (pgd_t *)__srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
308 if (pgd) {
309 pgd_t *init = pgd_offset_k(0);
310 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
311 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
312 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
315 return pgd;
319 * Hardware needs alignment to 256 only, but we align to whole page size
320 * to reduce fragmentation problems due to the buddy principle.
321 * XXX Provide actual fragmentation statistics in /proc.
323 * Alignments up to the page size are the same for physical and virtual
324 * addresses of the nocache area.
326 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
328 unsigned long pte;
329 struct page *page;
331 if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
332 return NULL;
333 page = pfn_to_page( __nocache_pa(pte) >> PAGE_SHIFT );
334 pgtable_page_ctor(page);
335 return page;
338 void pte_free(struct mm_struct *mm, pgtable_t pte)
340 unsigned long p;
342 pgtable_page_dtor(pte);
343 p = (unsigned long)page_address(pte); /* Cached address (for test) */
344 if (p == 0)
345 BUG();
346 p = page_to_pfn(pte) << PAGE_SHIFT; /* Physical address */
347 p = (unsigned long) __nocache_va(p); /* Nocached virtual */
348 srmmu_free_nocache(p, PTE_SIZE);
353 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
355 struct ctx_list *ctxp;
357 ctxp = ctx_free.next;
358 if(ctxp != &ctx_free) {
359 remove_from_ctx_list(ctxp);
360 add_to_used_ctxlist(ctxp);
361 mm->context = ctxp->ctx_number;
362 ctxp->ctx_mm = mm;
363 return;
365 ctxp = ctx_used.next;
366 if(ctxp->ctx_mm == old_mm)
367 ctxp = ctxp->next;
368 if(ctxp == &ctx_used)
369 panic("out of mmu contexts");
370 flush_cache_mm(ctxp->ctx_mm);
371 flush_tlb_mm(ctxp->ctx_mm);
372 remove_from_ctx_list(ctxp);
373 add_to_used_ctxlist(ctxp);
374 ctxp->ctx_mm->context = NO_CONTEXT;
375 ctxp->ctx_mm = mm;
376 mm->context = ctxp->ctx_number;
379 static inline void free_context(int context)
381 struct ctx_list *ctx_old;
383 ctx_old = ctx_list_pool + context;
384 remove_from_ctx_list(ctx_old);
385 add_to_free_ctxlist(ctx_old);
389 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
390 struct task_struct *tsk)
392 if(mm->context == NO_CONTEXT) {
393 spin_lock(&srmmu_context_spinlock);
394 alloc_context(old_mm, mm);
395 spin_unlock(&srmmu_context_spinlock);
396 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
399 if (sparc_cpu_model == sparc_leon)
400 leon_switch_mm();
402 if (is_hypersparc)
403 hyper_flush_whole_icache();
405 srmmu_set_context(mm->context);
408 /* Low level IO area allocation on the SRMMU. */
409 static inline void srmmu_mapioaddr(unsigned long physaddr,
410 unsigned long virt_addr, int bus_type)
412 pgd_t *pgdp;
413 pmd_t *pmdp;
414 pte_t *ptep;
415 unsigned long tmp;
417 physaddr &= PAGE_MASK;
418 pgdp = pgd_offset_k(virt_addr);
419 pmdp = pmd_offset(pgdp, virt_addr);
420 ptep = pte_offset_kernel(pmdp, virt_addr);
421 tmp = (physaddr >> 4) | SRMMU_ET_PTE;
424 * I need to test whether this is consistent over all
425 * sun4m's. The bus_type represents the upper 4 bits of
426 * 36-bit physical address on the I/O space lines...
428 tmp |= (bus_type << 28);
429 tmp |= SRMMU_PRIV;
430 __flush_page_to_ram(virt_addr);
431 set_pte(ptep, __pte(tmp));
434 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
435 unsigned long xva, unsigned int len)
437 while (len != 0) {
438 len -= PAGE_SIZE;
439 srmmu_mapioaddr(xpa, xva, bus);
440 xva += PAGE_SIZE;
441 xpa += PAGE_SIZE;
443 flush_tlb_all();
446 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
448 pgd_t *pgdp;
449 pmd_t *pmdp;
450 pte_t *ptep;
452 pgdp = pgd_offset_k(virt_addr);
453 pmdp = pmd_offset(pgdp, virt_addr);
454 ptep = pte_offset_kernel(pmdp, virt_addr);
456 /* No need to flush uncacheable page. */
457 __pte_clear(ptep);
460 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
462 while (len != 0) {
463 len -= PAGE_SIZE;
464 srmmu_unmapioaddr(virt_addr);
465 virt_addr += PAGE_SIZE;
467 flush_tlb_all();
470 /* tsunami.S */
471 extern void tsunami_flush_cache_all(void);
472 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
473 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
474 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
475 extern void tsunami_flush_page_to_ram(unsigned long page);
476 extern void tsunami_flush_page_for_dma(unsigned long page);
477 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
478 extern void tsunami_flush_tlb_all(void);
479 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
480 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
481 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
482 extern void tsunami_setup_blockops(void);
484 /* swift.S */
485 extern void swift_flush_cache_all(void);
486 extern void swift_flush_cache_mm(struct mm_struct *mm);
487 extern void swift_flush_cache_range(struct vm_area_struct *vma,
488 unsigned long start, unsigned long end);
489 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
490 extern void swift_flush_page_to_ram(unsigned long page);
491 extern void swift_flush_page_for_dma(unsigned long page);
492 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
493 extern void swift_flush_tlb_all(void);
494 extern void swift_flush_tlb_mm(struct mm_struct *mm);
495 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
496 unsigned long start, unsigned long end);
497 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
499 #if 0 /* P3: deadwood to debug precise flushes on Swift. */
500 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
502 int cctx, ctx1;
504 page &= PAGE_MASK;
505 if ((ctx1 = vma->vm_mm->context) != -1) {
506 cctx = srmmu_get_context();
507 /* Is context # ever different from current context? P3 */
508 if (cctx != ctx1) {
509 printk("flush ctx %02x curr %02x\n", ctx1, cctx);
510 srmmu_set_context(ctx1);
511 swift_flush_page(page);
512 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
513 "r" (page), "i" (ASI_M_FLUSH_PROBE));
514 srmmu_set_context(cctx);
515 } else {
516 /* Rm. prot. bits from virt. c. */
517 /* swift_flush_cache_all(); */
518 /* swift_flush_cache_page(vma, page); */
519 swift_flush_page(page);
521 __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
522 "r" (page), "i" (ASI_M_FLUSH_PROBE));
523 /* same as above: srmmu_flush_tlb_page() */
527 #endif
530 * The following are all MBUS based SRMMU modules, and therefore could
531 * be found in a multiprocessor configuration. On the whole, these
532 * chips seems to be much more touchy about DVMA and page tables
533 * with respect to cache coherency.
