ath9k_hw: Add support for AR946/8x chipsets.
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ath / ath9k / ar9003_phy.c
blob95147948794dbe2ed7b0ff5ade5a05ac440a22f5
1 /*
2 * Copyright (c) 2010-2011 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include "hw.h"
18 #include "ar9003_phy.h"
20 static const int firstep_table[] =
21 /* level: 0 1 2 3 4 5 6 7 8 */
22 { -4, -2, 0, 2, 4, 6, 8, 10, 12 }; /* lvl 0-8, default 2 */
24 static const int cycpwrThr1_table[] =
25 /* level: 0 1 2 3 4 5 6 7 8 */
26 { -6, -4, -2, 0, 2, 4, 6, 8 }; /* lvl 0-7, default 3 */
29 * register values to turn OFDM weak signal detection OFF
31 static const int m1ThreshLow_off = 127;
32 static const int m2ThreshLow_off = 127;
33 static const int m1Thresh_off = 127;
34 static const int m2Thresh_off = 127;
35 static const int m2CountThr_off = 31;
36 static const int m2CountThrLow_off = 63;
37 static const int m1ThreshLowExt_off = 127;
38 static const int m2ThreshLowExt_off = 127;
39 static const int m1ThreshExt_off = 127;
40 static const int m2ThreshExt_off = 127;
42 /**
43 * ar9003_hw_set_channel - set channel on single-chip device
44 * @ah: atheros hardware structure
45 * @chan:
47 * This is the function to change channel on single-chip devices, that is
48 * all devices after ar9280.
50 * This function takes the channel value in MHz and sets
51 * hardware channel value. Assumes writes have been enabled to analog bus.
53 * Actual Expression,
55 * For 2GHz channel,
56 * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
57 * (freq_ref = 40MHz)
59 * For 5GHz channel,
60 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
61 * (freq_ref = 40MHz/(24>>amodeRefSel))
63 * For 5GHz channels which are 5MHz spaced,
64 * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
65 * (freq_ref = 40MHz)
67 static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
69 u16 bMode, fracMode = 0, aModeRefSel = 0;
70 u32 freq, channelSel = 0, reg32 = 0;
71 struct chan_centers centers;
72 int loadSynthChannel;
74 ath9k_hw_get_channel_centers(ah, chan, &centers);
75 freq = centers.synth_center;
77 if (freq < 4800) { /* 2 GHz, fractional mode */
78 if (AR_SREV_9330(ah)) {
79 u32 chan_frac;
80 u32 div;
82 if (ah->is_clk_25mhz)
83 div = 75;
84 else
85 div = 120;
87 channelSel = (freq * 4) / div;
88 chan_frac = (((freq * 4) % div) * 0x20000) / div;
89 channelSel = (channelSel << 17) | chan_frac;
90 } else if (AR_SREV_9485(ah)) {
91 u32 chan_frac;
94 * freq_ref = 40 / (refdiva >> amoderefsel); where refdiva=1 and amoderefsel=0
95 * ndiv = ((chan_mhz * 4) / 3) / freq_ref;
96 * chansel = int(ndiv), chanfrac = (ndiv - chansel) * 0x20000
98 channelSel = (freq * 4) / 120;
99 chan_frac = (((freq * 4) % 120) * 0x20000) / 120;
100 channelSel = (channelSel << 17) | chan_frac;
101 } else if (AR_SREV_9340(ah)) {
102 if (ah->is_clk_25mhz) {
103 u32 chan_frac;
105 channelSel = (freq * 2) / 75;
106 chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
107 channelSel = (channelSel << 17) | chan_frac;
108 } else
109 channelSel = CHANSEL_2G(freq) >> 1;
110 } else
111 channelSel = CHANSEL_2G(freq);
112 /* Set to 2G mode */
113 bMode = 1;
114 } else {
115 if (AR_SREV_9340(ah) && ah->is_clk_25mhz) {
116 u32 chan_frac;
118 channelSel = (freq * 2) / 75;
119 chan_frac = (((freq * 2) % 75) * 0x20000) / 75;
120 channelSel = (channelSel << 17) | chan_frac;
121 } else {
122 channelSel = CHANSEL_5G(freq);
123 /* Doubler is ON, so, divide channelSel by 2. */
124 channelSel >>= 1;
126 /* Set to 5G mode */
127 bMode = 0;
130 /* Enable fractional mode for all channels */
131 fracMode = 1;
132 aModeRefSel = 0;
133 loadSynthChannel = 0;
135 reg32 = (bMode << 29);
136 REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
138 /* Enable Long shift Select for Synthesizer */
139 REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
140 AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
142 /* Program Synth. setting */
143 reg32 = (channelSel << 2) | (fracMode << 30) |
144 (aModeRefSel << 28) | (loadSynthChannel << 31);
145 REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
147 /* Toggle Load Synth channel bit */
148 loadSynthChannel = 1;
149 reg32 = (channelSel << 2) | (fracMode << 30) |
150 (aModeRefSel << 28) | (loadSynthChannel << 31);
151 REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
153 ah->curchan = chan;
154 ah->curchan_rad_index = -1;
156 return 0;
160 * ar9003_hw_spur_mitigate_mrc_cck - convert baseband spur frequency
161 * @ah: atheros hardware structure
162 * @chan:
164 * For single-chip solutions. Converts to baseband spur frequency given the
165 * input channel frequency and compute register settings below.
167 * Spur mitigation for MRC CCK
169 static void ar9003_hw_spur_mitigate_mrc_cck(struct ath_hw *ah,
170 struct ath9k_channel *chan)
172 static const u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
173 int cur_bb_spur, negative = 0, cck_spur_freq;
174 int i;
175 int range, max_spur_cnts, synth_freq;
176 u8 *spur_fbin_ptr = NULL;
179 * Need to verify range +/- 10 MHz in control channel, otherwise spur
180 * is out-of-band and can be ignored.
