2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/swap.h>
89 #include <linux/seq_file.h>
90 #include <linux/proc_fs.h>
91 #include <linux/migrate.h>
92 #include <linux/ksm.h>
93 #include <linux/rmap.h>
94 #include <linux/security.h>
95 #include <linux/syscalls.h>
96 #include <linux/ctype.h>
97 #include <linux/mm_inline.h>
98 #include <linux/mmu_notifier.h>
99 #include <linux/printk.h>
101 #include <asm/tlbflush.h>
102 #include <linux/uaccess.h>
104 #include "internal.h"
107 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
108 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
110 static struct kmem_cache
*policy_cache
;
111 static struct kmem_cache
*sn_cache
;
113 /* Highest zone. An specific allocation for a zone below that is not
115 enum zone_type policy_zone
= 0;
118 * run-time system-wide default policy => local allocation
120 static struct mempolicy default_policy
= {
121 .refcnt
= ATOMIC_INIT(1), /* never free it */
122 .mode
= MPOL_PREFERRED
,
123 .flags
= MPOL_F_LOCAL
,
126 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
128 struct mempolicy
*get_task_policy(struct task_struct
*p
)
130 struct mempolicy
*pol
= p
->mempolicy
;
136 node
= numa_node_id();
137 if (node
!= NUMA_NO_NODE
) {
138 pol
= &preferred_node_policy
[node
];
139 /* preferred_node_policy is not initialised early in boot */
144 return &default_policy
;
147 static const struct mempolicy_operations
{
148 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
149 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
150 } mpol_ops
[MPOL_MAX
];
152 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
154 return pol
->flags
& MPOL_MODE_FLAGS
;
157 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
158 const nodemask_t
*rel
)
161 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
162 nodes_onto(*ret
, tmp
, *rel
);
165 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
167 if (nodes_empty(*nodes
))
169 pol
->v
.nodes
= *nodes
;
173 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
176 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
177 else if (nodes_empty(*nodes
))
178 return -EINVAL
; /* no allowed nodes */
180 pol
->v
.preferred_node
= first_node(*nodes
);
184 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
186 if (nodes_empty(*nodes
))
188 pol
->v
.nodes
= *nodes
;
193 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
194 * any, for the new policy. mpol_new() has already validated the nodes
195 * parameter with respect to the policy mode and flags. But, we need to
196 * handle an empty nodemask with MPOL_PREFERRED here.
198 * Must be called holding task's alloc_lock to protect task's mems_allowed
199 * and mempolicy. May also be called holding the mmap_semaphore for write.
201 static int mpol_set_nodemask(struct mempolicy
*pol
,
202 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
206 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
210 nodes_and(nsc
->mask1
,
211 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
214 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
215 nodes
= NULL
; /* explicit local allocation */
217 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
218 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
220 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
222 if (mpol_store_user_nodemask(pol
))
223 pol
->w
.user_nodemask
= *nodes
;
225 pol
->w
.cpuset_mems_allowed
=
226 cpuset_current_mems_allowed
;
230 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
232 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
237 * This function just creates a new policy, does some check and simple
238 * initialization. You must invoke mpol_set_nodemask() to set nodes.
240 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
243 struct mempolicy
*policy
;
245 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
246 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
248 if (mode
== MPOL_DEFAULT
) {
249 if (nodes
&& !nodes_empty(*nodes
))
250 return ERR_PTR(-EINVAL
);
256 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
257 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
258 * All other modes require a valid pointer to a non-empty nodemask.
260 if (mode
== MPOL_PREFERRED
) {
261 if (nodes_empty(*nodes
)) {
262 if (((flags
& MPOL_F_STATIC_NODES
) ||
263 (flags
& MPOL_F_RELATIVE_NODES
)))
264 return ERR_PTR(-EINVAL
);
266 } else if (mode
== MPOL_LOCAL
) {
267 if (!nodes_empty(*nodes
) ||
268 (flags
& MPOL_F_STATIC_NODES
) ||
269 (flags
& MPOL_F_RELATIVE_NODES
))
270 return ERR_PTR(-EINVAL
);
271 mode
= MPOL_PREFERRED
;
272 } else if (nodes_empty(*nodes
))
273 return ERR_PTR(-EINVAL
);
274 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
276 return ERR_PTR(-ENOMEM
);
277 atomic_set(&policy
->refcnt
, 1);
279 policy
->flags
= flags
;
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy
*p
)
287 if (!atomic_dec_and_test(&p
->refcnt
))
289 kmem_cache_free(policy_cache
, p
);
292 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
)
296 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
)
300 if (pol
->flags
& MPOL_F_STATIC_NODES
)
301 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
302 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
303 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
305 nodes_remap(tmp
, pol
->v
.nodes
,pol
->w
.cpuset_mems_allowed
,
307 pol
->w
.cpuset_mems_allowed
= tmp
;
310 if (nodes_empty(tmp
))
316 static void mpol_rebind_preferred(struct mempolicy
*pol
,
317 const nodemask_t
*nodes
)
321 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
322 int node
= first_node(pol
->w
.user_nodemask
);
324 if (node_isset(node
, *nodes
)) {
325 pol
->v
.preferred_node
= node
;
326 pol
->flags
&= ~MPOL_F_LOCAL
;
328 pol
->flags
|= MPOL_F_LOCAL
;
329 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
330 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
331 pol
->v
.preferred_node
= first_node(tmp
);
332 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
333 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
334 pol
->w
.cpuset_mems_allowed
,
336 pol
->w
.cpuset_mems_allowed
= *nodes
;
341 * mpol_rebind_policy - Migrate a policy to a different set of nodes
343 * Per-vma policies are protected by mmap_sem. Allocations using per-task
344 * policies are protected by task->mems_allowed_seq to prevent a premature
345 * OOM/allocation failure due to parallel nodemask modification.
347 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
)
351 if (!mpol_store_user_nodemask(pol
) &&
352 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
355 mpol_ops
[pol
->mode
].rebind(pol
, newmask
);
359 * Wrapper for mpol_rebind_policy() that just requires task
360 * pointer, and updates task mempolicy.
362 * Called with task's alloc_lock held.
365 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new)
367 mpol_rebind_policy(tsk
->mempolicy
, new);
371 * Rebind each vma in mm to new nodemask.
373 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
378 struct vm_area_struct
*vma
;
380 down_write(&mm
->mmap_sem
);
381 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
382 mpol_rebind_policy(vma
->vm_policy
, new);
383 up_write(&mm
->mmap_sem
);
386 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
388 .rebind
= mpol_rebind_default
,
390 [MPOL_INTERLEAVE
] = {
391 .create
= mpol_new_interleave
,
392 .rebind
= mpol_rebind_nodemask
,
395 .create
= mpol_new_preferred
,
396 .rebind
= mpol_rebind_preferred
,
399 .create
= mpol_new_bind
,
400 .rebind
= mpol_rebind_nodemask
,
404 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
405 unsigned long flags
);
408 struct list_head
*pagelist
;
411 struct vm_area_struct
*prev
;
415 * Scan through pages checking if pages follow certain conditions,
416 * and move them to the pagelist if they do.
