4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr
;
91 EXPORT_SYMBOL(max_mapnr
);
94 EXPORT_SYMBOL(mem_map
);
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 EXPORT_SYMBOL(high_memory
);
108 * Randomize the address space (stacks, mmaps, brk, etc.).
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
113 int randomize_va_space __read_mostly
=
114 #ifdef CONFIG_COMPAT_BRK
120 static int __init
disable_randmaps(char *s
)
122 randomize_va_space
= 0;
125 __setup("norandmaps", disable_randmaps
);
127 unsigned long zero_pfn __read_mostly
;
128 EXPORT_SYMBOL(zero_pfn
);
130 unsigned long highest_memmap_pfn __read_mostly
;
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 static int __init
init_zero_pfn(void)
137 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
140 core_initcall(init_zero_pfn
);
143 #if defined(SPLIT_RSS_COUNTING)
145 void sync_mm_rss(struct mm_struct
*mm
)
149 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
150 if (current
->rss_stat
.count
[i
]) {
151 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
152 current
->rss_stat
.count
[i
] = 0;
155 current
->rss_stat
.events
= 0;
158 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
160 struct task_struct
*task
= current
;
162 if (likely(task
->mm
== mm
))
163 task
->rss_stat
.count
[member
] += val
;
165 add_mm_counter(mm
, member
, val
);
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct
*task
)
174 if (unlikely(task
!= current
))
176 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
177 sync_mm_rss(task
->mm
);
179 #else /* SPLIT_RSS_COUNTING */
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 static void check_sync_rss_stat(struct task_struct
*task
)
188 #endif /* SPLIT_RSS_COUNTING */
190 #ifdef HAVE_GENERIC_MMU_GATHER
192 static bool tlb_next_batch(struct mmu_gather
*tlb
)
194 struct mmu_gather_batch
*batch
;
198 tlb
->active
= batch
->next
;
202 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
205 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
212 batch
->max
= MAX_GATHER_BATCH
;
214 tlb
->active
->next
= batch
;
220 void arch_tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
221 unsigned long start
, unsigned long end
)
225 /* Is it from 0 to ~0? */
226 tlb
->fullmm
= !(start
| (end
+1));
227 tlb
->need_flush_all
= 0;
228 tlb
->local
.next
= NULL
;
230 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
231 tlb
->active
= &tlb
->local
;
232 tlb
->batch_count
= 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 __tlb_reset_range(tlb
);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather
*tlb
)
248 mmu_notifier_invalidate_range(tlb
->mm
, tlb
->start
, tlb
->end
);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb
);
252 __tlb_reset_range(tlb
);
255 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
257 struct mmu_gather_batch
*batch
;
259 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
260 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
263 tlb
->active
= &tlb
->local
;
266 void tlb_flush_mmu(struct mmu_gather
*tlb
)
268 tlb_flush_mmu_tlbonly(tlb
);
269 tlb_flush_mmu_free(tlb
);
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void arch_tlb_finish_mmu(struct mmu_gather
*tlb
,
277 unsigned long start
, unsigned long end
, bool force
)
279 struct mmu_gather_batch
*batch
, *next
;
282 __tlb_adjust_range(tlb
, start
, end
- start
);
286 /* keep the page table cache within bounds */
289 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
291 free_pages((unsigned long)batch
, 0);
293 tlb
->local
.next
= NULL
;
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
303 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
305 struct mmu_gather_batch
*batch
;
307 VM_BUG_ON(!tlb
->end
);
308 VM_WARN_ON(tlb
->page_size
!= page_size
);
312 * Add the page and check if we are full. If so
315 batch
->pages
[batch
->nr
++] = page
;
316 if (batch
->nr
== batch
->max
) {
317 if (!tlb_next_batch(tlb
))
321 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
326 #endif /* HAVE_GENERIC_MMU_GATHER */
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
331 * See the comment near struct mmu_table_batch.
334 static void tlb_remove_table_smp_sync(void *arg
)
336 /* Simply deliver the interrupt */
339 static void tlb_remove_table_one(void *table
)
342 * This isn't an RCU grace period and hence the page-tables cannot be
343 * assumed to be actually RCU-freed.
345 * It is however sufficient for software page-table walkers that rely on
346 * IRQ disabling. See the comment near struct mmu_table_batch.
348 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
349 __tlb_remove_table(table
);
352 static void tlb_remove_table_rcu(struct rcu_head
*head
)
354 struct mmu_table_batch
*batch
;
357 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
359 for (i
= 0; i
< batch
->nr
; i
++)
360 __tlb_remove_table(batch
->tables
[i
]);
362 free_page((unsigned long)batch
);
365 void tlb_table_flush(struct mmu_gather
*tlb
)
367 struct mmu_table_batch
**batch
= &tlb
->batch
;
370 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
375 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
377 struct mmu_table_batch
**batch
= &tlb
->batch
;
380 * When there's less then two users of this mm there cannot be a
381 * concurrent page-table walk.
383 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
384 __tlb_remove_table(table
);
388 if (*batch
== NULL
) {
389 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
390 if (*batch
== NULL
) {
391 tlb_remove_table_one(table
);
396 (*batch
)->tables
[(*batch
)->nr
++] = table
;
397 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
398 tlb_table_flush(tlb
);
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
404 * Called to initialize an (on-stack) mmu_gather structure for page-table
405 * tear-down from @mm. The @fullmm argument is used when @mm is without
406 * users and we're going to destroy the full address space (exit/execve).
408 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
409 unsigned long start
, unsigned long end
)
411 arch_tlb_gather_mmu(tlb
, mm
, start
, end
);
412 inc_tlb_flush_pending(tlb
->mm
);
415 void tlb_finish_mmu(struct mmu_gather
*tlb
,
416 unsigned long start
, unsigned long end
)
419 * If there are parallel threads are doing PTE changes on same range
420 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 * flush by batching, a thread has stable TLB entry can fail to flush
422 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 * forcefully if we detect parallel PTE batching threads.
425 bool force
= mm_tlb_flush_nested(tlb
->mm
);
427 arch_tlb_finish_mmu(tlb
, start
, end
, force
);
428 dec_tlb_flush_pending(tlb
->mm
);
432 * Note: this doesn't free the actual pages themselves. That
433 * has been handled earlier when unmapping all the memory regions.
435 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
438 pgtable_t token
= pmd_pgtable(*pmd
);
440 pte_free_tlb(tlb
, token
, addr
);
441 atomic_long_dec(&tlb
->mm
->nr_ptes
);
444 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
445 unsigned long addr
, unsigned long end
,
446 unsigned long floor
, unsigned long ceiling
)
453 pmd
= pmd_offset(pud
, addr
);
455 next
= pmd_addr_end(addr
, end
);
456 if (pmd_none_or_clear_bad(pmd
))
458 free_pte_range(tlb
, pmd
, addr
);
459 } while (pmd
++, addr
= next
, addr
!= end
);
469 if (end
- 1 > ceiling
- 1)
472 pmd
= pmd_offset(pud
, start
);
474 pmd_free_tlb(tlb
, pmd
, start
);
475 mm_dec_nr_pmds(tlb
->mm
);
478 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
479 unsigned long addr
, unsigned long end
,
480 unsigned long floor
, unsigned long ceiling
)
487 pud
= pud_offset(p4d
, addr
);
489 next
= pud_addr_end(addr
, end
);
490 if (pud_none_or_clear_bad(pud
))
492 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
493 } while (pud
++, addr
= next
, addr
!= end
);
503 if (end
- 1 > ceiling
- 1)
506 pud
= pud_offset(p4d
, start
);
508 pud_free_tlb(tlb
, pud
, start
);
511 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
512 unsigned long addr
, unsigned long end
,
513 unsigned long floor
, unsigned long ceiling
)
520 p4d
= p4d_offset(pgd
, addr
);
522 next
= p4d_addr_end(addr
, end
);
523 if (p4d_none_or_clear_bad(p4d
))
525 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
526 } while (p4d
++, addr
= next
, addr
!= end
);
532 ceiling
&= PGDIR_MASK
;
536 if (end
- 1 > ceiling
- 1)
539 p4d
= p4d_offset(pgd
, start
);
541 p4d_free_tlb(tlb
, p4d
, start
);
545 * This function frees user-level page tables of a process.
547 void free_pgd_range(struct mmu_gather
*tlb
,
548 unsigned long addr
, unsigned long end
,
549 unsigned long floor
, unsigned long ceiling
)
555 * The next few lines have given us lots of grief...
557 * Why are we testing PMD* at this top level? Because often
558 * there will be no work to do at all, and we'd prefer not to
559 * go all the way down to the bottom just to discover that.
561 * Why all these "- 1"s? Because 0 represents both the bottom
562 * of the address space and the top of it (using -1 for the
563 * top wouldn't help much: the masks would do the wrong thing).
564 * The rule is that addr 0 and floor 0 refer to the bottom of
565 * the address space, but end 0 and ceiling 0 refer to the top
566 * Comparisons need to use "end - 1" and "ceiling - 1" (though
567 * that end 0 case should be mythical).
569 * Wherever addr is brought up or ceiling brought down, we must
570 * be careful to reject "the opposite 0" before it confuses the
571 * subsequent tests. But what about where end is brought down
572 * by PMD_SIZE below? no, end can't go down to 0 there.
574 * Whereas we round start (addr) and ceiling down, by different
575 * masks at different levels, in order to test whether a table
576 * now has no other vmas using it, so can be freed, we don't
577 * bother to round floor or end up - the tests don't need that.
591 if (end
- 1 > ceiling
- 1)
596 * We add page table cache pages with PAGE_SIZE,
597 * (see pte_free_tlb()), flush the tlb if we need
599 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
600 pgd
= pgd_offset(tlb
->mm
, addr
);
602 next
= pgd_addr_end(addr
, end
);
603 if (pgd_none_or_clear_bad(pgd
))
605 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
606 } while (pgd
++, addr
= next
, addr
!= end
);
609 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
610 unsigned long floor
, unsigned long ceiling
)
613 struct vm_area_struct
*next
= vma
->vm_next
;
614 unsigned long addr
= vma
->vm_start
;
617 * Hide vma from rmap and truncate_pagecache before freeing
620 unlink_anon_vmas(vma
);
621 unlink_file_vma(vma
);
623 if (is_vm_hugetlb_page(vma
)) {
624 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
625 floor
, next
? next
->vm_start
: ceiling
);
628 * Optimization: gather nearby vmas into one call down
630 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
631 && !is_vm_hugetlb_page(next
)) {
634 unlink_anon_vmas(vma
);
635 unlink_file_vma(vma
);
637 free_pgd_range(tlb
, addr
, vma
->vm_end
,
638 floor
, next
? next
->vm_start
: ceiling
);
644 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
647 pgtable_t
new = pte_alloc_one(mm
, address
);
652 * Ensure all pte setup (eg. pte page lock and page clearing) are
653 * visible before the pte is made visible to other CPUs by being
654 * put into page tables.
656 * The other side of the story is the pointer chasing in the page
657 * table walking code (when walking the page table without locking;
658 * ie. most of the time). Fortunately, these data accesses consist
659 * of a chain of data-dependent loads, meaning most CPUs (alpha
660 * being the notable exception) will already guarantee loads are
661 * seen in-order. See the alpha page table accessors for the
662 * smp_read_barrier_depends() barriers in page table walking code.
664 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
666 ptl
= pmd_lock(mm
, pmd
);
667 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
668 atomic_long_inc(&mm
->nr_ptes
);
669 pmd_populate(mm
, pmd
, new);
678 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
680 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
684 smp_wmb(); /* See comment in __pte_alloc */
686 spin_lock(&init_mm
.page_table_lock
);
687 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
688 pmd_populate_kernel(&init_mm
, pmd
, new);
691 spin_unlock(&init_mm
.page_table_lock
);
693 pte_free_kernel(&init_mm
, new);
697 static inline void init_rss_vec(int *rss
)
699 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
702 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
706 if (current
->mm
== mm
)
708 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
710 add_mm_counter(mm
, i
, rss
[i
]);
714 * This function is called to print an error when a bad pte
715 * is found. For example, we might have a PFN-mapped pte in
716 * a region that doesn't allow it.
718 * The calling function must still handle the error.
