1 #include <linux/bitmap.h>
3 #include <linux/export.h>
5 #include <linux/slab.h>
6 #include <linux/spinlock.h>
7 #include <linux/xarray.h>
9 DEFINE_PER_CPU(struct ida_bitmap
*, ida_bitmap
);
12 * idr_alloc_u32() - Allocate an ID.
14 * @ptr: Pointer to be associated with the new ID.
15 * @nextid: Pointer to an ID.
16 * @max: The maximum ID to allocate (inclusive).
17 * @gfp: Memory allocation flags.
19 * Allocates an unused ID in the range specified by @nextid and @max.
20 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
21 * is exclusive. The new ID is assigned to @nextid before the pointer
22 * is inserted into the IDR, so if @nextid points into the object pointed
23 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
25 * The caller should provide their own locking to ensure that two
26 * concurrent modifications to the IDR are not possible. Read-only
27 * accesses to the IDR may be done under the RCU read lock or may
28 * exclude simultaneous writers.
30 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
31 * or -ENOSPC if no free IDs could be found. If an error occurred,
32 * @nextid is unchanged.
34 int idr_alloc_u32(struct idr
*idr
, void *ptr
, u32
*nextid
,
35 unsigned long max
, gfp_t gfp
)
37 struct radix_tree_iter iter
;
39 unsigned int base
= idr
->idr_base
;
40 unsigned int id
= *nextid
;
42 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr
)))
44 if (WARN_ON_ONCE(!(idr
->idr_rt
.gfp_mask
& ROOT_IS_IDR
)))
45 idr
->idr_rt
.gfp_mask
|= IDR_RT_MARKER
;
47 id
= (id
< base
) ? 0 : id
- base
;
48 radix_tree_iter_init(&iter
, id
);
49 slot
= idr_get_free(&idr
->idr_rt
, &iter
, gfp
, max
- base
);
53 *nextid
= iter
.index
+ base
;
54 /* there is a memory barrier inside radix_tree_iter_replace() */
55 radix_tree_iter_replace(&idr
->idr_rt
, &iter
, slot
, ptr
);
56 radix_tree_iter_tag_clear(&idr
->idr_rt
, &iter
, IDR_FREE
);
60 EXPORT_SYMBOL_GPL(idr_alloc_u32
);
63 * idr_alloc() - Allocate an ID.
65 * @ptr: Pointer to be associated with the new ID.
66 * @start: The minimum ID (inclusive).
67 * @end: The maximum ID (exclusive).
68 * @gfp: Memory allocation flags.
70 * Allocates an unused ID in the range specified by @start and @end. If
71 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
72 * callers to use @start + N as @end as long as N is within integer range.
74 * The caller should provide their own locking to ensure that two
75 * concurrent modifications to the IDR are not possible. Read-only
76 * accesses to the IDR may be done under the RCU read lock or may
77 * exclude simultaneous writers.
79 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
80 * or -ENOSPC if no free IDs could be found.
82 int idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
87 if (WARN_ON_ONCE(start
< 0))
90 ret
= idr_alloc_u32(idr
, ptr
, &id
, end
> 0 ? end
- 1 : INT_MAX
, gfp
);
96 EXPORT_SYMBOL_GPL(idr_alloc
);
99 * idr_alloc_cyclic() - Allocate an ID cyclically.
101 * @ptr: Pointer to be associated with the new ID.
102 * @start: The minimum ID (inclusive).
103 * @end: The maximum ID (exclusive).
104 * @gfp: Memory allocation flags.
106 * Allocates an unused ID in the range specified by @nextid and @end. If
107 * @end is <= 0, it is treated as one larger than %INT_MAX. This allows
108 * callers to use @start + N as @end as long as N is within integer range.
109 * The search for an unused ID will start at the last ID allocated and will
110 * wrap around to @start if no free IDs are found before reaching @end.
112 * The caller should provide their own locking to ensure that two
113 * concurrent modifications to the IDR are not possible. Read-only
114 * accesses to the IDR may be done under the RCU read lock or may
115 * exclude simultaneous writers.
117 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
118 * or -ENOSPC if no free IDs could be found.
120 int idr_alloc_cyclic(struct idr
*idr
, void *ptr
, int start
, int end
, gfp_t gfp
)
122 u32 id
= idr
->idr_next
;
123 int err
, max
= end
> 0 ? end
- 1 : INT_MAX
;
128 err
= idr_alloc_u32(idr
, ptr
, &id
, max
, gfp
);
129 if ((err
== -ENOSPC
) && (id
> start
)) {
131 err
= idr_alloc_u32(idr
, ptr
, &id
, max
, gfp
);
136 idr
->idr_next
= id
+ 1;
139 EXPORT_SYMBOL(idr_alloc_cyclic
);
142 * idr_remove() - Remove an ID from the IDR.
