KVM: Fix build error due to 64-bit division in nsec_to_cycles()
[linux-2.6/btrfs-unstable.git] / arch / x86 / kvm / x86.c
blobbdba1d09a97e52ac680c9983784a73753ee0f923
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affilates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS \
63 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS \
67 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
69 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
70 | X86_CR4_OSXSAVE \
71 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
78 /* EFER defaults:
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
82 #ifdef CONFIG_X86_64
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
84 #else
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
86 #endif
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93 struct kvm_cpuid_entry2 __user *entries);
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
98 int ignore_msrs = 0;
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
101 #define KVM_NR_SHARED_MSRS 16
103 struct kvm_shared_msrs_global {
104 int nr;
105 u32 msrs[KVM_NR_SHARED_MSRS];
108 struct kvm_shared_msrs {
109 struct user_return_notifier urn;
110 bool registered;
111 struct kvm_shared_msr_values {
112 u64 host;
113 u64 curr;
114 } values[KVM_NR_SHARED_MSRS];
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121 { "pf_fixed", VCPU_STAT(pf_fixed) },
122 { "pf_guest", VCPU_STAT(pf_guest) },
123 { "tlb_flush", VCPU_STAT(tlb_flush) },
124 { "invlpg", VCPU_STAT(invlpg) },
125 { "exits", VCPU_STAT(exits) },
126 { "io_exits", VCPU_STAT(io_exits) },
127 { "mmio_exits", VCPU_STAT(mmio_exits) },
128 { "signal_exits", VCPU_STAT(signal_exits) },
129 { "irq_window", VCPU_STAT(irq_window_exits) },
130 { "nmi_window", VCPU_STAT(nmi_window_exits) },
131 { "halt_exits", VCPU_STAT(halt_exits) },
132 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133 { "hypercalls", VCPU_STAT(hypercalls) },
134 { "request_irq", VCPU_STAT(request_irq_exits) },
135 { "irq_exits", VCPU_STAT(irq_exits) },
136 { "host_state_reload", VCPU_STAT(host_state_reload) },
137 { "efer_reload", VCPU_STAT(efer_reload) },
138 { "fpu_reload", VCPU_STAT(fpu_reload) },
139 { "insn_emulation", VCPU_STAT(insn_emulation) },
140 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141 { "irq_injections", VCPU_STAT(irq_injections) },
142 { "nmi_injections", VCPU_STAT(nmi_injections) },
143 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147 { "mmu_flooded", VM_STAT(mmu_flooded) },
148 { "mmu_recycled", VM_STAT(mmu_recycled) },
149 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150 { "mmu_unsync", VM_STAT(mmu_unsync) },
151 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152 { "largepages", VM_STAT(lpages) },
153 { NULL }
156 u64 __read_mostly host_xcr0;
158 static inline u32 bit(int bitno)
160 return 1 << (bitno & 31);
163 static void kvm_on_user_return(struct user_return_notifier *urn)
165 unsigned slot;
166 struct kvm_shared_msrs *locals
167 = container_of(urn, struct kvm_shared_msrs, urn);
168 struct kvm_shared_msr_values *values;
170 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
171 values = &locals->values[slot];
172 if (values->host != values->curr) {
173 wrmsrl(shared_msrs_global.msrs[slot], values->host);
174 values->curr = values->host;
177 locals->registered = false;
178 user_return_notifier_unregister(urn);
181 static void shared_msr_update(unsigned slot, u32 msr)
183 struct kvm_shared_msrs *smsr;
184 u64 value;
186 smsr = &__get_cpu_var(shared_msrs);
187 /* only read, and nobody should modify it at this time,
188 * so don't need lock */
189 if (slot >= shared_msrs_global.nr) {
190 printk(KERN_ERR "kvm: invalid MSR slot!");
191 return;
193 rdmsrl_safe(msr, &value);
194 smsr->values[slot].host = value;
195 smsr->values[slot].curr = value;
198 void kvm_define_shared_msr(unsigned slot, u32 msr)
200 if (slot >= shared_msrs_global.nr)
201 shared_msrs_global.nr = slot + 1;
202 shared_msrs_global.msrs[slot] = msr;
203 /* we need ensured the shared_msr_global have been updated */
204 smp_wmb();
206 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
208 static void kvm_shared_msr_cpu_online(void)
210 unsigned i;
212 for (i = 0; i < shared_msrs_global.nr; ++i)
213 shared_msr_update(i, shared_msrs_global.msrs[i]);
216 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
218 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
220 if (((value ^ smsr->values[slot].curr) & mask) == 0)
221 return;
222 smsr->values[slot].curr = value;
223 wrmsrl(shared_msrs_global.msrs[slot], value);
224 if (!smsr->registered) {
225 smsr->urn.on_user_return = kvm_on_user_return;
226 user_return_notifier_register(&smsr->urn);
227 smsr->registered = true;
230 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
232 static void drop_user_return_notifiers(void *ignore)
234 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
236 if (smsr->registered)
237 kvm_on_user_return(&smsr->urn);
240 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
242 if (irqchip_in_kernel(vcpu->kvm))
243 return vcpu->arch.apic_base;
244 else
245 return vcpu->arch.apic_base;
247 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
249 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
251 /* TODO: reserve bits check */
252 if (irqchip_in_kernel(vcpu->kvm))
253 kvm_lapic_set_base(vcpu, data);
254 else
255 vcpu->arch.apic_base = data;
257 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
259 #define EXCPT_BENIGN 0
260 #define EXCPT_CONTRIBUTORY 1
261 #define EXCPT_PF 2
263 static int exception_class(int vector)
265 switch (vector) {
266 case PF_VECTOR:
267 return EXCPT_PF;
268 case DE_VECTOR:
269 case TS_VECTOR:
270 case NP_VECTOR:
271 case SS_VECTOR:
272 case GP_VECTOR:
273 return EXCPT_CONTRIBUTORY;
274 default:
275 break;
277 return EXCPT_BENIGN;
280 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
281 unsigned nr, bool has_error, u32 error_code,
282 bool reinject)
284 u32 prev_nr;
285 int class1, class2;
287 if (!vcpu->arch.exception.pending) {
288 queue:
289 vcpu->arch.exception.pending = true;
290 vcpu->arch.exception.has_error_code = has_error;
291 vcpu->arch.exception.nr = nr;
292 vcpu->arch.exception.error_code = error_code;
293 vcpu->arch.exception.reinject = reinject;
294 return;
297 /* to check exception */
298 prev_nr = vcpu->arch.exception.nr;
299 if (prev_nr == DF_VECTOR) {
300 /* triple fault -> shutdown */
301 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
302 return;
304 class1 = exception_class(prev_nr);
305 class2 = exception_class(nr);
306 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
307 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
308 /* generate double fault per SDM Table 5-5 */
309 vcpu->arch.exception.pending = true;
310 vcpu->arch.exception.has_error_code = true;
311 vcpu->arch.exception.nr = DF_VECTOR;
312 vcpu->arch.exception.error_code = 0;
313 } else
314 /* replace previous exception with a new one in a hope
315 that instruction re-execution will regenerate lost
316 exception */
317 goto queue;
320 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
322 kvm_multiple_exception(vcpu, nr, false, 0, false);
324 EXPORT_SYMBOL_GPL(kvm_queue_exception);
326 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
328 kvm_multiple_exception(vcpu, nr, false, 0, true);
330 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
332 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
333 u32 error_code)
335 ++vcpu->stat.pf_guest;
336 vcpu->arch.cr2 = addr;
337 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
340 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
342 vcpu->arch.nmi_pending = 1;
344 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
346 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
348 kvm_multiple_exception(vcpu, nr, true, error_code, false);
350 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
352 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
354 kvm_multiple_exception(vcpu, nr, true, error_code, true);
356 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
359 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
360 * a #GP and return false.
362 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
364 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
365 return true;
366 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
367 return false;
369 EXPORT_SYMBOL_GPL(kvm_require_cpl);
372 * Load the pae pdptrs. Return true is they are all valid.
