drm/i915: don't rely on previous values when setting LPT TRANSCONF
[linux-2.6/btrfs-unstable.git] / drivers / gpu / drm / i915 / intel_display.c
blob43ad1a556b3cdd8c6f1abbbdb6f12f05eb02696f
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_dp_helper.h>
41 #include <drm/drm_crtc_helper.h>
42 #include <linux/dma_remapping.h>
44 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
46 bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
47 static void intel_increase_pllclock(struct drm_crtc *crtc);
48 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
50 typedef struct {
51 /* given values */
52 int n;
53 int m1, m2;
54 int p1, p2;
55 /* derived values */
56 int dot;
57 int vco;
58 int m;
59 int p;
60 } intel_clock_t;
62 typedef struct {
63 int min, max;
64 } intel_range_t;
66 typedef struct {
67 int dot_limit;
68 int p2_slow, p2_fast;
69 } intel_p2_t;
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t;
73 struct intel_limit {
74 intel_range_t dot, vco, n, m, m1, m2, p, p1;
75 intel_p2_t p2;
76 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
77 int, int, intel_clock_t *, intel_clock_t *);
80 /* FDI */
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
83 int
84 intel_pch_rawclk(struct drm_device *dev)
86 struct drm_i915_private *dev_priv = dev->dev_private;
88 WARN_ON(!HAS_PCH_SPLIT(dev));
90 return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
93 static bool
94 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
95 int target, int refclk, intel_clock_t *match_clock,
96 intel_clock_t *best_clock);
97 static bool
98 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
99 int target, int refclk, intel_clock_t *match_clock,
100 intel_clock_t *best_clock);
102 static bool
103 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
104 int target, int refclk, intel_clock_t *match_clock,
105 intel_clock_t *best_clock);
106 static bool
107 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
108 int target, int refclk, intel_clock_t *match_clock,
109 intel_clock_t *best_clock);
111 static bool
112 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
113 int target, int refclk, intel_clock_t *match_clock,
114 intel_clock_t *best_clock);
116 static inline u32 /* units of 100MHz */
117 intel_fdi_link_freq(struct drm_device *dev)
119 if (IS_GEN5(dev)) {
120 struct drm_i915_private *dev_priv = dev->dev_private;
121 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
122 } else
123 return 27;
126 static const intel_limit_t intel_limits_i8xx_dvo = {
127 .dot = { .min = 25000, .max = 350000 },
128 .vco = { .min = 930000, .max = 1400000 },
129 .n = { .min = 3, .max = 16 },
130 .m = { .min = 96, .max = 140 },
131 .m1 = { .min = 18, .max = 26 },
132 .m2 = { .min = 6, .max = 16 },
133 .p = { .min = 4, .max = 128 },
134 .p1 = { .min = 2, .max = 33 },
135 .p2 = { .dot_limit = 165000,
136 .p2_slow = 4, .p2_fast = 2 },
137 .find_pll = intel_find_best_PLL,
140 static const intel_limit_t intel_limits_i8xx_lvds = {
141 .dot = { .min = 25000, .max = 350000 },
142 .vco = { .min = 930000, .max = 1400000 },
143 .n = { .min = 3, .max = 16 },
144 .m = { .min = 96, .max = 140 },
145 .m1 = { .min = 18, .max = 26 },
146 .m2 = { .min = 6, .max = 16 },
147 .p = { .min = 4, .max = 128 },
148 .p1 = { .min = 1, .max = 6 },
149 .p2 = { .dot_limit = 165000,
150 .p2_slow = 14, .p2_fast = 7 },
151 .find_pll = intel_find_best_PLL,
154 static const intel_limit_t intel_limits_i9xx_sdvo = {
155 .dot = { .min = 20000, .max = 400000 },
156 .vco = { .min = 1400000, .max = 2800000 },
157 .n = { .min = 1, .max = 6 },
158 .m = { .min = 70, .max = 120 },
159 .m1 = { .min = 10, .max = 22 },
160 .m2 = { .min = 5, .max = 9 },
161 .p = { .min = 5, .max = 80 },
162 .p1 = { .min = 1, .max = 8 },
163 .p2 = { .dot_limit = 200000,
164 .p2_slow = 10, .p2_fast = 5 },
165 .find_pll = intel_find_best_PLL,
168 static const intel_limit_t intel_limits_i9xx_lvds = {
169 .dot = { .min = 20000, .max = 400000 },
170 .vco = { .min = 1400000, .max = 2800000 },
171 .n = { .min = 1, .max = 6 },
172 .m = { .min = 70, .max = 120 },
173 .m1 = { .min = 10, .max = 22 },
174 .m2 = { .min = 5, .max = 9 },
175 .p = { .min = 7, .max = 98 },
176 .p1 = { .min = 1, .max = 8 },
177 .p2 = { .dot_limit = 112000,
178 .p2_slow = 14, .p2_fast = 7 },
179 .find_pll = intel_find_best_PLL,
183 static const intel_limit_t intel_limits_g4x_sdvo = {
184 .dot = { .min = 25000, .max = 270000 },
185 .vco = { .min = 1750000, .max = 3500000},
186 .n = { .min = 1, .max = 4 },
187 .m = { .min = 104, .max = 138 },
188 .m1 = { .min = 17, .max = 23 },
189 .m2 = { .min = 5, .max = 11 },
190 .p = { .min = 10, .max = 30 },
191 .p1 = { .min = 1, .max = 3},
192 .p2 = { .dot_limit = 270000,
193 .p2_slow = 10,
194 .p2_fast = 10
196 .find_pll = intel_g4x_find_best_PLL,
199 static const intel_limit_t intel_limits_g4x_hdmi = {
200 .dot = { .min = 22000, .max = 400000 },
201 .vco = { .min = 1750000, .max = 3500000},
202 .n = { .min = 1, .max = 4 },
203 .m = { .min = 104, .max = 138 },
204 .m1 = { .min = 16, .max = 23 },
205 .m2 = { .min = 5, .max = 11 },
206 .p = { .min = 5, .max = 80 },
207 .p1 = { .min = 1, .max = 8},
208 .p2 = { .dot_limit = 165000,
209 .p2_slow = 10, .p2_fast = 5 },
210 .find_pll = intel_g4x_find_best_PLL,
213 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
214 .dot = { .min = 20000, .max = 115000 },
215 .vco = { .min = 1750000, .max = 3500000 },
216 .n = { .min = 1, .max = 3 },
217 .m = { .min = 104, .max = 138 },
218 .m1 = { .min = 17, .max = 23 },
219 .m2 = { .min = 5, .max = 11 },
220 .p = { .min = 28, .max = 112 },
221 .p1 = { .min = 2, .max = 8 },
222 .p2 = { .dot_limit = 0,
223 .p2_slow = 14, .p2_fast = 14
225 .find_pll = intel_g4x_find_best_PLL,
228 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
229 .dot = { .min = 80000, .max = 224000 },
230 .vco = { .min = 1750000, .max = 3500000 },
231 .n = { .min = 1, .max = 3 },
232 .m = { .min = 104, .max = 138 },
233 .m1 = { .min = 17, .max = 23 },
234 .m2 = { .min = 5, .max = 11 },
235 .p = { .min = 14, .max = 42 },
236 .p1 = { .min = 2, .max = 6 },
237 .p2 = { .dot_limit = 0,
238 .p2_slow = 7, .p2_fast = 7
240 .find_pll = intel_g4x_find_best_PLL,
243 static const intel_limit_t intel_limits_g4x_display_port = {
244 .dot = { .min = 161670, .max = 227000 },
245 .vco = { .min = 1750000, .max = 3500000},
246 .n = { .min = 1, .max = 2 },
247 .m = { .min = 97, .max = 108 },
248 .m1 = { .min = 0x10, .max = 0x12 },
249 .m2 = { .min = 0x05, .max = 0x06 },
250 .p = { .min = 10, .max = 20 },
251 .p1 = { .min = 1, .max = 2},
252 .p2 = { .dot_limit = 0,
253 .p2_slow = 10, .p2_fast = 10 },
254 .find_pll = intel_find_pll_g4x_dp,
257 static const intel_limit_t intel_limits_pineview_sdvo = {
258 .dot = { .min = 20000, .max = 400000},
259 .vco = { .min = 1700000, .max = 3500000 },
260 /* Pineview's Ncounter is a ring counter */
261 .n = { .min = 3, .max = 6 },
262 .m = { .min = 2, .max = 256 },
263 /* Pineview only has one combined m divider, which we treat as m2. */
264 .m1 = { .min = 0, .max = 0 },
265 .m2 = { .min = 0, .max = 254 },
266 .p = { .min = 5, .max = 80 },
267 .p1 = { .min = 1, .max = 8 },
268 .p2 = { .dot_limit = 200000,
269 .p2_slow = 10, .p2_fast = 5 },
270 .find_pll = intel_find_best_PLL,
273 static const intel_limit_t intel_limits_pineview_lvds = {
274 .dot = { .min = 20000, .max = 400000 },
275 .vco = { .min = 1700000, .max = 3500000 },
276 .n = { .min = 3, .max = 6 },
277 .m = { .min = 2, .max = 256 },
278 .m1 = { .min = 0, .max = 0 },
279 .m2 = { .min = 0, .max = 254 },
280 .p = { .min = 7, .max = 112 },
281 .p1 = { .min = 1, .max = 8 },
282 .p2 = { .dot_limit = 112000,
283 .p2_slow = 14, .p2_fast = 14 },
284 .find_pll = intel_find_best_PLL,
287 /* Ironlake / Sandybridge
289 * We calculate clock using (register_value + 2) for N/M1/M2, so here
290 * the range value for them is (actual_value - 2).
292 static const intel_limit_t intel_limits_ironlake_dac = {
293 .dot = { .min = 25000, .max = 350000 },
294 .vco = { .min = 1760000, .max = 3510000 },
295 .n = { .min = 1, .max = 5 },
296 .m = { .min = 79, .max = 127 },
297 .m1 = { .min = 12, .max = 22 },
298 .m2 = { .min = 5, .max = 9 },
299 .p = { .min = 5, .max = 80 },
300 .p1 = { .min = 1, .max = 8 },
301 .p2 = { .dot_limit = 225000,
302 .p2_slow = 10, .p2_fast = 5 },
303 .find_pll = intel_g4x_find_best_PLL,
306 static const intel_limit_t intel_limits_ironlake_single_lvds = {
307 .dot = { .min = 25000, .max = 350000 },
308 .vco = { .min = 1760000, .max = 3510000 },
309 .n = { .min = 1, .max = 3 },
310 .m = { .min = 79, .max = 118 },
311 .m1 = { .min = 12, .max = 22 },
312 .m2 = { .min = 5, .max = 9 },
313 .p = { .min = 28, .max = 112 },
314 .p1 = { .min = 2, .max = 8 },
315 .p2 = { .dot_limit = 225000,
316 .p2_slow = 14, .p2_fast = 14 },
317 .find_pll = intel_g4x_find_best_PLL,
320 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
321 .dot = { .min = 25000, .max = 350000 },
322 .vco = { .min = 1760000, .max = 3510000 },
323 .n = { .min = 1, .max = 3 },
324 .m = { .min = 79, .max = 127 },
325 .m1 = { .min = 12, .max = 22 },
326 .m2 = { .min = 5, .max = 9 },
327 .p = { .min = 14, .max = 56 },
328 .p1 = { .min = 2, .max = 8 },
329 .p2 = { .dot_limit = 225000,
330 .p2_slow = 7, .p2_fast = 7 },
331 .find_pll = intel_g4x_find_best_PLL,
334 /* LVDS 100mhz refclk limits. */
335 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
336 .dot = { .min = 25000, .max = 350000 },
337 .vco = { .min = 1760000, .max = 3510000 },
338 .n = { .min = 1, .max = 2 },
339 .m = { .min = 79, .max = 126 },
340 .m1 = { .min = 12, .max = 22 },
341 .m2 = { .min = 5, .max = 9 },
342 .p = { .min = 28, .max = 112 },
343 .p1 = { .min = 2, .max = 8 },
344 .p2 = { .dot_limit = 225000,
345 .p2_slow = 14, .p2_fast = 14 },
346 .find_pll = intel_g4x_find_best_PLL,
349 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
350 .dot = { .min = 25000, .max = 350000 },
351 .vco = { .min = 1760000, .max = 3510000 },
352 .n = { .min = 1, .max = 3 },
353 .m = { .min = 79, .max = 126 },
354 .m1 = { .min = 12, .max = 22 },
355 .m2 = { .min = 5, .max = 9 },
356 .p = { .min = 14, .max = 42 },
357 .p1 = { .min = 2, .max = 6 },
358 .p2 = { .dot_limit = 225000,
359 .p2_slow = 7, .p2_fast = 7 },
360 .find_pll = intel_g4x_find_best_PLL,
363 static const intel_limit_t intel_limits_ironlake_display_port = {
364 .dot = { .min = 25000, .max = 350000 },
365 .vco = { .min = 1760000, .max = 3510000},
366 .n = { .min = 1, .max = 2 },
367 .m = { .min = 81, .max = 90 },
368 .m1 = { .min = 12, .max = 22 },
369 .m2 = { .min = 5, .max = 9 },
370 .p = { .min = 10, .max = 20 },
371 .p1 = { .min = 1, .max = 2},
372 .p2 = { .dot_limit = 0,
373 .p2_slow = 10, .p2_fast = 10 },
374 .find_pll = intel_find_pll_ironlake_dp,
377 static const intel_limit_t intel_limits_vlv_dac = {
378 .dot = { .min = 25000, .max = 270000 },
379 .vco = { .min = 4000000, .max = 6000000 },
380 .n = { .min = 1, .max = 7 },
381 .m = { .min = 22, .max = 450 }, /* guess */
382 .m1 = { .min = 2, .max = 3 },
383 .m2 = { .min = 11, .max = 156 },
384 .p = { .min = 10, .max = 30 },
385 .p1 = { .min = 2, .max = 3 },
386 .p2 = { .dot_limit = 270000,
387 .p2_slow = 2, .p2_fast = 20 },
388 .find_pll = intel_vlv_find_best_pll,
391 static const intel_limit_t intel_limits_vlv_hdmi = {
392 .dot = { .min = 20000, .max = 165000 },
393 .vco = { .min = 4000000, .max = 5994000},
394 .n = { .min = 1, .max = 7 },
395 .m = { .min = 60, .max = 300 }, /* guess */
396 .m1 = { .min = 2, .max = 3 },
397 .m2 = { .min = 11, .max = 156 },
398 .p = { .min = 10, .max = 30 },
399 .p1 = { .min = 2, .max = 3 },
400 .p2 = { .dot_limit = 270000,
401 .p2_slow = 2, .p2_fast = 20 },
402 .find_pll = intel_vlv_find_best_pll,
405 static const intel_limit_t intel_limits_vlv_dp = {
406 .dot = { .min = 25000, .max = 270000 },
407 .vco = { .min = 4000000, .max = 6000000 },
408 .n = { .min = 1, .max = 7 },
409 .m = { .min = 22, .max = 450 },
410 .m1 = { .min = 2, .max = 3 },
411 .m2 = { .min = 11, .max = 156 },
412 .p = { .min = 10, .max = 30 },
413 .p1 = { .min = 2, .max = 3 },
414 .p2 = { .dot_limit = 270000,
415 .p2_slow = 2, .p2_fast = 20 },
416 .find_pll = intel_vlv_find_best_pll,
419 u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
421 unsigned long flags;
422 u32 val = 0;
424 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
425 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
426 DRM_ERROR("DPIO idle wait timed out\n");
427 goto out_unlock;
430 I915_WRITE(DPIO_REG, reg);
431 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
432 DPIO_BYTE);
433 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
434 DRM_ERROR("DPIO read wait timed out\n");
435 goto out_unlock;
437 val = I915_READ(DPIO_DATA);
439 out_unlock:
440 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
441 return val;
444 static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
445 u32 val)
447 unsigned long flags;
449 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
450 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
451 DRM_ERROR("DPIO idle wait timed out\n");
452 goto out_unlock;
455 I915_WRITE(DPIO_DATA, val);
456 I915_WRITE(DPIO_REG, reg);
457 I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
458 DPIO_BYTE);
459 if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
460 DRM_ERROR("DPIO write wait timed out\n");
462 out_unlock:
463 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
466 static void vlv_init_dpio(struct drm_device *dev)
468 struct drm_i915_private *dev_priv = dev->dev_private;
470 /* Reset the DPIO config */
471 I915_WRITE(DPIO_CTL, 0);
472 POSTING_READ(DPIO_CTL);
473 I915_WRITE(DPIO_CTL, 1);
474 POSTING_READ(DPIO_CTL);
477 static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
479 DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
480 return 1;
483 static const struct dmi_system_id intel_dual_link_lvds[] = {
485 .callback = intel_dual_link_lvds_callback,
486 .ident = "Apple MacBook Pro (Core i5/i7 Series)",
487 .matches = {
488 DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
489 DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
492 { } /* terminating entry */
495 static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
496 unsigned int reg)
498 unsigned int val;
500 /* use the module option value if specified */
501 if (i915_lvds_channel_mode > 0)
502 return i915_lvds_channel_mode == 2;
504 if (dmi_check_system(intel_dual_link_lvds))
505 return true;
507 if (dev_priv->lvds_val)
508 val = dev_priv->lvds_val;
509 else {
510 /* BIOS should set the proper LVDS register value at boot, but
511 * in reality, it doesn't set the value when the lid is closed;
512 * we need to check "the value to be set" in VBT when LVDS
513 * register is uninitialized.
515 val = I915_READ(reg);
516 if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
517 val = dev_priv->bios_lvds_val;
518 dev_priv->lvds_val = val;
520 return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
523 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
524 int refclk)
526 struct drm_device *dev = crtc->dev;
527 struct drm_i915_private *dev_priv = dev->dev_private;
528 const intel_limit_t *limit;
530 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
531 if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
532 /* LVDS dual channel */
533 if (refclk == 100000)
534 limit = &intel_limits_ironlake_dual_lvds_100m;
535 else
536 limit = &intel_limits_ironlake_dual_lvds;
537 } else {
538 if (refclk == 100000)
539 limit = &intel_limits_ironlake_single_lvds_100m;
540 else
541 limit = &intel_limits_ironlake_single_lvds;
543 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
544 HAS_eDP)
545 limit = &intel_limits_ironlake_display_port;
546 else
547 limit = &intel_limits_ironlake_dac;
549 return limit;
552 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
554 struct drm_device *dev = crtc->dev;
555 struct drm_i915_private *dev_priv = dev->dev_private;
556 const intel_limit_t *limit;
558 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
559 if (is_dual_link_lvds(dev_priv, LVDS))
560 /* LVDS with dual channel */
561 limit = &intel_limits_g4x_dual_channel_lvds;
562 else
563 /* LVDS with dual channel */
564 limit = &intel_limits_g4x_single_channel_lvds;
565 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
566 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
567 limit = &intel_limits_g4x_hdmi;
568 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
569 limit = &intel_limits_g4x_sdvo;
570 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
571 limit = &intel_limits_g4x_display_port;
572 } else /* The option is for other outputs */
573 limit = &intel_limits_i9xx_sdvo;
575 return limit;
578 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
580 struct drm_device *dev = crtc->dev;
581 const intel_limit_t *limit;
583 if (HAS_PCH_SPLIT(dev))
584 limit = intel_ironlake_limit(crtc, refclk);
585 else if (IS_G4X(dev)) {
586 limit = intel_g4x_limit(crtc);
587 } else if (IS_PINEVIEW(dev)) {
588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
589 limit = &intel_limits_pineview_lvds;
590 else
591 limit = &intel_limits_pineview_sdvo;
592 } else if (IS_VALLEYVIEW(dev)) {
593 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
594 limit = &intel_limits_vlv_dac;
595 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
596 limit = &intel_limits_vlv_hdmi;
597 else
598 limit = &intel_limits_vlv_dp;
599 } else if (!IS_GEN2(dev)) {
600 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
601 limit = &intel_limits_i9xx_lvds;
602 else
603 limit = &intel_limits_i9xx_sdvo;
604 } else {
605 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
606 limit = &intel_limits_i8xx_lvds;
607 else
608 limit = &intel_limits_i8xx_dvo;
610 return limit;
613 /* m1 is reserved as 0 in Pineview, n is a ring counter */
614 static void pineview_clock(int refclk, intel_clock_t *clock)
616 clock->m = clock->m2 + 2;
617 clock->p = clock->p1 * clock->p2;
618 clock->vco = refclk * clock->m / clock->n;
619 clock->dot = clock->vco / clock->p;
622 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
624 if (IS_PINEVIEW(dev)) {
625 pineview_clock(refclk, clock);
626 return;
628 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
629 clock->p = clock->p1 * clock->p2;
630 clock->vco = refclk * clock->m / (clock->n + 2);
631 clock->dot = clock->vco / clock->p;
635 * Returns whether any output on the specified pipe is of the specified type
637 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
639 struct drm_device *dev = crtc->dev;
640 struct intel_encoder *encoder;
642 for_each_encoder_on_crtc(dev, crtc, encoder)
643 if (encoder->type == type)
644 return true;
646 return false;
649 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
651 * Returns whether the given set of divisors are valid for a given refclk with
652 * the given connectors.
655 static bool intel_PLL_is_valid(struct drm_device *dev,
656 const intel_limit_t *limit,
657 const intel_clock_t *clock)
659 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
660 INTELPllInvalid("p1 out of range\n");
661 if (clock->p < limit->p.min || limit->p.max < clock->p)
662 INTELPllInvalid("p out of range\n");
663 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
664 INTELPllInvalid("m2 out of range\n");
665 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
666 INTELPllInvalid("m1 out of range\n");
667 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
668 INTELPllInvalid("m1 <= m2\n");
669 if (clock->m < limit->m.min || limit->m.max < clock->m)
670 INTELPllInvalid("m out of range\n");
671 if (clock->n < limit->n.min || limit->n.max < clock->n)
672 INTELPllInvalid("n out of range\n");
673 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
674 INTELPllInvalid("vco out of range\n");
675 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
676 * connector, etc., rather than just a single range.
678 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
679 INTELPllInvalid("dot out of range\n");
681 return true;
684 static bool
685 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
686 int target, int refclk, intel_clock_t *match_clock,
687 intel_clock_t *best_clock)
690 struct drm_device *dev = crtc->dev;
691 struct drm_i915_private *dev_priv = dev->dev_private;
692 intel_clock_t clock;
693 int err = target;
695 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
696 (I915_READ(LVDS)) != 0) {
698 * For LVDS, if the panel is on, just rely on its current
699 * settings for dual-channel. We haven't figured out how to
700 * reliably set up different single/dual channel state, if we
701 * even can.
703 if (is_dual_link_lvds(dev_priv, LVDS))
704 clock.p2 = limit->p2.p2_fast;
705 else
706 clock.p2 = limit->p2.p2_slow;
707 } else {
708 if (target < limit->p2.dot_limit)
709 clock.p2 = limit->p2.p2_slow;
710 else
711 clock.p2 = limit->p2.p2_fast;
714 memset(best_clock, 0, sizeof(*best_clock));
716 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
717 clock.m1++) {
718 for (clock.m2 = limit->m2.min;
719 clock.m2 <= limit->m2.max; clock.m2++) {
720 /* m1 is always 0 in Pineview */
721 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
722 break;
723 for (clock.n = limit->n.min;
724 clock.n <= limit->n.max; clock.n++) {
725 for (clock.p1 = limit->p1.min;
726 clock.p1 <= limit->p1.max; clock.p1++) {
727 int this_err;
729 intel_clock(dev, refclk, &clock);
730 if (!intel_PLL_is_valid(dev, limit,
731 &clock))
732 continue;
733 if (match_clock &&
734 clock.p != match_clock->p)
735 continue;
737 this_err = abs(clock.dot - target);
738 if (this_err < err) {
739 *best_clock = clock;
740 err = this_err;
747 return (err != target);
750 static bool
751 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
752 int target, int refclk, intel_clock_t *match_clock,
753 intel_clock_t *best_clock)
755 struct drm_device *dev = crtc->dev;
756 struct drm_i915_private *dev_priv = dev->dev_private;
757 intel_clock_t clock;
758 int max_n;
759 bool found;
760 /* approximately equals target * 0.00585 */
761 int err_most = (target >> 8) + (target >> 9);
762 found = false;
764 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
765 int lvds_reg;
767 if (HAS_PCH_SPLIT(dev))
768 lvds_reg = PCH_LVDS;
769 else
770 lvds_reg = LVDS;
771 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
772 LVDS_CLKB_POWER_UP)
773 clock.p2 = limit->p2.p2_fast;
774 else
775 clock.p2 = limit->p2.p2_slow;
776 } else {
777 if (target < limit->p2.dot_limit)
778 clock.p2 = limit->p2.p2_slow;
779 else
780 clock.p2 = limit->p2.p2_fast;
783 memset(best_clock, 0, sizeof(*best_clock));
784 max_n = limit->n.max;
785 /* based on hardware requirement, prefer smaller n to precision */
786 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
787 /* based on hardware requirement, prefere larger m1,m2 */
788 for (clock.m1 = limit->m1.max;
789 clock.m1 >= limit->m1.min; clock.m1--) {
790 for (clock.m2 = limit->m2.max;
791 clock.m2 >= limit->m2.min; clock.m2--) {
792 for (clock.p1 = limit->p1.max;
793 clock.p1 >= limit->p1.min; clock.p1--) {
794 int this_err;
796 intel_clock(dev, refclk, &clock);
797 if (!intel_PLL_is_valid(dev, limit,
798 &clock))
799 continue;
800 if (match_clock &&
801 clock.p != match_clock->p)
802 continue;
804 this_err = abs(clock.dot - target);
805 if (this_err < err_most) {
806 *best_clock = clock;
807 err_most = this_err;
808 max_n = clock.n;
809 found = true;
815 return found;
818 static bool
819 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
820 int target, int refclk, intel_clock_t *match_clock,
821 intel_clock_t *best_clock)
823 struct drm_device *dev = crtc->dev;
824 intel_clock_t clock;
826 if (target < 200000) {
827 clock.n = 1;
828 clock.p1 = 2;
829 clock.p2 = 10;
830 clock.m1 = 12;
831 clock.m2 = 9;
832 } else {
833 clock.n = 2;
834 clock.p1 = 1;
835 clock.p2 = 10;
836 clock.m1 = 14;
837 clock.m2 = 8;
839 intel_clock(dev, refclk, &clock);
840 memcpy(best_clock, &clock, sizeof(intel_clock_t));
841 return true;
844 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
845 static bool
846 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
847 int target, int refclk, intel_clock_t *match_clock,
848 intel_clock_t *best_clock)
850 intel_clock_t clock;
851 if (target < 200000) {
852 clock.p1 = 2;
853 clock.p2 = 10;
854 clock.n = 2;
855 clock.m1 = 23;
856 clock.m2 = 8;
857 } else {
858 clock.p1 = 1;
859 clock.p2 = 10;
860 clock.n = 1;
861 clock.m1 = 14;
862 clock.m2 = 2;
864 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
865 clock.p = (clock.p1 * clock.p2);
866 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
867 clock.vco = 0;
868 memcpy(best_clock, &clock, sizeof(intel_clock_t));
869 return true;
871 static bool
872 intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
873 int target, int refclk, intel_clock_t *match_clock,
874 intel_clock_t *best_clock)
876 u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
877 u32 m, n, fastclk;
878 u32 updrate, minupdate, fracbits, p;
879 unsigned long bestppm, ppm, absppm;
880 int dotclk, flag;
882 flag = 0;
883 dotclk = target * 1000;
884 bestppm = 1000000;
885 ppm = absppm = 0;
886 fastclk = dotclk / (2*100);
887 updrate = 0;
888 minupdate = 19200;
889 fracbits = 1;
890 n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
891 bestm1 = bestm2 = bestp1 = bestp2 = 0;
893 /* based on hardware requirement, prefer smaller n to precision */
894 for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
895 updrate = refclk / n;
896 for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
897 for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
898 if (p2 > 10)
899 p2 = p2 - 1;
900 p = p1 * p2;
901 /* based on hardware requirement, prefer bigger m1,m2 values */
902 for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
903 m2 = (((2*(fastclk * p * n / m1 )) +
904 refclk) / (2*refclk));
905 m = m1 * m2;
906 vco = updrate * m;
907 if (vco >= limit->vco.min && vco < limit->vco.max) {
908 ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
909 absppm = (ppm > 0) ? ppm : (-ppm);
910 if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
911 bestppm = 0;
912 flag = 1;
914 if (absppm < bestppm - 10) {
915 bestppm = absppm;
916 flag = 1;
918 if (flag) {
919 bestn = n;
920 bestm1 = m1;
921 bestm2 = m2;
922 bestp1 = p1;
923 bestp2 = p2;
924 flag = 0;
931 best_clock->n = bestn;
932 best_clock->m1 = bestm1;
933 best_clock->m2 = bestm2;
934 best_clock->p1 = bestp1;
935 best_clock->p2 = bestp2;
937 return true;
940 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
941 enum pipe pipe)
943 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
944 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
946 return intel_crtc->cpu_transcoder;
949 static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
951 struct drm_i915_private *dev_priv = dev->dev_private;
952 u32 frame, frame_reg = PIPEFRAME(pipe);
954 frame = I915_READ(frame_reg);
956 if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
957 DRM_DEBUG_KMS("vblank wait timed out\n");
961 * intel_wait_for_vblank - wait for vblank on a given pipe
962 * @dev: drm device
963 * @pipe: pipe to wait for
965 * Wait for vblank to occur on a given pipe. Needed for various bits of
966 * mode setting code.
968 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
970 struct drm_i915_private *dev_priv = dev->dev_private;
971 int pipestat_reg = PIPESTAT(pipe);
973 if (INTEL_INFO(dev)->gen >= 5) {
974 ironlake_wait_for_vblank(dev, pipe);
975 return;
978 /* Clear existing vblank status. Note this will clear any other
979 * sticky status fields as well.
981 * This races with i915_driver_irq_handler() with the result
982 * that either function could miss a vblank event. Here it is not
983 * fatal, as we will either wait upon the next vblank interrupt or
984 * timeout. Generally speaking intel_wait_for_vblank() is only
985 * called during modeset at which time the GPU should be idle and
986 * should *not* be performing page flips and thus not waiting on
987 * vblanks...
988 * Currently, the result of us stealing a vblank from the irq
989 * handler is that a single frame will be skipped during swapbuffers.
991 I915_WRITE(pipestat_reg,
992 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
994 /* Wait for vblank interrupt bit to set */
995 if (wait_for(I915_READ(pipestat_reg) &
996 PIPE_VBLANK_INTERRUPT_STATUS,
997 50))
998 DRM_DEBUG_KMS("vblank wait timed out\n");
1002 * intel_wait_for_pipe_off - wait for pipe to turn off
1003 * @dev: drm device
1004 * @pipe: pipe to wait for
1006 * After disabling a pipe, we can't wait for vblank in the usual way,
1007 * spinning on the vblank interrupt status bit, since we won't actually
1008 * see an interrupt when the pipe is disabled.
1010 * On Gen4 and above:
1011 * wait for the pipe register state bit to turn off
1013 * Otherwise:
1014 * wait for the display line value to settle (it usually
1015 * ends up stopping at the start of the next frame).
