libnvdimm, pfn: make 'resource' attribute only readable by root
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp.c
blob5091402720abca1737b60ab51266e9b40b588188
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
20 * Fixes:
21 * Alan Cox : Numerous verify_area() calls
22 * Alan Cox : Set the ACK bit on a reset
23 * Alan Cox : Stopped it crashing if it closed while
24 * sk->inuse=1 and was trying to connect
25 * (tcp_err()).
26 * Alan Cox : All icmp error handling was broken
27 * pointers passed where wrong and the
28 * socket was looked up backwards. Nobody
29 * tested any icmp error code obviously.
30 * Alan Cox : tcp_err() now handled properly. It
31 * wakes people on errors. poll
32 * behaves and the icmp error race
33 * has gone by moving it into sock.c
34 * Alan Cox : tcp_send_reset() fixed to work for
35 * everything not just packets for
36 * unknown sockets.
37 * Alan Cox : tcp option processing.
38 * Alan Cox : Reset tweaked (still not 100%) [Had
39 * syn rule wrong]
40 * Herp Rosmanith : More reset fixes
41 * Alan Cox : No longer acks invalid rst frames.
42 * Acking any kind of RST is right out.
43 * Alan Cox : Sets an ignore me flag on an rst
44 * receive otherwise odd bits of prattle
45 * escape still
46 * Alan Cox : Fixed another acking RST frame bug.
47 * Should stop LAN workplace lockups.
48 * Alan Cox : Some tidyups using the new skb list
49 * facilities
50 * Alan Cox : sk->keepopen now seems to work
51 * Alan Cox : Pulls options out correctly on accepts
52 * Alan Cox : Fixed assorted sk->rqueue->next errors
53 * Alan Cox : PSH doesn't end a TCP read. Switched a
54 * bit to skb ops.
55 * Alan Cox : Tidied tcp_data to avoid a potential
56 * nasty.
57 * Alan Cox : Added some better commenting, as the
58 * tcp is hard to follow
59 * Alan Cox : Removed incorrect check for 20 * psh
60 * Michael O'Reilly : ack < copied bug fix.
61 * Johannes Stille : Misc tcp fixes (not all in yet).
62 * Alan Cox : FIN with no memory -> CRASH
63 * Alan Cox : Added socket option proto entries.
64 * Also added awareness of them to accept.
65 * Alan Cox : Added TCP options (SOL_TCP)
66 * Alan Cox : Switched wakeup calls to callbacks,
67 * so the kernel can layer network
68 * sockets.
69 * Alan Cox : Use ip_tos/ip_ttl settings.
70 * Alan Cox : Handle FIN (more) properly (we hope).
71 * Alan Cox : RST frames sent on unsynchronised
72 * state ack error.
73 * Alan Cox : Put in missing check for SYN bit.
74 * Alan Cox : Added tcp_select_window() aka NET2E
75 * window non shrink trick.
76 * Alan Cox : Added a couple of small NET2E timer
77 * fixes
78 * Charles Hedrick : TCP fixes
79 * Toomas Tamm : TCP window fixes
80 * Alan Cox : Small URG fix to rlogin ^C ack fight
81 * Charles Hedrick : Rewrote most of it to actually work
82 * Linus : Rewrote tcp_read() and URG handling
83 * completely
84 * Gerhard Koerting: Fixed some missing timer handling
85 * Matthew Dillon : Reworked TCP machine states as per RFC
86 * Gerhard Koerting: PC/TCP workarounds
87 * Adam Caldwell : Assorted timer/timing errors
88 * Matthew Dillon : Fixed another RST bug
89 * Alan Cox : Move to kernel side addressing changes.
90 * Alan Cox : Beginning work on TCP fastpathing
91 * (not yet usable)
92 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
93 * Alan Cox : TCP fast path debugging
94 * Alan Cox : Window clamping
95 * Michael Riepe : Bug in tcp_check()
96 * Matt Dillon : More TCP improvements and RST bug fixes
97 * Matt Dillon : Yet more small nasties remove from the
98 * TCP code (Be very nice to this man if
99 * tcp finally works 100%) 8)
100 * Alan Cox : BSD accept semantics.
101 * Alan Cox : Reset on closedown bug.
102 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
103 * Michael Pall : Handle poll() after URG properly in
104 * all cases.
105 * Michael Pall : Undo the last fix in tcp_read_urg()
106 * (multi URG PUSH broke rlogin).
107 * Michael Pall : Fix the multi URG PUSH problem in
108 * tcp_readable(), poll() after URG
109 * works now.
110 * Michael Pall : recv(...,MSG_OOB) never blocks in the
111 * BSD api.
112 * Alan Cox : Changed the semantics of sk->socket to
113 * fix a race and a signal problem with
114 * accept() and async I/O.
115 * Alan Cox : Relaxed the rules on tcp_sendto().
116 * Yury Shevchuk : Really fixed accept() blocking problem.
117 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
118 * clients/servers which listen in on
119 * fixed ports.
120 * Alan Cox : Cleaned the above up and shrank it to
121 * a sensible code size.
122 * Alan Cox : Self connect lockup fix.
123 * Alan Cox : No connect to multicast.
124 * Ross Biro : Close unaccepted children on master
125 * socket close.
126 * Alan Cox : Reset tracing code.
127 * Alan Cox : Spurious resets on shutdown.
128 * Alan Cox : Giant 15 minute/60 second timer error
129 * Alan Cox : Small whoops in polling before an
130 * accept.
131 * Alan Cox : Kept the state trace facility since
132 * it's handy for debugging.
133 * Alan Cox : More reset handler fixes.
134 * Alan Cox : Started rewriting the code based on
135 * the RFC's for other useful protocol
136 * references see: Comer, KA9Q NOS, and
137 * for a reference on the difference
138 * between specifications and how BSD
139 * works see the 4.4lite source.
140 * A.N.Kuznetsov : Don't time wait on completion of tidy
141 * close.
142 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
143 * Linus Torvalds : Fixed BSD port reuse to work first syn
144 * Alan Cox : Reimplemented timers as per the RFC
145 * and using multiple timers for sanity.
146 * Alan Cox : Small bug fixes, and a lot of new
147 * comments.
148 * Alan Cox : Fixed dual reader crash by locking
149 * the buffers (much like datagram.c)
150 * Alan Cox : Fixed stuck sockets in probe. A probe
151 * now gets fed up of retrying without
152 * (even a no space) answer.
153 * Alan Cox : Extracted closing code better
154 * Alan Cox : Fixed the closing state machine to
155 * resemble the RFC.
156 * Alan Cox : More 'per spec' fixes.
157 * Jorge Cwik : Even faster checksumming.
158 * Alan Cox : tcp_data() doesn't ack illegal PSH
159 * only frames. At least one pc tcp stack
160 * generates them.
161 * Alan Cox : Cache last socket.
162 * Alan Cox : Per route irtt.
163 * Matt Day : poll()->select() match BSD precisely on error
164 * Alan Cox : New buffers
165 * Marc Tamsky : Various sk->prot->retransmits and
166 * sk->retransmits misupdating fixed.
167 * Fixed tcp_write_timeout: stuck close,
168 * and TCP syn retries gets used now.
169 * Mark Yarvis : In tcp_read_wakeup(), don't send an
170 * ack if state is TCP_CLOSED.
171 * Alan Cox : Look up device on a retransmit - routes may
172 * change. Doesn't yet cope with MSS shrink right
173 * but it's a start!
174 * Marc Tamsky : Closing in closing fixes.
175 * Mike Shaver : RFC1122 verifications.
176 * Alan Cox : rcv_saddr errors.
177 * Alan Cox : Block double connect().
178 * Alan Cox : Small hooks for enSKIP.
179 * Alexey Kuznetsov: Path MTU discovery.
180 * Alan Cox : Support soft errors.
181 * Alan Cox : Fix MTU discovery pathological case
182 * when the remote claims no mtu!
183 * Marc Tamsky : TCP_CLOSE fix.
184 * Colin (G3TNE) : Send a reset on syn ack replies in
185 * window but wrong (fixes NT lpd problems)
186 * Pedro Roque : Better TCP window handling, delayed ack.
187 * Joerg Reuter : No modification of locked buffers in
188 * tcp_do_retransmit()
189 * Eric Schenk : Changed receiver side silly window
190 * avoidance algorithm to BSD style
191 * algorithm. This doubles throughput
192 * against machines running Solaris,
193 * and seems to result in general
194 * improvement.
195 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
196 * Willy Konynenberg : Transparent proxying support.
197 * Mike McLagan : Routing by source
198 * Keith Owens : Do proper merging with partial SKB's in
199 * tcp_do_sendmsg to avoid burstiness.
200 * Eric Schenk : Fix fast close down bug with
201 * shutdown() followed by close().
202 * Andi Kleen : Make poll agree with SIGIO
203 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
204 * lingertime == 0 (RFC 793 ABORT Call)
205 * Hirokazu Takahashi : Use copy_from_user() instead of
206 * csum_and_copy_from_user() if possible.
208 * This program is free software; you can redistribute it and/or
209 * modify it under the terms of the GNU General Public License
210 * as published by the Free Software Foundation; either version
211 * 2 of the License, or(at your option) any later version.
213 * Description of States:
215 * TCP_SYN_SENT sent a connection request, waiting for ack
217 * TCP_SYN_RECV received a connection request, sent ack,
218 * waiting for final ack in three-way handshake.
220 * TCP_ESTABLISHED connection established
222 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
223 * transmission of remaining buffered data
225 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
226 * to shutdown
228 * TCP_CLOSING both sides have shutdown but we still have
229 * data we have to finish sending
231 * TCP_TIME_WAIT timeout to catch resent junk before entering
232 * closed, can only be entered from FIN_WAIT2
233 * or CLOSING. Required because the other end
234 * may not have gotten our last ACK causing it
235 * to retransmit the data packet (which we ignore)
237 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
238 * us to finish writing our data and to shutdown
239 * (we have to close() to move on to LAST_ACK)
241 * TCP_LAST_ACK out side has shutdown after remote has
242 * shutdown. There may still be data in our
243 * buffer that we have to finish sending
245 * TCP_CLOSE socket is finished
248 #define pr_fmt(fmt) "TCP: " fmt
250 #include <crypto/hash.h>
251 #include <linux/kernel.h>
252 #include <linux/module.h>
253 #include <linux/types.h>
254 #include <linux/fcntl.h>
255 #include <linux/poll.h>
256 #include <linux/inet_diag.h>
257 #include <linux/init.h>
258 #include <linux/fs.h>
259 #include <linux/skbuff.h>
260 #include <linux/scatterlist.h>
261 #include <linux/splice.h>
262 #include <linux/net.h>
263 #include <linux/socket.h>
264 #include <linux/random.h>
265 #include <linux/bootmem.h>
266 #include <linux/highmem.h>
267 #include <linux/swap.h>
268 #include <linux/cache.h>
269 #include <linux/err.h>
270 #include <linux/time.h>
271 #include <linux/slab.h>
272 #include <linux/errqueue.h>
274 #include <net/icmp.h>
275 #include <net/inet_common.h>
276 #include <net/tcp.h>
277 #include <net/xfrm.h>
278 #include <net/ip.h>
279 #include <net/sock.h>
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
285 int sysctl_tcp_min_tso_segs __read_mostly = 2;
287 int sysctl_tcp_autocorking __read_mostly = 1;
289 struct percpu_counter tcp_orphan_count;
290 EXPORT_SYMBOL_GPL(tcp_orphan_count);
292 long sysctl_tcp_mem[3] __read_mostly;
293 int sysctl_tcp_wmem[3] __read_mostly;
294 int sysctl_tcp_rmem[3] __read_mostly;
296 EXPORT_SYMBOL(sysctl_tcp_mem);
297 EXPORT_SYMBOL(sysctl_tcp_rmem);
298 EXPORT_SYMBOL(sysctl_tcp_wmem);
300 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
301 EXPORT_SYMBOL(tcp_memory_allocated);
304 * Current number of TCP sockets.
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
310 * TCP splice context
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
327 void tcp_enter_memory_pressure(struct sock *sk)
329 unsigned long val;
331 if (tcp_memory_pressure)
332 return;
333 val = jiffies;
335 if (!val)
336 val--;
337 if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
342 void tcp_leave_memory_pressure(struct sock *sk)
344 unsigned long val;
346 if (!tcp_memory_pressure)
347 return;
348 val = xchg(&tcp_memory_pressure, 0);
349 if (val)
350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 jiffies_to_msecs(jiffies - val));
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
355 /* Convert seconds to retransmits based on initial and max timeout */
356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
358 u8 res = 0;
360 if (seconds > 0) {
361 int period = timeout;
363 res = 1;
364 while (seconds > period && res < 255) {
365 res++;
366 timeout <<= 1;
367 if (timeout > rto_max)
368 timeout = rto_max;
369 period += timeout;
372 return res;
375 /* Convert retransmits to seconds based on initial and max timeout */
376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
378 int period = 0;
380 if (retrans > 0) {
381 period = timeout;
382 while (--retrans) {
383 timeout <<= 1;
384 if (timeout > rto_max)
385 timeout = rto_max;
386 period += timeout;
389 return period;
392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
394 u32 rate = READ_ONCE(tp->rate_delivered);
395 u32 intv = READ_ONCE(tp->rate_interval_us);
396 u64 rate64 = 0;
398 if (rate && intv) {
399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 do_div(rate64, intv);
402 return rate64;
405 /* Address-family independent initialization for a tcp_sock.