536 /* viking.S */
537 extern void viking_flush_cache_all(void);
538 extern void viking_flush_cache_mm(struct mm_struct *mm);
539 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
540 unsigned long end);
541 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
542 extern void viking_flush_page_to_ram(unsigned long page);
543 extern void viking_flush_page_for_dma(unsigned long page);
544 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
545 extern void viking_flush_page(unsigned long page);
546 extern void viking_mxcc_flush_page(unsigned long page);
547 extern void viking_flush_tlb_all(void);
548 extern void viking_flush_tlb_mm(struct mm_struct *mm);
549 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
550 unsigned long end);
551 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
552 unsigned long page);
553 extern void sun4dsmp_flush_tlb_all(void);
554 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
555 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
556 unsigned long end);
557 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
558 unsigned long page);
560 /* hypersparc.S */
561 extern void hypersparc_flush_cache_all(void);
562 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
563 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
564 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
565 extern void hypersparc_flush_page_to_ram(unsigned long page);
566 extern void hypersparc_flush_page_for_dma(unsigned long page);
567 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
568 extern void hypersparc_flush_tlb_all(void);
569 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
570 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
572 extern void hypersparc_setup_blockops(void);
575 * NOTE: All of this startup code assumes the low 16mb (approx.) of
576 * kernel mappings are done with one single contiguous chunk of
577 * ram. On small ram machines (classics mainly) we only get
578 * around 8mb mapped for us.
581 static void __init early_pgtable_allocfail(char *type)
583 prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
584 prom_halt();
587 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
588 unsigned long end)
590 pgd_t *pgdp;
591 pmd_t *pmdp;
592 pte_t *ptep;
594 while(start < end) {
595 pgdp = pgd_offset_k(start);
596 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
597 pmdp = (pmd_t *) __srmmu_get_nocache(
598 SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
599 if (pmdp == NULL)
600 early_pgtable_allocfail("pmd");
601 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
602 pgd_set(__nocache_fix(pgdp), pmdp);
604 pmdp = pmd_offset(__nocache_fix(pgdp), start);
605 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
606 ptep = (pte_t *)__srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
607 if (ptep == NULL)
608 early_pgtable_allocfail("pte");
609 memset(__nocache_fix(ptep), 0, PTE_SIZE);
610 pmd_set(__nocache_fix(pmdp), ptep);
612 if (start > (0xffffffffUL - PMD_SIZE))
613 break;
614 start = (start + PMD_SIZE) & PMD_MASK;
618 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
619 unsigned long end)
621 pgd_t *pgdp;
622 pmd_t *pmdp;
623 pte_t *ptep;
625 while(start < end) {
626 pgdp = pgd_offset_k(start);
627 if (pgd_none(*pgdp)) {
628 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
629 if (pmdp == NULL)
630 early_pgtable_allocfail("pmd");
631 memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
632 pgd_set(pgdp, pmdp);
634 pmdp = pmd_offset(pgdp, start);
635 if(srmmu_pmd_none(*pmdp)) {
636 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
637 PTE_SIZE);
638 if (ptep == NULL)
639 early_pgtable_allocfail("pte");
640 memset(ptep, 0, PTE_SIZE);
641 pmd_set(pmdp, ptep);
643 if (start > (0xffffffffUL - PMD_SIZE))
644 break;
645 start = (start + PMD_SIZE) & PMD_MASK;
650 * This is much cleaner than poking around physical address space
651 * looking at the prom's page table directly which is what most
652 * other OS's do. Yuck... this is much better.
