udf: Check length of extended attributes and allocation descriptors
[linux-2.6/btrfs-unstable.git] / kernel / power / snapshot.c
blob0c40c16174b4d8eb638a06efe159446ded6f2e71
1 /*
2 * linux/kernel/power/snapshot.c
4 * This file provides system snapshot/restore functionality for swsusp.
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 * This file is released under the GPLv2.
13 #include <linux/version.h>
14 #include <linux/module.h>
15 #include <linux/mm.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
21 #include <linux/pm.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/bootmem.h>
25 #include <linux/syscalls.h>
26 #include <linux/console.h>
27 #include <linux/highmem.h>
28 #include <linux/list.h>
29 #include <linux/slab.h>
30 #include <linux/compiler.h>
31 #include <linux/ktime.h>
33 #include <asm/uaccess.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <asm/io.h>
39 #include "power.h"
41 static int swsusp_page_is_free(struct page *);
42 static void swsusp_set_page_forbidden(struct page *);
43 static void swsusp_unset_page_forbidden(struct page *);
46 * Number of bytes to reserve for memory allocations made by device drivers
47 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
48 * cause image creation to fail (tunable via /sys/power/reserved_size).
50 unsigned long reserved_size;
52 void __init hibernate_reserved_size_init(void)
54 reserved_size = SPARE_PAGES * PAGE_SIZE;
58 * Preferred image size in bytes (tunable via /sys/power/image_size).
59 * When it is set to N, swsusp will do its best to ensure the image
60 * size will not exceed N bytes, but if that is impossible, it will
61 * try to create the smallest image possible.
63 unsigned long image_size;
65 void __init hibernate_image_size_init(void)
67 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
70 /* List of PBEs needed for restoring the pages that were allocated before
71 * the suspend and included in the suspend image, but have also been
72 * allocated by the "resume" kernel, so their contents cannot be written
73 * directly to their "original" page frames.
75 struct pbe *restore_pblist;
77 /* Pointer to an auxiliary buffer (1 page) */
78 static void *buffer;
80 /**
81 * @safe_needed - on resume, for storing the PBE list and the image,
82 * we can only use memory pages that do not conflict with the pages
83 * used before suspend. The unsafe pages have PageNosaveFree set
84 * and we count them using unsafe_pages.
86 * Each allocated image page is marked as PageNosave and PageNosaveFree
87 * so that swsusp_free() can release it.
90 #define PG_ANY 0
91 #define PG_SAFE 1
92 #define PG_UNSAFE_CLEAR 1
93 #define PG_UNSAFE_KEEP 0
95 static unsigned int allocated_unsafe_pages;
97 static void *get_image_page(gfp_t gfp_mask, int safe_needed)
99 void *res;
101 res = (void *)get_zeroed_page(gfp_mask);
102 if (safe_needed)
103 while (res && swsusp_page_is_free(virt_to_page(res))) {
104 /* The page is unsafe, mark it for swsusp_free() */
105 swsusp_set_page_forbidden(virt_to_page(res));
106 allocated_unsafe_pages++;
107 res = (void *)get_zeroed_page(gfp_mask);
109 if (res) {
110 swsusp_set_page_forbidden(virt_to_page(res));
111 swsusp_set_page_free(virt_to_page(res));
113 return res;
116 unsigned long get_safe_page(gfp_t gfp_mask)
118 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
121 static struct page *alloc_image_page(gfp_t gfp_mask)
123 struct page *page;
125 page = alloc_page(gfp_mask);
126 if (page) {
127 swsusp_set_page_forbidden(page);
128 swsusp_set_page_free(page);
130 return page;
134 * free_image_page - free page represented by @addr, allocated with
135 * get_image_page (page flags set by it must be cleared)
138 static inline void free_image_page(void *addr, int clear_nosave_free)
140 struct page *page;
142 BUG_ON(!virt_addr_valid(addr));
144 page = virt_to_page(addr);
146 swsusp_unset_page_forbidden(page);
147 if (clear_nosave_free)
148 swsusp_unset_page_free(page);
150 __free_page(page);
153 /* struct linked_page is used to build chains of pages */
155 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
157 struct linked_page {
158 struct linked_page *next;
159 char data[LINKED_PAGE_DATA_SIZE];
160 } __packed;
162 static inline void
163 free_list_of_pages(struct linked_page *list, int clear_page_nosave)
165 while (list) {
166 struct linked_page *lp = list->next;
168 free_image_page(list, clear_page_nosave);
169 list = lp;
174 * struct chain_allocator is used for allocating small objects out of
175 * a linked list of pages called 'the chain'.
177 * The chain grows each time when there is no room for a new object in
178 * the current page. The allocated objects cannot be freed individually.
179 * It is only possible to free them all at once, by freeing the entire
180 * chain.
182 * NOTE: The chain allocator may be inefficient if the allocated objects
183 * are not much smaller than PAGE_SIZE.
186 struct chain_allocator {
187 struct linked_page *chain; /* the chain */
188 unsigned int used_space; /* total size of objects allocated out
189 * of the current page
191 gfp_t gfp_mask; /* mask for allocating pages */
192 int safe_needed; /* if set, only "safe" pages are allocated */
195 static void
196 chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
198 ca->chain = NULL;
199 ca->used_space = LINKED_PAGE_DATA_SIZE;
200 ca->gfp_mask = gfp_mask;
201 ca->safe_needed = safe_needed;
204 static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
206 void *ret;
208 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
209 struct linked_page *lp;
211 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
212 if (!lp)
213 return NULL;
215 lp->next = ca->chain;
216 ca->chain = lp;
217 ca->used_space = 0;
219 ret = ca->chain->data + ca->used_space;
220 ca->used_space += size;
221 return ret;
225 * Data types related to memory bitmaps.
227 * Memory bitmap is a structure consiting of many linked lists of
228 * objects. The main list's elements are of type struct zone_bitmap
229 * and each of them corresonds to one zone. For each zone bitmap
230 * object there is a list of objects of type struct bm_block that
231 * represent each blocks of bitmap in which information is stored.
233 * struct memory_bitmap contains a pointer to the main list of zone
234 * bitmap objects, a struct bm_position used for browsing the bitmap,
235 * and a pointer to the list of pages used for allocating all of the
236 * zone bitmap objects and bitmap block objects.
238 * NOTE: It has to be possible to lay out the bitmap in memory
239 * using only allocations of order 0. Additionally, the bitmap is
240 * designed to work with arbitrary number of zones (this is over the
241 * top for now, but let's avoid making unnecessary assumptions ;-).
243 * struct zone_bitmap contains a pointer to a list of bitmap block
244 * objects and a pointer to the bitmap block object that has been
245 * most recently used for setting bits. Additionally, it contains the
246 * pfns that correspond to the start and end of the represented zone.
248 * struct bm_block contains a pointer to the memory page in which
249 * information is stored (in the form of a block of bitmap)
250 * It also contains the pfns that correspond to the start and end of
251 * the represented memory area.
253 * The memory bitmap is organized as a radix tree to guarantee fast random
254 * access to the bits. There is one radix tree for each zone (as returned
255 * from create_mem_extents).
257 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
258 * two linked lists for the nodes of the tree, one for the inner nodes and
259 * one for the leave nodes. The linked leave nodes are used for fast linear
260 * access of the memory bitmap.
262 * The struct rtree_node represents one node of the radix tree.
265 #define BM_END_OF_MAP (~0UL)
267 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
268 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
269 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
272 * struct rtree_node is a wrapper struct to link the nodes
273 * of the rtree together for easy linear iteration over
274 * bits and easy freeing
276 struct rtree_node {
277 struct list_head list;
278 unsigned long *data;
282 * struct mem_zone_bm_rtree represents a bitmap used for one
283 * populated memory zone.
285 struct mem_zone_bm_rtree {
286 struct list_head list; /* Link Zones together */
287 struct list_head nodes; /* Radix Tree inner nodes */
288 struct list_head leaves; /* Radix Tree leaves */
289 unsigned long start_pfn; /* Zone start page frame */
290 unsigned long end_pfn; /* Zone end page frame + 1 */
291 struct rtree_node *rtree; /* Radix Tree Root */
292 int levels; /* Number of Radix Tree Levels */
293 unsigned int blocks; /* Number of Bitmap Blocks */
296 /* strcut bm_position is used for browsing memory bitmaps */
298 struct bm_position {
299 struct mem_zone_bm_rtree *zone;
300 struct rtree_node *node;
301 unsigned long node_pfn;
302 int node_bit;
305 struct memory_bitmap {
306 struct list_head zones;
307 struct linked_page *p_list; /* list of pages used to store zone
308 * bitmap objects and bitmap block
309 * objects
311 struct bm_position cur; /* most recently used bit position */
314 /* Functions that operate on memory bitmaps */
316 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
317 #if BITS_PER_LONG == 32
318 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
319 #else
320 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
321 #endif
322 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
325 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
327 * This function is used to allocate inner nodes as well as the
328 * leave nodes of the radix tree. It also adds the node to the
329 * corresponding linked list passed in by the *list parameter.