183 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah)) {
184 spur_fbin_ptr = ar9003_get_spur_chan_ptr(ah,
185 IS_CHAN_2GHZ(chan));
186 if (spur_fbin_ptr[0] == 0) /* No spur */
187 return;
188 max_spur_cnts = 5;
189 if (IS_CHAN_HT40(chan)) {
190 range = 19;
191 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
192 AR_PHY_GC_DYN2040_PRI_CH) == 0)
193 synth_freq = chan->channel + 10;
194 else
195 synth_freq = chan->channel - 10;
196 } else {
197 range = 10;
198 synth_freq = chan->channel;
200 } else {
201 range = 10;
202 max_spur_cnts = 4;
203 synth_freq = chan->channel;
206 for (i = 0; i < max_spur_cnts; i++) {
207 negative = 0;
208 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
209 cur_bb_spur = FBIN2FREQ(spur_fbin_ptr[i],
210 IS_CHAN_2GHZ(chan)) - synth_freq;
211 else
212 cur_bb_spur = spur_freq[i] - synth_freq;
214 if (cur_bb_spur < 0) {
215 negative = 1;
216 cur_bb_spur = -cur_bb_spur;
218 if (cur_bb_spur < range) {
219 cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
221 if (negative == 1)
222 cck_spur_freq = -cck_spur_freq;
224 cck_spur_freq = cck_spur_freq & 0xfffff;
226 REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
227 AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
228 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
229 AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
230 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
231 AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
232 0x2);
233 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
234 AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
235 0x1);
236 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
237 AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
238 cck_spur_freq);
240 return;
244 REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
245 AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
246 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
247 AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
248 REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
249 AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
252 /* Clean all spur register fields */
253 static void ar9003_hw_spur_ofdm_clear(struct ath_hw *ah)
255 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
256 AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0);
257 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
258 AR_PHY_TIMING11_SPUR_FREQ_SD, 0);
259 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
260 AR_PHY_TIMING11_SPUR_DELTA_PHASE, 0);
261 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
262 AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, 0);
263 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
264 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0);
265 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
266 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0);
267 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
268 AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0);
269 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
270 AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 0);
271 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
272 AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 0);
274 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
275 AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0);
276 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
277 AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0);
278 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
279 AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0);
280 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
281 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, 0);
282 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
283 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, 0);
284 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
285 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, 0);
286 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
287 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0);
288 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
289 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0);
290 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
291 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0);
292 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
293 AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0);
296 static void ar9003_hw_spur_ofdm(struct ath_hw *ah,
297 int freq_offset,
298 int spur_freq_sd,
299 int spur_delta_phase,
300 int spur_subchannel_sd)
302 int mask_index = 0;
304 /* OFDM Spur mitigation */
305 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
306 AR_PHY_TIMING4_ENABLE_SPUR_FILTER, 0x1);
307 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
308 AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd);
309 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
310 AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase);
311 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
312 AR_PHY_SFCORR_EXT_SPUR_SUBCHANNEL_SD, spur_subchannel_sd);
313 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
314 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_AGC, 0x1);
315 REG_RMW_FIELD(ah, AR_PHY_TIMING11,
316 AR_PHY_TIMING11_USE_SPUR_FILTER_IN_SELFCOR, 0x1);
317 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
318 AR_PHY_TIMING4_ENABLE_SPUR_RSSI, 0x1);
319 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
320 AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, 34);
321 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
322 AR_PHY_SPUR_REG_EN_VIT_SPUR_RSSI, 1);
324 if (REG_READ_FIELD(ah, AR_PHY_MODE,
325 AR_PHY_MODE_DYNAMIC) == 0x1)
326 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
327 AR_PHY_SPUR_REG_ENABLE_NF_RSSI_SPUR_MIT, 1);
329 mask_index = (freq_offset << 4) / 5;
330 if (mask_index < 0)
331 mask_index = mask_index - 1;
333 mask_index = mask_index & 0x7f;
335 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
336 AR_PHY_SPUR_REG_ENABLE_MASK_PPM, 0x1);
337 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
338 AR_PHY_TIMING4_ENABLE_PILOT_MASK, 0x1);
339 REG_RMW_FIELD(ah, AR_PHY_TIMING4,
340 AR_PHY_TIMING4_ENABLE_CHAN_MASK, 0x1);
341 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
342 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_IDX_A, mask_index);
343 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
344 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_IDX_A, mask_index);
345 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
346 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_IDX_A, mask_index);
347 REG_RMW_FIELD(ah, AR_PHY_PILOT_SPUR_MASK,
348 AR_PHY_PILOT_SPUR_MASK_CF_PILOT_MASK_A, 0xc);
349 REG_RMW_FIELD(ah, AR_PHY_CHAN_SPUR_MASK,
350 AR_PHY_CHAN_SPUR_MASK_CF_CHAN_MASK_A, 0xc);
351 REG_RMW_FIELD(ah, AR_PHY_SPUR_MASK_A,
352 AR_PHY_SPUR_MASK_A_CF_PUNC_MASK_A, 0xa0);
353 REG_RMW_FIELD(ah, AR_PHY_SPUR_REG,
354 AR_PHY_SPUR_REG_MASK_RATE_CNTL, 0xff);
357 static void ar9003_hw_spur_ofdm_work(struct ath_hw *ah,
358 struct ath9k_channel *chan,
359 int freq_offset)
361 int spur_freq_sd = 0;
362 int spur_subchannel_sd = 0;
363 int spur_delta_phase = 0;
365 if (IS_CHAN_HT40(chan)) {
366 if (freq_offset < 0) {
367 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
368 AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
369 spur_subchannel_sd = 1;
370 else
371 spur_subchannel_sd = 0;
373 spur_freq_sd = (freq_offset << 9) / 11;
375 } else {
376 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
377 AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
378 spur_subchannel_sd = 0;
379 else
380 spur_subchannel_sd = 1;
382 spur_freq_sd = (freq_offset << 9) / 11;
386 spur_delta_phase = (freq_offset << 17) / 5;
