Merge tag 'for-linus-20180929' of git://git.kernel.dk/linux-block
[linux-2.6/btrfs-unstable.git] / drivers / i2c / busses / i2c-img-scb.c
blobf038858b6c5495fe700f177ffc862968d5d2b8b7
1 /*
2 * I2C adapter for the IMG Serial Control Bus (SCB) IP block.
4 * Copyright (C) 2009, 2010, 2012, 2014 Imagination Technologies Ltd.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * There are three ways that this I2C controller can be driven:
12 * - Raw control of the SDA and SCK signals.
14 * This corresponds to MODE_RAW, which takes control of the signals
15 * directly for a certain number of clock cycles (the INT_TIMING
16 * interrupt can be used for timing).
18 * - Atomic commands. A low level I2C symbol (such as generate
19 * start/stop/ack/nack bit, generate byte, receive byte, and receive
20 * ACK) is given to the hardware, with detection of completion by bits
21 * in the LINESTAT register.
23 * This mode of operation is used by MODE_ATOMIC, which uses an I2C
24 * state machine in the interrupt handler to compose/react to I2C
25 * transactions using atomic mode commands, and also by MODE_SEQUENCE,
26 * which emits a simple fixed sequence of atomic mode commands.
28 * Due to software control, the use of atomic commands usually results
29 * in suboptimal use of the bus, with gaps between the I2C symbols while
30 * the driver decides what to do next.
32 * - Automatic mode. A bus address, and whether to read/write is
33 * specified, and the hardware takes care of the I2C state machine,
34 * using a FIFO to send/receive bytes of data to an I2C slave. The
35 * driver just has to keep the FIFO drained or filled in response to the
36 * appropriate FIFO interrupts.
38 * This corresponds to MODE_AUTOMATIC, which manages the FIFOs and deals
39 * with control of repeated start bits between I2C messages.
41 * Use of automatic mode and the FIFO can make much more efficient use
42 * of the bus compared to individual atomic commands, with potentially
43 * no wasted time between I2C symbols or I2C messages.
45 * In most cases MODE_AUTOMATIC is used, however if any of the messages in
46 * a transaction are zero byte writes (e.g. used by i2cdetect for probing
47 * the bus), MODE_ATOMIC must be used since automatic mode is normally
48 * started by the writing of data into the FIFO.
50 * The other modes are used in specific circumstances where MODE_ATOMIC and
51 * MODE_AUTOMATIC aren't appropriate. MODE_RAW is used to implement a bus
52 * recovery routine. MODE_SEQUENCE is used to reset the bus and make sure
53 * it is in a sane state.
55 * Notice that the driver implements a timer-based timeout mechanism.
56 * The reason for this mechanism is to reduce the number of interrupts
57 * received in automatic mode.
59 * The driver would get a slave event and transaction done interrupts for
60 * each atomic mode command that gets completed. However, these events are
61 * not needed in automatic mode, becase those atomic mode commands are
62 * managed automatically by the hardware.
64 * In practice, normal I2C transactions will be complete well before you
65 * get the timer interrupt, as the timer is re-scheduled during FIFO
66 * maintenance and disabled after the transaction is complete.
68 * In this way normal automatic mode operation isn't impacted by
69 * unnecessary interrupts, but the exceptional abort condition can still be
70 * detected (with a slight delay).
73 #include <linux/bitops.h>
74 #include <linux/clk.h>
75 #include <linux/completion.h>
76 #include <linux/err.h>
77 #include <linux/i2c.h>
78 #include <linux/init.h>
79 #include <linux/interrupt.h>
80 #include <linux/io.h>
81 #include <linux/kernel.h>
82 #include <linux/module.h>
83 #include <linux/of_platform.h>
84 #include <linux/platform_device.h>
85 #include <linux/pm_runtime.h>
86 #include <linux/slab.h>
87 #include <linux/timer.h>
89 /* Register offsets */
91 #define SCB_STATUS_REG 0x00
92 #define SCB_OVERRIDE_REG 0x04
93 #define SCB_READ_ADDR_REG 0x08
94 #define SCB_READ_COUNT_REG 0x0c
95 #define SCB_WRITE_ADDR_REG 0x10
96 #define SCB_READ_DATA_REG 0x14
97 #define SCB_WRITE_DATA_REG 0x18
98 #define SCB_FIFO_STATUS_REG 0x1c
99 #define SCB_CONTROL_SOFT_RESET 0x1f
100 #define SCB_CLK_SET_REG 0x3c
101 #define SCB_INT_STATUS_REG 0x40
102 #define SCB_INT_CLEAR_REG 0x44
103 #define SCB_INT_MASK_REG 0x48
104 #define SCB_CONTROL_REG 0x4c
105 #define SCB_TIME_TPL_REG 0x50
106 #define SCB_TIME_TPH_REG 0x54
107 #define SCB_TIME_TP2S_REG 0x58
108 #define SCB_TIME_TBI_REG 0x60
109 #define SCB_TIME_TSL_REG 0x64
110 #define SCB_TIME_TDL_REG 0x68
111 #define SCB_TIME_TSDL_REG 0x6c
112 #define SCB_TIME_TSDH_REG 0x70
113 #define SCB_READ_XADDR_REG 0x74
114 #define SCB_WRITE_XADDR_REG 0x78
115 #define SCB_WRITE_COUNT_REG 0x7c
116 #define SCB_CORE_REV_REG 0x80
117 #define SCB_TIME_TCKH_REG 0x84
118 #define SCB_TIME_TCKL_REG 0x88
119 #define SCB_FIFO_FLUSH_REG 0x8c