1018 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1020 struct drm_i915_private *dev_priv = dev->dev_private;
1021 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1022 pipe);
1024 if (INTEL_INFO(dev)->gen >= 4) {
1025 int reg = PIPECONF(cpu_transcoder);
1027 /* Wait for the Pipe State to go off */
1028 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1029 100))
1030 WARN(1, "pipe_off wait timed out\n");
1031 } else {
1032 u32 last_line, line_mask;
1033 int reg = PIPEDSL(pipe);
1034 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1036 if (IS_GEN2(dev))
1037 line_mask = DSL_LINEMASK_GEN2;
1038 else
1039 line_mask = DSL_LINEMASK_GEN3;
1041 /* Wait for the display line to settle */
1042 do {
1043 last_line = I915_READ(reg) & line_mask;
1044 mdelay(5);
1045 } while (((I915_READ(reg) & line_mask) != last_line) &&
1046 time_after(timeout, jiffies));
1047 if (time_after(jiffies, timeout))
1048 WARN(1, "pipe_off wait timed out\n");
1052 static const char *state_string(bool enabled)
1054 return enabled ? "on" : "off";
1057 /* Only for pre-ILK configs */
1058 static void assert_pll(struct drm_i915_private *dev_priv,
1059 enum pipe pipe, bool state)
1061 int reg;
1062 u32 val;
1063 bool cur_state;
1065 reg = DPLL(pipe);
1066 val = I915_READ(reg);
1067 cur_state = !!(val & DPLL_VCO_ENABLE);
1068 WARN(cur_state != state,
1069 "PLL state assertion failure (expected %s, current %s)\n",
1070 state_string(state), state_string(cur_state));
1072 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
1073 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
1075 /* For ILK+ */
1076 static void assert_pch_pll(struct drm_i915_private *dev_priv,
1077 struct intel_pch_pll *pll,
1078 struct intel_crtc *crtc,
1079 bool state)
1081 u32 val;
1082 bool cur_state;
1084 if (HAS_PCH_LPT(dev_priv->dev)) {
1085 DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
1086 return;
1089 if (WARN (!pll,
1090 "asserting PCH PLL %s with no PLL\n", state_string(state)))
1091 return;
1093 val = I915_READ(pll->pll_reg);
1094 cur_state = !!(val & DPLL_VCO_ENABLE);
1095 WARN(cur_state != state,
1096 "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
1097 pll->pll_reg, state_string(state), state_string(cur_state), val);
1099 /* Make sure the selected PLL is correctly attached to the transcoder */
1100 if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
1101 u32 pch_dpll;
1103 pch_dpll = I915_READ(PCH_DPLL_SEL);
1104 cur_state = pll->pll_reg == _PCH_DPLL_B;
1105 if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
1106 "PLL[%d] not attached to this transcoder %d: %08x\n",
1107 cur_state, crtc->pipe, pch_dpll)) {
1108 cur_state = !!(val >> (4*crtc->pipe + 3));
1109 WARN(cur_state != state,
1110 "PLL[%d] not %s on this transcoder %d: %08x\n",
1111 pll->pll_reg == _PCH_DPLL_B,
1112 state_string(state),
1113 crtc->pipe,
1114 val);
1118 #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
1119 #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
1121 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1122 enum pipe pipe, bool state)
1124 int reg;
1125 u32 val;
1126 bool cur_state;
1127 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1128 pipe);
1130 if (IS_HASWELL(dev_priv->dev)) {
1131 /* On Haswell, DDI is used instead of FDI_TX_CTL */
1132 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1133 val = I915_READ(reg);
1134 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1135 } else {
1136 reg = FDI_TX_CTL(pipe);
1137 val = I915_READ(reg);
1138 cur_state = !!(val & FDI_TX_ENABLE);
1140 WARN(cur_state != state,
1141 "FDI TX state assertion failure (expected %s, current %s)\n",
1142 state_string(state), state_string(cur_state));
1144 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1145 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1147 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1148 enum pipe pipe, bool state)
1150 int reg;
1151 u32 val;
1152 bool cur_state;
1154 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1155 DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
1156 return;
1157 } else {
1158 reg = FDI_RX_CTL(pipe);
1159 val = I915_READ(reg);
1160 cur_state = !!(val & FDI_RX_ENABLE);
1162 WARN(cur_state != state,
1163 "FDI RX state assertion failure (expected %s, current %s)\n",
1164 state_string(state), state_string(cur_state));
1166 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1167 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1169 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1170 enum pipe pipe)
1172 int reg;
1173 u32 val;
1175 /* ILK FDI PLL is always enabled */
1176 if (dev_priv->info->gen == 5)
1177 return;
1179 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1180 if (IS_HASWELL(dev_priv->dev))
1181 return;
1183 reg = FDI_TX_CTL(pipe);
1184 val = I915_READ(reg);
1185 WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1188 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
1189 enum pipe pipe)
1191 int reg;
1192 u32 val;
1194 if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
1195 DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
1196 return;
1198 reg = FDI_RX_CTL(pipe);
1199 val = I915_READ(reg);
1200 WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
1203 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1204 enum pipe pipe)
1206 int pp_reg, lvds_reg;
1207 u32 val;
1208 enum pipe panel_pipe = PIPE_A;
1209 bool locked = true;
1211 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1212 pp_reg = PCH_PP_CONTROL;
1213 lvds_reg = PCH_LVDS;
1214 } else {
1215 pp_reg = PP_CONTROL;
1216 lvds_reg = LVDS;
1219 val = I915_READ(pp_reg);
1220 if (!(val & PANEL_POWER_ON) ||
1221 ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
1222 locked = false;
1224 if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
1225 panel_pipe = PIPE_B;
1227 WARN(panel_pipe == pipe && locked,
1228 "panel assertion failure, pipe %c regs locked\n",
1229 pipe_name(pipe));
1232 void assert_pipe(struct drm_i915_private *dev_priv,
1233 enum pipe pipe, bool state)
1235 int reg;
1236 u32 val;
1237 bool cur_state;
1238 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1239 pipe);
1241 /* if we need the pipe A quirk it must be always on */
1242 if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
1243 state = true;
1245 reg = PIPECONF(cpu_transcoder);
1246 val = I915_READ(reg);
1247 cur_state = !!(val & PIPECONF_ENABLE);
1248 WARN(cur_state != state,
1249 "pipe %c assertion failure (expected %s, current %s)\n",
1250 pipe_name(pipe), state_string(state), state_string(cur_state));
1253 static void assert_plane(struct drm_i915_private *dev_priv,
1254 enum plane plane, bool state)
1256 int reg;
1257 u32 val;
1258 bool cur_state;
1260 reg = DSPCNTR(plane);
1261 val = I915_READ(reg);
1262 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1263 WARN(cur_state != state,
1264 "plane %c assertion failure (expected %s, current %s)\n",
1265 plane_name(plane), state_string(state), state_string(cur_state));
1268 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1269 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1271 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1272 enum pipe pipe)
1274 int reg, i;
1275 u32 val;
1276 int cur_pipe;
1278 /* Planes are fixed to pipes on ILK+ */
1279 if (HAS_PCH_SPLIT(dev_priv->dev)) {
1280 reg = DSPCNTR(pipe);
1281 val = I915_READ(reg);
1282 WARN((val & DISPLAY_PLANE_ENABLE),
1283 "plane %c assertion failure, should be disabled but not\n",
1284 plane_name(pipe));
1285 return;
1288 /* Need to check both planes against the pipe */
1289 for (i = 0; i < 2; i++) {
1290 reg = DSPCNTR(i);
1291 val = I915_READ(reg);
1292 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1293 DISPPLANE_SEL_PIPE_SHIFT;
1294 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1295 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1296 plane_name(i), pipe_name(pipe));
1300 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1302 u32 val;
1303 bool enabled;
1305 if (HAS_PCH_LPT(dev_priv->dev)) {
1306 DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
1307 return;
1310 val = I915_READ(PCH_DREF_CONTROL);
1311 enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1312 DREF_SUPERSPREAD_SOURCE_MASK));
1313 WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1316 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1317 enum pipe pipe)
1319 int reg;
1320 u32 val;
1321 bool enabled;
1323 reg = TRANSCONF(pipe);
1324 val = I915_READ(reg);
1325 enabled = !!(val & TRANS_ENABLE);
1326 WARN(enabled,
1327 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1328 pipe_name(pipe));
1331 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1332 enum pipe pipe, u32 port_sel, u32 val)
1334 if ((val & DP_PORT_EN) == 0)
1335 return false;
1337 if (HAS_PCH_CPT(dev_priv->dev)) {
1338 u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1339 u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1340 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1341 return false;
1342 } else {
1343 if ((val & DP_PIPE_MASK) != (pipe << 30))
1344 return false;
1346 return true;
1349 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1350 enum pipe pipe, u32 val)
1352 if ((val & PORT_ENABLE) == 0)
1353 return false;
1355 if (HAS_PCH_CPT(dev_priv->dev)) {
1356 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1357 return false;
1358 } else {
1359 if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1360 return false;
1362 return true;
1365 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1366 enum pipe pipe, u32 val)
1368 if ((val & LVDS_PORT_EN) == 0)
1369 return false;
1371 if (HAS_PCH_CPT(dev_priv->dev)) {
1372 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1373 return false;
1374 } else {
1375 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1376 return false;
1378 return true;
1381 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1382 enum pipe pipe, u32 val)
1384 if ((val & ADPA_DAC_ENABLE) == 0)
1385 return false;
1386 if (HAS_PCH_CPT(dev_priv->dev)) {
1387 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1388 return false;
1389 } else {
1390 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1391 return false;
1393 return true;
1396 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1397 enum pipe pipe, int reg, u32 port_sel)
1399 u32 val = I915_READ(reg);
1400 WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1401 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1402 reg, pipe_name(pipe));
1404 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1405 && (val & DP_PIPEB_SELECT),
1406 "IBX PCH dp port still using transcoder B\n");
1409 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1410 enum pipe pipe, int reg)
1412 u32 val = I915_READ(reg);
1413 WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1414 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1415 reg, pipe_name(pipe));
1417 WARN(HAS_PCH_IBX(dev_priv->dev) && (val & PORT_ENABLE) == 0
1418 && (val & SDVO_PIPE_B_SELECT),
1419 "IBX PCH hdmi port still using transcoder B\n");
1422 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1423 enum pipe pipe)
1425 int reg;
1426 u32 val;
1428 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1429 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1430 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1432 reg = PCH_ADPA;
1433 val = I915_READ(reg);
1434 WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1435 "PCH VGA enabled on transcoder %c, should be disabled\n",
1436 pipe_name(pipe));
1438 reg = PCH_LVDS;
1439 val = I915_READ(reg);
1440 WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1441 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1442 pipe_name(pipe));
1444 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1445 assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1446 assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1450 * intel_enable_pll - enable a PLL
1451 * @dev_priv: i915 private structure
1452 * @pipe: pipe PLL to enable
1454 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1455 * make sure the PLL reg is writable first though, since the panel write
1456 * protect mechanism may be enabled.
1458 * Note! This is for pre-ILK only.
1460 * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
1462 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1464 int reg;
1465 u32 val;
1467 /* No really, not for ILK+ */
1468 BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
1470 /* PLL is protected by panel, make sure we can write it */
1471 if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1472 assert_panel_unlocked(dev_priv, pipe);
1474 reg = DPLL(pipe);
1475 val = I915_READ(reg);
1476 val |= DPLL_VCO_ENABLE;
1478 /* We do this three times for luck */
1479 I915_WRITE(reg, val);
1480 POSTING_READ(reg);
1481 udelay(150); /* wait for warmup */
1482 I915_WRITE(reg, val);
1483 POSTING_READ(reg);
1484 udelay(150); /* wait for warmup */
1485 I915_WRITE(reg, val);
1486 POSTING_READ(reg);
1487 udelay(150); /* wait for warmup */
1491 * intel_disable_pll - disable a PLL
1492 * @dev_priv: i915 private structure
1493 * @pipe: pipe PLL to disable
1495 * Disable the PLL for @pipe, making sure the pipe is off first.
1497 * Note! This is for pre-ILK only.
1499 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1501 int reg;
1502 u32 val;
1504 /* Don't disable pipe A or pipe A PLLs if needed */
1505 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1506 return;
1508 /* Make sure the pipe isn't still relying on us */
1509 assert_pipe_disabled(dev_priv, pipe);
1511 reg = DPLL(pipe);
1512 val = I915_READ(reg);
1513 val &= ~DPLL_VCO_ENABLE;
1514 I915_WRITE(reg, val);
1515 POSTING_READ(reg);
1518 /* SBI access */
1519 static void
1520 intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
1522 unsigned long flags;
1524 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1525 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1526 100)) {
1527 DRM_ERROR("timeout waiting for SBI to become ready\n");
1528 goto out_unlock;
1531 I915_WRITE(SBI_ADDR,
1532 (reg << 16));
1533 I915_WRITE(SBI_DATA,
1534 value);
1535 I915_WRITE(SBI_CTL_STAT,
1536 SBI_BUSY |
1537 SBI_CTL_OP_CRWR);
1539 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1540 100)) {
1541 DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
1542 goto out_unlock;
1545 out_unlock:
1546 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1549 static u32
1550 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
1552 unsigned long flags;
1553 u32 value = 0;
1555 spin_lock_irqsave(&dev_priv->dpio_lock, flags);
1556 if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
1557 100)) {
1558 DRM_ERROR("timeout waiting for SBI to become ready\n");
1559 goto out_unlock;
1562 I915_WRITE(SBI_ADDR,
1563 (reg << 16));
1564 I915_WRITE(SBI_CTL_STAT,
1565 SBI_BUSY |
1566 SBI_CTL_OP_CRRD);
1568 if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
1569 100)) {
1570 DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
1571 goto out_unlock;
1574 value = I915_READ(SBI_DATA);
1576 out_unlock:
1577 spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
1578 return value;
1582 * ironlake_enable_pch_pll - enable PCH PLL
1583 * @dev_priv: i915 private structure
1584 * @pipe: pipe PLL to enable
1586 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1587 * drives the transcoder clock.
1589 static void ironlake_enable_pch_pll(struct intel_crtc *intel_crtc)
1591 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1592 struct intel_pch_pll *pll;
1593 int reg;
1594 u32 val;
1596 /* PCH PLLs only available on ILK, SNB and IVB */
1597 BUG_ON(dev_priv->info->gen < 5);
1598 pll = intel_crtc->pch_pll;
1599 if (pll == NULL)
1600 return;
1602 if (WARN_ON(pll->refcount == 0))
1603 return;
1605 DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
1606 pll->pll_reg, pll->active, pll->on,
1607 intel_crtc->base.base.id);
1609 /* PCH refclock must be enabled first */
1610 assert_pch_refclk_enabled(dev_priv);
1612 if (pll->active++ && pll->on) {
1613 assert_pch_pll_enabled(dev_priv, pll, NULL);
1614 return;
1617 DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
1619 reg = pll->pll_reg;
1620 val = I915_READ(reg);
1621 val |= DPLL_VCO_ENABLE;
1622 I915_WRITE(reg, val);
1623 POSTING_READ(reg);
1624 udelay(200);
1626 pll->on = true;
1629 static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
1631 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
1632 struct intel_pch_pll *pll = intel_crtc->pch_pll;
1633 int reg;
1634 u32 val;
1636 /* PCH only available on ILK+ */
1637 BUG_ON(dev_priv->info->gen < 5);
1638 if (pll == NULL)
1639 return;
1641 if (WARN_ON(pll->refcount == 0))
1642 return;
1644 DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
1645 pll->pll_reg, pll->active, pll->on,
1646 intel_crtc->base.base.id);
1648 if (WARN_ON(pll->active == 0)) {
1649 assert_pch_pll_disabled(dev_priv, pll, NULL);
1650 return;
1653 if (--pll->active) {
1654 assert_pch_pll_enabled(dev_priv, pll, NULL);
1655 return;
1658 DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
1660 /* Make sure transcoder isn't still depending on us */
1661 assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
1663 reg = pll->pll_reg;
1664 val = I915_READ(reg);
1665 val &= ~DPLL_VCO_ENABLE;
1666 I915_WRITE(reg, val);
1667 POSTING_READ(reg);
1668 udelay(200);
1670 pll->on = false;
1673 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1674 enum pipe pipe)
1676 int reg;
1677 u32 val, pipeconf_val;
1678 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1680 /* PCH only available on ILK+ */
1681 BUG_ON(dev_priv->info->gen < 5);
1683 /* Make sure PCH DPLL is enabled */
1684 assert_pch_pll_enabled(dev_priv,
1685 to_intel_crtc(crtc)->pch_pll,
1686 to_intel_crtc(crtc));
1688 /* FDI must be feeding us bits for PCH ports */
1689 assert_fdi_tx_enabled(dev_priv, pipe);
1690 assert_fdi_rx_enabled(dev_priv, pipe);
1692 reg = TRANSCONF(pipe);
1693 val = I915_READ(reg);
1694 pipeconf_val = I915_READ(PIPECONF(pipe));
1696 if (HAS_PCH_IBX(dev_priv->dev)) {
1698 * make the BPC in transcoder be consistent with
1699 * that in pipeconf reg.
1701 val &= ~PIPE_BPC_MASK;
1702 val |= pipeconf_val & PIPE_BPC_MASK;
1705 val &= ~TRANS_INTERLACE_MASK;
1706 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1707 if (HAS_PCH_IBX(dev_priv->dev) &&
1708 intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1709 val |= TRANS_LEGACY_INTERLACED_ILK;
1710 else
1711 val |= TRANS_INTERLACED;
1712 else
1713 val |= TRANS_PROGRESSIVE;
1715 I915_WRITE(reg, val | TRANS_ENABLE);
1716 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1717 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1720 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1721 enum transcoder cpu_transcoder)
1723 u32 val, pipeconf_val;
1725 /* PCH only available on ILK+ */
1726 BUG_ON(dev_priv->info->gen < 5);
1728 /* FDI must be feeding us bits for PCH ports */
1729 assert_fdi_tx_enabled(dev_priv, cpu_transcoder);
1730 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
1732 val = TRANS_ENABLE;
1733 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1735 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1736 val |= TRANS_INTERLACED;
1737 else
1738 val |= TRANS_PROGRESSIVE;
1740 I915_WRITE(TRANSCONF(TRANSCODER_A), val);
1741 if (wait_for(I915_READ(_TRANSACONF) & TRANS_STATE_ENABLE, 100))
1742 DRM_ERROR("Failed to enable PCH transcoder\n");
1745 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1746 enum pipe pipe)
1748 int reg;
1749 u32 val;
1751 /* FDI relies on the transcoder */
1752 assert_fdi_tx_disabled(dev_priv, pipe);
1753 assert_fdi_rx_disabled(dev_priv, pipe);
1755 /* Ports must be off as well */
1756 assert_pch_ports_disabled(dev_priv, pipe);
1758 reg = TRANSCONF(pipe);
1759 val = I915_READ(reg);
1760 val &= ~TRANS_ENABLE;
1761 I915_WRITE(reg, val);
1762 /* wait for PCH transcoder off, transcoder state */
1763 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1764 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1767 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1768 enum pipe pipe)
1770 int reg;
1771 u32 val;
1773 /* FDI relies on the transcoder */
1774 assert_fdi_tx_disabled(dev_priv, pipe);
1775 assert_fdi_rx_disabled(dev_priv, pipe);
1777 /* Ports must be off as well */
1778 assert_pch_ports_disabled(dev_priv, pipe);
1780 reg = TRANSCONF(pipe);
1781 val = I915_READ(reg);
1782 val &= ~TRANS_ENABLE;
1783 I915_WRITE(reg, val);
1784 /* wait for PCH transcoder off, transcoder state */
1785 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1786 DRM_ERROR("failed to disable transcoder %d\n", pipe);
1790 * intel_enable_pipe - enable a pipe, asserting requirements
1791 * @dev_priv: i915 private structure
1792 * @pipe: pipe to enable
1793 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1795 * Enable @pipe, making sure that various hardware specific requirements
1796 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1798 * @pipe should be %PIPE_A or %PIPE_B.
1800 * Will wait until the pipe is actually running (i.e. first vblank) before
1801 * returning.
1803 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1804 bool pch_port)
1806 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1807 pipe);
1808 int reg;
1809 u32 val;
1812 * A pipe without a PLL won't actually be able to drive bits from
1813 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1814 * need the check.
1816 if (!HAS_PCH_SPLIT(dev_priv->dev))
1817 assert_pll_enabled(dev_priv, pipe);
1818 else {
1819 if (pch_port) {
1820 /* if driving the PCH, we need FDI enabled */
1821 assert_fdi_rx_pll_enabled(dev_priv, pipe);
1822 assert_fdi_tx_pll_enabled(dev_priv, pipe);
1824 /* FIXME: assert CPU port conditions for SNB+ */
1827 reg = PIPECONF(cpu_transcoder);
1828 val = I915_READ(reg);
1829 if (val & PIPECONF_ENABLE)
1830 return;
1832 I915_WRITE(reg, val | PIPECONF_ENABLE);
1833 intel_wait_for_vblank(dev_priv->dev, pipe);
1837 * intel_disable_pipe - disable a pipe, asserting requirements
1838 * @dev_priv: i915 private structure
1839 * @pipe: pipe to disable
1841 * Disable @pipe, making sure that various hardware specific requirements
1842 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1844 * @pipe should be %PIPE_A or %PIPE_B.
1846 * Will wait until the pipe has shut down before returning.
1848 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1849 enum pipe pipe)
1851 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1852 pipe);
1853 int reg;
1854 u32 val;
1857 * Make sure planes won't keep trying to pump pixels to us,
1858 * or we might hang the display.
1860 assert_planes_disabled(dev_priv, pipe);
1862 /* Don't disable pipe A or pipe A PLLs if needed */
1863 if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1864 return;
1866 reg = PIPECONF(cpu_transcoder);
1867 val = I915_READ(reg);
1868 if ((val & PIPECONF_ENABLE) == 0)
1869 return;
1871 I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1872 intel_wait_for_pipe_off(dev_priv->dev, pipe);
1876 * Plane regs are double buffered, going from enabled->disabled needs a
1877 * trigger in order to latch. The display address reg provides this.
1879 void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1880 enum plane plane)
1882 if (dev_priv->info->gen >= 4)
1883 I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1884 else
1885 I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1889 * intel_enable_plane - enable a display plane on a given pipe
1890 * @dev_priv: i915 private structure
1891 * @plane: plane to enable
1892 * @pipe: pipe being fed
1894 * Enable @plane on @pipe, making sure that @pipe is running first.
1896 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1897 enum plane plane, enum pipe pipe)
1899 int reg;
1900 u32 val;
1902 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1903 assert_pipe_enabled(dev_priv, pipe);
1905 reg = DSPCNTR(plane);
1906 val = I915_READ(reg);
1907 if (val & DISPLAY_PLANE_ENABLE)
1908 return;
1910 I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1911 intel_flush_display_plane(dev_priv, plane);
1912 intel_wait_for_vblank(dev_priv->dev, pipe);
1916 * intel_disable_plane - disable a display plane
1917 * @dev_priv: i915 private structure
1918 * @plane: plane to disable
1919 * @pipe: pipe consuming the data
1921 * Disable @plane; should be an independent operation.
1923 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1924 enum plane plane, enum pipe pipe)
1926 int reg;
1927 u32 val;
1929 reg = DSPCNTR(plane);
1930 val = I915_READ(reg);
1931 if ((val & DISPLAY_PLANE_ENABLE) == 0)
1932 return;
1934 I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1935 intel_flush_display_plane(dev_priv, plane);
1936 intel_wait_for_vblank(dev_priv->dev, pipe);
1940 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1941 struct drm_i915_gem_object *obj,
1942 struct intel_ring_buffer *pipelined)
1944 struct drm_i915_private *dev_priv = dev->dev_private;
1945 u32 alignment;
1946 int ret;
1948 switch (obj->tiling_mode) {
1949 case I915_TILING_NONE:
1950 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1951 alignment = 128 * 1024;
1952 else if (INTEL_INFO(dev)->gen >= 4)
1953 alignment = 4 * 1024;
1954 else
1955 alignment = 64 * 1024;
1956 break;
1957 case I915_TILING_X:
1958 /* pin() will align the object as required by fence */
1959 alignment = 0;
1960 break;
1961 case I915_TILING_Y:
1962 /* FIXME: Is this true? */
1963 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1964 return -EINVAL;
1965 default:
1966 BUG();
1969 dev_priv->mm.interruptible = false;
1970 ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
1971 if (ret)
1972 goto err_interruptible;
1974 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1975 * fence, whereas 965+ only requires a fence if using
1976 * framebuffer compression. For simplicity, we always install
1977 * a fence as the cost is not that onerous.
1979 ret = i915_gem_object_get_fence(obj);
1980 if (ret)
1981 goto err_unpin;
1983 i915_gem_object_pin_fence(obj);
1985 dev_priv->mm.interruptible = true;
1986 return 0;
1988 err_unpin:
1989 i915_gem_object_unpin(obj);
1990 err_interruptible:
1991 dev_priv->mm.interruptible = true;
1992 return ret;
1995 void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
1997 i915_gem_object_unpin_fence(obj);
1998 i915_gem_object_unpin(obj);
2001 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2002 * is assumed to be a power-of-two. */
2003 unsigned long intel_gen4_compute_offset_xtiled(int *x, int *y,
2004 unsigned int bpp,
2005 unsigned int pitch)
2007 int tile_rows, tiles;
2009 tile_rows = *y / 8;
2010 *y %= 8;
2011 tiles = *x / (512/bpp);
2012 *x %= 512/bpp;
2014 return tile_rows * pitch * 8 + tiles * 4096;
2017 static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2018 int x, int y)
2020 struct drm_device *dev = crtc->dev;
2021 struct drm_i915_private *dev_priv = dev->dev_private;
2022 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2023 struct intel_framebuffer *intel_fb;
2024 struct drm_i915_gem_object *obj;
2025 int plane = intel_crtc->plane;
2026 unsigned long linear_offset;
2027 u32 dspcntr;
2028 u32 reg;
2030 switch (plane) {
2031 case 0:
2032 case 1:
2033 break;
2034 default:
2035 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2036 return -EINVAL;
2039 intel_fb = to_intel_framebuffer(fb);
2040 obj = intel_fb->obj;
2042 reg = DSPCNTR(plane);
2043 dspcntr = I915_READ(reg);
2044 /* Mask out pixel format bits in case we change it */
2045 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2046 switch (fb->pixel_format) {
2047 case DRM_FORMAT_C8:
2048 dspcntr |= DISPPLANE_8BPP;
2049 break;
2050 case DRM_FORMAT_XRGB1555:
2051 case DRM_FORMAT_ARGB1555:
2052 dspcntr |= DISPPLANE_BGRX555;
2053 break;
2054 case DRM_FORMAT_RGB565:
2055 dspcntr |= DISPPLANE_BGRX565;
2056 break;
2057 case DRM_FORMAT_XRGB8888:
2058 case DRM_FORMAT_ARGB8888:
2059 dspcntr |= DISPPLANE_BGRX888;
2060 break;
2061 case DRM_FORMAT_XBGR8888:
2062 case DRM_FORMAT_ABGR8888:
2063 dspcntr |= DISPPLANE_RGBX888;
2064 break;
2065 case DRM_FORMAT_XRGB2101010:
2066 case DRM_FORMAT_ARGB2101010:
2067 dspcntr |= DISPPLANE_BGRX101010;
2068 break;
2069 case DRM_FORMAT_XBGR2101010:
2070 case DRM_FORMAT_ABGR2101010:
2071 dspcntr |= DISPPLANE_RGBX101010;
2072 break;
2073 default:
2074 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2075 return -EINVAL;
2078 if (INTEL_INFO(dev)->gen >= 4) {
2079 if (obj->tiling_mode != I915_TILING_NONE)
2080 dspcntr |= DISPPLANE_TILED;
2081 else
2082 dspcntr &= ~DISPPLANE_TILED;
2085 I915_WRITE(reg, dspcntr);
2087 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2089 if (INTEL_INFO(dev)->gen >= 4) {
2090 intel_crtc->dspaddr_offset =
2091 intel_gen4_compute_offset_xtiled(&x, &y,
2092 fb->bits_per_pixel / 8,
2093 fb->pitches[0]);
2094 linear_offset -= intel_crtc->dspaddr_offset;
2095 } else {
2096 intel_crtc->dspaddr_offset = linear_offset;
2099 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2100 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2101 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2102 if (INTEL_INFO(dev)->gen >= 4) {
2103 I915_MODIFY_DISPBASE(DSPSURF(plane),
2104 obj->gtt_offset + intel_crtc->dspaddr_offset);
2105 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2106 I915_WRITE(DSPLINOFF(plane), linear_offset);
2107 } else
2108 I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
2109 POSTING_READ(reg);
2111 return 0;
2114 static int ironlake_update_plane(struct drm_crtc *crtc,
2115 struct drm_framebuffer *fb, int x, int y)
2117 struct drm_device *dev = crtc->dev;
2118 struct drm_i915_private *dev_priv = dev->dev_private;
2119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2120 struct intel_framebuffer *intel_fb;
2121 struct drm_i915_gem_object *obj;
2122 int plane = intel_crtc->plane;
2123 unsigned long linear_offset;
2124 u32 dspcntr;
2125 u32 reg;
2127 switch (plane) {
2128 case 0:
2129 case 1:
2130 case 2:
2131 break;
2132 default:
2133 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2134 return -EINVAL;
2137 intel_fb = to_intel_framebuffer(fb);
2138 obj = intel_fb->obj;
2140 reg = DSPCNTR(plane);
2141 dspcntr = I915_READ(reg);
2142 /* Mask out pixel format bits in case we change it */
2143 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2144 switch (fb->pixel_format) {
2145 case DRM_FORMAT_C8:
2146 dspcntr |= DISPPLANE_8BPP;
2147 break;
2148 case DRM_FORMAT_RGB565:
2149 dspcntr |= DISPPLANE_BGRX565;
2150 break;
2151 case DRM_FORMAT_XRGB8888:
2152 case DRM_FORMAT_ARGB8888:
2153 dspcntr |= DISPPLANE_BGRX888;
2154 break;
2155 case DRM_FORMAT_XBGR8888:
2156 case DRM_FORMAT_ABGR8888:
2157 dspcntr |= DISPPLANE_RGBX888;
2158 break;
2159 case DRM_FORMAT_XRGB2101010:
2160 case DRM_FORMAT_ARGB2101010:
2161 dspcntr |= DISPPLANE_BGRX101010;
2162 break;
2163 case DRM_FORMAT_XBGR2101010:
2164 case DRM_FORMAT_ABGR2101010:
2165 dspcntr |= DISPPLANE_RGBX101010;
2166 break;
2167 default:
2168 DRM_ERROR("Unknown pixel format 0x%08x\n", fb->pixel_format);
2169 return -EINVAL;
2172 if (obj->tiling_mode != I915_TILING_NONE)
2173 dspcntr |= DISPPLANE_TILED;
2174 else
2175 dspcntr &= ~DISPPLANE_TILED;
2177 /* must disable */
2178 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2180 I915_WRITE(reg, dspcntr);
2182 linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2183 intel_crtc->dspaddr_offset =
2184 intel_gen4_compute_offset_xtiled(&x, &y,
2185 fb->bits_per_pixel / 8,
2186 fb->pitches[0]);
2187 linear_offset -= intel_crtc->dspaddr_offset;
2189 DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
2190 obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
2191 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2192 I915_MODIFY_DISPBASE(DSPSURF(plane),
2193 obj->gtt_offset + intel_crtc->dspaddr_offset);
2194 if (IS_HASWELL(dev)) {
2195 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2196 } else {
2197 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2198 I915_WRITE(DSPLINOFF(plane), linear_offset);
2200 POSTING_READ(reg);
2202 return 0;
2205 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2206 static int
2207 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2208 int x, int y, enum mode_set_atomic state)
2210 struct drm_device *dev = crtc->dev;
2211 struct drm_i915_private *dev_priv = dev->dev_private;
2213 if (dev_priv->display.disable_fbc)
2214 dev_priv->display.disable_fbc(dev);
2215 intel_increase_pllclock(crtc);
2217 return dev_priv->display.update_plane(crtc, fb, x, y);
2220 static int
2221 intel_finish_fb(struct drm_framebuffer *old_fb)
2223 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2224 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2225 bool was_interruptible = dev_priv->mm.interruptible;
2226 int ret;
2228 wait_event(dev_priv->pending_flip_queue,
2229 atomic_read(&dev_priv->mm.wedged) ||
2230 atomic_read(&obj->pending_flip) == 0);
2232 /* Big Hammer, we also need to ensure that any pending
2233 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2234 * current scanout is retired before unpinning the old
2235 * framebuffer.
2237 * This should only fail upon a hung GPU, in which case we
2238 * can safely continue.