418 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
419 unsigned long end
, struct mm_walk
*walk
)
421 struct vm_area_struct
*vma
= walk
->vma
;
423 struct queue_pages
*qp
= walk
->private;
424 unsigned long flags
= qp
->flags
;
429 if (pmd_trans_huge(*pmd
)) {
430 ptl
= pmd_lock(walk
->mm
, pmd
);
431 if (pmd_trans_huge(*pmd
)) {
432 page
= pmd_page(*pmd
);
433 if (is_huge_zero_page(page
)) {
435 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
440 ret
= split_huge_page(page
);
451 if (pmd_trans_unstable(pmd
))
454 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
455 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
456 if (!pte_present(*pte
))
458 page
= vm_normal_page(vma
, addr
, *pte
);
462 * vm_normal_page() filters out zero pages, but there might
463 * still be PageReserved pages to skip, perhaps in a VDSO.
465 if (PageReserved(page
))
467 nid
= page_to_nid(page
);
468 if (node_isset(nid
, *qp
->nmask
) == !!(flags
& MPOL_MF_INVERT
))
470 if (PageTransCompound(page
)) {
472 pte_unmap_unlock(pte
, ptl
);
474 ret
= split_huge_page(page
);
477 /* Failed to split -- skip. */
479 pte
= pte_offset_map_lock(walk
->mm
, pmd
,
486 migrate_page_add(page
, qp
->pagelist
, flags
);
488 pte_unmap_unlock(pte
- 1, ptl
);
493 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
494 unsigned long addr
, unsigned long end
,
495 struct mm_walk
*walk
)
497 #ifdef CONFIG_HUGETLB_PAGE
498 struct queue_pages
*qp
= walk
->private;
499 unsigned long flags
= qp
->flags
;
505 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
506 entry
= huge_ptep_get(pte
);
507 if (!pte_present(entry
))
509 page
= pte_page(entry
);
510 nid
= page_to_nid(page
);
511 if (node_isset(nid
, *qp
->nmask
) == !!(flags
& MPOL_MF_INVERT
))
513 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
514 if (flags
& (MPOL_MF_MOVE_ALL
) ||
515 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
516 isolate_huge_page(page
, qp
->pagelist
);
525 #ifdef CONFIG_NUMA_BALANCING
527 * This is used to mark a range of virtual addresses to be inaccessible.
528 * These are later cleared by a NUMA hinting fault. Depending on these
529 * faults, pages may be migrated for better NUMA placement.
531 * This is assuming that NUMA faults are handled using PROT_NONE. If
532 * an architecture makes a different choice, it will need further
533 * changes to the core.
535 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
536 unsigned long addr
, unsigned long end
)
540 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
542 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
547 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
548 unsigned long addr
, unsigned long end
)
552 #endif /* CONFIG_NUMA_BALANCING */
554 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
555 struct mm_walk
*walk
)
557 struct vm_area_struct
*vma
= walk
->vma
;
558 struct queue_pages
*qp
= walk
->private;
559 unsigned long endvma
= vma
->vm_end
;
560 unsigned long flags
= qp
->flags
;
562 if (!vma_migratable(vma
))
567 if (vma
->vm_start
> start
)
568 start
= vma
->vm_start
;
570 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
571 if (!vma
->vm_next
&& vma
->vm_end
< end
)
573 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
579 if (flags
& MPOL_MF_LAZY
) {
580 /* Similar to task_numa_work, skip inaccessible VMAs */
581 if (!is_vm_hugetlb_page(vma
) &&
582 (vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)) &&
583 !(vma
->vm_flags
& VM_MIXEDMAP
))
584 change_prot_numa(vma
, start
, endvma
);
588 /* queue pages from current vma */
589 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
595 * Walk through page tables and collect pages to be migrated.
597 * If pages found in a given range are on a set of nodes (determined by
598 * @nodes and @flags,) it's isolated and queued to the pagelist which is
599 * passed via @private.)
602 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
603 nodemask_t
*nodes
, unsigned long flags
,
604 struct list_head
*pagelist
)
606 struct queue_pages qp
= {
607 .pagelist
= pagelist
,
612 struct mm_walk queue_pages_walk
= {
613 .hugetlb_entry
= queue_pages_hugetlb
,
614 .pmd_entry
= queue_pages_pte_range
,
615 .test_walk
= queue_pages_test_walk
,
620 return walk_page_range(start
, end
, &queue_pages_walk
);
624 * Apply policy to a single VMA
625 * This must be called with the mmap_sem held for writing.
627 static int vma_replace_policy(struct vm_area_struct
*vma
,
628 struct mempolicy
*pol
)
631 struct mempolicy
*old
;
632 struct mempolicy
*new;
634 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
635 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
636 vma
->vm_ops
, vma
->vm_file
,
637 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
643 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
644 err
= vma
->vm_ops
->set_policy(vma
, new);
649 old
= vma
->vm_policy
;
650 vma
->vm_policy
= new; /* protected by mmap_sem */
659 /* Step 2: apply policy to a range and do splits. */
660 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
661 unsigned long end
, struct mempolicy
*new_pol
)
663 struct vm_area_struct
*next
;
664 struct vm_area_struct
*prev
;
665 struct vm_area_struct
*vma
;
668 unsigned long vmstart
;
671 vma
= find_vma(mm
, start
);
672 if (!vma
|| vma
->vm_start
> start
)
676 if (start
> vma
->vm_start
)
679 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
681 vmstart
= max(start
, vma
->vm_start
);
682 vmend
= min(end
, vma
->vm_end
);
684 if (mpol_equal(vma_policy(vma
), new_pol
))
687 pgoff
= vma
->vm_pgoff
+
688 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
689 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
690 vma
->anon_vma
, vma
->vm_file
, pgoff
,
691 new_pol
, vma
->vm_userfaultfd_ctx
);
695 if (mpol_equal(vma_policy(vma
), new_pol
))
697 /* vma_merge() joined vma && vma->next, case 8 */
700 if (vma
->vm_start
!= vmstart
) {
701 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
705 if (vma
->vm_end
!= vmend
) {
706 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
711 err
= vma_replace_policy(vma
, new_pol
);
720 /* Set the process memory policy */
721 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
724 struct mempolicy
*new, *old
;
725 NODEMASK_SCRATCH(scratch
);
731 new = mpol_new(mode
, flags
, nodes
);
738 ret
= mpol_set_nodemask(new, nodes
, scratch
);
740 task_unlock(current
);
744 old
= current
->mempolicy
;
745 current
->mempolicy
= new;
746 if (new && new->mode
== MPOL_INTERLEAVE
)
747 current
->il_prev
= MAX_NUMNODES
-1;
748 task_unlock(current
);
752 NODEMASK_SCRATCH_FREE(scratch
);
757 * Return nodemask for policy for get_mempolicy() query
759 * Called with task's alloc_lock held
761 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
764 if (p
== &default_policy
)
770 case MPOL_INTERLEAVE
:
774 if (!(p
->flags
& MPOL_F_LOCAL
))
775 node_set(p
->v
.preferred_node
, *nodes
);
776 /* else return empty node mask for local allocation */
783 static int lookup_node(unsigned long addr
)
788 err
= get_user_pages(addr
& PAGE_MASK
, 1, 0, &p
, NULL
);
790 err
= page_to_nid(p
);
796 /* Retrieve NUMA policy */
797 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
798 unsigned long addr
, unsigned long flags
)
801 struct mm_struct
*mm
= current
->mm
;
802 struct vm_area_struct
*vma
= NULL
;
803 struct mempolicy
*pol
= current
->mempolicy
;
806 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
809 if (flags
& MPOL_F_MEMS_ALLOWED
) {
810 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
812 *policy
= 0; /* just so it's initialized */
814 *nmask
= cpuset_current_mems_allowed
;
815 task_unlock(current
);
819 if (flags
& MPOL_F_ADDR
) {
821 * Do NOT fall back to task policy if the
822 * vma/shared policy at addr is NULL. We
823 * want to return MPOL_DEFAULT in this case.