120 #define SCB_READ_FIFO_REG 0x94
121 #define SCB_CLEAR_REG 0x98
123 /* SCB_CONTROL_REG bits */
125 #define SCB_CONTROL_CLK_ENABLE 0x1e0
126 #define SCB_CONTROL_TRANSACTION_HALT 0x200
128 #define FIFO_READ_FULL BIT(0)
129 #define FIFO_READ_EMPTY BIT(1)
130 #define FIFO_WRITE_FULL BIT(2)
131 #define FIFO_WRITE_EMPTY BIT(3)
133 /* SCB_CLK_SET_REG bits */
134 #define SCB_FILT_DISABLE BIT(31)
135 #define SCB_FILT_BYPASS BIT(30)
136 #define SCB_FILT_INC_MASK 0x7f
137 #define SCB_FILT_INC_SHIFT 16
138 #define SCB_INC_MASK 0x7f
139 #define SCB_INC_SHIFT 8
141 /* SCB_INT_*_REG bits */
143 #define INT_BUS_INACTIVE BIT(0)
144 #define INT_UNEXPECTED_START BIT(1)
145 #define INT_SCLK_LOW_TIMEOUT BIT(2)
146 #define INT_SDAT_LOW_TIMEOUT BIT(3)
147 #define INT_WRITE_ACK_ERR BIT(4)
148 #define INT_ADDR_ACK_ERR BIT(5)
149 #define INT_FIFO_FULL BIT(9)
150 #define INT_FIFO_FILLING BIT(10)
151 #define INT_FIFO_EMPTY BIT(11)
152 #define INT_FIFO_EMPTYING BIT(12)
153 #define INT_TRANSACTION_DONE BIT(15)
154 #define INT_SLAVE_EVENT BIT(16)
155 #define INT_MASTER_HALTED BIT(17)
156 #define INT_TIMING BIT(18)
157 #define INT_STOP_DETECTED BIT(19)
159 #define INT_FIFO_FULL_FILLING (INT_FIFO_FULL | INT_FIFO_FILLING)
161 /* Level interrupts need clearing after handling instead of before */
162 #define INT_LEVEL 0x01e00
164 /* Don't allow any interrupts while the clock may be off */
165 #define INT_ENABLE_MASK_INACTIVE 0x00000
167 /* Interrupt masks for the different driver modes */
169 #define INT_ENABLE_MASK_RAW INT_TIMING
171 #define INT_ENABLE_MASK_ATOMIC (INT_TRANSACTION_DONE | \
172 INT_SLAVE_EVENT | \
173 INT_ADDR_ACK_ERR | \
174 INT_WRITE_ACK_ERR)
176 #define INT_ENABLE_MASK_AUTOMATIC (INT_SCLK_LOW_TIMEOUT | \
177 INT_ADDR_ACK_ERR | \
178 INT_WRITE_ACK_ERR | \
179 INT_FIFO_FULL | \
180 INT_FIFO_FILLING | \
181 INT_FIFO_EMPTY | \
182 INT_MASTER_HALTED | \
183 INT_STOP_DETECTED)
185 #define INT_ENABLE_MASK_WAITSTOP (INT_SLAVE_EVENT | \
186 INT_ADDR_ACK_ERR | \
187 INT_WRITE_ACK_ERR)
189 /* SCB_STATUS_REG fields */
191 #define LINESTAT_SCLK_LINE_STATUS BIT(0)
192 #define LINESTAT_SCLK_EN BIT(1)
193 #define LINESTAT_SDAT_LINE_STATUS BIT(2)
194 #define LINESTAT_SDAT_EN BIT(3)
195 #define LINESTAT_DET_START_STATUS BIT(4)
196 #define LINESTAT_DET_STOP_STATUS BIT(5)
197 #define LINESTAT_DET_ACK_STATUS BIT(6)
198 #define LINESTAT_DET_NACK_STATUS BIT(7)
199 #define LINESTAT_BUS_IDLE BIT(8)
200 #define LINESTAT_T_DONE_STATUS BIT(9)
201 #define LINESTAT_SCLK_OUT_STATUS BIT(10)
202 #define LINESTAT_SDAT_OUT_STATUS BIT(11)
203 #define LINESTAT_GEN_LINE_MASK_STATUS BIT(12)
204 #define LINESTAT_START_BIT_DET BIT(13)
205 #define LINESTAT_STOP_BIT_DET BIT(14)
206 #define LINESTAT_ACK_DET BIT(15)
207 #define LINESTAT_NACK_DET BIT(16)
208 #define LINESTAT_INPUT_HELD_V BIT(17)
209 #define LINESTAT_ABORT_DET BIT(18)
210 #define LINESTAT_ACK_OR_NACK_DET (LINESTAT_ACK_DET | LINESTAT_NACK_DET)
211 #define LINESTAT_INPUT_DATA 0xff000000
212 #define LINESTAT_INPUT_DATA_SHIFT 24
214 #define LINESTAT_CLEAR_SHIFT 13
215 #define LINESTAT_LATCHED (0x3f << LINESTAT_CLEAR_SHIFT)
217 /* SCB_OVERRIDE_REG fields */
219 #define OVERRIDE_SCLK_OVR BIT(0)
220 #define OVERRIDE_SCLKEN_OVR BIT(1)
221 #define OVERRIDE_SDAT_OVR BIT(2)
222 #define OVERRIDE_SDATEN_OVR BIT(3)
223 #define OVERRIDE_MASTER BIT(9)
224 #define OVERRIDE_LINE_OVR_EN BIT(10)
225 #define OVERRIDE_DIRECT BIT(11)
226 #define OVERRIDE_CMD_SHIFT 4
227 #define OVERRIDE_CMD_MASK 0x1f
228 #define OVERRIDE_DATA_SHIFT 24
230 #define OVERRIDE_SCLK_DOWN (OVERRIDE_LINE_OVR_EN | \
231 OVERRIDE_SCLKEN_OVR)
232 #define OVERRIDE_SCLK_UP (OVERRIDE_LINE_OVR_EN | \
233 OVERRIDE_SCLKEN_OVR | \
234 OVERRIDE_SCLK_OVR)
235 #define OVERRIDE_SDAT_DOWN (OVERRIDE_LINE_OVR_EN | \
236 OVERRIDE_SDATEN_OVR)
237 #define OVERRIDE_SDAT_UP (OVERRIDE_LINE_OVR_EN | \
238 OVERRIDE_SDATEN_OVR | \
239 OVERRIDE_SDAT_OVR)
241 /* OVERRIDE_CMD values */
243 #define CMD_PAUSE 0x00
244 #define CMD_GEN_DATA 0x01
245 #define CMD_GEN_START 0x02
246 #define CMD_GEN_STOP 0x03
247 #define CMD_GEN_ACK 0x04
248 #define CMD_GEN_NACK 0x05
249 #define CMD_RET_DATA 0x08
250 #define CMD_RET_ACK 0x09
252 /* Fixed timing values */
254 #define TIMEOUT_TBI 0x0
255 #define TIMEOUT_TSL 0xffff
256 #define TIMEOUT_TDL 0x0
258 /* Transaction timeout */
260 #define IMG_I2C_TIMEOUT (msecs_to_jiffies(1000))
263 * Worst incs are 1 (innacurate) and 16*256 (irregular).
264 * So a sensible inc is the logarithmic mean: 64 (2^6), which is
265 * in the middle of the valid range (0-127).
267 #define SCB_OPT_INC 64
269 /* Setup the clock enable filtering for 25 ns */
270 #define SCB_FILT_GLITCH 25
273 * Bits to return from interrupt handler functions for different modes.
274 * This delays completion until we've finished with the registers, so that the
275 * function waiting for completion can safely disable the clock to save power.