374 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
376 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
377 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
378 int i;
379 int ret;
380 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
382 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
383 offset * sizeof(u64), sizeof(pdpte));
384 if (ret < 0) {
385 ret = 0;
386 goto out;
388 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
389 if (is_present_gpte(pdpte[i]) &&
390 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
391 ret = 0;
392 goto out;
395 ret = 1;
397 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
398 __set_bit(VCPU_EXREG_PDPTR,
399 (unsigned long *)&vcpu->arch.regs_avail);
400 __set_bit(VCPU_EXREG_PDPTR,
401 (unsigned long *)&vcpu->arch.regs_dirty);
402 out:
404 return ret;
406 EXPORT_SYMBOL_GPL(load_pdptrs);
408 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
410 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
411 bool changed = true;
412 int r;
414 if (is_long_mode(vcpu) || !is_pae(vcpu))
415 return false;
417 if (!test_bit(VCPU_EXREG_PDPTR,
418 (unsigned long *)&vcpu->arch.regs_avail))
419 return true;
421 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
422 if (r < 0)
423 goto out;
424 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
425 out:
427 return changed;
430 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
432 unsigned long old_cr0 = kvm_read_cr0(vcpu);
433 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
434 X86_CR0_CD | X86_CR0_NW;
436 cr0 |= X86_CR0_ET;
438 #ifdef CONFIG_X86_64
439 if (cr0 & 0xffffffff00000000UL)
440 return 1;
441 #endif
443 cr0 &= ~CR0_RESERVED_BITS;
445 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
446 return 1;
448 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
449 return 1;
451 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
452 #ifdef CONFIG_X86_64
453 if ((vcpu->arch.efer & EFER_LME)) {
454 int cs_db, cs_l;
456 if (!is_pae(vcpu))
457 return 1;
458 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
459 if (cs_l)
460 return 1;
461 } else
462 #endif
463 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
464 return 1;
467 kvm_x86_ops->set_cr0(vcpu, cr0);
469 if ((cr0 ^ old_cr0) & update_bits)
470 kvm_mmu_reset_context(vcpu);
471 return 0;
473 EXPORT_SYMBOL_GPL(kvm_set_cr0);
475 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
477 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
479 EXPORT_SYMBOL_GPL(kvm_lmsw);
481 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
483 u64 xcr0;
485 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
486 if (index != XCR_XFEATURE_ENABLED_MASK)
487 return 1;
488 xcr0 = xcr;
489 if (kvm_x86_ops->get_cpl(vcpu) != 0)
490 return 1;
491 if (!(xcr0 & XSTATE_FP))
492 return 1;
493 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
494 return 1;
495 if (xcr0 & ~host_xcr0)
496 return 1;
497 vcpu->arch.xcr0 = xcr0;
498 vcpu->guest_xcr0_loaded = 0;
499 return 0;
502 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
504 if (__kvm_set_xcr(vcpu, index, xcr)) {
505 kvm_inject_gp(vcpu, 0);
506 return 1;
508 return 0;
510 EXPORT_SYMBOL_GPL(kvm_set_xcr);
512 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
514 struct kvm_cpuid_entry2 *best;
516 best = kvm_find_cpuid_entry(vcpu, 1, 0);
517 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
520 static void update_cpuid(struct kvm_vcpu *vcpu)
522 struct kvm_cpuid_entry2 *best;
524 best = kvm_find_cpuid_entry(vcpu, 1, 0);
525 if (!best)
526 return;
528 /* Update OSXSAVE bit */
529 if (cpu_has_xsave && best->function == 0x1) {
530 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
531 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
532 best->ecx |= bit(X86_FEATURE_OSXSAVE);
536 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
538 unsigned long old_cr4 = kvm_read_cr4(vcpu);
539 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
541 if (cr4 & CR4_RESERVED_BITS)
542 return 1;
544 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
545 return 1;
547 if (is_long_mode(vcpu)) {
548 if (!(cr4 & X86_CR4_PAE))
549 return 1;
550 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
551 && ((cr4 ^ old_cr4) & pdptr_bits)
552 && !load_pdptrs(vcpu, vcpu->arch.cr3))
553 return 1;
555 if (cr4 & X86_CR4_VMXE)
556 return 1;
558 kvm_x86_ops->set_cr4(vcpu, cr4);
560 if ((cr4 ^ old_cr4) & pdptr_bits)
561 kvm_mmu_reset_context(vcpu);
563 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
564 update_cpuid(vcpu);
566 return 0;
568 EXPORT_SYMBOL_GPL(kvm_set_cr4);
570 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
572 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
573 kvm_mmu_sync_roots(vcpu);
574 kvm_mmu_flush_tlb(vcpu);
575 return 0;
578 if (is_long_mode(vcpu)) {
579 if (cr3 & CR3_L_MODE_RESERVED_BITS)
580 return 1;
581 } else {
582 if (is_pae(vcpu)) {
583 if (cr3 & CR3_PAE_RESERVED_BITS)
584 return 1;
585 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
586 return 1;
589 * We don't check reserved bits in nonpae mode, because
590 * this isn't enforced, and VMware depends on this.
595 * Does the new cr3 value map to physical memory? (Note, we
596 * catch an invalid cr3 even in real-mode, because it would
597 * cause trouble later on when we turn on paging anyway.)
599 * A real CPU would silently accept an invalid cr3 and would
600 * attempt to use it - with largely undefined (and often hard
601 * to debug) behavior on the guest side.
603 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
604 return 1;
605 vcpu->arch.cr3 = cr3;
606 vcpu->arch.mmu.new_cr3(vcpu);
607 return 0;
609 EXPORT_SYMBOL_GPL(kvm_set_cr3);
611 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
613 if (cr8 & CR8_RESERVED_BITS)
614 return 1;
615 if (irqchip_in_kernel(vcpu->kvm))
616 kvm_lapic_set_tpr(vcpu, cr8);
617 else
618 vcpu->arch.cr8 = cr8;
619 return 0;
622 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
624 if (__kvm_set_cr8(vcpu, cr8))
625 kvm_inject_gp(vcpu, 0);
627 EXPORT_SYMBOL_GPL(kvm_set_cr8);
629 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
631 if (irqchip_in_kernel(vcpu->kvm))
632 return kvm_lapic_get_cr8(vcpu);
633 else
634 return vcpu->arch.cr8;
636 EXPORT_SYMBOL_GPL(kvm_get_cr8);
638 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
640 switch (dr) {
641 case 0 ... 3:
642 vcpu->arch.db[dr] = val;
643 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
644 vcpu->arch.eff_db[dr] = val;
645 break;
646 case 4:
647 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
648 return 1; /* #UD */
649 /* fall through */
650 case 6:
651 if (val & 0xffffffff00000000ULL)
652 return -1; /* #GP */
653 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
654 break;
655 case 5:
656 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
657 return 1; /* #UD */
658 /* fall through */
659 default: /* 7 */
660 if (val & 0xffffffff00000000ULL)
661 return -1; /* #GP */
662 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
663 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
664 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
665 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
667 break;
670 return 0;
673 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
675 int res;
677 res = __kvm_set_dr(vcpu, dr, val);
678 if (res > 0)
679 kvm_queue_exception(vcpu, UD_VECTOR);
680 else if (res < 0)
681 kvm_inject_gp(vcpu, 0);
683 return res;
685 EXPORT_SYMBOL_GPL(kvm_set_dr);
687 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
689 switch (dr) {
690 case 0 ... 3:
691 *val = vcpu->arch.db[dr];
692 break;
693 case 4:
694 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
695 return 1;
696 /* fall through */
697 case 6:
698 *val = vcpu->arch.dr6;
699 break;
700 case 5:
701 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
702 return 1;
703 /* fall through */
704 default: /* 7 */
705 *val = vcpu->arch.dr7;
706 break;
709 return 0;
712 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
714 if (_kvm_get_dr(vcpu, dr, val)) {
715 kvm_queue_exception(vcpu, UD_VECTOR);
716 return 1;
718 return 0;
720 EXPORT_SYMBOL_GPL(kvm_get_dr);
723 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
724 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
726 * This list is modified at module load time to reflect the
727 * capabilities of the host cpu. This capabilities test skips MSRs that are
728 * kvm-specific. Those are put in the beginning of the list.
731 #define KVM_SAVE_MSRS_BEGIN 7
732 static u32 msrs_to_save[] = {
733 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
734 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
735 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
736 HV_X64_MSR_APIC_ASSIST_PAGE,
737 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
738 MSR_STAR,
739 #ifdef CONFIG_X86_64
740 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
741 #endif
742 MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
745 static unsigned num_msrs_to_save;
747 static u32 emulated_msrs[] = {
748 MSR_IA32_MISC_ENABLE,
749 MSR_IA32_MCG_STATUS,
750 MSR_IA32_MCG_CTL,
753 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
755 u64 old_efer = vcpu->arch.efer;
757 if (efer & efer_reserved_bits)
758 return 1;
760 if (is_paging(vcpu)
761 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
762 return 1;
764 if (efer & EFER_FFXSR) {
765 struct kvm_cpuid_entry2 *feat;
767 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
768 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
769 return 1;
772 if (efer & EFER_SVME) {
773 struct kvm_cpuid_entry2 *feat;
775 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
776 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
777 return 1;
780 efer &= ~EFER_LMA;
781 efer |= vcpu->arch.efer & EFER_LMA;
783 kvm_x86_ops->set_efer(vcpu, efer);
785 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
786 kvm_mmu_reset_context(vcpu);
788 /* Update reserved bits */
789 if ((efer ^ old_efer) & EFER_NX)
790 kvm_mmu_reset_context(vcpu);
792 return 0;
795 void kvm_enable_efer_bits(u64 mask)
797 efer_reserved_bits &= ~mask;
799 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
803 * Writes msr value into into the appropriate "register".
804 * Returns 0 on success, non-0 otherwise.
805 * Assumes vcpu_load() was already called.
807 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
809 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
813 * Adapt set_msr() to msr_io()'s calling convention
815 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
817 return kvm_set_msr(vcpu, index, *data);
820 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
822 int version;
823 int r;
824 struct pvclock_wall_clock wc;
825 struct timespec boot;
827 if (!wall_clock)
828 return;
830 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
831 if (r)
832 return;
834 if (version & 1)
835 ++version; /* first time write, random junk */
837 ++version;
839 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
842 * The guest calculates current wall clock time by adding
843 * system time (updated by kvm_write_guest_time below) to the
844 * wall clock specified here. guest system time equals host
845 * system time for us, thus we must fill in host boot time here.