825 down_read(&mm
->mmap_sem
);
826 vma
= find_vma_intersection(mm
, addr
, addr
+1);
828 up_read(&mm
->mmap_sem
);
831 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
832 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
834 pol
= vma
->vm_policy
;
839 pol
= &default_policy
; /* indicates default behavior */
841 if (flags
& MPOL_F_NODE
) {
842 if (flags
& MPOL_F_ADDR
) {
843 err
= lookup_node(addr
);
847 } else if (pol
== current
->mempolicy
&&
848 pol
->mode
== MPOL_INTERLEAVE
) {
849 *policy
= next_node_in(current
->il_prev
, pol
->v
.nodes
);
855 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
858 * Internal mempolicy flags must be masked off before exposing
859 * the policy to userspace.
861 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
865 up_read(¤t
->mm
->mmap_sem
);
871 if (mpol_store_user_nodemask(pol
)) {
872 *nmask
= pol
->w
.user_nodemask
;
875 get_policy_nodemask(pol
, nmask
);
876 task_unlock(current
);
883 up_read(¤t
->mm
->mmap_sem
);
887 #ifdef CONFIG_MIGRATION
891 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
895 * Avoid migrating a page that is shared with others.
897 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
898 if (!isolate_lru_page(page
)) {
899 list_add_tail(&page
->lru
, pagelist
);
900 inc_node_page_state(page
, NR_ISOLATED_ANON
+
901 page_is_file_cache(page
));
906 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
909 return alloc_huge_page_node(page_hstate(compound_head(page
)),
912 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
917 * Migrate pages from one node to a target node.
918 * Returns error or the number of pages not migrated.
920 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
928 node_set(source
, nmask
);
931 * This does not "check" the range but isolates all pages that
932 * need migration. Between passing in the full user address
933 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
935 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
936 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
937 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
939 if (!list_empty(&pagelist
)) {
940 err
= migrate_pages(&pagelist
, new_node_page
, NULL
, dest
,
941 MIGRATE_SYNC
, MR_SYSCALL
);
943 putback_movable_pages(&pagelist
);
950 * Move pages between the two nodesets so as to preserve the physical
951 * layout as much as possible.
953 * Returns the number of page that could not be moved.
955 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
956 const nodemask_t
*to
, int flags
)
962 err
= migrate_prep();
966 down_read(&mm
->mmap_sem
);
969 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
970 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
971 * bit in 'tmp', and return that <source, dest> pair for migration.
972 * The pair of nodemasks 'to' and 'from' define the map.
974 * If no pair of bits is found that way, fallback to picking some
975 * pair of 'source' and 'dest' bits that are not the same. If the
976 * 'source' and 'dest' bits are the same, this represents a node
977 * that will be migrating to itself, so no pages need move.
979 * If no bits are left in 'tmp', or if all remaining bits left
980 * in 'tmp' correspond to the same bit in 'to', return false
981 * (nothing left to migrate).
983 * This lets us pick a pair of nodes to migrate between, such that
984 * if possible the dest node is not already occupied by some other
985 * source node, minimizing the risk of overloading the memory on a
986 * node that would happen if we migrated incoming memory to a node
987 * before migrating outgoing memory source that same node.
989 * A single scan of tmp is sufficient. As we go, we remember the
990 * most recent <s, d> pair that moved (s != d). If we find a pair
991 * that not only moved, but what's better, moved to an empty slot
992 * (d is not set in tmp), then we break out then, with that pair.
993 * Otherwise when we finish scanning from_tmp, we at least have the
994 * most recent <s, d> pair that moved. If we get all the way through
995 * the scan of tmp without finding any node that moved, much less
996 * moved to an empty node, then there is nothing left worth migrating.
1000 while (!nodes_empty(tmp
)) {
1002 int source
= NUMA_NO_NODE
;
1005 for_each_node_mask(s
, tmp
) {
1008 * do_migrate_pages() tries to maintain the relative
1009 * node relationship of the pages established between
1010 * threads and memory areas.
1012 * However if the number of source nodes is not equal to
1013 * the number of destination nodes we can not preserve
1014 * this node relative relationship. In that case, skip
1015 * copying memory from a node that is in the destination
1018 * Example: [2,3,4] -> [3,4,5] moves everything.
1019 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1022 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1023 (node_isset(s
, *to
)))
1026 d
= node_remap(s
, *from
, *to
);
1030 source
= s
; /* Node moved. Memorize */
1033 /* dest not in remaining from nodes? */
1034 if (!node_isset(dest
, tmp
))
1037 if (source
== NUMA_NO_NODE
)
1040 node_clear(source
, tmp
);
1041 err
= migrate_to_node(mm
, source
, dest
, flags
);
1047 up_read(&mm
->mmap_sem
);
1055 * Allocate a new page for page migration based on vma policy.
1056 * Start by assuming the page is mapped by the same vma as contains @start.
1057 * Search forward from there, if not. N.B., this assumes that the
1058 * list of pages handed to migrate_pages()--which is how we get here--
1059 * is in virtual address order.