277 #define ISR_COMPLETE_M BIT(31)
278 #define ISR_FATAL_M BIT(30)
279 #define ISR_WAITSTOP BIT(29)
280 #define ISR_STATUS_M 0x0000ffff /* contains +ve errno */
281 #define ISR_COMPLETE(err) (ISR_COMPLETE_M | (ISR_STATUS_M & (err)))
282 #define ISR_FATAL(err) (ISR_COMPLETE(err) | ISR_FATAL_M)
284 #define IMG_I2C_PM_TIMEOUT 1000 /* ms */
286 enum img_i2c_mode {
287 MODE_INACTIVE,
288 MODE_RAW,
289 MODE_ATOMIC,
290 MODE_AUTOMATIC,
291 MODE_SEQUENCE,
292 MODE_FATAL,
293 MODE_WAITSTOP,
294 MODE_SUSPEND,
297 /* Timing parameters for i2c modes (in ns) */
298 struct img_i2c_timings {
299 const char *name;
300 unsigned int max_bitrate;
301 unsigned int tckh, tckl, tsdh, tsdl;
302 unsigned int tp2s, tpl, tph;
305 /* The timings array must be ordered from slower to faster */
306 static struct img_i2c_timings timings[] = {
307 /* Standard mode */
309 .name = "standard",
310 .max_bitrate = 100000,
311 .tckh = 4000,
312 .tckl = 4700,
313 .tsdh = 4700,
314 .tsdl = 8700,
315 .tp2s = 4700,
316 .tpl = 4700,
317 .tph = 4000,
319 /* Fast mode */
321 .name = "fast",
322 .max_bitrate = 400000,
323 .tckh = 600,
324 .tckl = 1300,
325 .tsdh = 600,
326 .tsdl = 1200,
327 .tp2s = 1300,
328 .tpl = 600,
329 .tph = 600,
333 /* Reset dance */
334 static u8 img_i2c_reset_seq[] = { CMD_GEN_START,
335 CMD_GEN_DATA, 0xff,
336 CMD_RET_ACK,
337 CMD_GEN_START,
338 CMD_GEN_STOP,
339 0 };
340 /* Just issue a stop (after an abort condition) */
341 static u8 img_i2c_stop_seq[] = { CMD_GEN_STOP,
342 0 };
344 /* We're interested in different interrupts depending on the mode */
345 static unsigned int img_i2c_int_enable_by_mode[] = {
346 [MODE_INACTIVE] = INT_ENABLE_MASK_INACTIVE,
347 [MODE_RAW] = INT_ENABLE_MASK_RAW,
348 [MODE_ATOMIC] = INT_ENABLE_MASK_ATOMIC,
349 [MODE_AUTOMATIC] = INT_ENABLE_MASK_AUTOMATIC,
350 [MODE_SEQUENCE] = INT_ENABLE_MASK_ATOMIC,
351 [MODE_FATAL] = 0,
352 [MODE_WAITSTOP] = INT_ENABLE_MASK_WAITSTOP,
353 [MODE_SUSPEND] = 0,
356 /* Atomic command names */
357 static const char * const img_i2c_atomic_cmd_names[] = {
358 [CMD_PAUSE] = "PAUSE",
359 [CMD_GEN_DATA] = "GEN_DATA",
360 [CMD_GEN_START] = "GEN_START",
361 [CMD_GEN_STOP] = "GEN_STOP",
362 [CMD_GEN_ACK] = "GEN_ACK",
363 [CMD_GEN_NACK] = "GEN_NACK",
364 [CMD_RET_DATA] = "RET_DATA",
365 [CMD_RET_ACK] = "RET_ACK",
368 struct img_i2c {
369 struct i2c_adapter adap;
371 void __iomem *base;
374 * The scb core clock is used to get the input frequency, and to disable
375 * it after every set of transactions to save some power.
377 struct clk *scb_clk, *sys_clk;
378 unsigned int bitrate;
379 bool need_wr_rd_fence;
381 /* state */
382 struct completion msg_complete;
383 spinlock_t lock; /* lock before doing anything with the state */
384 struct i2c_msg msg;
386 /* After the last transaction, wait for a stop bit */
387 bool last_msg;
388 int msg_status;
390 enum img_i2c_mode mode;
391 u32 int_enable; /* depends on mode */
392 u32 line_status; /* line status over command */
395 * To avoid slave event interrupts in automatic mode, use a timer to
396 * poll the abort condition if we don't get an interrupt for too long.
398 struct timer_list check_timer;
399 bool t_halt;
401 /* atomic mode state */
402 bool at_t_done;
403 bool at_slave_event;
404 int at_cur_cmd;
405 u8 at_cur_data;
407 /* Sequence: either reset or stop. See img_i2c_sequence. */
408 u8 *seq;
410 /* raw mode */
411 unsigned int raw_timeout;
414 static int img_i2c_runtime_suspend(struct device *dev);
415 static int img_i2c_runtime_resume(struct device *dev);
417 static void img_i2c_writel(struct img_i2c *i2c, u32 offset, u32 value)
419 writel(value, i2c->base + offset);
422 static u32 img_i2c_readl(struct img_i2c *i2c, u32 offset)
424 return readl(i2c->base + offset);
428 * The code to read from the master read fifo, and write to the master
429 * write fifo, checks a bit in an SCB register before every byte to
430 * ensure that the fifo is not full (write fifo) or empty (read fifo).
431 * Due to clock domain crossing inside the SCB block the updated value
432 * of this bit is only visible after 2 cycles.
434 * The scb_wr_rd_fence() function does 2 dummy writes (to the read-only
435 * revision register), and it's called after reading from or writing to the
436 * fifos to ensure that subsequent reads of the fifo status bits do not read
437 * stale values.
439 static void img_i2c_wr_rd_fence(struct img_i2c *i2c)
441 if (i2c->need_wr_rd_fence) {
442 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
443 img_i2c_writel(i2c, SCB_CORE_REV_REG, 0);
447 static void img_i2c_switch_mode(struct img_i2c *i2c, enum img_i2c_mode mode)
449 i2c->mode = mode;
450 i2c->int_enable = img_i2c_int_enable_by_mode[mode];
451 i2c->line_status = 0;
454 static void img_i2c_raw_op(struct img_i2c *i2c)
456 i2c->raw_timeout = 0;
457 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
458 OVERRIDE_SCLKEN_OVR |
459 OVERRIDE_SDATEN_OVR |
460 OVERRIDE_MASTER |
461 OVERRIDE_LINE_OVR_EN |
462 OVERRIDE_DIRECT |
463 ((i2c->at_cur_cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
464 (i2c->at_cur_data << OVERRIDE_DATA_SHIFT));
467 static const char *img_i2c_atomic_op_name(unsigned int cmd)
469 if (unlikely(cmd >= ARRAY_SIZE(img_i2c_atomic_cmd_names)))
470 return "UNKNOWN";
471 return img_i2c_atomic_cmd_names[cmd];
474 /* Send a single atomic mode command to the hardware */
475 static void img_i2c_atomic_op(struct img_i2c *i2c, int cmd, u8 data)
477 i2c->at_cur_cmd = cmd;
478 i2c->at_cur_data = data;
480 /* work around lack of data setup time when generating data */
481 if (cmd == CMD_GEN_DATA && i2c->mode == MODE_ATOMIC) {
482 u32 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
484 if (line_status & LINESTAT_SDAT_LINE_STATUS && !(data & 0x80)) {
485 /* hold the data line down for a moment */
486 img_i2c_switch_mode(i2c, MODE_RAW);
487 img_i2c_raw_op(i2c);
488 return;
492 dev_dbg(i2c->adap.dev.parent,
493 "atomic cmd=%s (%d) data=%#x\n",
494 img_i2c_atomic_op_name(cmd), cmd, data);
495 i2c->at_t_done = (cmd == CMD_RET_DATA || cmd == CMD_RET_ACK);
496 i2c->at_slave_event = false;
497 i2c->line_status = 0;
499 img_i2c_writel(i2c, SCB_OVERRIDE_REG,
500 ((cmd & OVERRIDE_CMD_MASK) << OVERRIDE_CMD_SHIFT) |
501 OVERRIDE_MASTER |
502 OVERRIDE_DIRECT |
503 (data << OVERRIDE_DATA_SHIFT));
506 /* Start a transaction in atomic mode */
507 static void img_i2c_atomic_start(struct img_i2c *i2c)
509 img_i2c_switch_mode(i2c, MODE_ATOMIC);
510 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
511 img_i2c_atomic_op(i2c, CMD_GEN_START, 0x00);
514 static void img_i2c_soft_reset(struct img_i2c *i2c)
516 i2c->t_halt = false;
517 img_i2c_writel(i2c, SCB_CONTROL_REG, 0);
518 img_i2c_writel(i2c, SCB_CONTROL_REG,
519 SCB_CONTROL_CLK_ENABLE | SCB_CONTROL_SOFT_RESET);
523 * Enable or release transaction halt for control of repeated starts.
