[PATCH] tcp: Cache inetpeer in timewait socket, and only when necessary.
[linux-2.6/btrfs-unstable.git] / net / ipv4 / tcp_minisocks.c
blobcb015317c9f7c33363c23da7dfc714ae7a1870fd
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
30 int sysctl_tcp_syncookies __read_mostly = 1;
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
33 int sysctl_tcp_abort_on_overflow __read_mostly;
35 struct inet_timewait_death_row tcp_death_row = {
36 .sysctl_max_tw_buckets = NR_FILE * 2,
37 .period = TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
38 .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39 .hashinfo = &tcp_hashinfo,
40 .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
41 (unsigned long)&tcp_death_row),
42 .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work,
43 inet_twdr_twkill_work),
44 /* Short-time timewait calendar */
46 .twcal_hand = -1,
47 .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48 (unsigned long)&tcp_death_row),
50 EXPORT_SYMBOL_GPL(tcp_death_row);
52 /* VJ's idea. Save last timestamp seen from this destination
53 * and hold it at least for normal timewait interval to use for duplicate
54 * segment detection in subsequent connections, before they enter synchronized
55 * state.
58 static bool tcp_remember_stamp(struct sock *sk)
60 const struct inet_connection_sock *icsk = inet_csk(sk);
61 struct tcp_sock *tp = tcp_sk(sk);
62 struct inet_peer *peer;
64 peer = icsk->icsk_af_ops->get_peer(sk);
65 if (peer) {
66 if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
67 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
68 peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
69 peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
70 peer->tcp_ts = tp->rx_opt.ts_recent;
72 return true;
75 return false;
78 static bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
80 const struct tcp_timewait_sock *tcptw;
81 struct sock *sk = (struct sock *) tw;
82 struct inet_peer *peer;
84 tcptw = tcp_twsk(sk);
85 peer = tcptw->tw_peer;
86 if (peer) {
87 if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
88 ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
89 peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
90 peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
91 peer->tcp_ts = tcptw->tw_ts_recent;
93 return true;
95 return false;
98 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
100 if (seq == s_win)
101 return true;
102 if (after(end_seq, s_win) && before(seq, e_win))
103 return true;
104 return seq == e_win && seq == end_seq;
108 * * Main purpose of TIME-WAIT state is to close connection gracefully,
109 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
110 * (and, probably, tail of data) and one or more our ACKs are lost.
111 * * What is TIME-WAIT timeout? It is associated with maximal packet
112 * lifetime in the internet, which results in wrong conclusion, that
113 * it is set to catch "old duplicate segments" wandering out of their path.
114 * It is not quite correct. This timeout is calculated so that it exceeds
115 * maximal retransmission timeout enough to allow to lose one (or more)
116 * segments sent by peer and our ACKs. This time may be calculated from RTO.
117 * * When TIME-WAIT socket receives RST, it means that another end
118 * finally closed and we are allowed to kill TIME-WAIT too.
119 * * Second purpose of TIME-WAIT is catching old duplicate segments.
120 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
121 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
122 * * If we invented some more clever way to catch duplicates
123 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
125 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
126 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
127 * from the very beginning.
129 * NOTE. With recycling (and later with fin-wait-2) TW bucket
130 * is _not_ stateless. It means, that strictly speaking we must
131 * spinlock it. I do not want! Well, probability of misbehaviour
132 * is ridiculously low and, seems, we could use some mb() tricks
133 * to avoid misread sequence numbers, states etc. --ANK
135 enum tcp_tw_status
136 tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
137 const struct tcphdr *th)
139 struct tcp_options_received tmp_opt;
140 const u8 *hash_location;
141 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
142 bool paws_reject = false;
144 tmp_opt.saw_tstamp = 0;
145 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
146 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
148 if (tmp_opt.saw_tstamp) {
149 tmp_opt.ts_recent = tcptw->tw_ts_recent;
150 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
151 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
155 if (tw->tw_substate == TCP_FIN_WAIT2) {
156 /* Just repeat all the checks of tcp_rcv_state_process() */
158 /* Out of window, send ACK */
159 if (paws_reject ||
160 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
161 tcptw->tw_rcv_nxt,
162 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
163 return TCP_TW_ACK;
165 if (th->rst)
166 goto kill;
168 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
169 goto kill_with_rst;
171 /* Dup ACK? */
172 if (!th->ack ||
173 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
174 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
175 inet_twsk_put(tw);
176 return TCP_TW_SUCCESS;
179 /* New data or FIN. If new data arrive after half-duplex close,
180 * reset.
