Documentation: dt: Remove ngpios from stm32-pinctrl binding
[linux-2.6/btrfs-unstable.git] / mm / memblock.c
blobb64b47803e529a87d87f3e3f022e97f17ff606be
1 /*
2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm/sections.h>
24 #include <linux/io.h>
26 #include "internal.h"
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38 .memory.name = "memory",
40 .reserved.regions = memblock_reserved_init_regions,
41 .reserved.cnt = 1, /* empty dummy entry */
42 .reserved.max = INIT_MEMBLOCK_REGIONS,
43 .reserved.name = "reserved",
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem.regions = memblock_physmem_init_regions,
47 .physmem.cnt = 1, /* empty dummy entry */
48 .physmem.max = INIT_PHYSMEM_REGIONS,
49 .physmem.name = "physmem",
50 #endif
52 .bottom_up = false,
53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
56 int memblock_debug __initdata_memblock;
57 #ifdef CONFIG_MOVABLE_NODE
58 bool movable_node_enabled __initdata_memblock = false;
59 #endif
60 static bool system_has_some_mirror __initdata_memblock = false;
61 static int memblock_can_resize __initdata_memblock;
62 static int memblock_memory_in_slab __initdata_memblock = 0;
63 static int memblock_reserved_in_slab __initdata_memblock = 0;
65 ulong __init_memblock choose_memblock_flags(void)
67 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
70 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
71 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
73 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
77 * Address comparison utilities
79 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
80 phys_addr_t base2, phys_addr_t size2)
82 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
85 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
86 phys_addr_t base, phys_addr_t size)
88 unsigned long i;
90 for (i = 0; i < type->cnt; i++)
91 if (memblock_addrs_overlap(base, size, type->regions[i].base,
92 type->regions[i].size))
93 break;
94 return i < type->cnt;
98 * __memblock_find_range_bottom_up - find free area utility in bottom-up
99 * @start: start of candidate range
100 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
101 * @size: size of free area to find
102 * @align: alignment of free area to find
103 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
104 * @flags: pick from blocks based on memory attributes
106 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
108 * RETURNS:
109 * Found address on success, 0 on failure.
111 static phys_addr_t __init_memblock
112 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
113 phys_addr_t size, phys_addr_t align, int nid,
114 ulong flags)
116 phys_addr_t this_start, this_end, cand;
117 u64 i;
119 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
120 this_start = clamp(this_start, start, end);
121 this_end = clamp(this_end, start, end);
123 cand = round_up(this_start, align);
124 if (cand < this_end && this_end - cand >= size)
125 return cand;
128 return 0;
132 * __memblock_find_range_top_down - find free area utility, in top-down
133 * @start: start of candidate range
134 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
135 * @size: size of free area to find
136 * @align: alignment of free area to find
137 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
138 * @flags: pick from blocks based on memory attributes
140 * Utility called from memblock_find_in_range_node(), find free area top-down.
142 * RETURNS:
143 * Found address on success, 0 on failure.
145 static phys_addr_t __init_memblock
146 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
147 phys_addr_t size, phys_addr_t align, int nid,
148 ulong flags)
150 phys_addr_t this_start, this_end, cand;
151 u64 i;
153 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
154 NULL) {
155 this_start = clamp(this_start, start, end);
156 this_end = clamp(this_end, start, end);
158 if (this_end < size)
159 continue;
161 cand = round_down(this_end - size, align);
162 if (cand >= this_start)
163 return cand;
166 return 0;
170 * memblock_find_in_range_node - find free area in given range and node
171 * @size: size of free area to find
172 * @align: alignment of free area to find
173 * @start: start of candidate range
174 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
175 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
176 * @flags: pick from blocks based on memory attributes
178 * Find @size free area aligned to @align in the specified range and node.
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
186 * If bottom-up allocation failed, will try to allocate memory top-down.
188 * RETURNS:
189 * Found address on success, 0 on failure.
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 phys_addr_t align, phys_addr_t start,
193 phys_addr_t end, int nid, ulong flags)
195 phys_addr_t kernel_end, ret;
197 /* pump up @end */
198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 end = memblock.current_limit;
201 /* avoid allocating the first page */
202 start = max_t(phys_addr_t, start, PAGE_SIZE);
203 end = max(start, end);
204 kernel_end = __pa_symbol(_end);
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
210 if (memblock_bottom_up() && end > kernel_end) {
211 phys_addr_t bottom_up_start;
213 /* make sure we will allocate above the kernel */
214 bottom_up_start = max(start, kernel_end);
216 /* ok, try bottom-up allocation first */
217 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 size, align, nid, flags);
219 if (ret)
220 return ret;
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
226 * allocation failed.
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
230 * fail happens.
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
235 return __memblock_find_range_top_down(start, end, size, align, nid,
236 flags);
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
246 * Find @size free area aligned to @align in the specified range.
248 * RETURNS:
249 * Found address on success, 0 on failure.