1061 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1063 struct vm_area_struct
*vma
;
1064 unsigned long uninitialized_var(address
);
1066 vma
= find_vma(current
->mm
, start
);
1068 address
= page_address_in_vma(page
, vma
);
1069 if (address
!= -EFAULT
)
1074 if (PageHuge(page
)) {
1076 return alloc_huge_page_noerr(vma
, address
, 1);
1079 * if !vma, alloc_page_vma() will use task or system default policy
1081 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
| __GFP_RETRY_MAYFAIL
,
1086 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1087 unsigned long flags
)
1091 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1092 const nodemask_t
*to
, int flags
)
1097 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1103 static long do_mbind(unsigned long start
, unsigned long len
,
1104 unsigned short mode
, unsigned short mode_flags
,
1105 nodemask_t
*nmask
, unsigned long flags
)
1107 struct mm_struct
*mm
= current
->mm
;
1108 struct mempolicy
*new;
1111 LIST_HEAD(pagelist
);
1113 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1115 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1118 if (start
& ~PAGE_MASK
)
1121 if (mode
== MPOL_DEFAULT
)
1122 flags
&= ~MPOL_MF_STRICT
;
1124 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1132 new = mpol_new(mode
, mode_flags
, nmask
);
1134 return PTR_ERR(new);
1136 if (flags
& MPOL_MF_LAZY
)
1137 new->flags
|= MPOL_F_MOF
;
1140 * If we are using the default policy then operation
1141 * on discontinuous address spaces is okay after all
1144 flags
|= MPOL_MF_DISCONTIG_OK
;
1146 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1147 start
, start
+ len
, mode
, mode_flags
,
1148 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1150 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1152 err
= migrate_prep();
1157 NODEMASK_SCRATCH(scratch
);
1159 down_write(&mm
->mmap_sem
);
1161 err
= mpol_set_nodemask(new, nmask
, scratch
);
1162 task_unlock(current
);
1164 up_write(&mm
->mmap_sem
);
1167 NODEMASK_SCRATCH_FREE(scratch
);
1172 err
= queue_pages_range(mm
, start
, end
, nmask
,
1173 flags
| MPOL_MF_INVERT
, &pagelist
);
1175 err
= mbind_range(mm
, start
, end
, new);
1180 if (!list_empty(&pagelist
)) {
1181 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1182 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1183 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1185 putback_movable_pages(&pagelist
);
1188 if (nr_failed
&& (flags
& MPOL_MF_STRICT
))
1191 putback_movable_pages(&pagelist
);
1193 up_write(&mm
->mmap_sem
);
1200 * User space interface with variable sized bitmaps for nodelists.
1203 /* Copy a node mask from user space. */
1204 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1205 unsigned long maxnode
)
1208 unsigned long nlongs
;
1209 unsigned long endmask
;
1212 nodes_clear(*nodes
);
1213 if (maxnode
== 0 || !nmask
)
1215 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1218 nlongs
= BITS_TO_LONGS(maxnode
);
1219 if ((maxnode
% BITS_PER_LONG
) == 0)
1222 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1224 /* When the user specified more nodes than supported just check
1225 if the non supported part is all zero. */
1226 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1227 if (nlongs
> PAGE_SIZE
/sizeof(long))
1229 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1231 if (get_user(t
, nmask
+ k
))
1233 if (k
== nlongs
- 1) {
1239 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1243 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1245 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1249 /* Copy a kernel node mask to user space */
1250 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1253 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1254 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1256 if (copy
> nbytes
) {
1257 if (copy
> PAGE_SIZE
)
1259 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1263 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1266 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1267 unsigned long, mode
, const unsigned long __user
*, nmask
,
1268 unsigned long, maxnode
, unsigned, flags
)
1272 unsigned short mode_flags
;
1274 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1275 mode
&= ~MPOL_MODE_FLAGS
;
1276 if (mode
>= MPOL_MAX
)
1278 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1279 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1281 err
= get_nodes(&nodes
, nmask
, maxnode
);
1284 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1287 /* Set the process memory policy */
1288 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1289 unsigned long, maxnode
)
1293 unsigned short flags
;
1295 flags
= mode
& MPOL_MODE_FLAGS
;
1296 mode
&= ~MPOL_MODE_FLAGS
;
1297 if ((unsigned int)mode
>= MPOL_MAX
)
1299 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1301 err
= get_nodes(&nodes
, nmask
, maxnode
);
1304 return do_set_mempolicy(mode
, flags
, &nodes
);
1307 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1308 const unsigned long __user
*, old_nodes
,
1309 const unsigned long __user
*, new_nodes
)
1311 const struct cred
*cred
= current_cred(), *tcred
;
1312 struct mm_struct
*mm
= NULL
;
1313 struct task_struct
*task
;
1314 nodemask_t task_nodes
;
1318 NODEMASK_SCRATCH(scratch
);
1323 old
= &scratch
->mask1
;
1324 new = &scratch
->mask2
;
1326 err
= get_nodes(old
, old_nodes
, maxnode
);
1330 err
= get_nodes(new, new_nodes
, maxnode
);
1334 /* Find the mm_struct */
1336 task
= pid
? find_task_by_vpid(pid
) : current
;
1342 get_task_struct(task
);
1347 * Check if this process has the right to modify the specified
1348 * process. The right exists if the process has administrative
1349 * capabilities, superuser privileges or the same
1350 * userid as the target process.
1352 tcred
= __task_cred(task
);
1353 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1354 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1355 !capable(CAP_SYS_NICE
)) {
1362 task_nodes
= cpuset_mems_allowed(task
);
1363 /* Is the user allowed to access the target nodes? */
1364 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1369 if (!nodes_subset(*new, node_states
[N_MEMORY
])) {
1374 err
= security_task_movememory(task
);
1378 mm
= get_task_mm(task
);
1379 put_task_struct(task
);
1386 err
= do_migrate_pages(mm
, old
, new,
1387 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1391 NODEMASK_SCRATCH_FREE(scratch
);
1396 put_task_struct(task
);
1402 /* Retrieve NUMA policy */
1403 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1404 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1405 unsigned long, addr
, unsigned long, flags
)
1408 int uninitialized_var(pval
);
1411 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1414 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1419 if (policy
&& put_user(pval
, policy
))
1423 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1428 #ifdef CONFIG_COMPAT
1430 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1431 compat_ulong_t __user
*, nmask
,
1432 compat_ulong_t
, maxnode
,
1433 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1436 unsigned long __user
*nm
= NULL
;
1437 unsigned long nr_bits
, alloc_size
;
1438 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1440 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1441 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1444 nm
= compat_alloc_user_space(alloc_size
);
1446 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1448 if (!err
&& nmask
) {
1449 unsigned long copy_size
;
1450 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1451 err
= copy_from_user(bm
, nm
, copy_size
);
1452 /* ensure entire bitmap is zeroed */
1453 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1454 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1460 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1461 compat_ulong_t
, maxnode
)
1463 unsigned long __user
*nm
= NULL
;
1464 unsigned long nr_bits
, alloc_size
;
1465 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1467 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1468 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1471 if (compat_get_bitmap(bm
, nmask
, nr_bits
))
1473 nm
= compat_alloc_user_space(alloc_size
);
1474 if (copy_to_user(nm
, bm
, alloc_size
))
1478 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1481 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1482 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1483 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1485 unsigned long __user
*nm
= NULL
;
1486 unsigned long nr_bits
, alloc_size
;
1489 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1490 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1493 if (compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
))
1495 nm
= compat_alloc_user_space(alloc_size
);
1496 if (copy_to_user(nm
, nodes_addr(bm
), alloc_size
))
1500 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1505 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1508 struct mempolicy
*pol
= NULL
;
1511 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1512 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1513 } else if (vma
->vm_policy
) {
1514 pol
= vma
->vm_policy
;
1517 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1518 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1519 * count on these policies which will be dropped by
1520 * mpol_cond_put() later
1522 if (mpol_needs_cond_ref(pol
))
1531 * get_vma_policy(@vma, @addr)
1532 * @vma: virtual memory area whose policy is sought
1533 * @addr: address in @vma for shared policy lookup
1535 * Returns effective policy for a VMA at specified address.