2240 dev_priv->mm.interruptible = false;
2241 ret = i915_gem_object_finish_gpu(obj);
2242 dev_priv->mm.interruptible = was_interruptible;
2244 return ret;
2247 static void intel_crtc_update_sarea_pos(struct drm_crtc *crtc, int x, int y)
2249 struct drm_device *dev = crtc->dev;
2250 struct drm_i915_master_private *master_priv;
2251 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2253 if (!dev->primary->master)
2254 return;
2256 master_priv = dev->primary->master->driver_priv;
2257 if (!master_priv->sarea_priv)
2258 return;
2260 switch (intel_crtc->pipe) {
2261 case 0:
2262 master_priv->sarea_priv->pipeA_x = x;
2263 master_priv->sarea_priv->pipeA_y = y;
2264 break;
2265 case 1:
2266 master_priv->sarea_priv->pipeB_x = x;
2267 master_priv->sarea_priv->pipeB_y = y;
2268 break;
2269 default:
2270 break;
2274 static int
2275 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2276 struct drm_framebuffer *fb)
2278 struct drm_device *dev = crtc->dev;
2279 struct drm_i915_private *dev_priv = dev->dev_private;
2280 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2281 struct drm_framebuffer *old_fb;
2282 int ret;
2284 /* no fb bound */
2285 if (!fb) {
2286 DRM_ERROR("No FB bound\n");
2287 return 0;
2290 if(intel_crtc->plane > dev_priv->num_pipe) {
2291 DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
2292 intel_crtc->plane,
2293 dev_priv->num_pipe);
2294 return -EINVAL;
2297 mutex_lock(&dev->struct_mutex);
2298 ret = intel_pin_and_fence_fb_obj(dev,
2299 to_intel_framebuffer(fb)->obj,
2300 NULL);
2301 if (ret != 0) {
2302 mutex_unlock(&dev->struct_mutex);
2303 DRM_ERROR("pin & fence failed\n");
2304 return ret;
2307 if (crtc->fb)
2308 intel_finish_fb(crtc->fb);
2310 ret = dev_priv->display.update_plane(crtc, fb, x, y);
2311 if (ret) {
2312 intel_unpin_fb_obj(to_intel_framebuffer(fb)->obj);
2313 mutex_unlock(&dev->struct_mutex);
2314 DRM_ERROR("failed to update base address\n");
2315 return ret;
2318 old_fb = crtc->fb;
2319 crtc->fb = fb;
2320 crtc->x = x;
2321 crtc->y = y;
2323 if (old_fb) {
2324 intel_wait_for_vblank(dev, intel_crtc->pipe);
2325 intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2328 intel_update_fbc(dev);
2329 mutex_unlock(&dev->struct_mutex);
2331 intel_crtc_update_sarea_pos(crtc, x, y);
2333 return 0;
2336 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2338 struct drm_device *dev = crtc->dev;
2339 struct drm_i915_private *dev_priv = dev->dev_private;
2340 u32 dpa_ctl;
2342 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2343 dpa_ctl = I915_READ(DP_A);
2344 dpa_ctl &= ~DP_PLL_FREQ_MASK;
2346 if (clock < 200000) {
2347 u32 temp;
2348 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2349 /* workaround for 160Mhz:
2350 1) program 0x4600c bits 15:0 = 0x8124
2351 2) program 0x46010 bit 0 = 1
2352 3) program 0x46034 bit 24 = 1
2353 4) program 0x64000 bit 14 = 1
2355 temp = I915_READ(0x4600c);
2356 temp &= 0xffff0000;
2357 I915_WRITE(0x4600c, temp | 0x8124);
2359 temp = I915_READ(0x46010);
2360 I915_WRITE(0x46010, temp | 1);
2362 temp = I915_READ(0x46034);
2363 I915_WRITE(0x46034, temp | (1 << 24));
2364 } else {
2365 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2367 I915_WRITE(DP_A, dpa_ctl);
2369 POSTING_READ(DP_A);
2370 udelay(500);
2373 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2375 struct drm_device *dev = crtc->dev;
2376 struct drm_i915_private *dev_priv = dev->dev_private;
2377 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2378 int pipe = intel_crtc->pipe;
2379 u32 reg, temp;
2381 /* enable normal train */
2382 reg = FDI_TX_CTL(pipe);
2383 temp = I915_READ(reg);
2384 if (IS_IVYBRIDGE(dev)) {
2385 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2386 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2387 } else {
2388 temp &= ~FDI_LINK_TRAIN_NONE;
2389 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2391 I915_WRITE(reg, temp);
2393 reg = FDI_RX_CTL(pipe);
2394 temp = I915_READ(reg);
2395 if (HAS_PCH_CPT(dev)) {
2396 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2397 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2398 } else {
2399 temp &= ~FDI_LINK_TRAIN_NONE;
2400 temp |= FDI_LINK_TRAIN_NONE;
2402 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2404 /* wait one idle pattern time */
2405 POSTING_READ(reg);
2406 udelay(1000);
2408 /* IVB wants error correction enabled */
2409 if (IS_IVYBRIDGE(dev))
2410 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2411 FDI_FE_ERRC_ENABLE);
2414 static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2416 struct drm_i915_private *dev_priv = dev->dev_private;
2417 u32 flags = I915_READ(SOUTH_CHICKEN1);
2419 flags |= FDI_PHASE_SYNC_OVR(pipe);
2420 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2421 flags |= FDI_PHASE_SYNC_EN(pipe);
2422 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2423 POSTING_READ(SOUTH_CHICKEN1);
2426 static void ivb_modeset_global_resources(struct drm_device *dev)
2428 struct drm_i915_private *dev_priv = dev->dev_private;
2429 struct intel_crtc *pipe_B_crtc =
2430 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
2431 struct intel_crtc *pipe_C_crtc =
2432 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_C]);
2433 uint32_t temp;
2435 /* When everything is off disable fdi C so that we could enable fdi B
2436 * with all lanes. XXX: This misses the case where a pipe is not using
2437 * any pch resources and so doesn't need any fdi lanes. */
2438 if (!pipe_B_crtc->base.enabled && !pipe_C_crtc->base.enabled) {
2439 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
2440 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
2442 temp = I915_READ(SOUTH_CHICKEN1);
2443 temp &= ~FDI_BC_BIFURCATION_SELECT;
2444 DRM_DEBUG_KMS("disabling fdi C rx\n");
2445 I915_WRITE(SOUTH_CHICKEN1, temp);
2449 /* The FDI link training functions for ILK/Ibexpeak. */
2450 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2452 struct drm_device *dev = crtc->dev;
2453 struct drm_i915_private *dev_priv = dev->dev_private;
2454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2455 int pipe = intel_crtc->pipe;
2456 int plane = intel_crtc->plane;
2457 u32 reg, temp, tries;
2459 /* FDI needs bits from pipe & plane first */
2460 assert_pipe_enabled(dev_priv, pipe);
2461 assert_plane_enabled(dev_priv, plane);
2463 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2464 for train result */
2465 reg = FDI_RX_IMR(pipe);
2466 temp = I915_READ(reg);
2467 temp &= ~FDI_RX_SYMBOL_LOCK;
2468 temp &= ~FDI_RX_BIT_LOCK;
2469 I915_WRITE(reg, temp);
2470 I915_READ(reg);
2471 udelay(150);
2473 /* enable CPU FDI TX and PCH FDI RX */
2474 reg = FDI_TX_CTL(pipe);
2475 temp = I915_READ(reg);
2476 temp &= ~(7 << 19);
2477 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2478 temp &= ~FDI_LINK_TRAIN_NONE;
2479 temp |= FDI_LINK_TRAIN_PATTERN_1;
2480 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2482 reg = FDI_RX_CTL(pipe);
2483 temp = I915_READ(reg);
2484 temp &= ~FDI_LINK_TRAIN_NONE;
2485 temp |= FDI_LINK_TRAIN_PATTERN_1;
2486 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2488 POSTING_READ(reg);
2489 udelay(150);
2491 /* Ironlake workaround, enable clock pointer after FDI enable*/
2492 if (HAS_PCH_IBX(dev)) {
2493 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2494 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2495 FDI_RX_PHASE_SYNC_POINTER_EN);
2498 reg = FDI_RX_IIR(pipe);
2499 for (tries = 0; tries < 5; tries++) {
2500 temp = I915_READ(reg);
2501 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2503 if ((temp & FDI_RX_BIT_LOCK)) {
2504 DRM_DEBUG_KMS("FDI train 1 done.\n");
2505 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2506 break;
2509 if (tries == 5)
2510 DRM_ERROR("FDI train 1 fail!\n");
2512 /* Train 2 */
2513 reg = FDI_TX_CTL(pipe);
2514 temp = I915_READ(reg);
2515 temp &= ~FDI_LINK_TRAIN_NONE;
2516 temp |= FDI_LINK_TRAIN_PATTERN_2;
2517 I915_WRITE(reg, temp);
2519 reg = FDI_RX_CTL(pipe);
2520 temp = I915_READ(reg);
2521 temp &= ~FDI_LINK_TRAIN_NONE;
2522 temp |= FDI_LINK_TRAIN_PATTERN_2;
2523 I915_WRITE(reg, temp);
2525 POSTING_READ(reg);
2526 udelay(150);
2528 reg = FDI_RX_IIR(pipe);
2529 for (tries = 0; tries < 5; tries++) {
2530 temp = I915_READ(reg);
2531 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2533 if (temp & FDI_RX_SYMBOL_LOCK) {
2534 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2535 DRM_DEBUG_KMS("FDI train 2 done.\n");
2536 break;
2539 if (tries == 5)
2540 DRM_ERROR("FDI train 2 fail!\n");
2542 DRM_DEBUG_KMS("FDI train done\n");
2546 static const int snb_b_fdi_train_param[] = {
2547 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2548 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2549 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2550 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2553 /* The FDI link training functions for SNB/Cougarpoint. */
2554 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2556 struct drm_device *dev = crtc->dev;
2557 struct drm_i915_private *dev_priv = dev->dev_private;
2558 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2559 int pipe = intel_crtc->pipe;
2560 u32 reg, temp, i, retry;
2562 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2563 for train result */
2564 reg = FDI_RX_IMR(pipe);
2565 temp = I915_READ(reg);
2566 temp &= ~FDI_RX_SYMBOL_LOCK;
2567 temp &= ~FDI_RX_BIT_LOCK;
2568 I915_WRITE(reg, temp);
2570 POSTING_READ(reg);
2571 udelay(150);
2573 /* enable CPU FDI TX and PCH FDI RX */
2574 reg = FDI_TX_CTL(pipe);
2575 temp = I915_READ(reg);
2576 temp &= ~(7 << 19);
2577 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2578 temp &= ~FDI_LINK_TRAIN_NONE;
2579 temp |= FDI_LINK_TRAIN_PATTERN_1;
2580 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2581 /* SNB-B */
2582 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2583 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2585 I915_WRITE(FDI_RX_MISC(pipe),
2586 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2588 reg = FDI_RX_CTL(pipe);
2589 temp = I915_READ(reg);
2590 if (HAS_PCH_CPT(dev)) {
2591 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2592 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2593 } else {
2594 temp &= ~FDI_LINK_TRAIN_NONE;
2595 temp |= FDI_LINK_TRAIN_PATTERN_1;
2597 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2599 POSTING_READ(reg);
2600 udelay(150);
2602 if (HAS_PCH_CPT(dev))
2603 cpt_phase_pointer_enable(dev, pipe);
2605 for (i = 0; i < 4; i++) {
2606 reg = FDI_TX_CTL(pipe);
2607 temp = I915_READ(reg);
2608 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2609 temp |= snb_b_fdi_train_param[i];
2610 I915_WRITE(reg, temp);
2612 POSTING_READ(reg);
2613 udelay(500);
2615 for (retry = 0; retry < 5; retry++) {
2616 reg = FDI_RX_IIR(pipe);
2617 temp = I915_READ(reg);
2618 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2619 if (temp & FDI_RX_BIT_LOCK) {
2620 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2621 DRM_DEBUG_KMS("FDI train 1 done.\n");
2622 break;
2624 udelay(50);
2626 if (retry < 5)
2627 break;
2629 if (i == 4)
2630 DRM_ERROR("FDI train 1 fail!\n");
2632 /* Train 2 */
2633 reg = FDI_TX_CTL(pipe);
2634 temp = I915_READ(reg);
2635 temp &= ~FDI_LINK_TRAIN_NONE;
2636 temp |= FDI_LINK_TRAIN_PATTERN_2;
2637 if (IS_GEN6(dev)) {
2638 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2639 /* SNB-B */
2640 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2642 I915_WRITE(reg, temp);
2644 reg = FDI_RX_CTL(pipe);
2645 temp = I915_READ(reg);
2646 if (HAS_PCH_CPT(dev)) {
2647 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2648 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2649 } else {
2650 temp &= ~FDI_LINK_TRAIN_NONE;
2651 temp |= FDI_LINK_TRAIN_PATTERN_2;
2653 I915_WRITE(reg, temp);
2655 POSTING_READ(reg);
2656 udelay(150);
2658 for (i = 0; i < 4; i++) {
2659 reg = FDI_TX_CTL(pipe);
2660 temp = I915_READ(reg);
2661 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2662 temp |= snb_b_fdi_train_param[i];
2663 I915_WRITE(reg, temp);
2665 POSTING_READ(reg);
2666 udelay(500);
2668 for (retry = 0; retry < 5; retry++) {
2669 reg = FDI_RX_IIR(pipe);
2670 temp = I915_READ(reg);
2671 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2672 if (temp & FDI_RX_SYMBOL_LOCK) {
2673 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2674 DRM_DEBUG_KMS("FDI train 2 done.\n");
2675 break;
2677 udelay(50);
2679 if (retry < 5)
2680 break;
2682 if (i == 4)
2683 DRM_ERROR("FDI train 2 fail!\n");
2685 DRM_DEBUG_KMS("FDI train done.\n");
2688 /* Manual link training for Ivy Bridge A0 parts */
2689 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2691 struct drm_device *dev = crtc->dev;
2692 struct drm_i915_private *dev_priv = dev->dev_private;
2693 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2694 int pipe = intel_crtc->pipe;
2695 u32 reg, temp, i;
2697 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2698 for train result */
2699 reg = FDI_RX_IMR(pipe);
2700 temp = I915_READ(reg);
2701 temp &= ~FDI_RX_SYMBOL_LOCK;
2702 temp &= ~FDI_RX_BIT_LOCK;
2703 I915_WRITE(reg, temp);
2705 POSTING_READ(reg);
2706 udelay(150);
2708 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
2709 I915_READ(FDI_RX_IIR(pipe)));
2711 /* enable CPU FDI TX and PCH FDI RX */
2712 reg = FDI_TX_CTL(pipe);
2713 temp = I915_READ(reg);
2714 temp &= ~(7 << 19);
2715 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2716 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2717 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2718 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2719 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2720 temp |= FDI_COMPOSITE_SYNC;
2721 I915_WRITE(reg, temp | FDI_TX_ENABLE);
2723 I915_WRITE(FDI_RX_MISC(pipe),
2724 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
2726 reg = FDI_RX_CTL(pipe);
2727 temp = I915_READ(reg);
2728 temp &= ~FDI_LINK_TRAIN_AUTO;
2729 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2730 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2731 temp |= FDI_COMPOSITE_SYNC;
2732 I915_WRITE(reg, temp | FDI_RX_ENABLE);
2734 POSTING_READ(reg);
2735 udelay(150);
2737 if (HAS_PCH_CPT(dev))
2738 cpt_phase_pointer_enable(dev, pipe);
2740 for (i = 0; i < 4; i++) {
2741 reg = FDI_TX_CTL(pipe);
2742 temp = I915_READ(reg);
2743 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2744 temp |= snb_b_fdi_train_param[i];
2745 I915_WRITE(reg, temp);
2747 POSTING_READ(reg);
2748 udelay(500);
2750 reg = FDI_RX_IIR(pipe);
2751 temp = I915_READ(reg);
2752 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2754 if (temp & FDI_RX_BIT_LOCK ||
2755 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2756 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2757 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n", i);
2758 break;
2761 if (i == 4)
2762 DRM_ERROR("FDI train 1 fail!\n");
2764 /* Train 2 */
2765 reg = FDI_TX_CTL(pipe);
2766 temp = I915_READ(reg);
2767 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2768 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2769 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2770 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2771 I915_WRITE(reg, temp);
2773 reg = FDI_RX_CTL(pipe);
2774 temp = I915_READ(reg);
2775 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2776 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2777 I915_WRITE(reg, temp);
2779 POSTING_READ(reg);
2780 udelay(150);
2782 for (i = 0; i < 4; i++) {
2783 reg = FDI_TX_CTL(pipe);
2784 temp = I915_READ(reg);
2785 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2786 temp |= snb_b_fdi_train_param[i];
2787 I915_WRITE(reg, temp);
2789 POSTING_READ(reg);
2790 udelay(500);
2792 reg = FDI_RX_IIR(pipe);
2793 temp = I915_READ(reg);
2794 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2796 if (temp & FDI_RX_SYMBOL_LOCK) {
2797 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2798 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n", i);
2799 break;
2802 if (i == 4)
2803 DRM_ERROR("FDI train 2 fail!\n");
2805 DRM_DEBUG_KMS("FDI train done.\n");
2808 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2810 struct drm_device *dev = intel_crtc->base.dev;
2811 struct drm_i915_private *dev_priv = dev->dev_private;
2812 int pipe = intel_crtc->pipe;
2813 u32 reg, temp;
2816 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2817 reg = FDI_RX_CTL(pipe);
2818 temp = I915_READ(reg);
2819 temp &= ~((0x7 << 19) | (0x7 << 16));
2820 temp |= (intel_crtc->fdi_lanes - 1) << 19;
2821 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2822 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2824 POSTING_READ(reg);
2825 udelay(200);
2827 /* Switch from Rawclk to PCDclk */
2828 temp = I915_READ(reg);
2829 I915_WRITE(reg, temp | FDI_PCDCLK);
2831 POSTING_READ(reg);
2832 udelay(200);
2834 /* On Haswell, the PLL configuration for ports and pipes is handled
2835 * separately, as part of DDI setup */
2836 if (!IS_HASWELL(dev)) {
2837 /* Enable CPU FDI TX PLL, always on for Ironlake */
2838 reg = FDI_TX_CTL(pipe);
2839 temp = I915_READ(reg);
2840 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2841 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2843 POSTING_READ(reg);
2844 udelay(100);
2849 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
2851 struct drm_device *dev = intel_crtc->base.dev;
2852 struct drm_i915_private *dev_priv = dev->dev_private;
2853 int pipe = intel_crtc->pipe;
2854 u32 reg, temp;
2856 /* Switch from PCDclk to Rawclk */
2857 reg = FDI_RX_CTL(pipe);
2858 temp = I915_READ(reg);
2859 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2861 /* Disable CPU FDI TX PLL */
2862 reg = FDI_TX_CTL(pipe);
2863 temp = I915_READ(reg);
2864 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2866 POSTING_READ(reg);
2867 udelay(100);
2869 reg = FDI_RX_CTL(pipe);
2870 temp = I915_READ(reg);
2871 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2873 /* Wait for the clocks to turn off. */
2874 POSTING_READ(reg);
2875 udelay(100);
2878 static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2880 struct drm_i915_private *dev_priv = dev->dev_private;
2881 u32 flags = I915_READ(SOUTH_CHICKEN1);
2883 flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2884 I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2885 flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2886 I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2887 POSTING_READ(SOUTH_CHICKEN1);
2889 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2891 struct drm_device *dev = crtc->dev;
2892 struct drm_i915_private *dev_priv = dev->dev_private;
2893 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2894 int pipe = intel_crtc->pipe;
2895 u32 reg, temp;
2897 /* disable CPU FDI tx and PCH FDI rx */
2898 reg = FDI_TX_CTL(pipe);
2899 temp = I915_READ(reg);
2900 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2901 POSTING_READ(reg);
2903 reg = FDI_RX_CTL(pipe);
2904 temp = I915_READ(reg);
2905 temp &= ~(0x7 << 16);
2906 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2907 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2909 POSTING_READ(reg);
2910 udelay(100);
2912 /* Ironlake workaround, disable clock pointer after downing FDI */
2913 if (HAS_PCH_IBX(dev)) {
2914 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2915 I915_WRITE(FDI_RX_CHICKEN(pipe),
2916 I915_READ(FDI_RX_CHICKEN(pipe) &
2917 ~FDI_RX_PHASE_SYNC_POINTER_EN));
2918 } else if (HAS_PCH_CPT(dev)) {
2919 cpt_phase_pointer_disable(dev, pipe);
2922 /* still set train pattern 1 */
2923 reg = FDI_TX_CTL(pipe);
2924 temp = I915_READ(reg);
2925 temp &= ~FDI_LINK_TRAIN_NONE;
2926 temp |= FDI_LINK_TRAIN_PATTERN_1;
2927 I915_WRITE(reg, temp);
2929 reg = FDI_RX_CTL(pipe);
2930 temp = I915_READ(reg);
2931 if (HAS_PCH_CPT(dev)) {
2932 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2933 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2934 } else {
2935 temp &= ~FDI_LINK_TRAIN_NONE;
2936 temp |= FDI_LINK_TRAIN_PATTERN_1;
2938 /* BPC in FDI rx is consistent with that in PIPECONF */
2939 temp &= ~(0x07 << 16);
2940 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2941 I915_WRITE(reg, temp);
2943 POSTING_READ(reg);
2944 udelay(100);
2947 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
2949 struct drm_device *dev = crtc->dev;
2950 struct drm_i915_private *dev_priv = dev->dev_private;
2951 unsigned long flags;
2952 bool pending;
2954 if (atomic_read(&dev_priv->mm.wedged))
2955 return false;
2957 spin_lock_irqsave(&dev->event_lock, flags);
2958 pending = to_intel_crtc(crtc)->unpin_work != NULL;
2959 spin_unlock_irqrestore(&dev->event_lock, flags);
2961 return pending;
2964 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2966 struct drm_device *dev = crtc->dev;
2967 struct drm_i915_private *dev_priv = dev->dev_private;
2969 if (crtc->fb == NULL)
2970 return;
2972 wait_event(dev_priv->pending_flip_queue,
2973 !intel_crtc_has_pending_flip(crtc));
2975 mutex_lock(&dev->struct_mutex);
2976 intel_finish_fb(crtc->fb);
2977 mutex_unlock(&dev->struct_mutex);
2980 static bool ironlake_crtc_driving_pch(struct drm_crtc *crtc)
2982 struct drm_device *dev = crtc->dev;
2983 struct intel_encoder *intel_encoder;
2986 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2987 * must be driven by its own crtc; no sharing is possible.
2989 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
2990 switch (intel_encoder->type) {
2991 case INTEL_OUTPUT_EDP:
2992 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
2993 return false;
2994 continue;
2998 return true;
3001 static bool haswell_crtc_driving_pch(struct drm_crtc *crtc)
3003 return intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG);
3006 /* Program iCLKIP clock to the desired frequency */
3007 static void lpt_program_iclkip(struct drm_crtc *crtc)
3009 struct drm_device *dev = crtc->dev;
3010 struct drm_i915_private *dev_priv = dev->dev_private;
3011 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3012 u32 temp;
3014 /* It is necessary to ungate the pixclk gate prior to programming
3015 * the divisors, and gate it back when it is done.
3017 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3019 /* Disable SSCCTL */
3020 intel_sbi_write(dev_priv, SBI_SSCCTL6,
3021 intel_sbi_read(dev_priv, SBI_SSCCTL6) |
3022 SBI_SSCCTL_DISABLE);
3024 /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3025 if (crtc->mode.clock == 20000) {
3026 auxdiv = 1;
3027 divsel = 0x41;
3028 phaseinc = 0x20;
3029 } else {
3030 /* The iCLK virtual clock root frequency is in MHz,
3031 * but the crtc->mode.clock in in KHz. To get the divisors,
3032 * it is necessary to divide one by another, so we
3033 * convert the virtual clock precision to KHz here for higher
3034 * precision.
3036 u32 iclk_virtual_root_freq = 172800 * 1000;
3037 u32 iclk_pi_range = 64;
3038 u32 desired_divisor, msb_divisor_value, pi_value;
3040 desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
3041 msb_divisor_value = desired_divisor / iclk_pi_range;
3042 pi_value = desired_divisor % iclk_pi_range;
3044 auxdiv = 0;
3045 divsel = msb_divisor_value - 2;
3046 phaseinc = pi_value;
3049 /* This should not happen with any sane values */
3050 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3051 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3052 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3053 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3055 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3056 crtc->mode.clock,
3057 auxdiv,
3058 divsel,
3059 phasedir,
3060 phaseinc);
3062 /* Program SSCDIVINTPHASE6 */
3063 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
3064 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3065 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3066 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3067 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3068 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3069 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
3071 intel_sbi_write(dev_priv,
3072 SBI_SSCDIVINTPHASE6,
3073 temp);
3075 /* Program SSCAUXDIV */
3076 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
3077 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3078 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
3079 intel_sbi_write(dev_priv,
3080 SBI_SSCAUXDIV6,
3081 temp);
3084 /* Enable modulator and associated divider */
3085 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
3086 temp &= ~SBI_SSCCTL_DISABLE;
3087 intel_sbi_write(dev_priv,
3088 SBI_SSCCTL6,
3089 temp);
3091 /* Wait for initialization time */
3092 udelay(24);
3094 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3098 * Enable PCH resources required for PCH ports:
3099 * - PCH PLLs
3100 * - FDI training & RX/TX
3101 * - update transcoder timings
3102 * - DP transcoding bits
3103 * - transcoder
3105 static void ironlake_pch_enable(struct drm_crtc *crtc)
3107 struct drm_device *dev = crtc->dev;
3108 struct drm_i915_private *dev_priv = dev->dev_private;
3109 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3110 int pipe = intel_crtc->pipe;
3111 u32 reg, temp;
3113 assert_transcoder_disabled(dev_priv, pipe);
3115 /* Write the TU size bits before fdi link training, so that error
3116 * detection works. */
3117 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3118 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3120 /* For PCH output, training FDI link */
3121 dev_priv->display.fdi_link_train(crtc);
3123 /* XXX: pch pll's can be enabled any time before we enable the PCH
3124 * transcoder, and we actually should do this to not upset any PCH
3125 * transcoder that already use the clock when we share it.
3127 * Note that enable_pch_pll tries to do the right thing, but get_pch_pll
3128 * unconditionally resets the pll - we need that to have the right LVDS
3129 * enable sequence. */
3130 ironlake_enable_pch_pll(intel_crtc);
3132 if (HAS_PCH_CPT(dev)) {
3133 u32 sel;
3135 temp = I915_READ(PCH_DPLL_SEL);
3136 switch (pipe) {
3137 default:
3138 case 0:
3139 temp |= TRANSA_DPLL_ENABLE;
3140 sel = TRANSA_DPLLB_SEL;
3141 break;
3142 case 1:
3143 temp |= TRANSB_DPLL_ENABLE;
3144 sel = TRANSB_DPLLB_SEL;
3145 break;
3146 case 2:
3147 temp |= TRANSC_DPLL_ENABLE;
3148 sel = TRANSC_DPLLB_SEL;
3149 break;
3151 if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
3152 temp |= sel;
3153 else
3154 temp &= ~sel;
3155 I915_WRITE(PCH_DPLL_SEL, temp);
3158 /* set transcoder timing, panel must allow it */
3159 assert_panel_unlocked(dev_priv, pipe);
3160 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3161 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3162 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
3164 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3165 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3166 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
3167 I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
3169 intel_fdi_normal_train(crtc);
3171 /* For PCH DP, enable TRANS_DP_CTL */
3172 if (HAS_PCH_CPT(dev) &&
3173 (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3174 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3175 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3176 reg = TRANS_DP_CTL(pipe);
3177 temp = I915_READ(reg);
3178 temp &= ~(TRANS_DP_PORT_SEL_MASK |
3179 TRANS_DP_SYNC_MASK |
3180 TRANS_DP_BPC_MASK);
3181 temp |= (TRANS_DP_OUTPUT_ENABLE |
3182 TRANS_DP_ENH_FRAMING);
3183 temp |= bpc << 9; /* same format but at 11:9 */
3185 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3186 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3187 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3188 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3190 switch (intel_trans_dp_port_sel(crtc)) {
3191 case PCH_DP_B:
3192 temp |= TRANS_DP_PORT_SEL_B;
3193 break;
3194 case PCH_DP_C:
3195 temp |= TRANS_DP_PORT_SEL_C;
3196 break;
3197 case PCH_DP_D:
3198 temp |= TRANS_DP_PORT_SEL_D;
3199 break;
3200 default:
3201 BUG();
3204 I915_WRITE(reg, temp);
3207 ironlake_enable_pch_transcoder(dev_priv, pipe);
3210 static void lpt_pch_enable(struct drm_crtc *crtc)
3212 struct drm_device *dev = crtc->dev;
3213 struct drm_i915_private *dev_priv = dev->dev_private;
3214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3215 int pipe = intel_crtc->pipe;
3216 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3218 assert_transcoder_disabled(dev_priv, TRANSCODER_A);
3220 /* Write the TU size bits before fdi link training, so that error
3221 * detection works. */
3222 I915_WRITE(FDI_RX_TUSIZE1(pipe),
3223 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
3225 /* For PCH output, training FDI link */
3226 dev_priv->display.fdi_link_train(crtc);
3228 lpt_program_iclkip(crtc);
3230 /* Set transcoder timing. */
3231 I915_WRITE(_TRANS_HTOTAL_A, I915_READ(HTOTAL(cpu_transcoder)));
3232 I915_WRITE(_TRANS_HBLANK_A, I915_READ(HBLANK(cpu_transcoder)));
3233 I915_WRITE(_TRANS_HSYNC_A, I915_READ(HSYNC(cpu_transcoder)));
3235 I915_WRITE(_TRANS_VTOTAL_A, I915_READ(VTOTAL(cpu_transcoder)));
3236 I915_WRITE(_TRANS_VBLANK_A, I915_READ(VBLANK(cpu_transcoder)));
3237 I915_WRITE(_TRANS_VSYNC_A, I915_READ(VSYNC(cpu_transcoder)));
3238 I915_WRITE(_TRANS_VSYNCSHIFT_A, I915_READ(VSYNCSHIFT(cpu_transcoder)));
3240 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
3243 static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
3245 struct intel_pch_pll *pll = intel_crtc->pch_pll;
3247 if (pll == NULL)
3248 return;
3250 if (pll->refcount == 0) {
3251 WARN(1, "bad PCH PLL refcount\n");
3252 return;
3255 --pll->refcount;
3256 intel_crtc->pch_pll = NULL;
3259 static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
3261 struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
3262 struct intel_pch_pll *pll;
3263 int i;
3265 pll = intel_crtc->pch_pll;
3266 if (pll) {
3267 DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
3268 intel_crtc->base.base.id, pll->pll_reg);
3269 goto prepare;
3272 if (HAS_PCH_IBX(dev_priv->dev)) {
3273 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
3274 i = intel_crtc->pipe;
3275 pll = &dev_priv->pch_plls[i];
3277 DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
3278 intel_crtc->base.base.id, pll->pll_reg);
3280 goto found;
3283 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3284 pll = &dev_priv->pch_plls[i];
3286 /* Only want to check enabled timings first */
3287 if (pll->refcount == 0)
3288 continue;
3290 if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
3291 fp == I915_READ(pll->fp0_reg)) {
3292 DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
3293 intel_crtc->base.base.id,
3294 pll->pll_reg, pll->refcount, pll->active);
3296 goto found;
3300 /* Ok no matching timings, maybe there's a free one? */
3301 for (i = 0; i < dev_priv->num_pch_pll; i++) {
3302 pll = &dev_priv->pch_plls[i];
3303 if (pll->refcount == 0) {
3304 DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
3305 intel_crtc->base.base.id, pll->pll_reg);
3306 goto found;
3310 return NULL;
3312 found:
3313 intel_crtc->pch_pll = pll;
3314 pll->refcount++;
3315 DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
3316 prepare: /* separate function? */
3317 DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
3319 /* Wait for the clocks to stabilize before rewriting the regs */
3320 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3321 POSTING_READ(pll->pll_reg);
3322 udelay(150);
3324 I915_WRITE(pll->fp0_reg, fp);
3325 I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
3326 pll->on = false;
3327 return pll;
3330 void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3332 struct drm_i915_private *dev_priv = dev->dev_private;
3333 int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3334 u32 temp;
3336 temp = I915_READ(dslreg);
3337 udelay(500);
3338 if (wait_for(I915_READ(dslreg) != temp, 5)) {
3339 /* Without this, mode sets may fail silently on FDI */
3340 I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3341 udelay(250);
3342 I915_WRITE(tc2reg, 0);
3343 if (wait_for(I915_READ(dslreg) != temp, 5))
3344 DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3348 static void ironlake_crtc_enable(struct drm_crtc *crtc)
3350 struct drm_device *dev = crtc->dev;
3351 struct drm_i915_private *dev_priv = dev->dev_private;
3352 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353 struct intel_encoder *encoder;
3354 int pipe = intel_crtc->pipe;
3355 int plane = intel_crtc->plane;
3356 u32 temp;
3357 bool is_pch_port;
3359 WARN_ON(!crtc->enabled);
3361 if (intel_crtc->active)
3362 return;
3364 intel_crtc->active = true;
3365 intel_update_watermarks(dev);
3367 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3368 temp = I915_READ(PCH_LVDS);
3369 if ((temp & LVDS_PORT_EN) == 0)
3370 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3373 is_pch_port = ironlake_crtc_driving_pch(crtc);
3375 if (is_pch_port) {
3376 /* Note: FDI PLL enabling _must_ be done before we enable the
3377 * cpu pipes, hence this is separate from all the other fdi/pch
3378 * enabling. */
3379 ironlake_fdi_pll_enable(intel_crtc);
3380 } else {
3381 assert_fdi_tx_disabled(dev_priv, pipe);
3382 assert_fdi_rx_disabled(dev_priv, pipe);
3385 for_each_encoder_on_crtc(dev, crtc, encoder)
3386 if (encoder->pre_enable)
3387 encoder->pre_enable(encoder);
3389 /* Enable panel fitting for LVDS */
3390 if (dev_priv->pch_pf_size &&
3391 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3392 /* Force use of hard-coded filter coefficients
3393 * as some pre-programmed values are broken,
3394 * e.g. x201.
3396 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3397 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3398 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3402 * On ILK+ LUT must be loaded before the pipe is running but with
3403 * clocks enabled
3405 intel_crtc_load_lut(crtc);
3407 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3408 intel_enable_plane(dev_priv, plane, pipe);
3410 if (is_pch_port)
3411 ironlake_pch_enable(crtc);
3413 mutex_lock(&dev->struct_mutex);
3414 intel_update_fbc(dev);
3415 mutex_unlock(&dev->struct_mutex);
3417 intel_crtc_update_cursor(crtc, true);
3419 for_each_encoder_on_crtc(dev, crtc, encoder)
3420 encoder->enable(encoder);
3422 if (HAS_PCH_CPT(dev))
3423 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3426 * There seems to be a race in PCH platform hw (at least on some
3427 * outputs) where an enabled pipe still completes any pageflip right
3428 * away (as if the pipe is off) instead of waiting for vblank. As soon
3429 * as the first vblank happend, everything works as expected. Hence just
3430 * wait for one vblank before returning to avoid strange things
3431 * happening.
3433 intel_wait_for_vblank(dev, intel_crtc->pipe);
3436 static void haswell_crtc_enable(struct drm_crtc *crtc)
3438 struct drm_device *dev = crtc->dev;
3439 struct drm_i915_private *dev_priv = dev->dev_private;
3440 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3441 struct intel_encoder *encoder;
3442 int pipe = intel_crtc->pipe;
3443 int plane = intel_crtc->plane;
3444 bool is_pch_port;
3446 WARN_ON(!crtc->enabled);
3448 if (intel_crtc->active)
3449 return;
3451 intel_crtc->active = true;
3452 intel_update_watermarks(dev);
3454 is_pch_port = haswell_crtc_driving_pch(crtc);
3456 if (is_pch_port)
3457 ironlake_fdi_pll_enable(intel_crtc);
3459 for_each_encoder_on_crtc(dev, crtc, encoder)
3460 if (encoder->pre_enable)
3461 encoder->pre_enable(encoder);
3463 intel_ddi_enable_pipe_clock(intel_crtc);
3465 /* Enable panel fitting for eDP */
3466 if (dev_priv->pch_pf_size && HAS_eDP) {
3467 /* Force use of hard-coded filter coefficients
3468 * as some pre-programmed values are broken,
3469 * e.g. x201.
3471 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3472 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3473 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3477 * On ILK+ LUT must be loaded before the pipe is running but with
3478 * clocks enabled
3480 intel_crtc_load_lut(crtc);
3482 intel_ddi_set_pipe_settings(crtc);
3483 intel_ddi_enable_pipe_func(crtc);
3485 intel_enable_pipe(dev_priv, pipe, is_pch_port);
3486 intel_enable_plane(dev_priv, plane, pipe);
3488 if (is_pch_port)
3489 lpt_pch_enable(crtc);
3491 mutex_lock(&dev->struct_mutex);
3492 intel_update_fbc(dev);
3493 mutex_unlock(&dev->struct_mutex);
3495 intel_crtc_update_cursor(crtc, true);
3497 for_each_encoder_on_crtc(dev, crtc, encoder)
3498 encoder->enable(encoder);
3501 * There seems to be a race in PCH platform hw (at least on some
3502 * outputs) where an enabled pipe still completes any pageflip right
3503 * away (as if the pipe is off) instead of waiting for vblank. As soon
3504 * as the first vblank happend, everything works as expected. Hence just
3505 * wait for one vblank before returning to avoid strange things
3506 * happening.