407 * NOTE: A lot of things set to zero explicitly by call to
408 * sk_alloc() so need not be done here.
410 void tcp_init_sock(struct sock *sk)
412 struct inet_connection_sock *icsk = inet_csk(sk);
413 struct tcp_sock *tp = tcp_sk(sk);
415 tp->out_of_order_queue = RB_ROOT;
416 tcp_init_xmit_timers(sk);
417 INIT_LIST_HEAD(&tp->tsq_node);
419 icsk->icsk_rto = TCP_TIMEOUT_INIT;
420 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
421 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
423 /* So many TCP implementations out there (incorrectly) count the
424 * initial SYN frame in their delayed-ACK and congestion control
425 * algorithms that we must have the following bandaid to talk
426 * efficiently to them. -DaveM
428 tp->snd_cwnd = TCP_INIT_CWND;
430 /* There's a bubble in the pipe until at least the first ACK. */
431 tp->app_limited = ~0U;
433 /* See draft-stevens-tcpca-spec-01 for discussion of the
434 * initialization of these values.
436 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
437 tp->snd_cwnd_clamp = ~0;
438 tp->mss_cache = TCP_MSS_DEFAULT;
440 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
441 tcp_assign_congestion_control(sk);
443 tp->tsoffset = 0;
445 sk->sk_state = TCP_CLOSE;
447 sk->sk_write_space = sk_stream_write_space;
448 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
450 icsk->icsk_sync_mss = tcp_sync_mss;
452 sk->sk_sndbuf = sysctl_tcp_wmem[1];
453 sk->sk_rcvbuf = sysctl_tcp_rmem[1];
455 sk_sockets_allocated_inc(sk);
457 EXPORT_SYMBOL(tcp_init_sock);
459 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags, struct sk_buff *skb)
461 if (tsflags && skb) {
462 struct skb_shared_info *shinfo = skb_shinfo(skb);
463 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
465 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
466 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
467 tcb->txstamp_ack = 1;
468 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
469 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
474 * Wait for a TCP event.
476 * Note that we don't need to lock the socket, as the upper poll layers
477 * take care of normal races (between the test and the event) and we don't
478 * go look at any of the socket buffers directly.
480 unsigned int tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
482 unsigned int mask;
483 struct sock *sk = sock->sk;
484 const struct tcp_sock *tp = tcp_sk(sk);
485 int state;
487 sock_rps_record_flow(sk);
489 sock_poll_wait(file, sk_sleep(sk), wait);
491 state = sk_state_load(sk);
492 if (state == TCP_LISTEN)
493 return inet_csk_listen_poll(sk);
495 /* Socket is not locked. We are protected from async events
496 * by poll logic and correct handling of state changes
497 * made by other threads is impossible in any case.
500 mask = 0;
503 * POLLHUP is certainly not done right. But poll() doesn't
504 * have a notion of HUP in just one direction, and for a
505 * socket the read side is more interesting.
507 * Some poll() documentation says that POLLHUP is incompatible
508 * with the POLLOUT/POLLWR flags, so somebody should check this
509 * all. But careful, it tends to be safer to return too many
510 * bits than too few, and you can easily break real applications
511 * if you don't tell them that something has hung up!
513 * Check-me.
515 * Check number 1. POLLHUP is _UNMASKABLE_ event (see UNIX98 and
516 * our fs/select.c). It means that after we received EOF,
517 * poll always returns immediately, making impossible poll() on write()
518 * in state CLOSE_WAIT. One solution is evident --- to set POLLHUP
519 * if and only if shutdown has been made in both directions.
520 * Actually, it is interesting to look how Solaris and DUX
521 * solve this dilemma. I would prefer, if POLLHUP were maskable,
522 * then we could set it on SND_SHUTDOWN. BTW examples given
523 * in Stevens' books assume exactly this behaviour, it explains
524 * why POLLHUP is incompatible with POLLOUT. --ANK
526 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
527 * blocking on fresh not-connected or disconnected socket. --ANK
529 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
530 mask |= POLLHUP;
531 if (sk->sk_shutdown & RCV_SHUTDOWN)
532 mask |= POLLIN | POLLRDNORM | POLLRDHUP;
534 /* Connected or passive Fast Open socket? */
535 if (state != TCP_SYN_SENT &&
536 (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
537 int target = sock_rcvlowat(sk, 0, INT_MAX);
539 if (tp->urg_seq == tp->copied_seq &&
540 !sock_flag(sk, SOCK_URGINLINE) &&
541 tp->urg_data)
542 target++;
544 if (tp->rcv_nxt - tp->copied_seq >= target)
545 mask |= POLLIN | POLLRDNORM;
547 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
548 if (sk_stream_is_writeable(sk)) {
549 mask |= POLLOUT | POLLWRNORM;
550 } else { /* send SIGIO later */
551 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
552 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
554 /* Race breaker. If space is freed after
555 * wspace test but before the flags are set,
556 * IO signal will be lost. Memory barrier
557 * pairs with the input side.
559 smp_mb__after_atomic();
560 if (sk_stream_is_writeable(sk))
561 mask |= POLLOUT | POLLWRNORM;
563 } else
564 mask |= POLLOUT | POLLWRNORM;
566 if (tp->urg_data & TCP_URG_VALID)
567 mask |= POLLPRI;
568 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
569 /* Active TCP fastopen socket with defer_connect
570 * Return POLLOUT so application can call write()
571 * in order for kernel to generate SYN+data
573 mask |= POLLOUT | POLLWRNORM;
575 /* This barrier is coupled with smp_wmb() in tcp_reset() */
576 smp_rmb();
577 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
578 mask |= POLLERR;
580 return mask;
582 EXPORT_SYMBOL(tcp_poll);
584 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
586 struct tcp_sock *tp = tcp_sk(sk);
587 int answ;
588 bool slow;
590 switch (cmd) {
591 case SIOCINQ:
592 if (sk->sk_state == TCP_LISTEN)
593 return -EINVAL;
595 slow = lock_sock_fast(sk);
596 answ = tcp_inq(sk);
597 unlock_sock_fast(sk, slow);
598 break;
599 case SIOCATMARK:
600 answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
601 break;
602 case SIOCOUTQ:
603 if (sk->sk_state == TCP_LISTEN)
604 return -EINVAL;
606 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
607 answ = 0;
608 else
609 answ = tp->write_seq - tp->snd_una;
610 break;
611 case SIOCOUTQNSD:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
615 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
616 answ = 0;
617 else
618 answ = tp->write_seq - tp->snd_nxt;
619 break;
620 default:
621 return -ENOIOCTLCMD;
624 return put_user(answ, (int __user *)arg);
626 EXPORT_SYMBOL(tcp_ioctl);
628 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
630 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
631 tp->pushed_seq = tp->write_seq;
634 static inline bool forced_push(const struct tcp_sock *tp)
636 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
639 static void skb_entail(struct sock *sk, struct sk_buff *skb)
641 struct tcp_sock *tp = tcp_sk(sk);
642 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
644 skb->csum = 0;
645 tcb->seq = tcb->end_seq = tp->write_seq;
646 tcb->tcp_flags = TCPHDR_ACK;
647 tcb->sacked = 0;
648 __skb_header_release(skb);
649 tcp_add_write_queue_tail(sk, skb);
650 sk->sk_wmem_queued += skb->truesize;
651 sk_mem_charge(sk, skb->truesize);
652 if (tp->nonagle & TCP_NAGLE_PUSH)
653 tp->nonagle &= ~TCP_NAGLE_PUSH;
655 tcp_slow_start_after_idle_check(sk);
658 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
660 if (flags & MSG_OOB)
661 tp->snd_up = tp->write_seq;
664 /* If a not yet filled skb is pushed, do not send it if
665 * we have data packets in Qdisc or NIC queues :
666 * Because TX completion will happen shortly, it gives a chance
667 * to coalesce future sendmsg() payload into this skb, without
668 * need for a timer, and with no latency trade off.
669 * As packets containing data payload have a bigger truesize
670 * than pure acks (dataless) packets, the last checks prevent
671 * autocorking if we only have an ACK in Qdisc/NIC queues,
672 * or if TX completion was delayed after we processed ACK packet.
674 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
675 int size_goal)
677 return skb->len < size_goal &&
678 sysctl_tcp_autocorking &&
679 skb != tcp_write_queue_head(sk) &&
680 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
683 static void tcp_push(struct sock *sk, int flags, int mss_now,
684 int nonagle, int size_goal)
686 struct tcp_sock *tp = tcp_sk(sk);
687 struct sk_buff *skb;
689 if (!tcp_send_head(sk))
690 return;
692 skb = tcp_write_queue_tail(sk);
693 if (!(flags & MSG_MORE) || forced_push(tp))
694 tcp_mark_push(tp, skb);
696 tcp_mark_urg(tp, flags);
698 if (tcp_should_autocork(sk, skb, size_goal)) {
700 /* avoid atomic op if TSQ_THROTTLED bit is already set */
701 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
702 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
703 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
705 /* It is possible TX completion already happened
706 * before we set TSQ_THROTTLED.
708 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
709 return;
712 if (flags & MSG_MORE)
713 nonagle = TCP_NAGLE_CORK;
715 __tcp_push_pending_frames(sk, mss_now, nonagle);
718 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
719 unsigned int offset, size_t len)
721 struct tcp_splice_state *tss = rd_desc->arg.data;
722 int ret;
724 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
725 min(rd_desc->count, len), tss->flags);
726 if (ret > 0)
727 rd_desc->count -= ret;
728 return ret;
731 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
733 /* Store TCP splice context information in read_descriptor_t. */
734 read_descriptor_t rd_desc = {
735 .arg.data = tss,
736 .count = tss->len,
739 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
743 * tcp_splice_read - splice data from TCP socket to a pipe
744 * @sock: socket to splice from
745 * @ppos: position (not valid)
746 * @pipe: pipe to splice to
747 * @len: number of bytes to splice
748 * @flags: splice modifier flags
750 * Description:
751 * Will read pages from given socket and fill them into a pipe.
754 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
755 struct pipe_inode_info *pipe, size_t len,
756 unsigned int flags)
758 struct sock *sk = sock->sk;
759 struct tcp_splice_state tss = {
760 .pipe = pipe,
761 .len = len,
762 .flags = flags,
764 long timeo;
765 ssize_t spliced;
766 int ret;
768 sock_rps_record_flow(sk);
770 * We can't seek on a socket input
772 if (unlikely(*ppos))
773 return -ESPIPE;
775 ret = spliced = 0;
777 lock_sock(sk);
779 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
780 while (tss.len) {
781 ret = __tcp_splice_read(sk, &tss);
782 if (ret < 0)
783 break;
784 else if (!ret) {
785 if (spliced)
786 break;
787 if (sock_flag(sk, SOCK_DONE))
788 break;
789 if (sk->sk_err) {
790 ret = sock_error(sk);
791 break;
793 if (sk->sk_shutdown & RCV_SHUTDOWN)
794 break;
795 if (sk->sk_state == TCP_CLOSE) {
797 * This occurs when user tries to read
798 * from never connected socket.
800 if (!sock_flag(sk, SOCK_DONE))
801 ret = -ENOTCONN;
802 break;
804 if (!timeo) {
805 ret = -EAGAIN;
806 break;
808 /* if __tcp_splice_read() got nothing while we have
809 * an skb in receive queue, we do not want to loop.
810 * This might happen with URG data.
812 if (!skb_queue_empty(&sk->sk_receive_queue))
813 break;
814 sk_wait_data(sk, &timeo, NULL);
815 if (signal_pending(current)) {
816 ret = sock_intr_errno(timeo);
817 break;
819 continue;
821 tss.len -= ret;
822 spliced += ret;
824 if (!timeo)
825 break;
826 release_sock(sk);
827 lock_sock(sk);
829 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
830 (sk->sk_shutdown & RCV_SHUTDOWN) ||
831 signal_pending(current))
832 break;
835 release_sock(sk);
837 if (spliced)
838 return spliced;
840 return ret;
842 EXPORT_SYMBOL(tcp_splice_read);
844 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
845 bool force_schedule)
847 struct sk_buff *skb;
849 /* The TCP header must be at least 32-bit aligned. */
850 size = ALIGN(size, 4);
852 if (unlikely(tcp_under_memory_pressure(sk)))
853 sk_mem_reclaim_partial(sk);
855 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
856 if (likely(skb)) {
857 bool mem_scheduled;
859 if (force_schedule) {
860 mem_scheduled = true;
861 sk_forced_mem_schedule(sk, skb->truesize);
862 } else {
863 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
865 if (likely(mem_scheduled)) {
866 skb_reserve(skb, sk->sk_prot->max_header);
868 * Make sure that we have exactly size bytes
869 * available to the caller, no more, no less.