720 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
721 pte_t pte
, struct page
*page
)
723 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
724 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
725 pud_t
*pud
= pud_offset(p4d
, addr
);
726 pmd_t
*pmd
= pmd_offset(pud
, addr
);
727 struct address_space
*mapping
;
729 static unsigned long resume
;
730 static unsigned long nr_shown
;
731 static unsigned long nr_unshown
;
734 * Allow a burst of 60 reports, then keep quiet for that minute;
735 * or allow a steady drip of one report per second.
737 if (nr_shown
== 60) {
738 if (time_before(jiffies
, resume
)) {
743 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
750 resume
= jiffies
+ 60 * HZ
;
752 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
753 index
= linear_page_index(vma
, addr
);
755 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
757 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
759 dump_page(page
, "bad pte");
760 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
761 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
763 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
765 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
767 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
768 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
769 mapping
? mapping
->a_ops
->readpage
: NULL
);
771 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
775 * vm_normal_page -- This function gets the "struct page" associated with a pte.
777 * "Special" mappings do not wish to be associated with a "struct page" (either
778 * it doesn't exist, or it exists but they don't want to touch it). In this
779 * case, NULL is returned here. "Normal" mappings do have a struct page.
781 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
782 * pte bit, in which case this function is trivial. Secondly, an architecture
783 * may not have a spare pte bit, which requires a more complicated scheme,
786 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
787 * special mapping (even if there are underlying and valid "struct pages").
788 * COWed pages of a VM_PFNMAP are always normal.
790 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
791 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
792 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
793 * mapping will always honor the rule
795 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
797 * And for normal mappings this is false.
799 * This restricts such mappings to be a linear translation from virtual address
800 * to pfn. To get around this restriction, we allow arbitrary mappings so long
801 * as the vma is not a COW mapping; in that case, we know that all ptes are
802 * special (because none can have been COWed).
805 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
807 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
808 * page" backing, however the difference is that _all_ pages with a struct
809 * page (that is, those where pfn_valid is true) are refcounted and considered
810 * normal pages by the VM. The disadvantage is that pages are refcounted
811 * (which can be slower and simply not an option for some PFNMAP users). The
812 * advantage is that we don't have to follow the strict linearity rule of
813 * PFNMAP mappings in order to support COWable mappings.
816 #ifdef __HAVE_ARCH_PTE_SPECIAL
817 # define HAVE_PTE_SPECIAL 1
819 # define HAVE_PTE_SPECIAL 0
821 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
822 pte_t pte
, bool with_public_device
)
824 unsigned long pfn
= pte_pfn(pte
);
826 if (HAVE_PTE_SPECIAL
) {
827 if (likely(!pte_special(pte
)))
829 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
830 return vma
->vm_ops
->find_special_page(vma
, addr
);
831 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
833 if (is_zero_pfn(pfn
))
837 * Device public pages are special pages (they are ZONE_DEVICE
838 * pages but different from persistent memory). They behave
839 * allmost like normal pages. The difference is that they are
840 * not on the lru and thus should never be involve with any-
841 * thing that involve lru manipulation (mlock, numa balancing,
844 * This is why we still want to return NULL for such page from
845 * vm_normal_page() so that we do not have to special case all
846 * call site of vm_normal_page().
848 if (likely(pfn
< highest_memmap_pfn
)) {
849 struct page
*page
= pfn_to_page(pfn
);
851 if (is_device_public_page(page
)) {
852 if (with_public_device
)
857 print_bad_pte(vma
, addr
, pte
, NULL
);
861 /* !HAVE_PTE_SPECIAL case follows: */
863 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
864 if (vma
->vm_flags
& VM_MIXEDMAP
) {
870 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
871 if (pfn
== vma
->vm_pgoff
+ off
)
873 if (!is_cow_mapping(vma
->vm_flags
))
878 if (is_zero_pfn(pfn
))
881 if (unlikely(pfn
> highest_memmap_pfn
)) {
882 print_bad_pte(vma
, addr
, pte
, NULL
);
887 * NOTE! We still have PageReserved() pages in the page tables.
888 * eg. VDSO mappings can cause them to exist.
891 return pfn_to_page(pfn
);
894 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
895 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
898 unsigned long pfn
= pmd_pfn(pmd
);
901 * There is no pmd_special() but there may be special pmds, e.g.
902 * in a direct-access (dax) mapping, so let's just replicate the
903 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
905 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
906 if (vma
->vm_flags
& VM_MIXEDMAP
) {
912 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
913 if (pfn
== vma
->vm_pgoff
+ off
)
915 if (!is_cow_mapping(vma
->vm_flags
))
920 if (is_zero_pfn(pfn
))
922 if (unlikely(pfn
> highest_memmap_pfn
))
926 * NOTE! We still have PageReserved() pages in the page tables.
927 * eg. VDSO mappings can cause them to exist.
930 return pfn_to_page(pfn
);
935 * copy one vm_area from one task to the other. Assumes the page tables
936 * already present in the new task to be cleared in the whole range
937 * covered by this vma.
940 static inline unsigned long
941 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
942 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
943 unsigned long addr
, int *rss
)
945 unsigned long vm_flags
= vma
->vm_flags
;
946 pte_t pte
= *src_pte
;
949 /* pte contains position in swap or file, so copy. */
950 if (unlikely(!pte_present(pte
))) {
951 swp_entry_t entry
= pte_to_swp_entry(pte
);
953 if (likely(!non_swap_entry(entry
))) {
954 if (swap_duplicate(entry
) < 0)
957 /* make sure dst_mm is on swapoff's mmlist. */
958 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
959 spin_lock(&mmlist_lock
);
960 if (list_empty(&dst_mm
->mmlist
))
961 list_add(&dst_mm
->mmlist
,
963 spin_unlock(&mmlist_lock
);
966 } else if (is_migration_entry(entry
)) {
967 page
= migration_entry_to_page(entry
);
969 rss
[mm_counter(page
)]++;
971 if (is_write_migration_entry(entry
) &&
972 is_cow_mapping(vm_flags
)) {
974 * COW mappings require pages in both
975 * parent and child to be set to read.
977 make_migration_entry_read(&entry
);
978 pte
= swp_entry_to_pte(entry
);
979 if (pte_swp_soft_dirty(*src_pte
))
980 pte
= pte_swp_mksoft_dirty(pte
);
981 set_pte_at(src_mm
, addr
, src_pte
, pte
);
983 } else if (is_device_private_entry(entry
)) {
984 page
= device_private_entry_to_page(entry
);
987 * Update rss count even for unaddressable pages, as
988 * they should treated just like normal pages in this
991 * We will likely want to have some new rss counters
992 * for unaddressable pages, at some point. But for now
993 * keep things as they are.
996 rss
[mm_counter(page
)]++;
997 page_dup_rmap(page
, false);
1000 * We do not preserve soft-dirty information, because so
1001 * far, checkpoint/restore is the only feature that
1002 * requires that. And checkpoint/restore does not work
1003 * when a device driver is involved (you cannot easily
1004 * save and restore device driver state).
1006 if (is_write_device_private_entry(entry
) &&
1007 is_cow_mapping(vm_flags
)) {
1008 make_device_private_entry_read(&entry
);
1009 pte
= swp_entry_to_pte(entry
);
1010 set_pte_at(src_mm
, addr
, src_pte
, pte
);
1017 * If it's a COW mapping, write protect it both
1018 * in the parent and the child
1020 if (is_cow_mapping(vm_flags
)) {
1021 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
1022 pte
= pte_wrprotect(pte
);
1026 * If it's a shared mapping, mark it clean in
1029 if (vm_flags
& VM_SHARED
)
1030 pte
= pte_mkclean(pte
);
1031 pte
= pte_mkold(pte
);
1033 page
= vm_normal_page(vma
, addr
, pte
);
1036 page_dup_rmap(page
, false);
1037 rss
[mm_counter(page
)]++;
1038 } else if (pte_devmap(pte
)) {
1039 page
= pte_page(pte
);
1042 * Cache coherent device memory behave like regular page and
1043 * not like persistent memory page. For more informations see
1044 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 if (is_device_public_page(page
)) {
1048 page_dup_rmap(page
, false);
1049 rss
[mm_counter(page
)]++;
1054 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
1058 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1059 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
1060 unsigned long addr
, unsigned long end
)
1062 pte_t
*orig_src_pte
, *orig_dst_pte
;
1063 pte_t
*src_pte
, *dst_pte
;
1064 spinlock_t
*src_ptl
, *dst_ptl
;
1066 int rss
[NR_MM_COUNTERS
];
1067 swp_entry_t entry
= (swp_entry_t
){0};
1072 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1075 src_pte
= pte_offset_map(src_pmd
, addr
);
1076 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
1077 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1078 orig_src_pte
= src_pte
;
1079 orig_dst_pte
= dst_pte
;
1080 arch_enter_lazy_mmu_mode();
1084 * We are holding two locks at this point - either of them
1085 * could generate latencies in another task on another CPU.
1087 if (progress
>= 32) {
1089 if (need_resched() ||
1090 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1093 if (pte_none(*src_pte
)) {
1097 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
1102 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1104 arch_leave_lazy_mmu_mode();
1105 spin_unlock(src_ptl
);
1106 pte_unmap(orig_src_pte
);
1107 add_mm_rss_vec(dst_mm
, rss
);
1108 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1112 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
1121 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1122 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1123 unsigned long addr
, unsigned long end
)
1125 pmd_t
*src_pmd
, *dst_pmd
;
1128 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1131 src_pmd
= pmd_offset(src_pud
, addr
);
1133 next
= pmd_addr_end(addr
, end
);
1134 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1135 || pmd_devmap(*src_pmd
)) {
1137 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1138 err
= copy_huge_pmd(dst_mm
, src_mm
,
1139 dst_pmd
, src_pmd
, addr
, vma
);
1146 if (pmd_none_or_clear_bad(src_pmd
))
1148 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1151 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1155 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1156 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
1157 unsigned long addr
, unsigned long end
)
1159 pud_t
*src_pud
, *dst_pud
;
1162 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1165 src_pud
= pud_offset(src_p4d
, addr
);
1167 next
= pud_addr_end(addr
, end
);
1168 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1171 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1172 err
= copy_huge_pud(dst_mm
, src_mm
,
1173 dst_pud
, src_pud
, addr
, vma
);
1180 if (pud_none_or_clear_bad(src_pud
))
1182 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1185 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1189 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1190 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1191 unsigned long addr
, unsigned long end
)
1193 p4d_t
*src_p4d
, *dst_p4d
;
1196 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1199 src_p4d
= p4d_offset(src_pgd
, addr
);
1201 next
= p4d_addr_end(addr
, end
);
1202 if (p4d_none_or_clear_bad(src_p4d
))
1204 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
1207 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1211 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1212 struct vm_area_struct
*vma
)
1214 pgd_t
*src_pgd
, *dst_pgd
;
1216 unsigned long addr
= vma
->vm_start
;
1217 unsigned long end
= vma
->vm_end
;
1218 unsigned long mmun_start
; /* For mmu_notifiers */
1219 unsigned long mmun_end
; /* For mmu_notifiers */
1224 * Don't copy ptes where a page fault will fill them correctly.
1225 * Fork becomes much lighter when there are big shared or private
1226 * readonly mappings. The tradeoff is that copy_page_range is more
1227 * efficient than faulting.
1229 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1233 if (is_vm_hugetlb_page(vma
))
1234 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1236 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1238 * We do not free on error cases below as remove_vma
1239 * gets called on error from higher level routine
1241 ret
= track_pfn_copy(vma
);
1247 * We need to invalidate the secondary MMU mappings only when
1248 * there could be a permission downgrade on the ptes of the
1249 * parent mm. And a permission downgrade will only happen if
1250 * is_cow_mapping() returns true.
1252 is_cow
= is_cow_mapping(vma
->vm_flags
);
1256 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1260 dst_pgd
= pgd_offset(dst_mm
, addr
);
1261 src_pgd
= pgd_offset(src_mm
, addr
);
1263 next
= pgd_addr_end(addr
, end
);
1264 if (pgd_none_or_clear_bad(src_pgd
))
1266 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1267 vma
, addr
, next
))) {
1271 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1274 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1278 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1279 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1280 unsigned long addr
, unsigned long end
,
1281 struct zap_details
*details
)
1283 struct mm_struct
*mm
= tlb
->mm
;
1284 int force_flush
= 0;
1285 int rss
[NR_MM_COUNTERS
];
1291 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1294 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1296 flush_tlb_batched_pending(mm
);
1297 arch_enter_lazy_mmu_mode();
1300 if (pte_none(ptent
))
1303 if (pte_present(ptent
)) {
1306 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1307 if (unlikely(details
) && page
) {
1309 * unmap_shared_mapping_pages() wants to
1310 * invalidate cache without truncating:
1311 * unmap shared but keep private pages.
