2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * Alan Cox : Tidied tcp_data to avoid a potential
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
274 #include <net/icmp.h>
275 #include <net/inet_common.h>
277 #include <net/xfrm.h>
279 #include <net/sock.h>
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly
= 2;
287 int sysctl_tcp_autocorking __read_mostly
= 1;
289 struct percpu_counter tcp_orphan_count
;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count
);
292 long sysctl_tcp_mem
[3] __read_mostly
;
293 int sysctl_tcp_wmem
[3] __read_mostly
;
294 int sysctl_tcp_rmem
[3] __read_mostly
;
296 EXPORT_SYMBOL(sysctl_tcp_mem
);
297 EXPORT_SYMBOL(sysctl_tcp_rmem
);
298 EXPORT_SYMBOL(sysctl_tcp_wmem
);
300 atomic_long_t tcp_memory_allocated
; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated
);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated
;
307 EXPORT_SYMBOL(tcp_sockets_allocated
);
312 struct tcp_splice_state
{
313 struct pipe_inode_info
*pipe
;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 unsigned long tcp_memory_pressure __read_mostly
;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure
);
327 void tcp_enter_memory_pressure(struct sock
*sk
)
331 if (tcp_memory_pressure
)
337 if (!cmpxchg(&tcp_memory_pressure
, 0, val
))
338 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURES
);
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure
);
342 void tcp_leave_memory_pressure(struct sock
*sk
)
346 if (!tcp_memory_pressure
)
348 val
= xchg(&tcp_memory_pressure
, 0);
350 NET_ADD_STATS(sock_net(sk
), LINUX_MIB_TCPMEMORYPRESSURESCHRONO
,
351 jiffies_to_msecs(jiffies
- val
));
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure
);
355 /* Convert seconds to retransmits based on initial and max timeout */
356 static u8
secs_to_retrans(int seconds
, int timeout
, int rto_max
)
361 int period
= timeout
;
364 while (seconds
> period
&& res
< 255) {
367 if (timeout
> rto_max
)
375 /* Convert retransmits to seconds based on initial and max timeout */
376 static int retrans_to_secs(u8 retrans
, int timeout
, int rto_max
)
384 if (timeout
> rto_max
)
392 static u64
tcp_compute_delivery_rate(const struct tcp_sock
*tp
)
394 u32 rate
= READ_ONCE(tp
->rate_delivered
);
395 u32 intv
= READ_ONCE(tp
->rate_interval_us
);
399 rate64
= (u64
)rate
* tp
->mss_cache
* USEC_PER_SEC
;
400 do_div(rate64
, intv
);
405 /* Address-family independent initialization for a tcp_sock.
407 * NOTE: A lot of things set to zero explicitly by call to
408 * sk_alloc() so need not be done here.
410 void tcp_init_sock(struct sock
*sk
)
412 struct inet_connection_sock
*icsk
= inet_csk(sk
);
413 struct tcp_sock
*tp
= tcp_sk(sk
);
415 tp
->out_of_order_queue
= RB_ROOT
;
416 tcp_init_xmit_timers(sk
);
417 INIT_LIST_HEAD(&tp
->tsq_node
);
419 icsk
->icsk_rto
= TCP_TIMEOUT_INIT
;
420 tp
->mdev_us
= jiffies_to_usecs(TCP_TIMEOUT_INIT
);
421 minmax_reset(&tp
->rtt_min
, tcp_jiffies32
, ~0U);
423 /* So many TCP implementations out there (incorrectly) count the
424 * initial SYN frame in their delayed-ACK and congestion control
425 * algorithms that we must have the following bandaid to talk
426 * efficiently to them. -DaveM
428 tp
->snd_cwnd
= TCP_INIT_CWND
;
430 /* There's a bubble in the pipe until at least the first ACK. */
431 tp
->app_limited
= ~0U;
433 /* See draft-stevens-tcpca-spec-01 for discussion of the
434 * initialization of these values.
436 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
437 tp
->snd_cwnd_clamp
= ~0;
438 tp
->mss_cache
= TCP_MSS_DEFAULT
;
440 tp
->reordering
= sock_net(sk
)->ipv4
.sysctl_tcp_reordering
;
441 tcp_assign_congestion_control(sk
);
445 sk
->sk_state
= TCP_CLOSE
;
447 sk
->sk_write_space
= sk_stream_write_space
;
448 sock_set_flag(sk
, SOCK_USE_WRITE_QUEUE
);
450 icsk
->icsk_sync_mss
= tcp_sync_mss
;
452 sk
->sk_sndbuf
= sysctl_tcp_wmem
[1];
453 sk
->sk_rcvbuf
= sysctl_tcp_rmem
[1];
455 sk_sockets_allocated_inc(sk
);
457 EXPORT_SYMBOL(tcp_init_sock
);
459 static void tcp_tx_timestamp(struct sock
*sk
, u16 tsflags
, struct sk_buff
*skb
)
461 if (tsflags
&& skb
) {
462 struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
463 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
465 sock_tx_timestamp(sk
, tsflags
, &shinfo
->tx_flags
);
466 if (tsflags
& SOF_TIMESTAMPING_TX_ACK
)
467 tcb
->txstamp_ack
= 1;
468 if (tsflags
& SOF_TIMESTAMPING_TX_RECORD_MASK
)
469 shinfo
->tskey
= TCP_SKB_CB(skb
)->seq
+ skb
->len
- 1;
474 * Wait for a TCP event.
476 * Note that we don't need to lock the socket, as the upper poll layers
477 * take care of normal races (between the test and the event) and we don't
478 * go look at any of the socket buffers directly.
480 unsigned int tcp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
483 struct sock
*sk
= sock
->sk
;
484 const struct tcp_sock
*tp
= tcp_sk(sk
);
487 sock_rps_record_flow(sk
);
489 sock_poll_wait(file
, sk_sleep(sk
), wait
);
491 state
= sk_state_load(sk
);
492 if (state
== TCP_LISTEN
)
493 return inet_csk_listen_poll(sk
);
495 /* Socket is not locked. We are protected from async events
496 * by poll logic and correct handling of state changes
497 * made by other threads is impossible in any case.
503 * POLLHUP is certainly not done right. But poll() doesn't
504 * have a notion of HUP in just one direction, and for a
505 * socket the read side is more interesting.
507 * Some poll() documentation says that POLLHUP is incompatible
508 * with the POLLOUT/POLLWR flags, so somebody should check this
509 * all. But careful, it tends to be safer to return too many
510 * bits than too few, and you can easily break real applications
511 * if you don't tell them that something has hung up!
515 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
516 * our fs/select.c). It means that after we received EOF,
517 * poll always returns immediately, making impossible poll() on write()
518 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
519 * if and only if shutdown has been made in both directions.
520 * Actually, it is interesting to look how Solaris and DUX
521 * solve this dilemma. I would prefer, if POLLHUP were maskable,
522 * then we could set it on SND_SHUTDOWN. BTW examples given
523 * in Stevens' books assume exactly this behaviour, it explains
524 * why POLLHUP is incompatible with POLLOUT. --ANK
526 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
527 * blocking on fresh not-connected or disconnected socket. --ANK
529 if (sk
->sk_shutdown
== SHUTDOWN_MASK
|| state
== TCP_CLOSE
)
531 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
532 mask
|= POLLIN
| POLLRDNORM
| POLLRDHUP
;
534 /* Connected or passive Fast Open socket? */
535 if (state
!= TCP_SYN_SENT
&&
536 (state
!= TCP_SYN_RECV
|| tp
->fastopen_rsk
)) {
537 int target
= sock_rcvlowat(sk
, 0, INT_MAX
);
539 if (tp
->urg_seq
== tp
->copied_seq
&&
540 !sock_flag(sk
, SOCK_URGINLINE
) &&
544 if (tp
->rcv_nxt
- tp
->copied_seq
>= target
)
545 mask
|= POLLIN
| POLLRDNORM
;
547 if (!(sk
->sk_shutdown
& SEND_SHUTDOWN
)) {
548 if (sk_stream_is_writeable(sk
)) {
549 mask
|= POLLOUT
| POLLWRNORM
;
550 } else { /* send SIGIO later */
551 sk_set_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
552 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
554 /* Race breaker. If space is freed after
555 * wspace test but before the flags are set,
556 * IO signal will be lost. Memory barrier
557 * pairs with the input side.
559 smp_mb__after_atomic();
560 if (sk_stream_is_writeable(sk
))
561 mask
|= POLLOUT
| POLLWRNORM
;
564 mask
|= POLLOUT
| POLLWRNORM
;
566 if (tp
->urg_data
& TCP_URG_VALID
)
568 } else if (state
== TCP_SYN_SENT
&& inet_sk(sk
)->defer_connect
) {
569 /* Active TCP fastopen socket with defer_connect
570 * Return POLLOUT so application can call write()
571 * in order for kernel to generate SYN+data
573 mask
|= POLLOUT
| POLLWRNORM
;
575 /* This barrier is coupled with smp_wmb() in tcp_reset() */
577 if (sk
->sk_err
|| !skb_queue_empty(&sk
->sk_error_queue
))
582 EXPORT_SYMBOL(tcp_poll
);
584 int tcp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
586 struct tcp_sock
*tp
= tcp_sk(sk
);
592 if (sk
->sk_state
== TCP_LISTEN
)
595 slow
= lock_sock_fast(sk
);
597 unlock_sock_fast(sk
, slow
);
600 answ
= tp
->urg_data
&& tp
->urg_seq
== tp
->copied_seq
;
603 if (sk
->sk_state
== TCP_LISTEN
)
606 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
609 answ
= tp
->write_seq
- tp
->snd_una
;
612 if (sk
->sk_state
== TCP_LISTEN
)
615 if ((1 << sk
->sk_state
) & (TCPF_SYN_SENT
| TCPF_SYN_RECV
))
618 answ
= tp
->write_seq
- tp
->snd_nxt
;
624 return put_user(answ
, (int __user
*)arg
);
626 EXPORT_SYMBOL(tcp_ioctl
);
628 static inline void tcp_mark_push(struct tcp_sock
*tp
, struct sk_buff
*skb
)
630 TCP_SKB_CB(skb
)->tcp_flags
|= TCPHDR_PSH
;
631 tp
->pushed_seq
= tp
->write_seq
;
634 static inline bool forced_push(const struct tcp_sock
*tp
)
636 return after(tp
->write_seq
, tp
->pushed_seq
+ (tp
->max_window
>> 1));
639 static void skb_entail(struct sock
*sk
, struct sk_buff
*skb
)
641 struct tcp_sock
*tp
= tcp_sk(sk
);
642 struct tcp_skb_cb
*tcb
= TCP_SKB_CB(skb
);
645 tcb
->seq
= tcb
->end_seq
= tp
->write_seq
;
646 tcb
->tcp_flags
= TCPHDR_ACK
;
648 __skb_header_release(skb
);
649 tcp_add_write_queue_tail(sk
, skb
);
650 sk
->sk_wmem_queued
+= skb
->truesize
;
651 sk_mem_charge(sk
, skb
->truesize
);
652 if (tp
->nonagle
& TCP_NAGLE_PUSH
)
653 tp
->nonagle
&= ~TCP_NAGLE_PUSH
;
655 tcp_slow_start_after_idle_check(sk
);
658 static inline void tcp_mark_urg(struct tcp_sock
*tp
, int flags
)
661 tp
->snd_up
= tp
->write_seq
;
664 /* If a not yet filled skb is pushed, do not send it if
665 * we have data packets in Qdisc or NIC queues :
666 * Because TX completion will happen shortly, it gives a chance
667 * to coalesce future sendmsg() payload into this skb, without
668 * need for a timer, and with no latency trade off.
669 * As packets containing data payload have a bigger truesize
670 * than pure acks (dataless) packets, the last checks prevent
671 * autocorking if we only have an ACK in Qdisc/NIC queues,
672 * or if TX completion was delayed after we processed ACK packet.