871 skb->reserved_tailroom = skb->end - skb->tail - size;
872 return skb;
874 __kfree_skb(skb);
875 } else {
876 sk->sk_prot->enter_memory_pressure(sk);
877 sk_stream_moderate_sndbuf(sk);
879 return NULL;
882 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
883 int large_allowed)
885 struct tcp_sock *tp = tcp_sk(sk);
886 u32 new_size_goal, size_goal;
888 if (!large_allowed || !sk_can_gso(sk))
889 return mss_now;
891 /* Note : tcp_tso_autosize() will eventually split this later */
892 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
893 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
895 /* We try hard to avoid divides here */
896 size_goal = tp->gso_segs * mss_now;
897 if (unlikely(new_size_goal < size_goal ||
898 new_size_goal >= size_goal + mss_now)) {
899 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
900 sk->sk_gso_max_segs);
901 size_goal = tp->gso_segs * mss_now;
904 return max(size_goal, mss_now);
907 static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
909 int mss_now;
911 mss_now = tcp_current_mss(sk);
912 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
914 return mss_now;
917 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
918 size_t size, int flags)
920 struct tcp_sock *tp = tcp_sk(sk);
921 int mss_now, size_goal;
922 int err;
923 ssize_t copied;
924 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
926 /* Wait for a connection to finish. One exception is TCP Fast Open
927 * (passive side) where data is allowed to be sent before a connection
928 * is fully established.
930 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
931 !tcp_passive_fastopen(sk)) {
932 err = sk_stream_wait_connect(sk, &timeo);
933 if (err != 0)
934 goto out_err;
937 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
939 mss_now = tcp_send_mss(sk, &size_goal, flags);
940 copied = 0;
942 err = -EPIPE;
943 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
944 goto out_err;
946 while (size > 0) {
947 struct sk_buff *skb = tcp_write_queue_tail(sk);
948 int copy, i;
949 bool can_coalesce;
951 if (!tcp_send_head(sk) || (copy = size_goal - skb->len) <= 0 ||
952 !tcp_skb_can_collapse_to(skb)) {
953 new_segment:
954 if (!sk_stream_memory_free(sk))
955 goto wait_for_sndbuf;
957 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
958 skb_queue_empty(&sk->sk_write_queue));
959 if (!skb)
960 goto wait_for_memory;
962 skb_entail(sk, skb);
963 copy = size_goal;
966 if (copy > size)
967 copy = size;
969 i = skb_shinfo(skb)->nr_frags;
970 can_coalesce = skb_can_coalesce(skb, i, page, offset);
971 if (!can_coalesce && i >= sysctl_max_skb_frags) {
972 tcp_mark_push(tp, skb);
973 goto new_segment;
975 if (!sk_wmem_schedule(sk, copy))
976 goto wait_for_memory;
978 if (can_coalesce) {
979 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
980 } else {
981 get_page(page);
982 skb_fill_page_desc(skb, i, page, offset, copy);
984 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
986 skb->len += copy;
987 skb->data_len += copy;
988 skb->truesize += copy;
989 sk->sk_wmem_queued += copy;
990 sk_mem_charge(sk, copy);
991 skb->ip_summed = CHECKSUM_PARTIAL;
992 tp->write_seq += copy;
993 TCP_SKB_CB(skb)->end_seq += copy;
994 tcp_skb_pcount_set(skb, 0);
996 if (!copied)
997 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
999 copied += copy;
1000 offset += copy;
1001 size -= copy;
1002 if (!size)
1003 goto out;
1005 if (skb->len < size_goal || (flags & MSG_OOB))
1006 continue;
1008 if (forced_push(tp)) {
1009 tcp_mark_push(tp, skb);
1010 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1011 } else if (skb == tcp_send_head(sk))
1012 tcp_push_one(sk, mss_now);
1013 continue;
1015 wait_for_sndbuf:
1016 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1017 wait_for_memory:
1018 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1019 TCP_NAGLE_PUSH, size_goal);
1021 err = sk_stream_wait_memory(sk, &timeo);
1022 if (err != 0)
1023 goto do_error;
1025 mss_now = tcp_send_mss(sk, &size_goal, flags);
1028 out:
1029 if (copied) {
1030 tcp_tx_timestamp(sk, sk->sk_tsflags, tcp_write_queue_tail(sk));
1031 if (!(flags & MSG_SENDPAGE_NOTLAST))
1032 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1034 return copied;
1036 do_error:
1037 if (copied)
1038 goto out;
1039 out_err:
1040 /* make sure we wake any epoll edge trigger waiter */
1041 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1042 err == -EAGAIN)) {
1043 sk->sk_write_space(sk);
1044 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1046 return sk_stream_error(sk, flags, err);
1048 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1050 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1051 size_t size, int flags)
1053 if (!(sk->sk_route_caps & NETIF_F_SG) ||
1054 !sk_check_csum_caps(sk))
1055 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1057 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1059 return do_tcp_sendpages(sk, page, offset, size, flags);
1061 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1063 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1064 size_t size, int flags)
1066 int ret;
1068 lock_sock(sk);
1069 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1070 release_sock(sk);
1072 return ret;
1074 EXPORT_SYMBOL(tcp_sendpage);
1076 /* Do not bother using a page frag for very small frames.
1077 * But use this heuristic only for the first skb in write queue.
1079 * Having no payload in skb->head allows better SACK shifting
1080 * in tcp_shift_skb_data(), reducing sack/rack overhead, because
1081 * write queue has less skbs.
1082 * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
1083 * This also speeds up tso_fragment(), since it wont fallback
1084 * to tcp_fragment().
1086 static int linear_payload_sz(bool first_skb)
1088 if (first_skb)
1089 return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
1090 return 0;
1093 static int select_size(const struct sock *sk, bool sg, bool first_skb)
1095 const struct tcp_sock *tp = tcp_sk(sk);
1096 int tmp = tp->mss_cache;
1098 if (sg) {
1099 if (sk_can_gso(sk)) {
1100 tmp = linear_payload_sz(first_skb);
1101 } else {
1102 int pgbreak = SKB_MAX_HEAD(MAX_TCP_HEADER);
1104 if (tmp >= pgbreak &&
1105 tmp <= pgbreak + (MAX_SKB_FRAGS - 1) * PAGE_SIZE)
1106 tmp = pgbreak;
1110 return tmp;
1113 void tcp_free_fastopen_req(struct tcp_sock *tp)
1115 if (tp->fastopen_req) {
1116 kfree(tp->fastopen_req);
1117 tp->fastopen_req = NULL;
1121 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1122 int *copied, size_t size)
1124 struct tcp_sock *tp = tcp_sk(sk);
1125 struct inet_sock *inet = inet_sk(sk);
1126 struct sockaddr *uaddr = msg->msg_name;
1127 int err, flags;
1129 if (!(sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1130 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1131 uaddr->sa_family == AF_UNSPEC))
1132 return -EOPNOTSUPP;
1133 if (tp->fastopen_req)
1134 return -EALREADY; /* Another Fast Open is in progress */
1136 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1137 sk->sk_allocation);
1138 if (unlikely(!tp->fastopen_req))
1139 return -ENOBUFS;
1140 tp->fastopen_req->data = msg;
1141 tp->fastopen_req->size = size;
1143 if (inet->defer_connect) {
1144 err = tcp_connect(sk);
1145 /* Same failure procedure as in tcp_v4/6_connect */
1146 if (err) {
1147 tcp_set_state(sk, TCP_CLOSE);
1148 inet->inet_dport = 0;
1149 sk->sk_route_caps = 0;
1152 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1153 err = __inet_stream_connect(sk->sk_socket, uaddr,
1154 msg->msg_namelen, flags, 1);
1155 /* fastopen_req could already be freed in __inet_stream_connect
1156 * if the connection times out or gets rst
1158 if (tp->fastopen_req) {
1159 *copied = tp->fastopen_req->copied;
1160 tcp_free_fastopen_req(tp);
1161 inet->defer_connect = 0;
1163 return err;
1166 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1168 struct tcp_sock *tp = tcp_sk(sk);
1169 struct ubuf_info *uarg = NULL;
1170 struct sk_buff *skb;
1171 struct sockcm_cookie sockc;
1172 int flags, err, copied = 0;
1173 int mss_now = 0, size_goal, copied_syn = 0;
1174 bool process_backlog = false;
1175 bool sg;
1176 long timeo;
1178 flags = msg->msg_flags;
1180 if (flags & MSG_ZEROCOPY && size) {
1181 if (sk->sk_state != TCP_ESTABLISHED) {
1182 err = -EINVAL;
1183 goto out_err;
1186 skb = tcp_send_head(sk) ? tcp_write_queue_tail(sk) : NULL;
1187 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1188 if (!uarg) {
1189 err = -ENOBUFS;
1190 goto out_err;
1193 if (!(sk_check_csum_caps(sk) && sk->sk_route_caps & NETIF_F_SG))
1194 uarg->zerocopy = 0;
1197 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect)) {
1198 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
1199 if (err == -EINPROGRESS && copied_syn > 0)
1200 goto out;
1201 else if (err)
1202 goto out_err;
1205 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1207 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1209 /* Wait for a connection to finish. One exception is TCP Fast Open
1210 * (passive side) where data is allowed to be sent before a connection
1211 * is fully established.
1213 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1214 !tcp_passive_fastopen(sk)) {
1215 err = sk_stream_wait_connect(sk, &timeo);
1216 if (err != 0)
1217 goto do_error;
1220 if (unlikely(tp->repair)) {
1221 if (tp->repair_queue == TCP_RECV_QUEUE) {
1222 copied = tcp_send_rcvq(sk, msg, size);
1223 goto out_nopush;
1226 err = -EINVAL;
1227 if (tp->repair_queue == TCP_NO_QUEUE)
1228 goto out_err;
1230 /* 'common' sending to sendq */
1233 sockc.tsflags = sk->sk_tsflags;
1234 if (msg->msg_controllen) {
1235 err = sock_cmsg_send(sk, msg, &sockc);
1236 if (unlikely(err)) {
1237 err = -EINVAL;
1238 goto out_err;
1242 /* This should be in poll */
1243 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1245 /* Ok commence sending. */
1246 copied = 0;
1248 restart:
1249 mss_now = tcp_send_mss(sk, &size_goal, flags);
1251 err = -EPIPE;
1252 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1253 goto do_error;
1255 sg = !!(sk->sk_route_caps & NETIF_F_SG);
1257 while (msg_data_left(msg)) {
1258 int copy = 0;
1259 int max = size_goal;
1261 skb = tcp_write_queue_tail(sk);
1262 if (tcp_send_head(sk)) {
1263 if (skb->ip_summed == CHECKSUM_NONE)
1264 max = mss_now;
1265 copy = max - skb->len;
1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1269 bool first_skb;
1271 new_segment:
1272 /* Allocate new segment. If the interface is SG,
1273 * allocate skb fitting to single page.
1275 if (!sk_stream_memory_free(sk))
1276 goto wait_for_sndbuf;
1278 if (process_backlog && sk_flush_backlog(sk)) {
1279 process_backlog = false;
1280 goto restart;
1282 first_skb = skb_queue_empty(&sk->sk_write_queue);
1283 skb = sk_stream_alloc_skb(sk,
1284 select_size(sk, sg, first_skb),
1285 sk->sk_allocation,
1286 first_skb);
1287 if (!skb)
1288 goto wait_for_memory;
1290 process_backlog = true;
1292 * Check whether we can use HW checksum.
1294 if (sk_check_csum_caps(sk))
1295 skb->ip_summed = CHECKSUM_PARTIAL;
1297 skb_entail(sk, skb);
1298 copy = size_goal;
1299 max = size_goal;
1301 /* All packets are restored as if they have
1302 * already been sent. skb_mstamp isn't set to
1303 * avoid wrong rtt estimation.