3508 intel_wait_for_vblank(dev, intel_crtc->pipe);
3511 static void ironlake_crtc_disable(struct drm_crtc *crtc)
3513 struct drm_device *dev = crtc->dev;
3514 struct drm_i915_private *dev_priv = dev->dev_private;
3515 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3516 struct intel_encoder *encoder;
3517 int pipe = intel_crtc->pipe;
3518 int plane = intel_crtc->plane;
3519 u32 reg, temp;
3522 if (!intel_crtc->active)
3523 return;
3525 for_each_encoder_on_crtc(dev, crtc, encoder)
3526 encoder->disable(encoder);
3528 intel_crtc_wait_for_pending_flips(crtc);
3529 drm_vblank_off(dev, pipe);
3530 intel_crtc_update_cursor(crtc, false);
3532 intel_disable_plane(dev_priv, plane, pipe);
3534 if (dev_priv->cfb_plane == plane)
3535 intel_disable_fbc(dev);
3537 intel_disable_pipe(dev_priv, pipe);
3539 /* Disable PF */
3540 I915_WRITE(PF_CTL(pipe), 0);
3541 I915_WRITE(PF_WIN_SZ(pipe), 0);
3543 for_each_encoder_on_crtc(dev, crtc, encoder)
3544 if (encoder->post_disable)
3545 encoder->post_disable(encoder);
3547 ironlake_fdi_disable(crtc);
3549 ironlake_disable_pch_transcoder(dev_priv, pipe);
3551 if (HAS_PCH_CPT(dev)) {
3552 /* disable TRANS_DP_CTL */
3553 reg = TRANS_DP_CTL(pipe);
3554 temp = I915_READ(reg);
3555 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3556 temp |= TRANS_DP_PORT_SEL_NONE;
3557 I915_WRITE(reg, temp);
3559 /* disable DPLL_SEL */
3560 temp = I915_READ(PCH_DPLL_SEL);
3561 switch (pipe) {
3562 case 0:
3563 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3564 break;
3565 case 1:
3566 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3567 break;
3568 case 2:
3569 /* C shares PLL A or B */
3570 temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3571 break;
3572 default:
3573 BUG(); /* wtf */
3575 I915_WRITE(PCH_DPLL_SEL, temp);
3578 /* disable PCH DPLL */
3579 intel_disable_pch_pll(intel_crtc);
3581 ironlake_fdi_pll_disable(intel_crtc);
3583 intel_crtc->active = false;
3584 intel_update_watermarks(dev);
3586 mutex_lock(&dev->struct_mutex);
3587 intel_update_fbc(dev);
3588 mutex_unlock(&dev->struct_mutex);
3591 static void haswell_crtc_disable(struct drm_crtc *crtc)
3593 struct drm_device *dev = crtc->dev;
3594 struct drm_i915_private *dev_priv = dev->dev_private;
3595 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3596 struct intel_encoder *encoder;
3597 int pipe = intel_crtc->pipe;
3598 int plane = intel_crtc->plane;
3599 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
3600 bool is_pch_port;
3602 if (!intel_crtc->active)
3603 return;
3605 is_pch_port = haswell_crtc_driving_pch(crtc);
3607 for_each_encoder_on_crtc(dev, crtc, encoder)
3608 encoder->disable(encoder);
3610 intel_crtc_wait_for_pending_flips(crtc);
3611 drm_vblank_off(dev, pipe);
3612 intel_crtc_update_cursor(crtc, false);
3614 intel_disable_plane(dev_priv, plane, pipe);
3616 if (dev_priv->cfb_plane == plane)
3617 intel_disable_fbc(dev);
3619 intel_disable_pipe(dev_priv, pipe);
3621 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
3623 /* Disable PF */
3624 I915_WRITE(PF_CTL(pipe), 0);
3625 I915_WRITE(PF_WIN_SZ(pipe), 0);
3627 intel_ddi_disable_pipe_clock(intel_crtc);
3629 for_each_encoder_on_crtc(dev, crtc, encoder)
3630 if (encoder->post_disable)
3631 encoder->post_disable(encoder);
3633 if (is_pch_port) {
3634 ironlake_fdi_disable(crtc);
3635 lpt_disable_pch_transcoder(dev_priv, pipe);
3636 intel_disable_pch_pll(intel_crtc);
3637 ironlake_fdi_pll_disable(intel_crtc);
3640 intel_crtc->active = false;
3641 intel_update_watermarks(dev);
3643 mutex_lock(&dev->struct_mutex);
3644 intel_update_fbc(dev);
3645 mutex_unlock(&dev->struct_mutex);
3648 static void ironlake_crtc_off(struct drm_crtc *crtc)
3650 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3651 intel_put_pch_pll(intel_crtc);
3654 static void haswell_crtc_off(struct drm_crtc *crtc)
3656 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3658 /* Stop saying we're using TRANSCODER_EDP because some other CRTC might
3659 * start using it. */
3660 intel_crtc->cpu_transcoder = intel_crtc->pipe;
3662 intel_ddi_put_crtc_pll(crtc);
3665 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3667 if (!enable && intel_crtc->overlay) {
3668 struct drm_device *dev = intel_crtc->base.dev;
3669 struct drm_i915_private *dev_priv = dev->dev_private;
3671 mutex_lock(&dev->struct_mutex);
3672 dev_priv->mm.interruptible = false;
3673 (void) intel_overlay_switch_off(intel_crtc->overlay);
3674 dev_priv->mm.interruptible = true;
3675 mutex_unlock(&dev->struct_mutex);
3678 /* Let userspace switch the overlay on again. In most cases userspace
3679 * has to recompute where to put it anyway.
3683 static void i9xx_crtc_enable(struct drm_crtc *crtc)
3685 struct drm_device *dev = crtc->dev;
3686 struct drm_i915_private *dev_priv = dev->dev_private;
3687 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3688 struct intel_encoder *encoder;
3689 int pipe = intel_crtc->pipe;
3690 int plane = intel_crtc->plane;
3692 WARN_ON(!crtc->enabled);
3694 if (intel_crtc->active)
3695 return;
3697 intel_crtc->active = true;
3698 intel_update_watermarks(dev);
3700 intel_enable_pll(dev_priv, pipe);
3701 intel_enable_pipe(dev_priv, pipe, false);
3702 intel_enable_plane(dev_priv, plane, pipe);
3704 intel_crtc_load_lut(crtc);
3705 intel_update_fbc(dev);
3707 /* Give the overlay scaler a chance to enable if it's on this pipe */
3708 intel_crtc_dpms_overlay(intel_crtc, true);
3709 intel_crtc_update_cursor(crtc, true);
3711 for_each_encoder_on_crtc(dev, crtc, encoder)
3712 encoder->enable(encoder);
3715 static void i9xx_crtc_disable(struct drm_crtc *crtc)
3717 struct drm_device *dev = crtc->dev;
3718 struct drm_i915_private *dev_priv = dev->dev_private;
3719 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3720 struct intel_encoder *encoder;
3721 int pipe = intel_crtc->pipe;
3722 int plane = intel_crtc->plane;
3725 if (!intel_crtc->active)
3726 return;
3728 for_each_encoder_on_crtc(dev, crtc, encoder)
3729 encoder->disable(encoder);
3731 /* Give the overlay scaler a chance to disable if it's on this pipe */
3732 intel_crtc_wait_for_pending_flips(crtc);
3733 drm_vblank_off(dev, pipe);
3734 intel_crtc_dpms_overlay(intel_crtc, false);
3735 intel_crtc_update_cursor(crtc, false);
3737 if (dev_priv->cfb_plane == plane)
3738 intel_disable_fbc(dev);
3740 intel_disable_plane(dev_priv, plane, pipe);
3741 intel_disable_pipe(dev_priv, pipe);
3742 intel_disable_pll(dev_priv, pipe);
3744 intel_crtc->active = false;
3745 intel_update_fbc(dev);
3746 intel_update_watermarks(dev);
3749 static void i9xx_crtc_off(struct drm_crtc *crtc)
3753 static void intel_crtc_update_sarea(struct drm_crtc *crtc,
3754 bool enabled)
3756 struct drm_device *dev = crtc->dev;
3757 struct drm_i915_master_private *master_priv;
3758 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3759 int pipe = intel_crtc->pipe;
3761 if (!dev->primary->master)
3762 return;
3764 master_priv = dev->primary->master->driver_priv;
3765 if (!master_priv->sarea_priv)
3766 return;
3768 switch (pipe) {
3769 case 0:
3770 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3771 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3772 break;
3773 case 1:
3774 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3775 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3776 break;
3777 default:
3778 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3779 break;
3784 * Sets the power management mode of the pipe and plane.
3786 void intel_crtc_update_dpms(struct drm_crtc *crtc)
3788 struct drm_device *dev = crtc->dev;
3789 struct drm_i915_private *dev_priv = dev->dev_private;
3790 struct intel_encoder *intel_encoder;
3791 bool enable = false;
3793 for_each_encoder_on_crtc(dev, crtc, intel_encoder)
3794 enable |= intel_encoder->connectors_active;
3796 if (enable)
3797 dev_priv->display.crtc_enable(crtc);
3798 else
3799 dev_priv->display.crtc_disable(crtc);
3801 intel_crtc_update_sarea(crtc, enable);
3804 static void intel_crtc_noop(struct drm_crtc *crtc)
3808 static void intel_crtc_disable(struct drm_crtc *crtc)
3810 struct drm_device *dev = crtc->dev;
3811 struct drm_connector *connector;
3812 struct drm_i915_private *dev_priv = dev->dev_private;
3814 /* crtc should still be enabled when we disable it. */
3815 WARN_ON(!crtc->enabled);
3817 dev_priv->display.crtc_disable(crtc);
3818 intel_crtc_update_sarea(crtc, false);
3819 dev_priv->display.off(crtc);
3821 assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3822 assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3824 if (crtc->fb) {
3825 mutex_lock(&dev->struct_mutex);
3826 intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3827 mutex_unlock(&dev->struct_mutex);
3828 crtc->fb = NULL;
3831 /* Update computed state. */
3832 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3833 if (!connector->encoder || !connector->encoder->crtc)
3834 continue;
3836 if (connector->encoder->crtc != crtc)
3837 continue;
3839 connector->dpms = DRM_MODE_DPMS_OFF;
3840 to_intel_encoder(connector->encoder)->connectors_active = false;
3844 void intel_modeset_disable(struct drm_device *dev)
3846 struct drm_crtc *crtc;
3848 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3849 if (crtc->enabled)
3850 intel_crtc_disable(crtc);
3854 void intel_encoder_noop(struct drm_encoder *encoder)
3858 void intel_encoder_destroy(struct drm_encoder *encoder)
3860 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3862 drm_encoder_cleanup(encoder);
3863 kfree(intel_encoder);
3866 /* Simple dpms helper for encodres with just one connector, no cloning and only
3867 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
3868 * state of the entire output pipe. */
3869 void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
3871 if (mode == DRM_MODE_DPMS_ON) {
3872 encoder->connectors_active = true;
3874 intel_crtc_update_dpms(encoder->base.crtc);
3875 } else {
3876 encoder->connectors_active = false;
3878 intel_crtc_update_dpms(encoder->base.crtc);
3882 /* Cross check the actual hw state with our own modeset state tracking (and it's
3883 * internal consistency). */
3884 static void intel_connector_check_state(struct intel_connector *connector)
3886 if (connector->get_hw_state(connector)) {
3887 struct intel_encoder *encoder = connector->encoder;
3888 struct drm_crtc *crtc;
3889 bool encoder_enabled;
3890 enum pipe pipe;
3892 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3893 connector->base.base.id,
3894 drm_get_connector_name(&connector->base));
3896 WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
3897 "wrong connector dpms state\n");
3898 WARN(connector->base.encoder != &encoder->base,
3899 "active connector not linked to encoder\n");
3900 WARN(!encoder->connectors_active,
3901 "encoder->connectors_active not set\n");
3903 encoder_enabled = encoder->get_hw_state(encoder, &pipe);
3904 WARN(!encoder_enabled, "encoder not enabled\n");
3905 if (WARN_ON(!encoder->base.crtc))
3906 return;
3908 crtc = encoder->base.crtc;
3910 WARN(!crtc->enabled, "crtc not enabled\n");
3911 WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
3912 WARN(pipe != to_intel_crtc(crtc)->pipe,
3913 "encoder active on the wrong pipe\n");
3917 /* Even simpler default implementation, if there's really no special case to
3918 * consider. */
3919 void intel_connector_dpms(struct drm_connector *connector, int mode)
3921 struct intel_encoder *encoder = intel_attached_encoder(connector);
3923 /* All the simple cases only support two dpms states. */
3924 if (mode != DRM_MODE_DPMS_ON)
3925 mode = DRM_MODE_DPMS_OFF;
3927 if (mode == connector->dpms)
3928 return;
3930 connector->dpms = mode;
3932 /* Only need to change hw state when actually enabled */
3933 if (encoder->base.crtc)
3934 intel_encoder_dpms(encoder, mode);
3935 else
3936 WARN_ON(encoder->connectors_active != false);
3938 intel_modeset_check_state(connector->dev);
3941 /* Simple connector->get_hw_state implementation for encoders that support only
3942 * one connector and no cloning and hence the encoder state determines the state
3943 * of the connector. */
3944 bool intel_connector_get_hw_state(struct intel_connector *connector)
3946 enum pipe pipe = 0;
3947 struct intel_encoder *encoder = connector->encoder;
3949 return encoder->get_hw_state(encoder, &pipe);
3952 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3953 const struct drm_display_mode *mode,
3954 struct drm_display_mode *adjusted_mode)
3956 struct drm_device *dev = crtc->dev;
3958 if (HAS_PCH_SPLIT(dev)) {
3959 /* FDI link clock is fixed at 2.7G */
3960 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3961 return false;
3964 /* All interlaced capable intel hw wants timings in frames. Note though
3965 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3966 * timings, so we need to be careful not to clobber these.*/
3967 if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3968 drm_mode_set_crtcinfo(adjusted_mode, 0);
3970 /* WaPruneModeWithIncorrectHsyncOffset: Cantiga+ cannot handle modes
3971 * with a hsync front porch of 0.
3973 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
3974 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
3975 return false;
3977 return true;
3980 static int valleyview_get_display_clock_speed(struct drm_device *dev)
3982 return 400000; /* FIXME */
3985 static int i945_get_display_clock_speed(struct drm_device *dev)
3987 return 400000;
3990 static int i915_get_display_clock_speed(struct drm_device *dev)
3992 return 333000;
3995 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3997 return 200000;
4000 static int i915gm_get_display_clock_speed(struct drm_device *dev)
4002 u16 gcfgc = 0;
4004 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
4006 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
4007 return 133000;
4008 else {
4009 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
4010 case GC_DISPLAY_CLOCK_333_MHZ:
4011 return 333000;
4012 default:
4013 case GC_DISPLAY_CLOCK_190_200_MHZ:
4014 return 190000;
4019 static int i865_get_display_clock_speed(struct drm_device *dev)
4021 return 266000;
4024 static int i855_get_display_clock_speed(struct drm_device *dev)
4026 u16 hpllcc = 0;
4027 /* Assume that the hardware is in the high speed state. This
4028 * should be the default.
4030 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
4031 case GC_CLOCK_133_200:
4032 case GC_CLOCK_100_200:
4033 return 200000;
4034 case GC_CLOCK_166_250:
4035 return 250000;
4036 case GC_CLOCK_100_133:
4037 return 133000;
4040 /* Shouldn't happen */
4041 return 0;
4044 static int i830_get_display_clock_speed(struct drm_device *dev)
4046 return 133000;
4049 struct fdi_m_n {
4050 u32 tu;
4051 u32 gmch_m;
4052 u32 gmch_n;
4053 u32 link_m;
4054 u32 link_n;
4057 static void
4058 fdi_reduce_ratio(u32 *num, u32 *den)
4060 while (*num > 0xffffff || *den > 0xffffff) {
4061 *num >>= 1;
4062 *den >>= 1;
4066 static void
4067 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
4068 int link_clock, struct fdi_m_n *m_n)
4070 m_n->tu = 64; /* default size */
4072 /* BUG_ON(pixel_clock > INT_MAX / 36); */
4073 m_n->gmch_m = bits_per_pixel * pixel_clock;
4074 m_n->gmch_n = link_clock * nlanes * 8;
4075 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
4077 m_n->link_m = pixel_clock;
4078 m_n->link_n = link_clock;
4079 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
4082 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4084 if (i915_panel_use_ssc >= 0)
4085 return i915_panel_use_ssc != 0;
4086 return dev_priv->lvds_use_ssc
4087 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4091 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4092 * @crtc: CRTC structure
4093 * @mode: requested mode
4095 * A pipe may be connected to one or more outputs. Based on the depth of the
4096 * attached framebuffer, choose a good color depth to use on the pipe.
4098 * If possible, match the pipe depth to the fb depth. In some cases, this
4099 * isn't ideal, because the connected output supports a lesser or restricted
4100 * set of depths. Resolve that here:
4101 * LVDS typically supports only 6bpc, so clamp down in that case
4102 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4103 * Displays may support a restricted set as well, check EDID and clamp as
4104 * appropriate.
4105 * DP may want to dither down to 6bpc to fit larger modes
4107 * RETURNS:
4108 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4109 * true if they don't match).
4111 static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4112 struct drm_framebuffer *fb,
4113 unsigned int *pipe_bpp,
4114 struct drm_display_mode *mode)
4116 struct drm_device *dev = crtc->dev;
4117 struct drm_i915_private *dev_priv = dev->dev_private;
4118 struct drm_connector *connector;
4119 struct intel_encoder *intel_encoder;
4120 unsigned int display_bpc = UINT_MAX, bpc;
4122 /* Walk the encoders & connectors on this crtc, get min bpc */
4123 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
4125 if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
4126 unsigned int lvds_bpc;
4128 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
4129 LVDS_A3_POWER_UP)
4130 lvds_bpc = 8;
4131 else
4132 lvds_bpc = 6;
4134 if (lvds_bpc < display_bpc) {
4135 DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
4136 display_bpc = lvds_bpc;
4138 continue;
4141 /* Not one of the known troublemakers, check the EDID */
4142 list_for_each_entry(connector, &dev->mode_config.connector_list,
4143 head) {
4144 if (connector->encoder != &intel_encoder->base)
4145 continue;
4147 /* Don't use an invalid EDID bpc value */
4148 if (connector->display_info.bpc &&
4149 connector->display_info.bpc < display_bpc) {
4150 DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
4151 display_bpc = connector->display_info.bpc;
4156 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4157 * through, clamp it down. (Note: >12bpc will be caught below.)
4159 if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
4160 if (display_bpc > 8 && display_bpc < 12) {
4161 DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
4162 display_bpc = 12;
4163 } else {
4164 DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
4165 display_bpc = 8;
4170 if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4171 DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
4172 display_bpc = 6;
4176 * We could just drive the pipe at the highest bpc all the time and
4177 * enable dithering as needed, but that costs bandwidth. So choose
4178 * the minimum value that expresses the full color range of the fb but
4179 * also stays within the max display bpc discovered above.
4182 switch (fb->depth) {
4183 case 8:
4184 bpc = 8; /* since we go through a colormap */
4185 break;
4186 case 15:
4187 case 16:
4188 bpc = 6; /* min is 18bpp */
4189 break;
4190 case 24:
4191 bpc = 8;
4192 break;
4193 case 30:
4194 bpc = 10;
4195 break;
4196 case 48:
4197 bpc = 12;
4198 break;
4199 default:
4200 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4201 bpc = min((unsigned int)8, display_bpc);
4202 break;
4205 display_bpc = min(display_bpc, bpc);
4207 DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
4208 bpc, display_bpc);
4210 *pipe_bpp = display_bpc * 3;
4212 return display_bpc != bpc;
4215 static int vlv_get_refclk(struct drm_crtc *crtc)
4217 struct drm_device *dev = crtc->dev;
4218 struct drm_i915_private *dev_priv = dev->dev_private;
4219 int refclk = 27000; /* for DP & HDMI */
4221 return 100000; /* only one validated so far */
4223 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
4224 refclk = 96000;
4225 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4226 if (intel_panel_use_ssc(dev_priv))
4227 refclk = 100000;
4228 else
4229 refclk = 96000;
4230 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4231 refclk = 100000;
4234 return refclk;
4237 static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
4239 struct drm_device *dev = crtc->dev;
4240 struct drm_i915_private *dev_priv = dev->dev_private;
4241 int refclk;
4243 if (IS_VALLEYVIEW(dev)) {
4244 refclk = vlv_get_refclk(crtc);
4245 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4246 intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4247 refclk = dev_priv->lvds_ssc_freq * 1000;
4248 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4249 refclk / 1000);
4250 } else if (!IS_GEN2(dev)) {
4251 refclk = 96000;
4252 } else {
4253 refclk = 48000;
4256 return refclk;
4259 static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
4260 intel_clock_t *clock)
4262 /* SDVO TV has fixed PLL values depend on its clock range,
4263 this mirrors vbios setting. */
4264 if (adjusted_mode->clock >= 100000
4265 && adjusted_mode->clock < 140500) {
4266 clock->p1 = 2;
4267 clock->p2 = 10;
4268 clock->n = 3;
4269 clock->m1 = 16;
4270 clock->m2 = 8;
4271 } else if (adjusted_mode->clock >= 140500
4272 && adjusted_mode->clock <= 200000) {
4273 clock->p1 = 1;
4274 clock->p2 = 10;
4275 clock->n = 6;
4276 clock->m1 = 12;
4277 clock->m2 = 8;
4281 static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
4282 intel_clock_t *clock,
4283 intel_clock_t *reduced_clock)
4285 struct drm_device *dev = crtc->dev;
4286 struct drm_i915_private *dev_priv = dev->dev_private;
4287 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4288 int pipe = intel_crtc->pipe;
4289 u32 fp, fp2 = 0;
4291 if (IS_PINEVIEW(dev)) {
4292 fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
4293 if (reduced_clock)
4294 fp2 = (1 << reduced_clock->n) << 16 |
4295 reduced_clock->m1 << 8 | reduced_clock->m2;
4296 } else {
4297 fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
4298 if (reduced_clock)
4299 fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
4300 reduced_clock->m2;
4303 I915_WRITE(FP0(pipe), fp);
4305 intel_crtc->lowfreq_avail = false;
4306 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4307 reduced_clock && i915_powersave) {
4308 I915_WRITE(FP1(pipe), fp2);
4309 intel_crtc->lowfreq_avail = true;
4310 } else {
4311 I915_WRITE(FP1(pipe), fp);
4315 static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
4316 struct drm_display_mode *adjusted_mode)
4318 struct drm_device *dev = crtc->dev;
4319 struct drm_i915_private *dev_priv = dev->dev_private;
4320 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4321 int pipe = intel_crtc->pipe;
4322 u32 temp;
4324 temp = I915_READ(LVDS);
4325 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4326 if (pipe == 1) {
4327 temp |= LVDS_PIPEB_SELECT;
4328 } else {
4329 temp &= ~LVDS_PIPEB_SELECT;
4331 /* set the corresponsding LVDS_BORDER bit */
4332 temp |= dev_priv->lvds_border_bits;
4333 /* Set the B0-B3 data pairs corresponding to whether we're going to
4334 * set the DPLLs for dual-channel mode or not.
4336 if (clock->p2 == 7)
4337 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4338 else
4339 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4341 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4342 * appropriately here, but we need to look more thoroughly into how
4343 * panels behave in the two modes.
4345 /* set the dithering flag on LVDS as needed */
4346 if (INTEL_INFO(dev)->gen >= 4) {
4347 if (dev_priv->lvds_dither)
4348 temp |= LVDS_ENABLE_DITHER;
4349 else
4350 temp &= ~LVDS_ENABLE_DITHER;
4352 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4353 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4354 temp |= LVDS_HSYNC_POLARITY;
4355 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4356 temp |= LVDS_VSYNC_POLARITY;
4357 I915_WRITE(LVDS, temp);
4360 static void vlv_update_pll(struct drm_crtc *crtc,
4361 struct drm_display_mode *mode,
4362 struct drm_display_mode *adjusted_mode,
4363 intel_clock_t *clock, intel_clock_t *reduced_clock,
4364 int num_connectors)
4366 struct drm_device *dev = crtc->dev;
4367 struct drm_i915_private *dev_priv = dev->dev_private;
4368 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4369 int pipe = intel_crtc->pipe;
4370 u32 dpll, mdiv, pdiv;
4371 u32 bestn, bestm1, bestm2, bestp1, bestp2;
4372 bool is_sdvo;
4373 u32 temp;
4375 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4376 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4378 dpll = DPLL_VGA_MODE_DIS;
4379 dpll |= DPLL_EXT_BUFFER_ENABLE_VLV;
4380 dpll |= DPLL_REFA_CLK_ENABLE_VLV;
4381 dpll |= DPLL_INTEGRATED_CLOCK_VLV;
4383 I915_WRITE(DPLL(pipe), dpll);
4384 POSTING_READ(DPLL(pipe));
4386 bestn = clock->n;
4387 bestm1 = clock->m1;
4388 bestm2 = clock->m2;
4389 bestp1 = clock->p1;
4390 bestp2 = clock->p2;
4393 * In Valleyview PLL and program lane counter registers are exposed
4394 * through DPIO interface
4396 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
4397 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
4398 mdiv |= ((bestn << DPIO_N_SHIFT));
4399 mdiv |= (1 << DPIO_POST_DIV_SHIFT);
4400 mdiv |= (1 << DPIO_K_SHIFT);
4401 mdiv |= DPIO_ENABLE_CALIBRATION;
4402 intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
4404 intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
4406 pdiv = (1 << DPIO_REFSEL_OVERRIDE) | (5 << DPIO_PLL_MODESEL_SHIFT) |
4407 (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
4408 (7 << DPIO_PLL_REFCLK_SEL_SHIFT) | (8 << DPIO_DRIVER_CTL_SHIFT) |
4409 (5 << DPIO_CLK_BIAS_CTL_SHIFT);
4410 intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
4412 intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x005f003b);
4414 dpll |= DPLL_VCO_ENABLE;
4415 I915_WRITE(DPLL(pipe), dpll);
4416 POSTING_READ(DPLL(pipe));
4417 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
4418 DRM_ERROR("DPLL %d failed to lock\n", pipe);
4420 intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x620);
4422 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4423 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4425 I915_WRITE(DPLL(pipe), dpll);
4427 /* Wait for the clocks to stabilize. */
4428 POSTING_READ(DPLL(pipe));
4429 udelay(150);
4431 temp = 0;
4432 if (is_sdvo) {
4433 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4434 if (temp > 1)
4435 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4436 else
4437 temp = 0;
4439 I915_WRITE(DPLL_MD(pipe), temp);
4440 POSTING_READ(DPLL_MD(pipe));
4442 /* Now program lane control registers */
4443 if(intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)
4444 || intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
4446 temp = 0x1000C4;
4447 if(pipe == 1)
4448 temp |= (1 << 21);
4449 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL1, temp);
4451 if(intel_pipe_has_type(crtc,INTEL_OUTPUT_EDP))
4453 temp = 0x1000C4;
4454 if(pipe == 1)
4455 temp |= (1 << 21);
4456 intel_dpio_write(dev_priv, DPIO_DATA_CHANNEL2, temp);
4460 static void i9xx_update_pll(struct drm_crtc *crtc,
4461 struct drm_display_mode *mode,
4462 struct drm_display_mode *adjusted_mode,
4463 intel_clock_t *clock, intel_clock_t *reduced_clock,
4464 int num_connectors)
4466 struct drm_device *dev = crtc->dev;
4467 struct drm_i915_private *dev_priv = dev->dev_private;
4468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4469 int pipe = intel_crtc->pipe;
4470 u32 dpll;
4471 bool is_sdvo;
4473 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4475 is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
4476 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
4478 dpll = DPLL_VGA_MODE_DIS;
4480 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4481 dpll |= DPLLB_MODE_LVDS;
4482 else
4483 dpll |= DPLLB_MODE_DAC_SERIAL;
4484 if (is_sdvo) {
4485 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4486 if (pixel_multiplier > 1) {
4487 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4488 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4490 dpll |= DPLL_DVO_HIGH_SPEED;
4492 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4493 dpll |= DPLL_DVO_HIGH_SPEED;
4495 /* compute bitmask from p1 value */
4496 if (IS_PINEVIEW(dev))
4497 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4498 else {
4499 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4500 if (IS_G4X(dev) && reduced_clock)
4501 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4503 switch (clock->p2) {
4504 case 5:
4505 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4506 break;
4507 case 7:
4508 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4509 break;
4510 case 10:
4511 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4512 break;
4513 case 14:
4514 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4515 break;
4517 if (INTEL_INFO(dev)->gen >= 4)
4518 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4520 if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4521 dpll |= PLL_REF_INPUT_TVCLKINBC;
4522 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4523 /* XXX: just matching BIOS for now */
4524 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4525 dpll |= 3;
4526 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4527 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4528 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4529 else
4530 dpll |= PLL_REF_INPUT_DREFCLK;
4532 dpll |= DPLL_VCO_ENABLE;
4533 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4534 POSTING_READ(DPLL(pipe));
4535 udelay(150);
4537 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4538 * This is an exception to the general rule that mode_set doesn't turn
4539 * things on.
4541 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4542 intel_update_lvds(crtc, clock, adjusted_mode);
4544 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
4545 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4547 I915_WRITE(DPLL(pipe), dpll);
4549 /* Wait for the clocks to stabilize. */
4550 POSTING_READ(DPLL(pipe));
4551 udelay(150);
4553 if (INTEL_INFO(dev)->gen >= 4) {
4554 u32 temp = 0;
4555 if (is_sdvo) {
4556 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4557 if (temp > 1)
4558 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4559 else
4560 temp = 0;
4562 I915_WRITE(DPLL_MD(pipe), temp);
4563 } else {
4564 /* The pixel multiplier can only be updated once the
4565 * DPLL is enabled and the clocks are stable.
4567 * So write it again.
4569 I915_WRITE(DPLL(pipe), dpll);
4573 static void i8xx_update_pll(struct drm_crtc *crtc,
4574 struct drm_display_mode *adjusted_mode,
4575 intel_clock_t *clock, intel_clock_t *reduced_clock,
4576 int num_connectors)
4578 struct drm_device *dev = crtc->dev;
4579 struct drm_i915_private *dev_priv = dev->dev_private;
4580 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4581 int pipe = intel_crtc->pipe;
4582 u32 dpll;
4584 i9xx_update_pll_dividers(crtc, clock, reduced_clock);
4586 dpll = DPLL_VGA_MODE_DIS;
4588 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
4589 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4590 } else {
4591 if (clock->p1 == 2)
4592 dpll |= PLL_P1_DIVIDE_BY_TWO;
4593 else
4594 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4595 if (clock->p2 == 4)
4596 dpll |= PLL_P2_DIVIDE_BY_4;
4599 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
4600 /* XXX: just matching BIOS for now */
4601 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4602 dpll |= 3;
4603 else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
4604 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4605 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4606 else
4607 dpll |= PLL_REF_INPUT_DREFCLK;
4609 dpll |= DPLL_VCO_ENABLE;
4610 I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4611 POSTING_READ(DPLL(pipe));
4612 udelay(150);
4614 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4615 * This is an exception to the general rule that mode_set doesn't turn
4616 * things on.
4618 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
4619 intel_update_lvds(crtc, clock, adjusted_mode);
4621 I915_WRITE(DPLL(pipe), dpll);
4623 /* Wait for the clocks to stabilize. */
4624 POSTING_READ(DPLL(pipe));
4625 udelay(150);
4627 /* The pixel multiplier can only be updated once the
4628 * DPLL is enabled and the clocks are stable.
4630 * So write it again.
4632 I915_WRITE(DPLL(pipe), dpll);
4635 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc,
4636 struct drm_display_mode *mode,
4637 struct drm_display_mode *adjusted_mode)
4639 struct drm_device *dev = intel_crtc->base.dev;
4640 struct drm_i915_private *dev_priv = dev->dev_private;
4641 enum pipe pipe = intel_crtc->pipe;
4642 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
4643 uint32_t vsyncshift;
4645 if (!IS_GEN2(dev) && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4646 /* the chip adds 2 halflines automatically */
4647 adjusted_mode->crtc_vtotal -= 1;
4648 adjusted_mode->crtc_vblank_end -= 1;
4649 vsyncshift = adjusted_mode->crtc_hsync_start
4650 - adjusted_mode->crtc_htotal / 2;
4651 } else {
4652 vsyncshift = 0;
4655 if (INTEL_INFO(dev)->gen > 3)
4656 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
4658 I915_WRITE(HTOTAL(cpu_transcoder),
4659 (adjusted_mode->crtc_hdisplay - 1) |
4660 ((adjusted_mode->crtc_htotal - 1) << 16));
4661 I915_WRITE(HBLANK(cpu_transcoder),
4662 (adjusted_mode->crtc_hblank_start - 1) |
4663 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4664 I915_WRITE(HSYNC(cpu_transcoder),
4665 (adjusted_mode->crtc_hsync_start - 1) |
4666 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4668 I915_WRITE(VTOTAL(cpu_transcoder),
4669 (adjusted_mode->crtc_vdisplay - 1) |
4670 ((adjusted_mode->crtc_vtotal - 1) << 16));
4671 I915_WRITE(VBLANK(cpu_transcoder),
4672 (adjusted_mode->crtc_vblank_start - 1) |
4673 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4674 I915_WRITE(VSYNC(cpu_transcoder),
4675 (adjusted_mode->crtc_vsync_start - 1) |
4676 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4678 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
4679 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
4680 * documented on the DDI_FUNC_CTL register description, EDP Input Select
4681 * bits. */
4682 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
4683 (pipe == PIPE_B || pipe == PIPE_C))
4684 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
4686 /* pipesrc controls the size that is scaled from, which should
4687 * always be the user's requested size.