654 static void __init srmmu_inherit_prom_mappings(unsigned long start,
655 unsigned long end)
657 pgd_t *pgdp;
658 pmd_t *pmdp;
659 pte_t *ptep;
660 int what = 0; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
661 unsigned long prompte;
663 while(start <= end) {
664 if (start == 0)
665 break; /* probably wrap around */
666 if(start == 0xfef00000)
667 start = KADB_DEBUGGER_BEGVM;
668 if(!(prompte = srmmu_hwprobe(start))) {
669 start += PAGE_SIZE;
670 continue;
673 /* A red snapper, see what it really is. */
674 what = 0;
676 if(!(start & ~(SRMMU_REAL_PMD_MASK))) {
677 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_REAL_PMD_SIZE) == prompte)
678 what = 1;
681 if(!(start & ~(SRMMU_PGDIR_MASK))) {
682 if(srmmu_hwprobe((start-PAGE_SIZE) + SRMMU_PGDIR_SIZE) ==
683 prompte)
684 what = 2;
687 pgdp = pgd_offset_k(start);
688 if(what == 2) {
689 *(pgd_t *)__nocache_fix(pgdp) = __pgd(prompte);
690 start += SRMMU_PGDIR_SIZE;
691 continue;
693 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
694 pmdp = (pmd_t *)__srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
695 if (pmdp == NULL)
696 early_pgtable_allocfail("pmd");
697 memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
698 pgd_set(__nocache_fix(pgdp), pmdp);
700 pmdp = pmd_offset(__nocache_fix(pgdp), start);
701 if(srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
702 ptep = (pte_t *) __srmmu_get_nocache(PTE_SIZE,
703 PTE_SIZE);
704 if (ptep == NULL)
705 early_pgtable_allocfail("pte");
706 memset(__nocache_fix(ptep), 0, PTE_SIZE);
707 pmd_set(__nocache_fix(pmdp), ptep);
709 if(what == 1) {
711 * We bend the rule where all 16 PTPs in a pmd_t point
712 * inside the same PTE page, and we leak a perfectly
713 * good hardware PTE piece. Alternatives seem worse.
715 unsigned int x; /* Index of HW PMD in soft cluster */
716 x = (start >> PMD_SHIFT) & 15;
717 *(unsigned long *)__nocache_fix(&pmdp->pmdv[x]) = prompte;
718 start += SRMMU_REAL_PMD_SIZE;
719 continue;
721 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
722 *(pte_t *)__nocache_fix(ptep) = __pte(prompte);
723 start += PAGE_SIZE;
727 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
729 /* Create a third-level SRMMU 16MB page mapping. */
730 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
732 pgd_t *pgdp = pgd_offset_k(vaddr);
733 unsigned long big_pte;
735 big_pte = KERNEL_PTE(phys_base >> 4);
736 *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
739 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
740 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
742 unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
743 unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
744 unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
745 /* Map "low" memory only */
746 const unsigned long min_vaddr = PAGE_OFFSET;
747 const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
749 if (vstart < min_vaddr || vstart >= max_vaddr)
750 return vstart;
752 if (vend > max_vaddr || vend < min_vaddr)
753 vend = max_vaddr;
755 while(vstart < vend) {
756 do_large_mapping(vstart, pstart);
757 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
759 return vstart;
762 static inline void map_kernel(void)
764 int i;
766 if (phys_base > 0) {
767 do_large_mapping(PAGE_OFFSET, phys_base);
770 for (i = 0; sp_banks[i].num_bytes != 0; i++) {
771 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
775 /* Paging initialization on the Sparc Reference MMU. */
776 extern void sparc_context_init(int);
778 void (*poke_srmmu)(void) __cpuinitdata = NULL;
780 extern unsigned long bootmem_init(unsigned long *pages_avail);
782 void __init srmmu_paging_init(void)
784 int i;
785 phandle cpunode;
786 char node_str[128];
787 pgd_t *pgd;
788 pmd_t *pmd;
789 pte_t *pte;
790 unsigned long pages_avail;
792 sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
794 if (sparc_cpu_model == sun4d)
795 num_contexts = 65536; /* We know it is Viking */
796 else {
797 /* Find the number of contexts on the srmmu. */
798 cpunode = prom_getchild(prom_root_node);
799 num_contexts = 0;
800 while(cpunode != 0) {
801 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
802 if(!strcmp(node_str, "cpu")) {
803 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
804 break;
806 cpunode = prom_getsibling(cpunode);
810 if(!num_contexts) {
811 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
812 prom_halt();
815 pages_avail = 0;
816 last_valid_pfn = bootmem_init(&pages_avail);
818 srmmu_nocache_calcsize();
819 srmmu_nocache_init();
820 srmmu_inherit_prom_mappings(0xfe400000,(LINUX_OPPROM_ENDVM-PAGE_SIZE));
821 map_kernel();
823 /* ctx table has to be physically aligned to its size */
824 srmmu_context_table = (ctxd_t *)__srmmu_get_nocache(num_contexts*sizeof(ctxd_t), num_contexts*sizeof(ctxd_t));
825 srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
827 for(i = 0; i < num_contexts; i++)
828 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
830 flush_cache_all();
831 srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
832 #ifdef CONFIG_SMP
833 /* Stop from hanging here... */
834 local_ops->tlb_all();
835 #else
836 flush_tlb_all();
837 #endif
838 poke_srmmu();
840 srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