146 * Removes this ID from the IDR. If the ID was not previously in the IDR,
147 * this function returns %NULL.
149 * Since this function modifies the IDR, the caller should provide their
150 * own locking to ensure that concurrent modification of the same IDR is
153 * Return: The pointer formerly associated with this ID.
155 void *idr_remove(struct idr
*idr
, unsigned long id
)
157 return radix_tree_delete_item(&idr
->idr_rt
, id
- idr
->idr_base
, NULL
);
159 EXPORT_SYMBOL_GPL(idr_remove
);
162 * idr_find() - Return pointer for given ID.
166 * Looks up the pointer associated with this ID. A %NULL pointer may
167 * indicate that @id is not allocated or that the %NULL pointer was
168 * associated with this ID.
170 * This function can be called under rcu_read_lock(), given that the leaf
171 * pointers lifetimes are correctly managed.
173 * Return: The pointer associated with this ID.
175 void *idr_find(const struct idr
*idr
, unsigned long id
)
177 return radix_tree_lookup(&idr
->idr_rt
, id
- idr
->idr_base
);
179 EXPORT_SYMBOL_GPL(idr_find
);
182 * idr_for_each() - Iterate through all stored pointers.
184 * @fn: Function to be called for each pointer.
185 * @data: Data passed to callback function.
187 * The callback function will be called for each entry in @idr, passing
188 * the ID, the entry and @data.
190 * If @fn returns anything other than %0, the iteration stops and that
191 * value is returned from this function.
193 * idr_for_each() can be called concurrently with idr_alloc() and
194 * idr_remove() if protected by RCU. Newly added entries may not be
195 * seen and deleted entries may be seen, but adding and removing entries
196 * will not cause other entries to be skipped, nor spurious ones to be seen.
198 int idr_for_each(const struct idr
*idr
,
199 int (*fn
)(int id
, void *p
, void *data
), void *data
)
201 struct radix_tree_iter iter
;
203 int base
= idr
->idr_base
;
205 radix_tree_for_each_slot(slot
, &idr
->idr_rt
, &iter
, 0) {
207 unsigned long id
= iter
.index
+ base
;
209 if (WARN_ON_ONCE(id
> INT_MAX
))
211 ret
= fn(id
, rcu_dereference_raw(*slot
), data
);
218 EXPORT_SYMBOL(idr_for_each
);
221 * idr_get_next() - Find next populated entry.
223 * @nextid: Pointer to an ID.
225 * Returns the next populated entry in the tree with an ID greater than
226 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
227 * to the ID of the found value. To use in a loop, the value pointed to by
228 * nextid must be incremented by the user.
230 void *idr_get_next(struct idr
*idr
, int *nextid
)
232 struct radix_tree_iter iter
;
234 unsigned long base
= idr
->idr_base
;
235 unsigned long id
= *nextid
;
237 id
= (id
< base
) ? 0 : id
- base
;
238 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, id
);
241 id
= iter
.index
+ base
;
243 if (WARN_ON_ONCE(id
> INT_MAX
))
247 return rcu_dereference_raw(*slot
);
249 EXPORT_SYMBOL(idr_get_next
);
252 * idr_get_next_ul() - Find next populated entry.
254 * @nextid: Pointer to an ID.
256 * Returns the next populated entry in the tree with an ID greater than
257 * or equal to the value pointed to by @nextid. On exit, @nextid is updated
258 * to the ID of the found value. To use in a loop, the value pointed to by
259 * nextid must be incremented by the user.
261 void *idr_get_next_ul(struct idr
*idr
, unsigned long *nextid
)
263 struct radix_tree_iter iter
;
265 unsigned long base
= idr
->idr_base
;
266 unsigned long id
= *nextid
;
268 id
= (id
< base
) ? 0 : id
- base
;
269 slot
= radix_tree_iter_find(&idr
->idr_rt
, &iter
, id
);
273 *nextid
= iter
.index
+ base
;
274 return rcu_dereference_raw(*slot
);
276 EXPORT_SYMBOL(idr_get_next_ul
);
279 * idr_replace() - replace pointer for given ID.
281 * @ptr: New pointer to associate with the ID.
284 * Replace the pointer registered with an ID and return the old value.
285 * This function can be called under the RCU read lock concurrently with
286 * idr_alloc() and idr_remove() (as long as the ID being removed is not
287 * the one being replaced!).
289 * Returns: the old value on success. %-ENOENT indicates that @id was not
290 * found. %-EINVAL indicates that @ptr was not valid.