674 static bool tcp_should_autocork(struct sock
*sk
, struct sk_buff
*skb
,
677 return skb
->len
< size_goal
&&
678 sysctl_tcp_autocorking
&&
679 skb
!= tcp_write_queue_head(sk
) &&
680 refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
;
683 static void tcp_push(struct sock
*sk
, int flags
, int mss_now
,
684 int nonagle
, int size_goal
)
686 struct tcp_sock
*tp
= tcp_sk(sk
);
689 if (!tcp_send_head(sk
))
692 skb
= tcp_write_queue_tail(sk
);
693 if (!(flags
& MSG_MORE
) || forced_push(tp
))
694 tcp_mark_push(tp
, skb
);
696 tcp_mark_urg(tp
, flags
);
698 if (tcp_should_autocork(sk
, skb
, size_goal
)) {
700 /* avoid atomic op if TSQ_THROTTLED bit is already set */
701 if (!test_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
)) {
702 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPAUTOCORKING
);
703 set_bit(TSQ_THROTTLED
, &sk
->sk_tsq_flags
);
705 /* It is possible TX completion already happened
706 * before we set TSQ_THROTTLED.
708 if (refcount_read(&sk
->sk_wmem_alloc
) > skb
->truesize
)
712 if (flags
& MSG_MORE
)
713 nonagle
= TCP_NAGLE_CORK
;
715 __tcp_push_pending_frames(sk
, mss_now
, nonagle
);
718 static int tcp_splice_data_recv(read_descriptor_t
*rd_desc
, struct sk_buff
*skb
,
719 unsigned int offset
, size_t len
)
721 struct tcp_splice_state
*tss
= rd_desc
->arg
.data
;
724 ret
= skb_splice_bits(skb
, skb
->sk
, offset
, tss
->pipe
,
725 min(rd_desc
->count
, len
), tss
->flags
);
727 rd_desc
->count
-= ret
;
731 static int __tcp_splice_read(struct sock
*sk
, struct tcp_splice_state
*tss
)
733 /* Store TCP splice context information in read_descriptor_t. */
734 read_descriptor_t rd_desc
= {
739 return tcp_read_sock(sk
, &rd_desc
, tcp_splice_data_recv
);
743 * tcp_splice_read - splice data from TCP socket to a pipe
744 * @sock: socket to splice from
745 * @ppos: position (not valid)
746 * @pipe: pipe to splice to
747 * @len: number of bytes to splice
748 * @flags: splice modifier flags
751 * Will read pages from given socket and fill them into a pipe.
754 ssize_t
tcp_splice_read(struct socket
*sock
, loff_t
*ppos
,
755 struct pipe_inode_info
*pipe
, size_t len
,
758 struct sock
*sk
= sock
->sk
;
759 struct tcp_splice_state tss
= {
768 sock_rps_record_flow(sk
);
770 * We can't seek on a socket input
779 timeo
= sock_rcvtimeo(sk
, sock
->file
->f_flags
& O_NONBLOCK
);
781 ret
= __tcp_splice_read(sk
, &tss
);
787 if (sock_flag(sk
, SOCK_DONE
))
790 ret
= sock_error(sk
);
793 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
795 if (sk
->sk_state
== TCP_CLOSE
) {
797 * This occurs when user tries to read
798 * from never connected socket.
800 if (!sock_flag(sk
, SOCK_DONE
))
808 /* if __tcp_splice_read() got nothing while we have
809 * an skb in receive queue, we do not want to loop.
810 * This might happen with URG data.
812 if (!skb_queue_empty(&sk
->sk_receive_queue
))
814 sk_wait_data(sk
, &timeo
, NULL
);
815 if (signal_pending(current
)) {
816 ret
= sock_intr_errno(timeo
);
829 if (sk
->sk_err
|| sk
->sk_state
== TCP_CLOSE
||
830 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
831 signal_pending(current
))
842 EXPORT_SYMBOL(tcp_splice_read
);
844 struct sk_buff
*sk_stream_alloc_skb(struct sock
*sk
, int size
, gfp_t gfp
,
849 /* The TCP header must be at least 32-bit aligned. */
850 size
= ALIGN(size
, 4);
852 if (unlikely(tcp_under_memory_pressure(sk
)))
853 sk_mem_reclaim_partial(sk
);
855 skb
= alloc_skb_fclone(size
+ sk
->sk_prot
->max_header
, gfp
);
859 if (force_schedule
) {
860 mem_scheduled
= true;
861 sk_forced_mem_schedule(sk
, skb
->truesize
);
863 mem_scheduled
= sk_wmem_schedule(sk
, skb
->truesize
);
865 if (likely(mem_scheduled
)) {
866 skb_reserve(skb
, sk
->sk_prot
->max_header
);
868 * Make sure that we have exactly size bytes
869 * available to the caller, no more, no less.
871 skb
->reserved_tailroom
= skb
->end
- skb
->tail
- size
;
876 sk
->sk_prot
->enter_memory_pressure(sk
);
877 sk_stream_moderate_sndbuf(sk
);
882 static unsigned int tcp_xmit_size_goal(struct sock
*sk
, u32 mss_now
,
885 struct tcp_sock
*tp
= tcp_sk(sk
);
886 u32 new_size_goal
, size_goal
;
888 if (!large_allowed
|| !sk_can_gso(sk
))
891 /* Note : tcp_tso_autosize() will eventually split this later */
892 new_size_goal
= sk
->sk_gso_max_size
- 1 - MAX_TCP_HEADER
;
893 new_size_goal
= tcp_bound_to_half_wnd(tp
, new_size_goal
);
895 /* We try hard to avoid divides here */
896 size_goal
= tp
->gso_segs
* mss_now
;
897 if (unlikely(new_size_goal
< size_goal
||
898 new_size_goal
>= size_goal
+ mss_now
)) {
899 tp
->gso_segs
= min_t(u16
, new_size_goal
/ mss_now
,
900 sk
->sk_gso_max_segs
);
901 size_goal
= tp
->gso_segs
* mss_now
;
904 return max(size_goal
, mss_now
);
907 static int tcp_send_mss(struct sock
*sk
, int *size_goal
, int flags
)
911 mss_now
= tcp_current_mss(sk
);
912 *size_goal
= tcp_xmit_size_goal(sk
, mss_now
, !(flags
& MSG_OOB
));
917 ssize_t
do_tcp_sendpages(struct sock
*sk
, struct page
*page
, int offset
,
918 size_t size
, int flags
)
920 struct tcp_sock
*tp
= tcp_sk(sk
);
921 int mss_now
, size_goal
;
924 long timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
926 /* Wait for a connection to finish. One exception is TCP Fast Open
927 * (passive side) where data is allowed to be sent before a connection
928 * is fully established.
930 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
931 !tcp_passive_fastopen(sk
)) {
932 err
= sk_stream_wait_connect(sk
, &timeo
);
937 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
939 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
943 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
947 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
951 if (!tcp_send_head(sk
) || (copy
= size_goal
- skb
->len
) <= 0 ||
952 !tcp_skb_can_collapse_to(skb
)) {
954 if (!sk_stream_memory_free(sk
))
955 goto wait_for_sndbuf
;
957 skb
= sk_stream_alloc_skb(sk
, 0, sk
->sk_allocation
,
958 skb_queue_empty(&sk
->sk_write_queue
));
960 goto wait_for_memory
;
969 i
= skb_shinfo(skb
)->nr_frags
;
970 can_coalesce
= skb_can_coalesce(skb
, i
, page
, offset
);
971 if (!can_coalesce
&& i
>= sysctl_max_skb_frags
) {
972 tcp_mark_push(tp
, skb
);
975 if (!sk_wmem_schedule(sk
, copy
))
976 goto wait_for_memory
;
979 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
982 skb_fill_page_desc(skb
, i
, page
, offset
, copy
);
984 skb_shinfo(skb
)->tx_flags
|= SKBTX_SHARED_FRAG
;
987 skb
->data_len
+= copy
;
988 skb
->truesize
+= copy
;
989 sk
->sk_wmem_queued
+= copy
;
990 sk_mem_charge(sk
, copy
);
991 skb
->ip_summed
= CHECKSUM_PARTIAL
;
992 tp
->write_seq
+= copy
;
993 TCP_SKB_CB(skb
)->end_seq
+= copy
;
994 tcp_skb_pcount_set(skb
, 0);
997 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1005 if (skb
->len
< size_goal
|| (flags
& MSG_OOB
))
1008 if (forced_push(tp
)) {
1009 tcp_mark_push(tp
, skb
);
1010 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1011 } else if (skb
== tcp_send_head(sk
))
1012 tcp_push_one(sk
, mss_now
);
1016 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1018 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1019 TCP_NAGLE_PUSH
, size_goal
);
1021 err
= sk_stream_wait_memory(sk
, &timeo
);
1025 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1030 tcp_tx_timestamp(sk
, sk
->sk_tsflags
, tcp_write_queue_tail(sk
));
1031 if (!(flags
& MSG_SENDPAGE_NOTLAST
))
1032 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1040 /* make sure we wake any epoll edge trigger waiter */
1041 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1043 sk
->sk_write_space(sk
);
1044 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1046 return sk_stream_error(sk
, flags
, err
);
1048 EXPORT_SYMBOL_GPL(do_tcp_sendpages
);
1050 int tcp_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
1051 size_t size
, int flags
)
1053 if (!(sk
->sk_route_caps
& NETIF_F_SG
) ||
1054 !sk_check_csum_caps(sk
))
1055 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
1057 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1059 return do_tcp_sendpages(sk
, page
, offset
, size
, flags
);
1061 EXPORT_SYMBOL_GPL(tcp_sendpage_locked
);
1063 int tcp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
1064 size_t size
, int flags
)
1069 ret
= tcp_sendpage_locked(sk
, page
, offset
, size
, flags
);
1074 EXPORT_SYMBOL(tcp_sendpage
);
1076 /* Do not bother using a page frag for very small frames.
1077 * But use this heuristic only for the first skb in write queue.
1079 * Having no payload in skb->head allows better SACK shifting
1080 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1081 * write queue has less skbs.
1082 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1083 * This also speeds up tso_fragment(), since it wont fallback
1084 * to tcp_fragment().
1086 static int linear_payload_sz(bool first_skb
)
1089 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER
);
1093 static int select_size(const struct sock
*sk
, bool sg
, bool first_skb
)
1095 const struct tcp_sock
*tp
= tcp_sk(sk
);
1096 int tmp
= tp
->mss_cache
;
1099 if (sk_can_gso(sk
)) {
1100 tmp
= linear_payload_sz(first_skb
);
1102 int pgbreak
= SKB_MAX_HEAD(MAX_TCP_HEADER
);
1104 if (tmp
>= pgbreak
&&
1105 tmp
<= pgbreak
+ (MAX_SKB_FRAGS
- 1) * PAGE_SIZE
)
1113 void tcp_free_fastopen_req(struct tcp_sock
*tp
)
1115 if (tp
->fastopen_req
) {
1116 kfree(tp
->fastopen_req
);
1117 tp
->fastopen_req
= NULL
;
1121 static int tcp_sendmsg_fastopen(struct sock
*sk
, struct msghdr
*msg
,
1122 int *copied
, size_t size
)
1124 struct tcp_sock
*tp
= tcp_sk(sk
);
1125 struct inet_sock
*inet
= inet_sk(sk
);
1126 struct sockaddr
*uaddr
= msg
->msg_name
;
1129 if (!(sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) ||
1130 (uaddr
&& msg
->msg_namelen
>= sizeof(uaddr
->sa_family
) &&
1131 uaddr
->sa_family
== AF_UNSPEC
))
1133 if (tp
->fastopen_req
)
1134 return -EALREADY
; /* Another Fast Open is in progress */
1136 tp
->fastopen_req
= kzalloc(sizeof(struct tcp_fastopen_request
),
1138 if (unlikely(!tp
->fastopen_req
))
1140 tp
->fastopen_req
->data
= msg
;
1141 tp
->fastopen_req
->size
= size
;
1143 if (inet
->defer_connect
) {
1144 err
= tcp_connect(sk
);
1145 /* Same failure procedure as in tcp_v4/6_connect */
1147 tcp_set_state(sk
, TCP_CLOSE
);
1148 inet
->inet_dport
= 0;
1149 sk
->sk_route_caps
= 0;
1152 flags
= (msg
->msg_flags
& MSG_DONTWAIT
) ? O_NONBLOCK
: 0;
1153 err
= __inet_stream_connect(sk
->sk_socket
, uaddr
,
1154 msg
->msg_namelen
, flags
, 1);
1155 /* fastopen_req could already be freed in __inet_stream_connect
1156 * if the connection times out or gets rst
1158 if (tp
->fastopen_req
) {
1159 *copied
= tp
->fastopen_req
->copied
;
1160 tcp_free_fastopen_req(tp
);
1161 inet
->defer_connect
= 0;
1166 int tcp_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1168 struct tcp_sock
*tp
= tcp_sk(sk
);
1169 struct ubuf_info
*uarg
= NULL
;
1170 struct sk_buff
*skb
;
1171 struct sockcm_cookie sockc
;
1172 int flags
, err
, copied
= 0;
1173 int mss_now
= 0, size_goal
, copied_syn
= 0;
1174 bool process_backlog
= false;
1178 flags
= msg
->msg_flags
;
1180 if (flags
& MSG_ZEROCOPY
&& size
) {
1181 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
1186 skb
= tcp_send_head(sk
) ? tcp_write_queue_tail(sk
) : NULL
;
1187 uarg
= sock_zerocopy_realloc(sk
, size
, skb_zcopy(skb
));
1193 if (!(sk_check_csum_caps(sk
) && sk
->sk_route_caps
& NETIF_F_SG
))
1197 if (unlikely(flags
& MSG_FASTOPEN
|| inet_sk(sk
)->defer_connect
)) {
1198 err
= tcp_sendmsg_fastopen(sk
, msg
, &copied_syn
, size
);
1199 if (err
== -EINPROGRESS
&& copied_syn
> 0)
1205 timeo
= sock_sndtimeo(sk
, flags
& MSG_DONTWAIT
);
1207 tcp_rate_check_app_limited(sk
); /* is sending application-limited? */
1209 /* Wait for a connection to finish. One exception is TCP Fast Open
1210 * (passive side) where data is allowed to be sent before a connection
1211 * is fully established.