182 if (!th->fin ||
183 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
184 kill_with_rst:
185 inet_twsk_deschedule(tw, &tcp_death_row);
186 inet_twsk_put(tw);
187 return TCP_TW_RST;
190 /* FIN arrived, enter true time-wait state. */
191 tw->tw_substate = TCP_TIME_WAIT;
192 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
193 if (tmp_opt.saw_tstamp) {
194 tcptw->tw_ts_recent_stamp = get_seconds();
195 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
198 if (tcp_death_row.sysctl_tw_recycle &&
199 tcptw->tw_ts_recent_stamp &&
200 tcp_tw_remember_stamp(tw))
201 inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
202 TCP_TIMEWAIT_LEN);
203 else
204 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
205 TCP_TIMEWAIT_LEN);
206 return TCP_TW_ACK;
210 * Now real TIME-WAIT state.
212 * RFC 1122:
213 * "When a connection is [...] on TIME-WAIT state [...]
214 * [a TCP] MAY accept a new SYN from the remote TCP to
215 * reopen the connection directly, if it:
217 * (1) assigns its initial sequence number for the new
218 * connection to be larger than the largest sequence
219 * number it used on the previous connection incarnation,
220 * and
222 * (2) returns to TIME-WAIT state if the SYN turns out
223 * to be an old duplicate".
226 if (!paws_reject &&
227 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
228 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
229 /* In window segment, it may be only reset or bare ack. */
231 if (th->rst) {
232 /* This is TIME_WAIT assassination, in two flavors.
233 * Oh well... nobody has a sufficient solution to this
234 * protocol bug yet.
236 if (sysctl_tcp_rfc1337 == 0) {
237 kill:
238 inet_twsk_deschedule(tw, &tcp_death_row);
239 inet_twsk_put(tw);
240 return TCP_TW_SUCCESS;
243 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
244 TCP_TIMEWAIT_LEN);
246 if (tmp_opt.saw_tstamp) {
247 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
248 tcptw->tw_ts_recent_stamp = get_seconds();
251 inet_twsk_put(tw);
252 return TCP_TW_SUCCESS;
255 /* Out of window segment.
257 All the segments are ACKed immediately.
259 The only exception is new SYN. We accept it, if it is
260 not old duplicate and we are not in danger to be killed
261 by delayed old duplicates. RFC check is that it has
262 newer sequence number works at rates <40Mbit/sec.
263 However, if paws works, it is reliable AND even more,
264 we even may relax silly seq space cutoff.
266 RED-PEN: we violate main RFC requirement, if this SYN will appear
267 old duplicate (i.e. we receive RST in reply to SYN-ACK),
268 we must return socket to time-wait state. It is not good,
269 but not fatal yet.
272 if (th->syn && !th->rst && !th->ack && !paws_reject &&
273 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
274 (tmp_opt.saw_tstamp &&
275 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
276 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
277 if (isn == 0)
278 isn++;
279 TCP_SKB_CB(skb)->when = isn;
280 return TCP_TW_SYN;
283 if (paws_reject)
284 NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
286 if (!th->rst) {
287 /* In this case we must reset the TIMEWAIT timer.
289 * If it is ACKless SYN it may be both old duplicate
290 * and new good SYN with random sequence number <rcv_nxt.
291 * Do not reschedule in the last case.