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
255 phys_addr_t ret;
256 ulong flags = choose_memblock_flags();
258 again:
259 ret = memblock_find_in_range_node(size, align, start, end,
260 NUMA_NO_NODE, flags);
262 if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 &size);
265 flags &= ~MEMBLOCK_MIRROR;
266 goto again;
269 return ret;
272 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
274 type->total_size -= type->regions[r].size;
275 memmove(&type->regions[r], &type->regions[r + 1],
276 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
277 type->cnt--;
279 /* Special case for empty arrays */
280 if (type->cnt == 0) {
281 WARN_ON(type->total_size != 0);
282 type->cnt = 1;
283 type->regions[0].base = 0;
284 type->regions[0].size = 0;
285 type->regions[0].flags = 0;
286 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
292 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
293 phys_addr_t *addr)
295 if (memblock.reserved.regions == memblock_reserved_init_regions)
296 return 0;
298 *addr = __pa(memblock.reserved.regions);
300 return PAGE_ALIGN(sizeof(struct memblock_region) *
301 memblock.reserved.max);
304 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
305 phys_addr_t *addr)
307 if (memblock.memory.regions == memblock_memory_init_regions)
308 return 0;
310 *addr = __pa(memblock.memory.regions);
312 return PAGE_ALIGN(sizeof(struct memblock_region) *
313 memblock.memory.max);
316 #endif
319 * memblock_double_array - double the size of the memblock regions array
320 * @type: memblock type of the regions array being doubled
321 * @new_area_start: starting address of memory range to avoid overlap with
322 * @new_area_size: size of memory range to avoid overlap with
324 * Double the size of the @type regions array. If memblock is being used to
325 * allocate memory for a new reserved regions array and there is a previously
326 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
327 * waiting to be reserved, ensure the memory used by the new array does
328 * not overlap.
330 * RETURNS:
331 * 0 on success, -1 on failure.
333 static int __init_memblock memblock_double_array(struct memblock_type *type,
334 phys_addr_t new_area_start,
335 phys_addr_t new_area_size)
337 struct memblock_region *new_array, *old_array;
338 phys_addr_t old_alloc_size, new_alloc_size;
339 phys_addr_t old_size, new_size, addr;
340 int use_slab = slab_is_available();
341 int *in_slab;
343 /* We don't allow resizing until we know about the reserved regions
344 * of memory that aren't suitable for allocation
346 if (!memblock_can_resize)
347 return -1;
349 /* Calculate new doubled size */
350 old_size = type->max * sizeof(struct memblock_region);
351 new_size = old_size << 1;
353 * We need to allocated new one align to PAGE_SIZE,
354 * so we can free them completely later.
356 old_alloc_size = PAGE_ALIGN(old_size);
357 new_alloc_size = PAGE_ALIGN(new_size);
359 /* Retrieve the slab flag */
360 if (type == &memblock.memory)
361 in_slab = &memblock_memory_in_slab;
362 else
363 in_slab = &memblock_reserved_in_slab;
365 /* Try to find some space for it.
367 * WARNING: We assume that either slab_is_available() and we use it or
368 * we use MEMBLOCK for allocations. That means that this is unsafe to
369 * use when bootmem is currently active (unless bootmem itself is
370 * implemented on top of MEMBLOCK which isn't the case yet)
372 * This should however not be an issue for now, as we currently only
373 * call into MEMBLOCK while it's still active, or much later when slab
374 * is active for memory hotplug operations
376 if (use_slab) {
377 new_array = kmalloc(new_size, GFP_KERNEL);
378 addr = new_array ? __pa(new_array) : 0;
379 } else {
380 /* only exclude range when trying to double reserved.regions */
381 if (type != &memblock.reserved)
382 new_area_start = new_area_size = 0;
384 addr = memblock_find_in_range(new_area_start + new_area_size,
385 memblock.current_limit,
386 new_alloc_size, PAGE_SIZE);
387 if (!addr && new_area_size)
388 addr = memblock_find_in_range(0,
389 min(new_area_start, memblock.current_limit),
390 new_alloc_size, PAGE_SIZE);
392 new_array = addr ? __va(addr) : NULL;
394 if (!addr) {
395 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
396 type->name, type->max, type->max * 2);
397 return -1;
400 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
401 type->name, type->max * 2, (u64)addr,
402 (u64)addr + new_size - 1);
405 * Found space, we now need to move the array over before we add the
406 * reserved region since it may be our reserved array itself that is
407 * full.
409 memcpy(new_array, type->regions, old_size);
410 memset(new_array + type->max, 0, old_size);
411 old_array = type->regions;
412 type->regions = new_array;
413 type->max <<= 1;
415 /* Free old array. We needn't free it if the array is the static one */
416 if (*in_slab)
417 kfree(old_array);
418 else if (old_array != memblock_memory_init_regions &&
419 old_array != memblock_reserved_init_regions)
420 memblock_free(__pa(old_array), old_alloc_size);
423 * Reserve the new array if that comes from the memblock. Otherwise, we
424 * needn't do it
426 if (!use_slab)
427 BUG_ON(memblock_reserve(addr, new_alloc_size));
429 /* Update slab flag */
430 *in_slab = use_slab;
432 return 0;
436 * memblock_merge_regions - merge neighboring compatible regions
437 * @type: memblock type to scan
439 * Scan @type and merge neighboring compatible regions.
441 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
443 int i = 0;
445 /* cnt never goes below 1 */
446 while (i < type->cnt - 1) {
447 struct memblock_region *this = &type->regions[i];
448 struct memblock_region *next = &type->regions[i + 1];
450 if (this->base + this->size != next->base ||
451 memblock_get_region_node(this) !=
452 memblock_get_region_node(next) ||
453 this->flags != next->flags) {
454 BUG_ON(this->base + this->size > next->base);
455 i++;
456 continue;
459 this->size += next->size;
460 /* move forward from next + 1, index of which is i + 2 */
461 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
462 type->cnt--;
467 * memblock_insert_region - insert new memblock region
468 * @type: memblock type to insert into
469 * @idx: index for the insertion point
470 * @base: base address of the new region
471 * @size: size of the new region
472 * @nid: node id of the new region
473 * @flags: flags of the new region
475 * Insert new memblock region [@base,@base+@size) into @type at @idx.