1305 if (tp->repair)
1306 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1309 /* Try to append data to the end of skb. */
1310 if (copy > msg_data_left(msg))
1311 copy = msg_data_left(msg);
1313 /* Where to copy to? */
1314 if (skb_availroom(skb) > 0) {
1315 /* We have some space in skb head. Superb! */
1316 copy = min_t(int, copy, skb_availroom(skb));
1317 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1318 if (err)
1319 goto do_fault;
1320 } else if (!uarg || !uarg->zerocopy) {
1321 bool merge = true;
1322 int i = skb_shinfo(skb)->nr_frags;
1323 struct page_frag *pfrag = sk_page_frag(sk);
1325 if (!sk_page_frag_refill(sk, pfrag))
1326 goto wait_for_memory;
1328 if (!skb_can_coalesce(skb, i, pfrag->page,
1329 pfrag->offset)) {
1330 if (i >= sysctl_max_skb_frags || !sg) {
1331 tcp_mark_push(tp, skb);
1332 goto new_segment;
1334 merge = false;
1337 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1339 if (!sk_wmem_schedule(sk, copy))
1340 goto wait_for_memory;
1342 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1343 pfrag->page,
1344 pfrag->offset,
1345 copy);
1346 if (err)
1347 goto do_error;
1349 /* Update the skb. */
1350 if (merge) {
1351 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1352 } else {
1353 skb_fill_page_desc(skb, i, pfrag->page,
1354 pfrag->offset, copy);
1355 page_ref_inc(pfrag->page);
1357 pfrag->offset += copy;
1358 } else {
1359 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1360 if (err == -EMSGSIZE || err == -EEXIST)
1361 goto new_segment;
1362 if (err < 0)
1363 goto do_error;
1364 copy = err;
1367 if (!copied)
1368 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1370 tp->write_seq += copy;
1371 TCP_SKB_CB(skb)->end_seq += copy;
1372 tcp_skb_pcount_set(skb, 0);
1374 copied += copy;
1375 if (!msg_data_left(msg)) {
1376 if (unlikely(flags & MSG_EOR))
1377 TCP_SKB_CB(skb)->eor = 1;
1378 goto out;
1381 if (skb->len < max || (flags & MSG_OOB) || unlikely(tp->repair))
1382 continue;
1384 if (forced_push(tp)) {
1385 tcp_mark_push(tp, skb);
1386 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1387 } else if (skb == tcp_send_head(sk))
1388 tcp_push_one(sk, mss_now);
1389 continue;
1391 wait_for_sndbuf:
1392 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1393 wait_for_memory:
1394 if (copied)
1395 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1396 TCP_NAGLE_PUSH, size_goal);
1398 err = sk_stream_wait_memory(sk, &timeo);
1399 if (err != 0)
1400 goto do_error;
1402 mss_now = tcp_send_mss(sk, &size_goal, flags);
1405 out:
1406 if (copied) {
1407 tcp_tx_timestamp(sk, sockc.tsflags, tcp_write_queue_tail(sk));
1408 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1410 out_nopush:
1411 sock_zerocopy_put(uarg);
1412 return copied + copied_syn;
1414 do_fault:
1415 if (!skb->len) {
1416 tcp_unlink_write_queue(skb, sk);
1417 /* It is the one place in all of TCP, except connection
1418 * reset, where we can be unlinking the send_head.
1420 tcp_check_send_head(sk, skb);
1421 sk_wmem_free_skb(sk, skb);
1424 do_error:
1425 if (copied + copied_syn)
1426 goto out;
1427 out_err:
1428 sock_zerocopy_put_abort(uarg);
1429 err = sk_stream_error(sk, flags, err);
1430 /* make sure we wake any epoll edge trigger waiter */
1431 if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
1432 err == -EAGAIN)) {
1433 sk->sk_write_space(sk);
1434 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1436 return err;
1438 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1440 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1442 int ret;
1444 lock_sock(sk);
1445 ret = tcp_sendmsg_locked(sk, msg, size);
1446 release_sock(sk);
1448 return ret;
1450 EXPORT_SYMBOL(tcp_sendmsg);
1453 * Handle reading urgent data. BSD has very simple semantics for
1454 * this, no blocking and very strange errors 8)
1457 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1459 struct tcp_sock *tp = tcp_sk(sk);
1461 /* No URG data to read. */
1462 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1463 tp->urg_data == TCP_URG_READ)
1464 return -EINVAL; /* Yes this is right ! */
1466 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1467 return -ENOTCONN;
1469 if (tp->urg_data & TCP_URG_VALID) {
1470 int err = 0;
1471 char c = tp->urg_data;
1473 if (!(flags & MSG_PEEK))
1474 tp->urg_data = TCP_URG_READ;
1476 /* Read urgent data. */
1477 msg->msg_flags |= MSG_OOB;
1479 if (len > 0) {
1480 if (!(flags & MSG_TRUNC))
1481 err = memcpy_to_msg(msg, &c, 1);
1482 len = 1;
1483 } else
1484 msg->msg_flags |= MSG_TRUNC;
1486 return err ? -EFAULT : len;
1489 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1490 return 0;
1492 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1493 * the available implementations agree in this case:
1494 * this call should never block, independent of the
1495 * blocking state of the socket.
1496 * Mike <pall@rz.uni-karlsruhe.de>
1498 return -EAGAIN;
1501 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1503 struct sk_buff *skb;
1504 int copied = 0, err = 0;
1506 /* XXX -- need to support SO_PEEK_OFF */
1508 skb_queue_walk(&sk->sk_write_queue, skb) {
1509 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1510 if (err)
1511 break;
1513 copied += skb->len;
1516 return err ?: copied;
1519 /* Clean up the receive buffer for full frames taken by the user,
1520 * then send an ACK if necessary. COPIED is the number of bytes
1521 * tcp_recvmsg has given to the user so far, it speeds up the
1522 * calculation of whether or not we must ACK for the sake of
1523 * a window update.
1525 static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1527 struct tcp_sock *tp = tcp_sk(sk);
1528 bool time_to_ack = false;
1530 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1532 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1533 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1534 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1536 if (inet_csk_ack_scheduled(sk)) {
1537 const struct inet_connection_sock *icsk = inet_csk(sk);
1538 /* Delayed ACKs frequently hit locked sockets during bulk
1539 * receive. */
1540 if (icsk->icsk_ack.blocked ||
1541 /* Once-per-two-segments ACK was not sent by tcp_input.c */
1542 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1544 * If this read emptied read buffer, we send ACK, if
1545 * connection is not bidirectional, user drained
1546 * receive buffer and there was a small segment
1547 * in queue.
1549 (copied > 0 &&
1550 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1552 !icsk->icsk_ack.pingpong)) &&
1553 !atomic_read(&sk->sk_rmem_alloc)))
1554 time_to_ack = true;
1557 /* We send an ACK if we can now advertise a non-zero window
1558 * which has been raised "significantly".
1560 * Even if window raised up to infinity, do not send window open ACK
1561 * in states, where we will not receive more. It is useless.
1563 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1564 __u32 rcv_window_now = tcp_receive_window(tp);
1566 /* Optimize, __tcp_select_window() is not cheap. */
1567 if (2*rcv_window_now <= tp->window_clamp) {
1568 __u32 new_window = __tcp_select_window(sk);
1570 /* Send ACK now, if this read freed lots of space
1571 * in our buffer. Certainly, new_window is new window.
1572 * We can advertise it now, if it is not less than current one.
1573 * "Lots" means "at least twice" here.
1575 if (new_window && new_window >= 2 * rcv_window_now)
1576 time_to_ack = true;
1579 if (time_to_ack)
1580 tcp_send_ack(sk);
1583 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1585 struct sk_buff *skb;
1586 u32 offset;
1588 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1589 offset = seq - TCP_SKB_CB(skb)->seq;
1590 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1591 pr_err_once("%s: found a SYN, please report !\n", __func__);
1592 offset--;
1594 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1595 *off = offset;
1596 return skb;
1598 /* This looks weird, but this can happen if TCP collapsing
1599 * splitted a fat GRO packet, while we released socket lock
1600 * in skb_splice_bits()
1602 sk_eat_skb(sk, skb);
1604 return NULL;
1608 * This routine provides an alternative to tcp_recvmsg() for routines
1609 * that would like to handle copying from skbuffs directly in 'sendfile'
1610 * fashion.
1611 * Note:
1612 * - It is assumed that the socket was locked by the caller.
1613 * - The routine does not block.
1614 * - At present, there is no support for reading OOB data
1615 * or for 'peeking' the socket using this routine
1616 * (although both would be easy to implement).
1618 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1619 sk_read_actor_t recv_actor)
1621 struct sk_buff *skb;
1622 struct tcp_sock *tp = tcp_sk(sk);
1623 u32 seq = tp->copied_seq;
1624 u32 offset;
1625 int copied = 0;
1627 if (sk->sk_state == TCP_LISTEN)
1628 return -ENOTCONN;
1629 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1630 if (offset < skb->len) {
1631 int used;
1632 size_t len;
1634 len = skb->len - offset;
1635 /* Stop reading if we hit a patch of urgent data */
1636 if (tp->urg_data) {
1637 u32 urg_offset = tp->urg_seq - seq;
1638 if (urg_offset < len)
1639 len = urg_offset;
1640 if (!len)
1641 break;
1643 used = recv_actor(desc, skb, offset, len);
1644 if (used <= 0) {
1645 if (!copied)
1646 copied = used;
1647 break;
1648 } else if (used <= len) {
1649 seq += used;
1650 copied += used;
1651 offset += used;
1653 /* If recv_actor drops the lock (e.g. TCP splice
1654 * receive) the skb pointer might be invalid when
1655 * getting here: tcp_collapse might have deleted it
1656 * while aggregating skbs from the socket queue.
1658 skb = tcp_recv_skb(sk, seq - 1, &offset);
1659 if (!skb)
1660 break;
1661 /* TCP coalescing might have appended data to the skb.
1662 * Try to splice more frags
1664 if (offset + 1 != skb->len)
1665 continue;
1667 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1668 sk_eat_skb(sk, skb);
1669 ++seq;
1670 break;
1672 sk_eat_skb(sk, skb);
1673 if (!desc->count)
1674 break;
1675 tp->copied_seq = seq;
1677 tp->copied_seq = seq;
1679 tcp_rcv_space_adjust(sk);
1681 /* Clean up data we have read: This will do ACK frames. */
1682 if (copied > 0) {
1683 tcp_recv_skb(sk, seq, &offset);
1684 tcp_cleanup_rbuf(sk, copied);
1686 return copied;
1688 EXPORT_SYMBOL(tcp_read_sock);
1690 int tcp_peek_len(struct socket *sock)
1692 return tcp_inq(sock->sk);
1694 EXPORT_SYMBOL(tcp_peek_len);
1696 static void tcp_update_recv_tstamps(struct sk_buff *skb,
1697 struct scm_timestamping *tss)
1699 if (skb->tstamp)
1700 tss->ts[0] = ktime_to_timespec(skb->tstamp);
1701 else
1702 tss->ts[0] = (struct timespec) {0};
1704 if (skb_hwtstamps(skb)->hwtstamp)
1705 tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
1706 else
1707 tss->ts[2] = (struct timespec) {0};
1710 /* Similar to __sock_recv_timestamp, but does not require an skb */
1711 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1712 struct scm_timestamping *tss)
1714 struct timeval tv;
1715 bool has_timestamping = false;
1717 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1718 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1719 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1720 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
1721 sizeof(tss->ts[0]), &tss->ts[0]);
1722 } else {
1723 tv.tv_sec = tss->ts[0].tv_sec;
1724 tv.tv_usec = tss->ts[0].tv_nsec / 1000;
1726 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
1727 sizeof(tv), &tv);
1731 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1732 has_timestamping = true;
1733 else
1734 tss->ts[0] = (struct timespec) {0};
1737 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1738 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1739 has_timestamping = true;
1740 else
1741 tss->ts[2] = (struct timespec) {0};
1744 if (has_timestamping) {
1745 tss->ts[1] = (struct timespec) {0};
1746 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
1747 sizeof(*tss), tss);
1752 * This routine copies from a sock struct into the user buffer.
1754 * Technical note: in 2.3 we work on _locked_ socket, so that
1755 * tricks with *seq access order and skb->users are not required.
1756 * Probably, code can be easily improved even more.
1759 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
1760 int flags, int *addr_len)
1762 struct tcp_sock *tp = tcp_sk(sk);
1763 int copied = 0;
1764 u32 peek_seq;
1765 u32 *seq;
1766 unsigned long used;
1767 int err;
1768 int target; /* Read at least this many bytes */
1769 long timeo;
1770 struct sk_buff *skb, *last;
1771 u32 urg_hole = 0;
1772 struct scm_timestamping tss;
1773 bool has_tss = false;
1775 if (unlikely(flags & MSG_ERRQUEUE))
1776 return inet_recv_error(sk, msg, len, addr_len);
1778 if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
1779 (sk->sk_state == TCP_ESTABLISHED))
1780 sk_busy_loop(sk, nonblock);
1782 lock_sock(sk);
1784 err = -ENOTCONN;
1785 if (sk->sk_state == TCP_LISTEN)
1786 goto out;
1788 timeo = sock_rcvtimeo(sk, nonblock);
1790 /* Urgent data needs to be handled specially. */
1791 if (flags & MSG_OOB)
1792 goto recv_urg;
1794 if (unlikely(tp->repair)) {
1795 err = -EPERM;
1796 if (!(flags & MSG_PEEK))
1797 goto out;
1799 if (tp->repair_queue == TCP_SEND_QUEUE)
1800 goto recv_sndq;
1802 err = -EINVAL;
1803 if (tp->repair_queue == TCP_NO_QUEUE)
1804 goto out;
1806 /* 'common' recv queue MSG_PEEK-ing */
1809 seq = &tp->copied_seq;
1810 if (flags & MSG_PEEK) {
1811 peek_seq = tp->copied_seq;
1812 seq = &peek_seq;
1815 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1817 do {
1818 u32 offset;
1820 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
1821 if (tp->urg_data && tp->urg_seq == *seq) {
1822 if (copied)
1823 break;
1824 if (signal_pending(current)) {
1825 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
1826 break;
1830 /* Next get a buffer. */
1832 last = skb_peek_tail(&sk->sk_receive_queue);
1833 skb_queue_walk(&sk->sk_receive_queue, skb) {
1834 last = skb;
1835 /* Now that we have two receive queues this
1836 * shouldn't happen.