388 } else {
389 spur_subchannel_sd = 0;
390 spur_freq_sd = (freq_offset << 9) /11;
391 spur_delta_phase = (freq_offset << 18) / 5;
394 spur_freq_sd = spur_freq_sd & 0x3ff;
395 spur_delta_phase = spur_delta_phase & 0xfffff;
397 ar9003_hw_spur_ofdm(ah,
398 freq_offset,
399 spur_freq_sd,
400 spur_delta_phase,
401 spur_subchannel_sd);
404 /* Spur mitigation for OFDM */
405 static void ar9003_hw_spur_mitigate_ofdm(struct ath_hw *ah,
406 struct ath9k_channel *chan)
408 int synth_freq;
409 int range = 10;
410 int freq_offset = 0;
411 int mode;
412 u8* spurChansPtr;
413 unsigned int i;
414 struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
416 if (IS_CHAN_5GHZ(chan)) {
417 spurChansPtr = &(eep->modalHeader5G.spurChans[0]);
418 mode = 0;
420 else {
421 spurChansPtr = &(eep->modalHeader2G.spurChans[0]);
422 mode = 1;
425 if (spurChansPtr[0] == 0)
426 return; /* No spur in the mode */
428 if (IS_CHAN_HT40(chan)) {
429 range = 19;
430 if (REG_READ_FIELD(ah, AR_PHY_GEN_CTRL,
431 AR_PHY_GC_DYN2040_PRI_CH) == 0x0)
432 synth_freq = chan->channel - 10;
433 else
434 synth_freq = chan->channel + 10;
435 } else {
436 range = 10;
437 synth_freq = chan->channel;
440 ar9003_hw_spur_ofdm_clear(ah);
442 for (i = 0; i < AR_EEPROM_MODAL_SPURS && spurChansPtr[i]; i++) {
443 freq_offset = FBIN2FREQ(spurChansPtr[i], mode) - synth_freq;
444 if (abs(freq_offset) < range) {
445 ar9003_hw_spur_ofdm_work(ah, chan, freq_offset);
446 break;
451 static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
452 struct ath9k_channel *chan)
454 ar9003_hw_spur_mitigate_mrc_cck(ah, chan);
455 ar9003_hw_spur_mitigate_ofdm(ah, chan);
458 static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
459 struct ath9k_channel *chan)
461 u32 pll;
463 pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
465 if (chan && IS_CHAN_HALF_RATE(chan))
466 pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
467 else if (chan && IS_CHAN_QUARTER_RATE(chan))
468 pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
470 pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
472 return pll;
475 static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
476 struct ath9k_channel *chan)
478 u32 phymode;
479 u32 enableDacFifo = 0;
481 enableDacFifo =
482 (REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
484 /* Enable 11n HT, 20 MHz */
485 phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 |
486 AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
488 /* Configure baseband for dynamic 20/40 operation */
489 if (IS_CHAN_HT40(chan)) {
490 phymode |= AR_PHY_GC_DYN2040_EN;
491 /* Configure control (primary) channel at +-10MHz */
492 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
493 (chan->chanmode == CHANNEL_G_HT40PLUS))
494 phymode |= AR_PHY_GC_DYN2040_PRI_CH;
498 /* make sure we preserve INI settings */
499 phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
500 /* turn off Green Field detection for STA for now */
501 phymode &= ~AR_PHY_GC_GF_DETECT_EN;
503 REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
505 /* Configure MAC for 20/40 operation */
506 ath9k_hw_set11nmac2040(ah);
508 /* global transmit timeout (25 TUs default)*/
509 REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
510 /* carrier sense timeout */
511 REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
514 static void ar9003_hw_init_bb(struct ath_hw *ah,
515 struct ath9k_channel *chan)
517 u32 synthDelay;
520 * Wait for the frequency synth to settle (synth goes on
521 * via AR_PHY_ACTIVE_EN). Read the phy active delay register.
522 * Value is in 100ns increments.
524 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
525 if (IS_CHAN_B(chan))
526 synthDelay = (4 * synthDelay) / 22;
527 else
528 synthDelay /= 10;
530 /* Activate the PHY (includes baseband activate + synthesizer on) */
531 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
534 * There is an issue if the AP starts the calibration before
535 * the base band timeout completes. This could result in the
536 * rx_clear false triggering. As a workaround we add delay an
537 * extra BASE_ACTIVATE_DELAY usecs to ensure this condition
538 * does not happen.
540 udelay(synthDelay + BASE_ACTIVATE_DELAY);
543 static void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
545 switch (rx) {
546 case 0x5:
547 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
548 AR_PHY_SWAP_ALT_CHAIN);
549 case 0x3:
550 case 0x1:
551 case 0x2:
552 case 0x7:
553 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
554 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
555 break;
556 default:
557 break;
560 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && (tx == 0x7))
561 REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
562 else if (AR_SREV_9480(ah))
563 /* xxx only when MCI support is enabled */
564 REG_WRITE(ah, AR_SELFGEN_MASK, 0x3);
565 else
566 REG_WRITE(ah, AR_SELFGEN_MASK, tx);
568 if (tx == 0x5) {
569 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
570 AR_PHY_SWAP_ALT_CHAIN);
575 * Override INI values with chip specific configuration.
577 static void ar9003_hw_override_ini(struct ath_hw *ah)
579 u32 val;
582 * Set the RX_ABORT and RX_DIS and clear it only after
583 * RXE is set for MAC. This prevents frames with
584 * corrupted descriptor status.
586 REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
589 * For AR9280 and above, there is a new feature that allows
590 * Multicast search based on both MAC Address and Key ID. By default,
591 * this feature is enabled. But since the driver is not using this
592 * feature, we switch it off; otherwise multicast search based on
593 * MAC addr only will fail.
595 val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
596 REG_WRITE(ah, AR_PCU_MISC_MODE2,
597 val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
600 static void ar9003_hw_prog_ini(struct ath_hw *ah,
601 struct ar5416IniArray *iniArr,
602 int column)
604 unsigned int i, regWrites = 0;
606 /* New INI format: Array may be undefined (pre, core, post arrays) */
607 if (!iniArr->ia_array)
608 return;
611 * New INI format: Pre, core, and post arrays for a given subsystem
612 * may be modal (> 2 columns) or non-modal (2 columns). Determine if
613 * the array is non-modal and force the column to 1.
615 if (column >= iniArr->ia_columns)
616 column = 1;
618 for (i = 0; i < iniArr->ia_rows; i++) {
619 u32 reg = INI_RA(iniArr, i, 0);
620 u32 val = INI_RA(iniArr, i, column);
622 REG_WRITE(ah, reg, val);
624 DO_DELAY(regWrites);
628 static int ar9003_hw_process_ini(struct ath_hw *ah,
629 struct ath9k_channel *chan)
631 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
632 unsigned int regWrites = 0, i;
633 struct ieee80211_channel *channel = chan->chan;
634 u32 modesIndex;
636 switch (chan->chanmode) {
637 case CHANNEL_A:
638 case CHANNEL_A_HT20:
639 modesIndex = 1;
640 break;
641 case CHANNEL_A_HT40PLUS:
642 case CHANNEL_A_HT40MINUS:
643 modesIndex = 2;
644 break;
645 case CHANNEL_G:
646 case CHANNEL_G_HT20:
647 case CHANNEL_B:
648 modesIndex = 4;
649 break;
650 case CHANNEL_G_HT40PLUS:
651 case CHANNEL_G_HT40MINUS:
652 modesIndex = 3;
653 break;
655 default:
656 return -EINVAL;
659 for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
660 ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
661 ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
662 ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
663 ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
664 if (i == ATH_INI_POST && AR_SREV_9480_20(ah))
665 ar9003_hw_prog_ini(ah,
666 &ah->ini_radio_post_sys2ant,
667 modesIndex);
670 REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
671 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
674 * For 5GHz channels requiring Fast Clock, apply
675 * different modal values.