476 * @type must already have extra room to accommodate the new region.
478 static void __init_memblock memblock_insert_region(struct memblock_type *type,
479 int idx, phys_addr_t base,
480 phys_addr_t size,
481 int nid, unsigned long flags)
483 struct memblock_region *rgn = &type->regions[idx];
485 BUG_ON(type->cnt >= type->max);
486 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
487 rgn->base = base;
488 rgn->size = size;
489 rgn->flags = flags;
490 memblock_set_region_node(rgn, nid);
491 type->cnt++;
492 type->total_size += size;
496 * memblock_add_range - add new memblock region
497 * @type: memblock type to add new region into
498 * @base: base address of the new region
499 * @size: size of the new region
500 * @nid: nid of the new region
501 * @flags: flags of the new region
503 * Add new memblock region [@base,@base+@size) into @type. The new region
504 * is allowed to overlap with existing ones - overlaps don't affect already
505 * existing regions. @type is guaranteed to be minimal (all neighbouring
506 * compatible regions are merged) after the addition.
508 * RETURNS:
509 * 0 on success, -errno on failure.
511 int __init_memblock memblock_add_range(struct memblock_type *type,
512 phys_addr_t base, phys_addr_t size,
513 int nid, unsigned long flags)
515 bool insert = false;
516 phys_addr_t obase = base;
517 phys_addr_t end = base + memblock_cap_size(base, &size);
518 int idx, nr_new;
519 struct memblock_region *rgn;
521 if (!size)
522 return 0;
524 /* special case for empty array */
525 if (type->regions[0].size == 0) {
526 WARN_ON(type->cnt != 1 || type->total_size);
527 type->regions[0].base = base;
528 type->regions[0].size = size;
529 type->regions[0].flags = flags;
530 memblock_set_region_node(&type->regions[0], nid);
531 type->total_size = size;
532 return 0;
534 repeat:
536 * The following is executed twice. Once with %false @insert and
537 * then with %true. The first counts the number of regions needed
538 * to accommodate the new area. The second actually inserts them.
540 base = obase;
541 nr_new = 0;
543 for_each_memblock_type(type, rgn) {
544 phys_addr_t rbase = rgn->base;
545 phys_addr_t rend = rbase + rgn->size;
547 if (rbase >= end)
548 break;
549 if (rend <= base)
550 continue;
552 * @rgn overlaps. If it separates the lower part of new
553 * area, insert that portion.
555 if (rbase > base) {
556 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 WARN_ON(nid != memblock_get_region_node(rgn));
558 #endif
559 WARN_ON(flags != rgn->flags);
560 nr_new++;
561 if (insert)
562 memblock_insert_region(type, idx++, base,
563 rbase - base, nid,
564 flags);
566 /* area below @rend is dealt with, forget about it */
567 base = min(rend, end);
570 /* insert the remaining portion */
571 if (base < end) {
572 nr_new++;
573 if (insert)
574 memblock_insert_region(type, idx, base, end - base,
575 nid, flags);
578 if (!nr_new)
579 return 0;
582 * If this was the first round, resize array and repeat for actual
583 * insertions; otherwise, merge and return.
585 if (!insert) {
586 while (type->cnt + nr_new > type->max)
587 if (memblock_double_array(type, obase, size) < 0)
588 return -ENOMEM;
589 insert = true;
590 goto repeat;
591 } else {
592 memblock_merge_regions(type);
593 return 0;
597 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
598 int nid)
600 return memblock_add_range(&memblock.memory, base, size, nid, 0);
603 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
605 phys_addr_t end = base + size - 1;
607 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
608 &base, &end, (void *)_RET_IP_);
610 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
614 * memblock_isolate_range - isolate given range into disjoint memblocks
615 * @type: memblock type to isolate range for
616 * @base: base of range to isolate
617 * @size: size of range to isolate
618 * @start_rgn: out parameter for the start of isolated region
619 * @end_rgn: out parameter for the end of isolated region
621 * Walk @type and ensure that regions don't cross the boundaries defined by
622 * [@base,@base+@size). Crossing regions are split at the boundaries,
623 * which may create at most two more regions. The index of the first
624 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
626 * RETURNS:
627 * 0 on success, -errno on failure.
629 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
630 phys_addr_t base, phys_addr_t size,
631 int *start_rgn, int *end_rgn)
633 phys_addr_t end = base + memblock_cap_size(base, &size);
634 int idx;
635 struct memblock_region *rgn;
637 *start_rgn = *end_rgn = 0;
639 if (!size)
640 return 0;
642 /* we'll create at most two more regions */
643 while (type->cnt + 2 > type->max)
644 if (memblock_double_array(type, base, size) < 0)
645 return -ENOMEM;
647 for_each_memblock_type(type, rgn) {
648 phys_addr_t rbase = rgn->base;
649 phys_addr_t rend = rbase + rgn->size;
651 if (rbase >= end)
652 break;
653 if (rend <= base)
654 continue;
656 if (rbase < base) {
658 * @rgn intersects from below. Split and continue
659 * to process the next region - the new top half.
661 rgn->base = base;
662 rgn->size -= base - rbase;
663 type->total_size -= base - rbase;
664 memblock_insert_region(type, idx, rbase, base - rbase,
665 memblock_get_region_node(rgn),
666 rgn->flags);
667 } else if (rend > end) {
669 * @rgn intersects from above. Split and redo the
670 * current region - the new bottom half.