841 srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
843 srmmu_allocate_ptable_skeleton(
844 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
845 srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
847 pgd = pgd_offset_k(PKMAP_BASE);
848 pmd = pmd_offset(pgd, PKMAP_BASE);
849 pte = pte_offset_kernel(pmd, PKMAP_BASE);
850 pkmap_page_table = pte;
852 flush_cache_all();
853 flush_tlb_all();
855 sparc_context_init(num_contexts);
857 kmap_init();
860 unsigned long zones_size[MAX_NR_ZONES];
861 unsigned long zholes_size[MAX_NR_ZONES];
862 unsigned long npages;
863 int znum;
865 for (znum = 0; znum < MAX_NR_ZONES; znum++)
866 zones_size[znum] = zholes_size[znum] = 0;
868 npages = max_low_pfn - pfn_base;
870 zones_size[ZONE_DMA] = npages;
871 zholes_size[ZONE_DMA] = npages - pages_avail;
873 npages = highend_pfn - max_low_pfn;
874 zones_size[ZONE_HIGHMEM] = npages;
875 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
877 free_area_init_node(0, zones_size, pfn_base, zholes_size);
881 void mmu_info(struct seq_file *m)
883 seq_printf(m,
884 "MMU type\t: %s\n"
885 "contexts\t: %d\n"
886 "nocache total\t: %ld\n"
887 "nocache used\t: %d\n",
888 srmmu_name,
889 num_contexts,
890 srmmu_nocache_size,
891 srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
894 void destroy_context(struct mm_struct *mm)
897 if(mm->context != NO_CONTEXT) {
898 flush_cache_mm(mm);
899 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
900 flush_tlb_mm(mm);
901 spin_lock(&srmmu_context_spinlock);
902 free_context(mm->context);
903 spin_unlock(&srmmu_context_spinlock);
904 mm->context = NO_CONTEXT;
908 /* Init various srmmu chip types. */
909 static void __init srmmu_is_bad(void)
911 prom_printf("Could not determine SRMMU chip type.\n");
912 prom_halt();
915 static void __init init_vac_layout(void)
917 phandle nd;
918 int cache_lines;
919 char node_str[128];
920 #ifdef CONFIG_SMP
921 int cpu = 0;
922 unsigned long max_size = 0;
923 unsigned long min_line_size = 0x10000000;
924 #endif
926 nd = prom_getchild(prom_root_node);
927 while((nd = prom_getsibling(nd)) != 0) {
928 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
929 if(!strcmp(node_str, "cpu")) {
930 vac_line_size = prom_getint(nd, "cache-line-size");
931 if (vac_line_size == -1) {
932 prom_printf("can't determine cache-line-size, "
933 "halting.\n");
934 prom_halt();
936 cache_lines = prom_getint(nd, "cache-nlines");
937 if (cache_lines == -1) {
938 prom_printf("can't determine cache-nlines, halting.\n");
939 prom_halt();
942 vac_cache_size = cache_lines * vac_line_size;
943 #ifdef CONFIG_SMP
944 if(vac_cache_size > max_size)
945 max_size = vac_cache_size;
946 if(vac_line_size < min_line_size)
947 min_line_size = vac_line_size;
948 //FIXME: cpus not contiguous!!
949 cpu++;
950 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
951 break;
952 #else
953 break;
954 #endif
957 if(nd == 0) {
958 prom_printf("No CPU nodes found, halting.\n");
959 prom_halt();
961 #ifdef CONFIG_SMP
962 vac_cache_size = max_size;
963 vac_line_size = min_line_size;
964 #endif
965 printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
966 (int)vac_cache_size, (int)vac_line_size);
969 static void __cpuinit poke_hypersparc(void)
971 volatile unsigned long clear;
972 unsigned long mreg = srmmu_get_mmureg();
974 hyper_flush_unconditional_combined();
976 mreg &= ~(HYPERSPARC_CWENABLE);
977 mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
978 mreg |= (HYPERSPARC_CMODE);
980 srmmu_set_mmureg(mreg);
982 #if 0 /* XXX I think this is bad news... -DaveM */
983 hyper_clear_all_tags();
984 #endif
986 put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
987 hyper_flush_whole_icache();
988 clear = srmmu_get_faddr();
989 clear = srmmu_get_fstatus();
992 static const struct sparc32_cachetlb_ops hypersparc_ops = {
993 .cache_all = hypersparc_flush_cache_all,
994 .cache_mm = hypersparc_flush_cache_mm,
995 .cache_page = hypersparc_flush_cache_page,
996 .cache_range = hypersparc_flush_cache_range,
997 .tlb_all = hypersparc_flush_tlb_all,
998 .tlb_mm = hypersparc_flush_tlb_mm,
999 .tlb_page = hypersparc_flush_tlb_page,
1000 .tlb_range = hypersparc_flush_tlb_range,
1001 .page_to_ram = hypersparc_flush_page_to_ram,
1002 .sig_insns = hypersparc_flush_sig_insns,
1003 .page_for_dma = hypersparc_flush_page_for_dma,
1006 static void __init init_hypersparc(void)
1008 srmmu_name = "ROSS HyperSparc";
1009 srmmu_modtype = HyperSparc;
1011 init_vac_layout();
1013 is_hypersparc = 1;
1014 sparc32_cachetlb_ops = &hypersparc_ops;
1016 poke_srmmu = poke_hypersparc;
1018 hypersparc_setup_blockops();
1021 static void __cpuinit poke_swift(void)
1023 unsigned long mreg;
1025 /* Clear any crap from the cache or else... */
1026 swift_flush_cache_all();
1028 /* Enable I & D caches */
1029 mreg = srmmu_get_mmureg();
1030 mreg |= (SWIFT_IE | SWIFT_DE);
1032 * The Swift branch folding logic is completely broken. At
1033 * trap time, if things are just right, if can mistakenly
1034 * think that a trap is coming from kernel mode when in fact
1035 * it is coming from user mode (it mis-executes the branch in
1036 * the trap code). So you see things like crashme completely
1037 * hosing your machine which is completely unacceptable. Turn
1038 * this shit off... nice job Fujitsu.