1213 if (((1 << sk
->sk_state
) & ~(TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
)) &&
1214 !tcp_passive_fastopen(sk
)) {
1215 err
= sk_stream_wait_connect(sk
, &timeo
);
1220 if (unlikely(tp
->repair
)) {
1221 if (tp
->repair_queue
== TCP_RECV_QUEUE
) {
1222 copied
= tcp_send_rcvq(sk
, msg
, size
);
1227 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1230 /* 'common' sending to sendq */
1233 sockc
.tsflags
= sk
->sk_tsflags
;
1234 if (msg
->msg_controllen
) {
1235 err
= sock_cmsg_send(sk
, msg
, &sockc
);
1236 if (unlikely(err
)) {
1242 /* This should be in poll */
1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE
, sk
);
1245 /* Ok commence sending. */
1249 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1252 if (sk
->sk_err
|| (sk
->sk_shutdown
& SEND_SHUTDOWN
))
1255 sg
= !!(sk
->sk_route_caps
& NETIF_F_SG
);
1257 while (msg_data_left(msg
)) {
1259 int max
= size_goal
;
1261 skb
= tcp_write_queue_tail(sk
);
1262 if (tcp_send_head(sk
)) {
1263 if (skb
->ip_summed
== CHECKSUM_NONE
)
1265 copy
= max
- skb
->len
;
1268 if (copy
<= 0 || !tcp_skb_can_collapse_to(skb
)) {
1272 /* Allocate new segment. If the interface is SG,
1273 * allocate skb fitting to single page.
1275 if (!sk_stream_memory_free(sk
))
1276 goto wait_for_sndbuf
;
1278 if (process_backlog
&& sk_flush_backlog(sk
)) {
1279 process_backlog
= false;
1282 first_skb
= skb_queue_empty(&sk
->sk_write_queue
);
1283 skb
= sk_stream_alloc_skb(sk
,
1284 select_size(sk
, sg
, first_skb
),
1288 goto wait_for_memory
;
1290 process_backlog
= true;
1292 * Check whether we can use HW checksum.
1294 if (sk_check_csum_caps(sk
))
1295 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1297 skb_entail(sk
, skb
);
1301 /* All packets are restored as if they have
1302 * already been sent. skb_mstamp isn't set to
1303 * avoid wrong rtt estimation.
1306 TCP_SKB_CB(skb
)->sacked
|= TCPCB_REPAIRED
;
1309 /* Try to append data to the end of skb. */
1310 if (copy
> msg_data_left(msg
))
1311 copy
= msg_data_left(msg
);
1313 /* Where to copy to? */
1314 if (skb_availroom(skb
) > 0) {
1315 /* We have some space in skb head. Superb! */
1316 copy
= min_t(int, copy
, skb_availroom(skb
));
1317 err
= skb_add_data_nocache(sk
, skb
, &msg
->msg_iter
, copy
);
1320 } else if (!uarg
|| !uarg
->zerocopy
) {
1322 int i
= skb_shinfo(skb
)->nr_frags
;
1323 struct page_frag
*pfrag
= sk_page_frag(sk
);
1325 if (!sk_page_frag_refill(sk
, pfrag
))
1326 goto wait_for_memory
;
1328 if (!skb_can_coalesce(skb
, i
, pfrag
->page
,
1330 if (i
>= sysctl_max_skb_frags
|| !sg
) {
1331 tcp_mark_push(tp
, skb
);
1337 copy
= min_t(int, copy
, pfrag
->size
- pfrag
->offset
);
1339 if (!sk_wmem_schedule(sk
, copy
))
1340 goto wait_for_memory
;
1342 err
= skb_copy_to_page_nocache(sk
, &msg
->msg_iter
, skb
,
1349 /* Update the skb. */
1351 skb_frag_size_add(&skb_shinfo(skb
)->frags
[i
- 1], copy
);
1353 skb_fill_page_desc(skb
, i
, pfrag
->page
,
1354 pfrag
->offset
, copy
);
1355 page_ref_inc(pfrag
->page
);
1357 pfrag
->offset
+= copy
;
1359 err
= skb_zerocopy_iter_stream(sk
, skb
, msg
, copy
, uarg
);
1360 if (err
== -EMSGSIZE
|| err
== -EEXIST
)
1368 TCP_SKB_CB(skb
)->tcp_flags
&= ~TCPHDR_PSH
;
1370 tp
->write_seq
+= copy
;
1371 TCP_SKB_CB(skb
)->end_seq
+= copy
;
1372 tcp_skb_pcount_set(skb
, 0);
1375 if (!msg_data_left(msg
)) {
1376 if (unlikely(flags
& MSG_EOR
))
1377 TCP_SKB_CB(skb
)->eor
= 1;
1381 if (skb
->len
< max
|| (flags
& MSG_OOB
) || unlikely(tp
->repair
))
1384 if (forced_push(tp
)) {
1385 tcp_mark_push(tp
, skb
);
1386 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_PUSH
);
1387 } else if (skb
== tcp_send_head(sk
))
1388 tcp_push_one(sk
, mss_now
);
1392 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1395 tcp_push(sk
, flags
& ~MSG_MORE
, mss_now
,
1396 TCP_NAGLE_PUSH
, size_goal
);
1398 err
= sk_stream_wait_memory(sk
, &timeo
);
1402 mss_now
= tcp_send_mss(sk
, &size_goal
, flags
);
1407 tcp_tx_timestamp(sk
, sockc
.tsflags
, tcp_write_queue_tail(sk
));
1408 tcp_push(sk
, flags
, mss_now
, tp
->nonagle
, size_goal
);
1411 sock_zerocopy_put(uarg
);
1412 return copied
+ copied_syn
;
1416 tcp_unlink_write_queue(skb
, sk
);
1417 /* It is the one place in all of TCP, except connection
1418 * reset, where we can be unlinking the send_head.
1420 tcp_check_send_head(sk
, skb
);
1421 sk_wmem_free_skb(sk
, skb
);
1425 if (copied
+ copied_syn
)
1428 sock_zerocopy_put_abort(uarg
);
1429 err
= sk_stream_error(sk
, flags
, err
);
1430 /* make sure we wake any epoll edge trigger waiter */
1431 if (unlikely(skb_queue_len(&sk
->sk_write_queue
) == 0 &&
1433 sk
->sk_write_space(sk
);
1434 tcp_chrono_stop(sk
, TCP_CHRONO_SNDBUF_LIMITED
);
1438 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked
);
1440 int tcp_sendmsg(struct sock
*sk
, struct msghdr
*msg
, size_t size
)
1445 ret
= tcp_sendmsg_locked(sk
, msg
, size
);
1450 EXPORT_SYMBOL(tcp_sendmsg
);
1453 * Handle reading urgent data. BSD has very simple semantics for
1454 * this, no blocking and very strange errors 8)
1457 static int tcp_recv_urg(struct sock
*sk
, struct msghdr
*msg
, int len
, int flags
)
1459 struct tcp_sock
*tp
= tcp_sk(sk
);
1461 /* No URG data to read. */
1462 if (sock_flag(sk
, SOCK_URGINLINE
) || !tp
->urg_data
||
1463 tp
->urg_data
== TCP_URG_READ
)
1464 return -EINVAL
; /* Yes this is right ! */
1466 if (sk
->sk_state
== TCP_CLOSE
&& !sock_flag(sk
, SOCK_DONE
))
1469 if (tp
->urg_data
& TCP_URG_VALID
) {
1471 char c
= tp
->urg_data
;
1473 if (!(flags
& MSG_PEEK
))
1474 tp
->urg_data
= TCP_URG_READ
;
1476 /* Read urgent data. */
1477 msg
->msg_flags
|= MSG_OOB
;
1480 if (!(flags
& MSG_TRUNC
))
1481 err
= memcpy_to_msg(msg
, &c
, 1);
1484 msg
->msg_flags
|= MSG_TRUNC
;
1486 return err
? -EFAULT
: len
;
1489 if (sk
->sk_state
== TCP_CLOSE
|| (sk
->sk_shutdown
& RCV_SHUTDOWN
))
1492 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1493 * the available implementations agree in this case:
1494 * this call should never block, independent of the
1495 * blocking state of the socket.
1496 * Mike <pall@rz.uni-karlsruhe.de>
1501 static int tcp_peek_sndq(struct sock
*sk
, struct msghdr
*msg
, int len
)
1503 struct sk_buff
*skb
;
1504 int copied
= 0, err
= 0;
1506 /* XXX -- need to support SO_PEEK_OFF */
1508 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
1509 err
= skb_copy_datagram_msg(skb
, 0, msg
, skb
->len
);
1516 return err
?: copied
;
1519 /* Clean up the receive buffer for full frames taken by the user,
1520 * then send an ACK if necessary. COPIED is the number of bytes
1521 * tcp_recvmsg has given to the user so far, it speeds up the
1522 * calculation of whether or not we must ACK for the sake of
1525 static void tcp_cleanup_rbuf(struct sock
*sk
, int copied
)
1527 struct tcp_sock
*tp
= tcp_sk(sk
);
1528 bool time_to_ack
= false;
1530 struct sk_buff
*skb
= skb_peek(&sk
->sk_receive_queue
);
1532 WARN(skb
&& !before(tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
),
1533 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1534 tp
->copied_seq
, TCP_SKB_CB(skb
)->end_seq
, tp
->rcv_nxt
);
1536 if (inet_csk_ack_scheduled(sk
)) {
1537 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1538 /* Delayed ACKs frequently hit locked sockets during bulk
1540 if (icsk
->icsk_ack
.blocked
||
1541 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1542 tp
->rcv_nxt
- tp
->rcv_wup
> icsk
->icsk_ack
.rcv_mss
||
1544 * If this read emptied read buffer, we send ACK, if
1545 * connection is not bidirectional, user drained
1546 * receive buffer and there was a small segment
1550 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED2
) ||
1551 ((icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
) &&
1552 !icsk
->icsk_ack
.pingpong
)) &&
1553 !atomic_read(&sk
->sk_rmem_alloc
)))
1557 /* We send an ACK if we can now advertise a non-zero window
1558 * which has been raised "significantly".
1560 * Even if window raised up to infinity, do not send window open ACK
1561 * in states, where we will not receive more. It is useless.