677 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
678 REG_WRITE_ARRAY(&ah->iniModesAdditional,
679 modesIndex, regWrites);
681 if (AR_SREV_9300(ah))
682 REG_WRITE_ARRAY(&ah->iniModesAdditional, 1, regWrites);
684 if (AR_SREV_9340(ah) && !ah->is_clk_25mhz)
685 REG_WRITE_ARRAY(&ah->iniModesAdditional_40M, 1, regWrites);
687 if (AR_SREV_9480(ah))
688 ar9003_hw_prog_ini(ah, &ah->ini_BTCOEX_MAX_TXPWR, 1);
690 ar9003_hw_override_ini(ah);
691 ar9003_hw_set_channel_regs(ah, chan);
692 ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
694 /* Set TX power */
695 ah->eep_ops->set_txpower(ah, chan,
696 ath9k_regd_get_ctl(regulatory, chan),
697 channel->max_antenna_gain * 2,
698 channel->max_power * 2,
699 min((u32) MAX_RATE_POWER,
700 (u32) regulatory->power_limit), false);
702 return 0;
705 static void ar9003_hw_set_rfmode(struct ath_hw *ah,
706 struct ath9k_channel *chan)
708 u32 rfMode = 0;
710 if (chan == NULL)
711 return;
713 rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
714 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
716 if (IS_CHAN_A_FAST_CLOCK(ah, chan))
717 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
719 REG_WRITE(ah, AR_PHY_MODE, rfMode);
722 static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
724 REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
727 static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
728 struct ath9k_channel *chan)
730 u32 coef_scaled, ds_coef_exp, ds_coef_man;
731 u32 clockMhzScaled = 0x64000000;
732 struct chan_centers centers;
735 * half and quarter rate can divide the scaled clock by 2 or 4
736 * scale for selected channel bandwidth
738 if (IS_CHAN_HALF_RATE(chan))
739 clockMhzScaled = clockMhzScaled >> 1;
740 else if (IS_CHAN_QUARTER_RATE(chan))
741 clockMhzScaled = clockMhzScaled >> 2;
744 * ALGO -> coef = 1e8/fcarrier*fclock/40;
745 * scaled coef to provide precision for this floating calculation
747 ath9k_hw_get_channel_centers(ah, chan, &centers);
748 coef_scaled = clockMhzScaled / centers.synth_center;
750 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
751 &ds_coef_exp);
753 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
754 AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
755 REG_RMW_FIELD(ah, AR_PHY_TIMING3,
756 AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
759 * For Short GI,
760 * scaled coeff is 9/10 that of normal coeff
762 coef_scaled = (9 * coef_scaled) / 10;
764 ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
765 &ds_coef_exp);
767 /* for short gi */
768 REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
769 AR_PHY_SGI_DSC_MAN, ds_coef_man);
770 REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
771 AR_PHY_SGI_DSC_EXP, ds_coef_exp);
774 static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
776 REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
777 return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
778 AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
782 * Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
783 * Read the phy active delay register. Value is in 100ns increments.
785 static void ar9003_hw_rfbus_done(struct ath_hw *ah)
787 u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
788 if (IS_CHAN_B(ah->curchan))
789 synthDelay = (4 * synthDelay) / 22;
790 else
791 synthDelay /= 10;
793 udelay(synthDelay + BASE_ACTIVATE_DELAY);
795 REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
798 static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
800 u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
801 if (value)
802 v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
803 else
804 v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
805 REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
808 static bool ar9003_hw_ani_control(struct ath_hw *ah,
809 enum ath9k_ani_cmd cmd, int param)
811 struct ath_common *common = ath9k_hw_common(ah);
812 struct ath9k_channel *chan = ah->curchan;
813 struct ar5416AniState *aniState = &chan->ani;
814 s32 value, value2;
816 switch (cmd & ah->ani_function) {
817 case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
819 * on == 1 means ofdm weak signal detection is ON
820 * on == 1 is the default, for less noise immunity
822 * on == 0 means ofdm weak signal detection is OFF
823 * on == 0 means more noise imm
825 u32 on = param ? 1 : 0;
827 * make register setting for default
828 * (weak sig detect ON) come from INI file
830 int m1ThreshLow = on ?
831 aniState->iniDef.m1ThreshLow : m1ThreshLow_off;
832 int m2ThreshLow = on ?
833 aniState->iniDef.m2ThreshLow : m2ThreshLow_off;
834 int m1Thresh = on ?
835 aniState->iniDef.m1Thresh : m1Thresh_off;
836 int m2Thresh = on ?
837 aniState->iniDef.m2Thresh : m2Thresh_off;
838 int m2CountThr = on ?
839 aniState->iniDef.m2CountThr : m2CountThr_off;
840 int m2CountThrLow = on ?
841 aniState->iniDef.m2CountThrLow : m2CountThrLow_off;
842 int m1ThreshLowExt = on ?
843 aniState->iniDef.m1ThreshLowExt : m1ThreshLowExt_off;
844 int m2ThreshLowExt = on ?
845 aniState->iniDef.m2ThreshLowExt : m2ThreshLowExt_off;
846 int m1ThreshExt = on ?
847 aniState->iniDef.m1ThreshExt : m1ThreshExt_off;
848 int m2ThreshExt = on ?
849 aniState->iniDef.m2ThreshExt : m2ThreshExt_off;
851 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
852 AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
853 m1ThreshLow);
854 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
855 AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
856 m2ThreshLow);
857 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
858 AR_PHY_SFCORR_M1_THRESH, m1Thresh);
859 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
860 AR_PHY_SFCORR_M2_THRESH, m2Thresh);
861 REG_RMW_FIELD(ah, AR_PHY_SFCORR,
862 AR_PHY_SFCORR_M2COUNT_THR, m2CountThr);
863 REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
864 AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
865 m2CountThrLow);
867 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
868 AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLowExt);
869 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
870 AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLowExt);
871 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
872 AR_PHY_SFCORR_EXT_M1_THRESH, m1ThreshExt);
873 REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
874 AR_PHY_SFCORR_EXT_M2_THRESH, m2ThreshExt);
876 if (on)
877 REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
878 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
879 else
880 REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
881 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
883 if (!on != aniState->ofdmWeakSigDetectOff) {
884 ath_dbg(common, ATH_DBG_ANI,
885 "** ch %d: ofdm weak signal: %s=>%s\n",
886 chan->channel,
887 !aniState->ofdmWeakSigDetectOff ?