1040 mreg &= ~(SWIFT_BF);
1041 srmmu_set_mmureg(mreg);
1044 static const struct sparc32_cachetlb_ops swift_ops = {
1045 .cache_all = swift_flush_cache_all,
1046 .cache_mm = swift_flush_cache_mm,
1047 .cache_page = swift_flush_cache_page,
1048 .cache_range = swift_flush_cache_range,
1049 .tlb_all = swift_flush_tlb_all,
1050 .tlb_mm = swift_flush_tlb_mm,
1051 .tlb_page = swift_flush_tlb_page,
1052 .tlb_range = swift_flush_tlb_range,
1053 .page_to_ram = swift_flush_page_to_ram,
1054 .sig_insns = swift_flush_sig_insns,
1055 .page_for_dma = swift_flush_page_for_dma,
1058 #define SWIFT_MASKID_ADDR 0x10003018
1059 static void __init init_swift(void)
1061 unsigned long swift_rev;
1063 __asm__ __volatile__("lda [%1] %2, %0\n\t"
1064 "srl %0, 0x18, %0\n\t" :
1065 "=r" (swift_rev) :
1066 "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1067 srmmu_name = "Fujitsu Swift";
1068 switch(swift_rev) {
1069 case 0x11:
1070 case 0x20:
1071 case 0x23:
1072 case 0x30:
1073 srmmu_modtype = Swift_lots_o_bugs;
1074 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1076 * Gee george, I wonder why Sun is so hush hush about
1077 * this hardware bug... really braindamage stuff going
1078 * on here. However I think we can find a way to avoid
1079 * all of the workaround overhead under Linux. Basically,
1080 * any page fault can cause kernel pages to become user
1081 * accessible (the mmu gets confused and clears some of
1082 * the ACC bits in kernel ptes). Aha, sounds pretty
1083 * horrible eh? But wait, after extensive testing it appears
1084 * that if you use pgd_t level large kernel pte's (like the
1085 * 4MB pages on the Pentium) the bug does not get tripped
1086 * at all. This avoids almost all of the major overhead.
1087 * Welcome to a world where your vendor tells you to,
1088 * "apply this kernel patch" instead of "sorry for the
1089 * broken hardware, send it back and we'll give you
1090 * properly functioning parts"
1092 break;
1093 case 0x25:
1094 case 0x31:
1095 srmmu_modtype = Swift_bad_c;
1096 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1098 * You see Sun allude to this hardware bug but never
1099 * admit things directly, they'll say things like,
1100 * "the Swift chip cache problems" or similar.
1102 break;
1103 default:
1104 srmmu_modtype = Swift_ok;
1105 break;
1108 sparc32_cachetlb_ops = &swift_ops;
1109 flush_page_for_dma_global = 0;
1112 * Are you now convinced that the Swift is one of the
1113 * biggest VLSI abortions of all time? Bravo Fujitsu!
1114 * Fujitsu, the !#?!%$'d up processor people. I bet if
1115 * you examined the microcode of the Swift you'd find
1116 * XXX's all over the place.
1118 poke_srmmu = poke_swift;
1121 static void turbosparc_flush_cache_all(void)
1123 flush_user_windows();
1124 turbosparc_idflash_clear();
1127 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1129 FLUSH_BEGIN(mm)
1130 flush_user_windows();
1131 turbosparc_idflash_clear();
1132 FLUSH_END
1135 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1137 FLUSH_BEGIN(vma->vm_mm)
1138 flush_user_windows();
1139 turbosparc_idflash_clear();
1140 FLUSH_END
1143 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1145 FLUSH_BEGIN(vma->vm_mm)
1146 flush_user_windows();
1147 if (vma->vm_flags & VM_EXEC)
1148 turbosparc_flush_icache();
1149 turbosparc_flush_dcache();
1150 FLUSH_END
1153 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1154 static void turbosparc_flush_page_to_ram(unsigned long page)
1156 #ifdef TURBOSPARC_WRITEBACK
1157 volatile unsigned long clear;
1159 if (srmmu_hwprobe(page))
1160 turbosparc_flush_page_cache(page);
1161 clear = srmmu_get_fstatus();
1162 #endif
1165 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1169 static void turbosparc_flush_page_for_dma(unsigned long page)
1171 turbosparc_flush_dcache();
1174 static void turbosparc_flush_tlb_all(void)
1176 srmmu_flush_whole_tlb();
1179 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1181 FLUSH_BEGIN(mm)
1182 srmmu_flush_whole_tlb();
1183 FLUSH_END
1186 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1188 FLUSH_BEGIN(vma->vm_mm)
1189 srmmu_flush_whole_tlb();
1190 FLUSH_END
1193 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1195 FLUSH_BEGIN(vma->vm_mm)
1196 srmmu_flush_whole_tlb();
1197 FLUSH_END
1201 static void __cpuinit poke_turbosparc(void)
1203 unsigned long mreg = srmmu_get_mmureg();
1204 unsigned long ccreg;
1206 /* Clear any crap from the cache or else... */
1207 turbosparc_flush_cache_all();
1208 mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* Temporarily disable I & D caches */
1209 mreg &= ~(TURBOSPARC_PCENABLE); /* Don't check parity */