847 getboottime(&boot);
849 wc.sec = boot.tv_sec;
850 wc.nsec = boot.tv_nsec;
851 wc.version = version;
853 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
855 version++;
856 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
859 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
861 uint32_t quotient, remainder;
863 /* Don't try to replace with do_div(), this one calculates
864 * "(dividend << 32) / divisor" */
865 __asm__ ( "divl %4"
866 : "=a" (quotient), "=d" (remainder)
867 : "0" (0), "1" (dividend), "r" (divisor) );
868 return quotient;
871 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
873 uint64_t nsecs = 1000000000LL;
874 int32_t shift = 0;
875 uint64_t tps64;
876 uint32_t tps32;
878 tps64 = tsc_khz * 1000LL;
879 while (tps64 > nsecs*2) {
880 tps64 >>= 1;
881 shift--;
884 tps32 = (uint32_t)tps64;
885 while (tps32 <= (uint32_t)nsecs) {
886 tps32 <<= 1;
887 shift++;
890 hv_clock->tsc_shift = shift;
891 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
893 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
894 __func__, tsc_khz, hv_clock->tsc_shift,
895 hv_clock->tsc_to_system_mul);
898 static inline u64 get_kernel_ns(void)
900 struct timespec ts;
902 WARN_ON(preemptible());
903 ktime_get_ts(&ts);
904 monotonic_to_bootbased(&ts);
905 return timespec_to_ns(&ts);
908 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
910 static inline int kvm_tsc_changes_freq(void)
912 int cpu = get_cpu();
913 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
914 cpufreq_quick_get(cpu) != 0;
915 put_cpu();
916 return ret;
919 static inline u64 nsec_to_cycles(u64 nsec)
921 u64 ret;
923 WARN_ON(preemptible());
924 if (kvm_tsc_changes_freq())
925 printk_once(KERN_WARNING
926 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
927 ret = nsec * __get_cpu_var(cpu_tsc_khz);
928 do_div(ret, USEC_PER_SEC);
929 return ret;
932 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
934 struct kvm *kvm = vcpu->kvm;
935 u64 offset, ns, elapsed;
936 unsigned long flags;
937 s64 sdiff;
939 spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
940 offset = data - native_read_tsc();
941 ns = get_kernel_ns();
942 elapsed = ns - kvm->arch.last_tsc_nsec;
943 sdiff = data - kvm->arch.last_tsc_write;
944 if (sdiff < 0)
945 sdiff = -sdiff;
948 * Special case: close write to TSC within 5 seconds of
949 * another CPU is interpreted as an attempt to synchronize
950 * The 5 seconds is to accomodate host load / swapping as
951 * well as any reset of TSC during the boot process.
953 * In that case, for a reliable TSC, we can match TSC offsets,
954 * or make a best guest using elapsed value.
956 if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
957 elapsed < 5ULL * NSEC_PER_SEC) {
958 if (!check_tsc_unstable()) {
959 offset = kvm->arch.last_tsc_offset;
960 pr_debug("kvm: matched tsc offset for %llu\n", data);
961 } else {
962 u64 delta = nsec_to_cycles(elapsed);
963 offset += delta;
964 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
966 ns = kvm->arch.last_tsc_nsec;
968 kvm->arch.last_tsc_nsec = ns;
969 kvm->arch.last_tsc_write = data;
970 kvm->arch.last_tsc_offset = offset;
971 kvm_x86_ops->write_tsc_offset(vcpu, offset);
972 spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
974 /* Reset of TSC must disable overshoot protection below */
975 vcpu->arch.hv_clock.tsc_timestamp = 0;
977 EXPORT_SYMBOL_GPL(kvm_write_tsc);
979 static int kvm_write_guest_time(struct kvm_vcpu *v)
981 unsigned long flags;
982 struct kvm_vcpu_arch *vcpu = &v->arch;
983 void *shared_kaddr;
984 unsigned long this_tsc_khz;
985 s64 kernel_ns, max_kernel_ns;
986 u64 tsc_timestamp;
988 if ((!vcpu->time_page))
989 return 0;
991 /* Keep irq disabled to prevent changes to the clock */
992 local_irq_save(flags);
993 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
994 kernel_ns = get_kernel_ns();
995 this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
996 local_irq_restore(flags);
998 if (unlikely(this_tsc_khz == 0)) {
999 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1000 return 1;
1004 * Time as measured by the TSC may go backwards when resetting the base
1005 * tsc_timestamp. The reason for this is that the TSC resolution is
1006 * higher than the resolution of the other clock scales. Thus, many
1007 * possible measurments of the TSC correspond to one measurement of any
1008 * other clock, and so a spread of values is possible. This is not a
1009 * problem for the computation of the nanosecond clock; with TSC rates
1010 * around 1GHZ, there can only be a few cycles which correspond to one
1011 * nanosecond value, and any path through this code will inevitably
1012 * take longer than that. However, with the kernel_ns value itself,
1013 * the precision may be much lower, down to HZ granularity. If the
1014 * first sampling of TSC against kernel_ns ends in the low part of the
1015 * range, and the second in the high end of the range, we can get:
1017 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1019 * As the sampling errors potentially range in the thousands of cycles,
1020 * it is possible such a time value has already been observed by the
1021 * guest. To protect against this, we must compute the system time as
1022 * observed by the guest and ensure the new system time is greater.
1024 max_kernel_ns = 0;
1025 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1026 max_kernel_ns = vcpu->last_guest_tsc -
1027 vcpu->hv_clock.tsc_timestamp;
1028 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1029 vcpu->hv_clock.tsc_to_system_mul,
1030 vcpu->hv_clock.tsc_shift);
1031 max_kernel_ns += vcpu->last_kernel_ns;
1034 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1035 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1036 vcpu->hw_tsc_khz = this_tsc_khz;
1039 if (max_kernel_ns > kernel_ns)
1040 kernel_ns = max_kernel_ns;
1042 /* With all the info we got, fill in the values */
1043 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1044 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1045 vcpu->last_kernel_ns = kernel_ns;
1046 vcpu->hv_clock.flags = 0;
1049 * The interface expects us to write an even number signaling that the
1050 * update is finished. Since the guest won't see the intermediate
1051 * state, we just increase by 2 at the end.
1053 vcpu->hv_clock.version += 2;
1055 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1057 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1058 sizeof(vcpu->hv_clock));
1060 kunmap_atomic(shared_kaddr, KM_USER0);
1062 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1063 return 0;
1066 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1068 struct kvm_vcpu_arch *vcpu = &v->arch;
1070 if (!vcpu->time_page)
1071 return 0;
1072 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1073 return 1;
1076 static bool msr_mtrr_valid(unsigned msr)
1078 switch (msr) {
1079 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1080 case MSR_MTRRfix64K_00000:
1081 case MSR_MTRRfix16K_80000:
1082 case MSR_MTRRfix16K_A0000:
1083 case MSR_MTRRfix4K_C0000:
1084 case MSR_MTRRfix4K_C8000:
1085 case MSR_MTRRfix4K_D0000:
1086 case MSR_MTRRfix4K_D8000:
1087 case MSR_MTRRfix4K_E0000:
1088 case MSR_MTRRfix4K_E8000:
1089 case MSR_MTRRfix4K_F0000:
1090 case MSR_MTRRfix4K_F8000:
1091 case MSR_MTRRdefType:
1092 case MSR_IA32_CR_PAT:
1093 return true;
1094 case 0x2f8:
1095 return true;
1097 return false;
1100 static bool valid_pat_type(unsigned t)
1102 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1105 static bool valid_mtrr_type(unsigned t)
1107 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1110 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1112 int i;
1114 if (!msr_mtrr_valid(msr))
1115 return false;
1117 if (msr == MSR_IA32_CR_PAT) {
1118 for (i = 0; i < 8; i++)
1119 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1120 return false;
1121 return true;
1122 } else if (msr == MSR_MTRRdefType) {
1123 if (data & ~0xcff)
1124 return false;
1125 return valid_mtrr_type(data & 0xff);
1126 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1127 for (i = 0; i < 8 ; i++)
1128 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1129 return false;
1130 return true;
1133 /* variable MTRRs */
1134 return valid_mtrr_type(data & 0xff);
1137 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1139 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1141 if (!mtrr_valid(vcpu, msr, data))
1142 return 1;
1144 if (msr == MSR_MTRRdefType) {
1145 vcpu->arch.mtrr_state.def_type = data;
1146 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1147 } else if (msr == MSR_MTRRfix64K_00000)
1148 p[0] = data;
1149 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1150 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1151 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1152 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1153 else if (msr == MSR_IA32_CR_PAT)
1154 vcpu->arch.pat = data;
1155 else { /* Variable MTRRs */