672 rgn->base = end;
673 rgn->size -= end - rbase;
674 type->total_size -= end - rbase;
675 memblock_insert_region(type, idx--, rbase, end - rbase,
676 memblock_get_region_node(rgn),
677 rgn->flags);
678 } else {
679 /* @rgn is fully contained, record it */
680 if (!*end_rgn)
681 *start_rgn = idx;
682 *end_rgn = idx + 1;
686 return 0;
689 static int __init_memblock memblock_remove_range(struct memblock_type *type,
690 phys_addr_t base, phys_addr_t size)
692 int start_rgn, end_rgn;
693 int i, ret;
695 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
696 if (ret)
697 return ret;
699 for (i = end_rgn - 1; i >= start_rgn; i--)
700 memblock_remove_region(type, i);
701 return 0;
704 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
706 return memblock_remove_range(&memblock.memory, base, size);
710 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
712 phys_addr_t end = base + size - 1;
714 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
715 &base, &end, (void *)_RET_IP_);
717 kmemleak_free_part_phys(base, size);
718 return memblock_remove_range(&memblock.reserved, base, size);
721 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
723 phys_addr_t end = base + size - 1;
725 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 &base, &end, (void *)_RET_IP_);
728 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
733 * This function isolates region [@base, @base + @size), and sets/clears flag
735 * Return 0 on success, -errno on failure.
737 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 phys_addr_t size, int set, int flag)
740 struct memblock_type *type = &memblock.memory;
741 int i, ret, start_rgn, end_rgn;
743 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 if (ret)
745 return ret;
747 for (i = start_rgn; i < end_rgn; i++)
748 if (set)
749 memblock_set_region_flags(&type->regions[i], flag);
750 else
751 memblock_clear_region_flags(&type->regions[i], flag);
753 memblock_merge_regions(type);
754 return 0;
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
762 * Return 0 on success, -errno on failure.
764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
766 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
774 * Return 0 on success, -errno on failure.
776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
778 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
782 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783 * @base: the base phys addr of the region
784 * @size: the size of the region
786 * Return 0 on success, -errno on failure.
788 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
790 system_has_some_mirror = true;
792 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
796 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
800 * Return 0 on success, -errno on failure.
802 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
804 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
808 * __next_reserved_mem_region - next function for for_each_reserved_region()
809 * @idx: pointer to u64 loop variable
810 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
811 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
813 * Iterate over all reserved memory regions.
815 void __init_memblock __next_reserved_mem_region(u64 *idx,
816 phys_addr_t *out_start,
817 phys_addr_t *out_end)
819 struct memblock_type *type = &memblock.reserved;
821 if (*idx < type->cnt) {
822 struct memblock_region *r = &type->regions[*idx];
823 phys_addr_t base = r->base;
824 phys_addr_t size = r->size;
826 if (out_start)
827 *out_start = base;
828 if (out_end)
829 *out_end = base + size - 1;
831 *idx += 1;
832 return;
835 /* signal end of iteration */
836 *idx = ULLONG_MAX;
840 * __next__mem_range - next function for for_each_free_mem_range() etc.
841 * @idx: pointer to u64 loop variable
842 * @nid: node selector, %NUMA_NO_NODE for all nodes
843 * @flags: pick from blocks based on memory attributes
844 * @type_a: pointer to memblock_type from where the range is taken
845 * @type_b: pointer to memblock_type which excludes memory from being taken
846 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
847 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
848 * @out_nid: ptr to int for nid of the range, can be %NULL
850 * Find the first area from *@idx which matches @nid, fill the out
851 * parameters, and update *@idx for the next iteration. The lower 32bit of
852 * *@idx contains index into type_a and the upper 32bit indexes the
853 * areas before each region in type_b. For example, if type_b regions
854 * look like the following,
856 * 0:[0-16), 1:[32-48), 2:[128-130)
858 * The upper 32bit indexes the following regions.
860 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
862 * As both region arrays are sorted, the function advances the two indices
863 * in lockstep and returns each intersection.
865 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
866 struct memblock_type *type_a,
867 struct memblock_type *type_b,
868 phys_addr_t *out_start,
869 phys_addr_t *out_end, int *out_nid)
871 int idx_a = *idx & 0xffffffff;
872 int idx_b = *idx >> 32;
874 if (WARN_ONCE(nid == MAX_NUMNODES,
875 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
876 nid = NUMA_NO_NODE;
878 for (; idx_a < type_a->cnt; idx_a++) {
879 struct memblock_region *m = &type_a->regions[idx_a];
881 phys_addr_t m_start = m->base;
882 phys_addr_t m_end = m->base + m->size;
883 int m_nid = memblock_get_region_node(m);
885 /* only memory regions are associated with nodes, check it */
886 if (nid != NUMA_NO_NODE && nid != m_nid)
887 continue;
889 /* skip hotpluggable memory regions if needed */
890 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
891 continue;
893 /* if we want mirror memory skip non-mirror memory regions */
894 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
895 continue;
897 /* skip nomap memory unless we were asked for it explicitly */
898 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
899 continue;
901 if (!type_b) {
902 if (out_start)
903 *out_start = m_start;
904 if (out_end)
905 *out_end = m_end;
906 if (out_nid)
907 *out_nid = m_nid;
908 idx_a++;
909 *idx = (u32)idx_a | (u64)idx_b << 32;
910 return;
913 /* scan areas before each reservation */
914 for (; idx_b < type_b->cnt + 1; idx_b++) {
915 struct memblock_region *r;
916 phys_addr_t r_start;
917 phys_addr_t r_end;
919 r = &type_b->regions[idx_b];
920 r_start = idx_b ? r[-1].base + r[-1].size : 0;
921 r_end = idx_b < type_b->cnt ?