1313 if (details
->check_mapping
&&
1314 details
->check_mapping
!= page_rmapping(page
))
1317 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1319 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1320 if (unlikely(!page
))
1323 if (!PageAnon(page
)) {
1324 if (pte_dirty(ptent
)) {
1326 set_page_dirty(page
);
1328 if (pte_young(ptent
) &&
1329 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1330 mark_page_accessed(page
);
1332 rss
[mm_counter(page
)]--;
1333 page_remove_rmap(page
, false);
1334 if (unlikely(page_mapcount(page
) < 0))
1335 print_bad_pte(vma
, addr
, ptent
, page
);
1336 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1344 entry
= pte_to_swp_entry(ptent
);
1345 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1346 struct page
*page
= device_private_entry_to_page(entry
);
1348 if (unlikely(details
&& details
->check_mapping
)) {
1350 * unmap_shared_mapping_pages() wants to
1351 * invalidate cache without truncating:
1352 * unmap shared but keep private pages.
1354 if (details
->check_mapping
!=
1355 page_rmapping(page
))
1359 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1360 rss
[mm_counter(page
)]--;
1361 page_remove_rmap(page
, false);
1366 /* If details->check_mapping, we leave swap entries. */
1367 if (unlikely(details
))
1370 entry
= pte_to_swp_entry(ptent
);
1371 if (!non_swap_entry(entry
))
1373 else if (is_migration_entry(entry
)) {
1376 page
= migration_entry_to_page(entry
);
1377 rss
[mm_counter(page
)]--;
1379 if (unlikely(!free_swap_and_cache(entry
)))
1380 print_bad_pte(vma
, addr
, ptent
, NULL
);
1381 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1382 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1384 add_mm_rss_vec(mm
, rss
);
1385 arch_leave_lazy_mmu_mode();
1387 /* Do the actual TLB flush before dropping ptl */
1389 tlb_flush_mmu_tlbonly(tlb
);
1390 pte_unmap_unlock(start_pte
, ptl
);
1393 * If we forced a TLB flush (either due to running out of
1394 * batch buffers or because we needed to flush dirty TLB
1395 * entries before releasing the ptl), free the batched
1396 * memory too. Restart if we didn't do everything.
1400 tlb_flush_mmu_free(tlb
);
1408 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1409 struct vm_area_struct
*vma
, pud_t
*pud
,
1410 unsigned long addr
, unsigned long end
,
1411 struct zap_details
*details
)
1416 pmd
= pmd_offset(pud
, addr
);
1418 next
= pmd_addr_end(addr
, end
);
1419 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1420 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1421 VM_BUG_ON_VMA(vma_is_anonymous(vma
) &&
1422 !rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1423 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1424 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1429 * Here there can be other concurrent MADV_DONTNEED or
1430 * trans huge page faults running, and if the pmd is
1431 * none or trans huge it can change under us. This is
1432 * because MADV_DONTNEED holds the mmap_sem in read
1435 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1437 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1440 } while (pmd
++, addr
= next
, addr
!= end
);
1445 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1446 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1447 unsigned long addr
, unsigned long end
,
1448 struct zap_details
*details
)
1453 pud
= pud_offset(p4d
, addr
);
1455 next
= pud_addr_end(addr
, end
);
1456 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1457 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1458 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1459 split_huge_pud(vma
, pud
, addr
);
1460 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1464 if (pud_none_or_clear_bad(pud
))
1466 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1469 } while (pud
++, addr
= next
, addr
!= end
);
1474 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1475 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1476 unsigned long addr
, unsigned long end
,
1477 struct zap_details
*details
)
1482 p4d
= p4d_offset(pgd
, addr
);
1484 next
= p4d_addr_end(addr
, end
);
1485 if (p4d_none_or_clear_bad(p4d
))
1487 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1488 } while (p4d
++, addr
= next
, addr
!= end
);
1493 void unmap_page_range(struct mmu_gather
*tlb
,
1494 struct vm_area_struct
*vma
,
1495 unsigned long addr
, unsigned long end
,
1496 struct zap_details
*details
)
1501 BUG_ON(addr
>= end
);
1502 tlb_start_vma(tlb
, vma
);
1503 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1505 next
= pgd_addr_end(addr
, end
);
1506 if (pgd_none_or_clear_bad(pgd
))
1508 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1509 } while (pgd
++, addr
= next
, addr
!= end
);
1510 tlb_end_vma(tlb
, vma
);
1514 static void unmap_single_vma(struct mmu_gather
*tlb
,
1515 struct vm_area_struct
*vma
, unsigned long start_addr
,
1516 unsigned long end_addr
,
1517 struct zap_details
*details
)
1519 unsigned long start
= max(vma
->vm_start
, start_addr
);
1522 if (start
>= vma
->vm_end
)
1524 end
= min(vma
->vm_end
, end_addr
);
1525 if (end
<= vma
->vm_start
)
1529 uprobe_munmap(vma
, start
, end
);
1531 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1532 untrack_pfn(vma
, 0, 0);
1535 if (unlikely(is_vm_hugetlb_page(vma
))) {
1537 * It is undesirable to test vma->vm_file as it
1538 * should be non-null for valid hugetlb area.
1539 * However, vm_file will be NULL in the error
1540 * cleanup path of mmap_region. When
1541 * hugetlbfs ->mmap method fails,
1542 * mmap_region() nullifies vma->vm_file
1543 * before calling this function to clean up.
1544 * Since no pte has actually been setup, it is
1545 * safe to do nothing in this case.
1548 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1549 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1550 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1553 unmap_page_range(tlb
, vma
, start
, end
, details
);
1558 * unmap_vmas - unmap a range of memory covered by a list of vma's
1559 * @tlb: address of the caller's struct mmu_gather
1560 * @vma: the starting vma
1561 * @start_addr: virtual address at which to start unmapping
1562 * @end_addr: virtual address at which to end unmapping
1564 * Unmap all pages in the vma list.
1566 * Only addresses between `start' and `end' will be unmapped.
1568 * The VMA list must be sorted in ascending virtual address order.
1570 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1571 * range after unmap_vmas() returns. So the only responsibility here is to
1572 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1573 * drops the lock and schedules.
1575 void unmap_vmas(struct mmu_gather
*tlb
,
1576 struct vm_area_struct
*vma
, unsigned long start_addr
,
1577 unsigned long end_addr
)
1579 struct mm_struct
*mm
= vma
->vm_mm
;
1581 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1582 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1583 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1584 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1588 * zap_page_range - remove user pages in a given range
1589 * @vma: vm_area_struct holding the applicable pages
1590 * @start: starting address of pages to zap
1591 * @size: number of bytes to zap
1593 * Caller must protect the VMA list
1595 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1598 struct mm_struct
*mm
= vma
->vm_mm
;
1599 struct mmu_gather tlb
;
1600 unsigned long end
= start
+ size
;
1603 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1604 update_hiwater_rss(mm
);
1605 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1606 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
1607 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1610 * zap_page_range does not specify whether mmap_sem should be
1611 * held for read or write. That allows parallel zap_page_range
1612 * operations to unmap a PTE and defer a flush meaning that
1613 * this call observes pte_none and fails to flush the TLB.
1614 * Rather than adding a complex API, ensure that no stale
1615 * TLB entries exist when this call returns.
1617 flush_tlb_range(vma
, start
, end
);
1620 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1621 tlb_finish_mmu(&tlb
, start
, end
);
1625 * zap_page_range_single - remove user pages in a given range
1626 * @vma: vm_area_struct holding the applicable pages
1627 * @address: starting address of pages to zap
1628 * @size: number of bytes to zap
1629 * @details: details of shared cache invalidation
1631 * The range must fit into one VMA.
1633 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1634 unsigned long size
, struct zap_details
*details
)
1636 struct mm_struct
*mm
= vma
->vm_mm
;
1637 struct mmu_gather tlb
;
1638 unsigned long end
= address
+ size
;
1641 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1642 update_hiwater_rss(mm
);
1643 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1644 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1645 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1646 tlb_finish_mmu(&tlb
, address
, end
);
1650 * zap_vma_ptes - remove ptes mapping the vma
1651 * @vma: vm_area_struct holding ptes to be zapped
1652 * @address: starting address of pages to zap
1653 * @size: number of bytes to zap
1655 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657 * The entire address range must be fully contained within the vma.
1659 * Returns 0 if successful.
1661 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1664 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1665 !(vma
->vm_flags
& VM_PFNMAP
))
1667 zap_page_range_single(vma
, address
, size
, NULL
);
1670 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1672 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1680 pgd
= pgd_offset(mm
, addr
);
1681 p4d
= p4d_alloc(mm
, pgd
, addr
);
1684 pud
= pud_alloc(mm
, p4d
, addr
);
1687 pmd
= pmd_alloc(mm
, pud
, addr
);
1691 VM_BUG_ON(pmd_trans_huge(*pmd
));
1692 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1696 * This is the old fallback for page remapping.
1698 * For historical reasons, it only allows reserved pages. Only
1699 * old drivers should use this, and they needed to mark their
1700 * pages reserved for the old functions anyway.
1702 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1703 struct page
*page
, pgprot_t prot
)
1705 struct mm_struct
*mm
= vma
->vm_mm
;
1714 flush_dcache_page(page
);
1715 pte
= get_locked_pte(mm
, addr
, &ptl
);
1719 if (!pte_none(*pte
))
1722 /* Ok, finally just insert the thing.. */
1724 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1725 page_add_file_rmap(page
, false);
1726 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1729 pte_unmap_unlock(pte
, ptl
);
1732 pte_unmap_unlock(pte
, ptl
);
1738 * vm_insert_page - insert single page into user vma
1739 * @vma: user vma to map to
1740 * @addr: target user address of this page
1741 * @page: source kernel page
1743 * This allows drivers to insert individual pages they've allocated
1746 * The page has to be a nice clean _individual_ kernel allocation.
1747 * If you allocate a compound page, you need to have marked it as
1748 * such (__GFP_COMP), or manually just split the page up yourself
1749 * (see split_page()).
1751 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1752 * took an arbitrary page protection parameter. This doesn't allow
1753 * that. Your vma protection will have to be set up correctly, which
1754 * means that if you want a shared writable mapping, you'd better
1755 * ask for a shared writable mapping!
1757 * The page does not need to be reserved.
1759 * Usually this function is called from f_op->mmap() handler
1760 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1761 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1762 * function from other places, for example from page-fault handler.
1764 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1767 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1769 if (!page_count(page
))
1771 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1772 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1773 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1774 vma
->vm_flags
|= VM_MIXEDMAP
;
1776 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1778 EXPORT_SYMBOL(vm_insert_page
);
1780 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1781 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1783 struct mm_struct
*mm
= vma
->vm_mm
;
1789 pte
= get_locked_pte(mm
, addr
, &ptl
);
1793 if (!pte_none(*pte
)) {
1796 * For read faults on private mappings the PFN passed
1797 * in may not match the PFN we have mapped if the
1798 * mapped PFN is a writeable COW page. In the mkwrite
1799 * case we are creating a writable PTE for a shared
1800 * mapping and we expect the PFNs to match.
1802 if (WARN_ON_ONCE(pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)))
1810 /* Ok, finally just insert the thing.. */
1811 if (pfn_t_devmap(pfn
))
1812 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1814 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1818 entry
= pte_mkyoung(entry
);
1819 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1822 set_pte_at(mm
, addr
, pte
, entry
);
1823 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1827 pte_unmap_unlock(pte
, ptl
);
1833 * vm_insert_pfn - insert single pfn into user vma
1834 * @vma: user vma to map to
1835 * @addr: target user address of this page
1836 * @pfn: source kernel pfn
1838 * Similar to vm_insert_page, this allows drivers to insert individual pages
1839 * they've allocated into a user vma. Same comments apply.
1841 * This function should only be called from a vm_ops->fault handler, and
1842 * in that case the handler should return NULL.
1844 * vma cannot be a COW mapping.
1846 * As this is called only for pages that do not currently exist, we
1847 * do not need to flush old virtual caches or the TLB.