1156 int idx, is_mtrr_mask;
1157 u64 *pt;
1159 idx = (msr - 0x200) / 2;
1160 is_mtrr_mask = msr - 0x200 - 2 * idx;
1161 if (!is_mtrr_mask)
1162 pt =
1163 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1164 else
1165 pt =
1166 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1167 *pt = data;
1170 kvm_mmu_reset_context(vcpu);
1171 return 0;
1174 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1176 u64 mcg_cap = vcpu->arch.mcg_cap;
1177 unsigned bank_num = mcg_cap & 0xff;
1179 switch (msr) {
1180 case MSR_IA32_MCG_STATUS:
1181 vcpu->arch.mcg_status = data;
1182 break;
1183 case MSR_IA32_MCG_CTL:
1184 if (!(mcg_cap & MCG_CTL_P))
1185 return 1;
1186 if (data != 0 && data != ~(u64)0)
1187 return -1;
1188 vcpu->arch.mcg_ctl = data;
1189 break;
1190 default:
1191 if (msr >= MSR_IA32_MC0_CTL &&
1192 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1193 u32 offset = msr - MSR_IA32_MC0_CTL;
1194 /* only 0 or all 1s can be written to IA32_MCi_CTL
1195 * some Linux kernels though clear bit 10 in bank 4 to
1196 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1197 * this to avoid an uncatched #GP in the guest
1199 if ((offset & 0x3) == 0 &&
1200 data != 0 && (data | (1 << 10)) != ~(u64)0)
1201 return -1;
1202 vcpu->arch.mce_banks[offset] = data;
1203 break;
1205 return 1;
1207 return 0;
1210 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1212 struct kvm *kvm = vcpu->kvm;
1213 int lm = is_long_mode(vcpu);
1214 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1215 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1216 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1217 : kvm->arch.xen_hvm_config.blob_size_32;
1218 u32 page_num = data & ~PAGE_MASK;
1219 u64 page_addr = data & PAGE_MASK;
1220 u8 *page;
1221 int r;
1223 r = -E2BIG;
1224 if (page_num >= blob_size)
1225 goto out;
1226 r = -ENOMEM;
1227 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1228 if (!page)
1229 goto out;
1230 r = -EFAULT;
1231 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1232 goto out_free;
1233 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1234 goto out_free;
1235 r = 0;
1236 out_free:
1237 kfree(page);
1238 out:
1239 return r;
1242 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1244 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1247 static bool kvm_hv_msr_partition_wide(u32 msr)
1249 bool r = false;
1250 switch (msr) {
1251 case HV_X64_MSR_GUEST_OS_ID:
1252 case HV_X64_MSR_HYPERCALL:
1253 r = true;
1254 break;
1257 return r;
1260 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1262 struct kvm *kvm = vcpu->kvm;
1264 switch (msr) {
1265 case HV_X64_MSR_GUEST_OS_ID:
1266 kvm->arch.hv_guest_os_id = data;
1267 /* setting guest os id to zero disables hypercall page */
1268 if (!kvm->arch.hv_guest_os_id)
1269 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1270 break;
1271 case HV_X64_MSR_HYPERCALL: {
1272 u64 gfn;
1273 unsigned long addr;
1274 u8 instructions[4];
1276 /* if guest os id is not set hypercall should remain disabled */
1277 if (!kvm->arch.hv_guest_os_id)
1278 break;
1279 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1280 kvm->arch.hv_hypercall = data;
1281 break;
1283 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1284 addr = gfn_to_hva(kvm, gfn);
1285 if (kvm_is_error_hva(addr))
1286 return 1;
1287 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1288 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1289 if (copy_to_user((void __user *)addr, instructions, 4))
1290 return 1;
1291 kvm->arch.hv_hypercall = data;
1292 break;
1294 default:
1295 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1296 "data 0x%llx\n", msr, data);
1297 return 1;
1299 return 0;
1302 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1304 switch (msr) {
1305 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1306 unsigned long addr;
1308 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1309 vcpu->arch.hv_vapic = data;
1310 break;
1312 addr = gfn_to_hva(vcpu->kvm, data >>
1313 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1314 if (kvm_is_error_hva(addr))
1315 return 1;
1316 if (clear_user((void __user *)addr, PAGE_SIZE))
1317 return 1;
1318 vcpu->arch.hv_vapic = data;
1319 break;
1321 case HV_X64_MSR_EOI:
1322 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1323 case HV_X64_MSR_ICR:
1324 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1325 case HV_X64_MSR_TPR:
1326 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1327 default:
1328 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1329 "data 0x%llx\n", msr, data);
1330 return 1;
1333 return 0;
1336 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1338 switch (msr) {
1339 case MSR_EFER:
1340 return set_efer(vcpu, data);
1341 case MSR_K7_HWCR:
1342 data &= ~(u64)0x40; /* ignore flush filter disable */
1343 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1344 if (data != 0) {
1345 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1346 data);
1347 return 1;
1349 break;
1350 case MSR_FAM10H_MMIO_CONF_BASE:
1351 if (data != 0) {
1352 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1353 "0x%llx\n", data);
1354 return 1;
1356 break;
1357 case MSR_AMD64_NB_CFG:
1358 break;
1359 case MSR_IA32_DEBUGCTLMSR:
1360 if (!data) {
1361 /* We support the non-activated case already */
1362 break;
1363 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1364 /* Values other than LBR and BTF are vendor-specific,
1365 thus reserved and should throw a #GP */
1366 return 1;
1368 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1369 __func__, data);
1370 break;
1371 case MSR_IA32_UCODE_REV:
1372 case MSR_IA32_UCODE_WRITE:
1373 case MSR_VM_HSAVE_PA:
1374 case MSR_AMD64_PATCH_LOADER:
1375 break;
1376 case 0x200 ... 0x2ff:
1377 return set_msr_mtrr(vcpu, msr, data);
1378 case MSR_IA32_APICBASE:
1379 kvm_set_apic_base(vcpu, data);
1380 break;
1381 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1382 return kvm_x2apic_msr_write(vcpu, msr, data);
1383 case MSR_IA32_MISC_ENABLE:
1384 vcpu->arch.ia32_misc_enable_msr = data;
1385 break;
1386 case MSR_KVM_WALL_CLOCK_NEW:
1387 case MSR_KVM_WALL_CLOCK:
1388 vcpu->kvm->arch.wall_clock = data;
1389 kvm_write_wall_clock(vcpu->kvm, data);
1390 break;
1391 case MSR_KVM_SYSTEM_TIME_NEW:
1392 case MSR_KVM_SYSTEM_TIME: {
1393 if (vcpu->arch.time_page) {
1394 kvm_release_page_dirty(vcpu->arch.time_page);
1395 vcpu->arch.time_page = NULL;
1398 vcpu->arch.time = data;
1400 /* we verify if the enable bit is set... */
1401 if (!(data & 1))
1402 break;
1404 /* ...but clean it before doing the actual write */
1405 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1407 vcpu->arch.time_page =
1408 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1410 if (is_error_page(vcpu->arch.time_page)) {
1411 kvm_release_page_clean(vcpu->arch.time_page);
1412 vcpu->arch.time_page = NULL;
1415 kvm_request_guest_time_update(vcpu);
1416 break;
1418 case MSR_IA32_MCG_CTL:
1419 case MSR_IA32_MCG_STATUS:
1420 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1421 return set_msr_mce(vcpu, msr, data);
1423 /* Performance counters are not protected by a CPUID bit,
1424 * so we should check all of them in the generic path for the sake of
1425 * cross vendor migration.
1426 * Writing a zero into the event select MSRs disables them,
1427 * which we perfectly emulate ;-). Any other value should be at least
1428 * reported, some guests depend on them.
1430 case MSR_P6_EVNTSEL0:
1431 case MSR_P6_EVNTSEL1:
1432 case MSR_K7_EVNTSEL0:
1433 case MSR_K7_EVNTSEL1:
1434 case MSR_K7_EVNTSEL2:
1435 case MSR_K7_EVNTSEL3:
1436 if (data != 0)
1437 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1438 "0x%x data 0x%llx\n", msr, data);
1439 break;
1440 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1441 * so we ignore writes to make it happy.
1443 case MSR_P6_PERFCTR0:
1444 case MSR_P6_PERFCTR1:
1445 case MSR_K7_PERFCTR0:
1446 case MSR_K7_PERFCTR1:
1447 case MSR_K7_PERFCTR2:
1448 case MSR_K7_PERFCTR3:
1449 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1450 "0x%x data 0x%llx\n", msr, data);
1451 break;
1452 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1453 if (kvm_hv_msr_partition_wide(msr)) {
1454 int r;
1455 mutex_lock(&vcpu->kvm->lock);
1456 r = set_msr_hyperv_pw(vcpu, msr, data);
1457 mutex_unlock(&vcpu->kvm->lock);
1458 return r;
1459 } else
1460 return set_msr_hyperv(vcpu, msr, data);
1461 break;
1462 default:
1463 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1464 return xen_hvm_config(vcpu, data);
1465 if (!ignore_msrs) {
1466 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1467 msr, data);
1468 return 1;
1469 } else {
1470 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1471 msr, data);
1472 break;
1475 return 0;
1477 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1481 * Reads an msr value (of 'msr_index') into 'pdata'.
1482 * Returns 0 on success, non-0 otherwise.
1483 * Assumes vcpu_load() was already called.