1838 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
1839 "recvmsg bug: copied %X seq %X rcvnxt %X fl %X\n",
1840 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
1841 flags))
1842 break;
1844 offset = *seq - TCP_SKB_CB(skb)->seq;
1845 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1846 pr_err_once("%s: found a SYN, please report !\n", __func__);
1847 offset--;
1849 if (offset < skb->len)
1850 goto found_ok_skb;
1851 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1852 goto found_fin_ok;
1853 WARN(!(flags & MSG_PEEK),
1854 "recvmsg bug 2: copied %X seq %X rcvnxt %X fl %X\n",
1855 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
1858 /* Well, if we have backlog, try to process it now yet. */
1860 if (copied >= target && !sk->sk_backlog.tail)
1861 break;
1863 if (copied) {
1864 if (sk->sk_err ||
1865 sk->sk_state == TCP_CLOSE ||
1866 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1867 !timeo ||
1868 signal_pending(current))
1869 break;
1870 } else {
1871 if (sock_flag(sk, SOCK_DONE))
1872 break;
1874 if (sk->sk_err) {
1875 copied = sock_error(sk);
1876 break;
1879 if (sk->sk_shutdown & RCV_SHUTDOWN)
1880 break;
1882 if (sk->sk_state == TCP_CLOSE) {
1883 if (!sock_flag(sk, SOCK_DONE)) {
1884 /* This occurs when user tries to read
1885 * from never connected socket.
1887 copied = -ENOTCONN;
1888 break;
1890 break;
1893 if (!timeo) {
1894 copied = -EAGAIN;
1895 break;
1898 if (signal_pending(current)) {
1899 copied = sock_intr_errno(timeo);
1900 break;
1904 tcp_cleanup_rbuf(sk, copied);
1906 if (copied >= target) {
1907 /* Do not sleep, just process backlog. */
1908 release_sock(sk);
1909 lock_sock(sk);
1910 } else {
1911 sk_wait_data(sk, &timeo, last);
1914 if ((flags & MSG_PEEK) &&
1915 (peek_seq - copied - urg_hole != tp->copied_seq)) {
1916 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
1917 current->comm,
1918 task_pid_nr(current));
1919 peek_seq = tp->copied_seq;
1921 continue;
1923 found_ok_skb:
1924 /* Ok so how much can we use? */
1925 used = skb->len - offset;
1926 if (len < used)
1927 used = len;
1929 /* Do we have urgent data here? */
1930 if (tp->urg_data) {
1931 u32 urg_offset = tp->urg_seq - *seq;
1932 if (urg_offset < used) {
1933 if (!urg_offset) {
1934 if (!sock_flag(sk, SOCK_URGINLINE)) {
1935 ++*seq;
1936 urg_hole++;
1937 offset++;
1938 used--;
1939 if (!used)
1940 goto skip_copy;
1942 } else
1943 used = urg_offset;
1947 if (!(flags & MSG_TRUNC)) {
1948 err = skb_copy_datagram_msg(skb, offset, msg, used);
1949 if (err) {
1950 /* Exception. Bailout! */
1951 if (!copied)
1952 copied = -EFAULT;
1953 break;
1957 *seq += used;
1958 copied += used;
1959 len -= used;
1961 tcp_rcv_space_adjust(sk);
1963 skip_copy:
1964 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
1965 tp->urg_data = 0;
1966 tcp_fast_path_check(sk);
1968 if (used + offset < skb->len)
1969 continue;
1971 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1972 tcp_update_recv_tstamps(skb, &tss);
1973 has_tss = true;
1975 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1976 goto found_fin_ok;
1977 if (!(flags & MSG_PEEK))
1978 sk_eat_skb(sk, skb);
1979 continue;
1981 found_fin_ok:
1982 /* Process the FIN. */
1983 ++*seq;
1984 if (!(flags & MSG_PEEK))
1985 sk_eat_skb(sk, skb);
1986 break;
1987 } while (len > 0);
1989 /* According to UNIX98, msg_name/msg_namelen are ignored
1990 * on connected socket. I was just happy when found this 8) --ANK
1993 if (has_tss)
1994 tcp_recv_timestamp(msg, sk, &tss);
1996 /* Clean up data we have read: This will do ACK frames. */
1997 tcp_cleanup_rbuf(sk, copied);
1999 release_sock(sk);
2000 return copied;
2002 out:
2003 release_sock(sk);
2004 return err;
2006 recv_urg:
2007 err = tcp_recv_urg(sk, msg, len, flags);
2008 goto out;
2010 recv_sndq:
2011 err = tcp_peek_sndq(sk, msg, len);
2012 goto out;
2014 EXPORT_SYMBOL(tcp_recvmsg);
2016 void tcp_set_state(struct sock *sk, int state)
2018 int oldstate = sk->sk_state;
2020 switch (state) {
2021 case TCP_ESTABLISHED:
2022 if (oldstate != TCP_ESTABLISHED)
2023 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2024 break;
2026 case TCP_CLOSE:
2027 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2028 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2030 sk->sk_prot->unhash(sk);
2031 if (inet_csk(sk)->icsk_bind_hash &&
2032 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2033 inet_put_port(sk);
2034 /* fall through */
2035 default:
2036 if (oldstate == TCP_ESTABLISHED)
2037 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2040 /* Change state AFTER socket is unhashed to avoid closed
2041 * socket sitting in hash tables.
2043 sk_state_store(sk, state);
2045 #ifdef STATE_TRACE
2046 SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
2047 #endif
2049 EXPORT_SYMBOL_GPL(tcp_set_state);
2052 * State processing on a close. This implements the state shift for
2053 * sending our FIN frame. Note that we only send a FIN for some
2054 * states. A shutdown() may have already sent the FIN, or we may be
2055 * closed.
2058 static const unsigned char new_state[16] = {
2059 /* current state: new state: action: */
2060 [0 /* (Invalid) */] = TCP_CLOSE,
2061 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2062 [TCP_SYN_SENT] = TCP_CLOSE,
2063 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2064 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2065 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2066 [TCP_TIME_WAIT] = TCP_CLOSE,
2067 [TCP_CLOSE] = TCP_CLOSE,
2068 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2069 [TCP_LAST_ACK] = TCP_LAST_ACK,
2070 [TCP_LISTEN] = TCP_CLOSE,
2071 [TCP_CLOSING] = TCP_CLOSING,
2072 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2075 static int tcp_close_state(struct sock *sk)
2077 int next = (int)new_state[sk->sk_state];
2078 int ns = next & TCP_STATE_MASK;
2080 tcp_set_state(sk, ns);
2082 return next & TCP_ACTION_FIN;
2086 * Shutdown the sending side of a connection. Much like close except
2087 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2090 void tcp_shutdown(struct sock *sk, int how)
2092 /* We need to grab some memory, and put together a FIN,
2093 * and then put it into the queue to be sent.
2094 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2096 if (!(how & SEND_SHUTDOWN))
2097 return;
2099 /* If we've already sent a FIN, or it's a closed state, skip this. */
2100 if ((1 << sk->sk_state) &
2101 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2102 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2103 /* Clear out any half completed packets. FIN if needed. */
2104 if (tcp_close_state(sk))
2105 tcp_send_fin(sk);
2108 EXPORT_SYMBOL(tcp_shutdown);
2110 bool tcp_check_oom(struct sock *sk, int shift)
2112 bool too_many_orphans, out_of_socket_memory;
2114 too_many_orphans = tcp_too_many_orphans(sk, shift);
2115 out_of_socket_memory = tcp_out_of_memory(sk);
2117 if (too_many_orphans)
2118 net_info_ratelimited("too many orphaned sockets\n");
2119 if (out_of_socket_memory)
2120 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2121 return too_many_orphans || out_of_socket_memory;
2124 void tcp_close(struct sock *sk, long timeout)
2126 struct sk_buff *skb;
2127 int data_was_unread = 0;
2128 int state;
2130 lock_sock(sk);
2131 sk->sk_shutdown = SHUTDOWN_MASK;
2133 if (sk->sk_state == TCP_LISTEN) {
2134 tcp_set_state(sk, TCP_CLOSE);
2136 /* Special case. */
2137 inet_csk_listen_stop(sk);
2139 goto adjudge_to_death;
2142 /* We need to flush the recv. buffs. We do this only on the
2143 * descriptor close, not protocol-sourced closes, because the
2144 * reader process may not have drained the data yet!
2146 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2147 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2149 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2150 len--;
2151 data_was_unread += len;
2152 __kfree_skb(skb);
2155 sk_mem_reclaim(sk);
2157 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2158 if (sk->sk_state == TCP_CLOSE)
2159 goto adjudge_to_death;
2161 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2162 * data was lost. To witness the awful effects of the old behavior of
2163 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2164 * GET in an FTP client, suspend the process, wait for the client to
2165 * advertise a zero window, then kill -9 the FTP client, wheee...
2166 * Note: timeout is always zero in such a case.
2168 if (unlikely(tcp_sk(sk)->repair)) {
2169 sk->sk_prot->disconnect(sk, 0);
2170 } else if (data_was_unread) {
2171 /* Unread data was tossed, zap the connection. */
2172 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2173 tcp_set_state(sk, TCP_CLOSE);
2174 tcp_send_active_reset(sk, sk->sk_allocation);
2175 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2176 /* Check zero linger _after_ checking for unread data. */
2177 sk->sk_prot->disconnect(sk, 0);
2178 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2179 } else if (tcp_close_state(sk)) {
2180 /* We FIN if the application ate all the data before
2181 * zapping the connection.
2184 /* RED-PEN. Formally speaking, we have broken TCP state
2185 * machine. State transitions:
2187 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2188 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2189 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2191 * are legal only when FIN has been sent (i.e. in window),
2192 * rather than queued out of window. Purists blame.
2194 * F.e. "RFC state" is ESTABLISHED,
2195 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2197 * The visible declinations are that sometimes
2198 * we enter time-wait state, when it is not required really
2199 * (harmless), do not send active resets, when they are
2200 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2201 * they look as CLOSING or LAST_ACK for Linux)
2202 * Probably, I missed some more holelets.
2203 * --ANK
2204 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2205 * in a single packet! (May consider it later but will
2206 * probably need API support or TCP_CORK SYN-ACK until
2207 * data is written and socket is closed.)
2209 tcp_send_fin(sk);
2212 sk_stream_wait_close(sk, timeout);
2214 adjudge_to_death:
2215 state = sk->sk_state;
2216 sock_hold(sk);
2217 sock_orphan(sk);
2219 /* It is the last release_sock in its life. It will remove backlog. */
2220 release_sock(sk);
2223 /* Now socket is owned by kernel and we acquire BH lock
2224 * to finish close. No need to check for user refs.
2226 local_bh_disable();
2227 bh_lock_sock(sk);
2228 WARN_ON(sock_owned_by_user(sk));
2230 percpu_counter_inc(sk->sk_prot->orphan_count);
2232 /* Have we already been destroyed by a softirq or backlog? */
2233 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2234 goto out;
2236 /* This is a (useful) BSD violating of the RFC. There is a
2237 * problem with TCP as specified in that the other end could
2238 * keep a socket open forever with no application left this end.
2239 * We use a 1 minute timeout (about the same as BSD) then kill
2240 * our end. If they send after that then tough - BUT: long enough
2241 * that we won't make the old 4*rto = almost no time - whoops
2242 * reset mistake.