524 * In version 3.3 of the IP when transaction halt is set, an interrupt
525 * will be generated after each byte of a transfer instead of after
526 * every transfer but before the stop bit.
527 * Due to this behaviour we have to be careful that every time we
528 * release the transaction halt we have to re-enable it straight away
529 * so that we only process a single byte, not doing so will result in
530 * all remaining bytes been processed and a stop bit being issued,
531 * which will prevent us having a repeated start.
533 static void img_i2c_transaction_halt(struct img_i2c *i2c, bool t_halt)
535 u32 val;
537 if (i2c->t_halt == t_halt)
538 return;
539 i2c->t_halt = t_halt;
540 val = img_i2c_readl(i2c, SCB_CONTROL_REG);
541 if (t_halt)
542 val |= SCB_CONTROL_TRANSACTION_HALT;
543 else
544 val &= ~SCB_CONTROL_TRANSACTION_HALT;
545 img_i2c_writel(i2c, SCB_CONTROL_REG, val);
548 /* Drain data from the FIFO into the buffer (automatic mode) */
549 static void img_i2c_read_fifo(struct img_i2c *i2c)
551 while (i2c->msg.len) {
552 u32 fifo_status;
553 u8 data;
555 img_i2c_wr_rd_fence(i2c);
556 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
557 if (fifo_status & FIFO_READ_EMPTY)
558 break;
560 data = img_i2c_readl(i2c, SCB_READ_DATA_REG);
561 *i2c->msg.buf = data;
563 img_i2c_writel(i2c, SCB_READ_FIFO_REG, 0xff);
564 i2c->msg.len--;
565 i2c->msg.buf++;
569 /* Fill the FIFO with data from the buffer (automatic mode) */
570 static void img_i2c_write_fifo(struct img_i2c *i2c)
572 while (i2c->msg.len) {
573 u32 fifo_status;
575 img_i2c_wr_rd_fence(i2c);
576 fifo_status = img_i2c_readl(i2c, SCB_FIFO_STATUS_REG);
577 if (fifo_status & FIFO_WRITE_FULL)
578 break;
580 img_i2c_writel(i2c, SCB_WRITE_DATA_REG, *i2c->msg.buf);
581 i2c->msg.len--;
582 i2c->msg.buf++;
585 /* Disable fifo emptying interrupt if nothing more to write */
586 if (!i2c->msg.len)
587 i2c->int_enable &= ~INT_FIFO_EMPTYING;
590 /* Start a read transaction in automatic mode */
591 static void img_i2c_read(struct img_i2c *i2c)
593 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
594 if (!i2c->last_msg)
595 i2c->int_enable |= INT_SLAVE_EVENT;
597 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
598 img_i2c_writel(i2c, SCB_READ_ADDR_REG, i2c->msg.addr);
599 img_i2c_writel(i2c, SCB_READ_COUNT_REG, i2c->msg.len);
601 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
604 /* Start a write transaction in automatic mode */
605 static void img_i2c_write(struct img_i2c *i2c)
607 img_i2c_switch_mode(i2c, MODE_AUTOMATIC);
608 if (!i2c->last_msg)
609 i2c->int_enable |= INT_SLAVE_EVENT;
611 img_i2c_writel(i2c, SCB_WRITE_ADDR_REG, i2c->msg.addr);
612 img_i2c_writel(i2c, SCB_WRITE_COUNT_REG, i2c->msg.len);
614 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
615 img_i2c_write_fifo(i2c);
617 /* img_i2c_write_fifo() may modify int_enable */
618 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
622 * Indicate that the transaction is complete. This is called from the
623 * ISR to wake up the waiting thread, after which the ISR must not
624 * access any more SCB registers.
626 static void img_i2c_complete_transaction(struct img_i2c *i2c, int status)
628 img_i2c_switch_mode(i2c, MODE_INACTIVE);
629 if (status) {
630 i2c->msg_status = status;
631 img_i2c_transaction_halt(i2c, false);
633 complete(&i2c->msg_complete);
636 static unsigned int img_i2c_raw_atomic_delay_handler(struct img_i2c *i2c,
637 u32 int_status, u32 line_status)
639 /* Stay in raw mode for this, so we don't just loop infinitely */
640 img_i2c_atomic_op(i2c, i2c->at_cur_cmd, i2c->at_cur_data);
641 img_i2c_switch_mode(i2c, MODE_ATOMIC);
642 return 0;
645 static unsigned int img_i2c_raw(struct img_i2c *i2c, u32 int_status,
646 u32 line_status)
648 if (int_status & INT_TIMING) {
649 if (i2c->raw_timeout == 0)
650 return img_i2c_raw_atomic_delay_handler(i2c,
651 int_status, line_status);
652 --i2c->raw_timeout;
654 return 0;
657 static unsigned int img_i2c_sequence(struct img_i2c *i2c, u32 int_status)
659 static const unsigned int continue_bits[] = {
660 [CMD_GEN_START] = LINESTAT_START_BIT_DET,
661 [CMD_GEN_DATA] = LINESTAT_INPUT_HELD_V,
662 [CMD_RET_ACK] = LINESTAT_ACK_DET | LINESTAT_NACK_DET,
663 [CMD_RET_DATA] = LINESTAT_INPUT_HELD_V,
664 [CMD_GEN_STOP] = LINESTAT_STOP_BIT_DET,
666 int next_cmd = -1;
667 u8 next_data = 0x00;
669 if (int_status & INT_SLAVE_EVENT)
670 i2c->at_slave_event = true;
671 if (int_status & INT_TRANSACTION_DONE)
672 i2c->at_t_done = true;
674 if (!i2c->at_slave_event || !i2c->at_t_done)
675 return 0;
677 /* wait if no continue bits are set */
678 if (i2c->at_cur_cmd >= 0 &&
679 i2c->at_cur_cmd < ARRAY_SIZE(continue_bits)) {
680 unsigned int cont_bits = continue_bits[i2c->at_cur_cmd];
682 if (cont_bits) {
683 cont_bits |= LINESTAT_ABORT_DET;
684 if (!(i2c->line_status & cont_bits))
685 return 0;
689 /* follow the sequence of commands in i2c->seq */
690 next_cmd = *i2c->seq;
691 /* stop on a nil */
692 if (!next_cmd) {
693 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
694 return ISR_COMPLETE(0);
696 /* when generating data, the next byte is the data */
697 if (next_cmd == CMD_GEN_DATA) {
698 ++i2c->seq;
699 next_data = *i2c->seq;
701 ++i2c->seq;
702 img_i2c_atomic_op(i2c, next_cmd, next_data);
704 return 0;
707 static void img_i2c_reset_start(struct img_i2c *i2c)
709 /* Initiate the magic dance */
710 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
711 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
712 i2c->seq = img_i2c_reset_seq;