293 if (paws_reject || th->ack)
294 inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
295 TCP_TIMEWAIT_LEN);
297 /* Send ACK. Note, we do not put the bucket,
298 * it will be released by caller.
300 return TCP_TW_ACK;
302 inet_twsk_put(tw);
303 return TCP_TW_SUCCESS;
305 EXPORT_SYMBOL(tcp_timewait_state_process);
308 * Move a socket to time-wait or dead fin-wait-2 state.
310 void tcp_time_wait(struct sock *sk, int state, int timeo)
312 struct inet_timewait_sock *tw = NULL;
313 const struct inet_connection_sock *icsk = inet_csk(sk);
314 const struct tcp_sock *tp = tcp_sk(sk);
315 bool recycle_ok = false;
316 bool recycle_on = false;
318 if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp) {
319 recycle_ok = tcp_remember_stamp(sk);
320 recycle_on = true;
323 if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
324 tw = inet_twsk_alloc(sk, state);
326 if (tw != NULL) {
327 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
328 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
329 struct inet_sock *inet = inet_sk(sk);
330 struct inet_peer *peer = NULL;
332 tw->tw_transparent = inet->transparent;
333 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
334 tcptw->tw_rcv_nxt = tp->rcv_nxt;
335 tcptw->tw_snd_nxt = tp->snd_nxt;
336 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
337 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
338 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
340 #if IS_ENABLED(CONFIG_IPV6)
341 if (tw->tw_family == PF_INET6) {
342 struct ipv6_pinfo *np = inet6_sk(sk);
343 struct inet6_timewait_sock *tw6;
345 tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
346 tw6 = inet6_twsk((struct sock *)tw);
347 tw6->tw_v6_daddr = np->daddr;
348 tw6->tw_v6_rcv_saddr = np->rcv_saddr;
349 tw->tw_tclass = np->tclass;
350 tw->tw_ipv6only = np->ipv6only;
352 #endif
354 if (recycle_on)
355 peer = icsk->icsk_af_ops->get_peer(sk);
356 tcptw->tw_peer = peer;
357 if (peer)
358 atomic_inc(&peer->refcnt);
360 #ifdef CONFIG_TCP_MD5SIG
362 * The timewait bucket does not have the key DB from the
363 * sock structure. We just make a quick copy of the
364 * md5 key being used (if indeed we are using one)
365 * so the timewait ack generating code has the key.
367 do {
368 struct tcp_md5sig_key *key;
369 tcptw->tw_md5_key = NULL;
370 key = tp->af_specific->md5_lookup(sk, sk);
371 if (key != NULL) {
372 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
373 if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
374 BUG();
376 } while (0);
377 #endif
379 /* Linkage updates. */
380 __inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
382 /* Get the TIME_WAIT timeout firing. */
383 if (timeo < rto)
384 timeo = rto;
386 if (recycle_ok) {
387 tw->tw_timeout = rto;
388 } else {
389 tw->tw_timeout = TCP_TIMEWAIT_LEN;
390 if (state == TCP_TIME_WAIT)
391 timeo = TCP_TIMEWAIT_LEN;
394 inet_twsk_schedule(tw, &tcp_death_row, timeo,
395 TCP_TIMEWAIT_LEN);
396 inet_twsk_put(tw);
397 } else {
398 /* Sorry, if we're out of memory, just CLOSE this
399 * socket up. We've got bigger problems than
400 * non-graceful socket closings.
402 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
405 tcp_update_metrics(sk);
406 tcp_done(sk);
409 void tcp_twsk_destructor(struct sock *sk)
411 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
413 if (twsk->tw_peer)
414 inet_putpeer(twsk->tw_peer);
415 #ifdef CONFIG_TCP_MD5SIG
416 if (twsk->tw_md5_key) {
417 tcp_free_md5sig_pool();
418 kfree_rcu(twsk->tw_md5_key, rcu);
420 #endif
422 EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
424 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
425 struct request_sock *req)
427 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
430 /* This is not only more efficient than what we used to do, it eliminates
431 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
433 * Actually, we could lots of memory writes here. tp of listening
434 * socket contains all necessary default parameters.