922 r->base : ULLONG_MAX;
925 * if idx_b advanced past idx_a,
926 * break out to advance idx_a
928 if (r_start >= m_end)
929 break;
930 /* if the two regions intersect, we're done */
931 if (m_start < r_end) {
932 if (out_start)
933 *out_start =
934 max(m_start, r_start);
935 if (out_end)
936 *out_end = min(m_end, r_end);
937 if (out_nid)
938 *out_nid = m_nid;
940 * The region which ends first is
941 * advanced for the next iteration.
943 if (m_end <= r_end)
944 idx_a++;
945 else
946 idx_b++;
947 *idx = (u32)idx_a | (u64)idx_b << 32;
948 return;
953 /* signal end of iteration */
954 *idx = ULLONG_MAX;
958 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
960 * Finds the next range from type_a which is not marked as unsuitable
961 * in type_b.
963 * @idx: pointer to u64 loop variable
964 * @nid: node selector, %NUMA_NO_NODE for all nodes
965 * @flags: pick from blocks based on memory attributes
966 * @type_a: pointer to memblock_type from where the range is taken
967 * @type_b: pointer to memblock_type which excludes memory from being taken
968 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
969 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
970 * @out_nid: ptr to int for nid of the range, can be %NULL
972 * Reverse of __next_mem_range().
974 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
975 struct memblock_type *type_a,
976 struct memblock_type *type_b,
977 phys_addr_t *out_start,
978 phys_addr_t *out_end, int *out_nid)
980 int idx_a = *idx & 0xffffffff;
981 int idx_b = *idx >> 32;
983 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
984 nid = NUMA_NO_NODE;
986 if (*idx == (u64)ULLONG_MAX) {
987 idx_a = type_a->cnt - 1;
988 if (type_b != NULL)
989 idx_b = type_b->cnt;
990 else
991 idx_b = 0;
994 for (; idx_a >= 0; idx_a--) {
995 struct memblock_region *m = &type_a->regions[idx_a];
997 phys_addr_t m_start = m->base;
998 phys_addr_t m_end = m->base + m->size;
999 int m_nid = memblock_get_region_node(m);
1001 /* only memory regions are associated with nodes, check it */
1002 if (nid != NUMA_NO_NODE && nid != m_nid)
1003 continue;
1005 /* skip hotpluggable memory regions if needed */
1006 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1007 continue;
1009 /* if we want mirror memory skip non-mirror memory regions */
1010 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1011 continue;
1013 /* skip nomap memory unless we were asked for it explicitly */
1014 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1015 continue;
1017 if (!type_b) {
1018 if (out_start)
1019 *out_start = m_start;
1020 if (out_end)
1021 *out_end = m_end;
1022 if (out_nid)
1023 *out_nid = m_nid;
1024 idx_a--;
1025 *idx = (u32)idx_a | (u64)idx_b << 32;
1026 return;
1029 /* scan areas before each reservation */
1030 for (; idx_b >= 0; idx_b--) {
1031 struct memblock_region *r;
1032 phys_addr_t r_start;
1033 phys_addr_t r_end;
1035 r = &type_b->regions[idx_b];
1036 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1037 r_end = idx_b < type_b->cnt ?
1038 r->base : ULLONG_MAX;
1040 * if idx_b advanced past idx_a,
1041 * break out to advance idx_a
1044 if (r_end <= m_start)
1045 break;
1046 /* if the two regions intersect, we're done */
1047 if (m_end > r_start) {
1048 if (out_start)
1049 *out_start = max(m_start, r_start);
1050 if (out_end)
1051 *out_end = min(m_end, r_end);
1052 if (out_nid)
1053 *out_nid = m_nid;
1054 if (m_start >= r_start)
1055 idx_a--;
1056 else
1057 idx_b--;
1058 *idx = (u32)idx_a | (u64)idx_b << 32;
1059 return;
1063 /* signal end of iteration */
1064 *idx = ULLONG_MAX;
1067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1069 * Common iterator interface used to define for_each_mem_range().
1071 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1072 unsigned long *out_start_pfn,
1073 unsigned long *out_end_pfn, int *out_nid)
1075 struct memblock_type *type = &memblock.memory;
1076 struct memblock_region *r;
1078 while (++*idx < type->cnt) {
1079 r = &type->regions[*idx];
1081 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1082 continue;
1083 if (nid == MAX_NUMNODES || nid == r->nid)
1084 break;
1086 if (*idx >= type->cnt) {
1087 *idx = -1;
1088 return;
1091 if (out_start_pfn)
1092 *out_start_pfn = PFN_UP(r->base);
1093 if (out_end_pfn)
1094 *out_end_pfn = PFN_DOWN(r->base + r->size);
1095 if (out_nid)
1096 *out_nid = r->nid;
1099 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1100 unsigned long max_pfn)
1102 struct memblock_type *type = &memblock.memory;
1103 unsigned int right = type->cnt;
1104 unsigned int mid, left = 0;
1105 phys_addr_t addr = PFN_PHYS(pfn + 1);
1107 do {
1108 mid = (right + left) / 2;
1110 if (addr < type->regions[mid].base)
1111 right = mid;
1112 else if (addr >= (type->regions[mid].base +
1113 type->regions[mid].size))
1114 left = mid + 1;
1115 else {
1116 /* addr is within the region, so pfn + 1 is valid */
1117 return min(pfn + 1, max_pfn);
1119 } while (left < right);
1121 return min(PHYS_PFN(type->regions[right].base), max_pfn);
1125 * memblock_set_node - set node ID on memblock regions
1126 * @base: base of area to set node ID for
1127 * @size: size of area to set node ID for
1128 * @type: memblock type to set node ID for
1129 * @nid: node ID to set
1131 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1132 * Regions which cross the area boundaries are split as necessary.