4689 I915_WRITE(PIPESRC(pipe),
4690 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4693 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4694 struct drm_display_mode *mode,
4695 struct drm_display_mode *adjusted_mode,
4696 int x, int y,
4697 struct drm_framebuffer *fb)
4699 struct drm_device *dev = crtc->dev;
4700 struct drm_i915_private *dev_priv = dev->dev_private;
4701 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4702 int pipe = intel_crtc->pipe;
4703 int plane = intel_crtc->plane;
4704 int refclk, num_connectors = 0;
4705 intel_clock_t clock, reduced_clock;
4706 u32 dspcntr, pipeconf;
4707 bool ok, has_reduced_clock = false, is_sdvo = false;
4708 bool is_lvds = false, is_tv = false, is_dp = false;
4709 struct intel_encoder *encoder;
4710 const intel_limit_t *limit;
4711 int ret;
4713 for_each_encoder_on_crtc(dev, crtc, encoder) {
4714 switch (encoder->type) {
4715 case INTEL_OUTPUT_LVDS:
4716 is_lvds = true;
4717 break;
4718 case INTEL_OUTPUT_SDVO:
4719 case INTEL_OUTPUT_HDMI:
4720 is_sdvo = true;
4721 if (encoder->needs_tv_clock)
4722 is_tv = true;
4723 break;
4724 case INTEL_OUTPUT_TVOUT:
4725 is_tv = true;
4726 break;
4727 case INTEL_OUTPUT_DISPLAYPORT:
4728 is_dp = true;
4729 break;
4732 num_connectors++;
4735 refclk = i9xx_get_refclk(crtc, num_connectors);
4738 * Returns a set of divisors for the desired target clock with the given
4739 * refclk, or FALSE. The returned values represent the clock equation:
4740 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4742 limit = intel_limit(crtc, refclk);
4743 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
4744 &clock);
4745 if (!ok) {
4746 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4747 return -EINVAL;
4750 /* Ensure that the cursor is valid for the new mode before changing... */
4751 intel_crtc_update_cursor(crtc, true);
4753 if (is_lvds && dev_priv->lvds_downclock_avail) {
4755 * Ensure we match the reduced clock's P to the target clock.
4756 * If the clocks don't match, we can't switch the display clock
4757 * by using the FP0/FP1. In such case we will disable the LVDS
4758 * downclock feature.
4760 has_reduced_clock = limit->find_pll(limit, crtc,
4761 dev_priv->lvds_downclock,
4762 refclk,
4763 &clock,
4764 &reduced_clock);
4767 if (is_sdvo && is_tv)
4768 i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
4770 if (IS_GEN2(dev))
4771 i8xx_update_pll(crtc, adjusted_mode, &clock,
4772 has_reduced_clock ? &reduced_clock : NULL,
4773 num_connectors);
4774 else if (IS_VALLEYVIEW(dev))
4775 vlv_update_pll(crtc, mode, adjusted_mode, &clock,
4776 has_reduced_clock ? &reduced_clock : NULL,
4777 num_connectors);
4778 else
4779 i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
4780 has_reduced_clock ? &reduced_clock : NULL,
4781 num_connectors);
4783 /* setup pipeconf */
4784 pipeconf = I915_READ(PIPECONF(pipe));
4786 /* Set up the display plane register */
4787 dspcntr = DISPPLANE_GAMMA_ENABLE;
4789 if (pipe == 0)
4790 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4791 else
4792 dspcntr |= DISPPLANE_SEL_PIPE_B;
4794 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4795 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4796 * core speed.
4798 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4799 * pipe == 0 check?
4801 if (mode->clock >
4802 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4803 pipeconf |= PIPECONF_DOUBLE_WIDE;
4804 else
4805 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4808 /* default to 8bpc */
4809 pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
4810 if (is_dp) {
4811 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4812 pipeconf |= PIPECONF_BPP_6 |
4813 PIPECONF_DITHER_EN |
4814 PIPECONF_DITHER_TYPE_SP;
4818 if (IS_VALLEYVIEW(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
4819 if (adjusted_mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
4820 pipeconf |= PIPECONF_BPP_6 |
4821 PIPECONF_ENABLE |
4822 I965_PIPECONF_ACTIVE;
4826 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4827 drm_mode_debug_printmodeline(mode);
4829 if (HAS_PIPE_CXSR(dev)) {
4830 if (intel_crtc->lowfreq_avail) {
4831 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4832 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4833 } else {
4834 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4835 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4839 pipeconf &= ~PIPECONF_INTERLACE_MASK;
4840 if (!IS_GEN2(dev) &&
4841 adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
4842 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4843 else
4844 pipeconf |= PIPECONF_PROGRESSIVE;
4846 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
4848 /* pipesrc and dspsize control the size that is scaled from,
4849 * which should always be the user's requested size.
4851 I915_WRITE(DSPSIZE(plane),
4852 ((mode->vdisplay - 1) << 16) |
4853 (mode->hdisplay - 1));
4854 I915_WRITE(DSPPOS(plane), 0);
4856 I915_WRITE(PIPECONF(pipe), pipeconf);
4857 POSTING_READ(PIPECONF(pipe));
4858 intel_enable_pipe(dev_priv, pipe, false);
4860 intel_wait_for_vblank(dev, pipe);
4862 I915_WRITE(DSPCNTR(plane), dspcntr);
4863 POSTING_READ(DSPCNTR(plane));
4865 ret = intel_pipe_set_base(crtc, x, y, fb);
4867 intel_update_watermarks(dev);
4869 return ret;
4873 * Initialize reference clocks when the driver loads
4875 void ironlake_init_pch_refclk(struct drm_device *dev)
4877 struct drm_i915_private *dev_priv = dev->dev_private;
4878 struct drm_mode_config *mode_config = &dev->mode_config;
4879 struct intel_encoder *encoder;
4880 u32 temp;
4881 bool has_lvds = false;
4882 bool has_cpu_edp = false;
4883 bool has_pch_edp = false;
4884 bool has_panel = false;
4885 bool has_ck505 = false;
4886 bool can_ssc = false;
4888 /* We need to take the global config into account */
4889 list_for_each_entry(encoder, &mode_config->encoder_list,
4890 base.head) {
4891 switch (encoder->type) {
4892 case INTEL_OUTPUT_LVDS:
4893 has_panel = true;
4894 has_lvds = true;
4895 break;
4896 case INTEL_OUTPUT_EDP:
4897 has_panel = true;
4898 if (intel_encoder_is_pch_edp(&encoder->base))
4899 has_pch_edp = true;
4900 else
4901 has_cpu_edp = true;
4902 break;
4906 if (HAS_PCH_IBX(dev)) {
4907 has_ck505 = dev_priv->display_clock_mode;
4908 can_ssc = has_ck505;
4909 } else {
4910 has_ck505 = false;
4911 can_ssc = true;
4914 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
4915 has_panel, has_lvds, has_pch_edp, has_cpu_edp,
4916 has_ck505);
4918 /* Ironlake: try to setup display ref clock before DPLL
4919 * enabling. This is only under driver's control after
4920 * PCH B stepping, previous chipset stepping should be
4921 * ignoring this setting.
4923 temp = I915_READ(PCH_DREF_CONTROL);
4924 /* Always enable nonspread source */
4925 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4927 if (has_ck505)
4928 temp |= DREF_NONSPREAD_CK505_ENABLE;
4929 else
4930 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4932 if (has_panel) {
4933 temp &= ~DREF_SSC_SOURCE_MASK;
4934 temp |= DREF_SSC_SOURCE_ENABLE;
4936 /* SSC must be turned on before enabling the CPU output */
4937 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4938 DRM_DEBUG_KMS("Using SSC on panel\n");
4939 temp |= DREF_SSC1_ENABLE;
4940 } else
4941 temp &= ~DREF_SSC1_ENABLE;
4943 /* Get SSC going before enabling the outputs */
4944 I915_WRITE(PCH_DREF_CONTROL, temp);
4945 POSTING_READ(PCH_DREF_CONTROL);
4946 udelay(200);
4948 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4950 /* Enable CPU source on CPU attached eDP */
4951 if (has_cpu_edp) {
4952 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
4953 DRM_DEBUG_KMS("Using SSC on eDP\n");
4954 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4956 else
4957 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4958 } else
4959 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4961 I915_WRITE(PCH_DREF_CONTROL, temp);
4962 POSTING_READ(PCH_DREF_CONTROL);
4963 udelay(200);
4964 } else {
4965 DRM_DEBUG_KMS("Disabling SSC entirely\n");
4967 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4969 /* Turn off CPU output */
4970 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
4972 I915_WRITE(PCH_DREF_CONTROL, temp);
4973 POSTING_READ(PCH_DREF_CONTROL);
4974 udelay(200);
4976 /* Turn off the SSC source */
4977 temp &= ~DREF_SSC_SOURCE_MASK;
4978 temp |= DREF_SSC_SOURCE_DISABLE;
4980 /* Turn off SSC1 */
4981 temp &= ~ DREF_SSC1_ENABLE;
4983 I915_WRITE(PCH_DREF_CONTROL, temp);
4984 POSTING_READ(PCH_DREF_CONTROL);
4985 udelay(200);
4989 static int ironlake_get_refclk(struct drm_crtc *crtc)
4991 struct drm_device *dev = crtc->dev;
4992 struct drm_i915_private *dev_priv = dev->dev_private;
4993 struct intel_encoder *encoder;
4994 struct intel_encoder *edp_encoder = NULL;
4995 int num_connectors = 0;
4996 bool is_lvds = false;
4998 for_each_encoder_on_crtc(dev, crtc, encoder) {
4999 switch (encoder->type) {
5000 case INTEL_OUTPUT_LVDS:
5001 is_lvds = true;
5002 break;
5003 case INTEL_OUTPUT_EDP:
5004 edp_encoder = encoder;
5005 break;
5007 num_connectors++;
5010 if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5011 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5012 dev_priv->lvds_ssc_freq);
5013 return dev_priv->lvds_ssc_freq * 1000;
5016 return 120000;
5019 static void ironlake_set_pipeconf(struct drm_crtc *crtc,
5020 struct drm_display_mode *adjusted_mode,
5021 bool dither)
5023 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5025 int pipe = intel_crtc->pipe;
5026 uint32_t val;
5028 val = I915_READ(PIPECONF(pipe));
5030 val &= ~PIPE_BPC_MASK;
5031 switch (intel_crtc->bpp) {
5032 case 18:
5033 val |= PIPE_6BPC;
5034 break;
5035 case 24:
5036 val |= PIPE_8BPC;
5037 break;
5038 case 30:
5039 val |= PIPE_10BPC;
5040 break;
5041 case 36:
5042 val |= PIPE_12BPC;
5043 break;
5044 default:
5045 /* Case prevented by intel_choose_pipe_bpp_dither. */
5046 BUG();
5049 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5050 if (dither)
5051 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5053 val &= ~PIPECONF_INTERLACE_MASK;
5054 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5055 val |= PIPECONF_INTERLACED_ILK;
5056 else
5057 val |= PIPECONF_PROGRESSIVE;
5059 I915_WRITE(PIPECONF(pipe), val);
5060 POSTING_READ(PIPECONF(pipe));
5063 static void haswell_set_pipeconf(struct drm_crtc *crtc,
5064 struct drm_display_mode *adjusted_mode,
5065 bool dither)
5067 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5068 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5069 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5070 uint32_t val;
5072 val = I915_READ(PIPECONF(cpu_transcoder));
5074 val &= ~(PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_MASK);
5075 if (dither)
5076 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
5078 val &= ~PIPECONF_INTERLACE_MASK_HSW;
5079 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
5080 val |= PIPECONF_INTERLACED_ILK;
5081 else
5082 val |= PIPECONF_PROGRESSIVE;
5084 I915_WRITE(PIPECONF(cpu_transcoder), val);
5085 POSTING_READ(PIPECONF(cpu_transcoder));
5088 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
5089 struct drm_display_mode *adjusted_mode,
5090 intel_clock_t *clock,
5091 bool *has_reduced_clock,
5092 intel_clock_t *reduced_clock)
5094 struct drm_device *dev = crtc->dev;
5095 struct drm_i915_private *dev_priv = dev->dev_private;
5096 struct intel_encoder *intel_encoder;
5097 int refclk;
5098 const intel_limit_t *limit;
5099 bool ret, is_sdvo = false, is_tv = false, is_lvds = false;
5101 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5102 switch (intel_encoder->type) {
5103 case INTEL_OUTPUT_LVDS:
5104 is_lvds = true;
5105 break;
5106 case INTEL_OUTPUT_SDVO:
5107 case INTEL_OUTPUT_HDMI:
5108 is_sdvo = true;
5109 if (intel_encoder->needs_tv_clock)
5110 is_tv = true;
5111 break;
5112 case INTEL_OUTPUT_TVOUT:
5113 is_tv = true;
5114 break;
5118 refclk = ironlake_get_refclk(crtc);
5121 * Returns a set of divisors for the desired target clock with the given
5122 * refclk, or FALSE. The returned values represent the clock equation:
5123 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5125 limit = intel_limit(crtc, refclk);
5126 ret = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5127 clock);
5128 if (!ret)
5129 return false;
5131 if (is_lvds && dev_priv->lvds_downclock_avail) {
5133 * Ensure we match the reduced clock's P to the target clock.
5134 * If the clocks don't match, we can't switch the display clock
5135 * by using the FP0/FP1. In such case we will disable the LVDS
5136 * downclock feature.
5138 *has_reduced_clock = limit->find_pll(limit, crtc,
5139 dev_priv->lvds_downclock,
5140 refclk,
5141 clock,
5142 reduced_clock);
5145 if (is_sdvo && is_tv)
5146 i9xx_adjust_sdvo_tv_clock(adjusted_mode, clock);
5148 return true;
5151 static void cpt_enable_fdi_bc_bifurcation(struct drm_device *dev)
5153 struct drm_i915_private *dev_priv = dev->dev_private;
5154 uint32_t temp;
5156 temp = I915_READ(SOUTH_CHICKEN1);
5157 if (temp & FDI_BC_BIFURCATION_SELECT)
5158 return;
5160 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5161 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5163 temp |= FDI_BC_BIFURCATION_SELECT;
5164 DRM_DEBUG_KMS("enabling fdi C rx\n");
5165 I915_WRITE(SOUTH_CHICKEN1, temp);
5166 POSTING_READ(SOUTH_CHICKEN1);
5169 static bool ironlake_check_fdi_lanes(struct intel_crtc *intel_crtc)
5171 struct drm_device *dev = intel_crtc->base.dev;
5172 struct drm_i915_private *dev_priv = dev->dev_private;
5173 struct intel_crtc *pipe_B_crtc =
5174 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_B]);
5176 DRM_DEBUG_KMS("checking fdi config on pipe %i, lanes %i\n",
5177 intel_crtc->pipe, intel_crtc->fdi_lanes);
5178 if (intel_crtc->fdi_lanes > 4) {
5179 DRM_DEBUG_KMS("invalid fdi lane config on pipe %i: %i lanes\n",
5180 intel_crtc->pipe, intel_crtc->fdi_lanes);
5181 /* Clamp lanes to avoid programming the hw with bogus values. */
5182 intel_crtc->fdi_lanes = 4;
5184 return false;
5187 if (dev_priv->num_pipe == 2)
5188 return true;
5190 switch (intel_crtc->pipe) {
5191 case PIPE_A:
5192 return true;
5193 case PIPE_B:
5194 if (dev_priv->pipe_to_crtc_mapping[PIPE_C]->enabled &&
5195 intel_crtc->fdi_lanes > 2) {
5196 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5197 intel_crtc->pipe, intel_crtc->fdi_lanes);
5198 /* Clamp lanes to avoid programming the hw with bogus values. */
5199 intel_crtc->fdi_lanes = 2;
5201 return false;
5204 if (intel_crtc->fdi_lanes > 2)
5205 WARN_ON(I915_READ(SOUTH_CHICKEN1) & FDI_BC_BIFURCATION_SELECT);
5206 else
5207 cpt_enable_fdi_bc_bifurcation(dev);
5209 return true;
5210 case PIPE_C:
5211 if (!pipe_B_crtc->base.enabled || pipe_B_crtc->fdi_lanes <= 2) {
5212 if (intel_crtc->fdi_lanes > 2) {
5213 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %i: %i lanes\n",
5214 intel_crtc->pipe, intel_crtc->fdi_lanes);
5215 /* Clamp lanes to avoid programming the hw with bogus values. */
5216 intel_crtc->fdi_lanes = 2;
5218 return false;
5220 } else {
5221 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
5222 return false;
5225 cpt_enable_fdi_bc_bifurcation(dev);
5227 return true;
5228 default:
5229 BUG();
5233 static void ironlake_set_m_n(struct drm_crtc *crtc,
5234 struct drm_display_mode *mode,
5235 struct drm_display_mode *adjusted_mode)
5237 struct drm_device *dev = crtc->dev;
5238 struct drm_i915_private *dev_priv = dev->dev_private;
5239 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5240 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
5241 struct intel_encoder *intel_encoder, *edp_encoder = NULL;
5242 struct fdi_m_n m_n = {0};
5243 int target_clock, pixel_multiplier, lane, link_bw;
5244 bool is_dp = false, is_cpu_edp = false;
5246 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5247 switch (intel_encoder->type) {
5248 case INTEL_OUTPUT_DISPLAYPORT:
5249 is_dp = true;
5250 break;
5251 case INTEL_OUTPUT_EDP:
5252 is_dp = true;
5253 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5254 is_cpu_edp = true;
5255 edp_encoder = intel_encoder;
5256 break;
5260 /* FDI link */
5261 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5262 lane = 0;
5263 /* CPU eDP doesn't require FDI link, so just set DP M/N
5264 according to current link config */
5265 if (is_cpu_edp) {
5266 intel_edp_link_config(edp_encoder, &lane, &link_bw);
5267 } else {
5268 /* FDI is a binary signal running at ~2.7GHz, encoding
5269 * each output octet as 10 bits. The actual frequency
5270 * is stored as a divider into a 100MHz clock, and the
5271 * mode pixel clock is stored in units of 1KHz.
5272 * Hence the bw of each lane in terms of the mode signal
5273 * is:
5275 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5278 /* [e]DP over FDI requires target mode clock instead of link clock. */
5279 if (edp_encoder)
5280 target_clock = intel_edp_target_clock(edp_encoder, mode);
5281 else if (is_dp)
5282 target_clock = mode->clock;
5283 else
5284 target_clock = adjusted_mode->clock;
5286 if (!lane) {
5288 * Account for spread spectrum to avoid
5289 * oversubscribing the link. Max center spread
5290 * is 2.5%; use 5% for safety's sake.
5292 u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5293 lane = bps / (link_bw * 8) + 1;
5296 intel_crtc->fdi_lanes = lane;
5298 if (pixel_multiplier > 1)
5299 link_bw *= pixel_multiplier;
5300 ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5301 &m_n);
5303 I915_WRITE(PIPE_DATA_M1(cpu_transcoder), TU_SIZE(m_n.tu) | m_n.gmch_m);
5304 I915_WRITE(PIPE_DATA_N1(cpu_transcoder), m_n.gmch_n);
5305 I915_WRITE(PIPE_LINK_M1(cpu_transcoder), m_n.link_m);
5306 I915_WRITE(PIPE_LINK_N1(cpu_transcoder), m_n.link_n);
5309 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
5310 struct drm_display_mode *adjusted_mode,
5311 intel_clock_t *clock, u32 fp)
5313 struct drm_crtc *crtc = &intel_crtc->base;
5314 struct drm_device *dev = crtc->dev;
5315 struct drm_i915_private *dev_priv = dev->dev_private;
5316 struct intel_encoder *intel_encoder;
5317 uint32_t dpll;
5318 int factor, pixel_multiplier, num_connectors = 0;
5319 bool is_lvds = false, is_sdvo = false, is_tv = false;
5320 bool is_dp = false, is_cpu_edp = false;
5322 for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
5323 switch (intel_encoder->type) {
5324 case INTEL_OUTPUT_LVDS:
5325 is_lvds = true;
5326 break;
5327 case INTEL_OUTPUT_SDVO:
5328 case INTEL_OUTPUT_HDMI:
5329 is_sdvo = true;
5330 if (intel_encoder->needs_tv_clock)
5331 is_tv = true;
5332 break;
5333 case INTEL_OUTPUT_TVOUT:
5334 is_tv = true;
5335 break;
5336 case INTEL_OUTPUT_DISPLAYPORT:
5337 is_dp = true;
5338 break;
5339 case INTEL_OUTPUT_EDP:
5340 is_dp = true;
5341 if (!intel_encoder_is_pch_edp(&intel_encoder->base))
5342 is_cpu_edp = true;
5343 break;
5346 num_connectors++;
5349 /* Enable autotuning of the PLL clock (if permissible) */
5350 factor = 21;
5351 if (is_lvds) {
5352 if ((intel_panel_use_ssc(dev_priv) &&
5353 dev_priv->lvds_ssc_freq == 100) ||
5354 (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5355 factor = 25;
5356 } else if (is_sdvo && is_tv)
5357 factor = 20;
5359 if (clock->m < factor * clock->n)
5360 fp |= FP_CB_TUNE;
5362 dpll = 0;
5364 if (is_lvds)
5365 dpll |= DPLLB_MODE_LVDS;
5366 else
5367 dpll |= DPLLB_MODE_DAC_SERIAL;
5368 if (is_sdvo) {
5369 pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5370 if (pixel_multiplier > 1) {
5371 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5373 dpll |= DPLL_DVO_HIGH_SPEED;
5375 if (is_dp && !is_cpu_edp)
5376 dpll |= DPLL_DVO_HIGH_SPEED;
5378 /* compute bitmask from p1 value */
5379 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5380 /* also FPA1 */
5381 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5383 switch (clock->p2) {
5384 case 5:
5385 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5386 break;
5387 case 7:
5388 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5389 break;
5390 case 10:
5391 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5392 break;
5393 case 14:
5394 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5395 break;
5398 if (is_sdvo && is_tv)
5399 dpll |= PLL_REF_INPUT_TVCLKINBC;
5400 else if (is_tv)
5401 /* XXX: just matching BIOS for now */
5402 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5403 dpll |= 3;
5404 else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5405 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5406 else
5407 dpll |= PLL_REF_INPUT_DREFCLK;
5409 return dpll;
5412 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5413 struct drm_display_mode *mode,
5414 struct drm_display_mode *adjusted_mode,
5415 int x, int y,
5416 struct drm_framebuffer *fb)
5418 struct drm_device *dev = crtc->dev;
5419 struct drm_i915_private *dev_priv = dev->dev_private;
5420 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5421 int pipe = intel_crtc->pipe;
5422 int plane = intel_crtc->plane;
5423 int num_connectors = 0;
5424 intel_clock_t clock, reduced_clock;
5425 u32 dpll, fp = 0, fp2 = 0;
5426 bool ok, has_reduced_clock = false;
5427 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5428 struct intel_encoder *encoder;
5429 u32 temp;
5430 int ret;
5431 bool dither, fdi_config_ok;
5433 for_each_encoder_on_crtc(dev, crtc, encoder) {
5434 switch (encoder->type) {
5435 case INTEL_OUTPUT_LVDS:
5436 is_lvds = true;
5437 break;
5438 case INTEL_OUTPUT_DISPLAYPORT:
5439 is_dp = true;
5440 break;
5441 case INTEL_OUTPUT_EDP:
5442 is_dp = true;
5443 if (!intel_encoder_is_pch_edp(&encoder->base))
5444 is_cpu_edp = true;
5445 break;
5448 num_connectors++;
5451 WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
5452 "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
5454 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5455 &has_reduced_clock, &reduced_clock);
5456 if (!ok) {
5457 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5458 return -EINVAL;
5461 /* Ensure that the cursor is valid for the new mode before changing... */
5462 intel_crtc_update_cursor(crtc, true);
5464 /* determine panel color depth */
5465 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5466 adjusted_mode);
5467 if (is_lvds && dev_priv->lvds_dither)
5468 dither = true;
5470 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5471 if (has_reduced_clock)
5472 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5473 reduced_clock.m2;
5475 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock, fp);
5477 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5478 drm_mode_debug_printmodeline(mode);
5480 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
5481 if (!is_cpu_edp) {
5482 struct intel_pch_pll *pll;
5484 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5485 if (pll == NULL) {
5486 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5487 pipe);
5488 return -EINVAL;
5490 } else
5491 intel_put_pch_pll(intel_crtc);
5493 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5494 * This is an exception to the general rule that mode_set doesn't turn
5495 * things on.
5497 if (is_lvds) {
5498 temp = I915_READ(PCH_LVDS);
5499 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5500 if (HAS_PCH_CPT(dev)) {
5501 temp &= ~PORT_TRANS_SEL_MASK;
5502 temp |= PORT_TRANS_SEL_CPT(pipe);
5503 } else {
5504 if (pipe == 1)
5505 temp |= LVDS_PIPEB_SELECT;
5506 else
5507 temp &= ~LVDS_PIPEB_SELECT;
5510 /* set the corresponsding LVDS_BORDER bit */
5511 temp |= dev_priv->lvds_border_bits;
5512 /* Set the B0-B3 data pairs corresponding to whether we're going to
5513 * set the DPLLs for dual-channel mode or not.
5515 if (clock.p2 == 7)
5516 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5517 else
5518 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5520 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5521 * appropriately here, but we need to look more thoroughly into how
5522 * panels behave in the two modes.
5524 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5525 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5526 temp |= LVDS_HSYNC_POLARITY;
5527 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5528 temp |= LVDS_VSYNC_POLARITY;
5529 I915_WRITE(PCH_LVDS, temp);
5532 if (is_dp && !is_cpu_edp) {
5533 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5534 } else {
5535 /* For non-DP output, clear any trans DP clock recovery setting.*/
5536 I915_WRITE(TRANSDATA_M1(pipe), 0);
5537 I915_WRITE(TRANSDATA_N1(pipe), 0);
5538 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5539 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5542 if (intel_crtc->pch_pll) {
5543 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5545 /* Wait for the clocks to stabilize. */
5546 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5547 udelay(150);
5549 /* The pixel multiplier can only be updated once the
5550 * DPLL is enabled and the clocks are stable.
5552 * So write it again.
5554 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5557 intel_crtc->lowfreq_avail = false;
5558 if (intel_crtc->pch_pll) {
5559 if (is_lvds && has_reduced_clock && i915_powersave) {
5560 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5561 intel_crtc->lowfreq_avail = true;
5562 } else {
5563 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5567 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5569 /* Note, this also computes intel_crtc->fdi_lanes which is used below in
5570 * ironlake_check_fdi_lanes. */
5571 ironlake_set_m_n(crtc, mode, adjusted_mode);
5573 fdi_config_ok = ironlake_check_fdi_lanes(intel_crtc);
5575 if (is_cpu_edp)
5576 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5578 ironlake_set_pipeconf(crtc, adjusted_mode, dither);
5580 intel_wait_for_vblank(dev, pipe);
5582 /* Set up the display plane register */
5583 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5584 POSTING_READ(DSPCNTR(plane));
5586 ret = intel_pipe_set_base(crtc, x, y, fb);
5588 intel_update_watermarks(dev);
5590 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5592 return fdi_config_ok ? ret : -EINVAL;
5595 static int haswell_crtc_mode_set(struct drm_crtc *crtc,
5596 struct drm_display_mode *mode,
5597 struct drm_display_mode *adjusted_mode,
5598 int x, int y,
5599 struct drm_framebuffer *fb)
5601 struct drm_device *dev = crtc->dev;
5602 struct drm_i915_private *dev_priv = dev->dev_private;
5603 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5604 int pipe = intel_crtc->pipe;
5605 int plane = intel_crtc->plane;
5606 int num_connectors = 0;
5607 intel_clock_t clock, reduced_clock;
5608 u32 dpll = 0, fp = 0, fp2 = 0;
5609 bool ok, has_reduced_clock = false;
5610 bool is_lvds = false, is_dp = false, is_cpu_edp = false;
5611 struct intel_encoder *encoder;
5612 u32 temp;
5613 int ret;
5614 bool dither;
5616 for_each_encoder_on_crtc(dev, crtc, encoder) {
5617 switch (encoder->type) {
5618 case INTEL_OUTPUT_LVDS:
5619 is_lvds = true;
5620 break;
5621 case INTEL_OUTPUT_DISPLAYPORT:
5622 is_dp = true;
5623 break;
5624 case INTEL_OUTPUT_EDP:
5625 is_dp = true;
5626 if (!intel_encoder_is_pch_edp(&encoder->base))
5627 is_cpu_edp = true;
5628 break;
5631 num_connectors++;
5634 if (is_cpu_edp)
5635 intel_crtc->cpu_transcoder = TRANSCODER_EDP;
5636 else
5637 intel_crtc->cpu_transcoder = pipe;
5639 /* We are not sure yet this won't happen. */
5640 WARN(!HAS_PCH_LPT(dev), "Unexpected PCH type %d\n",
5641 INTEL_PCH_TYPE(dev));
5643 WARN(num_connectors != 1, "%d connectors attached to pipe %c\n",
5644 num_connectors, pipe_name(pipe));
5646 WARN_ON(I915_READ(PIPECONF(intel_crtc->cpu_transcoder)) &
5647 (PIPECONF_ENABLE | I965_PIPECONF_ACTIVE));
5649 WARN_ON(I915_READ(DSPCNTR(plane)) & DISPLAY_PLANE_ENABLE);
5651 if (!intel_ddi_pll_mode_set(crtc, adjusted_mode->clock))
5652 return -EINVAL;
5654 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5655 ok = ironlake_compute_clocks(crtc, adjusted_mode, &clock,
5656 &has_reduced_clock,
5657 &reduced_clock);
5658 if (!ok) {
5659 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5660 return -EINVAL;
5664 /* Ensure that the cursor is valid for the new mode before changing... */
5665 intel_crtc_update_cursor(crtc, true);
5667 /* determine panel color depth */
5668 dither = intel_choose_pipe_bpp_dither(crtc, fb, &intel_crtc->bpp,
5669 adjusted_mode);
5670 if (is_lvds && dev_priv->lvds_dither)
5671 dither = true;
5673 DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5674 drm_mode_debug_printmodeline(mode);
5676 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5677 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5678 if (has_reduced_clock)
5679 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5680 reduced_clock.m2;
5682 dpll = ironlake_compute_dpll(intel_crtc, adjusted_mode, &clock,
5683 fp);
5685 /* CPU eDP is the only output that doesn't need a PCH PLL of its
5686 * own on pre-Haswell/LPT generation */
5687 if (!is_cpu_edp) {
5688 struct intel_pch_pll *pll;
5690 pll = intel_get_pch_pll(intel_crtc, dpll, fp);
5691 if (pll == NULL) {
5692 DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
5693 pipe);
5694 return -EINVAL;
5696 } else
5697 intel_put_pch_pll(intel_crtc);
5699 /* The LVDS pin pair needs to be on before the DPLLs are
5700 * enabled. This is an exception to the general rule that
5701 * mode_set doesn't turn things on.
5703 if (is_lvds) {
5704 temp = I915_READ(PCH_LVDS);
5705 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5706 if (HAS_PCH_CPT(dev)) {
5707 temp &= ~PORT_TRANS_SEL_MASK;
5708 temp |= PORT_TRANS_SEL_CPT(pipe);
5709 } else {
5710 if (pipe == 1)
5711 temp |= LVDS_PIPEB_SELECT;
5712 else
5713 temp &= ~LVDS_PIPEB_SELECT;
5716 /* set the corresponsding LVDS_BORDER bit */
5717 temp |= dev_priv->lvds_border_bits;
5718 /* Set the B0-B3 data pairs corresponding to whether
5719 * we're going to set the DPLLs for dual-channel mode or
5720 * not.
5722 if (clock.p2 == 7)
5723 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5724 else
5725 temp &= ~(LVDS_B0B3_POWER_UP |
5726 LVDS_CLKB_POWER_UP);
5728 /* It would be nice to set 24 vs 18-bit mode
5729 * (LVDS_A3_POWER_UP) appropriately here, but we need to
5730 * look more thoroughly into how panels behave in the
5731 * two modes.
5733 temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5734 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5735 temp |= LVDS_HSYNC_POLARITY;
5736 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5737 temp |= LVDS_VSYNC_POLARITY;
5738 I915_WRITE(PCH_LVDS, temp);
5742 if (is_dp && !is_cpu_edp) {
5743 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5744 } else {
5745 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5746 /* For non-DP output, clear any trans DP clock recovery
5747 * setting.*/
5748 I915_WRITE(TRANSDATA_M1(pipe), 0);
5749 I915_WRITE(TRANSDATA_N1(pipe), 0);
5750 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5751 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5755 intel_crtc->lowfreq_avail = false;
5756 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
5757 if (intel_crtc->pch_pll) {
5758 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5760 /* Wait for the clocks to stabilize. */
5761 POSTING_READ(intel_crtc->pch_pll->pll_reg);
5762 udelay(150);
5764 /* The pixel multiplier can only be updated once the
5765 * DPLL is enabled and the clocks are stable.
5767 * So write it again.