713 i2c->at_slave_event = true;
714 i2c->at_t_done = true;
715 i2c->at_cur_cmd = -1;
717 /* img_i2c_reset_seq isn't empty so the following won't fail */
718 img_i2c_sequence(i2c, 0);
721 static void img_i2c_stop_start(struct img_i2c *i2c)
723 /* Initiate a stop bit sequence */
724 img_i2c_switch_mode(i2c, MODE_SEQUENCE);
725 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
726 i2c->seq = img_i2c_stop_seq;
727 i2c->at_slave_event = true;
728 i2c->at_t_done = true;
729 i2c->at_cur_cmd = -1;
731 /* img_i2c_stop_seq isn't empty so the following won't fail */
732 img_i2c_sequence(i2c, 0);
735 static unsigned int img_i2c_atomic(struct img_i2c *i2c,
736 u32 int_status,
737 u32 line_status)
739 int next_cmd = -1;
740 u8 next_data = 0x00;
742 if (int_status & INT_SLAVE_EVENT)
743 i2c->at_slave_event = true;
744 if (int_status & INT_TRANSACTION_DONE)
745 i2c->at_t_done = true;
747 if (!i2c->at_slave_event || !i2c->at_t_done)
748 goto next_atomic_cmd;
749 if (i2c->line_status & LINESTAT_ABORT_DET) {
750 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
751 next_cmd = CMD_GEN_STOP;
752 i2c->msg_status = -EIO;
753 goto next_atomic_cmd;
756 /* i2c->at_cur_cmd may have completed */
757 switch (i2c->at_cur_cmd) {
758 case CMD_GEN_START:
759 next_cmd = CMD_GEN_DATA;
760 next_data = i2c_8bit_addr_from_msg(&i2c->msg);
761 break;
762 case CMD_GEN_DATA:
763 if (i2c->line_status & LINESTAT_INPUT_HELD_V)
764 next_cmd = CMD_RET_ACK;
765 break;
766 case CMD_RET_ACK:
767 if (i2c->line_status & LINESTAT_ACK_DET ||
768 (i2c->line_status & LINESTAT_NACK_DET &&
769 i2c->msg.flags & I2C_M_IGNORE_NAK)) {
770 if (i2c->msg.len == 0) {
771 next_cmd = CMD_GEN_STOP;
772 } else if (i2c->msg.flags & I2C_M_RD) {
773 next_cmd = CMD_RET_DATA;
774 } else {
775 next_cmd = CMD_GEN_DATA;
776 next_data = *i2c->msg.buf;
777 --i2c->msg.len;
778 ++i2c->msg.buf;
780 } else if (i2c->line_status & LINESTAT_NACK_DET) {
781 i2c->msg_status = -EIO;
782 next_cmd = CMD_GEN_STOP;
784 break;
785 case CMD_RET_DATA:
786 if (i2c->line_status & LINESTAT_INPUT_HELD_V) {
787 *i2c->msg.buf = (i2c->line_status &
788 LINESTAT_INPUT_DATA)
789 >> LINESTAT_INPUT_DATA_SHIFT;
790 --i2c->msg.len;
791 ++i2c->msg.buf;
792 if (i2c->msg.len)
793 next_cmd = CMD_GEN_ACK;
794 else
795 next_cmd = CMD_GEN_NACK;
797 break;
798 case CMD_GEN_ACK:
799 if (i2c->line_status & LINESTAT_ACK_DET) {
800 next_cmd = CMD_RET_DATA;
801 } else {
802 i2c->msg_status = -EIO;
803 next_cmd = CMD_GEN_STOP;
805 break;
806 case CMD_GEN_NACK:
807 next_cmd = CMD_GEN_STOP;
808 break;
809 case CMD_GEN_STOP:
810 img_i2c_writel(i2c, SCB_OVERRIDE_REG, 0);
811 return ISR_COMPLETE(0);
812 default:
813 dev_err(i2c->adap.dev.parent, "bad atomic command %d\n",
814 i2c->at_cur_cmd);
815 i2c->msg_status = -EIO;
816 next_cmd = CMD_GEN_STOP;
817 break;
820 next_atomic_cmd:
821 if (next_cmd != -1) {
822 /* don't actually stop unless we're the last transaction */
823 if (next_cmd == CMD_GEN_STOP && !i2c->msg_status &&
824 !i2c->last_msg)
825 return ISR_COMPLETE(0);
826 img_i2c_atomic_op(i2c, next_cmd, next_data);
828 return 0;
832 * Timer function to check if something has gone wrong in automatic mode (so we
833 * don't have to handle so many interrupts just to catch an exception).
835 static void img_i2c_check_timer(struct timer_list *t)
837 struct img_i2c *i2c = from_timer(i2c, t, check_timer);
838 unsigned long flags;
839 unsigned int line_status;
841 spin_lock_irqsave(&i2c->lock, flags);
842 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
844 /* check for an abort condition */
845 if (line_status & LINESTAT_ABORT_DET) {
846 dev_dbg(i2c->adap.dev.parent,
847 "abort condition detected by check timer\n");
848 /* enable slave event interrupt mask to trigger irq */
849 img_i2c_writel(i2c, SCB_INT_MASK_REG,
850 i2c->int_enable | INT_SLAVE_EVENT);
853 spin_unlock_irqrestore(&i2c->lock, flags);
856 static unsigned int img_i2c_auto(struct img_i2c *i2c,
857 unsigned int int_status,
858 unsigned int line_status)
860 if (int_status & (INT_WRITE_ACK_ERR | INT_ADDR_ACK_ERR))
861 return ISR_COMPLETE(EIO);
863 if (line_status & LINESTAT_ABORT_DET) {
864 dev_dbg(i2c->adap.dev.parent, "abort condition detected\n");
865 /* empty the read fifo */
866 if ((i2c->msg.flags & I2C_M_RD) &&
867 (int_status & INT_FIFO_FULL_FILLING))
868 img_i2c_read_fifo(i2c);
869 /* use atomic mode and try to force a stop bit */
870 i2c->msg_status = -EIO;
871 img_i2c_stop_start(i2c);
872 return 0;
875 /* Enable transaction halt on start bit */
876 if (!i2c->last_msg && line_status & LINESTAT_START_BIT_DET) {
877 img_i2c_transaction_halt(i2c, !i2c->last_msg);
878 /* we're no longer interested in the slave event */
879 i2c->int_enable &= ~INT_SLAVE_EVENT;
882 mod_timer(&i2c->check_timer, jiffies + msecs_to_jiffies(1));
884 if (int_status & INT_STOP_DETECTED) {
885 /* Drain remaining data in FIFO and complete transaction */
886 if (i2c->msg.flags & I2C_M_RD)
887 img_i2c_read_fifo(i2c);
888 return ISR_COMPLETE(0);
891 if (i2c->msg.flags & I2C_M_RD) {
892 if (int_status & (INT_FIFO_FULL_FILLING | INT_MASTER_HALTED)) {
893 img_i2c_read_fifo(i2c);
894 if (i2c->msg.len == 0)
895 return ISR_WAITSTOP;
897 } else {
898 if (int_status & (INT_FIFO_EMPTY | INT_MASTER_HALTED)) {
899 if ((int_status & INT_FIFO_EMPTY) &&
900 i2c->msg.len == 0)
901 return ISR_WAITSTOP;
902 img_i2c_write_fifo(i2c);
905 if (int_status & INT_MASTER_HALTED) {
907 * Release and then enable transaction halt, to
908 * allow only a single byte to proceed.