292 void *idr_replace(struct idr
*idr
, void *ptr
, unsigned long id
)
294 struct radix_tree_node
*node
;
295 void __rcu
**slot
= NULL
;
298 if (WARN_ON_ONCE(radix_tree_is_internal_node(ptr
)))
299 return ERR_PTR(-EINVAL
);
302 entry
= __radix_tree_lookup(&idr
->idr_rt
, id
, &node
, &slot
);
303 if (!slot
|| radix_tree_tag_get(&idr
->idr_rt
, id
, IDR_FREE
))
304 return ERR_PTR(-ENOENT
);
306 __radix_tree_replace(&idr
->idr_rt
, node
, slot
, ptr
, NULL
);
310 EXPORT_SYMBOL(idr_replace
);
313 * DOC: IDA description
315 * The IDA is an ID allocator which does not provide the ability to
316 * associate an ID with a pointer. As such, it only needs to store one
317 * bit per ID, and so is more space efficient than an IDR. To use an IDA,
318 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
319 * then initialise it using ida_init()). To allocate a new ID, call
320 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
321 * To free an ID, call ida_free().
323 * ida_destroy() can be used to dispose of an IDA without needing to
324 * free the individual IDs in it. You can use ida_is_empty() to find
325 * out whether the IDA has any IDs currently allocated.
327 * IDs are currently limited to the range [0-INT_MAX]. If this is an awkward
328 * limitation, it should be quite straightforward to raise the maximum.
334 * The IDA uses the functionality provided by the IDR & radix tree to store
335 * bitmaps in each entry. The IDR_FREE tag means there is at least one bit
336 * free, unlike the IDR where it means at least one entry is free.
338 * I considered telling the radix tree that each slot is an order-10 node
339 * and storing the bit numbers in the radix tree, but the radix tree can't
340 * allow a single multiorder entry at index 0, which would significantly
341 * increase memory consumption for the IDA. So instead we divide the index
342 * by the number of bits in the leaf bitmap before doing a radix tree lookup.
344 * As an optimisation, if there are only a few low bits set in any given
345 * leaf, instead of allocating a 128-byte bitmap, we use the 'exceptional
346 * entry' functionality of the radix tree to store BITS_PER_LONG - 2 bits
347 * directly in the entry. By being really tricksy, we could store
348 * BITS_PER_LONG - 1 bits, but there're diminishing returns after optimising
349 * for 0-3 allocated IDs.
351 * We allow the radix tree 'exceptional' count to get out of date. Nothing
352 * in the IDA nor the radix tree code checks it. If it becomes important
353 * to maintain an accurate exceptional count, switch the rcu_assign_pointer()
354 * calls to radix_tree_iter_replace() which will correct the exceptional
357 * The IDA always requires a lock to alloc/free. If we add a 'test_bit'
358 * equivalent, it will still need locking. Going to RCU lookup would require
359 * using RCU to free bitmaps, and that's not trivial without embedding an
360 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
361 * bitmap, which is excessive.
364 #define IDA_MAX (0x80000000U / IDA_BITMAP_BITS - 1)
366 static int ida_get_new_above(struct ida
*ida
, int start
)
368 struct radix_tree_root
*root
= &ida
->ida_rt
;
370 struct radix_tree_iter iter
;
371 struct ida_bitmap
*bitmap
;
376 index
= start
/ IDA_BITMAP_BITS
;
377 bit
= start
% IDA_BITMAP_BITS
;
378 ebit
= bit
+ RADIX_TREE_EXCEPTIONAL_SHIFT
;
380 slot
= radix_tree_iter_init(&iter
, index
);
383 slot
= radix_tree_next_slot(slot
, &iter
,
384 RADIX_TREE_ITER_TAGGED
);
386 slot
= idr_get_free(root
, &iter
, GFP_NOWAIT
, IDA_MAX
);
388 if (slot
== ERR_PTR(-ENOMEM
))
390 return PTR_ERR(slot
);
393 if (iter
.index
> index
) {
395 ebit
= RADIX_TREE_EXCEPTIONAL_SHIFT
;
397 new = iter
.index
* IDA_BITMAP_BITS
;
398 bitmap