888 "on" : "off",
889 on ? "on" : "off");
890 if (on)
891 ah->stats.ast_ani_ofdmon++;
892 else
893 ah->stats.ast_ani_ofdmoff++;
894 aniState->ofdmWeakSigDetectOff = !on;
896 break;
898 case ATH9K_ANI_FIRSTEP_LEVEL:{
899 u32 level = param;
901 if (level >= ARRAY_SIZE(firstep_table)) {
902 ath_dbg(common, ATH_DBG_ANI,
903 "ATH9K_ANI_FIRSTEP_LEVEL: level out of range (%u > %zu)\n",
904 level, ARRAY_SIZE(firstep_table));
905 return false;
909 * make register setting relative to default
910 * from INI file & cap value
912 value = firstep_table[level] -
913 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
914 aniState->iniDef.firstep;
915 if (value < ATH9K_SIG_FIRSTEP_SETTING_MIN)
916 value = ATH9K_SIG_FIRSTEP_SETTING_MIN;
917 if (value > ATH9K_SIG_FIRSTEP_SETTING_MAX)
918 value = ATH9K_SIG_FIRSTEP_SETTING_MAX;
919 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
920 AR_PHY_FIND_SIG_FIRSTEP,
921 value);
923 * we need to set first step low register too
924 * make register setting relative to default
925 * from INI file & cap value
927 value2 = firstep_table[level] -
928 firstep_table[ATH9K_ANI_FIRSTEP_LVL_NEW] +
929 aniState->iniDef.firstepLow;
930 if (value2 < ATH9K_SIG_FIRSTEP_SETTING_MIN)
931 value2 = ATH9K_SIG_FIRSTEP_SETTING_MIN;
932 if (value2 > ATH9K_SIG_FIRSTEP_SETTING_MAX)
933 value2 = ATH9K_SIG_FIRSTEP_SETTING_MAX;
935 REG_RMW_FIELD(ah, AR_PHY_FIND_SIG_LOW,
936 AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW, value2);
938 if (level != aniState->firstepLevel) {
939 ath_dbg(common, ATH_DBG_ANI,
940 "** ch %d: level %d=>%d[def:%d] firstep[level]=%d ini=%d\n",
941 chan->channel,
942 aniState->firstepLevel,
943 level,
944 ATH9K_ANI_FIRSTEP_LVL_NEW,
945 value,
946 aniState->iniDef.firstep);
947 ath_dbg(common, ATH_DBG_ANI,
948 "** ch %d: level %d=>%d[def:%d] firstep_low[level]=%d ini=%d\n",
949 chan->channel,
950 aniState->firstepLevel,
951 level,
952 ATH9K_ANI_FIRSTEP_LVL_NEW,
953 value2,
954 aniState->iniDef.firstepLow);
955 if (level > aniState->firstepLevel)
956 ah->stats.ast_ani_stepup++;
957 else if (level < aniState->firstepLevel)
958 ah->stats.ast_ani_stepdown++;
959 aniState->firstepLevel = level;
961 break;
963 case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
964 u32 level = param;
966 if (level >= ARRAY_SIZE(cycpwrThr1_table)) {
967 ath_dbg(common, ATH_DBG_ANI,
968 "ATH9K_ANI_SPUR_IMMUNITY_LEVEL: level out of range (%u > %zu)\n",
969 level, ARRAY_SIZE(cycpwrThr1_table));
970 return false;
973 * make register setting relative to default
974 * from INI file & cap value
976 value = cycpwrThr1_table[level] -
977 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
978 aniState->iniDef.cycpwrThr1;
979 if (value < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
980 value = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
981 if (value > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
982 value = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
983 REG_RMW_FIELD(ah, AR_PHY_TIMING5,
984 AR_PHY_TIMING5_CYCPWR_THR1,
985 value);
988 * set AR_PHY_EXT_CCA for extension channel
989 * make register setting relative to default
990 * from INI file & cap value
992 value2 = cycpwrThr1_table[level] -
993 cycpwrThr1_table[ATH9K_ANI_SPUR_IMMUNE_LVL_NEW] +
994 aniState->iniDef.cycpwrThr1Ext;
995 if (value2 < ATH9K_SIG_SPUR_IMM_SETTING_MIN)
996 value2 = ATH9K_SIG_SPUR_IMM_SETTING_MIN;
997 if (value2 > ATH9K_SIG_SPUR_IMM_SETTING_MAX)
998 value2 = ATH9K_SIG_SPUR_IMM_SETTING_MAX;
999 REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
1000 AR_PHY_EXT_CYCPWR_THR1, value2);
1002 if (level != aniState->spurImmunityLevel) {
1003 ath_dbg(common, ATH_DBG_ANI,
1004 "** ch %d: level %d=>%d[def:%d] cycpwrThr1[level]=%d ini=%d\n",
1005 chan->channel,
1006 aniState->spurImmunityLevel,
1007 level,
1008 ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1009 value,
1010 aniState->iniDef.cycpwrThr1);
1011 ath_dbg(common, ATH_DBG_ANI,
1012 "** ch %d: level %d=>%d[def:%d] cycpwrThr1Ext[level]=%d ini=%d\n",
1013 chan->channel,
1014 aniState->spurImmunityLevel,
1015 level,
1016 ATH9K_ANI_SPUR_IMMUNE_LVL_NEW,
1017 value2,
1018 aniState->iniDef.cycpwrThr1Ext);
1019 if (level > aniState->spurImmunityLevel)
1020 ah->stats.ast_ani_spurup++;
1021 else if (level < aniState->spurImmunityLevel)
1022 ah->stats.ast_ani_spurdown++;
1023 aniState->spurImmunityLevel = level;
1025 break;
1027 case ATH9K_ANI_MRC_CCK:{
1029 * is_on == 1 means MRC CCK ON (default, less noise imm)
1030 * is_on == 0 means MRC CCK is OFF (more noise imm)
1032 bool is_on = param ? 1 : 0;
1033 REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
1034 AR_PHY_MRC_CCK_ENABLE, is_on);
1035 REG_RMW_FIELD(ah, AR_PHY_MRC_CCK_CTRL,
1036 AR_PHY_MRC_CCK_MUX_REG, is_on);
1037 if (!is_on != aniState->mrcCCKOff) {
1038 ath_dbg(common, ATH_DBG_ANI,
1039 "** ch %d: MRC CCK: %s=>%s\n",
1040 chan->channel,
1041 !aniState->mrcCCKOff ? "on" : "off",
1042 is_on ? "on" : "off");
1043 if (is_on)
1044 ah->stats.ast_ani_ccklow++;
1045 else
1046 ah->stats.ast_ani_cckhigh++;
1047 aniState->mrcCCKOff = !is_on;
1049 break;
1051 case ATH9K_ANI_PRESENT:
1052 break;
1053 default:
1054 ath_dbg(common, ATH_DBG_ANI, "invalid cmd %u\n", cmd);
1055 return false;
1058 ath_dbg(common, ATH_DBG_ANI,
1059 "ANI parameters: SI=%d, ofdmWS=%s FS=%d MRCcck=%s listenTime=%d ofdmErrs=%d cckErrs=%d\n",
1060 aniState->spurImmunityLevel,
1061 !aniState->ofdmWeakSigDetectOff ? "on" : "off",
1062 aniState->firstepLevel,
1063 !aniState->mrcCCKOff ? "on" : "off",
1064 aniState->listenTime,
1065 aniState->ofdmPhyErrCount,
1066 aniState->cckPhyErrCount);
1067 return true;
1070 static void ar9003_hw_do_getnf(struct ath_hw *ah,
1071 int16_t nfarray[NUM_NF_READINGS])
1073 #define AR_PHY_CH_MINCCA_PWR 0x1FF00000
1074 #define AR_PHY_CH_MINCCA_PWR_S 20
1075 #define AR_PHY_CH_EXT_MINCCA_PWR 0x01FF0000
1076 #define AR_PHY_CH_EXT_MINCCA_PWR_S 16
1078 int16_t nf;
1079 int i;
1081 for (i = 0; i < AR9300_MAX_CHAINS; i++) {
1082 if (ah->rxchainmask & BIT(i)) {
1083 nf = MS(REG_READ(ah, ah->nf_regs[i]),
1084 AR_PHY_CH_MINCCA_PWR);
1085 nfarray[i] = sign_extend32(nf, 8);
1087 if (IS_CHAN_HT40(ah->curchan)) {
1088 u8 ext_idx = AR9300_MAX_CHAINS + i;
1090 nf = MS(REG_READ(ah, ah->nf_regs[ext_idx]),
1091 AR_PHY_CH_EXT_MINCCA_PWR);
1092 nfarray[ext_idx] = sign_extend32(nf, 8);
1098 static void ar9003_hw_set_nf_limits(struct ath_hw *ah)
1100 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_2GHZ;
1101 ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_2GHZ;
1102 if (AR_SREV_9330(ah))
1103 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9330_2GHZ;
1104 else
1105 ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9300_2GHZ;
1106 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_5GHZ;
1107 ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9300_5GHZ;
1108 ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9300_5GHZ;
1112 * Initialize the ANI register values with default (ini) values.
1113 * This routine is called during a (full) hardware reset after
1114 * all the registers are initialised from the INI.
1116 static void ar9003_hw_ani_cache_ini_regs(struct ath_hw *ah)
1118 struct ar5416AniState *aniState;
1119 struct ath_common *common = ath9k_hw_common(ah);
1120 struct ath9k_channel *chan = ah->curchan;
1121 struct ath9k_ani_default *iniDef;
1122 u32 val;
1124 aniState = &ah->curchan->ani;
1125 iniDef = &aniState->iniDef;
1127 ath_dbg(common, ATH_DBG_ANI,
1128 "ver %d.%d opmode %u chan %d Mhz/0x%x\n",
1129 ah->hw_version.macVersion,
1130 ah->hw_version.macRev,
1131 ah->opmode,
1132 chan->channel,
1133 chan->channelFlags);
1135 val = REG_READ(ah, AR_PHY_SFCORR);
1136 iniDef->m1Thresh = MS(val, AR_PHY_SFCORR_M1_THRESH);
1137 iniDef->m2Thresh = MS(val, AR_PHY_SFCORR_M2_THRESH);
1138 iniDef->m2CountThr = MS(val, AR_PHY_SFCORR_M2COUNT_THR);
1140 val = REG_READ(ah, AR_PHY_SFCORR_LOW);
1141 iniDef->m1ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M1_THRESH_LOW);
1142 iniDef->m2ThreshLow = MS(val, AR_PHY_SFCORR_LOW_M2_THRESH_LOW);
1143 iniDef->m2CountThrLow = MS(val, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW);
1145 val = REG_READ(ah, AR_PHY_SFCORR_EXT);
1146 iniDef->m1ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH);
1147 iniDef->m2ThreshExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH);
1148 iniDef->m1ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M1_THRESH_LOW);
1149 iniDef->m2ThreshLowExt = MS(val, AR_PHY_SFCORR_EXT_M2_THRESH_LOW);
1150 iniDef->firstep = REG_READ_FIELD(ah,
1151 AR_PHY_FIND_SIG,
1152 AR_PHY_FIND_SIG_FIRSTEP);
1153 iniDef->firstepLow = REG_READ_FIELD(ah,
1154 AR_PHY_FIND_SIG_LOW,
1155 AR_PHY_FIND_SIG_LOW_FIRSTEP_LOW);
1156 iniDef->cycpwrThr1 = REG_READ_FIELD(ah,
1157 AR_PHY_TIMING5,
1158 AR_PHY_TIMING5_CYCPWR_THR1);
1159 iniDef->cycpwrThr1Ext = REG_READ_FIELD(ah,
1160 AR_PHY_EXT_CCA,
1161 AR_PHY_EXT_CYCPWR_THR1);
1163 /* these levels just got reset to defaults by the INI */
1164 aniState->spurImmunityLevel = ATH9K_ANI_SPUR_IMMUNE_LVL_NEW;
1165 aniState->firstepLevel = ATH9K_ANI_FIRSTEP_LVL_NEW;
1166 aniState->ofdmWeakSigDetectOff = !ATH9K_ANI_USE_OFDM_WEAK_SIG;
1167 aniState->mrcCCKOff = !ATH9K_ANI_ENABLE_MRC_CCK;
1170 static void ar9003_hw_set_radar_params(struct ath_hw *ah,
1171 struct ath_hw_radar_conf *conf)
1173 u32 radar_0 = 0, radar_1 = 0;
1175 if (!conf) {
1176 REG_CLR_BIT(ah, AR_PHY_RADAR_0, AR_PHY_RADAR_0_ENA);
1177 return;
1180 radar_0 |= AR_PHY_RADAR_0_ENA | AR_PHY_RADAR_0_FFT_ENA;
1181 radar_0 |= SM(conf->fir_power, AR_PHY_RADAR_0_FIRPWR);
1182 radar_0 |= SM(conf->radar_rssi, AR_PHY_RADAR_0_RRSSI);
1183 radar_0 |= SM(conf->pulse_height, AR_PHY_RADAR_0_HEIGHT);
1184 radar_0 |= SM(conf->pulse_rssi, AR_PHY_RADAR_0_PRSSI);
1185 radar_0 |= SM(conf->pulse_inband, AR_PHY_RADAR_0_INBAND);
1187 radar_1 |= AR_PHY_RADAR_1_MAX_RRSSI;
1188 radar_1 |= AR_PHY_RADAR_1_BLOCK_CHECK;
1189 radar_1 |= SM(conf->pulse_maxlen, AR_PHY_RADAR_1_MAXLEN);
1190 radar_1 |= SM(conf->pulse_inband_step, AR_PHY_RADAR_1_RELSTEP_THRESH);
1191 radar_1 |= SM(conf->radar_inband, AR_PHY_RADAR_1_RELPWR_THRESH);
1193 REG_WRITE(ah, AR_PHY_RADAR_0, radar_0);
1194 REG_WRITE(ah, AR_PHY_RADAR_1, radar_1);
1195 if (conf->ext_channel)