1849 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1852 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1854 EXPORT_SYMBOL(vm_insert_pfn
);
1857 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1858 * @vma: user vma to map to
1859 * @addr: target user address of this page
1860 * @pfn: source kernel pfn
1861 * @pgprot: pgprot flags for the inserted page
1863 * This is exactly like vm_insert_pfn, except that it allows drivers to
1864 * to override pgprot on a per-page basis.
1866 * This only makes sense for IO mappings, and it makes no sense for
1867 * cow mappings. In general, using multiple vmas is preferable;
1868 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1871 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1872 unsigned long pfn
, pgprot_t pgprot
)
1876 * Technically, architectures with pte_special can avoid all these
1877 * restrictions (same for remap_pfn_range). However we would like
1878 * consistency in testing and feature parity among all, so we should
1879 * try to keep these invariants in place for everybody.
1881 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1882 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1883 (VM_PFNMAP
|VM_MIXEDMAP
));
1884 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1885 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1887 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1890 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1892 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1897 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1899 static int __vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1900 pfn_t pfn
, bool mkwrite
)
1902 pgprot_t pgprot
= vma
->vm_page_prot
;
1904 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
1906 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1909 track_pfn_insert(vma
, &pgprot
, pfn
);
1912 * If we don't have pte special, then we have to use the pfn_valid()
1913 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1914 * refcount the page if pfn_valid is true (hence insert_page rather
1915 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1916 * without pte special, it would there be refcounted as a normal page.
1918 if (!HAVE_PTE_SPECIAL
&& !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1922 * At this point we are committed to insert_page()
1923 * regardless of whether the caller specified flags that
1924 * result in pfn_t_has_page() == false.
1926 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1927 return insert_page(vma
, addr
, page
, pgprot
);
1929 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1932 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1935 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1938 EXPORT_SYMBOL(vm_insert_mixed
);
1940 int vm_insert_mixed_mkwrite(struct vm_area_struct
*vma
, unsigned long addr
,
1943 return __vm_insert_mixed(vma
, addr
, pfn
, true);
1945 EXPORT_SYMBOL(vm_insert_mixed_mkwrite
);
1948 * maps a range of physical memory into the requested pages. the old
1949 * mappings are removed. any references to nonexistent pages results
1950 * in null mappings (currently treated as "copy-on-access")
1952 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1953 unsigned long addr
, unsigned long end
,
1954 unsigned long pfn
, pgprot_t prot
)
1959 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1962 arch_enter_lazy_mmu_mode();
1964 BUG_ON(!pte_none(*pte
));
1965 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1967 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1968 arch_leave_lazy_mmu_mode();
1969 pte_unmap_unlock(pte
- 1, ptl
);
1973 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
1974 unsigned long addr
, unsigned long end
,
1975 unsigned long pfn
, pgprot_t prot
)
1980 pfn
-= addr
>> PAGE_SHIFT
;
1981 pmd
= pmd_alloc(mm
, pud
, addr
);
1984 VM_BUG_ON(pmd_trans_huge(*pmd
));
1986 next
= pmd_addr_end(addr
, end
);
1987 if (remap_pte_range(mm
, pmd
, addr
, next
,
1988 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
1990 } while (pmd
++, addr
= next
, addr
!= end
);
1994 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
1995 unsigned long addr
, unsigned long end
,
1996 unsigned long pfn
, pgprot_t prot
)
2001 pfn
-= addr
>> PAGE_SHIFT
;
2002 pud
= pud_alloc(mm
, p4d
, addr
);
2006 next
= pud_addr_end(addr
, end
);
2007 if (remap_pmd_range(mm
, pud
, addr
, next
,
2008 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2010 } while (pud
++, addr
= next
, addr
!= end
);
2014 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2015 unsigned long addr
, unsigned long end
,
2016 unsigned long pfn
, pgprot_t prot
)
2021 pfn
-= addr
>> PAGE_SHIFT
;
2022 p4d
= p4d_alloc(mm
, pgd
, addr
);
2026 next
= p4d_addr_end(addr
, end
);
2027 if (remap_pud_range(mm
, p4d
, addr
, next
,
2028 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2030 } while (p4d
++, addr
= next
, addr
!= end
);
2035 * remap_pfn_range - remap kernel memory to userspace
2036 * @vma: user vma to map to
2037 * @addr: target user address to start at
2038 * @pfn: physical address of kernel memory
2039 * @size: size of map area
2040 * @prot: page protection flags for this mapping
2042 * Note: this is only safe if the mm semaphore is held when called.
2044 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2045 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2049 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2050 struct mm_struct
*mm
= vma
->vm_mm
;
2051 unsigned long remap_pfn
= pfn
;
2055 * Physically remapped pages are special. Tell the
2056 * rest of the world about it:
2057 * VM_IO tells people not to look at these pages
2058 * (accesses can have side effects).
2059 * VM_PFNMAP tells the core MM that the base pages are just
2060 * raw PFN mappings, and do not have a "struct page" associated
2063 * Disable vma merging and expanding with mremap().
2065 * Omit vma from core dump, even when VM_IO turned off.
2067 * There's a horrible special case to handle copy-on-write
2068 * behaviour that some programs depend on. We mark the "original"
2069 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2070 * See vm_normal_page() for details.
2072 if (is_cow_mapping(vma
->vm_flags
)) {
2073 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2075 vma
->vm_pgoff
= pfn
;
2078 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2082 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2084 BUG_ON(addr
>= end
);
2085 pfn
-= addr
>> PAGE_SHIFT
;
2086 pgd
= pgd_offset(mm
, addr
);
2087 flush_cache_range(vma
, addr
, end
);
2089 next
= pgd_addr_end(addr
, end
);
2090 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2091 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2094 } while (pgd
++, addr
= next
, addr
!= end
);
2097 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2101 EXPORT_SYMBOL(remap_pfn_range
);
2104 * vm_iomap_memory - remap memory to userspace
2105 * @vma: user vma to map to
2106 * @start: start of area
2107 * @len: size of area
2109 * This is a simplified io_remap_pfn_range() for common driver use. The
2110 * driver just needs to give us the physical memory range to be mapped,
2111 * we'll figure out the rest from the vma information.
2113 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2114 * whatever write-combining details or similar.
2116 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2118 unsigned long vm_len
, pfn
, pages
;
2120 /* Check that the physical memory area passed in looks valid */
2121 if (start
+ len
< start
)
2124 * You *really* shouldn't map things that aren't page-aligned,
2125 * but we've historically allowed it because IO memory might
2126 * just have smaller alignment.
2128 len
+= start
& ~PAGE_MASK
;
2129 pfn
= start
>> PAGE_SHIFT
;
2130 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2131 if (pfn
+ pages
< pfn
)
2134 /* We start the mapping 'vm_pgoff' pages into the area */
2135 if (vma
->vm_pgoff
> pages
)
2137 pfn
+= vma
->vm_pgoff
;
2138 pages
-= vma
->vm_pgoff
;
2140 /* Can we fit all of the mapping? */
2141 vm_len
= vma
->vm_end
- vma
->vm_start
;
2142 if (vm_len
>> PAGE_SHIFT
> pages
)
2145 /* Ok, let it rip */
2146 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2148 EXPORT_SYMBOL(vm_iomap_memory
);
2150 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2151 unsigned long addr
, unsigned long end
,
2152 pte_fn_t fn
, void *data
)
2157 spinlock_t
*uninitialized_var(ptl
);
2159 pte
= (mm
== &init_mm
) ?
2160 pte_alloc_kernel(pmd
, addr
) :
2161 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2165 BUG_ON(pmd_huge(*pmd
));
2167 arch_enter_lazy_mmu_mode();
2169 token
= pmd_pgtable(*pmd
);
2172 err
= fn(pte
++, token
, addr
, data
);
2175 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2177 arch_leave_lazy_mmu_mode();
2180 pte_unmap_unlock(pte
-1, ptl
);
2184 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2185 unsigned long addr
, unsigned long end
,
2186 pte_fn_t fn
, void *data
)
2192 BUG_ON(pud_huge(*pud
));
2194 pmd
= pmd_alloc(mm
, pud
, addr
);
2198 next
= pmd_addr_end(addr
, end
);
2199 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2202 } while (pmd
++, addr
= next
, addr
!= end
);
2206 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2207 unsigned long addr
, unsigned long end
,
2208 pte_fn_t fn
, void *data
)
2214 pud
= pud_alloc(mm
, p4d
, addr
);
2218 next
= pud_addr_end(addr
, end
);
2219 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2222 } while (pud
++, addr
= next
, addr
!= end
);
2226 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2227 unsigned long addr
, unsigned long end
,
2228 pte_fn_t fn
, void *data
)
2234 p4d
= p4d_alloc(mm
, pgd
, addr
);
2238 next
= p4d_addr_end(addr
, end
);
2239 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2242 } while (p4d
++, addr
= next
, addr
!= end
);
2247 * Scan a region of virtual memory, filling in page tables as necessary
2248 * and calling a provided function on each leaf page table.
2250 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2251 unsigned long size
, pte_fn_t fn
, void *data
)
2255 unsigned long end
= addr
+ size
;
2258 if (WARN_ON(addr
>= end
))
2261 pgd
= pgd_offset(mm
, addr
);
2263 next
= pgd_addr_end(addr
, end
);
2264 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2267 } while (pgd
++, addr
= next
, addr
!= end
);
2271 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2274 * handle_pte_fault chooses page fault handler according to an entry which was
2275 * read non-atomically. Before making any commitment, on those architectures
2276 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2277 * parts, do_swap_page must check under lock before unmapping the pte and
2278 * proceeding (but do_wp_page is only called after already making such a check;
2279 * and do_anonymous_page can safely check later on).
2281 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2282 pte_t
*page_table
, pte_t orig_pte
)
2285 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2286 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2287 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2289 same
= pte_same(*page_table
, orig_pte
);
2293 pte_unmap(page_table
);
2297 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2299 debug_dma_assert_idle(src
);
2302 * If the source page was a PFN mapping, we don't have
2303 * a "struct page" for it. We do a best-effort copy by
2304 * just copying from the original user address. If that
2305 * fails, we just zero-fill it. Live with it.
2307 if (unlikely(!src
)) {
2308 void *kaddr
= kmap_atomic(dst
);
2309 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2312 * This really shouldn't fail, because the page is there
2313 * in the page tables. But it might just be unreadable,
2314 * in which case we just give up and fill the result with
2317 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2319 kunmap_atomic(kaddr
);
2320 flush_dcache_page(dst
);
2322 copy_user_highpage(dst
, src
, va
, vma
);
2325 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2327 struct file
*vm_file
= vma
->vm_file
;
2330 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2333 * Special mappings (e.g. VDSO) do not have any file so fake
2334 * a default GFP_KERNEL for them.
2340 * Notify the address space that the page is about to become writable so that
2341 * it can prohibit this or wait for the page to get into an appropriate state.
2343 * We do this without the lock held, so that it can sleep if it needs to.
2345 static int do_page_mkwrite(struct vm_fault
*vmf
)
2348 struct page
*page
= vmf
->page
;
2349 unsigned int old_flags
= vmf
->flags
;
2351 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2353 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2354 /* Restore original flags so that caller is not surprised */
2355 vmf
->flags
= old_flags
;
2356 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2358 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2360 if (!page
->mapping
) {
2362 return 0; /* retry */
2364 ret
|= VM_FAULT_LOCKED
;
2366 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2371 * Handle dirtying of a page in shared file mapping on a write fault.
2373 * The function expects the page to be locked and unlocks it.
2375 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2378 struct address_space
*mapping
;
2380 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2382 dirtied
= set_page_dirty(page
);
2383 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2385 * Take a local copy of the address_space - page.mapping may be zeroed
2386 * by truncate after unlock_page(). The address_space itself remains
2387 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2388 * release semantics to prevent the compiler from undoing this copying.
2390 mapping
= page_rmapping(page
);
2393 if ((dirtied
|| page_mkwrite
) && mapping
) {
2395 * Some device drivers do not set page.mapping
2396 * but still dirty their pages
2398 balance_dirty_pages_ratelimited(mapping
);
2402 file_update_time(vma
->vm_file
);
2406 * Handle write page faults for pages that can be reused in the current vma
2408 * This can happen either due to the mapping being with the VM_SHARED flag,
2409 * or due to us being the last reference standing to the page. In either
2410 * case, all we need to do here is to mark the page as writable and update
2411 * any related book-keeping.