1134 * RETURNS:
1135 * 0 on success, -errno on failure.
1137 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1138 struct memblock_type *type, int nid)
1140 int start_rgn, end_rgn;
1141 int i, ret;
1143 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1144 if (ret)
1145 return ret;
1147 for (i = start_rgn; i < end_rgn; i++)
1148 memblock_set_region_node(&type->regions[i], nid);
1150 memblock_merge_regions(type);
1151 return 0;
1153 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1155 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1156 phys_addr_t align, phys_addr_t start,
1157 phys_addr_t end, int nid, ulong flags)
1159 phys_addr_t found;
1161 if (!align)
1162 align = SMP_CACHE_BYTES;
1164 found = memblock_find_in_range_node(size, align, start, end, nid,
1165 flags);
1166 if (found && !memblock_reserve(found, size)) {
1168 * The min_count is set to 0 so that memblock allocations are
1169 * never reported as leaks.
1171 kmemleak_alloc_phys(found, size, 0, 0);
1172 return found;
1174 return 0;
1177 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1178 phys_addr_t start, phys_addr_t end,
1179 ulong flags)
1181 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1182 flags);
1185 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1186 phys_addr_t align, phys_addr_t max_addr,
1187 int nid, ulong flags)
1189 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1192 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1194 ulong flags = choose_memblock_flags();
1195 phys_addr_t ret;
1197 again:
1198 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1199 nid, flags);
1201 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1202 flags &= ~MEMBLOCK_MIRROR;
1203 goto again;
1205 return ret;
1208 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1210 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1211 MEMBLOCK_NONE);
1214 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1216 phys_addr_t alloc;
1218 alloc = __memblock_alloc_base(size, align, max_addr);
1220 if (alloc == 0)
1221 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1222 &size, &max_addr);
1224 return alloc;
1227 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1229 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1232 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1234 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1236 if (res)
1237 return res;
1238 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1242 * memblock_virt_alloc_internal - allocate boot memory block
1243 * @size: size of memory block to be allocated in bytes
1244 * @align: alignment of the region and block's size
1245 * @min_addr: the lower bound of the memory region to allocate (phys address)
1246 * @max_addr: the upper bound of the memory region to allocate (phys address)
1247 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1249 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1250 * will fall back to memory below @min_addr. Also, allocation may fall back
1251 * to any node in the system if the specified node can not
1252 * hold the requested memory.
1254 * The allocation is performed from memory region limited by
1255 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1257 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1259 * The phys address of allocated boot memory block is converted to virtual and
1260 * allocated memory is reset to 0.
1262 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1263 * allocated boot memory block, so that it is never reported as leaks.
1265 * RETURNS:
1266 * Virtual address of allocated memory block on success, NULL on failure.
1268 static void * __init memblock_virt_alloc_internal(
1269 phys_addr_t size, phys_addr_t align,
1270 phys_addr_t min_addr, phys_addr_t max_addr,
1271 int nid)
1273 phys_addr_t alloc;
1274 void *ptr;
1275 ulong flags = choose_memblock_flags();
1277 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1278 nid = NUMA_NO_NODE;
1281 * Detect any accidental use of these APIs after slab is ready, as at
1282 * this moment memblock may be deinitialized already and its
1283 * internal data may be destroyed (after execution of free_all_bootmem)
1285 if (WARN_ON_ONCE(slab_is_available()))
1286 return kzalloc_node(size, GFP_NOWAIT, nid);
1288 if (!align)
1289 align = SMP_CACHE_BYTES;
1291 if (max_addr > memblock.current_limit)
1292 max_addr = memblock.current_limit;
1293 again:
1294 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1295 nid, flags);
1296 if (alloc && !memblock_reserve(alloc, size))
1297 goto done;
1299 if (nid != NUMA_NO_NODE) {
1300 alloc = memblock_find_in_range_node(size, align, min_addr,
1301 max_addr, NUMA_NO_NODE,
1302 flags);
1303 if (alloc && !memblock_reserve(alloc, size))
1304 goto done;
1307 if (min_addr) {
1308 min_addr = 0;
1309 goto again;
1312 if (flags & MEMBLOCK_MIRROR) {
1313 flags &= ~MEMBLOCK_MIRROR;
1314 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1315 &size);
1316 goto again;
1319 return NULL;
1320 done:
1321 ptr = phys_to_virt(alloc);
1322 memset(ptr, 0, size);
1325 * The min_count is set to 0 so that bootmem allocated blocks
1326 * are never reported as leaks. This is because many of these blocks
1327 * are only referred via the physical address which is not
1328 * looked up by kmemleak.
1330 kmemleak_alloc(ptr, size, 0, 0);
1332 return ptr;
1336 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1337 * @size: size of memory block to be allocated in bytes
1338 * @align: alignment of the region and block's size
1339 * @min_addr: the lower bound of the memory region from where the allocation
1340 * is preferred (phys address)
1341 * @max_addr: the upper bound of the memory region from where the allocation
1342 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1343 * allocate only from memory limited by memblock.current_limit value
1344 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1346 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1347 * additional debug information (including caller info), if enabled.