1563 if (copied
> 0 && !time_to_ack
&& !(sk
->sk_shutdown
& RCV_SHUTDOWN
)) {
1564 __u32 rcv_window_now
= tcp_receive_window(tp
);
1566 /* Optimize, __tcp_select_window() is not cheap. */
1567 if (2*rcv_window_now
<= tp
->window_clamp
) {
1568 __u32 new_window
= __tcp_select_window(sk
);
1570 /* Send ACK now, if this read freed lots of space
1571 * in our buffer. Certainly, new_window is new window.
1572 * We can advertise it now, if it is not less than current one.
1573 * "Lots" means "at least twice" here.
1575 if (new_window
&& new_window
>= 2 * rcv_window_now
)
1583 static struct sk_buff
*tcp_recv_skb(struct sock
*sk
, u32 seq
, u32
*off
)
1585 struct sk_buff
*skb
;
1588 while ((skb
= skb_peek(&sk
->sk_receive_queue
)) != NULL
) {
1589 offset
= seq
- TCP_SKB_CB(skb
)->seq
;
1590 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1591 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1594 if (offset
< skb
->len
|| (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)) {
1598 /* This looks weird, but this can happen if TCP collapsing
1599 * splitted a fat GRO packet, while we released socket lock
1600 * in skb_splice_bits()
1602 sk_eat_skb(sk
, skb
);
1608 * This routine provides an alternative to tcp_recvmsg() for routines
1609 * that would like to handle copying from skbuffs directly in 'sendfile'
1612 * - It is assumed that the socket was locked by the caller.
1613 * - The routine does not block.
1614 * - At present, there is no support for reading OOB data
1615 * or for 'peeking' the socket using this routine
1616 * (although both would be easy to implement).
1618 int tcp_read_sock(struct sock
*sk
, read_descriptor_t
*desc
,
1619 sk_read_actor_t recv_actor
)
1621 struct sk_buff
*skb
;
1622 struct tcp_sock
*tp
= tcp_sk(sk
);
1623 u32 seq
= tp
->copied_seq
;
1627 if (sk
->sk_state
== TCP_LISTEN
)
1629 while ((skb
= tcp_recv_skb(sk
, seq
, &offset
)) != NULL
) {
1630 if (offset
< skb
->len
) {
1634 len
= skb
->len
- offset
;
1635 /* Stop reading if we hit a patch of urgent data */
1637 u32 urg_offset
= tp
->urg_seq
- seq
;
1638 if (urg_offset
< len
)
1643 used
= recv_actor(desc
, skb
, offset
, len
);
1648 } else if (used
<= len
) {
1653 /* If recv_actor drops the lock (e.g. TCP splice
1654 * receive) the skb pointer might be invalid when
1655 * getting here: tcp_collapse might have deleted it
1656 * while aggregating skbs from the socket queue.
1658 skb
= tcp_recv_skb(sk
, seq
- 1, &offset
);
1661 /* TCP coalescing might have appended data to the skb.
1662 * Try to splice more frags
1664 if (offset
+ 1 != skb
->len
)
1667 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
) {
1668 sk_eat_skb(sk
, skb
);
1672 sk_eat_skb(sk
, skb
);
1675 tp
->copied_seq
= seq
;
1677 tp
->copied_seq
= seq
;
1679 tcp_rcv_space_adjust(sk
);
1681 /* Clean up data we have read: This will do ACK frames. */
1683 tcp_recv_skb(sk
, seq
, &offset
);
1684 tcp_cleanup_rbuf(sk
, copied
);
1688 EXPORT_SYMBOL(tcp_read_sock
);
1690 int tcp_peek_len(struct socket
*sock
)
1692 return tcp_inq(sock
->sk
);
1694 EXPORT_SYMBOL(tcp_peek_len
);
1696 static void tcp_update_recv_tstamps(struct sk_buff
*skb
,
1697 struct scm_timestamping
*tss
)
1700 tss
->ts
[0] = ktime_to_timespec(skb
->tstamp
);
1702 tss
->ts
[0] = (struct timespec
) {0};
1704 if (skb_hwtstamps(skb
)->hwtstamp
)
1705 tss
->ts
[2] = ktime_to_timespec(skb_hwtstamps(skb
)->hwtstamp
);
1707 tss
->ts
[2] = (struct timespec
) {0};
1710 /* Similar to __sock_recv_timestamp, but does not require an skb */
1711 void tcp_recv_timestamp(struct msghdr
*msg
, const struct sock
*sk
,
1712 struct scm_timestamping
*tss
)
1715 bool has_timestamping
= false;
1717 if (tss
->ts
[0].tv_sec
|| tss
->ts
[0].tv_nsec
) {
1718 if (sock_flag(sk
, SOCK_RCVTSTAMP
)) {
1719 if (sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
1720 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPNS
,
1721 sizeof(tss
->ts
[0]), &tss
->ts
[0]);
1723 tv
.tv_sec
= tss
->ts
[0].tv_sec
;
1724 tv
.tv_usec
= tss
->ts
[0].tv_nsec
/ 1000;
1726 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMP
,
1731 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
)
1732 has_timestamping
= true;
1734 tss
->ts
[0] = (struct timespec
) {0};
1737 if (tss
->ts
[2].tv_sec
|| tss
->ts
[2].tv_nsec
) {
1738 if (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
)
1739 has_timestamping
= true;
1741 tss
->ts
[2] = (struct timespec
) {0};
1744 if (has_timestamping
) {
1745 tss
->ts
[1] = (struct timespec
) {0};
1746 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING
,
1752 * This routine copies from a sock struct into the user buffer.
1754 * Technical note: in 2.3 we work on _locked_ socket, so that
1755 * tricks with *seq access order and skb->users are not required.
1756 * Probably, code can be easily improved even more.
1759 int tcp_recvmsg(struct sock
*sk
, struct msghdr
*msg
, size_t len
, int nonblock
,
1760 int flags
, int *addr_len
)
1762 struct tcp_sock
*tp
= tcp_sk(sk
);
1768 int target
; /* Read at least this many bytes */
1770 struct sk_buff
*skb
, *last
;
1772 struct scm_timestamping tss
;
1773 bool has_tss
= false;
1775 if (unlikely(flags
& MSG_ERRQUEUE
))
1776 return inet_recv_error(sk
, msg
, len
, addr_len
);
1778 if (sk_can_busy_loop(sk
) && skb_queue_empty(&sk
->sk_receive_queue
) &&
1779 (sk
->sk_state
== TCP_ESTABLISHED
))
1780 sk_busy_loop(sk
, nonblock
);
1785 if (sk
->sk_state
== TCP_LISTEN
)
1788 timeo
= sock_rcvtimeo(sk
, nonblock
);
1790 /* Urgent data needs to be handled specially. */
1791 if (flags
& MSG_OOB
)
1794 if (unlikely(tp
->repair
)) {
1796 if (!(flags
& MSG_PEEK
))
1799 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
1803 if (tp
->repair_queue
== TCP_NO_QUEUE
)
1806 /* 'common' recv queue MSG_PEEK-ing */
1809 seq
= &tp
->copied_seq
;
1810 if (flags
& MSG_PEEK
) {
1811 peek_seq
= tp
->copied_seq
;
1815 target
= sock_rcvlowat(sk
, flags
& MSG_WAITALL
, len
);
1820 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1821 if (tp
->urg_data
&& tp
->urg_seq
== *seq
) {
1824 if (signal_pending(current
)) {
1825 copied
= timeo
? sock_intr_errno(timeo
) : -EAGAIN
;
1830 /* Next get a buffer. */
1832 last
= skb_peek_tail(&sk
->sk_receive_queue
);
1833 skb_queue_walk(&sk
->sk_receive_queue
, skb
) {
1835 /* Now that we have two receive queues this
1838 if (WARN(before(*seq
, TCP_SKB_CB(skb
)->seq
),
1839 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1840 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
,
1844 offset
= *seq
- TCP_SKB_CB(skb
)->seq
;
1845 if (unlikely(TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_SYN
)) {
1846 pr_err_once("%s: found a SYN, please report !\n", __func__
);
1849 if (offset
< skb
->len
)
1851 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1853 WARN(!(flags
& MSG_PEEK
),
1854 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1855 *seq
, TCP_SKB_CB(skb
)->seq
, tp
->rcv_nxt
, flags
);
1858 /* Well, if we have backlog, try to process it now yet. */
1860 if (copied
>= target
&& !sk
->sk_backlog
.tail
)
1865 sk
->sk_state
== TCP_CLOSE
||
1866 (sk
->sk_shutdown
& RCV_SHUTDOWN
) ||
1868 signal_pending(current
))
1871 if (sock_flag(sk
, SOCK_DONE
))
1875 copied
= sock_error(sk
);
1879 if (sk
->sk_shutdown
& RCV_SHUTDOWN
)
1882 if (sk
->sk_state
== TCP_CLOSE
) {
1883 if (!sock_flag(sk
, SOCK_DONE
)) {
1884 /* This occurs when user tries to read
1885 * from never connected socket.
1898 if (signal_pending(current
)) {
1899 copied
= sock_intr_errno(timeo
);
1904 tcp_cleanup_rbuf(sk
, copied
);
1906 if (copied
>= target
) {
1907 /* Do not sleep, just process backlog. */
1911 sk_wait_data(sk
, &timeo
, last
);
1914 if ((flags
& MSG_PEEK
) &&
1915 (peek_seq
- copied
- urg_hole
!= tp
->copied_seq
)) {
1916 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1918 task_pid_nr(current
));
1919 peek_seq
= tp
->copied_seq
;
1924 /* Ok so how much can we use? */
1925 used
= skb
->len
- offset
;
1929 /* Do we have urgent data here? */
1931 u32 urg_offset
= tp
->urg_seq
- *seq
;
1932 if (urg_offset
< used
) {
1934 if (!sock_flag(sk
, SOCK_URGINLINE
)) {
1947 if (!(flags
& MSG_TRUNC
)) {
1948 err
= skb_copy_datagram_msg(skb
, offset
, msg
, used
);
1950 /* Exception. Bailout! */
1961 tcp_rcv_space_adjust(sk
);
1964 if (tp
->urg_data
&& after(tp
->copied_seq
, tp
->urg_seq
)) {
1966 tcp_fast_path_check(sk
);
1968 if (used
+ offset
< skb
->len
)
1971 if (TCP_SKB_CB(skb
)->has_rxtstamp
) {
1972 tcp_update_recv_tstamps(skb
, &tss
);
1975 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
1977 if (!(flags
& MSG_PEEK
))
1978 sk_eat_skb(sk
, skb
);
1982 /* Process the FIN. */
1984 if (!(flags
& MSG_PEEK
))
1985 sk_eat_skb(sk
, skb
);
1989 /* According to UNIX98, msg_name/msg_namelen are ignored
1990 * on connected socket. I was just happy when found this 8) --ANK
1994 tcp_recv_timestamp(msg
, sk
, &tss
);
1996 /* Clean up data we have read: This will do ACK frames. */
1997 tcp_cleanup_rbuf(sk
, copied
);
2007 err
= tcp_recv_urg(sk
, msg
, len
, flags
);
2011 err
= tcp_peek_sndq(sk
, msg
, len
);
2014 EXPORT_SYMBOL(tcp_recvmsg
);
2016 void tcp_set_state(struct sock
*sk
, int state
)
2018 int oldstate
= sk
->sk_state
;
2021 case TCP_ESTABLISHED
:
2022 if (oldstate
!= TCP_ESTABLISHED
)
2023 TCP_INC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2027 if (oldstate
== TCP_CLOSE_WAIT
|| oldstate
== TCP_ESTABLISHED
)
2028 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ESTABRESETS
);
2030 sk
->sk_prot
->unhash(sk
);
2031 if (inet_csk(sk
)->icsk_bind_hash
&&
2032 !(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
))
2036 if (oldstate
== TCP_ESTABLISHED
)
2037 TCP_DEC_STATS(sock_net(sk
), TCP_MIB_CURRESTAB
);
2040 /* Change state AFTER socket is unhashed to avoid closed
2041 * socket sitting in hash tables.