1196 REG_SET_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1197 else
1198 REG_CLR_BIT(ah, AR_PHY_RADAR_EXT, AR_PHY_RADAR_EXT_ENA);
1201 static void ar9003_hw_set_radar_conf(struct ath_hw *ah)
1203 struct ath_hw_radar_conf *conf = &ah->radar_conf;
1205 conf->fir_power = -28;
1206 conf->radar_rssi = 0;
1207 conf->pulse_height = 10;
1208 conf->pulse_rssi = 24;
1209 conf->pulse_inband = 8;
1210 conf->pulse_maxlen = 255;
1211 conf->pulse_inband_step = 12;
1212 conf->radar_inband = 8;
1215 static void ar9003_hw_antdiv_comb_conf_get(struct ath_hw *ah,
1216 struct ath_hw_antcomb_conf *antconf)
1218 u32 regval;
1220 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1221 antconf->main_lna_conf = (regval & AR_PHY_9485_ANT_DIV_MAIN_LNACONF) >>
1222 AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S;
1223 antconf->alt_lna_conf = (regval & AR_PHY_9485_ANT_DIV_ALT_LNACONF) >>
1224 AR_PHY_9485_ANT_DIV_ALT_LNACONF_S;
1225 antconf->fast_div_bias = (regval & AR_PHY_9485_ANT_FAST_DIV_BIAS) >>
1226 AR_PHY_9485_ANT_FAST_DIV_BIAS_S;
1228 if (AR_SREV_9330_11(ah)) {
1229 antconf->lna1_lna2_delta = -9;
1230 antconf->div_group = 1;
1231 } else if (AR_SREV_9485(ah)) {
1232 antconf->lna1_lna2_delta = -9;
1233 antconf->div_group = 2;
1234 } else {
1235 antconf->lna1_lna2_delta = -3;
1236 antconf->div_group = 0;
1240 static void ar9003_hw_antdiv_comb_conf_set(struct ath_hw *ah,
1241 struct ath_hw_antcomb_conf *antconf)
1243 u32 regval;
1245 regval = REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1246 regval &= ~(AR_PHY_9485_ANT_DIV_MAIN_LNACONF |
1247 AR_PHY_9485_ANT_DIV_ALT_LNACONF |
1248 AR_PHY_9485_ANT_FAST_DIV_BIAS |
1249 AR_PHY_9485_ANT_DIV_MAIN_GAINTB |
1250 AR_PHY_9485_ANT_DIV_ALT_GAINTB);
1251 regval |= ((antconf->main_lna_conf <<
1252 AR_PHY_9485_ANT_DIV_MAIN_LNACONF_S)
1253 & AR_PHY_9485_ANT_DIV_MAIN_LNACONF);
1254 regval |= ((antconf->alt_lna_conf << AR_PHY_9485_ANT_DIV_ALT_LNACONF_S)
1255 & AR_PHY_9485_ANT_DIV_ALT_LNACONF);
1256 regval |= ((antconf->fast_div_bias << AR_PHY_9485_ANT_FAST_DIV_BIAS_S)
1257 & AR_PHY_9485_ANT_FAST_DIV_BIAS);
1258 regval |= ((antconf->main_gaintb << AR_PHY_9485_ANT_DIV_MAIN_GAINTB_S)
1259 & AR_PHY_9485_ANT_DIV_MAIN_GAINTB);
1260 regval |= ((antconf->alt_gaintb << AR_PHY_9485_ANT_DIV_ALT_GAINTB_S)
1261 & AR_PHY_9485_ANT_DIV_ALT_GAINTB);
1263 REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1266 void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
1268 struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
1269 struct ath_hw_ops *ops = ath9k_hw_ops(ah);
1270 static const u32 ar9300_cca_regs[6] = {
1271 AR_PHY_CCA_0,
1272 AR_PHY_CCA_1,
1273 AR_PHY_CCA_2,
1274 AR_PHY_EXT_CCA,
1275 AR_PHY_EXT_CCA_1,
1276 AR_PHY_EXT_CCA_2,
1279 priv_ops->rf_set_freq = ar9003_hw_set_channel;
1280 priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
1281 priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
1282 priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
1283 priv_ops->init_bb = ar9003_hw_init_bb;
1284 priv_ops->process_ini = ar9003_hw_process_ini;
1285 priv_ops->set_rfmode = ar9003_hw_set_rfmode;
1286 priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
1287 priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
1288 priv_ops->rfbus_req = ar9003_hw_rfbus_req;
1289 priv_ops->rfbus_done = ar9003_hw_rfbus_done;
1290 priv_ops->set_diversity = ar9003_hw_set_diversity;
1291 priv_ops->ani_control = ar9003_hw_ani_control;
1292 priv_ops->do_getnf = ar9003_hw_do_getnf;
1293 priv_ops->ani_cache_ini_regs = ar9003_hw_ani_cache_ini_regs;
1294 priv_ops->set_radar_params = ar9003_hw_set_radar_params;
1296 ops->antdiv_comb_conf_get = ar9003_hw_antdiv_comb_conf_get;
1297 ops->antdiv_comb_conf_set = ar9003_hw_antdiv_comb_conf_set;
1299 ar9003_hw_set_nf_limits(ah);
1300 ar9003_hw_set_radar_conf(ah);
1301 memcpy(ah->nf_regs, ar9300_cca_regs, sizeof(ah->nf_regs));
1304 void ar9003_hw_bb_watchdog_config(struct ath_hw *ah)
1306 struct ath_common *common = ath9k_hw_common(ah);
1307 u32 idle_tmo_ms = ah->bb_watchdog_timeout_ms;
1308 u32 val, idle_count;
1310 if (!idle_tmo_ms) {
1311 /* disable IRQ, disable chip-reset for BB panic */
1312 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
1313 REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) &
1314 ~(AR_PHY_WATCHDOG_RST_ENABLE |
1315 AR_PHY_WATCHDOG_IRQ_ENABLE));
1317 /* disable watchdog in non-IDLE mode, disable in IDLE mode */
1318 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
1319 REG_READ(ah, AR_PHY_WATCHDOG_CTL_1) &
1320 ~(AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
1321 AR_PHY_WATCHDOG_IDLE_ENABLE));
1323 ath_dbg(common, ATH_DBG_RESET, "Disabled BB Watchdog\n");
1324 return;
1327 /* enable IRQ, disable chip-reset for BB watchdog */
1328 val = REG_READ(ah, AR_PHY_WATCHDOG_CTL_2) & AR_PHY_WATCHDOG_CNTL2_MASK;
1329 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_2,
1330 (val | AR_PHY_WATCHDOG_IRQ_ENABLE) &
1331 ~AR_PHY_WATCHDOG_RST_ENABLE);
1333 /* bound limit to 10 secs */
1334 if (idle_tmo_ms > 10000)
1335 idle_tmo_ms = 10000;
1338 * The time unit for watchdog event is 2^15 44/88MHz cycles.