2244 * Nope, it was not mistake. It is really desired behaviour
2245 * f.e. on http servers, when such sockets are useless, but
2246 * consume significant resources. Let's do it with special
2247 * linger2 option. --ANK
2250 if (sk->sk_state == TCP_FIN_WAIT2) {
2251 struct tcp_sock *tp = tcp_sk(sk);
2252 if (tp->linger2 < 0) {
2253 tcp_set_state(sk, TCP_CLOSE);
2254 tcp_send_active_reset(sk, GFP_ATOMIC);
2255 __NET_INC_STATS(sock_net(sk),
2256 LINUX_MIB_TCPABORTONLINGER);
2257 } else {
2258 const int tmo = tcp_fin_time(sk);
2260 if (tmo > TCP_TIMEWAIT_LEN) {
2261 inet_csk_reset_keepalive_timer(sk,
2262 tmo - TCP_TIMEWAIT_LEN);
2263 } else {
2264 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2265 goto out;
2269 if (sk->sk_state != TCP_CLOSE) {
2270 sk_mem_reclaim(sk);
2271 if (tcp_check_oom(sk, 0)) {
2272 tcp_set_state(sk, TCP_CLOSE);
2273 tcp_send_active_reset(sk, GFP_ATOMIC);
2274 __NET_INC_STATS(sock_net(sk),
2275 LINUX_MIB_TCPABORTONMEMORY);
2279 if (sk->sk_state == TCP_CLOSE) {
2280 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
2281 /* We could get here with a non-NULL req if the socket is
2282 * aborted (e.g., closed with unread data) before 3WHS
2283 * finishes.
2285 if (req)
2286 reqsk_fastopen_remove(sk, req, false);
2287 inet_csk_destroy_sock(sk);
2289 /* Otherwise, socket is reprieved until protocol close. */
2291 out:
2292 bh_unlock_sock(sk);
2293 local_bh_enable();
2294 sock_put(sk);
2296 EXPORT_SYMBOL(tcp_close);
2298 /* These states need RST on ABORT according to RFC793 */
2300 static inline bool tcp_need_reset(int state)
2302 return (1 << state) &
2303 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2304 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2307 int tcp_disconnect(struct sock *sk, int flags)
2309 struct inet_sock *inet = inet_sk(sk);
2310 struct inet_connection_sock *icsk = inet_csk(sk);
2311 struct tcp_sock *tp = tcp_sk(sk);
2312 int err = 0;
2313 int old_state = sk->sk_state;
2315 if (old_state != TCP_CLOSE)
2316 tcp_set_state(sk, TCP_CLOSE);
2318 /* ABORT function of RFC793 */
2319 if (old_state == TCP_LISTEN) {
2320 inet_csk_listen_stop(sk);
2321 } else if (unlikely(tp->repair)) {
2322 sk->sk_err = ECONNABORTED;
2323 } else if (tcp_need_reset(old_state) ||
2324 (tp->snd_nxt != tp->write_seq &&
2325 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2326 /* The last check adjusts for discrepancy of Linux wrt. RFC
2327 * states
2329 tcp_send_active_reset(sk, gfp_any());
2330 sk->sk_err = ECONNRESET;
2331 } else if (old_state == TCP_SYN_SENT)
2332 sk->sk_err = ECONNRESET;
2334 tcp_clear_xmit_timers(sk);
2335 __skb_queue_purge(&sk->sk_receive_queue);
2336 tcp_write_queue_purge(sk);
2337 tcp_fastopen_active_disable_ofo_check(sk);
2338 skb_rbtree_purge(&tp->out_of_order_queue);
2340 inet->inet_dport = 0;
2342 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2343 inet_reset_saddr(sk);
2345 sk->sk_shutdown = 0;
2346 sock_reset_flag(sk, SOCK_DONE);
2347 tp->srtt_us = 0;
2348 tp->write_seq += tp->max_window + 2;
2349 if (tp->write_seq == 0)
2350 tp->write_seq = 1;
2351 icsk->icsk_backoff = 0;
2352 tp->snd_cwnd = 2;
2353 icsk->icsk_probes_out = 0;
2354 tp->packets_out = 0;
2355 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2356 tp->snd_cwnd_cnt = 0;
2357 tp->window_clamp = 0;
2358 tcp_set_ca_state(sk, TCP_CA_Open);
2359 tcp_clear_retrans(tp);
2360 inet_csk_delack_init(sk);
2361 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2362 * issue in __tcp_select_window()
2364 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2365 tcp_init_send_head(sk);
2366 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2367 __sk_dst_reset(sk);
2368 dst_release(sk->sk_rx_dst);
2369 sk->sk_rx_dst = NULL;
2370 tcp_saved_syn_free(tp);
2372 /* Clean up fastopen related fields */
2373 tcp_free_fastopen_req(tp);
2374 inet->defer_connect = 0;
2376 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2378 sk->sk_error_report(sk);
2379 return err;
2381 EXPORT_SYMBOL(tcp_disconnect);
2383 static inline bool tcp_can_repair_sock(const struct sock *sk)
2385 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2386 (sk->sk_state != TCP_LISTEN);
2389 static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
2391 struct tcp_repair_window opt;
2393 if (!tp->repair)
2394 return -EPERM;
2396 if (len != sizeof(opt))
2397 return -EINVAL;
2399 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2400 return -EFAULT;
2402 if (opt.max_window < opt.snd_wnd)
2403 return -EINVAL;
2405 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2406 return -EINVAL;
2408 if (after(opt.rcv_wup, tp->rcv_nxt))
2409 return -EINVAL;
2411 tp->snd_wl1 = opt.snd_wl1;
2412 tp->snd_wnd = opt.snd_wnd;
2413 tp->max_window = opt.max_window;
2415 tp->rcv_wnd = opt.rcv_wnd;
2416 tp->rcv_wup = opt.rcv_wup;
2418 return 0;
2421 static int tcp_repair_options_est(struct sock *sk,
2422 struct tcp_repair_opt __user *optbuf, unsigned int len)
2424 struct tcp_sock *tp = tcp_sk(sk);
2425 struct tcp_repair_opt opt;
2427 while (len >= sizeof(opt)) {
2428 if (copy_from_user(&opt, optbuf, sizeof(opt)))
2429 return -EFAULT;
2431 optbuf++;
2432 len -= sizeof(opt);
2434 switch (opt.opt_code) {
2435 case TCPOPT_MSS:
2436 tp->rx_opt.mss_clamp = opt.opt_val;
2437 tcp_mtup_init(sk);
2438 break;
2439 case TCPOPT_WINDOW:
2441 u16 snd_wscale = opt.opt_val & 0xFFFF;
2442 u16 rcv_wscale = opt.opt_val >> 16;
2444 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2445 return -EFBIG;
2447 tp->rx_opt.snd_wscale = snd_wscale;
2448 tp->rx_opt.rcv_wscale = rcv_wscale;
2449 tp->rx_opt.wscale_ok = 1;
2451 break;
2452 case TCPOPT_SACK_PERM:
2453 if (opt.opt_val != 0)
2454 return -EINVAL;
2456 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2457 if (sysctl_tcp_fack)
2458 tcp_enable_fack(tp);
2459 break;
2460 case TCPOPT_TIMESTAMP:
2461 if (opt.opt_val != 0)
2462 return -EINVAL;
2464 tp->rx_opt.tstamp_ok = 1;
2465 break;
2469 return 0;
2473 * Socket option code for TCP.
2475 static int do_tcp_setsockopt(struct sock *sk, int level,
2476 int optname, char __user *optval, unsigned int optlen)
2478 struct tcp_sock *tp = tcp_sk(sk);
2479 struct inet_connection_sock *icsk = inet_csk(sk);
2480 struct net *net = sock_net(sk);
2481 int val;
2482 int err = 0;
2484 /* These are data/string values, all the others are ints */
2485 switch (optname) {
2486 case TCP_CONGESTION: {
2487 char name[TCP_CA_NAME_MAX];
2489 if (optlen < 1)
2490 return -EINVAL;
2492 val = strncpy_from_user(name, optval,
2493 min_t(long, TCP_CA_NAME_MAX-1, optlen));
2494 if (val < 0)
2495 return -EFAULT;
2496 name[val] = 0;
2498 lock_sock(sk);
2499 err = tcp_set_congestion_control(sk, name, true, true);
2500 release_sock(sk);
2501 return err;
2503 case TCP_ULP: {
2504 char name[TCP_ULP_NAME_MAX];
2506 if (optlen < 1)
2507 return -EINVAL;
2509 val = strncpy_from_user(name, optval,
2510 min_t(long, TCP_ULP_NAME_MAX - 1,
2511 optlen));
2512 if (val < 0)
2513 return -EFAULT;
2514 name[val] = 0;
2516 lock_sock(sk);
2517 err = tcp_set_ulp(sk, name);
2518 release_sock(sk);
2519 return err;
2521 default:
2522 /* fallthru */
2523 break;
2526 if (optlen < sizeof(int))
2527 return -EINVAL;
2529 if (get_user(val, (int __user *)optval))
2530 return -EFAULT;
2532 lock_sock(sk);
2534 switch (optname) {
2535 case TCP_MAXSEG:
2536 /* Values greater than interface MTU won't take effect. However
2537 * at the point when this call is done we typically don't yet
2538 * know which interface is going to be used
2540 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
2541 err = -EINVAL;
2542 break;
2544 tp->rx_opt.user_mss = val;
2545 break;
2547 case TCP_NODELAY:
2548 if (val) {
2549 /* TCP_NODELAY is weaker than TCP_CORK, so that
2550 * this option on corked socket is remembered, but
2551 * it is not activated until cork is cleared.
2553 * However, when TCP_NODELAY is set we make
2554 * an explicit push, which overrides even TCP_CORK
2555 * for currently queued segments.
2557 tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2558 tcp_push_pending_frames(sk);
2559 } else {
2560 tp->nonagle &= ~TCP_NAGLE_OFF;
2562 break;
2564 case TCP_THIN_LINEAR_TIMEOUTS:
2565 if (val < 0 || val > 1)
2566 err = -EINVAL;
2567 else
2568 tp->thin_lto = val;
2569 break;
2571 case TCP_THIN_DUPACK:
2572 if (val < 0 || val > 1)
2573 err = -EINVAL;
2574 break;
2576 case TCP_REPAIR:
2577 if (!tcp_can_repair_sock(sk))
2578 err = -EPERM;
2579 else if (val == 1) {
2580 tp->repair = 1;
2581 sk->sk_reuse = SK_FORCE_REUSE;
2582 tp->repair_queue = TCP_NO_QUEUE;
2583 } else if (val == 0) {
2584 tp->repair = 0;
2585 sk->sk_reuse = SK_NO_REUSE;
2586 tcp_send_window_probe(sk);
2587 } else
2588 err = -EINVAL;
2590 break;
2592 case TCP_REPAIR_QUEUE:
2593 if (!tp->repair)
2594 err = -EPERM;
2595 else if (val < TCP_QUEUES_NR)
2596 tp->repair_queue = val;
2597 else
2598 err = -EINVAL;
2599 break;
2601 case TCP_QUEUE_SEQ:
2602 if (sk->sk_state != TCP_CLOSE)
2603 err = -EPERM;
2604 else if (tp->repair_queue == TCP_SEND_QUEUE)
2605 tp->write_seq = val;
2606 else if (tp->repair_queue == TCP_RECV_QUEUE)
2607 tp->rcv_nxt = val;
2608 else
2609 err = -EINVAL;
2610 break;
2612 case TCP_REPAIR_OPTIONS:
2613 if (!tp->repair)
2614 err = -EINVAL;
2615 else if (sk->sk_state == TCP_ESTABLISHED)
2616 err = tcp_repair_options_est(sk,
2617 (struct tcp_repair_opt __user *)optval,
2618 optlen);
2619 else
2620 err = -EPERM;
2621 break;
2623 case TCP_CORK:
2624 /* When set indicates to always queue non-full frames.
2625 * Later the user clears this option and we transmit
2626 * any pending partial frames in the queue. This is
2627 * meant to be used alongside sendfile() to get properly
2628 * filled frames when the user (for example) must write
2629 * out headers with a write() call first and then use
2630 * sendfile to send out the data parts.
2632 * TCP_CORK can be set together with TCP_NODELAY and it is
2633 * stronger than TCP_NODELAY.