331 static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
332 struct chain_allocator *ca,
333 struct list_head *list)
335 struct rtree_node *node;
337 node = chain_alloc(ca, sizeof(struct rtree_node));
338 if (!node)
339 return NULL;
341 node->data = get_image_page(gfp_mask, safe_needed);
342 if (!node->data)
343 return NULL;
345 list_add_tail(&node->list, list);
347 return node;
351 * add_rtree_block - Add a new leave node to the radix tree
353 * The leave nodes need to be allocated in order to keep the leaves
354 * linked list in order. This is guaranteed by the zone->blocks
355 * counter.
357 static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
358 int safe_needed, struct chain_allocator *ca)
360 struct rtree_node *node, *block, **dst;
361 unsigned int levels_needed, block_nr;
362 int i;
364 block_nr = zone->blocks;
365 levels_needed = 0;
367 /* How many levels do we need for this block nr? */
368 while (block_nr) {
369 levels_needed += 1;
370 block_nr >>= BM_RTREE_LEVEL_SHIFT;
373 /* Make sure the rtree has enough levels */
374 for (i = zone->levels; i < levels_needed; i++) {
375 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
376 &zone->nodes);
377 if (!node)
378 return -ENOMEM;
380 node->data[0] = (unsigned long)zone->rtree;
381 zone->rtree = node;
382 zone->levels += 1;
385 /* Allocate new block */
386 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
387 if (!block)
388 return -ENOMEM;
390 /* Now walk the rtree to insert the block */
391 node = zone->rtree;
392 dst = &zone->rtree;
393 block_nr = zone->blocks;
394 for (i = zone->levels; i > 0; i--) {
395 int index;
397 if (!node) {
398 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
399 &zone->nodes);
400 if (!node)
401 return -ENOMEM;
402 *dst = node;
405 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
406 index &= BM_RTREE_LEVEL_MASK;
407 dst = (struct rtree_node **)&((*dst)->data[index]);
408 node = *dst;
411 zone->blocks += 1;
412 *dst = block;
414 return 0;
417 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
418 int clear_nosave_free);
421 * create_zone_bm_rtree - create a radix tree for one zone
423 * Allocated the mem_zone_bm_rtree structure and initializes it.
424 * This function also allocated and builds the radix tree for the
425 * zone.
427 static struct mem_zone_bm_rtree *
428 create_zone_bm_rtree(gfp_t gfp_mask, int safe_needed,
429 struct chain_allocator *ca,
430 unsigned long start, unsigned long end)
432 struct mem_zone_bm_rtree *zone;
433 unsigned int i, nr_blocks;
434 unsigned long pages;
436 pages = end - start;
437 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
438 if (!zone)
439 return NULL;
441 INIT_LIST_HEAD(&zone->nodes);
442 INIT_LIST_HEAD(&zone->leaves);
443 zone->start_pfn = start;
444 zone->end_pfn = end;
445 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
447 for (i = 0; i < nr_blocks; i++) {
448 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
449 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
450 return NULL;
454 return zone;
458 * free_zone_bm_rtree - Free the memory of the radix tree
460 * Free all node pages of the radix tree. The mem_zone_bm_rtree
461 * structure itself is not freed here nor are the rtree_node
462 * structs.
464 static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
465 int clear_nosave_free)
467 struct rtree_node *node;
469 list_for_each_entry(node, &zone->nodes, list)
470 free_image_page(node->data, clear_nosave_free);
472 list_for_each_entry(node, &zone->leaves, list)
473 free_image_page(node->data, clear_nosave_free);
476 static void memory_bm_position_reset(struct memory_bitmap *bm)
478 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
479 list);
480 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
481 struct rtree_node, list);
482 bm->cur.node_pfn = 0;
483 bm->cur.node_bit = 0;
486 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
488 struct mem_extent {
489 struct list_head hook;
490 unsigned long start;
491 unsigned long end;
495 * free_mem_extents - free a list of memory extents
496 * @list - list of extents to empty
498 static void free_mem_extents(struct list_head *list)
500 struct mem_extent *ext, *aux;
502 list_for_each_entry_safe(ext, aux, list, hook) {
503 list_del(&ext->hook);
504 kfree(ext);
509 * create_mem_extents - create a list of memory extents representing
510 * contiguous ranges of PFNs
511 * @list - list to put the extents into
512 * @gfp_mask - mask to use for memory allocations
514 static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
516 struct zone *zone;
518 INIT_LIST_HEAD(list);
520 for_each_populated_zone(zone) {
521 unsigned long zone_start, zone_end;
522 struct mem_extent *ext, *cur, *aux;
524 zone_start = zone->zone_start_pfn;
525 zone_end = zone_end_pfn(zone);
527 list_for_each_entry(ext, list, hook)
528 if (zone_start <= ext->end)
529 break;
531 if (&ext->hook == list || zone_end < ext->start) {
532 /* New extent is necessary */
533 struct mem_extent *new_ext;
535 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
536 if (!new_ext) {
537 free_mem_extents(list);
538 return -ENOMEM;
540 new_ext->start = zone_start;
541 new_ext->end = zone_end;
542 list_add_tail(&new_ext->hook, &ext->hook);
543 continue;
546 /* Merge this zone's range of PFNs with the existing one */
547 if (zone_start < ext->start)
548 ext->start = zone_start;
549 if (zone_end > ext->end)
550 ext->end = zone_end;
552 /* More merging may be possible */
553 cur = ext;
554 list_for_each_entry_safe_continue(cur, aux, list, hook) {
555 if (zone_end < cur->start)
556 break;
557 if (zone_end < cur->end)
558 ext->end = cur->end;
559 list_del(&cur->hook);
560 kfree(cur);
564 return 0;
568 * memory_bm_create - allocate memory for a memory bitmap
570 static int
571 memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
573 struct chain_allocator ca;
574 struct list_head mem_extents;
575 struct mem_extent *ext;
576 int error;
578 chain_init(&ca, gfp_mask, safe_needed);
579 INIT_LIST_HEAD(&bm->zones);
581 error = create_mem_extents(&mem_extents, gfp_mask);
582 if (error)
583 return error;
585 list_for_each_entry(ext, &mem_extents, hook) {
586 struct mem_zone_bm_rtree *zone;
588 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
589 ext->start, ext->end);
590 if (!zone) {
591 error = -ENOMEM;
592 goto Error;
594 list_add_tail(&zone->list, &bm->zones);
597 bm->p_list = ca.chain;
598 memory_bm_position_reset(bm);
599 Exit:
600 free_mem_extents(&mem_extents);
601 return error;
603 Error:
604 bm->p_list = ca.chain;
605 memory_bm_free(bm, PG_UNSAFE_CLEAR);
606 goto Exit;
610 * memory_bm_free - free memory occupied by the memory bitmap @bm
612 static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
614 struct mem_zone_bm_rtree *zone;
616 list_for_each_entry(zone, &bm->zones, list)
617 free_zone_bm_rtree(zone, clear_nosave_free);
619 free_list_of_pages(bm->p_list, clear_nosave_free);
621 INIT_LIST_HEAD(&bm->zones);
625 * memory_bm_find_bit - Find the bit for pfn in the memory
626 * bitmap
628 * Find the bit in the bitmap @bm that corresponds to given pfn.
629 * The cur.zone, cur.block and cur.node_pfn member of @bm are
630 * updated.
631 * It walks the radix tree to find the page which contains the bit for
632 * pfn and returns the bit position in **addr and *bit_nr.
634 static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
635 void **addr, unsigned int *bit_nr)
637 struct mem_zone_bm_rtree *curr, *zone;
638 struct rtree_node *node;
639 int i, block_nr;
641 zone = bm->cur.zone;
643 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
644 goto zone_found;
646 zone = NULL;
648 /* Find the right zone */
649 list_for_each_entry(curr, &bm->zones, list) {
650 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
651 zone = curr;
652 break;
656 if (!zone)
657 return -EFAULT;
659 zone_found:
661 * We have a zone. Now walk the radix tree to find the leave
662 * node for our pfn.