1210 srmmu_set_mmureg(mreg);
1212 ccreg = turbosparc_get_ccreg();
1214 #ifdef TURBOSPARC_WRITEBACK
1215 ccreg |= (TURBOSPARC_SNENABLE); /* Do DVMA snooping in Dcache */
1216 ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1217 /* Write-back D-cache, emulate VLSI
1218 * abortion number three, not number one */
1219 #else
1220 /* For now let's play safe, optimize later */
1221 ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1222 /* Do DVMA snooping in Dcache, Write-thru D-cache */
1223 ccreg &= ~(TURBOSPARC_uS2);
1224 /* Emulate VLSI abortion number three, not number one */
1225 #endif
1227 switch (ccreg & 7) {
1228 case 0: /* No SE cache */
1229 case 7: /* Test mode */
1230 break;
1231 default:
1232 ccreg |= (TURBOSPARC_SCENABLE);
1234 turbosparc_set_ccreg (ccreg);
1236 mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1237 mreg |= (TURBOSPARC_ICSNOOP); /* Icache snooping on */
1238 srmmu_set_mmureg(mreg);
1241 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1242 .cache_all = turbosparc_flush_cache_all,
1243 .cache_mm = turbosparc_flush_cache_mm,
1244 .cache_page = turbosparc_flush_cache_page,
1245 .cache_range = turbosparc_flush_cache_range,
1246 .tlb_all = turbosparc_flush_tlb_all,
1247 .tlb_mm = turbosparc_flush_tlb_mm,
1248 .tlb_page = turbosparc_flush_tlb_page,
1249 .tlb_range = turbosparc_flush_tlb_range,
1250 .page_to_ram = turbosparc_flush_page_to_ram,
1251 .sig_insns = turbosparc_flush_sig_insns,
1252 .page_for_dma = turbosparc_flush_page_for_dma,
1255 static void __init init_turbosparc(void)
1257 srmmu_name = "Fujitsu TurboSparc";
1258 srmmu_modtype = TurboSparc;
1259 sparc32_cachetlb_ops = &turbosparc_ops;
1260 poke_srmmu = poke_turbosparc;
1263 static void __cpuinit poke_tsunami(void)
1265 unsigned long mreg = srmmu_get_mmureg();
1267 tsunami_flush_icache();
1268 tsunami_flush_dcache();
1269 mreg &= ~TSUNAMI_ITD;
1270 mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1271 srmmu_set_mmureg(mreg);
1274 static const struct sparc32_cachetlb_ops tsunami_ops = {
1275 .cache_all = tsunami_flush_cache_all,
1276 .cache_mm = tsunami_flush_cache_mm,
1277 .cache_page = tsunami_flush_cache_page,
1278 .cache_range = tsunami_flush_cache_range,
1279 .tlb_all = tsunami_flush_tlb_all,
1280 .tlb_mm = tsunami_flush_tlb_mm,
1281 .tlb_page = tsunami_flush_tlb_page,
1282 .tlb_range = tsunami_flush_tlb_range,
1283 .page_to_ram = tsunami_flush_page_to_ram,
1284 .sig_insns = tsunami_flush_sig_insns,
1285 .page_for_dma = tsunami_flush_page_for_dma,
1288 static void __init init_tsunami(void)
1291 * Tsunami's pretty sane, Sun and TI actually got it
1292 * somewhat right this time. Fujitsu should have
1293 * taken some lessons from them.
1296 srmmu_name = "TI Tsunami";
1297 srmmu_modtype = Tsunami;
1298 sparc32_cachetlb_ops = &tsunami_ops;
1299 poke_srmmu = poke_tsunami;
1301 tsunami_setup_blockops();
1304 static void __cpuinit poke_viking(void)
1306 unsigned long mreg = srmmu_get_mmureg();
1307 static int smp_catch;
1309 if (viking_mxcc_present) {
1310 unsigned long mxcc_control = mxcc_get_creg();
1312 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1313 mxcc_control &= ~(MXCC_CTL_RRC);
1314 mxcc_set_creg(mxcc_control);
1317 * We don't need memory parity checks.
1318 * XXX This is a mess, have to dig out later. ecd.
1319 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1322 /* We do cache ptables on MXCC. */
1323 mreg |= VIKING_TCENABLE;
1324 } else {
1325 unsigned long bpreg;
1327 mreg &= ~(VIKING_TCENABLE);
1328 if(smp_catch++) {
1329 /* Must disable mixed-cmd mode here for other cpu's. */
1330 bpreg = viking_get_bpreg();
1331 bpreg &= ~(VIKING_ACTION_MIX);
1332 viking_set_bpreg(bpreg);
1334 /* Just in case PROM does something funny. */
1335 msi_set_sync();
1339 mreg |= VIKING_SPENABLE;
1340 mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1341 mreg |= VIKING_SBENABLE;
1342 mreg &= ~(VIKING_ACENABLE);
1343 srmmu_set_mmureg(mreg);
1346 static struct sparc32_cachetlb_ops viking_ops = {
1347 .cache_all = viking_flush_cache_all,
1348 .cache_mm = viking_flush_cache_mm,
1349 .cache_page = viking_flush_cache_page,
1350 .cache_range = viking_flush_cache_range,
1351 .tlb_all = viking_flush_tlb_all,
1352 .tlb_mm = viking_flush_tlb_mm,
1353 .tlb_page = viking_flush_tlb_page,
1354 .tlb_range = viking_flush_tlb_range,
1355 .page_to_ram = viking_flush_page_to_ram,
1356 .sig_insns = viking_flush_sig_insns,
1357 .page_for_dma = viking_flush_page_for_dma,
1360 #ifdef CONFIG_SMP
1361 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1362 * perform the local TLB flush and all the other cpus will see it.