1349 * RETURNS:
1350 * Virtual address of allocated memory block on success, NULL on failure.
1352 void * __init memblock_virt_alloc_try_nid_nopanic(
1353 phys_addr_t size, phys_addr_t align,
1354 phys_addr_t min_addr, phys_addr_t max_addr,
1355 int nid)
1357 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1358 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1359 (u64)max_addr, (void *)_RET_IP_);
1360 return memblock_virt_alloc_internal(size, align, min_addr,
1361 max_addr, nid);
1365 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1366 * @size: size of memory block to be allocated in bytes
1367 * @align: alignment of the region and block's size
1368 * @min_addr: the lower bound of the memory region from where the allocation
1369 * is preferred (phys address)
1370 * @max_addr: the upper bound of the memory region from where the allocation
1371 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1372 * allocate only from memory limited by memblock.current_limit value
1373 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1375 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1376 * which provides debug information (including caller info), if enabled,
1377 * and panics if the request can not be satisfied.
1379 * RETURNS:
1380 * Virtual address of allocated memory block on success, NULL on failure.
1382 void * __init memblock_virt_alloc_try_nid(
1383 phys_addr_t size, phys_addr_t align,
1384 phys_addr_t min_addr, phys_addr_t max_addr,
1385 int nid)
1387 void *ptr;
1389 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1390 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1391 (u64)max_addr, (void *)_RET_IP_);
1392 ptr = memblock_virt_alloc_internal(size, align,
1393 min_addr, max_addr, nid);
1394 if (ptr)
1395 return ptr;
1397 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1398 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1399 (u64)max_addr);
1400 return NULL;
1404 * __memblock_free_early - free boot memory block
1405 * @base: phys starting address of the boot memory block
1406 * @size: size of the boot memory block in bytes
1408 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1409 * The freeing memory will not be released to the buddy allocator.
1411 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1413 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1414 __func__, (u64)base, (u64)base + size - 1,
1415 (void *)_RET_IP_);
1416 kmemleak_free_part_phys(base, size);
1417 memblock_remove_range(&memblock.reserved, base, size);
1421 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1422 * @addr: phys starting address of the boot memory block
1423 * @size: size of the boot memory block in bytes
1425 * This is only useful when the bootmem allocator has already been torn
1426 * down, but we are still initializing the system. Pages are released directly
1427 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1429 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1431 u64 cursor, end;
1433 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1434 __func__, (u64)base, (u64)base + size - 1,
1435 (void *)_RET_IP_);
1436 kmemleak_free_part_phys(base, size);
1437 cursor = PFN_UP(base);
1438 end = PFN_DOWN(base + size);
1440 for (; cursor < end; cursor++) {
1441 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1442 totalram_pages++;
1447 * Remaining API functions
1450 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1452 return memblock.memory.total_size;
1455 phys_addr_t __init_memblock memblock_reserved_size(void)
1457 return memblock.reserved.total_size;
1460 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1462 unsigned long pages = 0;
1463 struct memblock_region *r;
1464 unsigned long start_pfn, end_pfn;
1466 for_each_memblock(memory, r) {
1467 start_pfn = memblock_region_memory_base_pfn(r);
1468 end_pfn = memblock_region_memory_end_pfn(r);
1469 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1470 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1471 pages += end_pfn - start_pfn;
1474 return PFN_PHYS(pages);
1477 /* lowest address */
1478 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1480 return memblock.memory.regions[0].base;
1483 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1485 int idx = memblock.memory.cnt - 1;
1487 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1490 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1492 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1493 struct memblock_region *r;
1496 * translate the memory @limit size into the max address within one of
1497 * the memory memblock regions, if the @limit exceeds the total size
1498 * of those regions, max_addr will keep original value ULLONG_MAX
1500 for_each_memblock(memory, r) {
1501 if (limit <= r->size) {
1502 max_addr = r->base + limit;
1503 break;
1505 limit -= r->size;
1508 return max_addr;
1511 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1513 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1515 if (!limit)
1516 return;
1518 max_addr = __find_max_addr(limit);
1520 /* @limit exceeds the total size of the memory, do nothing */
1521 if (max_addr == (phys_addr_t)ULLONG_MAX)
1522 return;
1524 /* truncate both memory and reserved regions */
1525 memblock_remove_range(&memblock.memory, max_addr,
1526 (phys_addr_t)ULLONG_MAX);
1527 memblock_remove_range(&memblock.reserved, max_addr,
1528 (phys_addr_t)ULLONG_MAX);
1531 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1533 struct memblock_type *type = &memblock.memory;
1534 phys_addr_t max_addr;
1535 int i, ret, start_rgn, end_rgn;
1537 if (!limit)
1538 return;
1540 max_addr = __find_max_addr(limit);
1542 /* @limit exceeds the total size of the memory, do nothing */
1543 if (max_addr == (phys_addr_t)ULLONG_MAX)
1544 return;
1546 ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1547 &start_rgn, &end_rgn);
1548 if (ret)
1549 return;
1551 /* remove all the MAP regions above the limit */
1552 for (i = end_rgn - 1; i >= start_rgn; i--) {
1553 if (!memblock_is_nomap(&type->regions[i]))
1554 memblock_remove_region(type, i);
1556 /* truncate the reserved regions */
1557 memblock_remove_range(&memblock.reserved, max_addr,
1558 (phys_addr_t)ULLONG_MAX);
1561 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1563 unsigned int left = 0, right = type->cnt;
1565 do {
1566 unsigned int mid = (right + left) / 2;
1568 if (addr < type->regions[mid].base)
1569 right = mid;
1570 else if (addr >= (type->regions[mid].base +
1571 type->regions[mid].size))
1572 left = mid + 1;
1573 else
1574 return mid;
1575 } while (left < right);
1576 return -1;
1579 bool __init memblock_is_reserved(phys_addr_t addr)
1581 return memblock_search(&memblock.reserved, addr) != -1;
1584 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1586 return memblock_search(&memblock.memory, addr) != -1;
1589 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1591 int i = memblock_search(&memblock.memory, addr);
1593 if (i == -1)
1594 return false;
1595 return !memblock_is_nomap(&memblock.memory.regions[i]);
1598 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1599 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1600 unsigned long *start_pfn, unsigned long *end_pfn)
1602 struct memblock_type *type = &memblock.memory;
1603 int mid = memblock_search(type, PFN_PHYS(pfn));
1605 if (mid == -1)
1606 return -1;
1608 *start_pfn = PFN_DOWN(type->regions[mid].base);
1609 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1611 return type->regions[mid].nid;
1613 #endif
1616 * memblock_is_region_memory - check if a region is a subset of memory
1617 * @base: base of region to check
1618 * @size: size of region to check
1620 * Check if the region [@base, @base+@size) is a subset of a memory block.