910 img_i2c_transaction_halt(i2c, false);
911 img_i2c_transaction_halt(i2c, !i2c->last_msg);
914 return 0;
917 static irqreturn_t img_i2c_isr(int irq, void *dev_id)
919 struct img_i2c *i2c = (struct img_i2c *)dev_id;
920 u32 int_status, line_status;
921 /* We handle transaction completion AFTER accessing registers */
922 unsigned int hret;
924 /* Read interrupt status register. */
925 int_status = img_i2c_readl(i2c, SCB_INT_STATUS_REG);
926 /* Clear detected interrupts. */
927 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status);
930 * Read line status and clear it until it actually is clear. We have
931 * to be careful not to lose any line status bits that get latched.
933 line_status = img_i2c_readl(i2c, SCB_STATUS_REG);
934 if (line_status & LINESTAT_LATCHED) {
935 img_i2c_writel(i2c, SCB_CLEAR_REG,
936 (line_status & LINESTAT_LATCHED)
937 >> LINESTAT_CLEAR_SHIFT);
938 img_i2c_wr_rd_fence(i2c);
941 spin_lock(&i2c->lock);
943 /* Keep track of line status bits received */
944 i2c->line_status &= ~LINESTAT_INPUT_DATA;
945 i2c->line_status |= line_status;
948 * Certain interrupts indicate that sclk low timeout is not
949 * a problem. If any of these are set, just continue.
951 if ((int_status & INT_SCLK_LOW_TIMEOUT) &&
952 !(int_status & (INT_SLAVE_EVENT |
953 INT_FIFO_EMPTY |
954 INT_FIFO_FULL))) {
955 dev_crit(i2c->adap.dev.parent,
956 "fatal: clock low timeout occurred %s addr 0x%02x\n",
957 (i2c->msg.flags & I2C_M_RD) ? "reading" : "writing",
958 i2c->msg.addr);
959 hret = ISR_FATAL(EIO);
960 goto out;
963 if (i2c->mode == MODE_ATOMIC)
964 hret = img_i2c_atomic(i2c, int_status, line_status);
965 else if (i2c->mode == MODE_AUTOMATIC)
966 hret = img_i2c_auto(i2c, int_status, line_status);
967 else if (i2c->mode == MODE_SEQUENCE)
968 hret = img_i2c_sequence(i2c, int_status);
969 else if (i2c->mode == MODE_WAITSTOP && (int_status & INT_SLAVE_EVENT) &&
970 (line_status & LINESTAT_STOP_BIT_DET))
971 hret = ISR_COMPLETE(0);
972 else if (i2c->mode == MODE_RAW)
973 hret = img_i2c_raw(i2c, int_status, line_status);
974 else
975 hret = 0;
977 /* Clear detected level interrupts. */
978 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, int_status & INT_LEVEL);
980 out:
981 if (hret & ISR_WAITSTOP) {
983 * Only wait for stop on last message.
984 * Also we may already have detected the stop bit.
986 if (!i2c->last_msg || i2c->line_status & LINESTAT_STOP_BIT_DET)
987 hret = ISR_COMPLETE(0);
988 else
989 img_i2c_switch_mode(i2c, MODE_WAITSTOP);
992 /* now we've finished using regs, handle transaction completion */
993 if (hret & ISR_COMPLETE_M) {
994 int status = -(hret & ISR_STATUS_M);
996 img_i2c_complete_transaction(i2c, status);
997 if (hret & ISR_FATAL_M)
998 img_i2c_switch_mode(i2c, MODE_FATAL);
1001 /* Enable interrupts (int_enable may be altered by changing mode) */
1002 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1004 spin_unlock(&i2c->lock);
1006 return IRQ_HANDLED;
1009 /* Force a bus reset sequence and wait for it to complete */
1010 static int img_i2c_reset_bus(struct img_i2c *i2c)
1012 unsigned long flags;
1013 unsigned long time_left;
1015 spin_lock_irqsave(&i2c->lock, flags);
1016 reinit_completion(&i2c->msg_complete);
1017 img_i2c_reset_start(i2c);
1018 spin_unlock_irqrestore(&i2c->lock, flags);
1020 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1021 IMG_I2C_TIMEOUT);
1022 if (time_left == 0)
1023 return -ETIMEDOUT;
1024 return 0;
1027 static int img_i2c_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs,
1028 int num)
1030 struct img_i2c *i2c = i2c_get_adapdata(adap);
1031 bool atomic = false;
1032 int i, ret;
1033 unsigned long time_left;
1035 if (i2c->mode == MODE_SUSPEND) {
1036 WARN(1, "refusing to service transaction in suspended state\n");
1037 return -EIO;
1040 if (i2c->mode == MODE_FATAL)
1041 return -EIO;
1043 for (i = 0; i < num; i++) {
1045 * 0 byte reads are not possible because the slave could try
1046 * and pull the data line low, preventing a stop bit.
1048 if (!msgs[i].len && msgs[i].flags & I2C_M_RD)
1049 return -EIO;
1051 * 0 byte writes are possible and used for probing, but we
1052 * cannot do them in automatic mode, so use atomic mode
1053 * instead.
1055 * Also, the I2C_M_IGNORE_NAK mode can only be implemented
1056 * in atomic mode.
1058 if (!msgs[i].len ||
1059 (msgs[i].flags & I2C_M_IGNORE_NAK))
1060 atomic = true;
1063 ret = pm_runtime_get_sync(adap->dev.parent);
1064 if (ret < 0)
1065 return ret;
1067 for (i = 0; i < num; i++) {
1068 struct i2c_msg *msg = &msgs[i];
1069 unsigned long flags;
1071 spin_lock_irqsave(&i2c->lock, flags);
1074 * Make a copy of the message struct. We mustn't modify the
1075 * original or we'll confuse drivers and i2c-dev.
1077 i2c->msg = *msg;
1078 i2c->msg_status = 0;
1081 * After the last message we must have waited for a stop bit.
1082 * Not waiting can cause problems when the clock is disabled
1083 * before the stop bit is sent, and the linux I2C interface
1084 * requires separate transfers not to joined with repeated
1085 * start.
1087 i2c->last_msg = (i == num - 1);
1088 reinit_completion(&i2c->msg_complete);
1091 * Clear line status and all interrupts before starting a
1092 * transfer, as we may have unserviced interrupts from
1093 * previous transfers that might be handled in the context
1094 * of the new transfer.
1096 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1097 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1099 if (atomic) {
1100 img_i2c_atomic_start(i2c);
1101 } else {
1103 * Enable transaction halt if not the last message in
1104 * the queue so that we can control repeated starts.
1106 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1108 if (msg->flags & I2C_M_RD)
1109 img_i2c_read(i2c);
1110 else
1111 img_i2c_write(i2c);
1114 * Release and then enable transaction halt, to
1115 * allow only a single byte to proceed.
1116 * This doesn't have an effect on the initial transfer
1117 * but will allow the following transfers to start
1118 * processing if the previous transfer was marked as
1119 * complete while the i2c block was halted.