2413 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2414 __releases(vmf
->ptl
)
2416 struct vm_area_struct
*vma
= vmf
->vma
;
2417 struct page
*page
= vmf
->page
;
2420 * Clear the pages cpupid information as the existing
2421 * information potentially belongs to a now completely
2422 * unrelated process.
2425 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2427 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2428 entry
= pte_mkyoung(vmf
->orig_pte
);
2429 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2430 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2431 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2432 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2436 * Handle the case of a page which we actually need to copy to a new page.
2438 * Called with mmap_sem locked and the old page referenced, but
2439 * without the ptl held.
2441 * High level logic flow:
2443 * - Allocate a page, copy the content of the old page to the new one.
2444 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2445 * - Take the PTL. If the pte changed, bail out and release the allocated page
2446 * - If the pte is still the way we remember it, update the page table and all
2447 * relevant references. This includes dropping the reference the page-table
2448 * held to the old page, as well as updating the rmap.
2449 * - In any case, unlock the PTL and drop the reference we took to the old page.
2451 static int wp_page_copy(struct vm_fault
*vmf
)
2453 struct vm_area_struct
*vma
= vmf
->vma
;
2454 struct mm_struct
*mm
= vma
->vm_mm
;
2455 struct page
*old_page
= vmf
->page
;
2456 struct page
*new_page
= NULL
;
2458 int page_copied
= 0;
2459 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2460 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2461 struct mem_cgroup
*memcg
;
2463 if (unlikely(anon_vma_prepare(vma
)))
2466 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2467 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2472 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2476 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2479 if (mem_cgroup_try_charge(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2482 __SetPageUptodate(new_page
);
2484 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2487 * Re-check the pte - we dropped the lock
2489 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2490 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2492 if (!PageAnon(old_page
)) {
2493 dec_mm_counter_fast(mm
,
2494 mm_counter_file(old_page
));
2495 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2498 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2500 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2501 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2502 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2504 * Clear the pte entry and flush it first, before updating the
2505 * pte with the new entry. This will avoid a race condition
2506 * seen in the presence of one thread doing SMC and another
2509 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2510 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2511 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2512 lru_cache_add_active_or_unevictable(new_page
, vma
);
2514 * We call the notify macro here because, when using secondary
2515 * mmu page tables (such as kvm shadow page tables), we want the
2516 * new page to be mapped directly into the secondary page table.
2518 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2519 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2522 * Only after switching the pte to the new page may
2523 * we remove the mapcount here. Otherwise another
2524 * process may come and find the rmap count decremented
2525 * before the pte is switched to the new page, and
2526 * "reuse" the old page writing into it while our pte
2527 * here still points into it and can be read by other
2530 * The critical issue is to order this
2531 * page_remove_rmap with the ptp_clear_flush above.
2532 * Those stores are ordered by (if nothing else,)
2533 * the barrier present in the atomic_add_negative
2534 * in page_remove_rmap.
2536 * Then the TLB flush in ptep_clear_flush ensures that
2537 * no process can access the old page before the
2538 * decremented mapcount is visible. And the old page
2539 * cannot be reused until after the decremented
2540 * mapcount is visible. So transitively, TLBs to
2541 * old page will be flushed before it can be reused.
2543 page_remove_rmap(old_page
, false);
2546 /* Free the old page.. */
2547 new_page
= old_page
;
2550 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2556 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2557 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
2560 * Don't let another task, with possibly unlocked vma,
2561 * keep the mlocked page.
2563 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2564 lock_page(old_page
); /* LRU manipulation */
2565 if (PageMlocked(old_page
))
2566 munlock_vma_page(old_page
);
2567 unlock_page(old_page
);
2571 return page_copied
? VM_FAULT_WRITE
: 0;
2577 return VM_FAULT_OOM
;
2581 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2582 * writeable once the page is prepared
2584 * @vmf: structure describing the fault
2586 * This function handles all that is needed to finish a write page fault in a
2587 * shared mapping due to PTE being read-only once the mapped page is prepared.
2588 * It handles locking of PTE and modifying it. The function returns
2589 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2592 * The function expects the page to be locked or other protection against
2593 * concurrent faults / writeback (such as DAX radix tree locks).
2595 int finish_mkwrite_fault(struct vm_fault
*vmf
)
2597 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2598 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2601 * We might have raced with another page fault while we released the
2602 * pte_offset_map_lock.
2604 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2605 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2606 return VM_FAULT_NOPAGE
;
2613 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2616 static int wp_pfn_shared(struct vm_fault
*vmf
)
2618 struct vm_area_struct
*vma
= vmf
->vma
;
2620 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2623 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2624 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2625 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2626 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2628 return finish_mkwrite_fault(vmf
);
2631 return VM_FAULT_WRITE
;
2634 static int wp_page_shared(struct vm_fault
*vmf
)
2635 __releases(vmf
->ptl
)
2637 struct vm_area_struct
*vma
= vmf
->vma
;
2639 get_page(vmf
->page
);
2641 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2644 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2645 tmp
= do_page_mkwrite(vmf
);
2646 if (unlikely(!tmp
|| (tmp
&
2647 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2648 put_page(vmf
->page
);
2651 tmp
= finish_mkwrite_fault(vmf
);
2652 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2653 unlock_page(vmf
->page
);
2654 put_page(vmf
->page
);
2659 lock_page(vmf
->page
);
2661 fault_dirty_shared_page(vma
, vmf
->page
);
2662 put_page(vmf
->page
);
2664 return VM_FAULT_WRITE
;
2668 * This routine handles present pages, when users try to write
2669 * to a shared page. It is done by copying the page to a new address
2670 * and decrementing the shared-page counter for the old page.
2672 * Note that this routine assumes that the protection checks have been
2673 * done by the caller (the low-level page fault routine in most cases).
2674 * Thus we can safely just mark it writable once we've done any necessary
2677 * We also mark the page dirty at this point even though the page will
2678 * change only once the write actually happens. This avoids a few races,
2679 * and potentially makes it more efficient.
2681 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2682 * but allow concurrent faults), with pte both mapped and locked.
2683 * We return with mmap_sem still held, but pte unmapped and unlocked.
2685 static int do_wp_page(struct vm_fault
*vmf
)
2686 __releases(vmf
->ptl
)
2688 struct vm_area_struct
*vma
= vmf
->vma
;
2690 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2693 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2696 * We should not cow pages in a shared writeable mapping.
2697 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2699 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2700 (VM_WRITE
|VM_SHARED
))
2701 return wp_pfn_shared(vmf
);
2703 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2704 return wp_page_copy(vmf
);
2708 * Take out anonymous pages first, anonymous shared vmas are
2709 * not dirty accountable.
2711 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2712 int total_map_swapcount
;
2713 if (!trylock_page(vmf
->page
)) {
2714 get_page(vmf
->page
);
2715 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2716 lock_page(vmf
->page
);
2717 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2718 vmf
->address
, &vmf
->ptl
);
2719 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2720 unlock_page(vmf
->page
);
2721 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2722 put_page(vmf
->page
);
2725 put_page(vmf
->page
);
2727 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2728 if (total_map_swapcount
== 1) {
2730 * The page is all ours. Move it to
2731 * our anon_vma so the rmap code will
2732 * not search our parent or siblings.
2733 * Protected against the rmap code by
2736 page_move_anon_rmap(vmf
->page
, vma
);
2738 unlock_page(vmf
->page
);
2740 return VM_FAULT_WRITE
;
2742 unlock_page(vmf
->page
);
2743 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2744 (VM_WRITE
|VM_SHARED
))) {
2745 return wp_page_shared(vmf
);
2749 * Ok, we need to copy. Oh, well..
2751 get_page(vmf
->page
);
2753 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2754 return wp_page_copy(vmf
);
2757 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2758 unsigned long start_addr
, unsigned long end_addr
,
2759 struct zap_details
*details
)
2761 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2764 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2765 struct zap_details
*details
)
2767 struct vm_area_struct
*vma
;
2768 pgoff_t vba
, vea
, zba
, zea
;
2770 vma_interval_tree_foreach(vma
, root
,
2771 details
->first_index
, details
->last_index
) {
2773 vba
= vma
->vm_pgoff
;
2774 vea
= vba
+ vma_pages(vma
) - 1;
2775 zba
= details
->first_index
;
2778 zea
= details
->last_index
;
2782 unmap_mapping_range_vma(vma
,
2783 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2784 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2790 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2791 * address_space corresponding to the specified page range in the underlying
2794 * @mapping: the address space containing mmaps to be unmapped.
2795 * @holebegin: byte in first page to unmap, relative to the start of
2796 * the underlying file. This will be rounded down to a PAGE_SIZE
2797 * boundary. Note that this is different from truncate_pagecache(), which
2798 * must keep the partial page. In contrast, we must get rid of
2800 * @holelen: size of prospective hole in bytes. This will be rounded
2801 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2803 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2804 * but 0 when invalidating pagecache, don't throw away private data.
2806 void unmap_mapping_range(struct address_space
*mapping
,
2807 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2809 struct zap_details details
= { };
2810 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2811 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2813 /* Check for overflow. */
2814 if (sizeof(holelen
) > sizeof(hlen
)) {
2816 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2817 if (holeend
& ~(long long)ULONG_MAX
)
2818 hlen
= ULONG_MAX
- hba
+ 1;
2821 details
.check_mapping
= even_cows
? NULL
: mapping
;
2822 details
.first_index
= hba
;
2823 details
.last_index
= hba
+ hlen
- 1;
2824 if (details
.last_index
< details
.first_index
)
2825 details
.last_index
= ULONG_MAX
;
2827 i_mmap_lock_write(mapping
);
2828 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2829 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2830 i_mmap_unlock_write(mapping
);
2832 EXPORT_SYMBOL(unmap_mapping_range
);
2835 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2836 * but allow concurrent faults), and pte mapped but not yet locked.
2837 * We return with pte unmapped and unlocked.
2839 * We return with the mmap_sem locked or unlocked in the same cases
2840 * as does filemap_fault().
2842 int do_swap_page(struct vm_fault
*vmf
)
2844 struct vm_area_struct
*vma
= vmf
->vma
;
2845 struct page
*page
= NULL
, *swapcache
;
2846 struct mem_cgroup
*memcg
;
2847 struct vma_swap_readahead swap_ra
;
2853 bool vma_readahead
= swap_use_vma_readahead();
2856 page
= swap_readahead_detect(vmf
, &swap_ra
);
2857 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
)) {
2863 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2864 if (unlikely(non_swap_entry(entry
))) {
2865 if (is_migration_entry(entry
)) {
2866 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2868 } else if (is_device_private_entry(entry
)) {
2870 * For un-addressable device memory we call the pgmap
2871 * fault handler callback. The callback must migrate
2872 * the page back to some CPU accessible page.
2874 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
2875 vmf
->flags
, vmf
->pmd
);
2876 } else if (is_hwpoison_entry(entry
)) {
2877 ret
= VM_FAULT_HWPOISON
;
2879 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2880 ret
= VM_FAULT_SIGBUS
;
2884 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2886 page
= lookup_swap_cache(entry
, vma_readahead
? vma
: NULL
,
2890 page
= do_swap_page_readahead(entry
,
2891 GFP_HIGHUSER_MOVABLE
, vmf
, &swap_ra
);
2893 page
= swapin_readahead(entry
,
2894 GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
2897 * Back out if somebody else faulted in this pte
2898 * while we released the pte lock.
2900 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2901 vmf
->address
, &vmf
->ptl
);
2902 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2904 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2908 /* Had to read the page from swap area: Major fault */
2909 ret
= VM_FAULT_MAJOR
;
2910 count_vm_event(PGMAJFAULT
);
2911 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2912 } else if (PageHWPoison(page
)) {
2914 * hwpoisoned dirty swapcache pages are kept for killing
2915 * owner processes (which may be unknown at hwpoison time)
2917 ret
= VM_FAULT_HWPOISON
;
2918 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2924 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2926 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2928 ret
|= VM_FAULT_RETRY
;
2933 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2934 * release the swapcache from under us. The page pin, and pte_same
2935 * test below, are not enough to exclude that. Even if it is still
2936 * swapcache, we need to check that the page's swap has not changed.
2938 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2941 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
2942 if (unlikely(!page
)) {
2948 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
,
2955 * Back out if somebody else already faulted in this pte.
2957 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2959 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2962 if (unlikely(!PageUptodate(page
))) {
2963 ret
= VM_FAULT_SIGBUS
;
2968 * The page isn't present yet, go ahead with the fault.