1536 * Falls back to current->mempolicy or system default policy, as necessary.
1537 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1538 * count--added by the get_policy() vm_op, as appropriate--to protect against
1539 * freeing by another task. It is the caller's responsibility to free the
1540 * extra reference for shared policies.
1542 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1545 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1548 pol
= get_task_policy(current
);
1553 bool vma_policy_mof(struct vm_area_struct
*vma
)
1555 struct mempolicy
*pol
;
1557 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1560 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1561 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1568 pol
= vma
->vm_policy
;
1570 pol
= get_task_policy(current
);
1572 return pol
->flags
& MPOL_F_MOF
;
1575 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1577 enum zone_type dynamic_policy_zone
= policy_zone
;
1579 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1582 * if policy->v.nodes has movable memory only,
1583 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1585 * policy->v.nodes is intersect with node_states[N_MEMORY].
1586 * so if the following test faile, it implies
1587 * policy->v.nodes has movable memory only.
1589 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1590 dynamic_policy_zone
= ZONE_MOVABLE
;
1592 return zone
>= dynamic_policy_zone
;
1596 * Return a nodemask representing a mempolicy for filtering nodes for
1599 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1601 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1602 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1603 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1604 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1605 return &policy
->v
.nodes
;
1610 /* Return the node id preferred by the given mempolicy, or the given id */
1611 static int policy_node(gfp_t gfp
, struct mempolicy
*policy
,
1614 if (policy
->mode
== MPOL_PREFERRED
&& !(policy
->flags
& MPOL_F_LOCAL
))
1615 nd
= policy
->v
.preferred_node
;
1618 * __GFP_THISNODE shouldn't even be used with the bind policy
1619 * because we might easily break the expectation to stay on the
1620 * requested node and not break the policy.
1622 WARN_ON_ONCE(policy
->mode
== MPOL_BIND
&& (gfp
& __GFP_THISNODE
));
1628 /* Do dynamic interleaving for a process */
1629 static unsigned interleave_nodes(struct mempolicy
*policy
)
1632 struct task_struct
*me
= current
;
1634 next
= next_node_in(me
->il_prev
, policy
->v
.nodes
);
1635 if (next
< MAX_NUMNODES
)
1641 * Depending on the memory policy provide a node from which to allocate the
1644 unsigned int mempolicy_slab_node(void)
1646 struct mempolicy
*policy
;
1647 int node
= numa_mem_id();
1652 policy
= current
->mempolicy
;
1653 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1656 switch (policy
->mode
) {
1657 case MPOL_PREFERRED
:
1659 * handled MPOL_F_LOCAL above
1661 return policy
->v
.preferred_node
;
1663 case MPOL_INTERLEAVE
:
1664 return interleave_nodes(policy
);
1670 * Follow bind policy behavior and start allocation at the
1673 struct zonelist
*zonelist
;
1674 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1675 zonelist
= &NODE_DATA(node
)->node_zonelists
[ZONELIST_FALLBACK
];
1676 z
= first_zones_zonelist(zonelist
, highest_zoneidx
,
1678 return z
->zone
? z
->zone
->node
: node
;
1687 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1688 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1689 * number of present nodes.
1691 static unsigned offset_il_node(struct mempolicy
*pol
,
1692 struct vm_area_struct
*vma
, unsigned long n
)
1694 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1700 return numa_node_id();
1701 target
= (unsigned int)n
% nnodes
;
1702 nid
= first_node(pol
->v
.nodes
);
1703 for (i
= 0; i
< target
; i
++)
1704 nid
= next_node(nid
, pol
->v
.nodes
);
1708 /* Determine a node number for interleave */
1709 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1710 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1716 * for small pages, there is no difference between
1717 * shift and PAGE_SHIFT, so the bit-shift is safe.
1718 * for huge pages, since vm_pgoff is in units of small
1719 * pages, we need to shift off the always 0 bits to get
1722 BUG_ON(shift
< PAGE_SHIFT
);
1723 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1724 off
+= (addr
- vma
->vm_start
) >> shift
;
1725 return offset_il_node(pol
, vma
, off
);
1727 return interleave_nodes(pol
);
1730 #ifdef CONFIG_HUGETLBFS
1732 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1733 * @vma: virtual memory area whose policy is sought
1734 * @addr: address in @vma for shared policy lookup and interleave policy
1735 * @gfp_flags: for requested zone
1736 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1737 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1739 * Returns a nid suitable for a huge page allocation and a pointer
1740 * to the struct mempolicy for conditional unref after allocation.
1741 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1742 * @nodemask for filtering the zonelist.
1744 * Must be protected by read_mems_allowed_begin()
1746 int huge_node(struct vm_area_struct
*vma
, unsigned long addr
, gfp_t gfp_flags
,
1747 struct mempolicy
**mpol
, nodemask_t
**nodemask
)
1751 *mpol
= get_vma_policy(vma
, addr
);
1752 *nodemask
= NULL
; /* assume !MPOL_BIND */
1754 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1755 nid
= interleave_nid(*mpol
, vma
, addr
,
1756 huge_page_shift(hstate_vma(vma
)));
1758 nid
= policy_node(gfp_flags
, *mpol
, numa_node_id());
1759 if ((*mpol
)->mode
== MPOL_BIND
)
1760 *nodemask
= &(*mpol
)->v
.nodes
;
1766 * init_nodemask_of_mempolicy
1768 * If the current task's mempolicy is "default" [NULL], return 'false'
1769 * to indicate default policy. Otherwise, extract the policy nodemask
1770 * for 'bind' or 'interleave' policy into the argument nodemask, or
1771 * initialize the argument nodemask to contain the single node for
1772 * 'preferred' or 'local' policy and return 'true' to indicate presence
1773 * of non-default mempolicy.
1775 * We don't bother with reference counting the mempolicy [mpol_get/put]
1776 * because the current task is examining it's own mempolicy and a task's
1777 * mempolicy is only ever changed by the task itself.
1779 * N.B., it is the caller's responsibility to free a returned nodemask.