1121 img_i2c_transaction_halt(i2c, false);
1122 img_i2c_transaction_halt(i2c, !i2c->last_msg);
1124 spin_unlock_irqrestore(&i2c->lock, flags);
1126 time_left = wait_for_completion_timeout(&i2c->msg_complete,
1127 IMG_I2C_TIMEOUT);
1128 del_timer_sync(&i2c->check_timer);
1130 if (time_left == 0) {
1131 dev_err(adap->dev.parent, "i2c transfer timed out\n");
1132 i2c->msg_status = -ETIMEDOUT;
1133 break;
1136 if (i2c->msg_status)
1137 break;
1140 pm_runtime_mark_last_busy(adap->dev.parent);
1141 pm_runtime_put_autosuspend(adap->dev.parent);
1143 return i2c->msg_status ? i2c->msg_status : num;
1146 static u32 img_i2c_func(struct i2c_adapter *adap)
1148 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
1151 static const struct i2c_algorithm img_i2c_algo = {
1152 .master_xfer = img_i2c_xfer,
1153 .functionality = img_i2c_func,
1156 static int img_i2c_init(struct img_i2c *i2c)
1158 unsigned int clk_khz, bitrate_khz, clk_period, tckh, tckl, tsdh;
1159 unsigned int i, data, prescale, inc, int_bitrate, filt;
1160 struct img_i2c_timings timing;
1161 u32 rev;
1162 int ret;
1164 ret = pm_runtime_get_sync(i2c->adap.dev.parent);
1165 if (ret < 0)
1166 return ret;
1168 rev = img_i2c_readl(i2c, SCB_CORE_REV_REG);
1169 if ((rev & 0x00ffffff) < 0x00020200) {
1170 dev_info(i2c->adap.dev.parent,
1171 "Unknown hardware revision (%d.%d.%d.%d)\n",
1172 (rev >> 24) & 0xff, (rev >> 16) & 0xff,
1173 (rev >> 8) & 0xff, rev & 0xff);
1174 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1175 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1176 return -EINVAL;
1179 /* Fencing enabled by default. */
1180 i2c->need_wr_rd_fence = true;
1182 /* Determine what mode we're in from the bitrate */
1183 timing = timings[0];
1184 for (i = 0; i < ARRAY_SIZE(timings); i++) {
1185 if (i2c->bitrate <= timings[i].max_bitrate) {
1186 timing = timings[i];
1187 break;
1190 if (i2c->bitrate > timings[ARRAY_SIZE(timings) - 1].max_bitrate) {
1191 dev_warn(i2c->adap.dev.parent,
1192 "requested bitrate (%u) is higher than the max bitrate supported (%u)\n",
1193 i2c->bitrate,
1194 timings[ARRAY_SIZE(timings) - 1].max_bitrate);
1195 timing = timings[ARRAY_SIZE(timings) - 1];
1196 i2c->bitrate = timing.max_bitrate;
1199 bitrate_khz = i2c->bitrate / 1000;
1200 clk_khz = clk_get_rate(i2c->scb_clk) / 1000;
1202 /* Find the prescale that would give us that inc (approx delay = 0) */
1203 prescale = SCB_OPT_INC * clk_khz / (256 * 16 * bitrate_khz);
1204 prescale = clamp_t(unsigned int, prescale, 1, 8);
1205 clk_khz /= prescale;
1207 /* Setup the clock increment value */
1208 inc = (256 * 16 * bitrate_khz) / clk_khz;
1211 * The clock generation logic allows to filter glitches on the bus.
1212 * This filter is able to remove bus glitches shorter than 50ns.
1213 * If the clock enable rate is greater than 20 MHz, no filtering
1214 * is required, so we need to disable it.
1215 * If it's between the 20-40 MHz range, there's no need to divide
1216 * the clock to get a filter.
1218 if (clk_khz < 20000) {
1219 filt = SCB_FILT_DISABLE;
1220 } else if (clk_khz < 40000) {
1221 filt = SCB_FILT_BYPASS;
1222 } else {
1223 /* Calculate filter clock */
1224 filt = (64000 / ((clk_khz / 1000) * SCB_FILT_GLITCH));
1226 /* Scale up if needed */
1227 if (64000 % ((clk_khz / 1000) * SCB_FILT_GLITCH))
1228 inc++;
1230 if (filt > SCB_FILT_INC_MASK)
1231 filt = SCB_FILT_INC_MASK;
1233 filt = (filt & SCB_FILT_INC_MASK) << SCB_FILT_INC_SHIFT;
1235 data = filt | ((inc & SCB_INC_MASK) << SCB_INC_SHIFT) | (prescale - 1);
1236 img_i2c_writel(i2c, SCB_CLK_SET_REG, data);
1238 /* Obtain the clock period of the fx16 clock in ns */
1239 clk_period = (256 * 1000000) / (clk_khz * inc);
1241 /* Calculate the bitrate in terms of internal clock pulses */
1242 int_bitrate = 1000000 / (bitrate_khz * clk_period);
1243 if ((1000000 % (bitrate_khz * clk_period)) >=
1244 ((bitrate_khz * clk_period) / 2))
1245 int_bitrate++;
1248 * Setup clock duty cycle, start with 50% and adjust TCKH and TCKL
1249 * values from there if they don't meet minimum timing requirements
1251 tckh = int_bitrate / 2;
1252 tckl = int_bitrate - tckh;
1254 /* Adjust TCKH and TCKL values */
1255 data = DIV_ROUND_UP(timing.tckl, clk_period);
1257 if (tckl < data) {
1258 tckl = data;
1259 tckh = int_bitrate - tckl;
1262 if (tckh > 0)
1263 --tckh;
1265 if (tckl > 0)
1266 --tckl;
1268 img_i2c_writel(i2c, SCB_TIME_TCKH_REG, tckh);
1269 img_i2c_writel(i2c, SCB_TIME_TCKL_REG, tckl);
1271 /* Setup TSDH value */
1272 tsdh = DIV_ROUND_UP(timing.tsdh, clk_period);
1274 if (tsdh > 1)
1275 data = tsdh - 1;
1276 else
1277 data = 0x01;
1278 img_i2c_writel(i2c, SCB_TIME_TSDH_REG, data);
1280 /* This value is used later */
1281 tsdh = data;
1283 /* Setup TPL value */
1284 data = timing.tpl / clk_period;
1285 if (data > 0)
1286 --data;
1287 img_i2c_writel(i2c, SCB_TIME_TPL_REG, data);
1289 /* Setup TPH value */
1290 data = timing.tph / clk_period;
1291 if (data > 0)
1292 --data;
1293 img_i2c_writel(i2c, SCB_TIME_TPH_REG, data);
1295 /* Setup TSDL value to TPL + TSDH + 2 */
1296 img_i2c_writel(i2c, SCB_TIME_TSDL_REG, data + tsdh + 2);
1298 /* Setup TP2S value */
1299 data = timing.tp2s / clk_period;
1300 if (data > 0)
1301 --data;
1302 img_i2c_writel(i2c, SCB_TIME_TP2S_REG, data);
1304 img_i2c_writel(i2c, SCB_TIME_TBI_REG, TIMEOUT_TBI);
1305 img_i2c_writel(i2c, SCB_TIME_TSL_REG, TIMEOUT_TSL);
1306 img_i2c_writel(i2c, SCB_TIME_TDL_REG, TIMEOUT_TDL);