2635 if (val) {
2636 tp->nonagle |= TCP_NAGLE_CORK;
2637 } else {
2638 tp->nonagle &= ~TCP_NAGLE_CORK;
2639 if (tp->nonagle&TCP_NAGLE_OFF)
2640 tp->nonagle |= TCP_NAGLE_PUSH;
2641 tcp_push_pending_frames(sk);
2643 break;
2645 case TCP_KEEPIDLE:
2646 if (val < 1 || val > MAX_TCP_KEEPIDLE)
2647 err = -EINVAL;
2648 else {
2649 tp->keepalive_time = val * HZ;
2650 if (sock_flag(sk, SOCK_KEEPOPEN) &&
2651 !((1 << sk->sk_state) &
2652 (TCPF_CLOSE | TCPF_LISTEN))) {
2653 u32 elapsed = keepalive_time_elapsed(tp);
2654 if (tp->keepalive_time > elapsed)
2655 elapsed = tp->keepalive_time - elapsed;
2656 else
2657 elapsed = 0;
2658 inet_csk_reset_keepalive_timer(sk, elapsed);
2661 break;
2662 case TCP_KEEPINTVL:
2663 if (val < 1 || val > MAX_TCP_KEEPINTVL)
2664 err = -EINVAL;
2665 else
2666 tp->keepalive_intvl = val * HZ;
2667 break;
2668 case TCP_KEEPCNT:
2669 if (val < 1 || val > MAX_TCP_KEEPCNT)
2670 err = -EINVAL;
2671 else
2672 tp->keepalive_probes = val;
2673 break;
2674 case TCP_SYNCNT:
2675 if (val < 1 || val > MAX_TCP_SYNCNT)
2676 err = -EINVAL;
2677 else
2678 icsk->icsk_syn_retries = val;
2679 break;
2681 case TCP_SAVE_SYN:
2682 if (val < 0 || val > 1)
2683 err = -EINVAL;
2684 else
2685 tp->save_syn = val;
2686 break;
2688 case TCP_LINGER2:
2689 if (val < 0)
2690 tp->linger2 = -1;
2691 else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
2692 tp->linger2 = 0;
2693 else
2694 tp->linger2 = val * HZ;
2695 break;
2697 case TCP_DEFER_ACCEPT:
2698 /* Translate value in seconds to number of retransmits */
2699 icsk->icsk_accept_queue.rskq_defer_accept =
2700 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
2701 TCP_RTO_MAX / HZ);
2702 break;
2704 case TCP_WINDOW_CLAMP:
2705 if (!val) {
2706 if (sk->sk_state != TCP_CLOSE) {
2707 err = -EINVAL;
2708 break;
2710 tp->window_clamp = 0;
2711 } else
2712 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
2713 SOCK_MIN_RCVBUF / 2 : val;
2714 break;
2716 case TCP_QUICKACK:
2717 if (!val) {
2718 icsk->icsk_ack.pingpong = 1;
2719 } else {
2720 icsk->icsk_ack.pingpong = 0;
2721 if ((1 << sk->sk_state) &
2722 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2723 inet_csk_ack_scheduled(sk)) {
2724 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
2725 tcp_cleanup_rbuf(sk, 1);
2726 if (!(val & 1))
2727 icsk->icsk_ack.pingpong = 1;
2730 break;
2732 #ifdef CONFIG_TCP_MD5SIG
2733 case TCP_MD5SIG:
2734 case TCP_MD5SIG_EXT:
2735 /* Read the IP->Key mappings from userspace */
2736 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
2737 break;
2738 #endif
2739 case TCP_USER_TIMEOUT:
2740 /* Cap the max time in ms TCP will retry or probe the window
2741 * before giving up and aborting (ETIMEDOUT) a connection.
2743 if (val < 0)
2744 err = -EINVAL;
2745 else
2746 icsk->icsk_user_timeout = msecs_to_jiffies(val);
2747 break;
2749 case TCP_FASTOPEN:
2750 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
2751 TCPF_LISTEN))) {
2752 tcp_fastopen_init_key_once(true);
2754 fastopen_queue_tune(sk, val);
2755 } else {
2756 err = -EINVAL;
2758 break;
2759 case TCP_FASTOPEN_CONNECT:
2760 if (val > 1 || val < 0) {
2761 err = -EINVAL;
2762 } else if (sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
2763 if (sk->sk_state == TCP_CLOSE)
2764 tp->fastopen_connect = val;
2765 else
2766 err = -EINVAL;
2767 } else {
2768 err = -EOPNOTSUPP;
2770 break;
2771 case TCP_TIMESTAMP:
2772 if (!tp->repair)
2773 err = -EPERM;
2774 else
2775 tp->tsoffset = val - tcp_time_stamp_raw();
2776 break;
2777 case TCP_REPAIR_WINDOW:
2778 err = tcp_repair_set_window(tp, optval, optlen);
2779 break;
2780 case TCP_NOTSENT_LOWAT:
2781 tp->notsent_lowat = val;
2782 sk->sk_write_space(sk);
2783 break;
2784 default:
2785 err = -ENOPROTOOPT;
2786 break;
2789 release_sock(sk);
2790 return err;
2793 int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
2794 unsigned int optlen)
2796 const struct inet_connection_sock *icsk = inet_csk(sk);
2798 if (level != SOL_TCP)
2799 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
2800 optval, optlen);
2801 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2803 EXPORT_SYMBOL(tcp_setsockopt);
2805 #ifdef CONFIG_COMPAT
2806 int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
2807 char __user *optval, unsigned int optlen)
2809 if (level != SOL_TCP)
2810 return inet_csk_compat_setsockopt(sk, level, optname,
2811 optval, optlen);
2812 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
2814 EXPORT_SYMBOL(compat_tcp_setsockopt);
2815 #endif
2817 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
2818 struct tcp_info *info)
2820 u64 stats[__TCP_CHRONO_MAX], total = 0;
2821 enum tcp_chrono i;
2823 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
2824 stats[i] = tp->chrono_stat[i - 1];
2825 if (i == tp->chrono_type)
2826 stats[i] += tcp_jiffies32 - tp->chrono_start;
2827 stats[i] *= USEC_PER_SEC / HZ;
2828 total += stats[i];
2831 info->tcpi_busy_time = total;
2832 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
2833 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
2836 /* Return information about state of tcp endpoint in API format. */
2837 void tcp_get_info(struct sock *sk, struct tcp_info *info)
2839 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
2840 const struct inet_connection_sock *icsk = inet_csk(sk);
2841 u32 now;
2842 u64 rate64;
2843 bool slow;
2844 u32 rate;
2846 memset(info, 0, sizeof(*info));
2847 if (sk->sk_type != SOCK_STREAM)
2848 return;
2850 info->tcpi_state = sk_state_load(sk);
2852 /* Report meaningful fields for all TCP states, including listeners */
2853 rate = READ_ONCE(sk->sk_pacing_rate);
2854 rate64 = rate != ~0U ? rate : ~0ULL;
2855 info->tcpi_pacing_rate = rate64;
2857 rate = READ_ONCE(sk->sk_max_pacing_rate);
2858 rate64 = rate != ~0U ? rate : ~0ULL;
2859 info->tcpi_max_pacing_rate = rate64;
2861 info->tcpi_reordering = tp->reordering;
2862 info->tcpi_snd_cwnd = tp->snd_cwnd;
2864 if (info->tcpi_state == TCP_LISTEN) {
2865 /* listeners aliased fields :
2866 * tcpi_unacked -> Number of children ready for accept()
2867 * tcpi_sacked -> max backlog
2869 info->tcpi_unacked = sk->sk_ack_backlog;
2870 info->tcpi_sacked = sk->sk_max_ack_backlog;
2871 return;
2874 slow = lock_sock_fast(sk);
2876 info->tcpi_ca_state = icsk->icsk_ca_state;
2877 info->tcpi_retransmits = icsk->icsk_retransmits;
2878 info->tcpi_probes = icsk->icsk_probes_out;
2879 info->tcpi_backoff = icsk->icsk_backoff;
2881 if (tp->rx_opt.tstamp_ok)
2882 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
2883 if (tcp_is_sack(tp))
2884 info->tcpi_options |= TCPI_OPT_SACK;
2885 if (tp->rx_opt.wscale_ok) {
2886 info->tcpi_options |= TCPI_OPT_WSCALE;
2887 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
2888 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
2891 if (tp->ecn_flags & TCP_ECN_OK)
2892 info->tcpi_options |= TCPI_OPT_ECN;
2893 if (tp->ecn_flags & TCP_ECN_SEEN)
2894 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
2895 if (tp->syn_data_acked)
2896 info->tcpi_options |= TCPI_OPT_SYN_DATA;
2898 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
2899 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
2900 info->tcpi_snd_mss = tp->mss_cache;
2901 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
2903 info->tcpi_unacked = tp->packets_out;
2904 info->tcpi_sacked = tp->sacked_out;
2906 info->tcpi_lost = tp->lost_out;
2907 info->tcpi_retrans = tp->retrans_out;
2908 info->tcpi_fackets = tp->fackets_out;
2910 now = tcp_jiffies32;
2911 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
2912 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
2913 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
2915 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
2916 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
2917 info->tcpi_rtt = tp->srtt_us >> 3;
2918 info->tcpi_rttvar = tp->mdev_us >> 2;
2919 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
2920 info->tcpi_advmss = tp->advmss;
2922 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
2923 info->tcpi_rcv_space = tp->rcvq_space.space;
2925 info->tcpi_total_retrans = tp->total_retrans;
2927 info->tcpi_bytes_acked = tp->bytes_acked;
2928 info->tcpi_bytes_received = tp->bytes_received;
2929 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
2930 tcp_get_info_chrono_stats(tp, info);
2932 info->tcpi_segs_out = tp->segs_out;
2933 info->tcpi_segs_in = tp->segs_in;
2935 info->tcpi_min_rtt = tcp_min_rtt(tp);
2936 info->tcpi_data_segs_in = tp->data_segs_in;
2937 info->tcpi_data_segs_out = tp->data_segs_out;
2939 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
2940 rate64 = tcp_compute_delivery_rate(tp);
2941 if (rate64)
2942 info->tcpi_delivery_rate = rate64;
2943 unlock_sock_fast(sk, slow);
2945 EXPORT_SYMBOL_GPL(tcp_get_info);
2947 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
2949 const struct tcp_sock *tp = tcp_sk(sk);
2950 struct sk_buff *stats;
2951 struct tcp_info info;
2952 u64 rate64;
2953 u32 rate;
2955 stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
2956 3 * nla_total_size(sizeof(u32)) +
2957 2 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
2958 if (!stats)
2959 return NULL;
2961 tcp_get_info_chrono_stats(tp, &info);
2962 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
2963 info.tcpi_busy_time, TCP_NLA_PAD);
2964 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
2965 info.tcpi_rwnd_limited, TCP_NLA_PAD);
2966 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
2967 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
2968 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
2969 tp->data_segs_out, TCP_NLA_PAD);
2970 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
2971 tp->total_retrans, TCP_NLA_PAD);
2973 rate = READ_ONCE(sk->sk_pacing_rate);
2974 rate64 = rate != ~0U ? rate : ~0ULL;
2975 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
2977 rate64 = tcp_compute_delivery_rate(tp);
2978 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
2980 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
2981 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
2982 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
2984 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
2985 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
2986 return stats;
2989 static int do_tcp_getsockopt(struct sock *sk, int level,
2990 int optname, char __user *optval, int __user *optlen)
2992 struct inet_connection_sock *icsk = inet_csk(sk);
2993 struct tcp_sock *tp = tcp_sk(sk);
2994 struct net *net = sock_net(sk);
2995 int val, len;
2997 if (get_user(len, optlen))
2998 return -EFAULT;
3000 len = min_t(unsigned int, len, sizeof(int));
3002 if (len < 0)
3003 return -EINVAL;
3005 switch (optname) {
3006 case TCP_MAXSEG:
3007 val = tp->mss_cache;
3008 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3009 val = tp->rx_opt.user_mss;
3010 if (tp->repair)
3011 val = tp->rx_opt.mss_clamp;
3012 break;
3013 case TCP_NODELAY:
3014 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3015 break;
3016 case TCP_CORK:
3017 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3018 break;
3019 case TCP_KEEPIDLE:
3020 val = keepalive_time_when(tp) / HZ;
3021 break;
3022 case TCP_KEEPINTVL:
3023 val = keepalive_intvl_when(tp) / HZ;
3024 break;
3025 case TCP_KEEPCNT:
3026 val = keepalive_probes(tp);
3027 break;
3028 case TCP_SYNCNT:
3029 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3030 break;
3031 case TCP_LINGER2:
3032 val = tp->linger2;
3033 if (val >= 0)
3034 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3035 break;
3036 case TCP_DEFER_ACCEPT:
3037 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3038 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3039 break;
3040 case TCP_WINDOW_CLAMP:
3041 val = tp->window_clamp;
3042 break;
3043 case TCP_INFO: {
3044 struct tcp_info info;
3046 if (get_user(len, optlen))
3047 return -EFAULT;
3049 tcp_get_info(sk, &info);
3051 len = min_t(unsigned int, len, sizeof(info));
3052 if (put_user(len, optlen))
3053 return -EFAULT;
3054 if (copy_to_user(optval, &info, len))
3055 return -EFAULT;
3056 return 0;
3058 case TCP_CC_INFO: {
3059 const struct tcp_congestion_ops *ca_ops;
3060 union tcp_cc_info info;
3061 size_t sz = 0;
3062 int attr;
3064 if (get_user(len, optlen))
3065 return -EFAULT;
3067 ca_ops = icsk->icsk_ca_ops;