2043 sk_state_store(sk
, state
);
2046 SOCK_DEBUG(sk
, "TCP sk=%p, State %s -> %s\n", sk
, statename
[oldstate
], statename
[state
]);
2049 EXPORT_SYMBOL_GPL(tcp_set_state
);
2052 * State processing on a close. This implements the state shift for
2053 * sending our FIN frame. Note that we only send a FIN for some
2054 * states. A shutdown() may have already sent the FIN, or we may be
2058 static const unsigned char new_state
[16] = {
2059 /* current state: new state: action: */
2060 [0 /* (Invalid) */] = TCP_CLOSE
,
2061 [TCP_ESTABLISHED
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2062 [TCP_SYN_SENT
] = TCP_CLOSE
,
2063 [TCP_SYN_RECV
] = TCP_FIN_WAIT1
| TCP_ACTION_FIN
,
2064 [TCP_FIN_WAIT1
] = TCP_FIN_WAIT1
,
2065 [TCP_FIN_WAIT2
] = TCP_FIN_WAIT2
,
2066 [TCP_TIME_WAIT
] = TCP_CLOSE
,
2067 [TCP_CLOSE
] = TCP_CLOSE
,
2068 [TCP_CLOSE_WAIT
] = TCP_LAST_ACK
| TCP_ACTION_FIN
,
2069 [TCP_LAST_ACK
] = TCP_LAST_ACK
,
2070 [TCP_LISTEN
] = TCP_CLOSE
,
2071 [TCP_CLOSING
] = TCP_CLOSING
,
2072 [TCP_NEW_SYN_RECV
] = TCP_CLOSE
, /* should not happen ! */
2075 static int tcp_close_state(struct sock
*sk
)
2077 int next
= (int)new_state
[sk
->sk_state
];
2078 int ns
= next
& TCP_STATE_MASK
;
2080 tcp_set_state(sk
, ns
);
2082 return next
& TCP_ACTION_FIN
;
2086 * Shutdown the sending side of a connection. Much like close except
2087 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2090 void tcp_shutdown(struct sock
*sk
, int how
)
2092 /* We need to grab some memory, and put together a FIN,
2093 * and then put it into the queue to be sent.
2094 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2096 if (!(how
& SEND_SHUTDOWN
))
2099 /* If we've already sent a FIN, or it's a closed state, skip this. */
2100 if ((1 << sk
->sk_state
) &
2101 (TCPF_ESTABLISHED
| TCPF_SYN_SENT
|
2102 TCPF_SYN_RECV
| TCPF_CLOSE_WAIT
)) {
2103 /* Clear out any half completed packets. FIN if needed. */
2104 if (tcp_close_state(sk
))
2108 EXPORT_SYMBOL(tcp_shutdown
);
2110 bool tcp_check_oom(struct sock
*sk
, int shift
)
2112 bool too_many_orphans
, out_of_socket_memory
;
2114 too_many_orphans
= tcp_too_many_orphans(sk
, shift
);
2115 out_of_socket_memory
= tcp_out_of_memory(sk
);
2117 if (too_many_orphans
)
2118 net_info_ratelimited("too many orphaned sockets\n");
2119 if (out_of_socket_memory
)
2120 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2121 return too_many_orphans
|| out_of_socket_memory
;
2124 void tcp_close(struct sock
*sk
, long timeout
)
2126 struct sk_buff
*skb
;
2127 int data_was_unread
= 0;
2131 sk
->sk_shutdown
= SHUTDOWN_MASK
;
2133 if (sk
->sk_state
== TCP_LISTEN
) {
2134 tcp_set_state(sk
, TCP_CLOSE
);
2137 inet_csk_listen_stop(sk
);
2139 goto adjudge_to_death
;
2142 /* We need to flush the recv. buffs. We do this only on the
2143 * descriptor close, not protocol-sourced closes, because the
2144 * reader process may not have drained the data yet!
2146 while ((skb
= __skb_dequeue(&sk
->sk_receive_queue
)) != NULL
) {
2147 u32 len
= TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
;
2149 if (TCP_SKB_CB(skb
)->tcp_flags
& TCPHDR_FIN
)
2151 data_was_unread
+= len
;
2157 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2158 if (sk
->sk_state
== TCP_CLOSE
)
2159 goto adjudge_to_death
;
2161 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2162 * data was lost. To witness the awful effects of the old behavior of
2163 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2164 * GET in an FTP client, suspend the process, wait for the client to
2165 * advertise a zero window, then kill -9 the FTP client, wheee...
2166 * Note: timeout is always zero in such a case.
2168 if (unlikely(tcp_sk(sk
)->repair
)) {
2169 sk
->sk_prot
->disconnect(sk
, 0);
2170 } else if (data_was_unread
) {
2171 /* Unread data was tossed, zap the connection. */
2172 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONCLOSE
);
2173 tcp_set_state(sk
, TCP_CLOSE
);
2174 tcp_send_active_reset(sk
, sk
->sk_allocation
);
2175 } else if (sock_flag(sk
, SOCK_LINGER
) && !sk
->sk_lingertime
) {
2176 /* Check zero linger _after_ checking for unread data. */
2177 sk
->sk_prot
->disconnect(sk
, 0);
2178 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTONDATA
);
2179 } else if (tcp_close_state(sk
)) {
2180 /* We FIN if the application ate all the data before
2181 * zapping the connection.
2184 /* RED-PEN. Formally speaking, we have broken TCP state
2185 * machine. State transitions:
2187 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2188 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2189 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2191 * are legal only when FIN has been sent (i.e. in window),
2192 * rather than queued out of window. Purists blame.
2194 * F.e. "RFC state" is ESTABLISHED,
2195 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2197 * The visible declinations are that sometimes
2198 * we enter time-wait state, when it is not required really
2199 * (harmless), do not send active resets, when they are
2200 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2201 * they look as CLOSING or LAST_ACK for Linux)
2202 * Probably, I missed some more holelets.
2204 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2205 * in a single packet! (May consider it later but will
2206 * probably need API support or TCP_CORK SYN-ACK until
2207 * data is written and socket is closed.)
2212 sk_stream_wait_close(sk
, timeout
);
2215 state
= sk
->sk_state
;
2219 /* It is the last release_sock in its life. It will remove backlog. */
2223 /* Now socket is owned by kernel and we acquire BH lock
2224 * to finish close. No need to check for user refs.
2228 WARN_ON(sock_owned_by_user(sk
));
2230 percpu_counter_inc(sk
->sk_prot
->orphan_count
);
2232 /* Have we already been destroyed by a softirq or backlog? */
2233 if (state
!= TCP_CLOSE
&& sk
->sk_state
== TCP_CLOSE
)
2236 /* This is a (useful) BSD violating of the RFC. There is a
2237 * problem with TCP as specified in that the other end could
2238 * keep a socket open forever with no application left this end.
2239 * We use a 1 minute timeout (about the same as BSD) then kill
2240 * our end. If they send after that then tough - BUT: long enough
2241 * that we won't make the old 4*rto = almost no time - whoops
2244 * Nope, it was not mistake. It is really desired behaviour
2245 * f.e. on http servers, when such sockets are useless, but
2246 * consume significant resources. Let's do it with special
2247 * linger2 option. --ANK
2250 if (sk
->sk_state
== TCP_FIN_WAIT2
) {
2251 struct tcp_sock
*tp
= tcp_sk(sk
);
2252 if (tp
->linger2
< 0) {
2253 tcp_set_state(sk
, TCP_CLOSE
);
2254 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2255 __NET_INC_STATS(sock_net(sk
),
2256 LINUX_MIB_TCPABORTONLINGER
);
2258 const int tmo
= tcp_fin_time(sk
);
2260 if (tmo
> TCP_TIMEWAIT_LEN
) {
2261 inet_csk_reset_keepalive_timer(sk
,
2262 tmo
- TCP_TIMEWAIT_LEN
);
2264 tcp_time_wait(sk
, TCP_FIN_WAIT2
, tmo
);
2269 if (sk
->sk_state
!= TCP_CLOSE
) {
2271 if (tcp_check_oom(sk
, 0)) {
2272 tcp_set_state(sk
, TCP_CLOSE
);
2273 tcp_send_active_reset(sk
, GFP_ATOMIC
);
2274 __NET_INC_STATS(sock_net(sk
),
2275 LINUX_MIB_TCPABORTONMEMORY
);
2279 if (sk
->sk_state
== TCP_CLOSE
) {
2280 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
2281 /* We could get here with a non-NULL req if the socket is
2282 * aborted (e.g., closed with unread data) before 3WHS
2286 reqsk_fastopen_remove(sk
, req
, false);
2287 inet_csk_destroy_sock(sk
);
2289 /* Otherwise, socket is reprieved until protocol close. */
2296 EXPORT_SYMBOL(tcp_close
);
2298 /* These states need RST on ABORT according to RFC793 */
2300 static inline bool tcp_need_reset(int state
)
2302 return (1 << state
) &
2303 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
| TCPF_FIN_WAIT1
|
2304 TCPF_FIN_WAIT2
| TCPF_SYN_RECV
);
2307 int tcp_disconnect(struct sock
*sk
, int flags
)
2309 struct inet_sock
*inet
= inet_sk(sk
);
2310 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2311 struct tcp_sock
*tp
= tcp_sk(sk
);
2313 int old_state
= sk
->sk_state
;
2315 if (old_state
!= TCP_CLOSE
)
2316 tcp_set_state(sk
, TCP_CLOSE
);
2318 /* ABORT function of RFC793 */
2319 if (old_state
== TCP_LISTEN
) {
2320 inet_csk_listen_stop(sk
);
2321 } else if (unlikely(tp
->repair
)) {
2322 sk
->sk_err
= ECONNABORTED
;
2323 } else if (tcp_need_reset(old_state
) ||
2324 (tp
->snd_nxt
!= tp
->write_seq
&&
2325 (1 << old_state
) & (TCPF_CLOSING
| TCPF_LAST_ACK
))) {
2326 /* The last check adjusts for discrepancy of Linux wrt. RFC
2329 tcp_send_active_reset(sk
, gfp_any());
2330 sk
->sk_err
= ECONNRESET
;
2331 } else if (old_state
== TCP_SYN_SENT
)
2332 sk
->sk_err
= ECONNRESET
;
2334 tcp_clear_xmit_timers(sk
);
2335 __skb_queue_purge(&sk
->sk_receive_queue
);
2336 tcp_write_queue_purge(sk
);
2337 tcp_fastopen_active_disable_ofo_check(sk
);
2338 skb_rbtree_purge(&tp
->out_of_order_queue
);
2340 inet
->inet_dport
= 0;
2342 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
2343 inet_reset_saddr(sk
);
2345 sk
->sk_shutdown
= 0;
2346 sock_reset_flag(sk
, SOCK_DONE
);
2348 tp
->write_seq
+= tp
->max_window
+ 2;
2349 if (tp
->write_seq
== 0)
2351 icsk
->icsk_backoff
= 0;
2353 icsk
->icsk_probes_out
= 0;
2354 tp
->packets_out
= 0;
2355 tp
->snd_ssthresh
= TCP_INFINITE_SSTHRESH
;
2356 tp
->snd_cwnd_cnt
= 0;
2357 tp
->window_clamp
= 0;
2358 tcp_set_ca_state(sk
, TCP_CA_Open
);
2359 tcp_clear_retrans(tp
);
2360 inet_csk_delack_init(sk
);
2361 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2362 * issue in __tcp_select_window()
2364 icsk
->icsk_ack
.rcv_mss
= TCP_MIN_MSS
;
2365 tcp_init_send_head(sk
);
2366 memset(&tp
->rx_opt
, 0, sizeof(tp
->rx_opt
));
2368 dst_release(sk
->sk_rx_dst
);
2369 sk
->sk_rx_dst
= NULL
;
2370 tcp_saved_syn_free(tp
);
2372 /* Clean up fastopen related fields */
2373 tcp_free_fastopen_req(tp
);
2374 inet
->defer_connect
= 0;
2376 WARN_ON(inet
->inet_num
&& !icsk
->icsk_bind_hash
);
2378 sk
->sk_error_report(sk
);
2381 EXPORT_SYMBOL(tcp_disconnect
);
2383 static inline bool tcp_can_repair_sock(const struct sock
*sk
)
2385 return ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
) &&
2386 (sk
->sk_state
!= TCP_LISTEN
);
2389 static int tcp_repair_set_window(struct tcp_sock
*tp
, char __user
*optbuf
, int len
)
2391 struct tcp_repair_window opt
;
2396 if (len
!= sizeof(opt
))
2399 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2402 if (opt
.max_window
< opt
.snd_wnd
)
2405 if (after(opt
.snd_wl1
, tp
->rcv_nxt
+ opt
.rcv_wnd
))
2408 if (after(opt
.rcv_wup
, tp
->rcv_nxt
))
2411 tp
->snd_wl1
= opt
.snd_wl1
;
2412 tp
->snd_wnd
= opt
.snd_wnd
;
2413 tp
->max_window
= opt
.max_window
;
2415 tp
->rcv_wnd
= opt
.rcv_wnd
;
2416 tp
->rcv_wup
= opt
.rcv_wup
;
2421 static int tcp_repair_options_est(struct sock
*sk
,
2422 struct tcp_repair_opt __user
*optbuf
, unsigned int len
)
2424 struct tcp_sock
*tp
= tcp_sk(sk
);
2425 struct tcp_repair_opt opt
;
2427 while (len
>= sizeof(opt
)) {
2428 if (copy_from_user(&opt
, optbuf
, sizeof(opt
)))
2434 switch (opt
.opt_code
) {
2436 tp
->rx_opt
.mss_clamp
= opt
.opt_val
;
2441 u16 snd_wscale
= opt
.opt_val
& 0xFFFF;
2442 u16 rcv_wscale
= opt
.opt_val
>> 16;
2444 if (snd_wscale
> TCP_MAX_WSCALE
|| rcv_wscale
> TCP_MAX_WSCALE
)
2447 tp
->rx_opt
.snd_wscale
= snd_wscale
;
2448 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2449 tp
->rx_opt
.wscale_ok
= 1;
2452 case TCPOPT_SACK_PERM
:
2453 if (opt
.opt_val
!= 0)
2456 tp
->rx_opt
.sack_ok
|= TCP_SACK_SEEN
;
2457 if (sysctl_tcp_fack
)
2458 tcp_enable_fack(tp
);
2460 case TCPOPT_TIMESTAMP
:
2461 if (opt
.opt_val
!= 0)
2464 tp
->rx_opt
.tstamp_ok
= 1;
2473 * Socket option code for TCP.