1781 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1783 struct mempolicy
*mempolicy
;
1786 if (!(mask
&& current
->mempolicy
))
1790 mempolicy
= current
->mempolicy
;
1791 switch (mempolicy
->mode
) {
1792 case MPOL_PREFERRED
:
1793 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1794 nid
= numa_node_id();
1796 nid
= mempolicy
->v
.preferred_node
;
1797 init_nodemask_of_node(mask
, nid
);
1802 case MPOL_INTERLEAVE
:
1803 *mask
= mempolicy
->v
.nodes
;
1809 task_unlock(current
);
1816 * mempolicy_nodemask_intersects
1818 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1819 * policy. Otherwise, check for intersection between mask and the policy
1820 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1821 * policy, always return true since it may allocate elsewhere on fallback.
1823 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1825 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1826 const nodemask_t
*mask
)
1828 struct mempolicy
*mempolicy
;
1834 mempolicy
= tsk
->mempolicy
;
1838 switch (mempolicy
->mode
) {
1839 case MPOL_PREFERRED
:
1841 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1842 * allocate from, they may fallback to other nodes when oom.
1843 * Thus, it's possible for tsk to have allocated memory from
1848 case MPOL_INTERLEAVE
:
1849 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1859 /* Allocate a page in interleaved policy.
1860 Own path because it needs to do special accounting. */
1861 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1866 page
= __alloc_pages(gfp
, order
, nid
);
1867 if (page
&& page_to_nid(page
) == nid
)
1868 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1873 * alloc_pages_vma - Allocate a page for a VMA.
1876 * %GFP_USER user allocation.
1877 * %GFP_KERNEL kernel allocations,
1878 * %GFP_HIGHMEM highmem/user allocations,
1879 * %GFP_FS allocation should not call back into a file system.
1880 * %GFP_ATOMIC don't sleep.
1882 * @order:Order of the GFP allocation.
1883 * @vma: Pointer to VMA or NULL if not available.
1884 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1885 * @node: Which node to prefer for allocation (modulo policy).
1886 * @hugepage: for hugepages try only the preferred node if possible
1888 * This function allocates a page from the kernel page pool and applies
1889 * a NUMA policy associated with the VMA or the current process.
1890 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1891 * mm_struct of the VMA to prevent it from going away. Should be used for
1892 * all allocations for pages that will be mapped into user space. Returns
1893 * NULL when no page can be allocated.
1896 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1897 unsigned long addr
, int node
, bool hugepage
)
1899 struct mempolicy
*pol
;
1904 pol
= get_vma_policy(vma
, addr
);
1906 if (pol
->mode
== MPOL_INTERLEAVE
) {
1909 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
1911 page
= alloc_page_interleave(gfp
, order
, nid
);
1915 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
1916 int hpage_node
= node
;
1919 * For hugepage allocation and non-interleave policy which
1920 * allows the current node (or other explicitly preferred
1921 * node) we only try to allocate from the current/preferred
1922 * node and don't fall back to other nodes, as the cost of
1923 * remote accesses would likely offset THP benefits.
1925 * If the policy is interleave, or does not allow the current
1926 * node in its nodemask, we allocate the standard way.
1928 if (pol
->mode
== MPOL_PREFERRED
&&
1929 !(pol
->flags
& MPOL_F_LOCAL
))
1930 hpage_node
= pol
->v
.preferred_node
;
1932 nmask
= policy_nodemask(gfp
, pol
);
1933 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
1935 page
= __alloc_pages_node(hpage_node
,
1936 gfp
| __GFP_THISNODE
, order
);
1941 nmask
= policy_nodemask(gfp
, pol
);
1942 preferred_nid
= policy_node(gfp
, pol
, node
);
1943 page
= __alloc_pages_nodemask(gfp
, order
, preferred_nid
, nmask
);
1950 * alloc_pages_current - Allocate pages.
1953 * %GFP_USER user allocation,
1954 * %GFP_KERNEL kernel allocation,
1955 * %GFP_HIGHMEM highmem allocation,
1956 * %GFP_FS don't call back into a file system.
1957 * %GFP_ATOMIC don't sleep.
1958 * @order: Power of two of allocation size in pages. 0 is a single page.
1960 * Allocate a page from the kernel page pool. When not in
1961 * interrupt context and apply the current process NUMA policy.
1962 * Returns NULL when no page can be allocated.
1964 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
1966 struct mempolicy
*pol
= &default_policy
;
1969 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
1970 pol
= get_task_policy(current
);
1973 * No reference counting needed for current->mempolicy
1974 * nor system default_policy
1976 if (pol
->mode
== MPOL_INTERLEAVE
)
1977 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
1979 page
= __alloc_pages_nodemask(gfp
, order
,
1980 policy_node(gfp
, pol
, numa_node_id()),
1981 policy_nodemask(gfp
, pol
));
1985 EXPORT_SYMBOL(alloc_pages_current
);
1987 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
1989 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
1992 return PTR_ERR(pol
);
1993 dst
->vm_policy
= pol
;
1998 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1999 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2000 * with the mems_allowed returned by cpuset_mems_allowed(). This
2001 * keeps mempolicies cpuset relative after its cpuset moves. See
2002 * further kernel/cpuset.c update_nodemask().
2004 * current's mempolicy may be rebinded by the other task(the task that changes
2005 * cpuset's mems), so we needn't do rebind work for current task.
2008 /* Slow path of a mempolicy duplicate */
2009 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2011 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2014 return ERR_PTR(-ENOMEM
);
2016 /* task's mempolicy is protected by alloc_lock */
2017 if (old
== current
->mempolicy
) {
2020 task_unlock(current
);
2024 if (current_cpuset_is_being_rebound()) {
2025 nodemask_t mems
= cpuset_mems_allowed(current
);
2026 mpol_rebind_policy(new, &mems
);
2028 atomic_set(&new->refcnt
, 1);
2032 /* Slow path of a mempolicy comparison */
2033 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2037 if (a
->mode
!= b
->mode
)
2039 if (a
->flags
!= b
->flags
)
2041 if (mpol_store_user_nodemask(a
))
2042 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2048 case MPOL_INTERLEAVE
:
2049 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2050 case MPOL_PREFERRED
:
2051 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2059 * Shared memory backing store policy support.
2061 * Remember policies even when nobody has shared memory mapped.
2062 * The policies are kept in Red-Black tree linked from the inode.
2063 * They are protected by the sp->lock rwlock, which should be held
2064 * for any accesses to the tree.