665 node = bm->cur.node;
666 if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
667 goto node_found;
669 node = zone->rtree;
670 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
672 for (i = zone->levels; i > 0; i--) {
673 int index;
675 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
676 index &= BM_RTREE_LEVEL_MASK;
677 BUG_ON(node->data[index] == 0);
678 node = (struct rtree_node *)node->data[index];
681 node_found:
682 /* Update last position */
683 bm->cur.zone = zone;
684 bm->cur.node = node;
685 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
687 /* Set return values */
688 *addr = node->data;
689 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
691 return 0;
694 static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
696 void *addr;
697 unsigned int bit;
698 int error;
700 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
701 BUG_ON(error);
702 set_bit(bit, addr);
705 static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
707 void *addr;
708 unsigned int bit;
709 int error;
711 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
712 if (!error)
713 set_bit(bit, addr);
715 return error;
718 static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
720 void *addr;
721 unsigned int bit;
722 int error;
724 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
725 BUG_ON(error);
726 clear_bit(bit, addr);
729 static void memory_bm_clear_current(struct memory_bitmap *bm)
731 int bit;
733 bit = max(bm->cur.node_bit - 1, 0);
734 clear_bit(bit, bm->cur.node->data);
737 static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
739 void *addr;
740 unsigned int bit;
741 int error;
743 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
744 BUG_ON(error);
745 return test_bit(bit, addr);
748 static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
750 void *addr;
751 unsigned int bit;
753 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
757 * rtree_next_node - Jumps to the next leave node
759 * Sets the position to the beginning of the next node in the
760 * memory bitmap. This is either the next node in the current
761 * zone's radix tree or the first node in the radix tree of the
762 * next zone.
764 * Returns true if there is a next node, false otherwise.
766 static bool rtree_next_node(struct memory_bitmap *bm)
768 bm->cur.node = list_entry(bm->cur.node->list.next,
769 struct rtree_node, list);
770 if (&bm->cur.node->list != &bm->cur.zone->leaves) {
771 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
772 bm->cur.node_bit = 0;
773 touch_softlockup_watchdog();
774 return true;
777 /* No more nodes, goto next zone */
778 bm->cur.zone = list_entry(bm->cur.zone->list.next,
779 struct mem_zone_bm_rtree, list);
780 if (&bm->cur.zone->list != &bm->zones) {
781 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
782 struct rtree_node, list);
783 bm->cur.node_pfn = 0;
784 bm->cur.node_bit = 0;
785 return true;
788 /* No more zones */
789 return false;
793 * memory_bm_rtree_next_pfn - Find the next set bit in the bitmap @bm
795 * Starting from the last returned position this function searches
796 * for the next set bit in the memory bitmap and returns its
797 * number. If no more bit is set BM_END_OF_MAP is returned.
799 * It is required to run memory_bm_position_reset() before the
800 * first call to this function.
802 static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
804 unsigned long bits, pfn, pages;
805 int bit;
807 do {
808 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
809 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
810 bit = find_next_bit(bm->cur.node->data, bits,
811 bm->cur.node_bit);
812 if (bit < bits) {
813 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
814 bm->cur.node_bit = bit + 1;
815 return pfn;
817 } while (rtree_next_node(bm));
819 return BM_END_OF_MAP;
823 * This structure represents a range of page frames the contents of which
824 * should not be saved during the suspend.
827 struct nosave_region {
828 struct list_head list;
829 unsigned long start_pfn;
830 unsigned long end_pfn;
833 static LIST_HEAD(nosave_regions);
836 * register_nosave_region - register a range of page frames the contents
837 * of which should not be saved during the suspend (to be used in the early
838 * initialization code)
841 void __init
842 __register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
843 int use_kmalloc)
845 struct nosave_region *region;
847 if (start_pfn >= end_pfn)
848 return;
850 if (!list_empty(&nosave_regions)) {
851 /* Try to extend the previous region (they should be sorted) */
852 region = list_entry(nosave_regions.prev,
853 struct nosave_region, list);
854 if (region->end_pfn == start_pfn) {
855 region->end_pfn = end_pfn;
856 goto Report;
859 if (use_kmalloc) {
860 /* during init, this shouldn't fail */
861 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
862 BUG_ON(!region);
863 } else
864 /* This allocation cannot fail */
865 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
866 region->start_pfn = start_pfn;
867 region->end_pfn = end_pfn;
868 list_add_tail(&region->list, &nosave_regions);
869 Report:
870 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
871 (unsigned long long) start_pfn << PAGE_SHIFT,
872 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
876 * Set bits in this map correspond to the page frames the contents of which
877 * should not be saved during the suspend.
879 static struct memory_bitmap *forbidden_pages_map;
881 /* Set bits in this map correspond to free page frames. */
882 static struct memory_bitmap *free_pages_map;
885 * Each page frame allocated for creating the image is marked by setting the
886 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
889 void swsusp_set_page_free(struct page *page)
891 if (free_pages_map)
892 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
895 static int swsusp_page_is_free(struct page *page)
897 return free_pages_map ?
898 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
901 void swsusp_unset_page_free(struct page *page)
903 if (free_pages_map)
904 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
907 static void swsusp_set_page_forbidden(struct page *page)
909 if (forbidden_pages_map)
910 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
913 int swsusp_page_is_forbidden(struct page *page)
915 return forbidden_pages_map ?
916 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
919 static void swsusp_unset_page_forbidden(struct page *page)
921 if (forbidden_pages_map)
922 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
926 * mark_nosave_pages - set bits corresponding to the page frames the
927 * contents of which should not be saved in a given bitmap.
930 static void mark_nosave_pages(struct memory_bitmap *bm)
932 struct nosave_region *region;
934 if (list_empty(&nosave_regions))
935 return;
937 list_for_each_entry(region, &nosave_regions, list) {
938 unsigned long pfn;
940 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
941 (unsigned long long) region->start_pfn << PAGE_SHIFT,
942 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
943 - 1);
945 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
946 if (pfn_valid(pfn)) {
948 * It is safe to ignore the result of
949 * mem_bm_set_bit_check() here, since we won't
950 * touch the PFNs for which the error is
951 * returned anyway.
953 mem_bm_set_bit_check(bm, pfn);
958 static bool is_nosave_page(unsigned long pfn)
960 struct nosave_region *region;
962 list_for_each_entry(region, &nosave_regions, list) {
963 if (pfn >= region->start_pfn && pfn < region->end_pfn) {
964 pr_err("PM: %#010llx in e820 nosave region: "
965 "[mem %#010llx-%#010llx]\n",
966 (unsigned long long) pfn << PAGE_SHIFT,
967 (unsigned long long) region->start_pfn << PAGE_SHIFT,
968 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
969 - 1);
970 return true;
974 return false;
978 * create_basic_memory_bitmaps - create bitmaps needed for marking page
979 * frames that should not be saved and free page frames. The pointers
980 * forbidden_pages_map and free_pages_map are only modified if everything
981 * goes well, because we don't want the bits to be used before both bitmaps
982 * are set up.
985 int create_basic_memory_bitmaps(void)
987 struct memory_bitmap *bm1, *bm2;
988 int error = 0;
990 if (forbidden_pages_map && free_pages_map)
991 return 0;
992 else
993 BUG_ON(forbidden_pages_map || free_pages_map);
995 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
996 if (!bm1)
997 return -ENOMEM;
999 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1000 if (error)
1001 goto Free_first_object;
1003 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1004 if (!bm2)
1005 goto Free_first_bitmap;
1007 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1008 if (error)
1009 goto Free_second_object;
1011 forbidden_pages_map = bm1;
1012 free_pages_map = bm2;
1013 mark_nosave_pages(forbidden_pages_map);
1015 pr_debug("PM: Basic memory bitmaps created\n");
1017 return 0;
1019 Free_second_object:
1020 kfree(bm2);
1021 Free_first_bitmap:
1022 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1023 Free_first_object:
1024 kfree(bm1);
1025 return -ENOMEM;
1029 * free_basic_memory_bitmaps - free memory bitmaps allocated by
1030 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
1031 * so that the bitmaps themselves are not referred to while they are being
1032 * freed.