1485 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1487 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1490 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1492 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1494 if (!msr_mtrr_valid(msr))
1495 return 1;
1497 if (msr == MSR_MTRRdefType)
1498 *pdata = vcpu->arch.mtrr_state.def_type +
1499 (vcpu->arch.mtrr_state.enabled << 10);
1500 else if (msr == MSR_MTRRfix64K_00000)
1501 *pdata = p[0];
1502 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1503 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1504 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1505 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1506 else if (msr == MSR_IA32_CR_PAT)
1507 *pdata = vcpu->arch.pat;
1508 else { /* Variable MTRRs */
1509 int idx, is_mtrr_mask;
1510 u64 *pt;
1512 idx = (msr - 0x200) / 2;
1513 is_mtrr_mask = msr - 0x200 - 2 * idx;
1514 if (!is_mtrr_mask)
1515 pt =
1516 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1517 else
1518 pt =
1519 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1520 *pdata = *pt;
1523 return 0;
1526 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1528 u64 data;
1529 u64 mcg_cap = vcpu->arch.mcg_cap;
1530 unsigned bank_num = mcg_cap & 0xff;
1532 switch (msr) {
1533 case MSR_IA32_P5_MC_ADDR:
1534 case MSR_IA32_P5_MC_TYPE:
1535 data = 0;
1536 break;
1537 case MSR_IA32_MCG_CAP:
1538 data = vcpu->arch.mcg_cap;
1539 break;
1540 case MSR_IA32_MCG_CTL:
1541 if (!(mcg_cap & MCG_CTL_P))
1542 return 1;
1543 data = vcpu->arch.mcg_ctl;
1544 break;
1545 case MSR_IA32_MCG_STATUS:
1546 data = vcpu->arch.mcg_status;
1547 break;
1548 default:
1549 if (msr >= MSR_IA32_MC0_CTL &&
1550 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1551 u32 offset = msr - MSR_IA32_MC0_CTL;
1552 data = vcpu->arch.mce_banks[offset];
1553 break;
1555 return 1;
1557 *pdata = data;
1558 return 0;
1561 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1563 u64 data = 0;
1564 struct kvm *kvm = vcpu->kvm;
1566 switch (msr) {
1567 case HV_X64_MSR_GUEST_OS_ID:
1568 data = kvm->arch.hv_guest_os_id;
1569 break;
1570 case HV_X64_MSR_HYPERCALL:
1571 data = kvm->arch.hv_hypercall;
1572 break;
1573 default:
1574 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1575 return 1;
1578 *pdata = data;
1579 return 0;
1582 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1584 u64 data = 0;
1586 switch (msr) {
1587 case HV_X64_MSR_VP_INDEX: {
1588 int r;
1589 struct kvm_vcpu *v;
1590 kvm_for_each_vcpu(r, v, vcpu->kvm)
1591 if (v == vcpu)
1592 data = r;
1593 break;
1595 case HV_X64_MSR_EOI:
1596 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1597 case HV_X64_MSR_ICR:
1598 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1599 case HV_X64_MSR_TPR:
1600 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1601 default:
1602 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1603 return 1;
1605 *pdata = data;
1606 return 0;
1609 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1611 u64 data;
1613 switch (msr) {
1614 case MSR_IA32_PLATFORM_ID:
1615 case MSR_IA32_UCODE_REV:
1616 case MSR_IA32_EBL_CR_POWERON:
1617 case MSR_IA32_DEBUGCTLMSR:
1618 case MSR_IA32_LASTBRANCHFROMIP:
1619 case MSR_IA32_LASTBRANCHTOIP:
1620 case MSR_IA32_LASTINTFROMIP:
1621 case MSR_IA32_LASTINTTOIP:
1622 case MSR_K8_SYSCFG:
1623 case MSR_K7_HWCR:
1624 case MSR_VM_HSAVE_PA:
1625 case MSR_P6_PERFCTR0:
1626 case MSR_P6_PERFCTR1:
1627 case MSR_P6_EVNTSEL0:
1628 case MSR_P6_EVNTSEL1:
1629 case MSR_K7_EVNTSEL0:
1630 case MSR_K7_PERFCTR0:
1631 case MSR_K8_INT_PENDING_MSG:
1632 case MSR_AMD64_NB_CFG:
1633 case MSR_FAM10H_MMIO_CONF_BASE:
1634 data = 0;
1635 break;
1636 case MSR_MTRRcap:
1637 data = 0x500 | KVM_NR_VAR_MTRR;
1638 break;
1639 case 0x200 ... 0x2ff:
1640 return get_msr_mtrr(vcpu, msr, pdata);
1641 case 0xcd: /* fsb frequency */
1642 data = 3;
1643 break;
1644 case MSR_IA32_APICBASE:
1645 data = kvm_get_apic_base(vcpu);
1646 break;
1647 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1648 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1649 break;
1650 case MSR_IA32_MISC_ENABLE:
1651 data = vcpu->arch.ia32_misc_enable_msr;
1652 break;
1653 case MSR_IA32_PERF_STATUS:
1654 /* TSC increment by tick */
1655 data = 1000ULL;
1656 /* CPU multiplier */
1657 data |= (((uint64_t)4ULL) << 40);
1658 break;
1659 case MSR_EFER:
1660 data = vcpu->arch.efer;
1661 break;
1662 case MSR_KVM_WALL_CLOCK:
1663 case MSR_KVM_WALL_CLOCK_NEW:
1664 data = vcpu->kvm->arch.wall_clock;
1665 break;
1666 case MSR_KVM_SYSTEM_TIME:
1667 case MSR_KVM_SYSTEM_TIME_NEW:
1668 data = vcpu->arch.time;
1669 break;
1670 case MSR_IA32_P5_MC_ADDR:
1671 case MSR_IA32_P5_MC_TYPE:
1672 case MSR_IA32_MCG_CAP:
1673 case MSR_IA32_MCG_CTL:
1674 case MSR_IA32_MCG_STATUS:
1675 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1676 return get_msr_mce(vcpu, msr, pdata);
1677 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1678 if (kvm_hv_msr_partition_wide(msr)) {
1679 int r;
1680 mutex_lock(&vcpu->kvm->lock);
1681 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1682 mutex_unlock(&vcpu->kvm->lock);
1683 return r;
1684 } else
1685 return get_msr_hyperv(vcpu, msr, pdata);
1686 break;
1687 default:
1688 if (!ignore_msrs) {
1689 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1690 return 1;
1691 } else {
1692 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1693 data = 0;
1695 break;
1697 *pdata = data;
1698 return 0;
1700 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1703 * Read or write a bunch of msrs. All parameters are kernel addresses.
1705 * @return number of msrs set successfully.
1707 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1708 struct kvm_msr_entry *entries,
1709 int (*do_msr)(struct kvm_vcpu *vcpu,
1710 unsigned index, u64 *data))
1712 int i, idx;
1714 idx = srcu_read_lock(&vcpu->kvm->srcu);
1715 for (i = 0; i < msrs->nmsrs; ++i)
1716 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1717 break;
1718 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1720 return i;
1724 * Read or write a bunch of msrs. Parameters are user addresses.
1726 * @return number of msrs set successfully.
1728 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1729 int (*do_msr)(struct kvm_vcpu *vcpu,
1730 unsigned index, u64 *data),
1731 int writeback)
1733 struct kvm_msrs msrs;
1734 struct kvm_msr_entry *entries;
1735 int r, n;
1736 unsigned size;
1738 r = -EFAULT;
1739 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1740 goto out;
1742 r = -E2BIG;
1743 if (msrs.nmsrs >= MAX_IO_MSRS)
1744 goto out;
1746 r = -ENOMEM;
1747 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1748 entries = kmalloc(size, GFP_KERNEL);
1749 if (!entries)
1750 goto out;
1752 r = -EFAULT;
1753 if (copy_from_user(entries, user_msrs->entries, size))
1754 goto out_free;
1756 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1757 if (r < 0)
1758 goto out_free;
1760 r = -EFAULT;
1761 if (writeback && copy_to_user(user_msrs->entries, entries, size))
1762 goto out_free;
1764 r = n;
1766 out_free:
1767 kfree(entries);
1768 out:
1769 return r;
1772 int kvm_dev_ioctl_check_extension(long ext)
1774 int r;
1776 switch (ext) {
1777 case KVM_CAP_IRQCHIP:
1778 case KVM_CAP_HLT:
1779 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1780 case KVM_CAP_SET_TSS_ADDR:
1781 case KVM_CAP_EXT_CPUID:
1782 case KVM_CAP_CLOCKSOURCE:
1783 case KVM_CAP_PIT:
1784 case KVM_CAP_NOP_IO_DELAY:
1785 case KVM_CAP_MP_STATE:
1786 case KVM_CAP_SYNC_MMU:
1787 case KVM_CAP_REINJECT_CONTROL:
1788 case KVM_CAP_IRQ_INJECT_STATUS:
1789 case KVM_CAP_ASSIGN_DEV_IRQ:
1790 case KVM_CAP_IRQFD:
1791 case KVM_CAP_IOEVENTFD:
1792 case KVM_CAP_PIT2:
1793 case KVM_CAP_PIT_STATE2:
1794 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1795 case KVM_CAP_XEN_HVM:
1796 case KVM_CAP_ADJUST_CLOCK:
1797 case KVM_CAP_VCPU_EVENTS:
1798 case KVM_CAP_HYPERV:
1799 case KVM_CAP_HYPERV_VAPIC:
1800 case KVM_CAP_HYPERV_SPIN:
1801 case KVM_CAP_PCI_SEGMENT:
1802 case KVM_CAP_DEBUGREGS:
1803 case KVM_CAP_X86_ROBUST_SINGLESTEP:
1804 case KVM_CAP_XSAVE:
1805 r = 1;
1806 break;
1807 case KVM_CAP_COALESCED_MMIO:
1808 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1809 break;
1810 case KVM_CAP_VAPIC:
1811 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1812 break;
1813 case KVM_CAP_NR_VCPUS:
1814 r = KVM_MAX_VCPUS;
1815 break;
1816 case KVM_CAP_NR_MEMSLOTS:
1817 r = KVM_MEMORY_SLOTS;
1818 break;
1819 case KVM_CAP_PV_MMU: /* obsolete */
1820 r = 0;
1821 break;
1822 case KVM_CAP_IOMMU:
1823 r = iommu_found();
1824 break;
1825 case KVM_CAP_MCE:
1826 r = KVM_MAX_MCE_BANKS;
1827 break;
1828 case KVM_CAP_XCRS:
1829 r = cpu_has_xsave;
1830 break;
1831 default:
1832 r = 0;
1833 break;
1835 return r;
1839 long kvm_arch_dev_ioctl(struct file *filp,
1840 unsigned int ioctl, unsigned long arg)
1842 void __user *argp = (void __user *)arg;
1843 long r;
1845 switch (ioctl) {
1846 case KVM_GET_MSR_INDEX_LIST: {
1847 struct kvm_msr_list __user *user_msr_list = argp;
1848 struct kvm_msr_list msr_list;
1849 unsigned n;
1851 r = -EFAULT;
1852 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1853 goto out;
1854 n = msr_list.nmsrs;
1855 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1856 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1857 goto out;
1858 r = -E2BIG;
1859 if (n < msr_list.nmsrs)
1860 goto out;
1861 r = -EFAULT;
1862 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1863 num_msrs_to_save * sizeof(u32)))
1864 goto out;
1865 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1866 &emulated_msrs,
1867 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1868 goto out;
1869 r = 0;
1870 break;
1872 case KVM_GET_SUPPORTED_CPUID: {
1873 struct kvm_cpuid2 __user *cpuid_arg = argp;
1874 struct kvm_cpuid2 cpuid;
1876 r = -EFAULT;
1877 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1878 goto out;
1879 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1880 cpuid_arg->entries);
1881 if (r)
1882 goto out;
1884 r = -EFAULT;