2970 * Be careful about the sequence of operations here.
2971 * To get its accounting right, reuse_swap_page() must be called
2972 * while the page is counted on swap but not yet in mapcount i.e.
2973 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2974 * must be called after the swap_free(), or it will never succeed.
2977 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
2978 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
2979 pte
= mk_pte(page
, vma
->vm_page_prot
);
2980 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
2981 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
2982 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
2983 ret
|= VM_FAULT_WRITE
;
2984 exclusive
= RMAP_EXCLUSIVE
;
2986 flush_icache_page(vma
, page
);
2987 if (pte_swp_soft_dirty(vmf
->orig_pte
))
2988 pte
= pte_mksoft_dirty(pte
);
2989 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
2990 vmf
->orig_pte
= pte
;
2991 if (page
== swapcache
) {
2992 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
2993 mem_cgroup_commit_charge(page
, memcg
, true, false);
2994 activate_page(page
);
2995 } else { /* ksm created a completely new copy */
2996 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
2997 mem_cgroup_commit_charge(page
, memcg
, false, false);
2998 lru_cache_add_active_or_unevictable(page
, vma
);
3002 if (mem_cgroup_swap_full(page
) ||
3003 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3004 try_to_free_swap(page
);
3006 if (page
!= swapcache
) {
3008 * Hold the lock to avoid the swap entry to be reused
3009 * until we take the PT lock for the pte_same() check
3010 * (to avoid false positives from pte_same). For
3011 * further safety release the lock after the swap_free
3012 * so that the swap count won't change under a
3013 * parallel locked swapcache.
3015 unlock_page(swapcache
);
3016 put_page(swapcache
);
3019 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3020 ret
|= do_wp_page(vmf
);
3021 if (ret
& VM_FAULT_ERROR
)
3022 ret
&= VM_FAULT_ERROR
;
3026 /* No need to invalidate - it was non-present before */
3027 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3029 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3033 mem_cgroup_cancel_charge(page
, memcg
, false);
3034 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3039 if (page
!= swapcache
) {
3040 unlock_page(swapcache
);
3041 put_page(swapcache
);
3047 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3048 * but allow concurrent faults), and pte mapped but not yet locked.
3049 * We return with mmap_sem still held, but pte unmapped and unlocked.
3051 static int do_anonymous_page(struct vm_fault
*vmf
)
3053 struct vm_area_struct
*vma
= vmf
->vma
;
3054 struct mem_cgroup
*memcg
;
3059 /* File mapping without ->vm_ops ? */
3060 if (vma
->vm_flags
& VM_SHARED
)
3061 return VM_FAULT_SIGBUS
;
3064 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3065 * pte_offset_map() on pmds where a huge pmd might be created
3066 * from a different thread.
3068 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3069 * parallel threads are excluded by other means.
3071 * Here we only have down_read(mmap_sem).
3073 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
3074 return VM_FAULT_OOM
;
3076 /* See the comment in pte_alloc_one_map() */
3077 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3080 /* Use the zero-page for reads */
3081 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3082 !mm_forbids_zeropage(vma
->vm_mm
)) {
3083 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3084 vma
->vm_page_prot
));
3085 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3086 vmf
->address
, &vmf
->ptl
);
3087 if (!pte_none(*vmf
->pte
))
3089 ret
= check_stable_address_space(vma
->vm_mm
);
3092 /* Deliver the page fault to userland, check inside PT lock */
3093 if (userfaultfd_missing(vma
)) {
3094 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3095 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3100 /* Allocate our own private page. */
3101 if (unlikely(anon_vma_prepare(vma
)))
3103 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3107 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
, false))
3111 * The memory barrier inside __SetPageUptodate makes sure that
3112 * preceeding stores to the page contents become visible before
3113 * the set_pte_at() write.
3115 __SetPageUptodate(page
);
3117 entry
= mk_pte(page
, vma
->vm_page_prot
);
3118 if (vma
->vm_flags
& VM_WRITE
)
3119 entry
= pte_mkwrite(pte_mkdirty(entry
));
3121 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3123 if (!pte_none(*vmf
->pte
))
3126 ret
= check_stable_address_space(vma
->vm_mm
);
3130 /* Deliver the page fault to userland, check inside PT lock */
3131 if (userfaultfd_missing(vma
)) {
3132 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3133 mem_cgroup_cancel_charge(page
, memcg
, false);
3135 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3138 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3139 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3140 mem_cgroup_commit_charge(page
, memcg
, false, false);
3141 lru_cache_add_active_or_unevictable(page
, vma
);
3143 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3145 /* No need to invalidate - it was non-present before */
3146 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3148 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3151 mem_cgroup_cancel_charge(page
, memcg
, false);
3157 return VM_FAULT_OOM
;
3161 * The mmap_sem must have been held on entry, and may have been
3162 * released depending on flags and vma->vm_ops->fault() return value.
3163 * See filemap_fault() and __lock_page_retry().
3165 static int __do_fault(struct vm_fault
*vmf
)
3167 struct vm_area_struct
*vma
= vmf
->vma
;
3170 ret
= vma
->vm_ops
->fault(vmf
);
3171 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3172 VM_FAULT_DONE_COW
)))
3175 if (unlikely(PageHWPoison(vmf
->page
))) {
3176 if (ret
& VM_FAULT_LOCKED
)
3177 unlock_page(vmf
->page
);
3178 put_page(vmf
->page
);
3180 return VM_FAULT_HWPOISON
;
3183 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3184 lock_page(vmf
->page
);
3186 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3192 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3193 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3194 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3195 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3197 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3199 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3202 static int pte_alloc_one_map(struct vm_fault
*vmf
)
3204 struct vm_area_struct
*vma
= vmf
->vma
;
3206 if (!pmd_none(*vmf
->pmd
))
3208 if (vmf
->prealloc_pte
) {
3209 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3210 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3211 spin_unlock(vmf
->ptl
);
3215 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
3216 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3217 spin_unlock(vmf
->ptl
);
3218 vmf
->prealloc_pte
= NULL
;
3219 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3220 return VM_FAULT_OOM
;
3224 * If a huge pmd materialized under us just retry later. Use
3225 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3226 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3227 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3228 * running immediately after a huge pmd fault in a different thread of
3229 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3230 * All we have to ensure is that it is a regular pmd that we can walk
3231 * with pte_offset_map() and we can do that through an atomic read in
3232 * C, which is what pmd_trans_unstable() provides.
3234 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3235 return VM_FAULT_NOPAGE
;
3238 * At this point we know that our vmf->pmd points to a page of ptes
3239 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3240 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3241 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3242 * be valid and we will re-check to make sure the vmf->pte isn't
3243 * pte_none() under vmf->ptl protection when we return to
3246 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3251 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3253 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3254 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3255 unsigned long haddr
)
3257 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3258 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3260 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3265 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3267 struct vm_area_struct
*vma
= vmf
->vma
;
3269 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3271 * We are going to consume the prealloc table,
3272 * count that as nr_ptes.
3274 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
3275 vmf
->prealloc_pte
= NULL
;
3278 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3280 struct vm_area_struct
*vma
= vmf
->vma
;
3281 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3282 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3286 if (!transhuge_vma_suitable(vma
, haddr
))
3287 return VM_FAULT_FALLBACK
;
3289 ret
= VM_FAULT_FALLBACK
;
3290 page
= compound_head(page
);
3293 * Archs like ppc64 need additonal space to store information
3294 * related to pte entry. Use the preallocated table for that.
3296 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3297 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3298 if (!vmf
->prealloc_pte
)
3299 return VM_FAULT_OOM
;
3300 smp_wmb(); /* See comment in __pte_alloc() */
3303 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3304 if (unlikely(!pmd_none(*vmf
->pmd
)))
3307 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3308 flush_icache_page(vma
, page
+ i
);
3310 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3312 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3314 add_mm_counter(vma
->vm_mm
, MM_FILEPAGES
, HPAGE_PMD_NR
);
3315 page_add_file_rmap(page
, true);
3317 * deposit and withdraw with pmd lock held
3319 if (arch_needs_pgtable_deposit())
3320 deposit_prealloc_pte(vmf
);
3322 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3324 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3326 /* fault is handled */
3328 count_vm_event(THP_FILE_MAPPED
);
3330 spin_unlock(vmf
->ptl
);
3334 static int do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3342 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3343 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3345 * @vmf: fault environment
3346 * @memcg: memcg to charge page (only for private mappings)
3347 * @page: page to map
3349 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3352 * Target users are page handler itself and implementations of
3353 * vm_ops->map_pages.
3355 int alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3358 struct vm_area_struct
*vma
= vmf
->vma
;
3359 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3363 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3364 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3366 VM_BUG_ON_PAGE(memcg
, page
);
3368 ret
= do_set_pmd(vmf
, page
);
3369 if (ret
!= VM_FAULT_FALLBACK
)
3374 ret
= pte_alloc_one_map(vmf
);
3379 /* Re-check under ptl */
3380 if (unlikely(!pte_none(*vmf
->pte
)))
3381 return VM_FAULT_NOPAGE
;
3383 flush_icache_page(vma
, page
);
3384 entry
= mk_pte(page
, vma
->vm_page_prot
);
3386 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3387 /* copy-on-write page */
3388 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3389 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3390 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3391 mem_cgroup_commit_charge(page
, memcg
, false, false);
3392 lru_cache_add_active_or_unevictable(page
, vma
);
3394 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3395 page_add_file_rmap(page
, false);
3397 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3399 /* no need to invalidate: a not-present page won't be cached */
3400 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3407 * finish_fault - finish page fault once we have prepared the page to fault
3409 * @vmf: structure describing the fault
3411 * This function handles all that is needed to finish a page fault once the
3412 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3413 * given page, adds reverse page mapping, handles memcg charges and LRU
3414 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3417 * The function expects the page to be locked and on success it consumes a
3418 * reference of a page being mapped (for the PTE which maps it).
3420 int finish_fault(struct vm_fault
*vmf
)
3425 /* Did we COW the page? */
3426 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3427 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3428 page
= vmf
->cow_page
;
3433 * check even for read faults because we might have lost our CoWed
3436 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3437 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3439 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3441 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3445 static unsigned long fault_around_bytes __read_mostly
=
3446 rounddown_pow_of_two(65536);
3448 #ifdef CONFIG_DEBUG_FS
3449 static int fault_around_bytes_get(void *data
, u64
*val
)
3451 *val
= fault_around_bytes
;
3456 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3457 * rounded down to nearest page order. It's what do_fault_around() expects to
3460 static int fault_around_bytes_set(void *data
, u64 val
)
3462 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3464 if (val
> PAGE_SIZE
)
3465 fault_around_bytes
= rounddown_pow_of_two(val
);
3467 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3470 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3471 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3473 static int __init
fault_around_debugfs(void)
3477 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3478 &fault_around_bytes_fops
);
3480 pr_warn("Failed to create fault_around_bytes in debugfs");
3483 late_initcall(fault_around_debugfs
);
3487 * do_fault_around() tries to map few pages around the fault address. The hope
3488 * is that the pages will be needed soon and this will lower the number of
3491 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3492 * not ready to be mapped: not up-to-date, locked, etc.
3494 * This function is called with the page table lock taken. In the split ptlock
3495 * case the page table lock only protects only those entries which belong to
3496 * the page table corresponding to the fault address.
3498 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3501 * fault_around_pages() defines how many pages we'll try to map.
3502 * do_fault_around() expects it to return a power of two less than or equal to
3505 * The virtual address of the area that we map is naturally aligned to the
3506 * fault_around_pages() value (and therefore to page order). This way it's
3507 * easier to guarantee that we don't cross page table boundaries.
3509 static int do_fault_around(struct vm_fault
*vmf
)
3511 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3512 pgoff_t start_pgoff
= vmf
->pgoff
;
3516 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3517 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3519 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3520 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3524 * end_pgoff is either end of page table or end of vma
3525 * or fault_around_pages() from start_pgoff, depending what is nearest.