1035 void free_basic_memory_bitmaps(void)
1037 struct memory_bitmap *bm1, *bm2;
1039 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1040 return;
1042 bm1 = forbidden_pages_map;
1043 bm2 = free_pages_map;
1044 forbidden_pages_map = NULL;
1045 free_pages_map = NULL;
1046 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1047 kfree(bm1);
1048 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1049 kfree(bm2);
1051 pr_debug("PM: Basic memory bitmaps freed\n");
1055 * snapshot_additional_pages - estimate the number of additional pages
1056 * be needed for setting up the suspend image data structures for given
1057 * zone (usually the returned value is greater than the exact number)
1060 unsigned int snapshot_additional_pages(struct zone *zone)
1062 unsigned int rtree, nodes;
1064 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1065 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1066 LINKED_PAGE_DATA_SIZE);
1067 while (nodes > 1) {
1068 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1069 rtree += nodes;
1072 return 2 * rtree;
1075 #ifdef CONFIG_HIGHMEM
1077 * count_free_highmem_pages - compute the total number of free highmem
1078 * pages, system-wide.
1081 static unsigned int count_free_highmem_pages(void)
1083 struct zone *zone;
1084 unsigned int cnt = 0;
1086 for_each_populated_zone(zone)
1087 if (is_highmem(zone))
1088 cnt += zone_page_state(zone, NR_FREE_PAGES);
1090 return cnt;
1094 * saveable_highmem_page - Determine whether a highmem page should be
1095 * included in the suspend image.
1097 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1098 * and it isn't a part of a free chunk of pages.
1100 static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1102 struct page *page;
1104 if (!pfn_valid(pfn))
1105 return NULL;
1107 page = pfn_to_page(pfn);
1108 if (page_zone(page) != zone)
1109 return NULL;
1111 BUG_ON(!PageHighMem(page));
1113 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
1114 PageReserved(page))
1115 return NULL;
1117 if (page_is_guard(page))
1118 return NULL;
1120 return page;
1124 * count_highmem_pages - compute the total number of saveable highmem
1125 * pages.
1128 static unsigned int count_highmem_pages(void)
1130 struct zone *zone;
1131 unsigned int n = 0;
1133 for_each_populated_zone(zone) {
1134 unsigned long pfn, max_zone_pfn;
1136 if (!is_highmem(zone))
1137 continue;
1139 mark_free_pages(zone);
1140 max_zone_pfn = zone_end_pfn(zone);
1141 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1142 if (saveable_highmem_page(zone, pfn))
1143 n++;
1145 return n;
1147 #else
1148 static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1150 return NULL;
1152 #endif /* CONFIG_HIGHMEM */
1155 * saveable_page - Determine whether a non-highmem page should be included
1156 * in the suspend image.
1158 * We should save the page if it isn't Nosave, and is not in the range
1159 * of pages statically defined as 'unsaveable', and it isn't a part of
1160 * a free chunk of pages.
1162 static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1164 struct page *page;
1166 if (!pfn_valid(pfn))
1167 return NULL;
1169 page = pfn_to_page(pfn);
1170 if (page_zone(page) != zone)
1171 return NULL;
1173 BUG_ON(PageHighMem(page));
1175 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1176 return NULL;
1178 if (PageReserved(page)
1179 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1180 return NULL;
1182 if (page_is_guard(page))
1183 return NULL;
1185 return page;
1189 * count_data_pages - compute the total number of saveable non-highmem
1190 * pages.
1193 static unsigned int count_data_pages(void)
1195 struct zone *zone;
1196 unsigned long pfn, max_zone_pfn;
1197 unsigned int n = 0;
1199 for_each_populated_zone(zone) {
1200 if (is_highmem(zone))
1201 continue;
1203 mark_free_pages(zone);
1204 max_zone_pfn = zone_end_pfn(zone);
1205 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1206 if (saveable_page(zone, pfn))
1207 n++;
1209 return n;
1212 /* This is needed, because copy_page and memcpy are not usable for copying
1213 * task structs.
1215 static inline void do_copy_page(long *dst, long *src)
1217 int n;
1219 for (n = PAGE_SIZE / sizeof(long); n; n--)
1220 *dst++ = *src++;
1225 * safe_copy_page - check if the page we are going to copy is marked as
1226 * present in the kernel page tables (this always is the case if
1227 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
1228 * kernel_page_present() always returns 'true').
1230 static void safe_copy_page(void *dst, struct page *s_page)
1232 if (kernel_page_present(s_page)) {
1233 do_copy_page(dst, page_address(s_page));
1234 } else {
1235 kernel_map_pages(s_page, 1, 1);
1236 do_copy_page(dst, page_address(s_page));
1237 kernel_map_pages(s_page, 1, 0);
1242 #ifdef CONFIG_HIGHMEM
1243 static inline struct page *
1244 page_is_saveable(struct zone *zone, unsigned long pfn)
1246 return is_highmem(zone) ?
1247 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1250 static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1252 struct page *s_page, *d_page;
1253 void *src, *dst;
1255 s_page = pfn_to_page(src_pfn);
1256 d_page = pfn_to_page(dst_pfn);
1257 if (PageHighMem(s_page)) {
1258 src = kmap_atomic(s_page);
1259 dst = kmap_atomic(d_page);
1260 do_copy_page(dst, src);
1261 kunmap_atomic(dst);
1262 kunmap_atomic(src);
1263 } else {
1264 if (PageHighMem(d_page)) {
1265 /* Page pointed to by src may contain some kernel
1266 * data modified by kmap_atomic()
1268 safe_copy_page(buffer, s_page);
1269 dst = kmap_atomic(d_page);
1270 copy_page(dst, buffer);
1271 kunmap_atomic(dst);
1272 } else {
1273 safe_copy_page(page_address(d_page), s_page);
1277 #else
1278 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1280 static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1282 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1283 pfn_to_page(src_pfn));
1285 #endif /* CONFIG_HIGHMEM */
1287 static void
1288 copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1290 struct zone *zone;
1291 unsigned long pfn;
1293 for_each_populated_zone(zone) {
1294 unsigned long max_zone_pfn;
1296 mark_free_pages(zone);
1297 max_zone_pfn = zone_end_pfn(zone);
1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299 if (page_is_saveable(zone, pfn))
1300 memory_bm_set_bit(orig_bm, pfn);
1302 memory_bm_position_reset(orig_bm);
1303 memory_bm_position_reset(copy_bm);
1304 for(;;) {
1305 pfn = memory_bm_next_pfn(orig_bm);
1306 if (unlikely(pfn == BM_END_OF_MAP))
1307 break;
1308 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1312 /* Total number of image pages */
1313 static unsigned int nr_copy_pages;
1314 /* Number of pages needed for saving the original pfns of the image pages */
1315 static unsigned int nr_meta_pages;
1317 * Numbers of normal and highmem page frames allocated for hibernation image
1318 * before suspending devices.
1320 unsigned int alloc_normal, alloc_highmem;
1322 * Memory bitmap used for marking saveable pages (during hibernation) or
1323 * hibernation image pages (during restore)
1325 static struct memory_bitmap orig_bm;
1327 * Memory bitmap used during hibernation for marking allocated page frames that
1328 * will contain copies of saveable pages. During restore it is initially used
1329 * for marking hibernation image pages, but then the set bits from it are
1330 * duplicated in @orig_bm and it is released. On highmem systems it is next
1331 * used for marking "safe" highmem pages, but it has to be reinitialized for
1332 * this purpose.
1334 static struct memory_bitmap copy_bm;
1337 * swsusp_free - free pages allocated for the suspend.
1339 * Suspend pages are alocated before the atomic copy is made, so we
1340 * need to release them after the resume.
1343 void swsusp_free(void)
1345 unsigned long fb_pfn, fr_pfn;
1347 if (!forbidden_pages_map || !free_pages_map)
1348 goto out;
1350 memory_bm_position_reset(forbidden_pages_map);
1351 memory_bm_position_reset(free_pages_map);
1353 loop:
1354 fr_pfn = memory_bm_next_pfn(free_pages_map);
1355 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1358 * Find the next bit set in both bitmaps. This is guaranteed to
1359 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1361 do {
1362 if (fb_pfn < fr_pfn)
1363 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1364 if (fr_pfn < fb_pfn)
1365 fr_pfn = memory_bm_next_pfn(free_pages_map);
1366 } while (fb_pfn != fr_pfn);
1368 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1369 struct page *page = pfn_to_page(fr_pfn);
1371 memory_bm_clear_current(forbidden_pages_map);
1372 memory_bm_clear_current(free_pages_map);
1373 __free_page(page);
1374 goto loop;
1377 out:
1378 nr_copy_pages = 0;
1379 nr_meta_pages = 0;
1380 restore_pblist = NULL;
1381 buffer = NULL;
1382 alloc_normal = 0;
1383 alloc_highmem = 0;
1386 /* Helper functions used for the shrinking of memory. */
1388 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1391 * preallocate_image_pages - Allocate a number of pages for hibernation image
1392 * @nr_pages: Number of page frames to allocate.
1393 * @mask: GFP flags to use for the allocation.