1340 * For HT20 we have a time unit of 2^15/44 MHz = .74 ms per tick
1341 * For HT40 we have a time unit of 2^15/88 MHz = .37 ms per tick
1343 * Given we use fast clock now in 5 GHz, these time units should
1344 * be common for both 2 GHz and 5 GHz.
1346 idle_count = (100 * idle_tmo_ms) / 74;
1347 if (ah->curchan && IS_CHAN_HT40(ah->curchan))
1348 idle_count = (100 * idle_tmo_ms) / 37;
1351 * enable watchdog in non-IDLE mode, disable in IDLE mode,
1352 * set idle time-out.
1354 REG_WRITE(ah, AR_PHY_WATCHDOG_CTL_1,
1355 AR_PHY_WATCHDOG_NON_IDLE_ENABLE |
1356 AR_PHY_WATCHDOG_IDLE_MASK |
1357 (AR_PHY_WATCHDOG_NON_IDLE_MASK & (idle_count << 2)));
1359 ath_dbg(common, ATH_DBG_RESET,
1360 "Enabled BB Watchdog timeout (%u ms)\n",
1361 idle_tmo_ms);
1364 void ar9003_hw_bb_watchdog_read(struct ath_hw *ah)
1367 * we want to avoid printing in ISR context so we save the
1368 * watchdog status to be printed later in bottom half context.
1370 ah->bb_watchdog_last_status = REG_READ(ah, AR_PHY_WATCHDOG_STATUS);
1373 * the watchdog timer should reset on status read but to be sure
1374 * sure we write 0 to the watchdog status bit.
1376 REG_WRITE(ah, AR_PHY_WATCHDOG_STATUS,
1377 ah->bb_watchdog_last_status & ~AR_PHY_WATCHDOG_STATUS_CLR);
1380 void ar9003_hw_bb_watchdog_dbg_info(struct ath_hw *ah)
1382 struct ath_common *common = ath9k_hw_common(ah);
1383 u32 status;
1385 if (likely(!(common->debug_mask & ATH_DBG_RESET)))
1386 return;
1388 status = ah->bb_watchdog_last_status;
1389 ath_dbg(common, ATH_DBG_RESET,
1390 "\n==== BB update: BB status=0x%08x ====\n", status);
1391 ath_dbg(common, ATH_DBG_RESET,
1392 "** BB state: wd=%u det=%u rdar=%u rOFDM=%d rCCK=%u tOFDM=%u tCCK=%u agc=%u src=%u **\n",
1393 MS(status, AR_PHY_WATCHDOG_INFO),
1394 MS(status, AR_PHY_WATCHDOG_DET_HANG),
1395 MS(status, AR_PHY_WATCHDOG_RADAR_SM),
1396 MS(status, AR_PHY_WATCHDOG_RX_OFDM_SM),
1397 MS(status, AR_PHY_WATCHDOG_RX_CCK_SM),
1398 MS(status, AR_PHY_WATCHDOG_TX_OFDM_SM),
1399 MS(status, AR_PHY_WATCHDOG_TX_CCK_SM),
1400 MS(status, AR_PHY_WATCHDOG_AGC_SM),
1401 MS(status, AR_PHY_WATCHDOG_SRCH_SM));
1403 ath_dbg(common, ATH_DBG_RESET,
1404 "** BB WD cntl: cntl1=0x%08x cntl2=0x%08x **\n",
1405 REG_READ(ah, AR_PHY_WATCHDOG_CTL_1),
1406 REG_READ(ah, AR_PHY_WATCHDOG_CTL_2));
1407 ath_dbg(common, ATH_DBG_RESET,
1408 "** BB mode: BB_gen_controls=0x%08x **\n",
1409 REG_READ(ah, AR_PHY_GEN_CTRL));
1411 #define PCT(_field) (common->cc_survey._field * 100 / common->cc_survey.cycles)
1412 if (common->cc_survey.cycles)
1413 ath_dbg(common, ATH_DBG_RESET,
1414 "** BB busy times: rx_clear=%d%%, rx_frame=%d%%, tx_frame=%d%% **\n",
1415 PCT(rx_busy), PCT(rx_frame), PCT(tx_frame));
1417 ath_dbg(common, ATH_DBG_RESET,
1418 "==== BB update: done ====\n\n");
1420 EXPORT_SYMBOL(ar9003_hw_bb_watchdog_dbg_info);
1422 void ar9003_hw_disable_phy_restart(struct ath_hw *ah)
1424 u32 val;
1426 /* While receiving unsupported rate frame rx state machine
1427 * gets into a state 0xb and if phy_restart happens in that
1428 * state, BB would go hang. If RXSM is in 0xb state after
1429 * first bb panic, ensure to disable the phy_restart.
1431 if (!((MS(ah->bb_watchdog_last_status,
1432 AR_PHY_WATCHDOG_RX_OFDM_SM) == 0xb) ||
1433 ah->bb_hang_rx_ofdm))
1434 return;
1436 ah->bb_hang_rx_ofdm = true;
1437 val = REG_READ(ah, AR_PHY_RESTART);
1438 val &= ~AR_PHY_RESTART_ENA;
1440 REG_WRITE(ah, AR_PHY_RESTART, val);
1442 EXPORT_SYMBOL(ar9003_hw_disable_phy_restart);