3527 end_pgoff
= start_pgoff
-
3528 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3530 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3531 start_pgoff
+ nr_pages
- 1);
3533 if (pmd_none(*vmf
->pmd
)) {
3534 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3536 if (!vmf
->prealloc_pte
)
3538 smp_wmb(); /* See comment in __pte_alloc() */
3541 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3543 /* Huge page is mapped? Page fault is solved */
3544 if (pmd_trans_huge(*vmf
->pmd
)) {
3545 ret
= VM_FAULT_NOPAGE
;
3549 /* ->map_pages() haven't done anything useful. Cold page cache? */
3553 /* check if the page fault is solved */
3554 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3555 if (!pte_none(*vmf
->pte
))
3556 ret
= VM_FAULT_NOPAGE
;
3557 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3559 vmf
->address
= address
;
3564 static int do_read_fault(struct vm_fault
*vmf
)
3566 struct vm_area_struct
*vma
= vmf
->vma
;
3570 * Let's call ->map_pages() first and use ->fault() as fallback
3571 * if page by the offset is not ready to be mapped (cold cache or
3574 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3575 ret
= do_fault_around(vmf
);
3580 ret
= __do_fault(vmf
);
3581 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3584 ret
|= finish_fault(vmf
);
3585 unlock_page(vmf
->page
);
3586 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3587 put_page(vmf
->page
);
3591 static int do_cow_fault(struct vm_fault
*vmf
)
3593 struct vm_area_struct
*vma
= vmf
->vma
;
3596 if (unlikely(anon_vma_prepare(vma
)))
3597 return VM_FAULT_OOM
;
3599 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3601 return VM_FAULT_OOM
;
3603 if (mem_cgroup_try_charge(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3604 &vmf
->memcg
, false)) {
3605 put_page(vmf
->cow_page
);
3606 return VM_FAULT_OOM
;
3609 ret
= __do_fault(vmf
);
3610 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3612 if (ret
& VM_FAULT_DONE_COW
)
3615 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3616 __SetPageUptodate(vmf
->cow_page
);
3618 ret
|= finish_fault(vmf
);
3619 unlock_page(vmf
->page
);
3620 put_page(vmf
->page
);
3621 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3625 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3626 put_page(vmf
->cow_page
);
3630 static int do_shared_fault(struct vm_fault
*vmf
)
3632 struct vm_area_struct
*vma
= vmf
->vma
;
3635 ret
= __do_fault(vmf
);
3636 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3640 * Check if the backing address space wants to know that the page is
3641 * about to become writable
3643 if (vma
->vm_ops
->page_mkwrite
) {
3644 unlock_page(vmf
->page
);
3645 tmp
= do_page_mkwrite(vmf
);
3646 if (unlikely(!tmp
||
3647 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3648 put_page(vmf
->page
);
3653 ret
|= finish_fault(vmf
);
3654 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3656 unlock_page(vmf
->page
);
3657 put_page(vmf
->page
);
3661 fault_dirty_shared_page(vma
, vmf
->page
);
3666 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3667 * but allow concurrent faults).
3668 * The mmap_sem may have been released depending on flags and our
3669 * return value. See filemap_fault() and __lock_page_or_retry().
3671 static int do_fault(struct vm_fault
*vmf
)
3673 struct vm_area_struct
*vma
= vmf
->vma
;
3676 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3677 if (!vma
->vm_ops
->fault
)
3678 ret
= VM_FAULT_SIGBUS
;
3679 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3680 ret
= do_read_fault(vmf
);
3681 else if (!(vma
->vm_flags
& VM_SHARED
))
3682 ret
= do_cow_fault(vmf
);
3684 ret
= do_shared_fault(vmf
);
3686 /* preallocated pagetable is unused: free it */
3687 if (vmf
->prealloc_pte
) {
3688 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3689 vmf
->prealloc_pte
= NULL
;
3694 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3695 unsigned long addr
, int page_nid
,
3700 count_vm_numa_event(NUMA_HINT_FAULTS
);
3701 if (page_nid
== numa_node_id()) {
3702 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3703 *flags
|= TNF_FAULT_LOCAL
;
3706 return mpol_misplaced(page
, vma
, addr
);
3709 static int do_numa_page(struct vm_fault
*vmf
)
3711 struct vm_area_struct
*vma
= vmf
->vma
;
3712 struct page
*page
= NULL
;
3716 bool migrated
= false;
3718 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3722 * The "pte" at this point cannot be used safely without
3723 * validation through pte_unmap_same(). It's of NUMA type but
3724 * the pfn may be screwed if the read is non atomic.
3726 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3727 spin_lock(vmf
->ptl
);
3728 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3729 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3734 * Make it present again, Depending on how arch implementes non
3735 * accessible ptes, some can allow access by kernel mode.
3737 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3738 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3739 pte
= pte_mkyoung(pte
);
3741 pte
= pte_mkwrite(pte
);
3742 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3743 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3745 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3747 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3751 /* TODO: handle PTE-mapped THP */
3752 if (PageCompound(page
)) {
3753 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3758 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3759 * much anyway since they can be in shared cache state. This misses
3760 * the case where a mapping is writable but the process never writes
3761 * to it but pte_write gets cleared during protection updates and
3762 * pte_dirty has unpredictable behaviour between PTE scan updates,
3763 * background writeback, dirty balancing and application behaviour.
3765 if (!pte_write(pte
))
3766 flags
|= TNF_NO_GROUP
;
3769 * Flag if the page is shared between multiple address spaces. This
3770 * is later used when determining whether to group tasks together
3772 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3773 flags
|= TNF_SHARED
;
3775 last_cpupid
= page_cpupid_last(page
);
3776 page_nid
= page_to_nid(page
);
3777 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3779 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3780 if (target_nid
== -1) {
3785 /* Migrate to the requested node */
3786 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3788 page_nid
= target_nid
;
3789 flags
|= TNF_MIGRATED
;
3791 flags
|= TNF_MIGRATE_FAIL
;
3795 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3799 static inline int create_huge_pmd(struct vm_fault
*vmf
)
3801 if (vma_is_anonymous(vmf
->vma
))
3802 return do_huge_pmd_anonymous_page(vmf
);
3803 if (vmf
->vma
->vm_ops
->huge_fault
)
3804 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3805 return VM_FAULT_FALLBACK
;
3808 static int wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3810 if (vma_is_anonymous(vmf
->vma
))
3811 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3812 if (vmf
->vma
->vm_ops
->huge_fault
)
3813 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3815 /* COW handled on pte level: split pmd */
3816 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3817 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3819 return VM_FAULT_FALLBACK
;
3822 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3824 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3827 static int create_huge_pud(struct vm_fault
*vmf
)
3829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3830 /* No support for anonymous transparent PUD pages yet */
3831 if (vma_is_anonymous(vmf
->vma
))
3832 return VM_FAULT_FALLBACK
;
3833 if (vmf
->vma
->vm_ops
->huge_fault
)
3834 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3835 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3836 return VM_FAULT_FALLBACK
;
3839 static int wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3842 /* No support for anonymous transparent PUD pages yet */
3843 if (vma_is_anonymous(vmf
->vma
))
3844 return VM_FAULT_FALLBACK
;
3845 if (vmf
->vma
->vm_ops
->huge_fault
)
3846 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3848 return VM_FAULT_FALLBACK
;
3852 * These routines also need to handle stuff like marking pages dirty
3853 * and/or accessed for architectures that don't do it in hardware (most
3854 * RISC architectures). The early dirtying is also good on the i386.
3856 * There is also a hook called "update_mmu_cache()" that architectures
3857 * with external mmu caches can use to update those (ie the Sparc or
3858 * PowerPC hashed page tables that act as extended TLBs).
3860 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3861 * concurrent faults).
3863 * The mmap_sem may have been released depending on flags and our return value.
3864 * See filemap_fault() and __lock_page_or_retry().
3866 static int handle_pte_fault(struct vm_fault
*vmf
)
3870 if (unlikely(pmd_none(*vmf
->pmd
))) {
3872 * Leave __pte_alloc() until later: because vm_ops->fault may
3873 * want to allocate huge page, and if we expose page table
3874 * for an instant, it will be difficult to retract from
3875 * concurrent faults and from rmap lookups.
3879 /* See comment in pte_alloc_one_map() */
3880 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3883 * A regular pmd is established and it can't morph into a huge
3884 * pmd from under us anymore at this point because we hold the
3885 * mmap_sem read mode and khugepaged takes it in write mode.
3886 * So now it's safe to run pte_offset_map().
3888 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3889 vmf
->orig_pte
= *vmf
->pte
;
3892 * some architectures can have larger ptes than wordsize,
3893 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3894 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3895 * atomic accesses. The code below just needs a consistent
3896 * view for the ifs and we later double check anyway with the
3897 * ptl lock held. So here a barrier will do.
3900 if (pte_none(vmf
->orig_pte
)) {
3901 pte_unmap(vmf
->pte
);
3907 if (vma_is_anonymous(vmf
->vma
))
3908 return do_anonymous_page(vmf
);
3910 return do_fault(vmf
);
3913 if (!pte_present(vmf
->orig_pte
))
3914 return do_swap_page(vmf
);
3916 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3917 return do_numa_page(vmf
);
3919 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3920 spin_lock(vmf
->ptl
);
3921 entry
= vmf
->orig_pte
;
3922 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3924 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3925 if (!pte_write(entry
))
3926 return do_wp_page(vmf
);
3927 entry
= pte_mkdirty(entry
);
3929 entry
= pte_mkyoung(entry
);
3930 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
3931 vmf
->flags
& FAULT_FLAG_WRITE
)) {
3932 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
3935 * This is needed only for protection faults but the arch code
3936 * is not yet telling us if this is a protection fault or not.
3937 * This still avoids useless tlb flushes for .text page faults
3940 if (vmf
->flags
& FAULT_FLAG_WRITE
)
3941 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
3944 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3949 * By the time we get here, we already hold the mm semaphore
3951 * The mmap_sem may have been released depending on flags and our
3952 * return value. See filemap_fault() and __lock_page_or_retry().
3954 static int __handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
3957 struct vm_fault vmf
= {
3959 .address
= address
& PAGE_MASK
,
3961 .pgoff
= linear_page_index(vma
, address
),
3962 .gfp_mask
= __get_fault_gfp_mask(vma
),
3964 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
3965 struct mm_struct
*mm
= vma
->vm_mm
;
3970 pgd
= pgd_offset(mm
, address
);
3971 p4d
= p4d_alloc(mm
, pgd
, address
);
3973 return VM_FAULT_OOM
;
3975 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
3977 return VM_FAULT_OOM
;
3978 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
3979 ret
= create_huge_pud(&vmf
);
3980 if (!(ret
& VM_FAULT_FALLBACK
))
3983 pud_t orig_pud
= *vmf
.pud
;
3986 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
3988 /* NUMA case for anonymous PUDs would go here */
3990 if (dirty
&& !pud_write(orig_pud
)) {
3991 ret
= wp_huge_pud(&vmf
, orig_pud
);
3992 if (!(ret
& VM_FAULT_FALLBACK
))
3995 huge_pud_set_accessed(&vmf
, orig_pud
);
4001 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4003 return VM_FAULT_OOM
;
4004 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
4005 ret
= create_huge_pmd(&vmf
);
4006 if (!(ret
& VM_FAULT_FALLBACK
))
4009 pmd_t orig_pmd
= *vmf
.pmd
;
4012 if (unlikely(is_swap_pmd(orig_pmd
))) {
4013 VM_BUG_ON(thp_migration_supported() &&
4014 !is_pmd_migration_entry(orig_pmd
));
4015 if (is_pmd_migration_entry(orig_pmd
))
4016 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4019 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4020 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4021 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4023 if (dirty
&& !pmd_write(orig_pmd
)) {
4024 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4025 if (!(ret
& VM_FAULT_FALLBACK
))
4028 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4034 return handle_pte_fault(&vmf
);
4038 * By the time we get here, we already hold the mm semaphore
4040 * The mmap_sem may have been released depending on flags and our
4041 * return value. See filemap_fault() and __lock_page_or_retry().
4043 int handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4048 __set_current_state(TASK_RUNNING
);
4050 count_vm_event(PGFAULT
);
4051 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4053 /* do counter updates before entering really critical section. */
4054 check_sync_rss_stat(current
);
4056 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4057 flags
& FAULT_FLAG_INSTRUCTION
,
4058 flags
& FAULT_FLAG_REMOTE
))
4059 return VM_FAULT_SIGSEGV
;
4062 * Enable the memcg OOM handling for faults triggered in user
4063 * space. Kernel faults are handled more gracefully.