436 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
438 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
440 if (newsk != NULL) {
441 const struct inet_request_sock *ireq = inet_rsk(req);
442 struct tcp_request_sock *treq = tcp_rsk(req);
443 struct inet_connection_sock *newicsk = inet_csk(newsk);
444 struct tcp_sock *newtp = tcp_sk(newsk);
445 struct tcp_sock *oldtp = tcp_sk(sk);
446 struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
448 /* TCP Cookie Transactions require space for the cookie pair,
449 * as it differs for each connection. There is no need to
450 * copy any s_data_payload stored at the original socket.
451 * Failure will prevent resuming the connection.
453 * Presumed copied, in order of appearance:
454 * cookie_in_always, cookie_out_never
456 if (oldcvp != NULL) {
457 struct tcp_cookie_values *newcvp =
458 kzalloc(sizeof(*newtp->cookie_values),
459 GFP_ATOMIC);
461 if (newcvp != NULL) {
462 kref_init(&newcvp->kref);
463 newcvp->cookie_desired =
464 oldcvp->cookie_desired;
465 newtp->cookie_values = newcvp;
466 } else {
467 /* Not Yet Implemented */
468 newtp->cookie_values = NULL;
472 /* Now setup tcp_sock */
473 newtp->pred_flags = 0;
475 newtp->rcv_wup = newtp->copied_seq =
476 newtp->rcv_nxt = treq->rcv_isn + 1;
478 newtp->snd_sml = newtp->snd_una =
479 newtp->snd_nxt = newtp->snd_up =
480 treq->snt_isn + 1 + tcp_s_data_size(oldtp);
482 tcp_prequeue_init(newtp);
484 tcp_init_wl(newtp, treq->rcv_isn);
486 newtp->srtt = 0;
487 newtp->mdev = TCP_TIMEOUT_INIT;
488 newicsk->icsk_rto = TCP_TIMEOUT_INIT;
490 newtp->packets_out = 0;
491 newtp->retrans_out = 0;
492 newtp->sacked_out = 0;
493 newtp->fackets_out = 0;
494 newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
495 tcp_enable_early_retrans(newtp);
497 /* So many TCP implementations out there (incorrectly) count the
498 * initial SYN frame in their delayed-ACK and congestion control
499 * algorithms that we must have the following bandaid to talk
500 * efficiently to them. -DaveM
502 newtp->snd_cwnd = TCP_INIT_CWND;
503 newtp->snd_cwnd_cnt = 0;
504 newtp->bytes_acked = 0;
506 newtp->frto_counter = 0;
507 newtp->frto_highmark = 0;
509 if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
510 !try_module_get(newicsk->icsk_ca_ops->owner))
511 newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
513 tcp_set_ca_state(newsk, TCP_CA_Open);
514 tcp_init_xmit_timers(newsk);
515 skb_queue_head_init(&newtp->out_of_order_queue);
516 newtp->write_seq = newtp->pushed_seq =
517 treq->snt_isn + 1 + tcp_s_data_size(oldtp);
519 newtp->rx_opt.saw_tstamp = 0;
521 newtp->rx_opt.dsack = 0;
522 newtp->rx_opt.num_sacks = 0;
524 newtp->urg_data = 0;
526 if (sock_flag(newsk, SOCK_KEEPOPEN))
527 inet_csk_reset_keepalive_timer(newsk,
528 keepalive_time_when(newtp));
530 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
531 if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
532 if (sysctl_tcp_fack)
533 tcp_enable_fack(newtp);
535 newtp->window_clamp = req->window_clamp;
536 newtp->rcv_ssthresh = req->rcv_wnd;
537 newtp->rcv_wnd = req->rcv_wnd;
538 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
539 if (newtp->rx_opt.wscale_ok) {
540 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
541 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
542 } else {
543 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
544 newtp->window_clamp = min(newtp->window_clamp, 65535U);
546 newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
547 newtp->rx_opt.snd_wscale);
548 newtp->max_window = newtp->snd_wnd;
550 if (newtp->rx_opt.tstamp_ok) {
551 newtp->rx_opt.ts_recent = req->ts_recent;
552 newtp->rx_opt.ts_recent_stamp = get_seconds();
553 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
554 } else {
555 newtp->rx_opt.ts_recent_stamp = 0;
556 newtp->tcp_header_len = sizeof(struct tcphdr);
558 #ifdef CONFIG_TCP_MD5SIG
559 newtp->md5sig_info = NULL; /*XXX*/
560 if (newtp->af_specific->md5_lookup(sk, newsk))
561 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
562 #endif
563 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
564 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
565 newtp->rx_opt.mss_clamp = req->mss;
566 TCP_ECN_openreq_child(newtp, req);
568 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
570 return newsk;
572 EXPORT_SYMBOL(tcp_create_openreq_child);
575 * Process an incoming packet for SYN_RECV sockets represented
576 * as a request_sock.