3068 if (ca_ops && ca_ops->get_info)
3069 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3071 len = min_t(unsigned int, len, sz);
3072 if (put_user(len, optlen))
3073 return -EFAULT;
3074 if (copy_to_user(optval, &info, len))
3075 return -EFAULT;
3076 return 0;
3078 case TCP_QUICKACK:
3079 val = !icsk->icsk_ack.pingpong;
3080 break;
3082 case TCP_CONGESTION:
3083 if (get_user(len, optlen))
3084 return -EFAULT;
3085 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3086 if (put_user(len, optlen))
3087 return -EFAULT;
3088 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3089 return -EFAULT;
3090 return 0;
3092 case TCP_ULP:
3093 if (get_user(len, optlen))
3094 return -EFAULT;
3095 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3096 if (!icsk->icsk_ulp_ops) {
3097 if (put_user(0, optlen))
3098 return -EFAULT;
3099 return 0;
3101 if (put_user(len, optlen))
3102 return -EFAULT;
3103 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3104 return -EFAULT;
3105 return 0;
3107 case TCP_THIN_LINEAR_TIMEOUTS:
3108 val = tp->thin_lto;
3109 break;
3111 case TCP_THIN_DUPACK:
3112 val = 0;
3113 break;
3115 case TCP_REPAIR:
3116 val = tp->repair;
3117 break;
3119 case TCP_REPAIR_QUEUE:
3120 if (tp->repair)
3121 val = tp->repair_queue;
3122 else
3123 return -EINVAL;
3124 break;
3126 case TCP_REPAIR_WINDOW: {
3127 struct tcp_repair_window opt;
3129 if (get_user(len, optlen))
3130 return -EFAULT;
3132 if (len != sizeof(opt))
3133 return -EINVAL;
3135 if (!tp->repair)
3136 return -EPERM;
3138 opt.snd_wl1 = tp->snd_wl1;
3139 opt.snd_wnd = tp->snd_wnd;
3140 opt.max_window = tp->max_window;
3141 opt.rcv_wnd = tp->rcv_wnd;
3142 opt.rcv_wup = tp->rcv_wup;
3144 if (copy_to_user(optval, &opt, len))
3145 return -EFAULT;
3146 return 0;
3148 case TCP_QUEUE_SEQ:
3149 if (tp->repair_queue == TCP_SEND_QUEUE)
3150 val = tp->write_seq;
3151 else if (tp->repair_queue == TCP_RECV_QUEUE)
3152 val = tp->rcv_nxt;
3153 else
3154 return -EINVAL;
3155 break;
3157 case TCP_USER_TIMEOUT:
3158 val = jiffies_to_msecs(icsk->icsk_user_timeout);
3159 break;
3161 case TCP_FASTOPEN:
3162 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3163 break;
3165 case TCP_FASTOPEN_CONNECT:
3166 val = tp->fastopen_connect;
3167 break;
3169 case TCP_TIMESTAMP:
3170 val = tcp_time_stamp_raw() + tp->tsoffset;
3171 break;
3172 case TCP_NOTSENT_LOWAT:
3173 val = tp->notsent_lowat;
3174 break;
3175 case TCP_SAVE_SYN:
3176 val = tp->save_syn;
3177 break;
3178 case TCP_SAVED_SYN: {
3179 if (get_user(len, optlen))
3180 return -EFAULT;
3182 lock_sock(sk);
3183 if (tp->saved_syn) {
3184 if (len < tp->saved_syn[0]) {
3185 if (put_user(tp->saved_syn[0], optlen)) {
3186 release_sock(sk);
3187 return -EFAULT;
3189 release_sock(sk);
3190 return -EINVAL;
3192 len = tp->saved_syn[0];
3193 if (put_user(len, optlen)) {
3194 release_sock(sk);
3195 return -EFAULT;
3197 if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3198 release_sock(sk);
3199 return -EFAULT;
3201 tcp_saved_syn_free(tp);
3202 release_sock(sk);
3203 } else {
3204 release_sock(sk);
3205 len = 0;
3206 if (put_user(len, optlen))
3207 return -EFAULT;
3209 return 0;
3211 default:
3212 return -ENOPROTOOPT;
3215 if (put_user(len, optlen))
3216 return -EFAULT;
3217 if (copy_to_user(optval, &val, len))
3218 return -EFAULT;
3219 return 0;
3222 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3223 int __user *optlen)
3225 struct inet_connection_sock *icsk = inet_csk(sk);
3227 if (level != SOL_TCP)
3228 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3229 optval, optlen);
3230 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3232 EXPORT_SYMBOL(tcp_getsockopt);
3234 #ifdef CONFIG_COMPAT
3235 int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
3236 char __user *optval, int __user *optlen)
3238 if (level != SOL_TCP)
3239 return inet_csk_compat_getsockopt(sk, level, optname,
3240 optval, optlen);
3241 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
3243 EXPORT_SYMBOL(compat_tcp_getsockopt);
3244 #endif
3246 #ifdef CONFIG_TCP_MD5SIG
3247 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3248 static DEFINE_MUTEX(tcp_md5sig_mutex);
3249 static bool tcp_md5sig_pool_populated = false;
3251 static void __tcp_alloc_md5sig_pool(void)
3253 struct crypto_ahash *hash;
3254 int cpu;
3256 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3257 if (IS_ERR(hash))
3258 return;
3260 for_each_possible_cpu(cpu) {
3261 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3262 struct ahash_request *req;
3264 if (!scratch) {
3265 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3266 sizeof(struct tcphdr),
3267 GFP_KERNEL,
3268 cpu_to_node(cpu));
3269 if (!scratch)
3270 return;
3271 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3273 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3274 continue;
3276 req = ahash_request_alloc(hash, GFP_KERNEL);
3277 if (!req)
3278 return;
3280 ahash_request_set_callback(req, 0, NULL, NULL);
3282 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
3284 /* before setting tcp_md5sig_pool_populated, we must commit all writes
3285 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3287 smp_wmb();
3288 tcp_md5sig_pool_populated = true;
3291 bool tcp_alloc_md5sig_pool(void)
3293 if (unlikely(!tcp_md5sig_pool_populated)) {
3294 mutex_lock(&tcp_md5sig_mutex);
3296 if (!tcp_md5sig_pool_populated)
3297 __tcp_alloc_md5sig_pool();
3299 mutex_unlock(&tcp_md5sig_mutex);
3301 return tcp_md5sig_pool_populated;
3303 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3307 * tcp_get_md5sig_pool - get md5sig_pool for this user
3309 * We use percpu structure, so if we succeed, we exit with preemption
3310 * and BH disabled, to make sure another thread or softirq handling
3311 * wont try to get same context.
3313 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3315 local_bh_disable();
3317 if (tcp_md5sig_pool_populated) {
3318 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3319 smp_rmb();
3320 return this_cpu_ptr(&tcp_md5sig_pool);
3322 local_bh_enable();
3323 return NULL;
3325 EXPORT_SYMBOL(tcp_get_md5sig_pool);
3327 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3328 const struct sk_buff *skb, unsigned int header_len)
3330 struct scatterlist sg;
3331 const struct tcphdr *tp = tcp_hdr(skb);
3332 struct ahash_request *req = hp->md5_req;
3333 unsigned int i;
3334 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3335 skb_headlen(skb) - header_len : 0;
3336 const struct skb_shared_info *shi = skb_shinfo(skb);
3337 struct sk_buff *frag_iter;
3339 sg_init_table(&sg, 1);
3341 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3342 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3343 if (crypto_ahash_update(req))
3344 return 1;
3346 for (i = 0; i < shi->nr_frags; ++i) {
3347 const struct skb_frag_struct *f = &shi->frags[i];
3348 unsigned int offset = f->page_offset;
3349 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3351 sg_set_page(&sg, page, skb_frag_size(f),
3352 offset_in_page(offset));
3353 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3354 if (crypto_ahash_update(req))
3355 return 1;
3358 skb_walk_frags(skb, frag_iter)
3359 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
3360 return 1;
3362 return 0;
3364 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
3366 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
3368 struct scatterlist sg;
3370 sg_init_one(&sg, key->key, key->keylen);
3371 ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
3372 return crypto_ahash_update(hp->md5_req);
3374 EXPORT_SYMBOL(tcp_md5_hash_key);
3376 #endif
3378 void tcp_done(struct sock *sk)
3380 struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
3382 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
3383 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
3385 tcp_set_state(sk, TCP_CLOSE);
3386 tcp_clear_xmit_timers(sk);
3387 if (req)
3388 reqsk_fastopen_remove(sk, req, false);
3390 sk->sk_shutdown = SHUTDOWN_MASK;
3392 if (!sock_flag(sk, SOCK_DEAD))
3393 sk->sk_state_change(sk);
3394 else
3395 inet_csk_destroy_sock(sk);
3397 EXPORT_SYMBOL_GPL(tcp_done);
3399 int tcp_abort(struct sock *sk, int err)
3401 if (!sk_fullsock(sk)) {
3402 if (sk->sk_state == TCP_NEW_SYN_RECV) {
3403 struct request_sock *req = inet_reqsk(sk);
3405 local_bh_disable();
3406 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener,
3407 req);
3408 local_bh_enable();
3409 return 0;
3411 return -EOPNOTSUPP;
3414 /* Don't race with userspace socket closes such as tcp_close. */
3415 lock_sock(sk);
3417 if (sk->sk_state == TCP_LISTEN) {
3418 tcp_set_state(sk, TCP_CLOSE);
3419 inet_csk_listen_stop(sk);
3422 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
3423 local_bh_disable();
3424 bh_lock_sock(sk);
3426 if (!sock_flag(sk, SOCK_DEAD)) {
3427 sk->sk_err = err;
3428 /* This barrier is coupled with smp_rmb() in tcp_poll() */
3429 smp_wmb();
3430 sk->sk_error_report(sk);
3431 if (tcp_need_reset(sk->sk_state))
3432 tcp_send_active_reset(sk, GFP_ATOMIC);
3433 tcp_done(sk);
3436 bh_unlock_sock(sk);
3437 local_bh_enable();
3438 release_sock(sk);
3439 return 0;
3441 EXPORT_SYMBOL_GPL(tcp_abort);
3443 extern struct tcp_congestion_ops tcp_reno;
3445 static __initdata unsigned long thash_entries;
3446 static int __init set_thash_entries(char *str)
3448 ssize_t ret;
3450 if (!str)
3451 return 0;
3453 ret = kstrtoul(str, 0, &thash_entries);
3454 if (ret)
3455 return 0;
3457 return 1;
3459 __setup("thash_entries=", set_thash_entries);
3461 static void __init tcp_init_mem(void)
3463 unsigned long limit = nr_free_buffer_pages() / 16;
3465 limit = max(limit, 128UL);
3466 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
3467 sysctl_tcp_mem[1] = limit; /* 6.25 % */
3468 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
3471 void __init tcp_init(void)
3473 int max_rshare, max_wshare, cnt;
3474 unsigned long limit;
3475 unsigned int i;
3477 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
3478 FIELD_SIZEOF(struct sk_buff, cb));
3480 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
3481 percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
3482 inet_hashinfo_init(&tcp_hashinfo);
3483 tcp_hashinfo.bind_bucket_cachep =
3484 kmem_cache_create("tcp_bind_bucket",
3485 sizeof(struct inet_bind_bucket), 0,
3486 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3488 /* Size and allocate the main established and bind bucket
3489 * hash tables.
3491 * The methodology is similar to that of the buffer cache.
3493 tcp_hashinfo.ehash =
3494 alloc_large_system_hash("TCP established",
3495 sizeof(struct inet_ehash_bucket),
3496 thash_entries,
3497 17, /* one slot per 128 KB of memory */
3499 NULL,
3500 &tcp_hashinfo.ehash_mask,
3502 thash_entries ? 0 : 512 * 1024);
3503 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
3504 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
3506 if (inet_ehash_locks_alloc(&tcp_hashinfo))
3507 panic("TCP: failed to alloc ehash_locks");
3508 tcp_hashinfo.bhash =
3509 alloc_large_system_hash("TCP bind",
3510 sizeof(struct inet_bind_hashbucket),
3511 tcp_hashinfo.ehash_mask + 1,
3512 17, /* one slot per 128 KB of memory */
3514 &tcp_hashinfo.bhash_size,
3515 NULL,
3517 64 * 1024);
3518 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
3519 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
3520 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
3521 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
3525 cnt = tcp_hashinfo.ehash_mask + 1;
3526 sysctl_tcp_max_orphans = cnt / 2;
3528 tcp_init_mem();
3529 /* Set per-socket limits to no more than 1/128 the pressure threshold */
3530 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
3531 max_wshare = min(4UL*1024*1024, limit);
3532 max_rshare = min(6UL*1024*1024, limit);
3534 sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
3535 sysctl_tcp_wmem[1] = 16*1024;
3536 sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
3538 sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
3539 sysctl_tcp_rmem[1] = 87380;
3540 sysctl_tcp_rmem[2] = max(87380, max_rshare);
3542 pr_info("Hash tables configured (established %u bind %u)\n",
3543 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
3545 tcp_v4_init();
3546 tcp_metrics_init();
3547 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
3548 tcp_tasklet_init();