2475 static int do_tcp_setsockopt(struct sock
*sk
, int level
,
2476 int optname
, char __user
*optval
, unsigned int optlen
)
2478 struct tcp_sock
*tp
= tcp_sk(sk
);
2479 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2480 struct net
*net
= sock_net(sk
);
2484 /* These are data/string values, all the others are ints */
2486 case TCP_CONGESTION
: {
2487 char name
[TCP_CA_NAME_MAX
];
2492 val
= strncpy_from_user(name
, optval
,
2493 min_t(long, TCP_CA_NAME_MAX
-1, optlen
));
2499 err
= tcp_set_congestion_control(sk
, name
, true, true);
2504 char name
[TCP_ULP_NAME_MAX
];
2509 val
= strncpy_from_user(name
, optval
,
2510 min_t(long, TCP_ULP_NAME_MAX
- 1,
2517 err
= tcp_set_ulp(sk
, name
);
2526 if (optlen
< sizeof(int))
2529 if (get_user(val
, (int __user
*)optval
))
2536 /* Values greater than interface MTU won't take effect. However
2537 * at the point when this call is done we typically don't yet
2538 * know which interface is going to be used
2540 if (val
&& (val
< TCP_MIN_MSS
|| val
> MAX_TCP_WINDOW
)) {
2544 tp
->rx_opt
.user_mss
= val
;
2549 /* TCP_NODELAY is weaker than TCP_CORK, so that
2550 * this option on corked socket is remembered, but
2551 * it is not activated until cork is cleared.
2553 * However, when TCP_NODELAY is set we make
2554 * an explicit push, which overrides even TCP_CORK
2555 * for currently queued segments.
2557 tp
->nonagle
|= TCP_NAGLE_OFF
|TCP_NAGLE_PUSH
;
2558 tcp_push_pending_frames(sk
);
2560 tp
->nonagle
&= ~TCP_NAGLE_OFF
;
2564 case TCP_THIN_LINEAR_TIMEOUTS
:
2565 if (val
< 0 || val
> 1)
2571 case TCP_THIN_DUPACK
:
2572 if (val
< 0 || val
> 1)
2577 if (!tcp_can_repair_sock(sk
))
2579 else if (val
== 1) {
2581 sk
->sk_reuse
= SK_FORCE_REUSE
;
2582 tp
->repair_queue
= TCP_NO_QUEUE
;
2583 } else if (val
== 0) {
2585 sk
->sk_reuse
= SK_NO_REUSE
;
2586 tcp_send_window_probe(sk
);
2592 case TCP_REPAIR_QUEUE
:
2595 else if (val
< TCP_QUEUES_NR
)
2596 tp
->repair_queue
= val
;
2602 if (sk
->sk_state
!= TCP_CLOSE
)
2604 else if (tp
->repair_queue
== TCP_SEND_QUEUE
)
2605 tp
->write_seq
= val
;
2606 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
2612 case TCP_REPAIR_OPTIONS
:
2615 else if (sk
->sk_state
== TCP_ESTABLISHED
)
2616 err
= tcp_repair_options_est(sk
,
2617 (struct tcp_repair_opt __user
*)optval
,
2624 /* When set indicates to always queue non-full frames.
2625 * Later the user clears this option and we transmit
2626 * any pending partial frames in the queue. This is
2627 * meant to be used alongside sendfile() to get properly
2628 * filled frames when the user (for example) must write
2629 * out headers with a write() call first and then use
2630 * sendfile to send out the data parts.
2632 * TCP_CORK can be set together with TCP_NODELAY and it is
2633 * stronger than TCP_NODELAY.
2636 tp
->nonagle
|= TCP_NAGLE_CORK
;
2638 tp
->nonagle
&= ~TCP_NAGLE_CORK
;
2639 if (tp
->nonagle
&TCP_NAGLE_OFF
)
2640 tp
->nonagle
|= TCP_NAGLE_PUSH
;
2641 tcp_push_pending_frames(sk
);
2646 if (val
< 1 || val
> MAX_TCP_KEEPIDLE
)
2649 tp
->keepalive_time
= val
* HZ
;
2650 if (sock_flag(sk
, SOCK_KEEPOPEN
) &&
2651 !((1 << sk
->sk_state
) &
2652 (TCPF_CLOSE
| TCPF_LISTEN
))) {
2653 u32 elapsed
= keepalive_time_elapsed(tp
);
2654 if (tp
->keepalive_time
> elapsed
)
2655 elapsed
= tp
->keepalive_time
- elapsed
;
2658 inet_csk_reset_keepalive_timer(sk
, elapsed
);
2663 if (val
< 1 || val
> MAX_TCP_KEEPINTVL
)
2666 tp
->keepalive_intvl
= val
* HZ
;
2669 if (val
< 1 || val
> MAX_TCP_KEEPCNT
)
2672 tp
->keepalive_probes
= val
;
2675 if (val
< 1 || val
> MAX_TCP_SYNCNT
)
2678 icsk
->icsk_syn_retries
= val
;
2682 if (val
< 0 || val
> 1)
2691 else if (val
> net
->ipv4
.sysctl_tcp_fin_timeout
/ HZ
)
2694 tp
->linger2
= val
* HZ
;
2697 case TCP_DEFER_ACCEPT
:
2698 /* Translate value in seconds to number of retransmits */
2699 icsk
->icsk_accept_queue
.rskq_defer_accept
=
2700 secs_to_retrans(val
, TCP_TIMEOUT_INIT
/ HZ
,
2704 case TCP_WINDOW_CLAMP
:
2706 if (sk
->sk_state
!= TCP_CLOSE
) {
2710 tp
->window_clamp
= 0;
2712 tp
->window_clamp
= val
< SOCK_MIN_RCVBUF
/ 2 ?
2713 SOCK_MIN_RCVBUF
/ 2 : val
;
2718 icsk
->icsk_ack
.pingpong
= 1;
2720 icsk
->icsk_ack
.pingpong
= 0;
2721 if ((1 << sk
->sk_state
) &
2722 (TCPF_ESTABLISHED
| TCPF_CLOSE_WAIT
) &&
2723 inet_csk_ack_scheduled(sk
)) {
2724 icsk
->icsk_ack
.pending
|= ICSK_ACK_PUSHED
;
2725 tcp_cleanup_rbuf(sk
, 1);
2727 icsk
->icsk_ack
.pingpong
= 1;
2732 #ifdef CONFIG_TCP_MD5SIG
2734 case TCP_MD5SIG_EXT
:
2735 /* Read the IP->Key mappings from userspace */
2736 err
= tp
->af_specific
->md5_parse(sk
, optname
, optval
, optlen
);
2739 case TCP_USER_TIMEOUT
:
2740 /* Cap the max time in ms TCP will retry or probe the window
2741 * before giving up and aborting (ETIMEDOUT) a connection.