2068 * lookup first element intersecting start-end. Caller holds sp->lock for
2069 * reading or for writing
2071 static struct sp_node
*
2072 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2074 struct rb_node
*n
= sp
->root
.rb_node
;
2077 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2079 if (start
>= p
->end
)
2081 else if (end
<= p
->start
)
2089 struct sp_node
*w
= NULL
;
2090 struct rb_node
*prev
= rb_prev(n
);
2093 w
= rb_entry(prev
, struct sp_node
, nd
);
2094 if (w
->end
<= start
)
2098 return rb_entry(n
, struct sp_node
, nd
);
2102 * Insert a new shared policy into the list. Caller holds sp->lock for
2105 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2107 struct rb_node
**p
= &sp
->root
.rb_node
;
2108 struct rb_node
*parent
= NULL
;
2113 nd
= rb_entry(parent
, struct sp_node
, nd
);
2114 if (new->start
< nd
->start
)
2116 else if (new->end
> nd
->end
)
2117 p
= &(*p
)->rb_right
;
2121 rb_link_node(&new->nd
, parent
, p
);
2122 rb_insert_color(&new->nd
, &sp
->root
);
2123 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2124 new->policy
? new->policy
->mode
: 0);
2127 /* Find shared policy intersecting idx */
2129 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2131 struct mempolicy
*pol
= NULL
;
2134 if (!sp
->root
.rb_node
)
2136 read_lock(&sp
->lock
);
2137 sn
= sp_lookup(sp
, idx
, idx
+1);
2139 mpol_get(sn
->policy
);
2142 read_unlock(&sp
->lock
);
2146 static void sp_free(struct sp_node
*n
)
2148 mpol_put(n
->policy
);
2149 kmem_cache_free(sn_cache
, n
);
2153 * mpol_misplaced - check whether current page node is valid in policy
2155 * @page: page to be checked
2156 * @vma: vm area where page mapped
2157 * @addr: virtual address where page mapped
2159 * Lookup current policy node id for vma,addr and "compare to" page's
2163 * -1 - not misplaced, page is in the right node
2164 * node - node id where the page should be
2166 * Policy determination "mimics" alloc_page_vma().
2167 * Called from fault path where we know the vma and faulting address.
2169 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2171 struct mempolicy
*pol
;
2173 int curnid
= page_to_nid(page
);
2174 unsigned long pgoff
;
2175 int thiscpu
= raw_smp_processor_id();
2176 int thisnid
= cpu_to_node(thiscpu
);
2182 pol
= get_vma_policy(vma
, addr
);
2183 if (!(pol
->flags
& MPOL_F_MOF
))
2186 switch (pol
->mode
) {
2187 case MPOL_INTERLEAVE
:
2188 BUG_ON(addr
>= vma
->vm_end
);
2189 BUG_ON(addr
< vma
->vm_start
);
2191 pgoff
= vma
->vm_pgoff
;
2192 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2193 polnid
= offset_il_node(pol
, vma
, pgoff
);
2196 case MPOL_PREFERRED
:
2197 if (pol
->flags
& MPOL_F_LOCAL
)
2198 polnid
= numa_node_id();
2200 polnid
= pol
->v
.preferred_node
;
2206 * allows binding to multiple nodes.
2207 * use current page if in policy nodemask,
2208 * else select nearest allowed node, if any.
2209 * If no allowed nodes, use current [!misplaced].
2211 if (node_isset(curnid
, pol
->v
.nodes
))
2213 z
= first_zones_zonelist(
2214 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2215 gfp_zone(GFP_HIGHUSER
),
2217 polnid
= z
->zone
->node
;
2224 /* Migrate the page towards the node whose CPU is referencing it */
2225 if (pol
->flags
& MPOL_F_MORON
) {
2228 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2232 if (curnid
!= polnid
)
2241 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2242 * dropped after task->mempolicy is set to NULL so that any allocation done as
2243 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2246 void mpol_put_task_policy(struct task_struct
*task
)
2248 struct mempolicy
*pol
;
2251 pol
= task
->mempolicy
;
2252 task
->mempolicy
= NULL
;
2257 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2259 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2260 rb_erase(&n
->nd
, &sp
->root
);
2264 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2265 unsigned long end
, struct mempolicy
*pol
)
2267 node
->start
= start
;
2272 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2273 struct mempolicy
*pol
)
2276 struct mempolicy
*newpol
;
2278 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2282 newpol
= mpol_dup(pol
);
2283 if (IS_ERR(newpol
)) {
2284 kmem_cache_free(sn_cache
, n
);
2287 newpol
->flags
|= MPOL_F_SHARED
;
2288 sp_node_init(n
, start
, end
, newpol
);
2293 /* Replace a policy range. */
2294 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2295 unsigned long end
, struct sp_node
*new)
2298 struct sp_node
*n_new
= NULL
;
2299 struct mempolicy
*mpol_new
= NULL
;
2303 write_lock(&sp
->lock
);
2304 n
= sp_lookup(sp
, start
, end
);
2305 /* Take care of old policies in the same range. */
2306 while (n
&& n
->start
< end
) {
2307 struct rb_node
*next
= rb_next(&n
->nd
);
2308 if (n
->start
>= start
) {
2314 /* Old policy spanning whole new range. */
2319 *mpol_new
= *n
->policy
;
2320 atomic_set(&mpol_new
->refcnt
, 1);
2321 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2323 sp_insert(sp
, n_new
);
2332 n
= rb_entry(next
, struct sp_node
, nd
);
2336 write_unlock(&sp
->lock
);
2343 kmem_cache_free(sn_cache
, n_new
);
2348 write_unlock(&sp
->lock
);
2350 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2353 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2360 * mpol_shared_policy_init - initialize shared policy for inode
2361 * @sp: pointer to inode shared policy
2362 * @mpol: struct mempolicy to install
2364 * Install non-NULL @mpol in inode's shared policy rb-tree.
2365 * On entry, the current task has a reference on a non-NULL @mpol.
2366 * This must be released on exit.
2367 * This is called at get_inode() calls and we can use GFP_KERNEL.