579 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
580 struct request_sock *req,
581 struct request_sock **prev)
583 struct tcp_options_received tmp_opt;
584 const u8 *hash_location;
585 struct sock *child;
586 const struct tcphdr *th = tcp_hdr(skb);
587 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
588 bool paws_reject = false;
590 tmp_opt.saw_tstamp = 0;
591 if (th->doff > (sizeof(struct tcphdr)>>2)) {
592 tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
594 if (tmp_opt.saw_tstamp) {
595 tmp_opt.ts_recent = req->ts_recent;
596 /* We do not store true stamp, but it is not required,
597 * it can be estimated (approximately)
598 * from another data.
600 tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
601 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
605 /* Check for pure retransmitted SYN. */
606 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
607 flg == TCP_FLAG_SYN &&
608 !paws_reject) {
610 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
611 * this case on figure 6 and figure 8, but formal
612 * protocol description says NOTHING.
613 * To be more exact, it says that we should send ACK,
614 * because this segment (at least, if it has no data)
615 * is out of window.
617 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
618 * describe SYN-RECV state. All the description
619 * is wrong, we cannot believe to it and should
620 * rely only on common sense and implementation
621 * experience.
623 * Enforce "SYN-ACK" according to figure 8, figure 6
624 * of RFC793, fixed by RFC1122.
626 req->rsk_ops->rtx_syn_ack(sk, req, NULL);
627 return NULL;
630 /* Further reproduces section "SEGMENT ARRIVES"
631 for state SYN-RECEIVED of RFC793.
632 It is broken, however, it does not work only
633 when SYNs are crossed.
635 You would think that SYN crossing is impossible here, since
636 we should have a SYN_SENT socket (from connect()) on our end,
637 but this is not true if the crossed SYNs were sent to both
638 ends by a malicious third party. We must defend against this,
639 and to do that we first verify the ACK (as per RFC793, page
640 36) and reset if it is invalid. Is this a true full defense?
641 To convince ourselves, let us consider a way in which the ACK
642 test can still pass in this 'malicious crossed SYNs' case.
643 Malicious sender sends identical SYNs (and thus identical sequence
644 numbers) to both A and B:
646 A: gets SYN, seq=7
647 B: gets SYN, seq=7
649 By our good fortune, both A and B select the same initial
650 send sequence number of seven :-)
652 A: sends SYN|ACK, seq=7, ack_seq=8
653 B: sends SYN|ACK, seq=7, ack_seq=8
655 So we are now A eating this SYN|ACK, ACK test passes. So
656 does sequence test, SYN is truncated, and thus we consider
657 it a bare ACK.
659 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
660 bare ACK. Otherwise, we create an established connection. Both
661 ends (listening sockets) accept the new incoming connection and try
662 to talk to each other. 8-)
664 Note: This case is both harmless, and rare. Possibility is about the
665 same as us discovering intelligent life on another plant tomorrow.