1885 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1886 goto out;
1887 r = 0;
1888 break;
1890 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1891 u64 mce_cap;
1893 mce_cap = KVM_MCE_CAP_SUPPORTED;
1894 r = -EFAULT;
1895 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1896 goto out;
1897 r = 0;
1898 break;
1900 default:
1901 r = -EINVAL;
1903 out:
1904 return r;
1907 static void wbinvd_ipi(void *garbage)
1909 wbinvd();
1912 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1914 return vcpu->kvm->arch.iommu_domain &&
1915 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1918 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1920 /* Address WBINVD may be executed by guest */
1921 if (need_emulate_wbinvd(vcpu)) {
1922 if (kvm_x86_ops->has_wbinvd_exit())
1923 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1924 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1925 smp_call_function_single(vcpu->cpu,
1926 wbinvd_ipi, NULL, 1);
1929 kvm_x86_ops->vcpu_load(vcpu, cpu);
1930 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
1931 /* Make sure TSC doesn't go backwards */
1932 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
1933 native_read_tsc() - vcpu->arch.last_host_tsc;
1934 if (tsc_delta < 0)
1935 mark_tsc_unstable("KVM discovered backwards TSC");
1936 if (check_tsc_unstable())
1937 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
1938 kvm_migrate_timers(vcpu);
1939 vcpu->cpu = cpu;
1943 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1945 kvm_x86_ops->vcpu_put(vcpu);
1946 kvm_put_guest_fpu(vcpu);
1947 vcpu->arch.last_host_tsc = native_read_tsc();
1950 static int is_efer_nx(void)
1952 unsigned long long efer = 0;
1954 rdmsrl_safe(MSR_EFER, &efer);
1955 return efer & EFER_NX;
1958 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1960 int i;
1961 struct kvm_cpuid_entry2 *e, *entry;
1963 entry = NULL;
1964 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1965 e = &vcpu->arch.cpuid_entries[i];
1966 if (e->function == 0x80000001) {
1967 entry = e;
1968 break;
1971 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1972 entry->edx &= ~(1 << 20);
1973 printk(KERN_INFO "kvm: guest NX capability removed\n");
1977 /* when an old userspace process fills a new kernel module */
1978 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1979 struct kvm_cpuid *cpuid,
1980 struct kvm_cpuid_entry __user *entries)
1982 int r, i;
1983 struct kvm_cpuid_entry *cpuid_entries;
1985 r = -E2BIG;
1986 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1987 goto out;
1988 r = -ENOMEM;
1989 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1990 if (!cpuid_entries)
1991 goto out;
1992 r = -EFAULT;
1993 if (copy_from_user(cpuid_entries, entries,
1994 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1995 goto out_free;
1996 for (i = 0; i < cpuid->nent; i++) {
1997 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1998 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1999 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2000 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2001 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2002 vcpu->arch.cpuid_entries[i].index = 0;
2003 vcpu->arch.cpuid_entries[i].flags = 0;
2004 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2005 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2006 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2008 vcpu->arch.cpuid_nent = cpuid->nent;
2009 cpuid_fix_nx_cap(vcpu);
2010 r = 0;
2011 kvm_apic_set_version(vcpu);
2012 kvm_x86_ops->cpuid_update(vcpu);
2013 update_cpuid(vcpu);
2015 out_free:
2016 vfree(cpuid_entries);
2017 out:
2018 return r;
2021 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2022 struct kvm_cpuid2 *cpuid,
2023 struct kvm_cpuid_entry2 __user *entries)
2025 int r;
2027 r = -E2BIG;
2028 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2029 goto out;
2030 r = -EFAULT;
2031 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2032 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2033 goto out;
2034 vcpu->arch.cpuid_nent = cpuid->nent;
2035 kvm_apic_set_version(vcpu);
2036 kvm_x86_ops->cpuid_update(vcpu);
2037 update_cpuid(vcpu);
2038 return 0;
2040 out:
2041 return r;
2044 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2045 struct kvm_cpuid2 *cpuid,
2046 struct kvm_cpuid_entry2 __user *entries)
2048 int r;
2050 r = -E2BIG;
2051 if (cpuid->nent < vcpu->arch.cpuid_nent)
2052 goto out;
2053 r = -EFAULT;
2054 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2055 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2056 goto out;
2057 return 0;
2059 out:
2060 cpuid->nent = vcpu->arch.cpuid_nent;
2061 return r;
2064 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2065 u32 index)
2067 entry->function = function;
2068 entry->index = index;
2069 cpuid_count(entry->function, entry->index,
2070 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2071 entry->flags = 0;
2074 #define F(x) bit(X86_FEATURE_##x)
2076 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2077 u32 index, int *nent, int maxnent)
2079 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2080 #ifdef CONFIG_X86_64
2081 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2082 ? F(GBPAGES) : 0;
2083 unsigned f_lm = F(LM);
2084 #else
2085 unsigned f_gbpages = 0;
2086 unsigned f_lm = 0;
2087 #endif
2088 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2090 /* cpuid 1.edx */
2091 const u32 kvm_supported_word0_x86_features =
2092 F(FPU) | F(VME) | F(DE) | F(PSE) |
2093 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2094 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2095 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2096 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2097 0 /* Reserved, DS, ACPI */ | F(MMX) |
2098 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2099 0 /* HTT, TM, Reserved, PBE */;
2100 /* cpuid 0x80000001.edx */
2101 const u32 kvm_supported_word1_x86_features =
2102 F(FPU) | F(VME) | F(DE) | F(PSE) |
2103 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2104 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2105 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2106 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2107 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2108 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2109 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2110 /* cpuid 1.ecx */
2111 const u32 kvm_supported_word4_x86_features =
2112 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2113 0 /* DS-CPL, VMX, SMX, EST */ |
2114 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2115 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2116 0 /* Reserved, DCA */ | F(XMM4_1) |
2117 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2118 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2119 /* cpuid 0x80000001.ecx */
2120 const u32 kvm_supported_word6_x86_features =
2121 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
2122 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2123 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2124 0 /* SKINIT */ | 0 /* WDT */;
2126 /* all calls to cpuid_count() should be made on the same cpu */
2127 get_cpu();
2128 do_cpuid_1_ent(entry, function, index);
2129 ++*nent;
2131 switch (function) {
2132 case 0:
2133 entry->eax = min(entry->eax, (u32)0xd);
2134 break;
2135 case 1:
2136 entry->edx &= kvm_supported_word0_x86_features;
2137 entry->ecx &= kvm_supported_word4_x86_features;
2138 /* we support x2apic emulation even if host does not support
2139 * it since we emulate x2apic in software */
2140 entry->ecx |= F(X2APIC);
2141 break;
2142 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2143 * may return different values. This forces us to get_cpu() before
2144 * issuing the first command, and also to emulate this annoying behavior
2145 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2146 case 2: {
2147 int t, times = entry->eax & 0xff;
2149 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2150 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2151 for (t = 1; t < times && *nent < maxnent; ++t) {
2152 do_cpuid_1_ent(&entry[t], function, 0);
2153 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2154 ++*nent;
2156 break;
2158 /* function 4 and 0xb have additional index. */
2159 case 4: {
2160 int i, cache_type;
2162 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2163 /* read more entries until cache_type is zero */
2164 for (i = 1; *nent < maxnent; ++i) {
2165 cache_type = entry[i - 1].eax & 0x1f;
2166 if (!cache_type)
2167 break;
2168 do_cpuid_1_ent(&entry[i], function, i);
2169 entry[i].flags |=
2170 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2171 ++*nent;
2173 break;
2175 case 0xb: {
2176 int i, level_type;
2178 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2179 /* read more entries until level_type is zero */
2180 for (i = 1; *nent < maxnent; ++i) {
2181 level_type = entry[i - 1].ecx & 0xff00;
2182 if (!level_type)
2183 break;
2184 do_cpuid_1_ent(&entry[i], function, i);
2185 entry[i].flags |=
2186 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2187 ++*nent;
2189 break;
2191 case 0xd: {
2192 int i;
2194 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2195 for (i = 1; *nent < maxnent; ++i) {
2196 if (entry[i - 1].eax == 0 && i != 2)
2197 break;
2198 do_cpuid_1_ent(&entry[i], function, i);
2199 entry[i].flags |=
2200 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2201 ++*nent;
2203 break;
2205 case KVM_CPUID_SIGNATURE: {
2206 char signature[12] = "KVMKVMKVM\0\0";
2207 u32 *sigptr = (u32 *)signature;
2208 entry->eax = 0;
2209 entry->ebx = sigptr[0];
2210 entry->ecx = sigptr[1];
2211 entry->edx = sigptr[2];
2212 break;
2214 case KVM_CPUID_FEATURES:
2215 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2216 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2217 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2218 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2219 entry->ebx = 0;
2220 entry->ecx = 0;
2221 entry->edx = 0;