2369 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2373 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2374 rwlock_init(&sp
->lock
);
2377 struct vm_area_struct pvma
;
2378 struct mempolicy
*new;
2379 NODEMASK_SCRATCH(scratch
);
2383 /* contextualize the tmpfs mount point mempolicy */
2384 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2386 goto free_scratch
; /* no valid nodemask intersection */
2389 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2390 task_unlock(current
);
2394 /* Create pseudo-vma that contains just the policy */
2395 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2396 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2397 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2400 mpol_put(new); /* drop initial ref */
2402 NODEMASK_SCRATCH_FREE(scratch
);
2404 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2408 int mpol_set_shared_policy(struct shared_policy
*info
,
2409 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2412 struct sp_node
*new = NULL
;
2413 unsigned long sz
= vma_pages(vma
);
2415 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2417 sz
, npol
? npol
->mode
: -1,
2418 npol
? npol
->flags
: -1,
2419 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2422 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2426 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2432 /* Free a backing policy store on inode delete. */
2433 void mpol_free_shared_policy(struct shared_policy
*p
)
2436 struct rb_node
*next
;
2438 if (!p
->root
.rb_node
)
2440 write_lock(&p
->lock
);
2441 next
= rb_first(&p
->root
);
2443 n
= rb_entry(next
, struct sp_node
, nd
);
2444 next
= rb_next(&n
->nd
);
2447 write_unlock(&p
->lock
);
2450 #ifdef CONFIG_NUMA_BALANCING
2451 static int __initdata numabalancing_override
;
2453 static void __init
check_numabalancing_enable(void)
2455 bool numabalancing_default
= false;
2457 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2458 numabalancing_default
= true;
2460 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2461 if (numabalancing_override
)
2462 set_numabalancing_state(numabalancing_override
== 1);
2464 if (num_online_nodes() > 1 && !numabalancing_override
) {
2465 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2466 numabalancing_default
? "Enabling" : "Disabling");
2467 set_numabalancing_state(numabalancing_default
);
2471 static int __init
setup_numabalancing(char *str
)
2477 if (!strcmp(str
, "enable")) {
2478 numabalancing_override
= 1;
2480 } else if (!strcmp(str
, "disable")) {
2481 numabalancing_override
= -1;
2486 pr_warn("Unable to parse numa_balancing=\n");
2490 __setup("numa_balancing=", setup_numabalancing
);
2492 static inline void __init
check_numabalancing_enable(void)
2495 #endif /* CONFIG_NUMA_BALANCING */
2497 /* assumes fs == KERNEL_DS */
2498 void __init
numa_policy_init(void)
2500 nodemask_t interleave_nodes
;
2501 unsigned long largest
= 0;
2502 int nid
, prefer
= 0;
2504 policy_cache
= kmem_cache_create("numa_policy",
2505 sizeof(struct mempolicy
),
2506 0, SLAB_PANIC
, NULL
);
2508 sn_cache
= kmem_cache_create("shared_policy_node",
2509 sizeof(struct sp_node
),
2510 0, SLAB_PANIC
, NULL
);
2512 for_each_node(nid
) {
2513 preferred_node_policy
[nid
] = (struct mempolicy
) {
2514 .refcnt
= ATOMIC_INIT(1),
2515 .mode
= MPOL_PREFERRED
,
2516 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2517 .v
= { .preferred_node
= nid
, },
2522 * Set interleaving policy for system init. Interleaving is only
2523 * enabled across suitably sized nodes (default is >= 16MB), or
2524 * fall back to the largest node if they're all smaller.
2526 nodes_clear(interleave_nodes
);
2527 for_each_node_state(nid
, N_MEMORY
) {
2528 unsigned long total_pages
= node_present_pages(nid
);
2530 /* Preserve the largest node */
2531 if (largest
< total_pages
) {
2532 largest
= total_pages
;
2536 /* Interleave this node? */
2537 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2538 node_set(nid
, interleave_nodes
);
2541 /* All too small, use the largest */
2542 if (unlikely(nodes_empty(interleave_nodes
)))
2543 node_set(prefer
, interleave_nodes
);
2545 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2546 pr_err("%s: interleaving failed\n", __func__
);
2548 check_numabalancing_enable();
2551 /* Reset policy of current process to default */
2552 void numa_default_policy(void)
2554 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2558 * Parse and format mempolicy from/to strings
2562 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2564 static const char * const policy_modes
[] =
2566 [MPOL_DEFAULT
] = "default",
2567 [MPOL_PREFERRED
] = "prefer",
2568 [MPOL_BIND
] = "bind",
2569 [MPOL_INTERLEAVE
] = "interleave",
2570 [MPOL_LOCAL
] = "local",
2576 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2577 * @str: string containing mempolicy to parse
2578 * @mpol: pointer to struct mempolicy pointer, returned on success.
2581 * <mode>[=<flags>][:<nodelist>]
2583 * On success, returns 0, else 1
2585 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2587 struct mempolicy
*new = NULL
;
2588 unsigned short mode
;
2589 unsigned short mode_flags
;
2591 char *nodelist
= strchr(str
, ':');
2592 char *flags
= strchr(str
, '=');
2596 /* NUL-terminate mode or flags string */
2598 if (nodelist_parse(nodelist
, nodes
))
2600 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2606 *flags
++ = '\0'; /* terminate mode string */
2608 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2609 if (!strcmp(str
, policy_modes
[mode
])) {
2613 if (mode
>= MPOL_MAX
)
2617 case MPOL_PREFERRED
:
2619 * Insist on a nodelist of one node only
2622 char *rest
= nodelist
;
2623 while (isdigit(*rest
))
2629 case MPOL_INTERLEAVE
:
2631 * Default to online nodes with memory if no nodelist
2634 nodes
= node_states
[N_MEMORY
];
2638 * Don't allow a nodelist; mpol_new() checks flags
2642 mode
= MPOL_PREFERRED
;
2646 * Insist on a empty nodelist
2653 * Insist on a nodelist
2662 * Currently, we only support two mutually exclusive
2665 if (!strcmp(flags
, "static"))
2666 mode_flags
|= MPOL_F_STATIC_NODES
;
2667 else if (!strcmp(flags
, "relative"))
2668 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2673 new = mpol_new(mode
, mode_flags
, &nodes
);
2678 * Save nodes for mpol_to_str() to show the tmpfs mount options
2679 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2681 if (mode
!= MPOL_PREFERRED
)
2682 new->v
.nodes
= nodes
;
2684 new->v
.preferred_node
= first_node(nodes
);
2686 new->flags
|= MPOL_F_LOCAL
;
2689 * Save nodes for contextualization: this will be used to "clone"
2690 * the mempolicy in a specific context [cpuset] at a later time.
2692 new->w
.user_nodemask
= nodes
;
2697 /* Restore string for error message */
2706 #endif /* CONFIG_TMPFS */
2709 * mpol_to_str - format a mempolicy structure for printing
2710 * @buffer: to contain formatted mempolicy string
2711 * @maxlen: length of @buffer
2712 * @pol: pointer to mempolicy to be formatted
2714 * Convert @pol into a string. If @buffer is too short, truncate the string.
2715 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2716 * longest flag, "relative", and to display at least a few node ids.
2718 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2721 nodemask_t nodes
= NODE_MASK_NONE
;
2722 unsigned short mode
= MPOL_DEFAULT
;
2723 unsigned short flags
= 0;
2725 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2733 case MPOL_PREFERRED
:
2734 if (flags
& MPOL_F_LOCAL
)
2737 node_set(pol
->v
.preferred_node
, nodes
);
2740 case MPOL_INTERLEAVE
:
2741 nodes
= pol
->v
.nodes
;
2745 snprintf(p
, maxlen
, "unknown");
2749 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2751 if (flags
& MPOL_MODE_FLAGS
) {
2752 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2755 * Currently, the only defined flags are mutually exclusive
2757 if (flags
& MPOL_F_STATIC_NODES
)
2758 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2759 else if (flags
& MPOL_F_RELATIVE_NODES
)
2760 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2763 if (!nodes_empty(nodes
))
2764 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2765 nodemask_pr_args(&nodes
));