5769 I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
5772 if (intel_crtc->pch_pll) {
5773 if (is_lvds && has_reduced_clock && i915_powersave) {
5774 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
5775 intel_crtc->lowfreq_avail = true;
5776 } else {
5777 I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
5782 intel_set_pipe_timings(intel_crtc, mode, adjusted_mode);
5784 if (!is_dp || is_cpu_edp)
5785 ironlake_set_m_n(crtc, mode, adjusted_mode);
5787 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
5788 if (is_cpu_edp)
5789 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5791 haswell_set_pipeconf(crtc, adjusted_mode, dither);
5793 /* Set up the display plane register */
5794 I915_WRITE(DSPCNTR(plane), DISPPLANE_GAMMA_ENABLE);
5795 POSTING_READ(DSPCNTR(plane));
5797 ret = intel_pipe_set_base(crtc, x, y, fb);
5799 intel_update_watermarks(dev);
5801 intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
5803 return ret;
5806 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5807 struct drm_display_mode *mode,
5808 struct drm_display_mode *adjusted_mode,
5809 int x, int y,
5810 struct drm_framebuffer *fb)
5812 struct drm_device *dev = crtc->dev;
5813 struct drm_i915_private *dev_priv = dev->dev_private;
5814 struct drm_encoder_helper_funcs *encoder_funcs;
5815 struct intel_encoder *encoder;
5816 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5817 int pipe = intel_crtc->pipe;
5818 int ret;
5820 drm_vblank_pre_modeset(dev, pipe);
5822 ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5823 x, y, fb);
5824 drm_vblank_post_modeset(dev, pipe);
5826 if (ret != 0)
5827 return ret;
5829 for_each_encoder_on_crtc(dev, crtc, encoder) {
5830 DRM_DEBUG_KMS("[ENCODER:%d:%s] set [MODE:%d:%s]\n",
5831 encoder->base.base.id,
5832 drm_get_encoder_name(&encoder->base),
5833 mode->base.id, mode->name);
5834 encoder_funcs = encoder->base.helper_private;
5835 encoder_funcs->mode_set(&encoder->base, mode, adjusted_mode);
5838 return 0;
5841 static bool intel_eld_uptodate(struct drm_connector *connector,
5842 int reg_eldv, uint32_t bits_eldv,
5843 int reg_elda, uint32_t bits_elda,
5844 int reg_edid)
5846 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5847 uint8_t *eld = connector->eld;
5848 uint32_t i;
5850 i = I915_READ(reg_eldv);
5851 i &= bits_eldv;
5853 if (!eld[0])
5854 return !i;
5856 if (!i)
5857 return false;
5859 i = I915_READ(reg_elda);
5860 i &= ~bits_elda;
5861 I915_WRITE(reg_elda, i);
5863 for (i = 0; i < eld[2]; i++)
5864 if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
5865 return false;
5867 return true;
5870 static void g4x_write_eld(struct drm_connector *connector,
5871 struct drm_crtc *crtc)
5873 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5874 uint8_t *eld = connector->eld;
5875 uint32_t eldv;
5876 uint32_t len;
5877 uint32_t i;
5879 i = I915_READ(G4X_AUD_VID_DID);
5881 if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
5882 eldv = G4X_ELDV_DEVCL_DEVBLC;
5883 else
5884 eldv = G4X_ELDV_DEVCTG;
5886 if (intel_eld_uptodate(connector,
5887 G4X_AUD_CNTL_ST, eldv,
5888 G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
5889 G4X_HDMIW_HDMIEDID))
5890 return;
5892 i = I915_READ(G4X_AUD_CNTL_ST);
5893 i &= ~(eldv | G4X_ELD_ADDR);
5894 len = (i >> 9) & 0x1f; /* ELD buffer size */
5895 I915_WRITE(G4X_AUD_CNTL_ST, i);
5897 if (!eld[0])
5898 return;
5900 len = min_t(uint8_t, eld[2], len);
5901 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5902 for (i = 0; i < len; i++)
5903 I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
5905 i = I915_READ(G4X_AUD_CNTL_ST);
5906 i |= eldv;
5907 I915_WRITE(G4X_AUD_CNTL_ST, i);
5910 static void haswell_write_eld(struct drm_connector *connector,
5911 struct drm_crtc *crtc)
5913 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5914 uint8_t *eld = connector->eld;
5915 struct drm_device *dev = crtc->dev;
5916 uint32_t eldv;
5917 uint32_t i;
5918 int len;
5919 int pipe = to_intel_crtc(crtc)->pipe;
5920 int tmp;
5922 int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
5923 int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
5924 int aud_config = HSW_AUD_CFG(pipe);
5925 int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
5928 DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
5930 /* Audio output enable */
5931 DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
5932 tmp = I915_READ(aud_cntrl_st2);
5933 tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
5934 I915_WRITE(aud_cntrl_st2, tmp);
5936 /* Wait for 1 vertical blank */
5937 intel_wait_for_vblank(dev, pipe);
5939 /* Set ELD valid state */
5940 tmp = I915_READ(aud_cntrl_st2);
5941 DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
5942 tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
5943 I915_WRITE(aud_cntrl_st2, tmp);
5944 tmp = I915_READ(aud_cntrl_st2);
5945 DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
5947 /* Enable HDMI mode */
5948 tmp = I915_READ(aud_config);
5949 DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
5950 /* clear N_programing_enable and N_value_index */
5951 tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
5952 I915_WRITE(aud_config, tmp);
5954 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
5956 eldv = AUDIO_ELD_VALID_A << (pipe * 4);
5958 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
5959 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
5960 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
5961 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
5962 } else
5963 I915_WRITE(aud_config, 0);
5965 if (intel_eld_uptodate(connector,
5966 aud_cntrl_st2, eldv,
5967 aud_cntl_st, IBX_ELD_ADDRESS,
5968 hdmiw_hdmiedid))
5969 return;
5971 i = I915_READ(aud_cntrl_st2);
5972 i &= ~eldv;
5973 I915_WRITE(aud_cntrl_st2, i);
5975 if (!eld[0])
5976 return;
5978 i = I915_READ(aud_cntl_st);
5979 i &= ~IBX_ELD_ADDRESS;
5980 I915_WRITE(aud_cntl_st, i);
5981 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
5982 DRM_DEBUG_DRIVER("port num:%d\n", i);
5984 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
5985 DRM_DEBUG_DRIVER("ELD size %d\n", len);
5986 for (i = 0; i < len; i++)
5987 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
5989 i = I915_READ(aud_cntrl_st2);
5990 i |= eldv;
5991 I915_WRITE(aud_cntrl_st2, i);
5995 static void ironlake_write_eld(struct drm_connector *connector,
5996 struct drm_crtc *crtc)
5998 struct drm_i915_private *dev_priv = connector->dev->dev_private;
5999 uint8_t *eld = connector->eld;
6000 uint32_t eldv;
6001 uint32_t i;
6002 int len;
6003 int hdmiw_hdmiedid;
6004 int aud_config;
6005 int aud_cntl_st;
6006 int aud_cntrl_st2;
6007 int pipe = to_intel_crtc(crtc)->pipe;
6009 if (HAS_PCH_IBX(connector->dev)) {
6010 hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
6011 aud_config = IBX_AUD_CFG(pipe);
6012 aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
6013 aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6014 } else {
6015 hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
6016 aud_config = CPT_AUD_CFG(pipe);
6017 aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
6018 aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6021 DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
6023 i = I915_READ(aud_cntl_st);
6024 i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
6025 if (!i) {
6026 DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
6027 /* operate blindly on all ports */
6028 eldv = IBX_ELD_VALIDB;
6029 eldv |= IBX_ELD_VALIDB << 4;
6030 eldv |= IBX_ELD_VALIDB << 8;
6031 } else {
6032 DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
6033 eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6036 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6037 DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6038 eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
6039 I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6040 } else
6041 I915_WRITE(aud_config, 0);
6043 if (intel_eld_uptodate(connector,
6044 aud_cntrl_st2, eldv,
6045 aud_cntl_st, IBX_ELD_ADDRESS,
6046 hdmiw_hdmiedid))
6047 return;
6049 i = I915_READ(aud_cntrl_st2);
6050 i &= ~eldv;
6051 I915_WRITE(aud_cntrl_st2, i);
6053 if (!eld[0])
6054 return;
6056 i = I915_READ(aud_cntl_st);
6057 i &= ~IBX_ELD_ADDRESS;
6058 I915_WRITE(aud_cntl_st, i);
6060 len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
6061 DRM_DEBUG_DRIVER("ELD size %d\n", len);
6062 for (i = 0; i < len; i++)
6063 I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6065 i = I915_READ(aud_cntrl_st2);
6066 i |= eldv;
6067 I915_WRITE(aud_cntrl_st2, i);
6070 void intel_write_eld(struct drm_encoder *encoder,
6071 struct drm_display_mode *mode)
6073 struct drm_crtc *crtc = encoder->crtc;
6074 struct drm_connector *connector;
6075 struct drm_device *dev = encoder->dev;
6076 struct drm_i915_private *dev_priv = dev->dev_private;
6078 connector = drm_select_eld(encoder, mode);
6079 if (!connector)
6080 return;
6082 DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6083 connector->base.id,
6084 drm_get_connector_name(connector),
6085 connector->encoder->base.id,
6086 drm_get_encoder_name(connector->encoder));
6088 connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6090 if (dev_priv->display.write_eld)
6091 dev_priv->display.write_eld(connector, crtc);
6094 /** Loads the palette/gamma unit for the CRTC with the prepared values */
6095 void intel_crtc_load_lut(struct drm_crtc *crtc)
6097 struct drm_device *dev = crtc->dev;
6098 struct drm_i915_private *dev_priv = dev->dev_private;
6099 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6100 int palreg = PALETTE(intel_crtc->pipe);
6101 int i;
6103 /* The clocks have to be on to load the palette. */
6104 if (!crtc->enabled || !intel_crtc->active)
6105 return;
6107 /* use legacy palette for Ironlake */
6108 if (HAS_PCH_SPLIT(dev))
6109 palreg = LGC_PALETTE(intel_crtc->pipe);
6111 for (i = 0; i < 256; i++) {
6112 I915_WRITE(palreg + 4 * i,
6113 (intel_crtc->lut_r[i] << 16) |
6114 (intel_crtc->lut_g[i] << 8) |
6115 intel_crtc->lut_b[i]);
6119 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6121 struct drm_device *dev = crtc->dev;
6122 struct drm_i915_private *dev_priv = dev->dev_private;
6123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6124 bool visible = base != 0;
6125 u32 cntl;
6127 if (intel_crtc->cursor_visible == visible)
6128 return;
6130 cntl = I915_READ(_CURACNTR);
6131 if (visible) {
6132 /* On these chipsets we can only modify the base whilst
6133 * the cursor is disabled.
6135 I915_WRITE(_CURABASE, base);
6137 cntl &= ~(CURSOR_FORMAT_MASK);
6138 /* XXX width must be 64, stride 256 => 0x00 << 28 */
6139 cntl |= CURSOR_ENABLE |
6140 CURSOR_GAMMA_ENABLE |
6141 CURSOR_FORMAT_ARGB;
6142 } else
6143 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6144 I915_WRITE(_CURACNTR, cntl);
6146 intel_crtc->cursor_visible = visible;
6149 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6151 struct drm_device *dev = crtc->dev;
6152 struct drm_i915_private *dev_priv = dev->dev_private;
6153 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6154 int pipe = intel_crtc->pipe;
6155 bool visible = base != 0;
6157 if (intel_crtc->cursor_visible != visible) {
6158 uint32_t cntl = I915_READ(CURCNTR(pipe));
6159 if (base) {
6160 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6161 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6162 cntl |= pipe << 28; /* Connect to correct pipe */
6163 } else {
6164 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6165 cntl |= CURSOR_MODE_DISABLE;
6167 I915_WRITE(CURCNTR(pipe), cntl);
6169 intel_crtc->cursor_visible = visible;
6171 /* and commit changes on next vblank */
6172 I915_WRITE(CURBASE(pipe), base);
6175 static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6177 struct drm_device *dev = crtc->dev;
6178 struct drm_i915_private *dev_priv = dev->dev_private;
6179 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6180 int pipe = intel_crtc->pipe;
6181 bool visible = base != 0;
6183 if (intel_crtc->cursor_visible != visible) {
6184 uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6185 if (base) {
6186 cntl &= ~CURSOR_MODE;
6187 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6188 } else {
6189 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6190 cntl |= CURSOR_MODE_DISABLE;
6192 I915_WRITE(CURCNTR_IVB(pipe), cntl);
6194 intel_crtc->cursor_visible = visible;
6196 /* and commit changes on next vblank */
6197 I915_WRITE(CURBASE_IVB(pipe), base);
6200 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6201 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6202 bool on)
6204 struct drm_device *dev = crtc->dev;
6205 struct drm_i915_private *dev_priv = dev->dev_private;
6206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6207 int pipe = intel_crtc->pipe;
6208 int x = intel_crtc->cursor_x;
6209 int y = intel_crtc->cursor_y;
6210 u32 base, pos;
6211 bool visible;
6213 pos = 0;
6215 if (on && crtc->enabled && crtc->fb) {
6216 base = intel_crtc->cursor_addr;
6217 if (x > (int) crtc->fb->width)
6218 base = 0;
6220 if (y > (int) crtc->fb->height)
6221 base = 0;
6222 } else
6223 base = 0;
6225 if (x < 0) {
6226 if (x + intel_crtc->cursor_width < 0)
6227 base = 0;
6229 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6230 x = -x;
6232 pos |= x << CURSOR_X_SHIFT;
6234 if (y < 0) {
6235 if (y + intel_crtc->cursor_height < 0)
6236 base = 0;
6238 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6239 y = -y;
6241 pos |= y << CURSOR_Y_SHIFT;
6243 visible = base != 0;
6244 if (!visible && !intel_crtc->cursor_visible)
6245 return;
6247 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
6248 I915_WRITE(CURPOS_IVB(pipe), pos);
6249 ivb_update_cursor(crtc, base);
6250 } else {
6251 I915_WRITE(CURPOS(pipe), pos);
6252 if (IS_845G(dev) || IS_I865G(dev))
6253 i845_update_cursor(crtc, base);
6254 else
6255 i9xx_update_cursor(crtc, base);
6259 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6260 struct drm_file *file,
6261 uint32_t handle,
6262 uint32_t width, uint32_t height)
6264 struct drm_device *dev = crtc->dev;
6265 struct drm_i915_private *dev_priv = dev->dev_private;
6266 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6267 struct drm_i915_gem_object *obj;
6268 uint32_t addr;
6269 int ret;
6271 /* if we want to turn off the cursor ignore width and height */
6272 if (!handle) {
6273 DRM_DEBUG_KMS("cursor off\n");
6274 addr = 0;
6275 obj = NULL;
6276 mutex_lock(&dev->struct_mutex);
6277 goto finish;
6280 /* Currently we only support 64x64 cursors */
6281 if (width != 64 || height != 64) {
6282 DRM_ERROR("we currently only support 64x64 cursors\n");
6283 return -EINVAL;
6286 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6287 if (&obj->base == NULL)
6288 return -ENOENT;
6290 if (obj->base.size < width * height * 4) {
6291 DRM_ERROR("buffer is to small\n");
6292 ret = -ENOMEM;
6293 goto fail;
6296 /* we only need to pin inside GTT if cursor is non-phy */
6297 mutex_lock(&dev->struct_mutex);
6298 if (!dev_priv->info->cursor_needs_physical) {
6299 if (obj->tiling_mode) {
6300 DRM_ERROR("cursor cannot be tiled\n");
6301 ret = -EINVAL;
6302 goto fail_locked;
6305 ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6306 if (ret) {
6307 DRM_ERROR("failed to move cursor bo into the GTT\n");
6308 goto fail_locked;
6311 ret = i915_gem_object_put_fence(obj);
6312 if (ret) {
6313 DRM_ERROR("failed to release fence for cursor");
6314 goto fail_unpin;
6317 addr = obj->gtt_offset;
6318 } else {
6319 int align = IS_I830(dev) ? 16 * 1024 : 256;
6320 ret = i915_gem_attach_phys_object(dev, obj,
6321 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6322 align);
6323 if (ret) {
6324 DRM_ERROR("failed to attach phys object\n");
6325 goto fail_locked;
6327 addr = obj->phys_obj->handle->busaddr;
6330 if (IS_GEN2(dev))
6331 I915_WRITE(CURSIZE, (height << 12) | width);
6333 finish:
6334 if (intel_crtc->cursor_bo) {
6335 if (dev_priv->info->cursor_needs_physical) {
6336 if (intel_crtc->cursor_bo != obj)
6337 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6338 } else
6339 i915_gem_object_unpin(intel_crtc->cursor_bo);
6340 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6343 mutex_unlock(&dev->struct_mutex);
6345 intel_crtc->cursor_addr = addr;
6346 intel_crtc->cursor_bo = obj;
6347 intel_crtc->cursor_width = width;
6348 intel_crtc->cursor_height = height;
6350 intel_crtc_update_cursor(crtc, true);
6352 return 0;
6353 fail_unpin:
6354 i915_gem_object_unpin(obj);
6355 fail_locked:
6356 mutex_unlock(&dev->struct_mutex);
6357 fail:
6358 drm_gem_object_unreference_unlocked(&obj->base);
6359 return ret;
6362 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6364 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6366 intel_crtc->cursor_x = x;
6367 intel_crtc->cursor_y = y;
6369 intel_crtc_update_cursor(crtc, true);
6371 return 0;
6374 /** Sets the color ramps on behalf of RandR */
6375 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6376 u16 blue, int regno)
6378 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6380 intel_crtc->lut_r[regno] = red >> 8;
6381 intel_crtc->lut_g[regno] = green >> 8;
6382 intel_crtc->lut_b[regno] = blue >> 8;
6385 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6386 u16 *blue, int regno)
6388 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6390 *red = intel_crtc->lut_r[regno] << 8;
6391 *green = intel_crtc->lut_g[regno] << 8;
6392 *blue = intel_crtc->lut_b[regno] << 8;
6395 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6396 u16 *blue, uint32_t start, uint32_t size)
6398 int end = (start + size > 256) ? 256 : start + size, i;
6399 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6401 for (i = start; i < end; i++) {
6402 intel_crtc->lut_r[i] = red[i] >> 8;
6403 intel_crtc->lut_g[i] = green[i] >> 8;
6404 intel_crtc->lut_b[i] = blue[i] >> 8;
6407 intel_crtc_load_lut(crtc);
6411 * Get a pipe with a simple mode set on it for doing load-based monitor
6412 * detection.
6414 * It will be up to the load-detect code to adjust the pipe as appropriate for
6415 * its requirements. The pipe will be connected to no other encoders.
6417 * Currently this code will only succeed if there is a pipe with no encoders
6418 * configured for it. In the future, it could choose to temporarily disable
6419 * some outputs to free up a pipe for its use.
6421 * \return crtc, or NULL if no pipes are available.
6424 /* VESA 640x480x72Hz mode to set on the pipe */
6425 static struct drm_display_mode load_detect_mode = {
6426 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6427 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6430 static struct drm_framebuffer *
6431 intel_framebuffer_create(struct drm_device *dev,
6432 struct drm_mode_fb_cmd2 *mode_cmd,
6433 struct drm_i915_gem_object *obj)
6435 struct intel_framebuffer *intel_fb;
6436 int ret;
6438 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
6439 if (!intel_fb) {
6440 drm_gem_object_unreference_unlocked(&obj->base);
6441 return ERR_PTR(-ENOMEM);
6444 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6445 if (ret) {
6446 drm_gem_object_unreference_unlocked(&obj->base);
6447 kfree(intel_fb);
6448 return ERR_PTR(ret);
6451 return &intel_fb->base;
6454 static u32
6455 intel_framebuffer_pitch_for_width(int width, int bpp)
6457 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
6458 return ALIGN(pitch, 64);
6461 static u32
6462 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6464 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6465 return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
6468 static struct drm_framebuffer *
6469 intel_framebuffer_create_for_mode(struct drm_device *dev,
6470 struct drm_display_mode *mode,
6471 int depth, int bpp)
6473 struct drm_i915_gem_object *obj;
6474 struct drm_mode_fb_cmd2 mode_cmd;
6476 obj = i915_gem_alloc_object(dev,
6477 intel_framebuffer_size_for_mode(mode, bpp));
6478 if (obj == NULL)
6479 return ERR_PTR(-ENOMEM);
6481 mode_cmd.width = mode->hdisplay;
6482 mode_cmd.height = mode->vdisplay;
6483 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6484 bpp);
6485 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6487 return intel_framebuffer_create(dev, &mode_cmd, obj);
6490 static struct drm_framebuffer *
6491 mode_fits_in_fbdev(struct drm_device *dev,
6492 struct drm_display_mode *mode)
6494 struct drm_i915_private *dev_priv = dev->dev_private;
6495 struct drm_i915_gem_object *obj;
6496 struct drm_framebuffer *fb;
6498 if (dev_priv->fbdev == NULL)
6499 return NULL;
6501 obj = dev_priv->fbdev->ifb.obj;
6502 if (obj == NULL)
6503 return NULL;
6505 fb = &dev_priv->fbdev->ifb.base;
6506 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6507 fb->bits_per_pixel))
6508 return NULL;
6510 if (obj->base.size < mode->vdisplay * fb->pitches[0])
6511 return NULL;
6513 return fb;
6516 bool intel_get_load_detect_pipe(struct drm_connector *connector,
6517 struct drm_display_mode *mode,
6518 struct intel_load_detect_pipe *old)
6520 struct intel_crtc *intel_crtc;
6521 struct intel_encoder *intel_encoder =
6522 intel_attached_encoder(connector);
6523 struct drm_crtc *possible_crtc;
6524 struct drm_encoder *encoder = &intel_encoder->base;
6525 struct drm_crtc *crtc = NULL;
6526 struct drm_device *dev = encoder->dev;
6527 struct drm_framebuffer *fb;
6528 int i = -1;
6530 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6531 connector->base.id, drm_get_connector_name(connector),
6532 encoder->base.id, drm_get_encoder_name(encoder));
6535 * Algorithm gets a little messy:
6537 * - if the connector already has an assigned crtc, use it (but make
6538 * sure it's on first)
6540 * - try to find the first unused crtc that can drive this connector,
6541 * and use that if we find one
6544 /* See if we already have a CRTC for this connector */
6545 if (encoder->crtc) {
6546 crtc = encoder->crtc;
6548 old->dpms_mode = connector->dpms;
6549 old->load_detect_temp = false;
6551 /* Make sure the crtc and connector are running */
6552 if (connector->dpms != DRM_MODE_DPMS_ON)
6553 connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
6555 return true;
6558 /* Find an unused one (if possible) */
6559 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6560 i++;
6561 if (!(encoder->possible_crtcs & (1 << i)))
6562 continue;
6563 if (!possible_crtc->enabled) {
6564 crtc = possible_crtc;
6565 break;
6570 * If we didn't find an unused CRTC, don't use any.
6572 if (!crtc) {
6573 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6574 return false;
6577 intel_encoder->new_crtc = to_intel_crtc(crtc);
6578 to_intel_connector(connector)->new_encoder = intel_encoder;
6580 intel_crtc = to_intel_crtc(crtc);
6581 old->dpms_mode = connector->dpms;
6582 old->load_detect_temp = true;
6583 old->release_fb = NULL;
6585 if (!mode)
6586 mode = &load_detect_mode;
6588 /* We need a framebuffer large enough to accommodate all accesses
6589 * that the plane may generate whilst we perform load detection.
6590 * We can not rely on the fbcon either being present (we get called
6591 * during its initialisation to detect all boot displays, or it may
6592 * not even exist) or that it is large enough to satisfy the
6593 * requested mode.
6595 fb = mode_fits_in_fbdev(dev, mode);
6596 if (fb == NULL) {
6597 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6598 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
6599 old->release_fb = fb;
6600 } else
6601 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6602 if (IS_ERR(fb)) {
6603 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6604 goto fail;
6607 if (!intel_set_mode(crtc, mode, 0, 0, fb)) {
6608 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6609 if (old->release_fb)
6610 old->release_fb->funcs->destroy(old->release_fb);
6611 goto fail;
6614 /* let the connector get through one full cycle before testing */
6615 intel_wait_for_vblank(dev, intel_crtc->pipe);
6617 return true;
6618 fail:
6619 connector->encoder = NULL;
6620 encoder->crtc = NULL;
6621 return false;
6624 void intel_release_load_detect_pipe(struct drm_connector *connector,
6625 struct intel_load_detect_pipe *old)
6627 struct intel_encoder *intel_encoder =
6628 intel_attached_encoder(connector);
6629 struct drm_encoder *encoder = &intel_encoder->base;
6631 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6632 connector->base.id, drm_get_connector_name(connector),
6633 encoder->base.id, drm_get_encoder_name(encoder));
6635 if (old->load_detect_temp) {
6636 struct drm_crtc *crtc = encoder->crtc;
6638 to_intel_connector(connector)->new_encoder = NULL;
6639 intel_encoder->new_crtc = NULL;
6640 intel_set_mode(crtc, NULL, 0, 0, NULL);
6642 if (old->release_fb)
6643 old->release_fb->funcs->destroy(old->release_fb);
6645 return;
6648 /* Switch crtc and encoder back off if necessary */
6649 if (old->dpms_mode != DRM_MODE_DPMS_ON)
6650 connector->funcs->dpms(connector, old->dpms_mode);
6653 /* Returns the clock of the currently programmed mode of the given pipe. */
6654 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6656 struct drm_i915_private *dev_priv = dev->dev_private;
6657 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6658 int pipe = intel_crtc->pipe;
6659 u32 dpll = I915_READ(DPLL(pipe));
6660 u32 fp;
6661 intel_clock_t clock;
6663 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6664 fp = I915_READ(FP0(pipe));
6665 else
6666 fp = I915_READ(FP1(pipe));
6668 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6669 if (IS_PINEVIEW(dev)) {
6670 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6671 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6672 } else {
6673 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6674 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6677 if (!IS_GEN2(dev)) {
6678 if (IS_PINEVIEW(dev))
6679 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6680 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6681 else
6682 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6683 DPLL_FPA01_P1_POST_DIV_SHIFT);
6685 switch (dpll & DPLL_MODE_MASK) {
6686 case DPLLB_MODE_DAC_SERIAL:
6687 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6688 5 : 10;
6689 break;
6690 case DPLLB_MODE_LVDS:
6691 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6692 7 : 14;
6693 break;
6694 default:
6695 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6696 "mode\n", (int)(dpll & DPLL_MODE_MASK));
6697 return 0;
6700 /* XXX: Handle the 100Mhz refclk */
6701 intel_clock(dev, 96000, &clock);
6702 } else {
6703 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6705 if (is_lvds) {
6706 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6707 DPLL_FPA01_P1_POST_DIV_SHIFT);
6708 clock.p2 = 14;
6710 if ((dpll & PLL_REF_INPUT_MASK) ==
6711 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6712 /* XXX: might not be 66MHz */
6713 intel_clock(dev, 66000, &clock);
6714 } else
6715 intel_clock(dev, 48000, &clock);
6716 } else {
6717 if (dpll & PLL_P1_DIVIDE_BY_TWO)
6718 clock.p1 = 2;
6719 else {
6720 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6721 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6723 if (dpll & PLL_P2_DIVIDE_BY_4)
6724 clock.p2 = 4;
6725 else
6726 clock.p2 = 2;
6728 intel_clock(dev, 48000, &clock);
6732 /* XXX: It would be nice to validate the clocks, but we can't reuse
6733 * i830PllIsValid() because it relies on the xf86_config connector
6734 * configuration being accurate, which it isn't necessarily.
6737 return clock.dot;
6740 /** Returns the currently programmed mode of the given pipe. */
6741 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
6742 struct drm_crtc *crtc)
6744 struct drm_i915_private *dev_priv = dev->dev_private;
6745 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6746 enum transcoder cpu_transcoder = intel_crtc->cpu_transcoder;
6747 struct drm_display_mode *mode;
6748 int htot = I915_READ(HTOTAL(cpu_transcoder));
6749 int hsync = I915_READ(HSYNC(cpu_transcoder));
6750 int vtot = I915_READ(VTOTAL(cpu_transcoder));
6751 int vsync = I915_READ(VSYNC(cpu_transcoder));
6753 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
6754 if (!mode)
6755 return NULL;
6757 mode->clock = intel_crtc_clock_get(dev, crtc);
6758 mode->hdisplay = (htot & 0xffff) + 1;
6759 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
6760 mode->hsync_start = (hsync & 0xffff) + 1;
6761 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
6762 mode->vdisplay = (vtot & 0xffff) + 1;
6763 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
6764 mode->vsync_start = (vsync & 0xffff) + 1;
6765 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
6767 drm_mode_set_name(mode);
6769 return mode;
6772 static void intel_increase_pllclock(struct drm_crtc *crtc)
6774 struct drm_device *dev = crtc->dev;
6775 drm_i915_private_t *dev_priv = dev->dev_private;
6776 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6777 int pipe = intel_crtc->pipe;
6778 int dpll_reg = DPLL(pipe);
6779 int dpll;
6781 if (HAS_PCH_SPLIT(dev))
6782 return;
6784 if (!dev_priv->lvds_downclock_avail)
6785 return;
6787 dpll = I915_READ(dpll_reg);
6788 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
6789 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6791 assert_panel_unlocked(dev_priv, pipe);
6793 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
6794 I915_WRITE(dpll_reg, dpll);
6795 intel_wait_for_vblank(dev, pipe);
6797 dpll = I915_READ(dpll_reg);
6798 if (dpll & DISPLAY_RATE_SELECT_FPA1)
6799 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6803 static void intel_decrease_pllclock(struct drm_crtc *crtc)
6805 struct drm_device *dev = crtc->dev;
6806 drm_i915_private_t *dev_priv = dev->dev_private;
6807 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6809 if (HAS_PCH_SPLIT(dev))
6810 return;
6812 if (!dev_priv->lvds_downclock_avail)
6813 return;
6816 * Since this is called by a timer, we should never get here in
6817 * the manual case.
6819 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
6820 int pipe = intel_crtc->pipe;
6821 int dpll_reg = DPLL(pipe);
6822 int dpll;
6824 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6826 assert_panel_unlocked(dev_priv, pipe);
6828 dpll = I915_READ(dpll_reg);
6829 dpll |= DISPLAY_RATE_SELECT_FPA1;
6830 I915_WRITE(dpll_reg, dpll);
6831 intel_wait_for_vblank(dev, pipe);
6832 dpll = I915_READ(dpll_reg);
6833 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
6834 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6839 void intel_mark_busy(struct drm_device *dev)
6841 i915_update_gfx_val(dev->dev_private);
6844 void intel_mark_idle(struct drm_device *dev)
6848 void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
6850 struct drm_device *dev = obj->base.dev;
6851 struct drm_crtc *crtc;
6853 if (!i915_powersave)
6854 return;
6856 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6857 if (!crtc->fb)
6858 continue;
6860 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6861 intel_increase_pllclock(crtc);
6865 void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
6867 struct drm_device *dev = obj->base.dev;
6868 struct drm_crtc *crtc;
6870 if (!i915_powersave)
6871 return;
6873 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6874 if (!crtc->fb)
6875 continue;
6877 if (to_intel_framebuffer(crtc->fb)->obj == obj)
6878 intel_decrease_pllclock(crtc);
6882 static void intel_crtc_destroy(struct drm_crtc *crtc)
6884 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6885 struct drm_device *dev = crtc->dev;
6886 struct intel_unpin_work *work;
6887 unsigned long flags;
6889 spin_lock_irqsave(&dev->event_lock, flags);
6890 work = intel_crtc->unpin_work;
6891 intel_crtc->unpin_work = NULL;
6892 spin_unlock_irqrestore(&dev->event_lock, flags);
6894 if (work) {
6895 cancel_work_sync(&work->work);
6896 kfree(work);
6899 drm_crtc_cleanup(crtc);
6901 kfree(intel_crtc);
6904 static void intel_unpin_work_fn(struct work_struct *__work)
6906 struct intel_unpin_work *work =
6907 container_of(__work, struct intel_unpin_work, work);
6909 mutex_lock(&work->dev->struct_mutex);
6910 intel_unpin_fb_obj(work->old_fb_obj);
6911 drm_gem_object_unreference(&work->pending_flip_obj->base);
6912 drm_gem_object_unreference(&work->old_fb_obj->base);
6914 intel_update_fbc(work->dev);
6915 mutex_unlock(&work->dev->struct_mutex);
6916 kfree(work);
6919 static void do_intel_finish_page_flip(struct drm_device *dev,
6920 struct drm_crtc *crtc)
6922 drm_i915_private_t *dev_priv = dev->dev_private;
6923 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6924 struct intel_unpin_work *work;
6925 struct drm_i915_gem_object *obj;
6926 struct drm_pending_vblank_event *e;
6927 struct timeval tvbl;
6928 unsigned long flags;
6930 /* Ignore early vblank irqs */
6931 if (intel_crtc == NULL)
6932 return;
6934 spin_lock_irqsave(&dev->event_lock, flags);
6935 work = intel_crtc->unpin_work;
6936 if (work == NULL || !work->pending) {
6937 spin_unlock_irqrestore(&dev->event_lock, flags);
6938 return;
6941 intel_crtc->unpin_work = NULL;
6943 if (work->event) {
6944 e = work->event;
6945 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6947 e->event.tv_sec = tvbl.tv_sec;
6948 e->event.tv_usec = tvbl.tv_usec;
6950 list_add_tail(&e->base.link,
6951 &e->base.file_priv->event_list);
6952 wake_up_interruptible(&e->base.file_priv->event_wait);
6955 drm_vblank_put(dev, intel_crtc->pipe);
6957 spin_unlock_irqrestore(&dev->event_lock, flags);
6959 obj = work->old_fb_obj;
6961 atomic_clear_mask(1 << intel_crtc->plane,
6962 &obj->pending_flip.counter);
6964 wake_up(&dev_priv->pending_flip_queue);
6965 schedule_work(&work->work);
6967 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6970 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6972 drm_i915_private_t *dev_priv = dev->dev_private;
6973 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6975 do_intel_finish_page_flip(dev, crtc);
6978 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6980 drm_i915_private_t *dev_priv = dev->dev_private;
6981 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6983 do_intel_finish_page_flip(dev, crtc);
6986 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6988 drm_i915_private_t *dev_priv = dev->dev_private;
6989 struct intel_crtc *intel_crtc =
6990 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6991 unsigned long flags;
6993 spin_lock_irqsave(&dev->event_lock, flags);
6994 if (intel_crtc->unpin_work) {
6995 if ((++intel_crtc->unpin_work->pending) > 1)
6996 DRM_ERROR("Prepared flip multiple times\n");
6997 } else {
6998 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
7000 spin_unlock_irqrestore(&dev->event_lock, flags);
7003 static int intel_gen2_queue_flip(struct drm_device *dev,
7004 struct drm_crtc *crtc,
7005 struct drm_framebuffer *fb,
7006 struct drm_i915_gem_object *obj)
7008 struct drm_i915_private *dev_priv = dev->dev_private;
7009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7010 u32 flip_mask;
7011 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7012 int ret;
7014 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7015 if (ret)
7016 goto err;
7018 ret = intel_ring_begin(ring, 6);
7019 if (ret)
7020 goto err_unpin;
7022 /* Can't queue multiple flips, so wait for the previous
7023 * one to finish before executing the next.