667 But generally, we should (RFC lies!) to accept ACK
668 from SYNACK both here and in tcp_rcv_state_process().
669 tcp_rcv_state_process() does not, hence, we do not too.
671 Note that the case is absolutely generic:
672 we cannot optimize anything here without
673 violating protocol. All the checks must be made
674 before attempt to create socket.
677 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
678 * and the incoming segment acknowledges something not yet
679 * sent (the segment carries an unacceptable ACK) ...
680 * a reset is sent."
682 * Invalid ACK: reset will be sent by listening socket
684 if ((flg & TCP_FLAG_ACK) &&
685 (TCP_SKB_CB(skb)->ack_seq !=
686 tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
687 return sk;
689 /* Also, it would be not so bad idea to check rcv_tsecr, which
690 * is essentially ACK extension and too early or too late values
691 * should cause reset in unsynchronized states.
694 /* RFC793: "first check sequence number". */
696 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
697 tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
698 /* Out of window: send ACK and drop. */
699 if (!(flg & TCP_FLAG_RST))
700 req->rsk_ops->send_ack(sk, skb, req);
701 if (paws_reject)
702 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
703 return NULL;
706 /* In sequence, PAWS is OK. */
708 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
709 req->ts_recent = tmp_opt.rcv_tsval;
711 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
712 /* Truncate SYN, it is out of window starting
713 at tcp_rsk(req)->rcv_isn + 1. */
714 flg &= ~TCP_FLAG_SYN;
717 /* RFC793: "second check the RST bit" and
718 * "fourth, check the SYN bit"
720 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
721 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
722 goto embryonic_reset;
725 /* ACK sequence verified above, just make sure ACK is
726 * set. If ACK not set, just silently drop the packet.
728 if (!(flg & TCP_FLAG_ACK))
729 return NULL;
731 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
732 if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
733 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
734 inet_rsk(req)->acked = 1;
735 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
736 return NULL;
738 if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
739 tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
740 else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
741 tcp_rsk(req)->snt_synack = 0;
743 /* OK, ACK is valid, create big socket and
744 * feed this segment to it. It will repeat all
745 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
746 * ESTABLISHED STATE. If it will be dropped after
747 * socket is created, wait for troubles.
749 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
750 if (child == NULL)
751 goto listen_overflow;
753 inet_csk_reqsk_queue_unlink(sk, req, prev);
754 inet_csk_reqsk_queue_removed(sk, req);
756 inet_csk_reqsk_queue_add(sk, req, child);
757 return child;
759 listen_overflow:
760 if (!sysctl_tcp_abort_on_overflow) {
761 inet_rsk(req)->acked = 1;
762 return NULL;
765 embryonic_reset:
766 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
767 if (!(flg & TCP_FLAG_RST))
768 req->rsk_ops->send_reset(sk, skb);
770 inet_csk_reqsk_queue_drop(sk, req, prev);
771 return NULL;
773 EXPORT_SYMBOL(tcp_check_req);
776 * Queue segment on the new socket if the new socket is active,
777 * otherwise we just shortcircuit this and continue with
778 * the new socket.
781 int tcp_child_process(struct sock *parent, struct sock *child,
782 struct sk_buff *skb)
784 int ret = 0;
785 int state = child->sk_state;
787 if (!sock_owned_by_user(child)) {
788 ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
789 skb->len);
790 /* Wakeup parent, send SIGIO */
791 if (state == TCP_SYN_RECV && child->sk_state != state)
792 parent->sk_data_ready(parent, 0);
793 } else {
794 /* Alas, it is possible again, because we do lookup
795 * in main socket hash table and lock on listening
796 * socket does not protect us more.
798 __sk_add_backlog(child, skb);
801 bh_unlock_sock(child);
802 sock_put(child);
803 return ret;
805 EXPORT_SYMBOL(tcp_child_process);