2222 break;
2223 case 0x80000000:
2224 entry->eax = min(entry->eax, 0x8000001a);
2225 break;
2226 case 0x80000001:
2227 entry->edx &= kvm_supported_word1_x86_features;
2228 entry->ecx &= kvm_supported_word6_x86_features;
2229 break;
2232 kvm_x86_ops->set_supported_cpuid(function, entry);
2234 put_cpu();
2237 #undef F
2239 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2240 struct kvm_cpuid_entry2 __user *entries)
2242 struct kvm_cpuid_entry2 *cpuid_entries;
2243 int limit, nent = 0, r = -E2BIG;
2244 u32 func;
2246 if (cpuid->nent < 1)
2247 goto out;
2248 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2249 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2250 r = -ENOMEM;
2251 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2252 if (!cpuid_entries)
2253 goto out;
2255 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2256 limit = cpuid_entries[0].eax;
2257 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2258 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2259 &nent, cpuid->nent);
2260 r = -E2BIG;
2261 if (nent >= cpuid->nent)
2262 goto out_free;
2264 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2265 limit = cpuid_entries[nent - 1].eax;
2266 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2267 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2268 &nent, cpuid->nent);
2272 r = -E2BIG;
2273 if (nent >= cpuid->nent)
2274 goto out_free;
2276 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2277 cpuid->nent);
2279 r = -E2BIG;
2280 if (nent >= cpuid->nent)
2281 goto out_free;
2283 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2284 cpuid->nent);
2286 r = -E2BIG;
2287 if (nent >= cpuid->nent)
2288 goto out_free;
2290 r = -EFAULT;
2291 if (copy_to_user(entries, cpuid_entries,
2292 nent * sizeof(struct kvm_cpuid_entry2)))
2293 goto out_free;
2294 cpuid->nent = nent;
2295 r = 0;
2297 out_free:
2298 vfree(cpuid_entries);
2299 out:
2300 return r;
2303 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2304 struct kvm_lapic_state *s)
2306 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2308 return 0;
2311 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2312 struct kvm_lapic_state *s)
2314 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2315 kvm_apic_post_state_restore(vcpu);
2316 update_cr8_intercept(vcpu);
2318 return 0;
2321 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2322 struct kvm_interrupt *irq)
2324 if (irq->irq < 0 || irq->irq >= 256)
2325 return -EINVAL;
2326 if (irqchip_in_kernel(vcpu->kvm))
2327 return -ENXIO;
2329 kvm_queue_interrupt(vcpu, irq->irq, false);
2331 return 0;
2334 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2336 kvm_inject_nmi(vcpu);
2338 return 0;
2341 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2342 struct kvm_tpr_access_ctl *tac)
2344 if (tac->flags)
2345 return -EINVAL;
2346 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2347 return 0;
2350 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2351 u64 mcg_cap)
2353 int r;
2354 unsigned bank_num = mcg_cap & 0xff, bank;
2356 r = -EINVAL;
2357 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2358 goto out;
2359 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2360 goto out;
2361 r = 0;
2362 vcpu->arch.mcg_cap = mcg_cap;
2363 /* Init IA32_MCG_CTL to all 1s */
2364 if (mcg_cap & MCG_CTL_P)
2365 vcpu->arch.mcg_ctl = ~(u64)0;
2366 /* Init IA32_MCi_CTL to all 1s */
2367 for (bank = 0; bank < bank_num; bank++)
2368 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2369 out:
2370 return r;
2373 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2374 struct kvm_x86_mce *mce)
2376 u64 mcg_cap = vcpu->arch.mcg_cap;
2377 unsigned bank_num = mcg_cap & 0xff;
2378 u64 *banks = vcpu->arch.mce_banks;
2380 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2381 return -EINVAL;
2383 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2384 * reporting is disabled
2386 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2387 vcpu->arch.mcg_ctl != ~(u64)0)
2388 return 0;
2389 banks += 4 * mce->bank;
2391 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2392 * reporting is disabled for the bank
2394 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2395 return 0;
2396 if (mce->status & MCI_STATUS_UC) {
2397 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2398 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2399 printk(KERN_DEBUG "kvm: set_mce: "
2400 "injects mce exception while "
2401 "previous one is in progress!\n");
2402 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2403 return 0;
2405 if (banks[1] & MCI_STATUS_VAL)
2406 mce->status |= MCI_STATUS_OVER;
2407 banks[2] = mce->addr;
2408 banks[3] = mce->misc;
2409 vcpu->arch.mcg_status = mce->mcg_status;
2410 banks[1] = mce->status;
2411 kvm_queue_exception(vcpu, MC_VECTOR);
2412 } else if (!(banks[1] & MCI_STATUS_VAL)
2413 || !(banks[1] & MCI_STATUS_UC)) {
2414 if (banks[1] & MCI_STATUS_VAL)
2415 mce->status |= MCI_STATUS_OVER;
2416 banks[2] = mce->addr;
2417 banks[3] = mce->misc;
2418 banks[1] = mce->status;
2419 } else
2420 banks[1] |= MCI_STATUS_OVER;
2421 return 0;
2424 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2425 struct kvm_vcpu_events *events)
2427 events->exception.injected =
2428 vcpu->arch.exception.pending &&
2429 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2430 events->exception.nr = vcpu->arch.exception.nr;
2431 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2432 events->exception.error_code = vcpu->arch.exception.error_code;
2434 events->interrupt.injected =
2435 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2436 events->interrupt.nr = vcpu->arch.interrupt.nr;
2437 events->interrupt.soft = 0;
2438 events->interrupt.shadow =
2439 kvm_x86_ops->get_interrupt_shadow(vcpu,
2440 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2442 events->nmi.injected = vcpu->arch.nmi_injected;
2443 events->nmi.pending = vcpu->arch.nmi_pending;
2444 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2446 events->sipi_vector = vcpu->arch.sipi_vector;
2448 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2449 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2450 | KVM_VCPUEVENT_VALID_SHADOW);
2453 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2454 struct kvm_vcpu_events *events)
2456 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2457 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2458 | KVM_VCPUEVENT_VALID_SHADOW))
2459 return -EINVAL;
2461 vcpu->arch.exception.pending = events->exception.injected;
2462 vcpu->arch.exception.nr = events->exception.nr;
2463 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2464 vcpu->arch.exception.error_code = events->exception.error_code;
2466 vcpu->arch.interrupt.pending = events->interrupt.injected;
2467 vcpu->arch.interrupt.nr = events->interrupt.nr;
2468 vcpu->arch.interrupt.soft = events->interrupt.soft;
2469 if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2470 kvm_pic_clear_isr_ack(vcpu->kvm);
2471 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2472 kvm_x86_ops->set_interrupt_shadow(vcpu,
2473 events->interrupt.shadow);
2475 vcpu->arch.nmi_injected = events->nmi.injected;
2476 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2477 vcpu->arch.nmi_pending = events->nmi.pending;
2478 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2480 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2481 vcpu->arch.sipi_vector = events->sipi_vector;
2483 return 0;
2486 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2487 struct kvm_debugregs *dbgregs)
2489 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2490 dbgregs->dr6 = vcpu->arch.dr6;
2491 dbgregs->dr7 = vcpu->arch.dr7;
2492 dbgregs->flags = 0;
2495 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2496 struct kvm_debugregs *dbgregs)
2498 if (dbgregs->flags)
2499 return -EINVAL;
2501 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2502 vcpu->arch.dr6 = dbgregs->dr6;
2503 vcpu->arch.dr7 = dbgregs->dr7;
2505 return 0;
2508 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2509 struct kvm_xsave *guest_xsave)
2511 if (cpu_has_xsave)
2512 memcpy(guest_xsave->region,
2513 &vcpu->arch.guest_fpu.state->xsave,
2514 xstate_size);
2515 else {
2516 memcpy(guest_xsave->region,
2517 &vcpu->arch.guest_fpu.state->fxsave,
2518 sizeof(struct i387_fxsave_struct));
2519 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2520 XSTATE_FPSSE;
2524 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2525 struct kvm_xsave *guest_xsave)
2527 u64 xstate_bv =
2528 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2530 if (cpu_has_xsave)
2531 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2532 guest_xsave->region, xstate_size);
2533 else {
2534 if (xstate_bv & ~XSTATE_FPSSE)
2535 return -EINVAL;
2536 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2537 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2539 return 0;
2542 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2543 struct kvm_xcrs *guest_xcrs)
2545 if (!cpu_has_xsave) {
2546 guest_xcrs->nr_xcrs = 0;
2547 return;
2550 guest_xcrs->nr_xcrs = 1;
2551 guest_xcrs->flags = 0;
2552 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2553 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2556 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2557 struct kvm_xcrs *guest_xcrs)
2559 int i, r = 0;
2561 if (!cpu_has_xsave)
2562 return -EINVAL;
2564 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2565 return -EINVAL;
2567 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2568 /* Only support XCR0 currently */
2569 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2570 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2571 guest_xcrs->xcrs[0].value);
2572 break;
2574 if (r)
2575 r = -EINVAL;
2576 return r;
2579 long kvm_arch_vcpu_ioctl(struct file *filp,
2580 unsigned int ioctl, unsigned long arg)
2582 struct kvm_vcpu *vcpu = filp->private_data;
2583 void __user *argp = (void __user *)arg;
2584 int r;
2585 union {
2586 struct kvm_lapic_state *lapic;