1395 * Return value: Number of page frames actually allocated
1397 static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1399 unsigned long nr_alloc = 0;
1401 while (nr_pages > 0) {
1402 struct page *page;
1404 page = alloc_image_page(mask);
1405 if (!page)
1406 break;
1407 memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1408 if (PageHighMem(page))
1409 alloc_highmem++;
1410 else
1411 alloc_normal++;
1412 nr_pages--;
1413 nr_alloc++;
1416 return nr_alloc;
1419 static unsigned long preallocate_image_memory(unsigned long nr_pages,
1420 unsigned long avail_normal)
1422 unsigned long alloc;
1424 if (avail_normal <= alloc_normal)
1425 return 0;
1427 alloc = avail_normal - alloc_normal;
1428 if (nr_pages < alloc)
1429 alloc = nr_pages;
1431 return preallocate_image_pages(alloc, GFP_IMAGE);
1434 #ifdef CONFIG_HIGHMEM
1435 static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1437 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1441 * __fraction - Compute (an approximation of) x * (multiplier / base)
1443 static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1445 x *= multiplier;
1446 do_div(x, base);
1447 return (unsigned long)x;
1450 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1451 unsigned long highmem,
1452 unsigned long total)
1454 unsigned long alloc = __fraction(nr_pages, highmem, total);
1456 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1458 #else /* CONFIG_HIGHMEM */
1459 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1461 return 0;
1464 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1465 unsigned long highmem,
1466 unsigned long total)
1468 return 0;
1470 #endif /* CONFIG_HIGHMEM */
1473 * free_unnecessary_pages - Release preallocated pages not needed for the image
1475 static void free_unnecessary_pages(void)
1477 unsigned long save, to_free_normal, to_free_highmem;
1479 save = count_data_pages();
1480 if (alloc_normal >= save) {
1481 to_free_normal = alloc_normal - save;
1482 save = 0;
1483 } else {
1484 to_free_normal = 0;
1485 save -= alloc_normal;
1487 save += count_highmem_pages();
1488 if (alloc_highmem >= save) {
1489 to_free_highmem = alloc_highmem - save;
1490 } else {
1491 to_free_highmem = 0;
1492 save -= alloc_highmem;
1493 if (to_free_normal > save)
1494 to_free_normal -= save;
1495 else
1496 to_free_normal = 0;
1499 memory_bm_position_reset(&copy_bm);
1501 while (to_free_normal > 0 || to_free_highmem > 0) {
1502 unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1503 struct page *page = pfn_to_page(pfn);
1505 if (PageHighMem(page)) {
1506 if (!to_free_highmem)
1507 continue;
1508 to_free_highmem--;
1509 alloc_highmem--;
1510 } else {
1511 if (!to_free_normal)
1512 continue;
1513 to_free_normal--;
1514 alloc_normal--;
1516 memory_bm_clear_bit(&copy_bm, pfn);
1517 swsusp_unset_page_forbidden(page);
1518 swsusp_unset_page_free(page);
1519 __free_page(page);
1524 * minimum_image_size - Estimate the minimum acceptable size of an image
1525 * @saveable: Number of saveable pages in the system.
1527 * We want to avoid attempting to free too much memory too hard, so estimate the
1528 * minimum acceptable size of a hibernation image to use as the lower limit for
1529 * preallocating memory.
1531 * We assume that the minimum image size should be proportional to
1533 * [number of saveable pages] - [number of pages that can be freed in theory]
1535 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1536 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1537 * minus mapped file pages.
1539 static unsigned long minimum_image_size(unsigned long saveable)
1541 unsigned long size;
1543 size = global_page_state(NR_SLAB_RECLAIMABLE)
1544 + global_page_state(NR_ACTIVE_ANON)
1545 + global_page_state(NR_INACTIVE_ANON)
1546 + global_page_state(NR_ACTIVE_FILE)
1547 + global_page_state(NR_INACTIVE_FILE)
1548 - global_page_state(NR_FILE_MAPPED);
1550 return saveable <= size ? 0 : saveable - size;
1554 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1556 * To create a hibernation image it is necessary to make a copy of every page
1557 * frame in use. We also need a number of page frames to be free during
1558 * hibernation for allocations made while saving the image and for device
1559 * drivers, in case they need to allocate memory from their hibernation
1560 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1561 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1562 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1563 * total number of available page frames and allocate at least
1565 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1566 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1568 * of them, which corresponds to the maximum size of a hibernation image.
1570 * If image_size is set below the number following from the above formula,
1571 * the preallocation of memory is continued until the total number of saveable
1572 * pages in the system is below the requested image size or the minimum
1573 * acceptable image size returned by minimum_image_size(), whichever is greater.
1575 int hibernate_preallocate_memory(void)
1577 struct zone *zone;
1578 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1579 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1580 ktime_t start, stop;
1581 int error;
1583 printk(KERN_INFO "PM: Preallocating image memory... ");
1584 start = ktime_get();
1586 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1587 if (error)
1588 goto err_out;
1590 error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1591 if (error)
1592 goto err_out;
1594 alloc_normal = 0;
1595 alloc_highmem = 0;
1597 /* Count the number of saveable data pages. */
1598 save_highmem = count_highmem_pages();
1599 saveable = count_data_pages();
1602 * Compute the total number of page frames we can use (count) and the
1603 * number of pages needed for image metadata (size).
1605 count = saveable;
1606 saveable += save_highmem;
1607 highmem = save_highmem;
1608 size = 0;
1609 for_each_populated_zone(zone) {
1610 size += snapshot_additional_pages(zone);
1611 if (is_highmem(zone))
1612 highmem += zone_page_state(zone, NR_FREE_PAGES);
1613 else
1614 count += zone_page_state(zone, NR_FREE_PAGES);
1616 avail_normal = count;
1617 count += highmem;
1618 count -= totalreserve_pages;
1620 /* Add number of pages required for page keys (s390 only). */
1621 size += page_key_additional_pages(saveable);
1623 /* Compute the maximum number of saveable pages to leave in memory. */
1624 max_size = (count - (size + PAGES_FOR_IO)) / 2
1625 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1626 /* Compute the desired number of image pages specified by image_size. */
1627 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1628 if (size > max_size)
1629 size = max_size;
1631 * If the desired number of image pages is at least as large as the
1632 * current number of saveable pages in memory, allocate page frames for
1633 * the image and we're done.
1635 if (size >= saveable) {
1636 pages = preallocate_image_highmem(save_highmem);
1637 pages += preallocate_image_memory(saveable - pages, avail_normal);
1638 goto out;
1641 /* Estimate the minimum size of the image. */
1642 pages = minimum_image_size(saveable);
1644 * To avoid excessive pressure on the normal zone, leave room in it to
1645 * accommodate an image of the minimum size (unless it's already too
1646 * small, in which case don't preallocate pages from it at all).
1648 if (avail_normal > pages)
1649 avail_normal -= pages;
1650 else
1651 avail_normal = 0;
1652 if (size < pages)
1653 size = min_t(unsigned long, pages, max_size);
1656 * Let the memory management subsystem know that we're going to need a
1657 * large number of page frames to allocate and make it free some memory.
1658 * NOTE: If this is not done, performance will be hurt badly in some
1659 * test cases.
1661 shrink_all_memory(saveable - size);
1664 * The number of saveable pages in memory was too high, so apply some
1665 * pressure to decrease it. First, make room for the largest possible
1666 * image and fail if that doesn't work. Next, try to decrease the size
1667 * of the image as much as indicated by 'size' using allocations from
1668 * highmem and non-highmem zones separately.
1670 pages_highmem = preallocate_image_highmem(highmem / 2);
1671 alloc = count - max_size;
1672 if (alloc > pages_highmem)
1673 alloc -= pages_highmem;
1674 else
1675 alloc = 0;
1676 pages = preallocate_image_memory(alloc, avail_normal);
1677 if (pages < alloc) {
1678 /* We have exhausted non-highmem pages, try highmem. */
1679 alloc -= pages;
1680 pages += pages_highmem;
1681 pages_highmem = preallocate_image_highmem(alloc);
1682 if (pages_highmem < alloc)
1683 goto err_out;
1684 pages += pages_highmem;
1686 * size is the desired number of saveable pages to leave in
1687 * memory, so try to preallocate (all memory - size) pages.
1689 alloc = (count - pages) - size;
1690 pages += preallocate_image_highmem(alloc);
1691 } else {
1693 * There are approximately max_size saveable pages at this point
1694 * and we want to reduce this number down to size.