7025 if (intel_crtc->plane)
7026 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7027 else
7028 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7029 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7030 intel_ring_emit(ring, MI_NOOP);
7031 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7032 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7033 intel_ring_emit(ring, fb->pitches[0]);
7034 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7035 intel_ring_emit(ring, 0); /* aux display base address, unused */
7036 intel_ring_advance(ring);
7037 return 0;
7039 err_unpin:
7040 intel_unpin_fb_obj(obj);
7041 err:
7042 return ret;
7045 static int intel_gen3_queue_flip(struct drm_device *dev,
7046 struct drm_crtc *crtc,
7047 struct drm_framebuffer *fb,
7048 struct drm_i915_gem_object *obj)
7050 struct drm_i915_private *dev_priv = dev->dev_private;
7051 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7052 u32 flip_mask;
7053 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7054 int ret;
7056 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7057 if (ret)
7058 goto err;
7060 ret = intel_ring_begin(ring, 6);
7061 if (ret)
7062 goto err_unpin;
7064 if (intel_crtc->plane)
7065 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7066 else
7067 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7068 intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
7069 intel_ring_emit(ring, MI_NOOP);
7070 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
7071 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7072 intel_ring_emit(ring, fb->pitches[0]);
7073 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7074 intel_ring_emit(ring, MI_NOOP);
7076 intel_ring_advance(ring);
7077 return 0;
7079 err_unpin:
7080 intel_unpin_fb_obj(obj);
7081 err:
7082 return ret;
7085 static int intel_gen4_queue_flip(struct drm_device *dev,
7086 struct drm_crtc *crtc,
7087 struct drm_framebuffer *fb,
7088 struct drm_i915_gem_object *obj)
7090 struct drm_i915_private *dev_priv = dev->dev_private;
7091 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7092 uint32_t pf, pipesrc;
7093 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7094 int ret;
7096 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7097 if (ret)
7098 goto err;
7100 ret = intel_ring_begin(ring, 4);
7101 if (ret)
7102 goto err_unpin;
7104 /* i965+ uses the linear or tiled offsets from the
7105 * Display Registers (which do not change across a page-flip)
7106 * so we need only reprogram the base address.
7108 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7109 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7110 intel_ring_emit(ring, fb->pitches[0]);
7111 intel_ring_emit(ring,
7112 (obj->gtt_offset + intel_crtc->dspaddr_offset) |
7113 obj->tiling_mode);
7115 /* XXX Enabling the panel-fitter across page-flip is so far
7116 * untested on non-native modes, so ignore it for now.
7117 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7119 pf = 0;
7120 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7121 intel_ring_emit(ring, pf | pipesrc);
7122 intel_ring_advance(ring);
7123 return 0;
7125 err_unpin:
7126 intel_unpin_fb_obj(obj);
7127 err:
7128 return ret;
7131 static int intel_gen6_queue_flip(struct drm_device *dev,
7132 struct drm_crtc *crtc,
7133 struct drm_framebuffer *fb,
7134 struct drm_i915_gem_object *obj)
7136 struct drm_i915_private *dev_priv = dev->dev_private;
7137 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7138 struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
7139 uint32_t pf, pipesrc;
7140 int ret;
7142 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7143 if (ret)
7144 goto err;
7146 ret = intel_ring_begin(ring, 4);
7147 if (ret)
7148 goto err_unpin;
7150 intel_ring_emit(ring, MI_DISPLAY_FLIP |
7151 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7152 intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
7153 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7155 /* Contrary to the suggestions in the documentation,
7156 * "Enable Panel Fitter" does not seem to be required when page
7157 * flipping with a non-native mode, and worse causes a normal
7158 * modeset to fail.
7159 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7161 pf = 0;
7162 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7163 intel_ring_emit(ring, pf | pipesrc);
7164 intel_ring_advance(ring);
7165 return 0;
7167 err_unpin:
7168 intel_unpin_fb_obj(obj);
7169 err:
7170 return ret;
7174 * On gen7 we currently use the blit ring because (in early silicon at least)
7175 * the render ring doesn't give us interrpts for page flip completion, which
7176 * means clients will hang after the first flip is queued. Fortunately the
7177 * blit ring generates interrupts properly, so use it instead.
7179 static int intel_gen7_queue_flip(struct drm_device *dev,
7180 struct drm_crtc *crtc,
7181 struct drm_framebuffer *fb,
7182 struct drm_i915_gem_object *obj)
7184 struct drm_i915_private *dev_priv = dev->dev_private;
7185 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7186 struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
7187 uint32_t plane_bit = 0;
7188 int ret;
7190 ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7191 if (ret)
7192 goto err;
7194 switch(intel_crtc->plane) {
7195 case PLANE_A:
7196 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
7197 break;
7198 case PLANE_B:
7199 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
7200 break;
7201 case PLANE_C:
7202 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
7203 break;
7204 default:
7205 WARN_ONCE(1, "unknown plane in flip command\n");
7206 ret = -ENODEV;
7207 goto err_unpin;
7210 ret = intel_ring_begin(ring, 4);
7211 if (ret)
7212 goto err_unpin;
7214 intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
7215 intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7216 intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
7217 intel_ring_emit(ring, (MI_NOOP));
7218 intel_ring_advance(ring);
7219 return 0;
7221 err_unpin:
7222 intel_unpin_fb_obj(obj);
7223 err:
7224 return ret;
7227 static int intel_default_queue_flip(struct drm_device *dev,
7228 struct drm_crtc *crtc,
7229 struct drm_framebuffer *fb,
7230 struct drm_i915_gem_object *obj)
7232 return -ENODEV;
7235 static int intel_crtc_page_flip(struct drm_crtc *crtc,
7236 struct drm_framebuffer *fb,
7237 struct drm_pending_vblank_event *event)
7239 struct drm_device *dev = crtc->dev;
7240 struct drm_i915_private *dev_priv = dev->dev_private;
7241 struct intel_framebuffer *intel_fb;
7242 struct drm_i915_gem_object *obj;
7243 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7244 struct intel_unpin_work *work;
7245 unsigned long flags;
7246 int ret;
7248 /* Can't change pixel format via MI display flips. */
7249 if (fb->pixel_format != crtc->fb->pixel_format)
7250 return -EINVAL;
7253 * TILEOFF/LINOFF registers can't be changed via MI display flips.
7254 * Note that pitch changes could also affect these register.
7256 if (INTEL_INFO(dev)->gen > 3 &&
7257 (fb->offsets[0] != crtc->fb->offsets[0] ||
7258 fb->pitches[0] != crtc->fb->pitches[0]))
7259 return -EINVAL;
7261 work = kzalloc(sizeof *work, GFP_KERNEL);
7262 if (work == NULL)
7263 return -ENOMEM;
7265 work->event = event;
7266 work->dev = crtc->dev;
7267 intel_fb = to_intel_framebuffer(crtc->fb);
7268 work->old_fb_obj = intel_fb->obj;
7269 INIT_WORK(&work->work, intel_unpin_work_fn);
7271 ret = drm_vblank_get(dev, intel_crtc->pipe);
7272 if (ret)
7273 goto free_work;
7275 /* We borrow the event spin lock for protecting unpin_work */
7276 spin_lock_irqsave(&dev->event_lock, flags);
7277 if (intel_crtc->unpin_work) {
7278 spin_unlock_irqrestore(&dev->event_lock, flags);
7279 kfree(work);
7280 drm_vblank_put(dev, intel_crtc->pipe);
7282 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
7283 return -EBUSY;
7285 intel_crtc->unpin_work = work;
7286 spin_unlock_irqrestore(&dev->event_lock, flags);
7288 intel_fb = to_intel_framebuffer(fb);
7289 obj = intel_fb->obj;
7291 ret = i915_mutex_lock_interruptible(dev);
7292 if (ret)
7293 goto cleanup;
7295 /* Reference the objects for the scheduled work. */
7296 drm_gem_object_reference(&work->old_fb_obj->base);
7297 drm_gem_object_reference(&obj->base);
7299 crtc->fb = fb;
7301 work->pending_flip_obj = obj;
7303 work->enable_stall_check = true;
7305 /* Block clients from rendering to the new back buffer until
7306 * the flip occurs and the object is no longer visible.
7308 atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7310 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7311 if (ret)
7312 goto cleanup_pending;
7314 intel_disable_fbc(dev);
7315 intel_mark_fb_busy(obj);
7316 mutex_unlock(&dev->struct_mutex);
7318 trace_i915_flip_request(intel_crtc->plane, obj);
7320 return 0;
7322 cleanup_pending:
7323 atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
7324 drm_gem_object_unreference(&work->old_fb_obj->base);
7325 drm_gem_object_unreference(&obj->base);
7326 mutex_unlock(&dev->struct_mutex);
7328 cleanup:
7329 spin_lock_irqsave(&dev->event_lock, flags);
7330 intel_crtc->unpin_work = NULL;
7331 spin_unlock_irqrestore(&dev->event_lock, flags);
7333 drm_vblank_put(dev, intel_crtc->pipe);
7334 free_work:
7335 kfree(work);
7337 return ret;
7340 static struct drm_crtc_helper_funcs intel_helper_funcs = {
7341 .mode_set_base_atomic = intel_pipe_set_base_atomic,
7342 .load_lut = intel_crtc_load_lut,
7343 .disable = intel_crtc_noop,
7346 bool intel_encoder_check_is_cloned(struct intel_encoder *encoder)
7348 struct intel_encoder *other_encoder;
7349 struct drm_crtc *crtc = &encoder->new_crtc->base;
7351 if (WARN_ON(!crtc))
7352 return false;
7354 list_for_each_entry(other_encoder,
7355 &crtc->dev->mode_config.encoder_list,
7356 base.head) {
7358 if (&other_encoder->new_crtc->base != crtc ||
7359 encoder == other_encoder)
7360 continue;
7361 else
7362 return true;
7365 return false;
7368 static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
7369 struct drm_crtc *crtc)
7371 struct drm_device *dev;
7372 struct drm_crtc *tmp;
7373 int crtc_mask = 1;
7375 WARN(!crtc, "checking null crtc?\n");
7377 dev = crtc->dev;
7379 list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
7380 if (tmp == crtc)
7381 break;
7382 crtc_mask <<= 1;
7385 if (encoder->possible_crtcs & crtc_mask)
7386 return true;
7387 return false;
7391 * intel_modeset_update_staged_output_state
7393 * Updates the staged output configuration state, e.g. after we've read out the
7394 * current hw state.
7396 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
7398 struct intel_encoder *encoder;
7399 struct intel_connector *connector;
7401 list_for_each_entry(connector, &dev->mode_config.connector_list,
7402 base.head) {
7403 connector->new_encoder =
7404 to_intel_encoder(connector->base.encoder);
7407 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7408 base.head) {
7409 encoder->new_crtc =
7410 to_intel_crtc(encoder->base.crtc);
7415 * intel_modeset_commit_output_state
7417 * This function copies the stage display pipe configuration to the real one.
7419 static void intel_modeset_commit_output_state(struct drm_device *dev)
7421 struct intel_encoder *encoder;
7422 struct intel_connector *connector;
7424 list_for_each_entry(connector, &dev->mode_config.connector_list,
7425 base.head) {
7426 connector->base.encoder = &connector->new_encoder->base;
7429 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7430 base.head) {
7431 encoder->base.crtc = &encoder->new_crtc->base;
7435 static struct drm_display_mode *
7436 intel_modeset_adjusted_mode(struct drm_crtc *crtc,
7437 struct drm_display_mode *mode)
7439 struct drm_device *dev = crtc->dev;
7440 struct drm_display_mode *adjusted_mode;
7441 struct drm_encoder_helper_funcs *encoder_funcs;
7442 struct intel_encoder *encoder;
7444 adjusted_mode = drm_mode_duplicate(dev, mode);
7445 if (!adjusted_mode)
7446 return ERR_PTR(-ENOMEM);
7448 /* Pass our mode to the connectors and the CRTC to give them a chance to
7449 * adjust it according to limitations or connector properties, and also
7450 * a chance to reject the mode entirely.
7452 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7453 base.head) {
7455 if (&encoder->new_crtc->base != crtc)
7456 continue;
7457 encoder_funcs = encoder->base.helper_private;
7458 if (!(encoder_funcs->mode_fixup(&encoder->base, mode,
7459 adjusted_mode))) {
7460 DRM_DEBUG_KMS("Encoder fixup failed\n");
7461 goto fail;
7465 if (!(intel_crtc_mode_fixup(crtc, mode, adjusted_mode))) {
7466 DRM_DEBUG_KMS("CRTC fixup failed\n");
7467 goto fail;
7469 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
7471 return adjusted_mode;
7472 fail:
7473 drm_mode_destroy(dev, adjusted_mode);
7474 return ERR_PTR(-EINVAL);
7477 /* Computes which crtcs are affected and sets the relevant bits in the mask. For
7478 * simplicity we use the crtc's pipe number (because it's easier to obtain). */
7479 static void
7480 intel_modeset_affected_pipes(struct drm_crtc *crtc, unsigned *modeset_pipes,
7481 unsigned *prepare_pipes, unsigned *disable_pipes)
7483 struct intel_crtc *intel_crtc;
7484 struct drm_device *dev = crtc->dev;
7485 struct intel_encoder *encoder;
7486 struct intel_connector *connector;
7487 struct drm_crtc *tmp_crtc;
7489 *disable_pipes = *modeset_pipes = *prepare_pipes = 0;
7491 /* Check which crtcs have changed outputs connected to them, these need
7492 * to be part of the prepare_pipes mask. We don't (yet) support global
7493 * modeset across multiple crtcs, so modeset_pipes will only have one
7494 * bit set at most. */
7495 list_for_each_entry(connector, &dev->mode_config.connector_list,
7496 base.head) {
7497 if (connector->base.encoder == &connector->new_encoder->base)
7498 continue;
7500 if (connector->base.encoder) {
7501 tmp_crtc = connector->base.encoder->crtc;
7503 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7506 if (connector->new_encoder)
7507 *prepare_pipes |=
7508 1 << connector->new_encoder->new_crtc->pipe;
7511 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7512 base.head) {
7513 if (encoder->base.crtc == &encoder->new_crtc->base)
7514 continue;
7516 if (encoder->base.crtc) {
7517 tmp_crtc = encoder->base.crtc;
7519 *prepare_pipes |= 1 << to_intel_crtc(tmp_crtc)->pipe;
7522 if (encoder->new_crtc)
7523 *prepare_pipes |= 1 << encoder->new_crtc->pipe;
7526 /* Check for any pipes that will be fully disabled ... */
7527 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7528 base.head) {
7529 bool used = false;
7531 /* Don't try to disable disabled crtcs. */
7532 if (!intel_crtc->base.enabled)
7533 continue;
7535 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7536 base.head) {
7537 if (encoder->new_crtc == intel_crtc)
7538 used = true;
7541 if (!used)
7542 *disable_pipes |= 1 << intel_crtc->pipe;
7546 /* set_mode is also used to update properties on life display pipes. */
7547 intel_crtc = to_intel_crtc(crtc);
7548 if (crtc->enabled)
7549 *prepare_pipes |= 1 << intel_crtc->pipe;
7551 /* We only support modeset on one single crtc, hence we need to do that
7552 * only for the passed in crtc iff we change anything else than just
7553 * disable crtcs.
7555 * This is actually not true, to be fully compatible with the old crtc
7556 * helper we automatically disable _any_ output (i.e. doesn't need to be
7557 * connected to the crtc we're modesetting on) if it's disconnected.
7558 * Which is a rather nutty api (since changed the output configuration
7559 * without userspace's explicit request can lead to confusion), but
7560 * alas. Hence we currently need to modeset on all pipes we prepare. */
7561 if (*prepare_pipes)
7562 *modeset_pipes = *prepare_pipes;
7564 /* ... and mask these out. */
7565 *modeset_pipes &= ~(*disable_pipes);
7566 *prepare_pipes &= ~(*disable_pipes);
7569 static bool intel_crtc_in_use(struct drm_crtc *crtc)
7571 struct drm_encoder *encoder;
7572 struct drm_device *dev = crtc->dev;
7574 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
7575 if (encoder->crtc == crtc)
7576 return true;
7578 return false;
7581 static void
7582 intel_modeset_update_state(struct drm_device *dev, unsigned prepare_pipes)
7584 struct intel_encoder *intel_encoder;
7585 struct intel_crtc *intel_crtc;
7586 struct drm_connector *connector;
7588 list_for_each_entry(intel_encoder, &dev->mode_config.encoder_list,
7589 base.head) {
7590 if (!intel_encoder->base.crtc)
7591 continue;
7593 intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
7595 if (prepare_pipes & (1 << intel_crtc->pipe))
7596 intel_encoder->connectors_active = false;
7599 intel_modeset_commit_output_state(dev);
7601 /* Update computed state. */
7602 list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
7603 base.head) {
7604 intel_crtc->base.enabled = intel_crtc_in_use(&intel_crtc->base);
7607 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7608 if (!connector->encoder || !connector->encoder->crtc)
7609 continue;
7611 intel_crtc = to_intel_crtc(connector->encoder->crtc);
7613 if (prepare_pipes & (1 << intel_crtc->pipe)) {
7614 struct drm_property *dpms_property =
7615 dev->mode_config.dpms_property;
7617 connector->dpms = DRM_MODE_DPMS_ON;
7618 drm_connector_property_set_value(connector,
7619 dpms_property,
7620 DRM_MODE_DPMS_ON);
7622 intel_encoder = to_intel_encoder(connector->encoder);
7623 intel_encoder->connectors_active = true;
7629 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
7630 list_for_each_entry((intel_crtc), \
7631 &(dev)->mode_config.crtc_list, \
7632 base.head) \
7633 if (mask & (1 <<(intel_crtc)->pipe)) \
7635 void
7636 intel_modeset_check_state(struct drm_device *dev)
7638 struct intel_crtc *crtc;
7639 struct intel_encoder *encoder;
7640 struct intel_connector *connector;
7642 list_for_each_entry(connector, &dev->mode_config.connector_list,
7643 base.head) {
7644 /* This also checks the encoder/connector hw state with the
7645 * ->get_hw_state callbacks. */
7646 intel_connector_check_state(connector);
7648 WARN(&connector->new_encoder->base != connector->base.encoder,
7649 "connector's staged encoder doesn't match current encoder\n");
7652 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7653 base.head) {
7654 bool enabled = false;
7655 bool active = false;
7656 enum pipe pipe, tracked_pipe;
7658 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
7659 encoder->base.base.id,
7660 drm_get_encoder_name(&encoder->base));
7662 WARN(&encoder->new_crtc->base != encoder->base.crtc,
7663 "encoder's stage crtc doesn't match current crtc\n");
7664 WARN(encoder->connectors_active && !encoder->base.crtc,
7665 "encoder's active_connectors set, but no crtc\n");
7667 list_for_each_entry(connector, &dev->mode_config.connector_list,
7668 base.head) {
7669 if (connector->base.encoder != &encoder->base)
7670 continue;
7671 enabled = true;
7672 if (connector->base.dpms != DRM_MODE_DPMS_OFF)
7673 active = true;
7675 WARN(!!encoder->base.crtc != enabled,
7676 "encoder's enabled state mismatch "
7677 "(expected %i, found %i)\n",
7678 !!encoder->base.crtc, enabled);
7679 WARN(active && !encoder->base.crtc,
7680 "active encoder with no crtc\n");
7682 WARN(encoder->connectors_active != active,
7683 "encoder's computed active state doesn't match tracked active state "
7684 "(expected %i, found %i)\n", active, encoder->connectors_active);
7686 active = encoder->get_hw_state(encoder, &pipe);
7687 WARN(active != encoder->connectors_active,
7688 "encoder's hw state doesn't match sw tracking "
7689 "(expected %i, found %i)\n",
7690 encoder->connectors_active, active);
7692 if (!encoder->base.crtc)
7693 continue;
7695 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
7696 WARN(active && pipe != tracked_pipe,
7697 "active encoder's pipe doesn't match"
7698 "(expected %i, found %i)\n",
7699 tracked_pipe, pipe);
7703 list_for_each_entry(crtc, &dev->mode_config.crtc_list,
7704 base.head) {
7705 bool enabled = false;
7706 bool active = false;
7708 DRM_DEBUG_KMS("[CRTC:%d]\n",
7709 crtc->base.base.id);
7711 WARN(crtc->active && !crtc->base.enabled,
7712 "active crtc, but not enabled in sw tracking\n");
7714 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
7715 base.head) {
7716 if (encoder->base.crtc != &crtc->base)
7717 continue;
7718 enabled = true;
7719 if (encoder->connectors_active)
7720 active = true;
7722 WARN(active != crtc->active,
7723 "crtc's computed active state doesn't match tracked active state "
7724 "(expected %i, found %i)\n", active, crtc->active);
7725 WARN(enabled != crtc->base.enabled,
7726 "crtc's computed enabled state doesn't match tracked enabled state "
7727 "(expected %i, found %i)\n", enabled, crtc->base.enabled);
7729 assert_pipe(dev->dev_private, crtc->pipe, crtc->active);
7733 bool intel_set_mode(struct drm_crtc *crtc,
7734 struct drm_display_mode *mode,
7735 int x, int y, struct drm_framebuffer *fb)
7737 struct drm_device *dev = crtc->dev;
7738 drm_i915_private_t *dev_priv = dev->dev_private;
7739 struct drm_display_mode *adjusted_mode, saved_mode, saved_hwmode;
7740 struct intel_crtc *intel_crtc;
7741 unsigned disable_pipes, prepare_pipes, modeset_pipes;
7742 bool ret = true;
7744 intel_modeset_affected_pipes(crtc, &modeset_pipes,
7745 &prepare_pipes, &disable_pipes);
7747 DRM_DEBUG_KMS("set mode pipe masks: modeset: %x, prepare: %x, disable: %x\n",
7748 modeset_pipes, prepare_pipes, disable_pipes);
7750 for_each_intel_crtc_masked(dev, disable_pipes, intel_crtc)
7751 intel_crtc_disable(&intel_crtc->base);
7753 saved_hwmode = crtc->hwmode;
7754 saved_mode = crtc->mode;
7756 /* Hack: Because we don't (yet) support global modeset on multiple
7757 * crtcs, we don't keep track of the new mode for more than one crtc.
7758 * Hence simply check whether any bit is set in modeset_pipes in all the
7759 * pieces of code that are not yet converted to deal with mutliple crtcs
7760 * changing their mode at the same time. */
7761 adjusted_mode = NULL;
7762 if (modeset_pipes) {
7763 adjusted_mode = intel_modeset_adjusted_mode(crtc, mode);
7764 if (IS_ERR(adjusted_mode)) {
7765 return false;
7769 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc) {
7770 if (intel_crtc->base.enabled)
7771 dev_priv->display.crtc_disable(&intel_crtc->base);
7774 /* crtc->mode is already used by the ->mode_set callbacks, hence we need
7775 * to set it here already despite that we pass it down the callchain.
7777 if (modeset_pipes)
7778 crtc->mode = *mode;
7780 /* Only after disabling all output pipelines that will be changed can we
7781 * update the the output configuration. */
7782 intel_modeset_update_state(dev, prepare_pipes);
7784 if (dev_priv->display.modeset_global_resources)
7785 dev_priv->display.modeset_global_resources(dev);
7787 /* Set up the DPLL and any encoders state that needs to adjust or depend
7788 * on the DPLL.
7790 for_each_intel_crtc_masked(dev, modeset_pipes, intel_crtc) {
7791 ret = !intel_crtc_mode_set(&intel_crtc->base,
7792 mode, adjusted_mode,
7793 x, y, fb);
7794 if (!ret)
7795 goto done;
7798 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
7799 for_each_intel_crtc_masked(dev, prepare_pipes, intel_crtc)
7800 dev_priv->display.crtc_enable(&intel_crtc->base);
7802 if (modeset_pipes) {
7803 /* Store real post-adjustment hardware mode. */
7804 crtc->hwmode = *adjusted_mode;
7806 /* Calculate and store various constants which
7807 * are later needed by vblank and swap-completion
7808 * timestamping. They are derived from true hwmode.
7810 drm_calc_timestamping_constants(crtc);
7813 /* FIXME: add subpixel order */
7814 done:
7815 drm_mode_destroy(dev, adjusted_mode);
7816 if (!ret && crtc->enabled) {
7817 crtc->hwmode = saved_hwmode;
7818 crtc->mode = saved_mode;
7819 } else {
7820 intel_modeset_check_state(dev);
7823 return ret;
7826 #undef for_each_intel_crtc_masked
7828 static void intel_set_config_free(struct intel_set_config *config)
7830 if (!config)
7831 return;
7833 kfree(config->save_connector_encoders);
7834 kfree(config->save_encoder_crtcs);
7835 kfree(config);
7838 static int intel_set_config_save_state(struct drm_device *dev,
7839 struct intel_set_config *config)
7841 struct drm_encoder *encoder;
7842 struct drm_connector *connector;
7843 int count;
7845 config->save_encoder_crtcs =
7846 kcalloc(dev->mode_config.num_encoder,
7847 sizeof(struct drm_crtc *), GFP_KERNEL);
7848 if (!config->save_encoder_crtcs)
7849 return -ENOMEM;
7851 config->save_connector_encoders =
7852 kcalloc(dev->mode_config.num_connector,
7853 sizeof(struct drm_encoder *), GFP_KERNEL);
7854 if (!config->save_connector_encoders)
7855 return -ENOMEM;
7857 /* Copy data. Note that driver private data is not affected.
7858 * Should anything bad happen only the expected state is
7859 * restored, not the drivers personal bookkeeping.
7861 count = 0;
7862 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
7863 config->save_encoder_crtcs[count++] = encoder->crtc;
7866 count = 0;
7867 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
7868 config->save_connector_encoders[count++] = connector->encoder;
7871 return 0;
7874 static void intel_set_config_restore_state(struct drm_device *dev,
7875 struct intel_set_config *config)
7877 struct intel_encoder *encoder;
7878 struct intel_connector *connector;
7879 int count;
7881 count = 0;
7882 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7883 encoder->new_crtc =
7884 to_intel_crtc(config->save_encoder_crtcs[count++]);
7887 count = 0;
7888 list_for_each_entry(connector, &dev->mode_config.connector_list, base.head) {
7889 connector->new_encoder =
7890 to_intel_encoder(config->save_connector_encoders[count++]);
7894 static void
7895 intel_set_config_compute_mode_changes(struct drm_mode_set *set,
7896 struct intel_set_config *config)
7899 /* We should be able to check here if the fb has the same properties
7900 * and then just flip_or_move it */
7901 if (set->crtc->fb != set->fb) {
7902 /* If we have no fb then treat it as a full mode set */
7903 if (set->crtc->fb == NULL) {
7904 DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
7905 config->mode_changed = true;
7906 } else if (set->fb == NULL) {
7907 config->mode_changed = true;
7908 } else if (set->fb->depth != set->crtc->fb->depth) {
7909 config->mode_changed = true;
7910 } else if (set->fb->bits_per_pixel !=
7911 set->crtc->fb->bits_per_pixel) {
7912 config->mode_changed = true;
7913 } else
7914 config->fb_changed = true;
7917 if (set->fb && (set->x != set->crtc->x || set->y != set->crtc->y))
7918 config->fb_changed = true;
7920 if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
7921 DRM_DEBUG_KMS("modes are different, full mode set\n");
7922 drm_mode_debug_printmodeline(&set->crtc->mode);
7923 drm_mode_debug_printmodeline(set->mode);
7924 config->mode_changed = true;
7928 static int
7929 intel_modeset_stage_output_state(struct drm_device *dev,
7930 struct drm_mode_set *set,
7931 struct intel_set_config *config)
7933 struct drm_crtc *new_crtc;
7934 struct intel_connector *connector;
7935 struct intel_encoder *encoder;
7936 int count, ro;
7938 /* The upper layers ensure that we either disabl a crtc or have a list
7939 * of connectors. For paranoia, double-check this. */
7940 WARN_ON(!set->fb && (set->num_connectors != 0));
7941 WARN_ON(set->fb && (set->num_connectors == 0));
7943 count = 0;
7944 list_for_each_entry(connector, &dev->mode_config.connector_list,
7945 base.head) {
7946 /* Otherwise traverse passed in connector list and get encoders
7947 * for them. */
7948 for (ro = 0; ro < set->num_connectors; ro++) {
7949 if (set->connectors[ro] == &connector->base) {
7950 connector->new_encoder = connector->encoder;
7951 break;
7955 /* If we disable the crtc, disable all its connectors. Also, if
7956 * the connector is on the changing crtc but not on the new
7957 * connector list, disable it. */
7958 if ((!set->fb || ro == set->num_connectors) &&
7959 connector->base.encoder &&
7960 connector->base.encoder->crtc == set->crtc) {
7961 connector->new_encoder = NULL;
7963 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
7964 connector->base.base.id,
7965 drm_get_connector_name(&connector->base));
7969 if (&connector->new_encoder->base != connector->base.encoder) {
7970 DRM_DEBUG_KMS("encoder changed, full mode switch\n");
7971 config->mode_changed = true;
7974 /* Disable all disconnected encoders. */
7975 if (connector->base.status == connector_status_disconnected)
7976 connector->new_encoder = NULL;
7978 /* connector->new_encoder is now updated for all connectors. */
7980 /* Update crtc of enabled connectors. */
7981 count = 0;
7982 list_for_each_entry(connector, &dev->mode_config.connector_list,
7983 base.head) {
7984 if (!connector->new_encoder)
7985 continue;
7987 new_crtc = connector->new_encoder->base.crtc;
7989 for (ro = 0; ro < set->num_connectors; ro++) {
7990 if (set->connectors[ro] == &connector->base)
7991 new_crtc = set->crtc;
7994 /* Make sure the new CRTC will work with the encoder */
7995 if (!intel_encoder_crtc_ok(&connector->new_encoder->base,
7996 new_crtc)) {
7997 return -EINVAL;
7999 connector->encoder->new_crtc = to_intel_crtc(new_crtc);
8001 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
8002 connector->base.base.id,
8003 drm_get_connector_name(&connector->base),
8004 new_crtc->base.id);
8007 /* Check for any encoders that needs to be disabled. */
8008 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
8009 base.head) {
8010 list_for_each_entry(connector,
8011 &dev->mode_config.connector_list,
8012 base.head) {
8013 if (connector->new_encoder == encoder) {
8014 WARN_ON(!connector->new_encoder->new_crtc);
8016 goto next_encoder;
8019 encoder->new_crtc = NULL;
8020 next_encoder:
8021 /* Only now check for crtc changes so we don't miss encoders
8022 * that will be disabled. */
8023 if (&encoder->new_crtc->base != encoder->base.crtc) {
8024 DRM_DEBUG_KMS("crtc changed, full mode switch\n");
8025 config->mode_changed = true;
8028 /* Now we've also updated encoder->new_crtc for all encoders. */
8030 return 0;
8033 static int intel_crtc_set_config(struct drm_mode_set *set)
8035 struct drm_device *dev;
8036 struct drm_mode_set save_set;
8037 struct intel_set_config *config;
8038 int ret;
8040 BUG_ON(!set);
8041 BUG_ON(!set->crtc);
8042 BUG_ON(!set->crtc->helper_private);
8044 if (!set->mode)
8045 set->fb = NULL;
8047 /* The fb helper likes to play gross jokes with ->mode_set_config.