1363 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1364 * that requires that we add some synchronization to these flushes.
1366 * The bug is that the fifo which keeps track of all the pending TLB
1367 * broadcasts in the system is an entry or two too small, so if we
1368 * have too many going at once we'll overflow that fifo and lose a TLB
1369 * flush resulting in corruption.
1371 * Our workaround is to take a global spinlock around the TLB flushes,
1372 * which guarentees we won't ever have too many pending. It's a big
1373 * hammer, but a semaphore like system to make sure we only have N TLB
1374 * flushes going at once will require SMP locking anyways so there's
1375 * no real value in trying any harder than this.
1377 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1378 .cache_all = viking_flush_cache_all,
1379 .cache_mm = viking_flush_cache_mm,
1380 .cache_page = viking_flush_cache_page,
1381 .cache_range = viking_flush_cache_range,
1382 .tlb_all = sun4dsmp_flush_tlb_all,
1383 .tlb_mm = sun4dsmp_flush_tlb_mm,
1384 .tlb_page = sun4dsmp_flush_tlb_page,
1385 .tlb_range = sun4dsmp_flush_tlb_range,
1386 .page_to_ram = viking_flush_page_to_ram,
1387 .sig_insns = viking_flush_sig_insns,
1388 .page_for_dma = viking_flush_page_for_dma,
1390 #endif
1392 static void __init init_viking(void)
1394 unsigned long mreg = srmmu_get_mmureg();
1396 /* Ahhh, the viking. SRMMU VLSI abortion number two... */
1397 if(mreg & VIKING_MMODE) {
1398 srmmu_name = "TI Viking";
1399 viking_mxcc_present = 0;
1400 msi_set_sync();
1403 * We need this to make sure old viking takes no hits
1404 * on it's cache for dma snoops to workaround the
1405 * "load from non-cacheable memory" interrupt bug.
1406 * This is only necessary because of the new way in
1407 * which we use the IOMMU.
1409 viking_ops.page_for_dma = viking_flush_page;
1410 #ifdef CONFIG_SMP
1411 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1412 #endif
1413 flush_page_for_dma_global = 0;
1414 } else {
1415 srmmu_name = "TI Viking/MXCC";
1416 viking_mxcc_present = 1;
1417 srmmu_cache_pagetables = 1;
1420 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1421 &viking_ops;
1422 #ifdef CONFIG_SMP
1423 if (sparc_cpu_model == sun4d)
1424 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1425 &viking_sun4d_smp_ops;
1426 #endif
1428 poke_srmmu = poke_viking;
1431 /* Probe for the srmmu chip version. */
1432 static void __init get_srmmu_type(void)
1434 unsigned long mreg, psr;
1435 unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1437 srmmu_modtype = SRMMU_INVAL_MOD;
1438 hwbug_bitmask = 0;
1440 mreg = srmmu_get_mmureg(); psr = get_psr();
1441 mod_typ = (mreg & 0xf0000000) >> 28;
1442 mod_rev = (mreg & 0x0f000000) >> 24;
1443 psr_typ = (psr >> 28) & 0xf;
1444 psr_vers = (psr >> 24) & 0xf;
1446 /* First, check for sparc-leon. */
1447 if (sparc_cpu_model == sparc_leon) {
1448 init_leon();
1449 return;
1452 /* Second, check for HyperSparc or Cypress. */
1453 if(mod_typ == 1) {
1454 switch(mod_rev) {
1455 case 7:
1456 /* UP or MP Hypersparc */
1457 init_hypersparc();
1458 break;
1459 case 0:
1460 case 2:
1461 case 10:
1462 case 11:
1463 case 12:
1464 case 13:
1465 case 14:
1466 case 15:
1467 default:
1468 prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1469 prom_halt();
1470 break;
1472 return;
1476 * Now Fujitsu TurboSparc. It might happen that it is
1477 * in Swift emulation mode, so we will check later...