4065 if (flags
& FAULT_FLAG_USER
)
4066 mem_cgroup_oom_enable();
4068 if (unlikely(is_vm_hugetlb_page(vma
)))
4069 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4071 ret
= __handle_mm_fault(vma
, address
, flags
);
4073 if (flags
& FAULT_FLAG_USER
) {
4074 mem_cgroup_oom_disable();
4076 * The task may have entered a memcg OOM situation but
4077 * if the allocation error was handled gracefully (no
4078 * VM_FAULT_OOM), there is no need to kill anything.
4079 * Just clean up the OOM state peacefully.
4081 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4082 mem_cgroup_oom_synchronize(false);
4087 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4089 #ifndef __PAGETABLE_P4D_FOLDED
4091 * Allocate p4d page table.
4092 * We've already handled the fast-path in-line.
4094 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4096 p4d_t
*new = p4d_alloc_one(mm
, address
);
4100 smp_wmb(); /* See comment in __pte_alloc */
4102 spin_lock(&mm
->page_table_lock
);
4103 if (pgd_present(*pgd
)) /* Another has populated it */
4106 pgd_populate(mm
, pgd
, new);
4107 spin_unlock(&mm
->page_table_lock
);
4110 #endif /* __PAGETABLE_P4D_FOLDED */
4112 #ifndef __PAGETABLE_PUD_FOLDED
4114 * Allocate page upper directory.
4115 * We've already handled the fast-path in-line.
4117 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4119 pud_t
*new = pud_alloc_one(mm
, address
);
4123 smp_wmb(); /* See comment in __pte_alloc */
4125 spin_lock(&mm
->page_table_lock
);
4126 #ifndef __ARCH_HAS_5LEVEL_HACK
4127 if (p4d_present(*p4d
)) /* Another has populated it */
4130 p4d_populate(mm
, p4d
, new);
4132 if (pgd_present(*p4d
)) /* Another has populated it */
4135 pgd_populate(mm
, p4d
, new);
4136 #endif /* __ARCH_HAS_5LEVEL_HACK */
4137 spin_unlock(&mm
->page_table_lock
);
4140 #endif /* __PAGETABLE_PUD_FOLDED */
4142 #ifndef __PAGETABLE_PMD_FOLDED
4144 * Allocate page middle directory.
4145 * We've already handled the fast-path in-line.
4147 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4150 pmd_t
*new = pmd_alloc_one(mm
, address
);
4154 smp_wmb(); /* See comment in __pte_alloc */
4156 ptl
= pud_lock(mm
, pud
);
4157 #ifndef __ARCH_HAS_4LEVEL_HACK
4158 if (!pud_present(*pud
)) {
4160 pud_populate(mm
, pud
, new);
4161 } else /* Another has populated it */
4164 if (!pgd_present(*pud
)) {
4166 pgd_populate(mm
, pud
, new);
4167 } else /* Another has populated it */
4169 #endif /* __ARCH_HAS_4LEVEL_HACK */
4173 #endif /* __PAGETABLE_PMD_FOLDED */
4175 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4176 unsigned long *start
, unsigned long *end
,
4177 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4185 pgd
= pgd_offset(mm
, address
);
4186 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4189 p4d
= p4d_offset(pgd
, address
);
4190 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4193 pud
= pud_offset(p4d
, address
);
4194 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4197 pmd
= pmd_offset(pud
, address
);
4198 VM_BUG_ON(pmd_trans_huge(*pmd
));
4200 if (pmd_huge(*pmd
)) {
4205 *start
= address
& PMD_MASK
;
4206 *end
= *start
+ PMD_SIZE
;
4207 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4209 *ptlp
= pmd_lock(mm
, pmd
);
4210 if (pmd_huge(*pmd
)) {
4216 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4219 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4223 *start
= address
& PAGE_MASK
;
4224 *end
= *start
+ PAGE_SIZE
;
4225 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4227 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4228 if (!pte_present(*ptep
))
4233 pte_unmap_unlock(ptep
, *ptlp
);
4235 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4240 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4241 pte_t
**ptepp
, spinlock_t
**ptlp
)
4245 /* (void) is needed to make gcc happy */
4246 (void) __cond_lock(*ptlp
,
4247 !(res
= __follow_pte_pmd(mm
, address
, NULL
, NULL
,
4248 ptepp
, NULL
, ptlp
)));
4252 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4253 unsigned long *start
, unsigned long *end
,
4254 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4258 /* (void) is needed to make gcc happy */
4259 (void) __cond_lock(*ptlp
,
4260 !(res
= __follow_pte_pmd(mm
, address
, start
, end
,
4261 ptepp
, pmdpp
, ptlp
)));
4264 EXPORT_SYMBOL(follow_pte_pmd
);
4267 * follow_pfn - look up PFN at a user virtual address
4268 * @vma: memory mapping
4269 * @address: user virtual address
4270 * @pfn: location to store found PFN
4272 * Only IO mappings and raw PFN mappings are allowed.
4274 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4276 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4283 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4286 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4289 *pfn
= pte_pfn(*ptep
);
4290 pte_unmap_unlock(ptep
, ptl
);
4293 EXPORT_SYMBOL(follow_pfn
);
4295 #ifdef CONFIG_HAVE_IOREMAP_PROT
4296 int follow_phys(struct vm_area_struct
*vma
,
4297 unsigned long address
, unsigned int flags
,
4298 unsigned long *prot
, resource_size_t
*phys
)
4304 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4307 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4311 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4314 *prot
= pgprot_val(pte_pgprot(pte
));
4315 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4319 pte_unmap_unlock(ptep
, ptl
);
4324 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4325 void *buf
, int len
, int write
)
4327 resource_size_t phys_addr
;
4328 unsigned long prot
= 0;
4329 void __iomem
*maddr
;
4330 int offset
= addr
& (PAGE_SIZE
-1);
4332 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4335 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4337 memcpy_toio(maddr
+ offset
, buf
, len
);
4339 memcpy_fromio(buf
, maddr
+ offset
, len
);
4344 EXPORT_SYMBOL_GPL(generic_access_phys
);
4348 * Access another process' address space as given in mm. If non-NULL, use the
4349 * given task for page fault accounting.
4351 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4352 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4354 struct vm_area_struct
*vma
;
4355 void *old_buf
= buf
;
4356 int write
= gup_flags
& FOLL_WRITE
;
4358 down_read(&mm
->mmap_sem
);
4359 /* ignore errors, just check how much was successfully transferred */
4361 int bytes
, ret
, offset
;
4363 struct page
*page
= NULL
;
4365 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4366 gup_flags
, &page
, &vma
, NULL
);
4368 #ifndef CONFIG_HAVE_IOREMAP_PROT
4372 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4373 * we can access using slightly different code.
4375 vma
= find_vma(mm
, addr
);
4376 if (!vma
|| vma
->vm_start
> addr
)
4378 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4379 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4387 offset
= addr
& (PAGE_SIZE
-1);
4388 if (bytes
> PAGE_SIZE
-offset
)
4389 bytes
= PAGE_SIZE
-offset
;
4393 copy_to_user_page(vma
, page
, addr
,
4394 maddr
+ offset
, buf
, bytes
);
4395 set_page_dirty_lock(page
);
4397 copy_from_user_page(vma
, page
, addr
,
4398 buf
, maddr
+ offset
, bytes
);
4407 up_read(&mm
->mmap_sem
);
4409 return buf
- old_buf
;
4413 * access_remote_vm - access another process' address space
4414 * @mm: the mm_struct of the target address space
4415 * @addr: start address to access
4416 * @buf: source or destination buffer
4417 * @len: number of bytes to transfer
4418 * @gup_flags: flags modifying lookup behaviour
4420 * The caller must hold a reference on @mm.
4422 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4423 void *buf
, int len
, unsigned int gup_flags
)
4425 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4429 * Access another process' address space.
4430 * Source/target buffer must be kernel space,
4431 * Do not walk the page table directly, use get_user_pages
4433 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4434 void *buf
, int len
, unsigned int gup_flags
)
4436 struct mm_struct
*mm
;
4439 mm
= get_task_mm(tsk
);
4443 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4449 EXPORT_SYMBOL_GPL(access_process_vm
);
4452 * Print the name of a VMA.
4454 void print_vma_addr(char *prefix
, unsigned long ip
)
4456 struct mm_struct
*mm
= current
->mm
;
4457 struct vm_area_struct
*vma
;
4460 * Do not print if we are in atomic
4461 * contexts (in exception stacks, etc.):
4463 if (preempt_count())
4466 down_read(&mm
->mmap_sem
);
4467 vma
= find_vma(mm
, ip
);
4468 if (vma
&& vma
->vm_file
) {
4469 struct file
*f
= vma
->vm_file
;
4470 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
4474 p
= file_path(f
, buf
, PAGE_SIZE
);
4477 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4479 vma
->vm_end
- vma
->vm_start
);
4480 free_page((unsigned long)buf
);
4483 up_read(&mm
->mmap_sem
);
4486 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4487 void __might_fault(const char *file
, int line
)
4490 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4491 * holding the mmap_sem, this is safe because kernel memory doesn't
4492 * get paged out, therefore we'll never actually fault, and the
4493 * below annotations will generate false positives.
4495 if (uaccess_kernel())
4497 if (pagefault_disabled())
4499 __might_sleep(file
, line
, 0);
4500 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4502 might_lock_read(¤t
->mm
->mmap_sem
);
4505 EXPORT_SYMBOL(__might_fault
);
4508 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4509 static void clear_gigantic_page(struct page
*page
,
4511 unsigned int pages_per_huge_page
)
4514 struct page
*p
= page
;
4517 for (i
= 0; i
< pages_per_huge_page
;
4518 i
++, p
= mem_map_next(p
, page
, i
)) {
4520 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4523 void clear_huge_page(struct page
*page
,
4524 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4527 unsigned long addr
= addr_hint
&
4528 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4530 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4531 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4535 /* Clear sub-page to access last to keep its cache lines hot */
4537 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4538 if (2 * n
<= pages_per_huge_page
) {
4539 /* If sub-page to access in first half of huge page */
4542 /* Clear sub-pages at the end of huge page */
4543 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4545 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4548 /* If sub-page to access in second half of huge page */
4549 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4550 l
= pages_per_huge_page
- n
;
4551 /* Clear sub-pages at the begin of huge page */
4552 for (i
= 0; i
< base
; i
++) {
4554 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
4558 * Clear remaining sub-pages in left-right-left-right pattern
4559 * towards the sub-page to access
4561 for (i
= 0; i
< l
; i
++) {
4562 int left_idx
= base
+ i
;
4563 int right_idx
= base
+ 2 * l
- 1 - i
;
4566 clear_user_highpage(page
+ left_idx
,
4567 addr
+ left_idx
* PAGE_SIZE
);
4569 clear_user_highpage(page
+ right_idx
,
4570 addr
+ right_idx
* PAGE_SIZE
);
4574 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4576 struct vm_area_struct
*vma
,
4577 unsigned int pages_per_huge_page
)
4580 struct page
*dst_base
= dst
;
4581 struct page
*src_base
= src
;
4583 for (i
= 0; i
< pages_per_huge_page
; ) {
4585 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4588 dst
= mem_map_next(dst
, dst_base
, i
);
4589 src
= mem_map_next(src
, src_base
, i
);
4593 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4594 unsigned long addr
, struct vm_area_struct
*vma
,
4595 unsigned int pages_per_huge_page
)
4599 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4600 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4601 pages_per_huge_page
);
4606 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4608 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4612 long copy_huge_page_from_user(struct page
*dst_page
,
4613 const void __user
*usr_src
,
4614 unsigned int pages_per_huge_page
,
4615 bool allow_pagefault
)
4617 void *src
= (void *)usr_src
;
4619 unsigned long i
, rc
= 0;
4620 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4622 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4623 if (allow_pagefault
)
4624 page_kaddr
= kmap(dst_page
+ i
);
4626 page_kaddr
= kmap_atomic(dst_page
+ i
);
4627 rc
= copy_from_user(page_kaddr
,
4628 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4630 if (allow_pagefault
)
4631 kunmap(dst_page
+ i
);
4633 kunmap_atomic(page_kaddr
);
4635 ret_val
-= (PAGE_SIZE
- rc
);
4643 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4645 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4647 static struct kmem_cache
*page_ptl_cachep
;
4649 void __init
ptlock_cache_init(void)
4651 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4655 bool ptlock_alloc(struct page
*page
)
4659 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4666 void ptlock_free(struct page
*page
)
4668 kmem_cache_free(page_ptl_cachep
, page
->ptl
);