8048 * Unfortunately the crtc helper doesn't do much at all for this case,
8049 * so we have to cope with this madness until the fb helper is fixed up. */
8050 if (set->fb && set->num_connectors == 0)
8051 return 0;
8053 if (set->fb) {
8054 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
8055 set->crtc->base.id, set->fb->base.id,
8056 (int)set->num_connectors, set->x, set->y);
8057 } else {
8058 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
8061 dev = set->crtc->dev;
8063 ret = -ENOMEM;
8064 config = kzalloc(sizeof(*config), GFP_KERNEL);
8065 if (!config)
8066 goto out_config;
8068 ret = intel_set_config_save_state(dev, config);
8069 if (ret)
8070 goto out_config;
8072 save_set.crtc = set->crtc;
8073 save_set.mode = &set->crtc->mode;
8074 save_set.x = set->crtc->x;
8075 save_set.y = set->crtc->y;
8076 save_set.fb = set->crtc->fb;
8078 /* Compute whether we need a full modeset, only an fb base update or no
8079 * change at all. In the future we might also check whether only the
8080 * mode changed, e.g. for LVDS where we only change the panel fitter in
8081 * such cases. */
8082 intel_set_config_compute_mode_changes(set, config);
8084 ret = intel_modeset_stage_output_state(dev, set, config);
8085 if (ret)
8086 goto fail;
8088 if (config->mode_changed) {
8089 if (set->mode) {
8090 DRM_DEBUG_KMS("attempting to set mode from"
8091 " userspace\n");
8092 drm_mode_debug_printmodeline(set->mode);
8095 if (!intel_set_mode(set->crtc, set->mode,
8096 set->x, set->y, set->fb)) {
8097 DRM_ERROR("failed to set mode on [CRTC:%d]\n",
8098 set->crtc->base.id);
8099 ret = -EINVAL;
8100 goto fail;
8102 } else if (config->fb_changed) {
8103 ret = intel_pipe_set_base(set->crtc,
8104 set->x, set->y, set->fb);
8107 intel_set_config_free(config);
8109 return 0;
8111 fail:
8112 intel_set_config_restore_state(dev, config);
8114 /* Try to restore the config */
8115 if (config->mode_changed &&
8116 !intel_set_mode(save_set.crtc, save_set.mode,
8117 save_set.x, save_set.y, save_set.fb))
8118 DRM_ERROR("failed to restore config after modeset failure\n");
8120 out_config:
8121 intel_set_config_free(config);
8122 return ret;
8125 static const struct drm_crtc_funcs intel_crtc_funcs = {
8126 .cursor_set = intel_crtc_cursor_set,
8127 .cursor_move = intel_crtc_cursor_move,
8128 .gamma_set = intel_crtc_gamma_set,
8129 .set_config = intel_crtc_set_config,
8130 .destroy = intel_crtc_destroy,
8131 .page_flip = intel_crtc_page_flip,
8134 static void intel_cpu_pll_init(struct drm_device *dev)
8136 if (IS_HASWELL(dev))
8137 intel_ddi_pll_init(dev);
8140 static void intel_pch_pll_init(struct drm_device *dev)
8142 drm_i915_private_t *dev_priv = dev->dev_private;
8143 int i;
8145 if (dev_priv->num_pch_pll == 0) {
8146 DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
8147 return;
8150 for (i = 0; i < dev_priv->num_pch_pll; i++) {
8151 dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
8152 dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
8153 dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
8157 static void intel_crtc_init(struct drm_device *dev, int pipe)
8159 drm_i915_private_t *dev_priv = dev->dev_private;
8160 struct intel_crtc *intel_crtc;
8161 int i;
8163 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
8164 if (intel_crtc == NULL)
8165 return;
8167 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
8169 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
8170 for (i = 0; i < 256; i++) {
8171 intel_crtc->lut_r[i] = i;
8172 intel_crtc->lut_g[i] = i;
8173 intel_crtc->lut_b[i] = i;
8176 /* Swap pipes & planes for FBC on pre-965 */
8177 intel_crtc->pipe = pipe;
8178 intel_crtc->plane = pipe;
8179 intel_crtc->cpu_transcoder = pipe;
8180 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
8181 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
8182 intel_crtc->plane = !pipe;
8185 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
8186 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
8187 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
8188 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
8190 intel_crtc->bpp = 24; /* default for pre-Ironlake */
8192 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
8195 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
8196 struct drm_file *file)
8198 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
8199 struct drm_mode_object *drmmode_obj;
8200 struct intel_crtc *crtc;
8202 if (!drm_core_check_feature(dev, DRIVER_MODESET))
8203 return -ENODEV;
8205 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
8206 DRM_MODE_OBJECT_CRTC);
8208 if (!drmmode_obj) {
8209 DRM_ERROR("no such CRTC id\n");
8210 return -EINVAL;
8213 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
8214 pipe_from_crtc_id->pipe = crtc->pipe;
8216 return 0;
8219 static int intel_encoder_clones(struct intel_encoder *encoder)
8221 struct drm_device *dev = encoder->base.dev;
8222 struct intel_encoder *source_encoder;
8223 int index_mask = 0;
8224 int entry = 0;
8226 list_for_each_entry(source_encoder,
8227 &dev->mode_config.encoder_list, base.head) {
8229 if (encoder == source_encoder)
8230 index_mask |= (1 << entry);
8232 /* Intel hw has only one MUX where enocoders could be cloned. */
8233 if (encoder->cloneable && source_encoder->cloneable)
8234 index_mask |= (1 << entry);
8236 entry++;
8239 return index_mask;
8242 static bool has_edp_a(struct drm_device *dev)
8244 struct drm_i915_private *dev_priv = dev->dev_private;
8246 if (!IS_MOBILE(dev))
8247 return false;
8249 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
8250 return false;
8252 if (IS_GEN5(dev) &&
8253 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
8254 return false;
8256 return true;
8259 static void intel_setup_outputs(struct drm_device *dev)
8261 struct drm_i915_private *dev_priv = dev->dev_private;
8262 struct intel_encoder *encoder;
8263 bool dpd_is_edp = false;
8264 bool has_lvds;
8266 has_lvds = intel_lvds_init(dev);
8267 if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
8268 /* disable the panel fitter on everything but LVDS */
8269 I915_WRITE(PFIT_CONTROL, 0);
8272 if (HAS_PCH_SPLIT(dev)) {
8273 dpd_is_edp = intel_dpd_is_edp(dev);
8275 if (has_edp_a(dev))
8276 intel_dp_init(dev, DP_A, PORT_A);
8278 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8279 intel_dp_init(dev, PCH_DP_D, PORT_D);
8282 intel_crt_init(dev);
8284 if (IS_HASWELL(dev)) {
8285 int found;
8287 /* Haswell uses DDI functions to detect digital outputs */
8288 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
8289 /* DDI A only supports eDP */
8290 if (found)
8291 intel_ddi_init(dev, PORT_A);
8293 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
8294 * register */
8295 found = I915_READ(SFUSE_STRAP);
8297 if (found & SFUSE_STRAP_DDIB_DETECTED)
8298 intel_ddi_init(dev, PORT_B);
8299 if (found & SFUSE_STRAP_DDIC_DETECTED)
8300 intel_ddi_init(dev, PORT_C);
8301 if (found & SFUSE_STRAP_DDID_DETECTED)
8302 intel_ddi_init(dev, PORT_D);
8303 } else if (HAS_PCH_SPLIT(dev)) {
8304 int found;
8306 if (I915_READ(HDMIB) & PORT_DETECTED) {
8307 /* PCH SDVOB multiplex with HDMIB */
8308 found = intel_sdvo_init(dev, PCH_SDVOB, true);
8309 if (!found)
8310 intel_hdmi_init(dev, HDMIB, PORT_B);
8311 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
8312 intel_dp_init(dev, PCH_DP_B, PORT_B);
8315 if (I915_READ(HDMIC) & PORT_DETECTED)
8316 intel_hdmi_init(dev, HDMIC, PORT_C);
8318 if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
8319 intel_hdmi_init(dev, HDMID, PORT_D);
8321 if (I915_READ(PCH_DP_C) & DP_DETECTED)
8322 intel_dp_init(dev, PCH_DP_C, PORT_C);
8324 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
8325 intel_dp_init(dev, PCH_DP_D, PORT_D);
8326 } else if (IS_VALLEYVIEW(dev)) {
8327 int found;
8329 /* Check for built-in panel first. Shares lanes with HDMI on SDVOC */
8330 if (I915_READ(DP_C) & DP_DETECTED)
8331 intel_dp_init(dev, DP_C, PORT_C);
8333 if (I915_READ(SDVOB) & PORT_DETECTED) {
8334 /* SDVOB multiplex with HDMIB */
8335 found = intel_sdvo_init(dev, SDVOB, true);
8336 if (!found)
8337 intel_hdmi_init(dev, SDVOB, PORT_B);
8338 if (!found && (I915_READ(DP_B) & DP_DETECTED))
8339 intel_dp_init(dev, DP_B, PORT_B);
8342 if (I915_READ(SDVOC) & PORT_DETECTED)
8343 intel_hdmi_init(dev, SDVOC, PORT_C);
8345 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
8346 bool found = false;
8348 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8349 DRM_DEBUG_KMS("probing SDVOB\n");
8350 found = intel_sdvo_init(dev, SDVOB, true);
8351 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
8352 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
8353 intel_hdmi_init(dev, SDVOB, PORT_B);
8356 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
8357 DRM_DEBUG_KMS("probing DP_B\n");
8358 intel_dp_init(dev, DP_B, PORT_B);
8362 /* Before G4X SDVOC doesn't have its own detect register */
8364 if (I915_READ(SDVOB) & SDVO_DETECTED) {
8365 DRM_DEBUG_KMS("probing SDVOC\n");
8366 found = intel_sdvo_init(dev, SDVOC, false);
8369 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
8371 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
8372 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
8373 intel_hdmi_init(dev, SDVOC, PORT_C);
8375 if (SUPPORTS_INTEGRATED_DP(dev)) {
8376 DRM_DEBUG_KMS("probing DP_C\n");
8377 intel_dp_init(dev, DP_C, PORT_C);
8381 if (SUPPORTS_INTEGRATED_DP(dev) &&
8382 (I915_READ(DP_D) & DP_DETECTED)) {
8383 DRM_DEBUG_KMS("probing DP_D\n");
8384 intel_dp_init(dev, DP_D, PORT_D);
8386 } else if (IS_GEN2(dev))
8387 intel_dvo_init(dev);
8389 if (SUPPORTS_TV(dev))
8390 intel_tv_init(dev);
8392 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
8393 encoder->base.possible_crtcs = encoder->crtc_mask;
8394 encoder->base.possible_clones =
8395 intel_encoder_clones(encoder);
8398 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8399 ironlake_init_pch_refclk(dev);
8402 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
8404 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8406 drm_framebuffer_cleanup(fb);
8407 drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
8409 kfree(intel_fb);
8412 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
8413 struct drm_file *file,
8414 unsigned int *handle)
8416 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
8417 struct drm_i915_gem_object *obj = intel_fb->obj;
8419 return drm_gem_handle_create(file, &obj->base, handle);
8422 static const struct drm_framebuffer_funcs intel_fb_funcs = {
8423 .destroy = intel_user_framebuffer_destroy,
8424 .create_handle = intel_user_framebuffer_create_handle,
8427 int intel_framebuffer_init(struct drm_device *dev,
8428 struct intel_framebuffer *intel_fb,
8429 struct drm_mode_fb_cmd2 *mode_cmd,
8430 struct drm_i915_gem_object *obj)
8432 int ret;
8434 if (obj->tiling_mode == I915_TILING_Y)
8435 return -EINVAL;
8437 if (mode_cmd->pitches[0] & 63)
8438 return -EINVAL;
8440 /* FIXME <= Gen4 stride limits are bit unclear */
8441 if (mode_cmd->pitches[0] > 32768)
8442 return -EINVAL;
8444 if (obj->tiling_mode != I915_TILING_NONE &&
8445 mode_cmd->pitches[0] != obj->stride)
8446 return -EINVAL;
8448 /* Reject formats not supported by any plane early. */
8449 switch (mode_cmd->pixel_format) {
8450 case DRM_FORMAT_C8:
8451 case DRM_FORMAT_RGB565:
8452 case DRM_FORMAT_XRGB8888:
8453 case DRM_FORMAT_ARGB8888:
8454 break;
8455 case DRM_FORMAT_XRGB1555:
8456 case DRM_FORMAT_ARGB1555:
8457 if (INTEL_INFO(dev)->gen > 3)
8458 return -EINVAL;
8459 break;
8460 case DRM_FORMAT_XBGR8888:
8461 case DRM_FORMAT_ABGR8888:
8462 case DRM_FORMAT_XRGB2101010:
8463 case DRM_FORMAT_ARGB2101010:
8464 case DRM_FORMAT_XBGR2101010:
8465 case DRM_FORMAT_ABGR2101010:
8466 if (INTEL_INFO(dev)->gen < 4)
8467 return -EINVAL;
8468 break;
8469 case DRM_FORMAT_YUYV:
8470 case DRM_FORMAT_UYVY:
8471 case DRM_FORMAT_YVYU:
8472 case DRM_FORMAT_VYUY:
8473 if (INTEL_INFO(dev)->gen < 6)
8474 return -EINVAL;
8475 break;
8476 default:
8477 DRM_DEBUG_KMS("unsupported pixel format 0x%08x\n", mode_cmd->pixel_format);
8478 return -EINVAL;
8481 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
8482 if (mode_cmd->offsets[0] != 0)
8483 return -EINVAL;
8485 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8486 if (ret) {
8487 DRM_ERROR("framebuffer init failed %d\n", ret);
8488 return ret;
8491 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8492 intel_fb->obj = obj;
8493 return 0;
8496 static struct drm_framebuffer *
8497 intel_user_framebuffer_create(struct drm_device *dev,
8498 struct drm_file *filp,
8499 struct drm_mode_fb_cmd2 *mode_cmd)
8501 struct drm_i915_gem_object *obj;
8503 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8504 mode_cmd->handles[0]));
8505 if (&obj->base == NULL)
8506 return ERR_PTR(-ENOENT);
8508 return intel_framebuffer_create(dev, mode_cmd, obj);
8511 static const struct drm_mode_config_funcs intel_mode_funcs = {
8512 .fb_create = intel_user_framebuffer_create,
8513 .output_poll_changed = intel_fb_output_poll_changed,
8516 /* Set up chip specific display functions */
8517 static void intel_init_display(struct drm_device *dev)
8519 struct drm_i915_private *dev_priv = dev->dev_private;
8521 /* We always want a DPMS function */
8522 if (IS_HASWELL(dev)) {
8523 dev_priv->display.crtc_mode_set = haswell_crtc_mode_set;
8524 dev_priv->display.crtc_enable = haswell_crtc_enable;
8525 dev_priv->display.crtc_disable = haswell_crtc_disable;
8526 dev_priv->display.off = haswell_crtc_off;
8527 dev_priv->display.update_plane = ironlake_update_plane;
8528 } else if (HAS_PCH_SPLIT(dev)) {
8529 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8530 dev_priv->display.crtc_enable = ironlake_crtc_enable;
8531 dev_priv->display.crtc_disable = ironlake_crtc_disable;
8532 dev_priv->display.off = ironlake_crtc_off;
8533 dev_priv->display.update_plane = ironlake_update_plane;
8534 } else {
8535 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8536 dev_priv->display.crtc_enable = i9xx_crtc_enable;
8537 dev_priv->display.crtc_disable = i9xx_crtc_disable;
8538 dev_priv->display.off = i9xx_crtc_off;
8539 dev_priv->display.update_plane = i9xx_update_plane;
8542 /* Returns the core display clock speed */
8543 if (IS_VALLEYVIEW(dev))
8544 dev_priv->display.get_display_clock_speed =
8545 valleyview_get_display_clock_speed;
8546 else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8547 dev_priv->display.get_display_clock_speed =
8548 i945_get_display_clock_speed;
8549 else if (IS_I915G(dev))
8550 dev_priv->display.get_display_clock_speed =
8551 i915_get_display_clock_speed;
8552 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
8553 dev_priv->display.get_display_clock_speed =
8554 i9xx_misc_get_display_clock_speed;
8555 else if (IS_I915GM(dev))
8556 dev_priv->display.get_display_clock_speed =
8557 i915gm_get_display_clock_speed;
8558 else if (IS_I865G(dev))
8559 dev_priv->display.get_display_clock_speed =
8560 i865_get_display_clock_speed;
8561 else if (IS_I85X(dev))
8562 dev_priv->display.get_display_clock_speed =
8563 i855_get_display_clock_speed;
8564 else /* 852, 830 */
8565 dev_priv->display.get_display_clock_speed =
8566 i830_get_display_clock_speed;
8568 if (HAS_PCH_SPLIT(dev)) {
8569 if (IS_GEN5(dev)) {
8570 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
8571 dev_priv->display.write_eld = ironlake_write_eld;
8572 } else if (IS_GEN6(dev)) {
8573 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
8574 dev_priv->display.write_eld = ironlake_write_eld;
8575 } else if (IS_IVYBRIDGE(dev)) {
8576 /* FIXME: detect B0+ stepping and use auto training */
8577 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
8578 dev_priv->display.write_eld = ironlake_write_eld;
8579 dev_priv->display.modeset_global_resources =
8580 ivb_modeset_global_resources;
8581 } else if (IS_HASWELL(dev)) {
8582 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
8583 dev_priv->display.write_eld = haswell_write_eld;
8584 } else
8585 dev_priv->display.update_wm = NULL;
8586 } else if (IS_G4X(dev)) {
8587 dev_priv->display.write_eld = g4x_write_eld;
8590 /* Default just returns -ENODEV to indicate unsupported */
8591 dev_priv->display.queue_flip = intel_default_queue_flip;
8593 switch (INTEL_INFO(dev)->gen) {
8594 case 2:
8595 dev_priv->display.queue_flip = intel_gen2_queue_flip;
8596 break;
8598 case 3:
8599 dev_priv->display.queue_flip = intel_gen3_queue_flip;
8600 break;
8602 case 4:
8603 case 5:
8604 dev_priv->display.queue_flip = intel_gen4_queue_flip;
8605 break;
8607 case 6:
8608 dev_priv->display.queue_flip = intel_gen6_queue_flip;
8609 break;
8610 case 7:
8611 dev_priv->display.queue_flip = intel_gen7_queue_flip;
8612 break;
8617 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8618 * resume, or other times. This quirk makes sure that's the case for
8619 * affected systems.
8621 static void quirk_pipea_force(struct drm_device *dev)
8623 struct drm_i915_private *dev_priv = dev->dev_private;
8625 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
8626 DRM_INFO("applying pipe a force quirk\n");
8630 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8632 static void quirk_ssc_force_disable(struct drm_device *dev)
8634 struct drm_i915_private *dev_priv = dev->dev_private;
8635 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
8636 DRM_INFO("applying lvds SSC disable quirk\n");
8640 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
8641 * brightness value
8643 static void quirk_invert_brightness(struct drm_device *dev)
8645 struct drm_i915_private *dev_priv = dev->dev_private;
8646 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
8647 DRM_INFO("applying inverted panel brightness quirk\n");
8650 struct intel_quirk {
8651 int device;
8652 int subsystem_vendor;
8653 int subsystem_device;
8654 void (*hook)(struct drm_device *dev);
8657 static struct intel_quirk intel_quirks[] = {
8658 /* HP Mini needs pipe A force quirk (LP: #322104) */
8659 { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
8661 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8662 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
8664 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8665 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
8667 /* 830/845 need to leave pipe A & dpll A up */
8668 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8669 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
8671 /* Lenovo U160 cannot use SSC on LVDS */
8672 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
8674 /* Sony Vaio Y cannot use SSC on LVDS */
8675 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
8677 /* Acer Aspire 5734Z must invert backlight brightness */
8678 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
8681 static void intel_init_quirks(struct drm_device *dev)
8683 struct pci_dev *d = dev->pdev;
8684 int i;
8686 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
8687 struct intel_quirk *q = &intel_quirks[i];
8689 if (d->device == q->device &&
8690 (d->subsystem_vendor == q->subsystem_vendor ||
8691 q->subsystem_vendor == PCI_ANY_ID) &&
8692 (d->subsystem_device == q->subsystem_device ||
8693 q->subsystem_device == PCI_ANY_ID))
8694 q->hook(dev);
8698 /* Disable the VGA plane that we never use */
8699 static void i915_disable_vga(struct drm_device *dev)
8701 struct drm_i915_private *dev_priv = dev->dev_private;
8702 u8 sr1;
8703 u32 vga_reg;
8705 if (HAS_PCH_SPLIT(dev))
8706 vga_reg = CPU_VGACNTRL;
8707 else
8708 vga_reg = VGACNTRL;
8710 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
8711 outb(SR01, VGA_SR_INDEX);
8712 sr1 = inb(VGA_SR_DATA);
8713 outb(sr1 | 1<<5, VGA_SR_DATA);
8714 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
8715 udelay(300);
8717 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
8718 POSTING_READ(vga_reg);
8721 void intel_modeset_init_hw(struct drm_device *dev)
8723 /* We attempt to init the necessary power wells early in the initialization
8724 * time, so the subsystems that expect power to be enabled can work.
8726 intel_init_power_wells(dev);
8728 intel_prepare_ddi(dev);
8730 intel_init_clock_gating(dev);
8732 mutex_lock(&dev->struct_mutex);
8733 intel_enable_gt_powersave(dev);
8734 mutex_unlock(&dev->struct_mutex);
8737 void intel_modeset_init(struct drm_device *dev)
8739 struct drm_i915_private *dev_priv = dev->dev_private;
8740 int i, ret;
8742 drm_mode_config_init(dev);
8744 dev->mode_config.min_width = 0;
8745 dev->mode_config.min_height = 0;
8747 dev->mode_config.preferred_depth = 24;
8748 dev->mode_config.prefer_shadow = 1;
8750 dev->mode_config.funcs = &intel_mode_funcs;
8752 intel_init_quirks(dev);
8754 intel_init_pm(dev);
8756 intel_init_display(dev);
8758 if (IS_GEN2(dev)) {
8759 dev->mode_config.max_width = 2048;
8760 dev->mode_config.max_height = 2048;
8761 } else if (IS_GEN3(dev)) {
8762 dev->mode_config.max_width = 4096;
8763 dev->mode_config.max_height = 4096;
8764 } else {
8765 dev->mode_config.max_width = 8192;
8766 dev->mode_config.max_height = 8192;
8768 dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
8770 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8771 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
8773 for (i = 0; i < dev_priv->num_pipe; i++) {
8774 intel_crtc_init(dev, i);
8775 ret = intel_plane_init(dev, i);
8776 if (ret)
8777 DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
8780 intel_cpu_pll_init(dev);
8781 intel_pch_pll_init(dev);
8783 /* Just disable it once at startup */
8784 i915_disable_vga(dev);
8785 intel_setup_outputs(dev);
8788 static void
8789 intel_connector_break_all_links(struct intel_connector *connector)
8791 connector->base.dpms = DRM_MODE_DPMS_OFF;
8792 connector->base.encoder = NULL;
8793 connector->encoder->connectors_active = false;
8794 connector->encoder->base.crtc = NULL;
8797 static void intel_enable_pipe_a(struct drm_device *dev)
8799 struct intel_connector *connector;
8800 struct drm_connector *crt = NULL;
8801 struct intel_load_detect_pipe load_detect_temp;
8803 /* We can't just switch on the pipe A, we need to set things up with a
8804 * proper mode and output configuration. As a gross hack, enable pipe A
8805 * by enabling the load detect pipe once. */
8806 list_for_each_entry(connector,
8807 &dev->mode_config.connector_list,
8808 base.head) {
8809 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
8810 crt = &connector->base;
8811 break;
8815 if (!crt)
8816 return;
8818 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp))
8819 intel_release_load_detect_pipe(crt, &load_detect_temp);
8824 static bool
8825 intel_check_plane_mapping(struct intel_crtc *crtc)
8827 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
8828 u32 reg, val;
8830 if (dev_priv->num_pipe == 1)
8831 return true;
8833 reg = DSPCNTR(!crtc->plane);
8834 val = I915_READ(reg);
8836 if ((val & DISPLAY_PLANE_ENABLE) &&
8837 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
8838 return false;
8840 return true;
8843 static void intel_sanitize_crtc(struct intel_crtc *crtc)
8845 struct drm_device *dev = crtc->base.dev;
8846 struct drm_i915_private *dev_priv = dev->dev_private;
8847 u32 reg;
8849 /* Clear any frame start delays used for debugging left by the BIOS */
8850 reg = PIPECONF(crtc->cpu_transcoder);
8851 I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
8853 /* We need to sanitize the plane -> pipe mapping first because this will
8854 * disable the crtc (and hence change the state) if it is wrong. Note
8855 * that gen4+ has a fixed plane -> pipe mapping. */
8856 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
8857 struct intel_connector *connector;
8858 bool plane;
8860 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
8861 crtc->base.base.id);
8863 /* Pipe has the wrong plane attached and the plane is active.
8864 * Temporarily change the plane mapping and disable everything
8865 * ... */
8866 plane = crtc->plane;
8867 crtc->plane = !plane;
8868 dev_priv->display.crtc_disable(&crtc->base);
8869 crtc->plane = plane;
8871 /* ... and break all links. */
8872 list_for_each_entry(connector, &dev->mode_config.connector_list,
8873 base.head) {
8874 if (connector->encoder->base.crtc != &crtc->base)
8875 continue;
8877 intel_connector_break_all_links(connector);
8880 WARN_ON(crtc->active);
8881 crtc->base.enabled = false;
8884 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
8885 crtc->pipe == PIPE_A && !crtc->active) {
8886 /* BIOS forgot to enable pipe A, this mostly happens after
8887 * resume. Force-enable the pipe to fix this, the update_dpms
8888 * call below we restore the pipe to the right state, but leave
8889 * the required bits on. */
8890 intel_enable_pipe_a(dev);
8893 /* Adjust the state of the output pipe according to whether we
8894 * have active connectors/encoders. */
8895 intel_crtc_update_dpms(&crtc->base);
8897 if (crtc->active != crtc->base.enabled) {
8898 struct intel_encoder *encoder;
8900 /* This can happen either due to bugs in the get_hw_state
8901 * functions or because the pipe is force-enabled due to the
8902 * pipe A quirk. */
8903 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
8904 crtc->base.base.id,
8905 crtc->base.enabled ? "enabled" : "disabled",
8906 crtc->active ? "enabled" : "disabled");
8908 crtc->base.enabled = crtc->active;
8910 /* Because we only establish the connector -> encoder ->
8911 * crtc links if something is active, this means the
8912 * crtc is now deactivated. Break the links. connector
8913 * -> encoder links are only establish when things are
8914 * actually up, hence no need to break them. */
8915 WARN_ON(crtc->active);
8917 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
8918 WARN_ON(encoder->connectors_active);
8919 encoder->base.crtc = NULL;
8924 static void intel_sanitize_encoder(struct intel_encoder *encoder)
8926 struct intel_connector *connector;
8927 struct drm_device *dev = encoder->base.dev;
8929 /* We need to check both for a crtc link (meaning that the
8930 * encoder is active and trying to read from a pipe) and the
8931 * pipe itself being active. */
8932 bool has_active_crtc = encoder->base.crtc &&
8933 to_intel_crtc(encoder->base.crtc)->active;
8935 if (encoder->connectors_active && !has_active_crtc) {
8936 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
8937 encoder->base.base.id,
8938 drm_get_encoder_name(&encoder->base));
8940 /* Connector is active, but has no active pipe. This is
8941 * fallout from our resume register restoring. Disable
8942 * the encoder manually again. */
8943 if (encoder->base.crtc) {
8944 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
8945 encoder->base.base.id,
8946 drm_get_encoder_name(&encoder->base));
8947 encoder->disable(encoder);
8950 /* Inconsistent output/port/pipe state happens presumably due to
8951 * a bug in one of the get_hw_state functions. Or someplace else
8952 * in our code, like the register restore mess on resume. Clamp
8953 * things to off as a safer default. */
8954 list_for_each_entry(connector,
8955 &dev->mode_config.connector_list,
8956 base.head) {
8957 if (connector->encoder != encoder)
8958 continue;
8960 intel_connector_break_all_links(connector);
8963 /* Enabled encoders without active connectors will be fixed in
8964 * the crtc fixup. */
8967 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
8968 * and i915 state tracking structures. */
8969 void intel_modeset_setup_hw_state(struct drm_device *dev)
8971 struct drm_i915_private *dev_priv = dev->dev_private;
8972 enum pipe pipe;
8973 u32 tmp;
8974 struct intel_crtc *crtc;
8975 struct intel_encoder *encoder;
8976 struct intel_connector *connector;
8978 if (IS_HASWELL(dev)) {
8979 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
8981 if (tmp & TRANS_DDI_FUNC_ENABLE) {
8982 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
8983 case TRANS_DDI_EDP_INPUT_A_ON:
8984 case TRANS_DDI_EDP_INPUT_A_ONOFF:
8985 pipe = PIPE_A;
8986 break;
8987 case TRANS_DDI_EDP_INPUT_B_ONOFF:
8988 pipe = PIPE_B;
8989 break;
8990 case TRANS_DDI_EDP_INPUT_C_ONOFF:
8991 pipe = PIPE_C;
8992 break;
8995 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
8996 crtc->cpu_transcoder = TRANSCODER_EDP;
8998 DRM_DEBUG_KMS("Pipe %c using transcoder EDP\n",
8999 pipe_name(pipe));
9003 for_each_pipe(pipe) {
9004 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9006 tmp = I915_READ(PIPECONF(crtc->cpu_transcoder));
9007 if (tmp & PIPECONF_ENABLE)
9008 crtc->active = true;
9009 else
9010 crtc->active = false;
9012 crtc->base.enabled = crtc->active;
9014 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
9015 crtc->base.base.id,
9016 crtc->active ? "enabled" : "disabled");
9019 if (IS_HASWELL(dev))
9020 intel_ddi_setup_hw_pll_state(dev);
9022 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9023 base.head) {
9024 pipe = 0;
9026 if (encoder->get_hw_state(encoder, &pipe)) {
9027 encoder->base.crtc =
9028 dev_priv->pipe_to_crtc_mapping[pipe];
9029 } else {
9030 encoder->base.crtc = NULL;
9033 encoder->connectors_active = false;
9034 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe=%i\n",
9035 encoder->base.base.id,
9036 drm_get_encoder_name(&encoder->base),
9037 encoder->base.crtc ? "enabled" : "disabled",
9038 pipe);
9041 list_for_each_entry(connector, &dev->mode_config.connector_list,
9042 base.head) {
9043 if (connector->get_hw_state(connector)) {
9044 connector->base.dpms = DRM_MODE_DPMS_ON;
9045 connector->encoder->connectors_active = true;
9046 connector->base.encoder = &connector->encoder->base;
9047 } else {
9048 connector->base.dpms = DRM_MODE_DPMS_OFF;
9049 connector->base.encoder = NULL;
9051 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
9052 connector->base.base.id,
9053 drm_get_connector_name(&connector->base),
9054 connector->base.encoder ? "enabled" : "disabled");
9057 /* HW state is read out, now we need to sanitize this mess. */
9058 list_for_each_entry(encoder, &dev->mode_config.encoder_list,
9059 base.head) {
9060 intel_sanitize_encoder(encoder);
9063 for_each_pipe(pipe) {
9064 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
9065 intel_sanitize_crtc(crtc);
9068 intel_modeset_update_staged_output_state(dev);
9070 intel_modeset_check_state(dev);
9072 drm_mode_config_reset(dev);
9075 void intel_modeset_gem_init(struct drm_device *dev)
9077 intel_modeset_init_hw(dev);
9079 intel_setup_overlay(dev);
9081 intel_modeset_setup_hw_state(dev);
9084 void intel_modeset_cleanup(struct drm_device *dev)
9086 struct drm_i915_private *dev_priv = dev->dev_private;
9087 struct drm_crtc *crtc;
9088 struct intel_crtc *intel_crtc;
9090 drm_kms_helper_poll_fini(dev);
9091 mutex_lock(&dev->struct_mutex);
9093 intel_unregister_dsm_handler();
9096 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9097 /* Skip inactive CRTCs */
9098 if (!crtc->fb)
9099 continue;
9101 intel_crtc = to_intel_crtc(crtc);
9102 intel_increase_pllclock(crtc);
9105 intel_disable_fbc(dev);
9107 intel_disable_gt_powersave(dev);
9109 ironlake_teardown_rc6(dev);
9111 if (IS_VALLEYVIEW(dev))
9112 vlv_init_dpio(dev);
9114 mutex_unlock(&dev->struct_mutex);
9116 /* Disable the irq before mode object teardown, for the irq might
9117 * enqueue unpin/hotplug work. */
9118 drm_irq_uninstall(dev);
9119 cancel_work_sync(&dev_priv->hotplug_work);
9120 cancel_work_sync(&dev_priv->rps.work);
9122 /* flush any delayed tasks or pending work */
9123 flush_scheduled_work();
9125 drm_mode_config_cleanup(dev);
9129 * Return which encoder is currently attached for connector.
9131 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9133 return &intel_attached_encoder(connector)->base;
9136 void intel_connector_attach_encoder(struct intel_connector *connector,
9137 struct intel_encoder *encoder)
9139 connector->encoder = encoder;
9140 drm_mode_connector_attach_encoder(&connector->base,
9141 &encoder->base);
9145 * set vga decode state - true == enable VGA decode
9147 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9149 struct drm_i915_private *dev_priv = dev->dev_private;
9150 u16 gmch_ctrl;
9152 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
9153 if (state)
9154 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9155 else
9156 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9157 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
9158 return 0;
9161 #ifdef CONFIG_DEBUG_FS
9162 #include <linux/seq_file.h>
9164 struct intel_display_error_state {
9165 struct intel_cursor_error_state {
9166 u32 control;
9167 u32 position;
9168 u32 base;
9169 u32 size;
9170 } cursor[I915_MAX_PIPES];
9172 struct intel_pipe_error_state {
9173 u32 conf;
9174 u32 source;
9176 u32 htotal;
9177 u32 hblank;
9178 u32 hsync;
9179 u32 vtotal;
9180 u32 vblank;
9181 u32 vsync;
9182 } pipe[I915_MAX_PIPES];
9184 struct intel_plane_error_state {
9185 u32 control;
9186 u32 stride;
9187 u32 size;
9188 u32 pos;
9189 u32 addr;
9190 u32 surface;
9191 u32 tile_offset;
9192 } plane[I915_MAX_PIPES];
9195 struct intel_display_error_state *
9196 intel_display_capture_error_state(struct drm_device *dev)
9198 drm_i915_private_t *dev_priv = dev->dev_private;
9199 struct intel_display_error_state *error;
9200 enum transcoder cpu_transcoder;
9201 int i;
9203 error = kmalloc(sizeof(*error), GFP_ATOMIC);
9204 if (error == NULL)
9205 return NULL;
9207 for_each_pipe(i) {
9208 cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv, i);
9210 error->cursor[i].control = I915_READ(CURCNTR(i));
9211 error->cursor[i].position = I915_READ(CURPOS(i));
9212 error->cursor[i].base = I915_READ(CURBASE(i));
9214 error->plane[i].control = I915_READ(DSPCNTR(i));
9215 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9216 error->plane[i].size = I915_READ(DSPSIZE(i));
9217 error->plane[i].pos = I915_READ(DSPPOS(i));
9218 error->plane[i].addr = I915_READ(DSPADDR(i));
9219 if (INTEL_INFO(dev)->gen >= 4) {
9220 error->plane[i].surface = I915_READ(DSPSURF(i));
9221 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9224 error->pipe[i].conf = I915_READ(PIPECONF(cpu_transcoder));
9225 error->pipe[i].source = I915_READ(PIPESRC(i));
9226 error->pipe[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
9227 error->pipe[i].hblank = I915_READ(HBLANK(cpu_transcoder));
9228 error->pipe[i].hsync = I915_READ(HSYNC(cpu_transcoder));
9229 error->pipe[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
9230 error->pipe[i].vblank = I915_READ(VBLANK(cpu_transcoder));
9231 error->pipe[i].vsync = I915_READ(VSYNC(cpu_transcoder));
9234 return error;
9237 void
9238 intel_display_print_error_state(struct seq_file *m,
9239 struct drm_device *dev,
9240 struct intel_display_error_state *error)
9242 drm_i915_private_t *dev_priv = dev->dev_private;
9243 int i;
9245 seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
9246 for_each_pipe(i) {
9247 seq_printf(m, "Pipe [%d]:\n", i);
9248 seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
9249 seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
9250 seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
9251 seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
9252 seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
9253 seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
9254 seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
9255 seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
9257 seq_printf(m, "Plane [%d]:\n", i);
9258 seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
9259 seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
9260 seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
9261 seq_printf(m, " POS: %08x\n", error->plane[i].pos);
9262 seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
9263 if (INTEL_INFO(dev)->gen >= 4) {
9264 seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
9265 seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
9268 seq_printf(m, "Cursor [%d]:\n", i);
9269 seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
9270 seq_printf(m, " POS: %08x\n", error->cursor[i].position);
9271 seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
9274 #endif