1308 /* Take module out of soft reset and enable clocks */
1309 img_i2c_soft_reset(i2c);
1311 /* Disable all interrupts */
1312 img_i2c_writel(i2c, SCB_INT_MASK_REG, 0);
1314 /* Clear all interrupts */
1315 img_i2c_writel(i2c, SCB_INT_CLEAR_REG, ~0);
1317 /* Clear the scb_line_status events */
1318 img_i2c_writel(i2c, SCB_CLEAR_REG, ~0);
1320 /* Enable interrupts */
1321 img_i2c_writel(i2c, SCB_INT_MASK_REG, i2c->int_enable);
1323 /* Perform a synchronous sequence to reset the bus */
1324 ret = img_i2c_reset_bus(i2c);
1326 pm_runtime_mark_last_busy(i2c->adap.dev.parent);
1327 pm_runtime_put_autosuspend(i2c->adap.dev.parent);
1329 return ret;
1332 static int img_i2c_probe(struct platform_device *pdev)
1334 struct device_node *node = pdev->dev.of_node;
1335 struct img_i2c *i2c;
1336 struct resource *res;
1337 int irq, ret;
1338 u32 val;
1340 i2c = devm_kzalloc(&pdev->dev, sizeof(struct img_i2c), GFP_KERNEL);
1341 if (!i2c)
1342 return -ENOMEM;
1344 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1345 i2c->base = devm_ioremap_resource(&pdev->dev, res);
1346 if (IS_ERR(i2c->base))
1347 return PTR_ERR(i2c->base);
1349 irq = platform_get_irq(pdev, 0);
1350 if (irq < 0) {
1351 dev_err(&pdev->dev, "can't get irq number\n");
1352 return irq;
1355 i2c->sys_clk = devm_clk_get(&pdev->dev, "sys");
1356 if (IS_ERR(i2c->sys_clk)) {
1357 dev_err(&pdev->dev, "can't get system clock\n");
1358 return PTR_ERR(i2c->sys_clk);
1361 i2c->scb_clk = devm_clk_get(&pdev->dev, "scb");
1362 if (IS_ERR(i2c->scb_clk)) {
1363 dev_err(&pdev->dev, "can't get core clock\n");
1364 return PTR_ERR(i2c->scb_clk);
1367 ret = devm_request_irq(&pdev->dev, irq, img_i2c_isr, 0,
1368 pdev->name, i2c);
1369 if (ret) {
1370 dev_err(&pdev->dev, "can't request irq %d\n", irq);
1371 return ret;
1374 /* Set up the exception check timer */
1375 timer_setup(&i2c->check_timer, img_i2c_check_timer, 0);
1377 i2c->bitrate = timings[0].max_bitrate;
1378 if (!of_property_read_u32(node, "clock-frequency", &val))
1379 i2c->bitrate = val;
1381 i2c_set_adapdata(&i2c->adap, i2c);
1382 i2c->adap.dev.parent = &pdev->dev;
1383 i2c->adap.dev.of_node = node;
1384 i2c->adap.owner = THIS_MODULE;
1385 i2c->adap.algo = &img_i2c_algo;
1386 i2c->adap.retries = 5;
1387 i2c->adap.nr = pdev->id;
1388 snprintf(i2c->adap.name, sizeof(i2c->adap.name), "IMG SCB I2C");
1390 img_i2c_switch_mode(i2c, MODE_INACTIVE);
1391 spin_lock_init(&i2c->lock);
1392 init_completion(&i2c->msg_complete);
1394 platform_set_drvdata(pdev, i2c);
1396 pm_runtime_set_autosuspend_delay(&pdev->dev, IMG_I2C_PM_TIMEOUT);
1397 pm_runtime_use_autosuspend(&pdev->dev);
1398 pm_runtime_enable(&pdev->dev);
1399 if (!pm_runtime_enabled(&pdev->dev)) {
1400 ret = img_i2c_runtime_resume(&pdev->dev);
1401 if (ret)
1402 return ret;
1405 ret = img_i2c_init(i2c);
1406 if (ret)
1407 goto rpm_disable;
1409 ret = i2c_add_numbered_adapter(&i2c->adap);
1410 if (ret < 0)
1411 goto rpm_disable;
1413 return 0;
1415 rpm_disable:
1416 if (!pm_runtime_enabled(&pdev->dev))
1417 img_i2c_runtime_suspend(&pdev->dev);
1418 pm_runtime_disable(&pdev->dev);
1419 pm_runtime_dont_use_autosuspend(&pdev->dev);
1420 return ret;
1423 static int img_i2c_remove(struct platform_device *dev)
1425 struct img_i2c *i2c = platform_get_drvdata(dev);
1427 i2c_del_adapter(&i2c->adap);
1428 pm_runtime_disable(&dev->dev);
1429 if (!pm_runtime_status_suspended(&dev->dev))
1430 img_i2c_runtime_suspend(&dev->dev);
1432 return 0;
1435 static int img_i2c_runtime_suspend(struct device *dev)
1437 struct img_i2c *i2c = dev_get_drvdata(dev);
1439 clk_disable_unprepare(i2c->scb_clk);
1440 clk_disable_unprepare(i2c->sys_clk);
1442 return 0;
1445 static int img_i2c_runtime_resume(struct device *dev)
1447 struct img_i2c *i2c = dev_get_drvdata(dev);
1448 int ret;
1450 ret = clk_prepare_enable(i2c->sys_clk);
1451 if (ret) {
1452 dev_err(dev, "Unable to enable sys clock\n");
1453 return ret;
1456 ret = clk_prepare_enable(i2c->scb_clk);
1457 if (ret) {
1458 dev_err(dev, "Unable to enable scb clock\n");
1459 clk_disable_unprepare(i2c->sys_clk);
1460 return ret;
1463 return 0;
1466 #ifdef CONFIG_PM_SLEEP
1467 static int img_i2c_suspend(struct device *dev)
1469 struct img_i2c *i2c = dev_get_drvdata(dev);
1470 int ret;
1472 ret = pm_runtime_force_suspend(dev);
1473 if (ret)
1474 return ret;
1476 img_i2c_switch_mode(i2c, MODE_SUSPEND);
1478 return 0;
1481 static int img_i2c_resume(struct device *dev)
1483 struct img_i2c *i2c = dev_get_drvdata(dev);
1484 int ret;
1486 ret = pm_runtime_force_resume(dev);
1487 if (ret)
1488 return ret;
1490 img_i2c_init(i2c);
1492 return 0;
1494 #endif /* CONFIG_PM_SLEEP */
1496 static const struct dev_pm_ops img_i2c_pm = {
1497 SET_RUNTIME_PM_OPS(img_i2c_runtime_suspend,
1498 img_i2c_runtime_resume,
1499 NULL)
1500 SET_SYSTEM_SLEEP_PM_OPS(img_i2c_suspend, img_i2c_resume)
1503 static const struct of_device_id img_scb_i2c_match[] = {
1504 { .compatible = "img,scb-i2c" },
1507 MODULE_DEVICE_TABLE(of, img_scb_i2c_match);
1509 static struct platform_driver img_scb_i2c_driver = {
1510 .driver = {
1511 .name = "img-i2c-scb",
1512 .of_match_table = img_scb_i2c_match,
1513 .pm = &img_i2c_pm,
1515 .probe = img_i2c_probe,
1516 .remove = img_i2c_remove,
1518 module_platform_driver(img_scb_i2c_driver);
1520 MODULE_AUTHOR("James Hogan <jhogan@kernel.org>");
1521 MODULE_DESCRIPTION("IMG host I2C driver");
1522 MODULE_LICENSE("GPL v2");