2746 icsk
->icsk_user_timeout
= msecs_to_jiffies(val
);
2750 if (val
>= 0 && ((1 << sk
->sk_state
) & (TCPF_CLOSE
|
2752 tcp_fastopen_init_key_once(true);
2754 fastopen_queue_tune(sk
, val
);
2759 case TCP_FASTOPEN_CONNECT
:
2760 if (val
> 1 || val
< 0) {
2762 } else if (sysctl_tcp_fastopen
& TFO_CLIENT_ENABLE
) {
2763 if (sk
->sk_state
== TCP_CLOSE
)
2764 tp
->fastopen_connect
= val
;
2775 tp
->tsoffset
= val
- tcp_time_stamp_raw();
2777 case TCP_REPAIR_WINDOW
:
2778 err
= tcp_repair_set_window(tp
, optval
, optlen
);
2780 case TCP_NOTSENT_LOWAT
:
2781 tp
->notsent_lowat
= val
;
2782 sk
->sk_write_space(sk
);
2793 int tcp_setsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
2794 unsigned int optlen
)
2796 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2798 if (level
!= SOL_TCP
)
2799 return icsk
->icsk_af_ops
->setsockopt(sk
, level
, optname
,
2801 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2803 EXPORT_SYMBOL(tcp_setsockopt
);
2805 #ifdef CONFIG_COMPAT
2806 int compat_tcp_setsockopt(struct sock
*sk
, int level
, int optname
,
2807 char __user
*optval
, unsigned int optlen
)
2809 if (level
!= SOL_TCP
)
2810 return inet_csk_compat_setsockopt(sk
, level
, optname
,
2812 return do_tcp_setsockopt(sk
, level
, optname
, optval
, optlen
);
2814 EXPORT_SYMBOL(compat_tcp_setsockopt
);
2817 static void tcp_get_info_chrono_stats(const struct tcp_sock
*tp
,
2818 struct tcp_info
*info
)
2820 u64 stats
[__TCP_CHRONO_MAX
], total
= 0;
2823 for (i
= TCP_CHRONO_BUSY
; i
< __TCP_CHRONO_MAX
; ++i
) {
2824 stats
[i
] = tp
->chrono_stat
[i
- 1];
2825 if (i
== tp
->chrono_type
)
2826 stats
[i
] += tcp_jiffies32
- tp
->chrono_start
;
2827 stats
[i
] *= USEC_PER_SEC
/ HZ
;
2831 info
->tcpi_busy_time
= total
;
2832 info
->tcpi_rwnd_limited
= stats
[TCP_CHRONO_RWND_LIMITED
];
2833 info
->tcpi_sndbuf_limited
= stats
[TCP_CHRONO_SNDBUF_LIMITED
];
2836 /* Return information about state of tcp endpoint in API format. */
2837 void tcp_get_info(struct sock
*sk
, struct tcp_info
*info
)
2839 const struct tcp_sock
*tp
= tcp_sk(sk
); /* iff sk_type == SOCK_STREAM */
2840 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2846 memset(info
, 0, sizeof(*info
));
2847 if (sk
->sk_type
!= SOCK_STREAM
)
2850 info
->tcpi_state
= sk_state_load(sk
);
2852 /* Report meaningful fields for all TCP states, including listeners */
2853 rate
= READ_ONCE(sk
->sk_pacing_rate
);
2854 rate64
= rate
!= ~0U ? rate
: ~0ULL;
2855 info
->tcpi_pacing_rate
= rate64
;
2857 rate
= READ_ONCE(sk
->sk_max_pacing_rate
);
2858 rate64
= rate
!= ~0U ? rate
: ~0ULL;
2859 info
->tcpi_max_pacing_rate
= rate64
;
2861 info
->tcpi_reordering
= tp
->reordering
;
2862 info
->tcpi_snd_cwnd
= tp
->snd_cwnd
;
2864 if (info
->tcpi_state
== TCP_LISTEN
) {
2865 /* listeners aliased fields :
2866 * tcpi_unacked -> Number of children ready for accept()
2867 * tcpi_sacked -> max backlog
2869 info
->tcpi_unacked
= sk
->sk_ack_backlog
;
2870 info
->tcpi_sacked
= sk
->sk_max_ack_backlog
;
2874 slow
= lock_sock_fast(sk
);
2876 info
->tcpi_ca_state
= icsk
->icsk_ca_state
;
2877 info
->tcpi_retransmits
= icsk
->icsk_retransmits
;
2878 info
->tcpi_probes
= icsk
->icsk_probes_out
;
2879 info
->tcpi_backoff
= icsk
->icsk_backoff
;
2881 if (tp
->rx_opt
.tstamp_ok
)
2882 info
->tcpi_options
|= TCPI_OPT_TIMESTAMPS
;
2883 if (tcp_is_sack(tp
))
2884 info
->tcpi_options
|= TCPI_OPT_SACK
;
2885 if (tp
->rx_opt
.wscale_ok
) {
2886 info
->tcpi_options
|= TCPI_OPT_WSCALE
;
2887 info
->tcpi_snd_wscale
= tp
->rx_opt
.snd_wscale
;
2888 info
->tcpi_rcv_wscale
= tp
->rx_opt
.rcv_wscale
;
2891 if (tp
->ecn_flags
& TCP_ECN_OK
)
2892 info
->tcpi_options
|= TCPI_OPT_ECN
;
2893 if (tp
->ecn_flags
& TCP_ECN_SEEN
)
2894 info
->tcpi_options
|= TCPI_OPT_ECN_SEEN
;
2895 if (tp
->syn_data_acked
)
2896 info
->tcpi_options
|= TCPI_OPT_SYN_DATA
;
2898 info
->tcpi_rto
= jiffies_to_usecs(icsk
->icsk_rto
);
2899 info
->tcpi_ato
= jiffies_to_usecs(icsk
->icsk_ack
.ato
);
2900 info
->tcpi_snd_mss
= tp
->mss_cache
;
2901 info
->tcpi_rcv_mss
= icsk
->icsk_ack
.rcv_mss
;
2903 info
->tcpi_unacked
= tp
->packets_out
;
2904 info
->tcpi_sacked
= tp
->sacked_out
;
2906 info
->tcpi_lost
= tp
->lost_out
;
2907 info
->tcpi_retrans
= tp
->retrans_out
;
2908 info
->tcpi_fackets
= tp
->fackets_out
;
2910 now
= tcp_jiffies32
;
2911 info
->tcpi_last_data_sent
= jiffies_to_msecs(now
- tp
->lsndtime
);
2912 info
->tcpi_last_data_recv
= jiffies_to_msecs(now
- icsk
->icsk_ack
.lrcvtime
);
2913 info
->tcpi_last_ack_recv
= jiffies_to_msecs(now
- tp
->rcv_tstamp
);
2915 info
->tcpi_pmtu
= icsk
->icsk_pmtu_cookie
;
2916 info
->tcpi_rcv_ssthresh
= tp
->rcv_ssthresh
;
2917 info
->tcpi_rtt
= tp
->srtt_us
>> 3;
2918 info
->tcpi_rttvar
= tp
->mdev_us
>> 2;
2919 info
->tcpi_snd_ssthresh
= tp
->snd_ssthresh
;
2920 info
->tcpi_advmss
= tp
->advmss
;
2922 info
->tcpi_rcv_rtt
= tp
->rcv_rtt_est
.rtt_us
>> 3;
2923 info
->tcpi_rcv_space
= tp
->rcvq_space
.space
;
2925 info
->tcpi_total_retrans
= tp
->total_retrans
;
2927 info
->tcpi_bytes_acked
= tp
->bytes_acked
;
2928 info
->tcpi_bytes_received
= tp
->bytes_received
;
2929 info
->tcpi_notsent_bytes
= max_t(int, 0, tp
->write_seq
- tp
->snd_nxt
);
2930 tcp_get_info_chrono_stats(tp
, info
);
2932 info
->tcpi_segs_out
= tp
->segs_out
;
2933 info
->tcpi_segs_in
= tp
->segs_in
;
2935 info
->tcpi_min_rtt
= tcp_min_rtt(tp
);
2936 info
->tcpi_data_segs_in
= tp
->data_segs_in
;
2937 info
->tcpi_data_segs_out
= tp
->data_segs_out
;
2939 info
->tcpi_delivery_rate_app_limited
= tp
->rate_app_limited
? 1 : 0;
2940 rate64
= tcp_compute_delivery_rate(tp
);
2942 info
->tcpi_delivery_rate
= rate64
;
2943 unlock_sock_fast(sk
, slow
);
2945 EXPORT_SYMBOL_GPL(tcp_get_info
);
2947 struct sk_buff
*tcp_get_timestamping_opt_stats(const struct sock
*sk
)
2949 const struct tcp_sock
*tp
= tcp_sk(sk
);
2950 struct sk_buff
*stats
;
2951 struct tcp_info info
;
2955 stats
= alloc_skb(7 * nla_total_size_64bit(sizeof(u64
)) +
2956 3 * nla_total_size(sizeof(u32
)) +
2957 2 * nla_total_size(sizeof(u8
)), GFP_ATOMIC
);
2961 tcp_get_info_chrono_stats(tp
, &info
);
2962 nla_put_u64_64bit(stats
, TCP_NLA_BUSY
,
2963 info
.tcpi_busy_time
, TCP_NLA_PAD
);
2964 nla_put_u64_64bit(stats
, TCP_NLA_RWND_LIMITED
,
2965 info
.tcpi_rwnd_limited
, TCP_NLA_PAD
);
2966 nla_put_u64_64bit(stats
, TCP_NLA_SNDBUF_LIMITED
,
2967 info
.tcpi_sndbuf_limited
, TCP_NLA_PAD
);
2968 nla_put_u64_64bit(stats
, TCP_NLA_DATA_SEGS_OUT
,
2969 tp
->data_segs_out
, TCP_NLA_PAD
);
2970 nla_put_u64_64bit(stats
, TCP_NLA_TOTAL_RETRANS
,
2971 tp
->total_retrans
, TCP_NLA_PAD
);
2973 rate
= READ_ONCE(sk
->sk_pacing_rate
);
2974 rate64
= rate
!= ~0U ? rate
: ~0ULL;
2975 nla_put_u64_64bit(stats
, TCP_NLA_PACING_RATE
, rate64
, TCP_NLA_PAD
);
2977 rate64
= tcp_compute_delivery_rate(tp
);
2978 nla_put_u64_64bit(stats
, TCP_NLA_DELIVERY_RATE
, rate64
, TCP_NLA_PAD
);
2980 nla_put_u32(stats
, TCP_NLA_SND_CWND
, tp
->snd_cwnd
);
2981 nla_put_u32(stats
, TCP_NLA_REORDERING
, tp
->reordering
);
2982 nla_put_u32(stats
, TCP_NLA_MIN_RTT
, tcp_min_rtt(tp
));
2984 nla_put_u8(stats
, TCP_NLA_RECUR_RETRANS
, inet_csk(sk
)->icsk_retransmits
);
2985 nla_put_u8(stats
, TCP_NLA_DELIVERY_RATE_APP_LMT
, !!tp
->rate_app_limited
);
2989 static int do_tcp_getsockopt(struct sock
*sk
, int level
,
2990 int optname
, char __user
*optval
, int __user
*optlen
)
2992 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2993 struct tcp_sock
*tp
= tcp_sk(sk
);
2994 struct net
*net
= sock_net(sk
);
2997 if (get_user(len
, optlen
))
3000 len
= min_t(unsigned int, len
, sizeof(int));
3007 val
= tp
->mss_cache
;
3008 if (!val
&& ((1 << sk
->sk_state
) & (TCPF_CLOSE
| TCPF_LISTEN
)))
3009 val
= tp
->rx_opt
.user_mss
;
3011 val
= tp
->rx_opt
.mss_clamp
;
3014 val
= !!(tp
->nonagle
&TCP_NAGLE_OFF
);
3017 val
= !!(tp
->nonagle
&TCP_NAGLE_CORK
);
3020 val
= keepalive_time_when(tp
) / HZ
;
3023 val
= keepalive_intvl_when(tp
) / HZ
;
3026 val
= keepalive_probes(tp
);
3029 val
= icsk
->icsk_syn_retries
? : net
->ipv4
.sysctl_tcp_syn_retries
;
3034 val
= (val
? : net
->ipv4
.sysctl_tcp_fin_timeout
) / HZ
;
3036 case TCP_DEFER_ACCEPT
:
3037 val
= retrans_to_secs(icsk
->icsk_accept_queue
.rskq_defer_accept
,
3038 TCP_TIMEOUT_INIT
/ HZ
, TCP_RTO_MAX
/ HZ
);
3040 case TCP_WINDOW_CLAMP
:
3041 val
= tp
->window_clamp
;
3044 struct tcp_info info
;
3046 if (get_user(len
, optlen
))
3049 tcp_get_info(sk
, &info
);
3051 len
= min_t(unsigned int, len
, sizeof(info
));
3052 if (put_user(len
, optlen
))
3054 if (copy_to_user(optval
, &info
, len
))
3059 const struct tcp_congestion_ops
*ca_ops
;
3060 union tcp_cc_info info
;
3064 if (get_user(len
, optlen
))
3067 ca_ops
= icsk
->icsk_ca_ops
;
3068 if (ca_ops
&& ca_ops
->get_info
)
3069 sz
= ca_ops
->get_info(sk
, ~0U, &attr
, &info
);
3071 len
= min_t(unsigned int, len
, sz
);
3072 if (put_user(len
, optlen
))
3074 if (copy_to_user(optval
, &info
, len
))
3079 val
= !icsk
->icsk_ack
.pingpong
;
3082 case TCP_CONGESTION
:
3083 if (get_user(len
, optlen
))
3085 len
= min_t(unsigned int, len
, TCP_CA_NAME_MAX
);
3086 if (put_user(len
, optlen
))
3088 if (copy_to_user(optval
, icsk
->icsk_ca_ops
->name
, len
))
3093 if (get_user(len
, optlen
))
3095 len
= min_t(unsigned int, len
, TCP_ULP_NAME_MAX
);
3096 if (!icsk
->icsk_ulp_ops
) {
3097 if (put_user(0, optlen
))
3101 if (put_user(len
, optlen
))
3103 if (copy_to_user(optval
, icsk
->icsk_ulp_ops
->name
, len
))
3107 case TCP_THIN_LINEAR_TIMEOUTS
:
3111 case TCP_THIN_DUPACK
:
3119 case TCP_REPAIR_QUEUE
:
3121 val
= tp
->repair_queue
;
3126 case TCP_REPAIR_WINDOW
: {
3127 struct tcp_repair_window opt
;
3129 if (get_user(len
, optlen
))
3132 if (len
!= sizeof(opt
))
3138 opt
.snd_wl1
= tp
->snd_wl1
;
3139 opt
.snd_wnd
= tp
->snd_wnd
;
3140 opt
.max_window
= tp
->max_window
;
3141 opt
.rcv_wnd
= tp
->rcv_wnd
;
3142 opt
.rcv_wup
= tp
->rcv_wup
;
3144 if (copy_to_user(optval
, &opt
, len
))
3149 if (tp
->repair_queue
== TCP_SEND_QUEUE
)
3150 val
= tp
->write_seq
;
3151 else if (tp
->repair_queue
== TCP_RECV_QUEUE
)
3157 case TCP_USER_TIMEOUT
:
3158 val
= jiffies_to_msecs(icsk
->icsk_user_timeout
);
3162 val
= icsk
->icsk_accept_queue
.fastopenq
.max_qlen
;
3165 case TCP_FASTOPEN_CONNECT
:
3166 val
= tp
->fastopen_connect
;
3170 val
= tcp_time_stamp_raw() + tp
->tsoffset
;
3172 case TCP_NOTSENT_LOWAT
:
3173 val
= tp
->notsent_lowat
;
3178 case TCP_SAVED_SYN
: {
3179 if (get_user(len
, optlen
))
3183 if (tp
->saved_syn
) {
3184 if (len
< tp
->saved_syn
[0]) {
3185 if (put_user(tp
->saved_syn
[0], optlen
)) {
3192 len
= tp
->saved_syn
[0];
3193 if (put_user(len
, optlen
)) {
3197 if (copy_to_user(optval
, tp
->saved_syn
+ 1, len
)) {
3201 tcp_saved_syn_free(tp
);
3206 if (put_user(len
, optlen
))
3212 return -ENOPROTOOPT
;
3215 if (put_user(len
, optlen
))
3217 if (copy_to_user(optval
, &val
, len
))
3222 int tcp_getsockopt(struct sock
*sk
, int level
, int optname
, char __user
*optval
,
3225 struct inet_connection_sock
*icsk
= inet_csk(sk
);
3227 if (level
!= SOL_TCP
)
3228 return icsk
->icsk_af_ops
->getsockopt(sk
, level
, optname
,
3230 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3232 EXPORT_SYMBOL(tcp_getsockopt
);
3234 #ifdef CONFIG_COMPAT
3235 int compat_tcp_getsockopt(struct sock
*sk
, int level
, int optname
,
3236 char __user
*optval
, int __user
*optlen
)
3238 if (level
!= SOL_TCP
)
3239 return inet_csk_compat_getsockopt(sk
, level
, optname
,
3241 return do_tcp_getsockopt(sk
, level
, optname
, optval
, optlen
);
3243 EXPORT_SYMBOL(compat_tcp_getsockopt
);
3246 #ifdef CONFIG_TCP_MD5SIG
3247 static DEFINE_PER_CPU(struct tcp_md5sig_pool
, tcp_md5sig_pool
);
3248 static DEFINE_MUTEX(tcp_md5sig_mutex
);
3249 static bool tcp_md5sig_pool_populated
= false;
3251 static void __tcp_alloc_md5sig_pool(void)
3253 struct crypto_ahash
*hash
;
3256 hash
= crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC
);
3260 for_each_possible_cpu(cpu
) {
3261 void *scratch
= per_cpu(tcp_md5sig_pool
, cpu
).scratch
;
3262 struct ahash_request
*req
;
3265 scratch
= kmalloc_node(sizeof(union tcp_md5sum_block
) +
3266 sizeof(struct tcphdr
),
3271 per_cpu(tcp_md5sig_pool
, cpu
).scratch
= scratch
;
3273 if (per_cpu(tcp_md5sig_pool
, cpu
).md5_req
)
3276 req
= ahash_request_alloc(hash
, GFP_KERNEL
);
3280 ahash_request_set_callback(req
, 0, NULL
, NULL
);
3282 per_cpu(tcp_md5sig_pool
, cpu
).md5_req
= req
;
3284 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3285 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3288 tcp_md5sig_pool_populated
= true;
3291 bool tcp_alloc_md5sig_pool(void)
3293 if (unlikely(!tcp_md5sig_pool_populated
)) {
3294 mutex_lock(&tcp_md5sig_mutex
);
3296 if (!tcp_md5sig_pool_populated
)
3297 __tcp_alloc_md5sig_pool();
3299 mutex_unlock(&tcp_md5sig_mutex
);
3301 return tcp_md5sig_pool_populated
;
3303 EXPORT_SYMBOL(tcp_alloc_md5sig_pool
);
3307 * tcp_get_md5sig_pool - get md5sig_pool for this user
3309 * We use percpu structure, so if we succeed, we exit with preemption
3310 * and BH disabled, to make sure another thread or softirq handling
3311 * wont try to get same context.
3313 struct tcp_md5sig_pool
*tcp_get_md5sig_pool(void)
3317 if (tcp_md5sig_pool_populated
) {
3318 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3320 return this_cpu_ptr(&tcp_md5sig_pool
);
3325 EXPORT_SYMBOL(tcp_get_md5sig_pool
);
3327 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool
*hp
,
3328 const struct sk_buff
*skb
, unsigned int header_len
)
3330 struct scatterlist sg
;
3331 const struct tcphdr
*tp
= tcp_hdr(skb
);
3332 struct ahash_request
*req
= hp
->md5_req
;
3334 const unsigned int head_data_len
= skb_headlen(skb
) > header_len
?
3335 skb_headlen(skb
) - header_len
: 0;
3336 const struct skb_shared_info
*shi
= skb_shinfo(skb
);
3337 struct sk_buff
*frag_iter
;
3339 sg_init_table(&sg
, 1);
3341 sg_set_buf(&sg
, ((u8
*) tp
) + header_len
, head_data_len
);
3342 ahash_request_set_crypt(req
, &sg
, NULL
, head_data_len
);
3343 if (crypto_ahash_update(req
))
3346 for (i
= 0; i
< shi
->nr_frags
; ++i
) {
3347 const struct skb_frag_struct
*f
= &shi
->frags
[i
];
3348 unsigned int offset
= f
->page_offset
;
3349 struct page
*page
= skb_frag_page(f
) + (offset
>> PAGE_SHIFT
);
3351 sg_set_page(&sg
, page
, skb_frag_size(f
),
3352 offset_in_page(offset
));
3353 ahash_request_set_crypt(req
, &sg
, NULL
, skb_frag_size(f
));
3354 if (crypto_ahash_update(req
))
3358 skb_walk_frags(skb
, frag_iter
)
3359 if (tcp_md5_hash_skb_data(hp
, frag_iter
, 0))
3364 EXPORT_SYMBOL(tcp_md5_hash_skb_data
);
3366 int tcp_md5_hash_key(struct tcp_md5sig_pool
*hp
, const struct tcp_md5sig_key
*key
)
3368 struct scatterlist sg
;
3370 sg_init_one(&sg
, key
->key
, key
->keylen
);
3371 ahash_request_set_crypt(hp
->md5_req
, &sg
, NULL
, key
->keylen
);
3372 return crypto_ahash_update(hp
->md5_req
);
3374 EXPORT_SYMBOL(tcp_md5_hash_key
);
3378 void tcp_done(struct sock
*sk
)
3380 struct request_sock
*req
= tcp_sk(sk
)->fastopen_rsk
;
3382 if (sk
->sk_state
== TCP_SYN_SENT
|| sk
->sk_state
== TCP_SYN_RECV
)
3383 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ATTEMPTFAILS
);
3385 tcp_set_state(sk
, TCP_CLOSE
);
3386 tcp_clear_xmit_timers(sk
);
3388 reqsk_fastopen_remove(sk
, req
, false);
3390 sk
->sk_shutdown
= SHUTDOWN_MASK
;
3392 if (!sock_flag(sk
, SOCK_DEAD
))
3393 sk
->sk_state_change(sk
);
3395 inet_csk_destroy_sock(sk
);
3397 EXPORT_SYMBOL_GPL(tcp_done
);
3399 int tcp_abort(struct sock
*sk
, int err
)
3401 if (!sk_fullsock(sk
)) {
3402 if (sk
->sk_state
== TCP_NEW_SYN_RECV
) {
3403 struct request_sock
*req
= inet_reqsk(sk
);
3406 inet_csk_reqsk_queue_drop_and_put(req
->rsk_listener
,
3414 /* Don't race with userspace socket closes such as tcp_close. */
3417 if (sk
->sk_state
== TCP_LISTEN
) {
3418 tcp_set_state(sk
, TCP_CLOSE
);
3419 inet_csk_listen_stop(sk
);
3422 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3426 if (!sock_flag(sk
, SOCK_DEAD
)) {
3428 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3430 sk
->sk_error_report(sk
);
3431 if (tcp_need_reset(sk
->sk_state
))
3432 tcp_send_active_reset(sk
, GFP_ATOMIC
);
3441 EXPORT_SYMBOL_GPL(tcp_abort
);
3443 extern struct tcp_congestion_ops tcp_reno
;
3445 static __initdata
unsigned long thash_entries
;
3446 static int __init
set_thash_entries(char *str
)
3453 ret
= kstrtoul(str
, 0, &thash_entries
);
3459 __setup("thash_entries=", set_thash_entries
);
3461 static void __init
tcp_init_mem(void)
3463 unsigned long limit
= nr_free_buffer_pages() / 16;
3465 limit
= max(limit
, 128UL);
3466 sysctl_tcp_mem
[0] = limit
/ 4 * 3; /* 4.68 % */
3467 sysctl_tcp_mem
[1] = limit
; /* 6.25 % */
3468 sysctl_tcp_mem
[2] = sysctl_tcp_mem
[0] * 2; /* 9.37 % */
3471 void __init
tcp_init(void)
3473 int max_rshare
, max_wshare
, cnt
;
3474 unsigned long limit
;
3477 BUILD_BUG_ON(sizeof(struct tcp_skb_cb
) >
3478 FIELD_SIZEOF(struct sk_buff
, cb
));
3480 percpu_counter_init(&tcp_sockets_allocated
, 0, GFP_KERNEL
);
3481 percpu_counter_init(&tcp_orphan_count
, 0, GFP_KERNEL
);
3482 inet_hashinfo_init(&tcp_hashinfo
);
3483 tcp_hashinfo
.bind_bucket_cachep
=
3484 kmem_cache_create("tcp_bind_bucket",
3485 sizeof(struct inet_bind_bucket
), 0,
3486 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3488 /* Size and allocate the main established and bind bucket
3491 * The methodology is similar to that of the buffer cache.
3493 tcp_hashinfo
.ehash
=
3494 alloc_large_system_hash("TCP established",
3495 sizeof(struct inet_ehash_bucket
),
3497 17, /* one slot per 128 KB of memory */
3500 &tcp_hashinfo
.ehash_mask
,
3502 thash_entries
? 0 : 512 * 1024);
3503 for (i
= 0; i
<= tcp_hashinfo
.ehash_mask
; i
++)
3504 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo
.ehash
[i
].chain
, i
);
3506 if (inet_ehash_locks_alloc(&tcp_hashinfo
))
3507 panic("TCP: failed to alloc ehash_locks");
3508 tcp_hashinfo
.bhash
=
3509 alloc_large_system_hash("TCP bind",
3510 sizeof(struct inet_bind_hashbucket
),
3511 tcp_hashinfo
.ehash_mask
+ 1,
3512 17, /* one slot per 128 KB of memory */
3514 &tcp_hashinfo
.bhash_size
,
3518 tcp_hashinfo
.bhash_size
= 1U << tcp_hashinfo
.bhash_size
;
3519 for (i
= 0; i
< tcp_hashinfo
.bhash_size
; i
++) {
3520 spin_lock_init(&tcp_hashinfo
.bhash
[i
].lock
);
3521 INIT_HLIST_HEAD(&tcp_hashinfo
.bhash
[i
].chain
);
3525 cnt
= tcp_hashinfo
.ehash_mask
+ 1;
3526 sysctl_tcp_max_orphans
= cnt
/ 2;
3529 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3530 limit
= nr_free_buffer_pages() << (PAGE_SHIFT
- 7);
3531 max_wshare
= min(4UL*1024*1024, limit
);
3532 max_rshare
= min(6UL*1024*1024, limit
);
3534 sysctl_tcp_wmem
[0] = SK_MEM_QUANTUM
;
3535 sysctl_tcp_wmem
[1] = 16*1024;
3536 sysctl_tcp_wmem
[2] = max(64*1024, max_wshare
);
3538 sysctl_tcp_rmem
[0] = SK_MEM_QUANTUM
;
3539 sysctl_tcp_rmem
[1] = 87380;
3540 sysctl_tcp_rmem
[2] = max(87380, max_rshare
);
3542 pr_info("Hash tables configured (established %u bind %u)\n",
3543 tcp_hashinfo
.ehash_mask
+ 1, tcp_hashinfo
.bhash_size
);
3547 BUG_ON(tcp_register_congestion_control(&tcp_reno
) != 0);