1696 alloc = max_size - size;
1697 size = preallocate_highmem_fraction(alloc, highmem, count);
1698 pages_highmem += size;
1699 alloc -= size;
1700 size = preallocate_image_memory(alloc, avail_normal);
1701 pages_highmem += preallocate_image_highmem(alloc - size);
1702 pages += pages_highmem + size;
1706 * We only need as many page frames for the image as there are saveable
1707 * pages in memory, but we have allocated more. Release the excessive
1708 * ones now.
1710 free_unnecessary_pages();
1712 out:
1713 stop = ktime_get();
1714 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1715 swsusp_show_speed(start, stop, pages, "Allocated");
1717 return 0;
1719 err_out:
1720 printk(KERN_CONT "\n");
1721 swsusp_free();
1722 return -ENOMEM;
1725 #ifdef CONFIG_HIGHMEM
1727 * count_pages_for_highmem - compute the number of non-highmem pages
1728 * that will be necessary for creating copies of highmem pages.
1731 static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1733 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1735 if (free_highmem >= nr_highmem)
1736 nr_highmem = 0;
1737 else
1738 nr_highmem -= free_highmem;
1740 return nr_highmem;
1742 #else
1743 static unsigned int
1744 count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1745 #endif /* CONFIG_HIGHMEM */
1748 * enough_free_mem - Make sure we have enough free memory for the
1749 * snapshot image.
1752 static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1754 struct zone *zone;
1755 unsigned int free = alloc_normal;
1757 for_each_populated_zone(zone)
1758 if (!is_highmem(zone))
1759 free += zone_page_state(zone, NR_FREE_PAGES);
1761 nr_pages += count_pages_for_highmem(nr_highmem);
1762 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1763 nr_pages, PAGES_FOR_IO, free);
1765 return free > nr_pages + PAGES_FOR_IO;
1768 #ifdef CONFIG_HIGHMEM
1770 * get_highmem_buffer - if there are some highmem pages in the suspend
1771 * image, we may need the buffer to copy them and/or load their data.
1774 static inline int get_highmem_buffer(int safe_needed)
1776 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1777 return buffer ? 0 : -ENOMEM;
1781 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1782 * Try to allocate as many pages as needed, but if the number of free
1783 * highmem pages is lesser than that, allocate them all.
1786 static inline unsigned int
1787 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1789 unsigned int to_alloc = count_free_highmem_pages();
1791 if (to_alloc > nr_highmem)
1792 to_alloc = nr_highmem;
1794 nr_highmem -= to_alloc;
1795 while (to_alloc-- > 0) {
1796 struct page *page;
1798 page = alloc_image_page(__GFP_HIGHMEM);
1799 memory_bm_set_bit(bm, page_to_pfn(page));
1801 return nr_highmem;
1803 #else
1804 static inline int get_highmem_buffer(int safe_needed) { return 0; }
1806 static inline unsigned int
1807 alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1808 #endif /* CONFIG_HIGHMEM */
1811 * swsusp_alloc - allocate memory for the suspend image
1813 * We first try to allocate as many highmem pages as there are
1814 * saveable highmem pages in the system. If that fails, we allocate
1815 * non-highmem pages for the copies of the remaining highmem ones.
1817 * In this approach it is likely that the copies of highmem pages will
1818 * also be located in the high memory, because of the way in which
1819 * copy_data_pages() works.
1822 static int
1823 swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1824 unsigned int nr_pages, unsigned int nr_highmem)
1826 if (nr_highmem > 0) {
1827 if (get_highmem_buffer(PG_ANY))
1828 goto err_out;
1829 if (nr_highmem > alloc_highmem) {
1830 nr_highmem -= alloc_highmem;
1831 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1834 if (nr_pages > alloc_normal) {
1835 nr_pages -= alloc_normal;
1836 while (nr_pages-- > 0) {
1837 struct page *page;
1839 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1840 if (!page)
1841 goto err_out;
1842 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1846 return 0;
1848 err_out:
1849 swsusp_free();
1850 return -ENOMEM;
1853 asmlinkage __visible int swsusp_save(void)
1855 unsigned int nr_pages, nr_highmem;
1857 printk(KERN_INFO "PM: Creating hibernation image:\n");
1859 drain_local_pages(NULL);
1860 nr_pages = count_data_pages();
1861 nr_highmem = count_highmem_pages();
1862 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1864 if (!enough_free_mem(nr_pages, nr_highmem)) {
1865 printk(KERN_ERR "PM: Not enough free memory\n");
1866 return -ENOMEM;
1869 if (swsusp_alloc(&orig_bm, &copy_bm, nr_pages, nr_highmem)) {
1870 printk(KERN_ERR "PM: Memory allocation failed\n");
1871 return -ENOMEM;
1874 /* During allocating of suspend pagedir, new cold pages may appear.
1875 * Kill them.
1877 drain_local_pages(NULL);
1878 copy_data_pages(&copy_bm, &orig_bm);
1881 * End of critical section. From now on, we can write to memory,
1882 * but we should not touch disk. This specially means we must _not_
1883 * touch swap space! Except we must write out our image of course.
1886 nr_pages += nr_highmem;
1887 nr_copy_pages = nr_pages;
1888 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1890 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1891 nr_pages);
1893 return 0;
1896 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
1897 static int init_header_complete(struct swsusp_info *info)
1899 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1900 info->version_code = LINUX_VERSION_CODE;
1901 return 0;
1904 static char *check_image_kernel(struct swsusp_info *info)
1906 if (info->version_code != LINUX_VERSION_CODE)
1907 return "kernel version";
1908 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1909 return "system type";
1910 if (strcmp(info->uts.release,init_utsname()->release))
1911 return "kernel release";
1912 if (strcmp(info->uts.version,init_utsname()->version))
1913 return "version";
1914 if (strcmp(info->uts.machine,init_utsname()->machine))
1915 return "machine";
1916 return NULL;
1918 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1920 unsigned long snapshot_get_image_size(void)
1922 return nr_copy_pages + nr_meta_pages + 1;
1925 static int init_header(struct swsusp_info *info)
1927 memset(info, 0, sizeof(struct swsusp_info));
1928 info->num_physpages = get_num_physpages();
1929 info->image_pages = nr_copy_pages;
1930 info->pages = snapshot_get_image_size();
1931 info->size = info->pages;
1932 info->size <<= PAGE_SHIFT;
1933 return init_header_complete(info);
1937 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1938 * are stored in the array @buf[] (1 page at a time)
1941 static inline void
1942 pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1944 int j;
1946 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1947 buf[j] = memory_bm_next_pfn(bm);
1948 if (unlikely(buf[j] == BM_END_OF_MAP))
1949 break;
1950 /* Save page key for data page (s390 only). */
1951 page_key_read(buf + j);
1956 * snapshot_read_next - used for reading the system memory snapshot.
1958 * On the first call to it @handle should point to a zeroed
1959 * snapshot_handle structure. The structure gets updated and a pointer
1960 * to it should be passed to this function every next time.
1962 * On success the function returns a positive number. Then, the caller
1963 * is allowed to read up to the returned number of bytes from the memory
1964 * location computed by the data_of() macro.
1966 * The function returns 0 to indicate the end of data stream condition,
1967 * and a negative number is returned on error. In such cases the
1968 * structure pointed to by @handle is not updated and should not be used
1969 * any more.
1972 int snapshot_read_next(struct snapshot_handle *handle)
1974 if (handle->cur > nr_meta_pages + nr_copy_pages)
1975 return 0;
1977 if (!buffer) {
1978 /* This makes the buffer be freed by swsusp_free() */
1979 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1980 if (!buffer)
1981 return -ENOMEM;
1983 if (!handle->cur) {
1984 int error;
1986 error = init_header((struct swsusp_info *)buffer);
1987 if (error)
1988 return error;
1989 handle->buffer = buffer;
1990 memory_bm_position_reset(&orig_bm);
1991 memory_bm_position_reset(&copy_bm);
1992 } else if (handle->cur <= nr_meta_pages) {
1993 clear_page(buffer);
1994 pack_pfns(buffer, &orig_bm);
1995 } else {
1996 struct page *page;
1998 page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
1999 if (PageHighMem(page)) {
2000 /* Highmem pages are copied to the buffer,
2001 * because we can't return with a kmapped
2002 * highmem page (we may not be called again).