1622 * RETURNS:
1623 * 0 if false, non-zero if true
1625 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1627 int idx = memblock_search(&memblock.memory, base);
1628 phys_addr_t end = base + memblock_cap_size(base, &size);
1630 if (idx == -1)
1631 return 0;
1632 return (memblock.memory.regions[idx].base +
1633 memblock.memory.regions[idx].size) >= end;
1637 * memblock_is_region_reserved - check if a region intersects reserved memory
1638 * @base: base of region to check
1639 * @size: size of region to check
1641 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1643 * RETURNS:
1644 * True if they intersect, false if not.
1646 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1648 memblock_cap_size(base, &size);
1649 return memblock_overlaps_region(&memblock.reserved, base, size);
1652 void __init_memblock memblock_trim_memory(phys_addr_t align)
1654 phys_addr_t start, end, orig_start, orig_end;
1655 struct memblock_region *r;
1657 for_each_memblock(memory, r) {
1658 orig_start = r->base;
1659 orig_end = r->base + r->size;
1660 start = round_up(orig_start, align);
1661 end = round_down(orig_end, align);
1663 if (start == orig_start && end == orig_end)
1664 continue;
1666 if (start < end) {
1667 r->base = start;
1668 r->size = end - start;
1669 } else {
1670 memblock_remove_region(&memblock.memory,
1671 r - memblock.memory.regions);
1672 r--;
1677 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1679 memblock.current_limit = limit;
1682 phys_addr_t __init_memblock memblock_get_current_limit(void)
1684 return memblock.current_limit;
1687 static void __init_memblock memblock_dump(struct memblock_type *type)
1689 phys_addr_t base, end, size;
1690 unsigned long flags;
1691 int idx;
1692 struct memblock_region *rgn;
1694 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1696 for_each_memblock_type(type, rgn) {
1697 char nid_buf[32] = "";
1699 base = rgn->base;
1700 size = rgn->size;
1701 end = base + size - 1;
1702 flags = rgn->flags;
1703 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1704 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1705 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1706 memblock_get_region_node(rgn));
1707 #endif
1708 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1709 type->name, idx, &base, &end, &size, nid_buf, flags);
1713 void __init_memblock __memblock_dump_all(void)
1715 pr_info("MEMBLOCK configuration:\n");
1716 pr_info(" memory size = %pa reserved size = %pa\n",
1717 &memblock.memory.total_size,
1718 &memblock.reserved.total_size);
1720 memblock_dump(&memblock.memory);
1721 memblock_dump(&memblock.reserved);
1722 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1723 memblock_dump(&memblock.physmem);
1724 #endif
1727 void __init memblock_allow_resize(void)
1729 memblock_can_resize = 1;
1732 static int __init early_memblock(char *p)
1734 if (p && strstr(p, "debug"))
1735 memblock_debug = 1;
1736 return 0;
1738 early_param("memblock", early_memblock);
1740 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1742 static int memblock_debug_show(struct seq_file *m, void *private)
1744 struct memblock_type *type = m->private;
1745 struct memblock_region *reg;
1746 int i;
1747 phys_addr_t end;
1749 for (i = 0; i < type->cnt; i++) {
1750 reg = &type->regions[i];
1751 end = reg->base + reg->size - 1;
1753 seq_printf(m, "%4d: ", i);
1754 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1756 return 0;
1759 static int memblock_debug_open(struct inode *inode, struct file *file)
1761 return single_open(file, memblock_debug_show, inode->i_private);
1764 static const struct file_operations memblock_debug_fops = {
1765 .open = memblock_debug_open,
1766 .read = seq_read,
1767 .llseek = seq_lseek,
1768 .release = single_release,
1771 static int __init memblock_init_debugfs(void)
1773 struct dentry *root = debugfs_create_dir("memblock", NULL);
1774 if (!root)
1775 return -ENXIO;
1776 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1777 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1778 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1779 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1780 #endif
1782 return 0;
1784 __initcall(memblock_init_debugfs);
1786 #endif /* CONFIG_DEBUG_FS */