= rcu_dereference_raw(*slot
);
399 if (radix_tree_exception(bitmap
)) {
400 unsigned long tmp
= (unsigned long)bitmap
;
401 ebit
= find_next_zero_bit(&tmp
, BITS_PER_LONG
, ebit
);
402 if (ebit
< BITS_PER_LONG
) {
404 rcu_assign_pointer(*slot
, (void *)tmp
);
406 RADIX_TREE_EXCEPTIONAL_SHIFT
;
408 bitmap
= this_cpu_xchg(ida_bitmap
, NULL
);
411 bitmap
->bitmap
[0] = tmp
>> RADIX_TREE_EXCEPTIONAL_SHIFT
;
412 rcu_assign_pointer(*slot
, bitmap
);
416 bit
= find_next_zero_bit(bitmap
->bitmap
,
417 IDA_BITMAP_BITS
, bit
);
421 if (bit
== IDA_BITMAP_BITS
)
424 __set_bit(bit
, bitmap
->bitmap
);
425 if (bitmap_full(bitmap
->bitmap
, IDA_BITMAP_BITS
))
426 radix_tree_iter_tag_clear(root
, &iter
,
432 if (ebit
< BITS_PER_LONG
) {
433 bitmap
= (void *)((1UL << ebit
) |
434 RADIX_TREE_EXCEPTIONAL_ENTRY
);
435 radix_tree_iter_replace(root
, &iter
, slot
,
439 bitmap
= this_cpu_xchg(ida_bitmap
, NULL
);
442 __set_bit(bit
, bitmap
->bitmap
);
443 radix_tree_iter_replace(root
, &iter
, slot
, bitmap
);
450 static void ida_remove(struct ida
*ida
, int id
)
452 unsigned long index
= id
/ IDA_BITMAP_BITS
;
453 unsigned offset
= id
% IDA_BITMAP_BITS
;
454 struct ida_bitmap
*bitmap
;
456 struct radix_tree_iter iter
;
459 slot
= radix_tree_iter_lookup(&ida
->ida_rt
, &iter
, index
);
463 bitmap
= rcu_dereference_raw(*slot
);
464 if (radix_tree_exception(bitmap
)) {
465 btmp
= (unsigned long *)slot
;
466 offset
+= RADIX_TREE_EXCEPTIONAL_SHIFT
;
467 if (offset
>= BITS_PER_LONG
)
470 btmp
= bitmap
->bitmap
;
472 if (!test_bit(offset
, btmp
))
475 __clear_bit(offset
, btmp
);
476 radix_tree_iter_tag_set(&ida
->ida_rt
, &iter
, IDR_FREE
);
477 if (radix_tree_exception(bitmap
)) {
478 if (rcu_dereference_raw(*slot
) ==
479 (void *)RADIX_TREE_EXCEPTIONAL_ENTRY
)
480 radix_tree_iter_delete(&ida
->ida_rt
, &iter
, slot
);
481 } else if (bitmap_empty(btmp
, IDA_BITMAP_BITS
)) {
483 radix_tree_iter_delete(&ida
->ida_rt
, &iter
, slot
);
487 WARN(1, "ida_free called for id=%d which is not allocated.\n", id
);
491 * ida_destroy() - Free all IDs.
494 * Calling this function frees all IDs and releases all resources used
495 * by an IDA. When this call returns, the IDA is empty and can be reused
496 * or freed. If the IDA is already empty, there is no need to call this
499 * Context: Any context.
501 void ida_destroy(struct ida
*ida
)
504 struct radix_tree_iter iter
;
507 xa_lock_irqsave(&ida
->ida_rt
, flags
);
508 radix_tree_for_each_slot(slot
, &ida
->ida_rt
, &iter
, 0) {
509 struct ida_bitmap
*bitmap
= rcu_dereference_raw(*slot
);
510 if (!radix_tree_exception(bitmap
))
512 radix_tree_iter_delete(&ida
->ida_rt
, &iter
, slot
);
514 xa_unlock_irqrestore(&ida
->ida_rt
, flags
);
516 EXPORT_SYMBOL(ida_destroy
);
519 * ida_alloc_range() - Allocate an unused ID.
521 * @min: Lowest ID to allocate.
522 * @max: Highest ID to allocate.
523 * @gfp: Memory allocation flags.
525 * Allocate an ID between @min and @max, inclusive. The allocated ID will
526 * not exceed %INT_MAX, even if @max is larger.
528 * Context: Any context.
529 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
530 * or %-ENOSPC if there are no free IDs.
532 int ida_alloc_range(struct ida
*ida
, unsigned int min
, unsigned int max
,
545 xa_lock_irqsave(&ida
->ida_rt
, flags
);
546 id
= ida_get_new_above(ida
, min
);
551 xa_unlock_irqrestore(&ida
->ida_rt
, flags
);
553 if (unlikely(id
== -EAGAIN
)) {
554 if (!ida_pre_get(ida
, gfp
))
561 EXPORT_SYMBOL(ida_alloc_range
);
564 * ida_free() - Release an allocated ID.
566 * @id: Previously allocated ID.
568 * Context: Any context.
570 void ida_free(struct ida
*ida
, unsigned int id
)
575 xa_lock_irqsave(&ida
->ida_rt
, flags
);
577 xa_unlock_irqrestore(&ida
->ida_rt
, flags
);
579 EXPORT_SYMBOL(ida_free
);