2004 void *kaddr;
2006 kaddr = kmap_atomic(page);
2007 copy_page(buffer, kaddr);
2008 kunmap_atomic(kaddr);
2009 handle->buffer = buffer;
2010 } else {
2011 handle->buffer = page_address(page);
2014 handle->cur++;
2015 return PAGE_SIZE;
2019 * mark_unsafe_pages - mark the pages that cannot be used for storing
2020 * the image during resume, because they conflict with the pages that
2021 * had been used before suspend
2024 static int mark_unsafe_pages(struct memory_bitmap *bm)
2026 struct zone *zone;
2027 unsigned long pfn, max_zone_pfn;
2029 /* Clear page flags */
2030 for_each_populated_zone(zone) {
2031 max_zone_pfn = zone_end_pfn(zone);
2032 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2033 if (pfn_valid(pfn))
2034 swsusp_unset_page_free(pfn_to_page(pfn));
2037 /* Mark pages that correspond to the "original" pfns as "unsafe" */
2038 memory_bm_position_reset(bm);
2039 do {
2040 pfn = memory_bm_next_pfn(bm);
2041 if (likely(pfn != BM_END_OF_MAP)) {
2042 if (likely(pfn_valid(pfn)) && !is_nosave_page(pfn))
2043 swsusp_set_page_free(pfn_to_page(pfn));
2044 else
2045 return -EFAULT;
2047 } while (pfn != BM_END_OF_MAP);
2049 allocated_unsafe_pages = 0;
2051 return 0;
2054 static void
2055 duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
2057 unsigned long pfn;
2059 memory_bm_position_reset(src);
2060 pfn = memory_bm_next_pfn(src);
2061 while (pfn != BM_END_OF_MAP) {
2062 memory_bm_set_bit(dst, pfn);
2063 pfn = memory_bm_next_pfn(src);
2067 static int check_header(struct swsusp_info *info)
2069 char *reason;
2071 reason = check_image_kernel(info);
2072 if (!reason && info->num_physpages != get_num_physpages())
2073 reason = "memory size";
2074 if (reason) {
2075 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
2076 return -EPERM;
2078 return 0;
2082 * load header - check the image header and copy data from it
2085 static int
2086 load_header(struct swsusp_info *info)
2088 int error;
2090 restore_pblist = NULL;
2091 error = check_header(info);
2092 if (!error) {
2093 nr_copy_pages = info->image_pages;
2094 nr_meta_pages = info->pages - info->image_pages - 1;
2096 return error;
2100 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
2101 * the corresponding bit in the memory bitmap @bm
2103 static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2105 int j;
2107 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2108 if (unlikely(buf[j] == BM_END_OF_MAP))
2109 break;
2111 /* Extract and buffer page key for data page (s390 only). */
2112 page_key_memorize(buf + j);
2114 if (memory_bm_pfn_present(bm, buf[j]))
2115 memory_bm_set_bit(bm, buf[j]);
2116 else
2117 return -EFAULT;
2120 return 0;
2123 /* List of "safe" pages that may be used to store data loaded from the suspend
2124 * image
2126 static struct linked_page *safe_pages_list;
2128 #ifdef CONFIG_HIGHMEM
2129 /* struct highmem_pbe is used for creating the list of highmem pages that
2130 * should be restored atomically during the resume from disk, because the page
2131 * frames they have occupied before the suspend are in use.
2133 struct highmem_pbe {
2134 struct page *copy_page; /* data is here now */
2135 struct page *orig_page; /* data was here before the suspend */
2136 struct highmem_pbe *next;
2139 /* List of highmem PBEs needed for restoring the highmem pages that were
2140 * allocated before the suspend and included in the suspend image, but have
2141 * also been allocated by the "resume" kernel, so their contents cannot be
2142 * written directly to their "original" page frames.
2144 static struct highmem_pbe *highmem_pblist;
2147 * count_highmem_image_pages - compute the number of highmem pages in the
2148 * suspend image. The bits in the memory bitmap @bm that correspond to the
2149 * image pages are assumed to be set.
2152 static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2154 unsigned long pfn;
2155 unsigned int cnt = 0;
2157 memory_bm_position_reset(bm);
2158 pfn = memory_bm_next_pfn(bm);
2159 while (pfn != BM_END_OF_MAP) {
2160 if (PageHighMem(pfn_to_page(pfn)))
2161 cnt++;
2163 pfn = memory_bm_next_pfn(bm);
2165 return cnt;
2169 * prepare_highmem_image - try to allocate as many highmem pages as
2170 * there are highmem image pages (@nr_highmem_p points to the variable
2171 * containing the number of highmem image pages). The pages that are
2172 * "safe" (ie. will not be overwritten when the suspend image is
2173 * restored) have the corresponding bits set in @bm (it must be
2174 * unitialized).
2176 * NOTE: This function should not be called if there are no highmem
2177 * image pages.
2180 static unsigned int safe_highmem_pages;
2182 static struct memory_bitmap *safe_highmem_bm;
2184 static int
2185 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2187 unsigned int to_alloc;
2189 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2190 return -ENOMEM;
2192 if (get_highmem_buffer(PG_SAFE))
2193 return -ENOMEM;
2195 to_alloc = count_free_highmem_pages();
2196 if (to_alloc > *nr_highmem_p)
2197 to_alloc = *nr_highmem_p;
2198 else
2199 *nr_highmem_p = to_alloc;
2201 safe_highmem_pages = 0;
2202 while (to_alloc-- > 0) {
2203 struct page *page;
2205 page = alloc_page(__GFP_HIGHMEM);
2206 if (!swsusp_page_is_free(page)) {
2207 /* The page is "safe", set its bit the bitmap */
2208 memory_bm_set_bit(bm, page_to_pfn(page));
2209 safe_highmem_pages++;
2211 /* Mark the page as allocated */
2212 swsusp_set_page_forbidden(page);
2213 swsusp_set_page_free(page);
2215 memory_bm_position_reset(bm);
2216 safe_highmem_bm = bm;
2217 return 0;
2221 * get_highmem_page_buffer - for given highmem image page find the buffer
2222 * that suspend_write_next() should set for its caller to write to.
2224 * If the page is to be saved to its "original" page frame or a copy of
2225 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2226 * the copy of the page is to be made in normal memory, so the address of
2227 * the copy is returned.
2229 * If @buffer is returned, the caller of suspend_write_next() will write
2230 * the page's contents to @buffer, so they will have to be copied to the
2231 * right location on the next call to suspend_write_next() and it is done
2232 * with the help of copy_last_highmem_page(). For this purpose, if
2233 * @buffer is returned, @last_highmem page is set to the page to which
2234 * the data will have to be copied from @buffer.
2237 static struct page *last_highmem_page;
2239 static void *
2240 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2242 struct highmem_pbe *pbe;
2243 void *kaddr;
2245 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2246 /* We have allocated the "original" page frame and we can
2247 * use it directly to store the loaded page.
2249 last_highmem_page = page;
2250 return buffer;
2252 /* The "original" page frame has not been allocated and we have to
2253 * use a "safe" page frame to store the loaded page.
2255 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2256 if (!pbe) {
2257 swsusp_free();
2258 return ERR_PTR(-ENOMEM);
2260 pbe->orig_page = page;
2261 if (safe_highmem_pages > 0) {
2262 struct page *tmp;
2264 /* Copy of the page will be stored in high memory */
2265 kaddr = buffer;
2266 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2267 safe_highmem_pages--;
2268 last_highmem_page = tmp;
2269 pbe->copy_page = tmp;
2270 } else {
2271 /* Copy of the page will be stored in normal memory */
2272 kaddr = safe_pages_list;
2273 safe_pages_list = safe_pages_list->next;
2274 pbe->copy_page = virt_to_page(kaddr);
2276 pbe->next = highmem_pblist;
2277 highmem_pblist = pbe;
2278 return kaddr;
2282 * copy_last_highmem_page - copy the contents of a highmem image from
2283 * @buffer, where the caller of snapshot_write_next() has place them,
2284 * to the right location represented by @last_highmem_page .
2287 static void copy_last_highmem_page(void)
2289 if (last_highmem_page) {
2290 void *dst;
2292 dst = kmap_atomic(last_highmem_page);
2293 copy_page(dst, buffer);
2294 kunmap_atomic(dst);
2295 last_highmem_page = NULL;
2299 static inline int last_highmem_page_copied(void)
2301 return !last_highmem_page;
2304 static inline void free_highmem_data(void)
2306 if (safe_highmem_bm)
2307 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2309 if (buffer)
2310 free_image_page(buffer, PG_UNSAFE_CLEAR);
2312 #else
2313 static inline int get_safe_write_buffer(void) { return 0; }
2315 static unsigned int
2316 count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2318 static inline int
2319 prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2321 return 0;
2324 static inline void *
2325 get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2327 return ERR_PTR(-EINVAL);
2330 static inline void copy_last_highmem_page(void) {}
2331 static inline int last_highmem_page_copied(void) { return 1; }
2332 static inline void free_highmem_data(void) {}
2333 #endif /* CONFIG_HIGHMEM */
2336 * prepare_image - use the memory bitmap @bm to mark the pages that will
2337 * be overwritten in the process of restoring the system memory state
2338 * from the suspend image ("unsafe" pages) and allocate memory for the
2339 * image.