1479 if (psr_typ == 0 && psr_vers == 5) {
1480 init_turbosparc();
1481 return;
1484 /* Next check for Fujitsu Swift. */
1485 if(psr_typ == 0 && psr_vers == 4) {
1486 phandle cpunode;
1487 char node_str[128];
1489 /* Look if it is not a TurboSparc emulating Swift... */
1490 cpunode = prom_getchild(prom_root_node);
1491 while((cpunode = prom_getsibling(cpunode)) != 0) {
1492 prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1493 if(!strcmp(node_str, "cpu")) {
1494 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1495 prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1496 init_turbosparc();
1497 return;
1499 break;
1503 init_swift();
1504 return;
1507 /* Now the Viking family of srmmu. */
1508 if(psr_typ == 4 &&
1509 ((psr_vers == 0) ||
1510 ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1511 init_viking();
1512 return;
1515 /* Finally the Tsunami. */
1516 if(psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1517 init_tsunami();
1518 return;
1521 /* Oh well */
1522 srmmu_is_bad();
1525 #ifdef CONFIG_SMP
1526 /* Local cross-calls. */
1527 static void smp_flush_page_for_dma(unsigned long page)
1529 xc1((smpfunc_t) local_ops->page_for_dma, page);
1530 local_ops->page_for_dma(page);
1533 static void smp_flush_cache_all(void)
1535 xc0((smpfunc_t) local_ops->cache_all);
1536 local_ops->cache_all();
1539 static void smp_flush_tlb_all(void)
1541 xc0((smpfunc_t) local_ops->tlb_all);
1542 local_ops->tlb_all();
1545 static void smp_flush_cache_mm(struct mm_struct *mm)
1547 if (mm->context != NO_CONTEXT) {
1548 cpumask_t cpu_mask;
1549 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1550 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1551 if (!cpumask_empty(&cpu_mask))
1552 xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1553 local_ops->cache_mm(mm);
1557 static void smp_flush_tlb_mm(struct mm_struct *mm)
1559 if (mm->context != NO_CONTEXT) {
1560 cpumask_t cpu_mask;
1561 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1562 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1563 if (!cpumask_empty(&cpu_mask)) {
1564 xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1565 if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1566 cpumask_copy(mm_cpumask(mm),
1567 cpumask_of(smp_processor_id()));
1569 local_ops->tlb_mm(mm);
1573 static void smp_flush_cache_range(struct vm_area_struct *vma,
1574 unsigned long start,
1575 unsigned long end)
1577 struct mm_struct *mm = vma->vm_mm;
1579 if (mm->context != NO_CONTEXT) {
1580 cpumask_t cpu_mask;
1581 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1582 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1583 if (!cpumask_empty(&cpu_mask))
1584 xc3((smpfunc_t) local_ops->cache_range,
1585 (unsigned long) vma, start, end);
1586 local_ops->cache_range(vma, start, end);
1590 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1591 unsigned long start,
1592 unsigned long end)
1594 struct mm_struct *mm = vma->vm_mm;
1596 if (mm->context != NO_CONTEXT) {
1597 cpumask_t cpu_mask;
1598 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1599 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1600 if (!cpumask_empty(&cpu_mask))
1601 xc3((smpfunc_t) local_ops->tlb_range,
1602 (unsigned long) vma, start, end);
1603 local_ops->tlb_range(vma, start, end);
1607 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1609 struct mm_struct *mm = vma->vm_mm;
1611 if (mm->context != NO_CONTEXT) {
1612 cpumask_t cpu_mask;
1613 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1614 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1615 if (!cpumask_empty(&cpu_mask))
1616 xc2((smpfunc_t) local_ops->cache_page,
1617 (unsigned long) vma, page);
1618 local_ops->cache_page(vma, page);
1622 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1624 struct mm_struct *mm = vma->vm_mm;
1626 if (mm->context != NO_CONTEXT) {
1627 cpumask_t cpu_mask;
1628 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1629 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1630 if (!cpumask_empty(&cpu_mask))
1631 xc2((smpfunc_t) local_ops->tlb_page,
1632 (unsigned long) vma, page);
1633 local_ops->tlb_page(vma, page);
1637 static void smp_flush_page_to_ram(unsigned long page)
1639 /* Current theory is that those who call this are the one's
1640 * who have just dirtied their cache with the pages contents
1641 * in kernel space, therefore we only run this on local cpu.
1643 * XXX This experiment failed, research further... -DaveM
1645 #if 1
1646 xc1((smpfunc_t) local_ops->page_to_ram, page);
1647 #endif
1648 local_ops->page_to_ram(page);
1651 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1653 cpumask_t cpu_mask;
1654 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1655 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1656 if (!cpumask_empty(&cpu_mask))
1657 xc2((smpfunc_t) local_ops->sig_insns,
1658 (unsigned long) mm, insn_addr);
1659 local_ops->sig_insns(mm, insn_addr);
1662 static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1663 .cache_all = smp_flush_cache_all,
1664 .cache_mm = smp_flush_cache_mm,
1665 .cache_page = smp_flush_cache_page,
1666 .cache_range = smp_flush_cache_range,
1667 .tlb_all = smp_flush_tlb_all,
1668 .tlb_mm = smp_flush_tlb_mm,
1669 .tlb_page = smp_flush_tlb_page,
1670 .tlb_range = smp_flush_tlb_range,
1671 .page_to_ram = smp_flush_page_to_ram,
1672 .sig_insns = smp_flush_sig_insns,
1673 .page_for_dma = smp_flush_page_for_dma,
1675 #endif
1677 /* Load up routines and constants for sun4m and sun4d mmu */
1678 void __init load_mmu(void)
1680 extern void ld_mmu_iommu(void);
1681 extern void ld_mmu_iounit(void);
1683 /* Functions */
1684 get_srmmu_type();
1686 #ifdef CONFIG_SMP
1687 /* El switcheroo... */
1688 local_ops = sparc32_cachetlb_ops;
1690 if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1691 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1692 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1693 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1694 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1697 if (poke_srmmu == poke_viking) {
1698 /* Avoid unnecessary cross calls. */
1699 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1700 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1701 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1702 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1704 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1705 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1706 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1709 /* It really is const after this point. */
1710 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1711 &smp_cachetlb_ops;
1712 #endif
1714 if (sparc_cpu_model == sun4d)
1715 ld_mmu_iounit();
1716 else
1717 ld_mmu_iommu();
1718 #ifdef CONFIG_SMP
1719 if (sparc_cpu_model == sun4d)
1720 sun4d_init_smp();
1721 else if (sparc_cpu_model == sparc_leon)
1722 leon_init_smp();
1723 else
1724 sun4m_init_smp();
1725 #endif