2341 * The idea is to allocate a new memory bitmap first and then allocate
2342 * as many pages as needed for the image data, but not to assign these
2343 * pages to specific tasks initially. Instead, we just mark them as
2344 * allocated and create a lists of "safe" pages that will be used
2345 * later. On systems with high memory a list of "safe" highmem pages is
2346 * also created.
2349 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2351 static int
2352 prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2354 unsigned int nr_pages, nr_highmem;
2355 struct linked_page *sp_list, *lp;
2356 int error;
2358 /* If there is no highmem, the buffer will not be necessary */
2359 free_image_page(buffer, PG_UNSAFE_CLEAR);
2360 buffer = NULL;
2362 nr_highmem = count_highmem_image_pages(bm);
2363 error = mark_unsafe_pages(bm);
2364 if (error)
2365 goto Free;
2367 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2368 if (error)
2369 goto Free;
2371 duplicate_memory_bitmap(new_bm, bm);
2372 memory_bm_free(bm, PG_UNSAFE_KEEP);
2373 if (nr_highmem > 0) {
2374 error = prepare_highmem_image(bm, &nr_highmem);
2375 if (error)
2376 goto Free;
2378 /* Reserve some safe pages for potential later use.
2380 * NOTE: This way we make sure there will be enough safe pages for the
2381 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2382 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2384 sp_list = NULL;
2385 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2386 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2387 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2388 while (nr_pages > 0) {
2389 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2390 if (!lp) {
2391 error = -ENOMEM;
2392 goto Free;
2394 lp->next = sp_list;
2395 sp_list = lp;
2396 nr_pages--;
2398 /* Preallocate memory for the image */
2399 safe_pages_list = NULL;
2400 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2401 while (nr_pages > 0) {
2402 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2403 if (!lp) {
2404 error = -ENOMEM;
2405 goto Free;
2407 if (!swsusp_page_is_free(virt_to_page(lp))) {
2408 /* The page is "safe", add it to the list */
2409 lp->next = safe_pages_list;
2410 safe_pages_list = lp;
2412 /* Mark the page as allocated */
2413 swsusp_set_page_forbidden(virt_to_page(lp));
2414 swsusp_set_page_free(virt_to_page(lp));
2415 nr_pages--;
2417 /* Free the reserved safe pages so that chain_alloc() can use them */
2418 while (sp_list) {
2419 lp = sp_list->next;
2420 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2421 sp_list = lp;
2423 return 0;
2425 Free:
2426 swsusp_free();
2427 return error;
2431 * get_buffer - compute the address that snapshot_write_next() should
2432 * set for its caller to write to.
2435 static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2437 struct pbe *pbe;
2438 struct page *page;
2439 unsigned long pfn = memory_bm_next_pfn(bm);
2441 if (pfn == BM_END_OF_MAP)
2442 return ERR_PTR(-EFAULT);
2444 page = pfn_to_page(pfn);
2445 if (PageHighMem(page))
2446 return get_highmem_page_buffer(page, ca);
2448 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2449 /* We have allocated the "original" page frame and we can
2450 * use it directly to store the loaded page.
2452 return page_address(page);
2454 /* The "original" page frame has not been allocated and we have to
2455 * use a "safe" page frame to store the loaded page.
2457 pbe = chain_alloc(ca, sizeof(struct pbe));
2458 if (!pbe) {
2459 swsusp_free();
2460 return ERR_PTR(-ENOMEM);
2462 pbe->orig_address = page_address(page);
2463 pbe->address = safe_pages_list;
2464 safe_pages_list = safe_pages_list->next;
2465 pbe->next = restore_pblist;
2466 restore_pblist = pbe;
2467 return pbe->address;
2471 * snapshot_write_next - used for writing the system memory snapshot.
2473 * On the first call to it @handle should point to a zeroed
2474 * snapshot_handle structure. The structure gets updated and a pointer
2475 * to it should be passed to this function every next time.
2477 * On success the function returns a positive number. Then, the caller
2478 * is allowed to write up to the returned number of bytes to the memory
2479 * location computed by the data_of() macro.
2481 * The function returns 0 to indicate the "end of file" condition,
2482 * and a negative number is returned on error. In such cases the
2483 * structure pointed to by @handle is not updated and should not be used
2484 * any more.
2487 int snapshot_write_next(struct snapshot_handle *handle)
2489 static struct chain_allocator ca;
2490 int error = 0;
2492 /* Check if we have already loaded the entire image */
2493 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2494 return 0;
2496 handle->sync_read = 1;
2498 if (!handle->cur) {
2499 if (!buffer)
2500 /* This makes the buffer be freed by swsusp_free() */
2501 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2503 if (!buffer)
2504 return -ENOMEM;
2506 handle->buffer = buffer;
2507 } else if (handle->cur == 1) {
2508 error = load_header(buffer);
2509 if (error)
2510 return error;
2512 error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2513 if (error)
2514 return error;
2516 /* Allocate buffer for page keys. */
2517 error = page_key_alloc(nr_copy_pages);
2518 if (error)
2519 return error;
2521 } else if (handle->cur <= nr_meta_pages + 1) {
2522 error = unpack_orig_pfns(buffer, &copy_bm);
2523 if (error)
2524 return error;
2526 if (handle->cur == nr_meta_pages + 1) {
2527 error = prepare_image(&orig_bm, &copy_bm);
2528 if (error)
2529 return error;
2531 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2532 memory_bm_position_reset(&orig_bm);
2533 restore_pblist = NULL;
2534 handle->buffer = get_buffer(&orig_bm, &ca);
2535 handle->sync_read = 0;
2536 if (IS_ERR(handle->buffer))
2537 return PTR_ERR(handle->buffer);
2539 } else {
2540 copy_last_highmem_page();
2541 /* Restore page key for data page (s390 only). */
2542 page_key_write(handle->buffer);
2543 handle->buffer = get_buffer(&orig_bm, &ca);
2544 if (IS_ERR(handle->buffer))
2545 return PTR_ERR(handle->buffer);
2546 if (handle->buffer != buffer)
2547 handle->sync_read = 0;
2549 handle->cur++;
2550 return PAGE_SIZE;
2554 * snapshot_write_finalize - must be called after the last call to
2555 * snapshot_write_next() in case the last page in the image happens
2556 * to be a highmem page and its contents should be stored in the
2557 * highmem. Additionally, it releases the memory that will not be
2558 * used any more.
2561 void snapshot_write_finalize(struct snapshot_handle *handle)
2563 copy_last_highmem_page();
2564 /* Restore page key for data page (s390 only). */
2565 page_key_write(handle->buffer);
2566 page_key_free();
2567 /* Free only if we have loaded the image entirely */
2568 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2569 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2570 free_highmem_data();
2574 int snapshot_image_loaded(struct snapshot_handle *handle)
2576 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2577 handle->cur <= nr_meta_pages + nr_copy_pages);
2580 #ifdef CONFIG_HIGHMEM
2581 /* Assumes that @buf is ready and points to a "safe" page */
2582 static inline void
2583 swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2585 void *kaddr1, *kaddr2;
2587 kaddr1 = kmap_atomic(p1);
2588 kaddr2 = kmap_atomic(p2);
2589 copy_page(buf, kaddr1);
2590 copy_page(kaddr1, kaddr2);
2591 copy_page(kaddr2, buf);
2592 kunmap_atomic(kaddr2);
2593 kunmap_atomic(kaddr1);
2597 * restore_highmem - for each highmem page that was allocated before
2598 * the suspend and included in the suspend image, and also has been
2599 * allocated by the "resume" kernel swap its current (ie. "before
2600 * resume") contents with the previous (ie. "before suspend") one.
2602 * If the resume eventually fails, we can call this function once
2603 * again and restore the "before resume" highmem state.
2606 int restore_highmem(void)
2608 struct highmem_pbe *pbe = highmem_pblist;
2609 void *buf;
2611 if (!pbe)
2612 return 0;
2614 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2615 if (!buf)
2616 return -ENOMEM;
2618 while (pbe) {
2619 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2620 pbe = pbe->next;
2622 free_image_page(buf, PG_UNSAFE_CLEAR);
2623 return 0;
2625 #endif /* CONFIG_HIGHMEM */