2587 struct kvm_xsave *xsave;
2588 struct kvm_xcrs *xcrs;
2589 void *buffer;
2590 } u;
2592 u.buffer = NULL;
2593 switch (ioctl) {
2594 case KVM_GET_LAPIC: {
2595 r = -EINVAL;
2596 if (!vcpu->arch.apic)
2597 goto out;
2598 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2600 r = -ENOMEM;
2601 if (!u.lapic)
2602 goto out;
2603 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2604 if (r)
2605 goto out;
2606 r = -EFAULT;
2607 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2608 goto out;
2609 r = 0;
2610 break;
2612 case KVM_SET_LAPIC: {
2613 r = -EINVAL;
2614 if (!vcpu->arch.apic)
2615 goto out;
2616 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2617 r = -ENOMEM;
2618 if (!u.lapic)
2619 goto out;
2620 r = -EFAULT;
2621 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2622 goto out;
2623 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2624 if (r)
2625 goto out;
2626 r = 0;
2627 break;
2629 case KVM_INTERRUPT: {
2630 struct kvm_interrupt irq;
2632 r = -EFAULT;
2633 if (copy_from_user(&irq, argp, sizeof irq))
2634 goto out;
2635 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2636 if (r)
2637 goto out;
2638 r = 0;
2639 break;
2641 case KVM_NMI: {
2642 r = kvm_vcpu_ioctl_nmi(vcpu);
2643 if (r)
2644 goto out;
2645 r = 0;
2646 break;
2648 case KVM_SET_CPUID: {
2649 struct kvm_cpuid __user *cpuid_arg = argp;
2650 struct kvm_cpuid cpuid;
2652 r = -EFAULT;
2653 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2654 goto out;
2655 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2656 if (r)
2657 goto out;
2658 break;
2660 case KVM_SET_CPUID2: {
2661 struct kvm_cpuid2 __user *cpuid_arg = argp;
2662 struct kvm_cpuid2 cpuid;
2664 r = -EFAULT;
2665 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2666 goto out;
2667 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2668 cpuid_arg->entries);
2669 if (r)
2670 goto out;
2671 break;
2673 case KVM_GET_CPUID2: {
2674 struct kvm_cpuid2 __user *cpuid_arg = argp;
2675 struct kvm_cpuid2 cpuid;
2677 r = -EFAULT;
2678 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2679 goto out;
2680 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2681 cpuid_arg->entries);
2682 if (r)
2683 goto out;
2684 r = -EFAULT;
2685 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2686 goto out;
2687 r = 0;
2688 break;
2690 case KVM_GET_MSRS:
2691 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2692 break;
2693 case KVM_SET_MSRS:
2694 r = msr_io(vcpu, argp, do_set_msr, 0);
2695 break;
2696 case KVM_TPR_ACCESS_REPORTING: {
2697 struct kvm_tpr_access_ctl tac;
2699 r = -EFAULT;
2700 if (copy_from_user(&tac, argp, sizeof tac))
2701 goto out;
2702 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2703 if (r)
2704 goto out;
2705 r = -EFAULT;
2706 if (copy_to_user(argp, &tac, sizeof tac))
2707 goto out;
2708 r = 0;
2709 break;
2711 case KVM_SET_VAPIC_ADDR: {
2712 struct kvm_vapic_addr va;
2714 r = -EINVAL;
2715 if (!irqchip_in_kernel(vcpu->kvm))
2716 goto out;
2717 r = -EFAULT;
2718 if (copy_from_user(&va, argp, sizeof va))
2719 goto out;
2720 r = 0;
2721 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2722 break;
2724 case KVM_X86_SETUP_MCE: {
2725 u64 mcg_cap;
2727 r = -EFAULT;
2728 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2729 goto out;
2730 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2731 break;
2733 case KVM_X86_SET_MCE: {
2734 struct kvm_x86_mce mce;
2736 r = -EFAULT;
2737 if (copy_from_user(&mce, argp, sizeof mce))
2738 goto out;
2739 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2740 break;
2742 case KVM_GET_VCPU_EVENTS: {
2743 struct kvm_vcpu_events events;
2745 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2747 r = -EFAULT;
2748 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2749 break;
2750 r = 0;
2751 break;
2753 case KVM_SET_VCPU_EVENTS: {
2754 struct kvm_vcpu_events events;
2756 r = -EFAULT;
2757 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2758 break;
2760 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2761 break;
2763 case KVM_GET_DEBUGREGS: {
2764 struct kvm_debugregs dbgregs;
2766 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2768 r = -EFAULT;
2769 if (copy_to_user(argp, &dbgregs,
2770 sizeof(struct kvm_debugregs)))
2771 break;
2772 r = 0;
2773 break;
2775 case KVM_SET_DEBUGREGS: {
2776 struct kvm_debugregs dbgregs;
2778 r = -EFAULT;
2779 if (copy_from_user(&dbgregs, argp,
2780 sizeof(struct kvm_debugregs)))
2781 break;
2783 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2784 break;
2786 case KVM_GET_XSAVE: {
2787 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2788 r = -ENOMEM;
2789 if (!u.xsave)
2790 break;
2792 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2794 r = -EFAULT;
2795 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2796 break;
2797 r = 0;
2798 break;
2800 case KVM_SET_XSAVE: {
2801 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2802 r = -ENOMEM;
2803 if (!u.xsave)
2804 break;
2806 r = -EFAULT;
2807 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2808 break;
2810 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2811 break;
2813 case KVM_GET_XCRS: {
2814 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2815 r = -ENOMEM;
2816 if (!u.xcrs)
2817 break;
2819 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2821 r = -EFAULT;
2822 if (copy_to_user(argp, u.xcrs,
2823 sizeof(struct kvm_xcrs)))
2824 break;
2825 r = 0;
2826 break;
2828 case KVM_SET_XCRS: {
2829 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2830 r = -ENOMEM;
2831 if (!u.xcrs)
2832 break;
2834 r = -EFAULT;
2835 if (copy_from_user(u.xcrs, argp,
2836 sizeof(struct kvm_xcrs)))
2837 break;
2839 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2840 break;
2842 default:
2843 r = -EINVAL;
2845 out:
2846 kfree(u.buffer);
2847 return r;
2850 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2852 int ret;
2854 if (addr > (unsigned int)(-3 * PAGE_SIZE))
2855 return -1;
2856 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2857 return ret;
2860 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2861 u64 ident_addr)
2863 kvm->arch.ept_identity_map_addr = ident_addr;
2864 return 0;
2867 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2868 u32 kvm_nr_mmu_pages)
2870 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2871 return -EINVAL;
2873 mutex_lock(&kvm->slots_lock);
2874 spin_lock(&kvm->mmu_lock);
2876 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2877 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2879 spin_unlock(&kvm->mmu_lock);
2880 mutex_unlock(&kvm->slots_lock);
2881 return 0;
2884 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2886 return kvm->arch.n_max_mmu_pages;
2889 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2891 int r;
2893 r = 0;
2894 switch (chip->chip_id) {
2895 case KVM_IRQCHIP_PIC_MASTER:
2896 memcpy(&chip->chip.pic,
2897 &pic_irqchip(kvm)->pics[0],
2898 sizeof(struct kvm_pic_state));
2899 break;
2900 case KVM_IRQCHIP_PIC_SLAVE:
2901 memcpy(&chip->chip.pic,
2902 &pic_irqchip(kvm)->pics[1],
2903 sizeof(struct kvm_pic_state));
2904 break;
2905 case KVM_IRQCHIP_IOAPIC:
2906 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2907 break;
2908 default:
2909 r = -EINVAL;
2910 break;
2912 return r;
2915 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2917 int r;
2919 r = 0;
2920 switch (chip->chip_id) {
2921 case KVM_IRQCHIP_PIC_MASTER:
2922 raw_spin_lock(&pic_irqchip(kvm)->lock);
2923 memcpy(&pic_irqchip(kvm)->pics[0],
2924 &chip->chip.pic,
2925 sizeof(struct kvm_pic_state));
2926 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2927 break;
2928 case KVM_IRQCHIP_PIC_SLAVE:
2929 raw_spin_lock(&pic_irqchip(kvm)->lock);
2930 memcpy(&pic_irqchip(kvm)->pics[1],
2931 &chip->chip.pic,
2932 sizeof(struct kvm_pic_state));
2933 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2934 break;
2935 case KVM_IRQCHIP_IOAPIC:
2936 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2937 break;
2938 default:
2939 r = -EINVAL;
2940 break;
2942 kvm_pic_update_irq(pic_irqchip(kvm));
2943 return r;
2946 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2948 int r = 0;
2950 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2951 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2952 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2953 return r;
2956 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2958 int r = 0;
2960 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2961 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2962 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2963 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2964 return r;
2967 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2969 int r = 0;
2971 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2972 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2973 sizeof(ps->channels));
2974 ps->flags = kvm->arch.vpit->pit_state.flags;
2975 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2976 return r;
2979 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2981 int r = 0, start = 0;
2982 u32 prev_legacy, cur_legacy;
2983 mutex_lock(&kvm->arch.vpit->pit_state.lock);
2984 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2985 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2986 if (!prev_legacy && cur_legacy)
2987 start = 1;
2988 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2989 sizeof(kvm->arch.vpit->pit_state.channels));
2990 kvm->arch.vpit->pit_state.flags = ps->flags;
2991 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2992 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2993 return r;
2996 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2997 struct kvm_reinject_control *control)
2999 if (!kvm->arch.vpit)
3000 return -ENXIO;
3001 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3002 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3003 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3004 return 0;
3008 * Get (and clear) the dirty memory log for a memory slot.
3010 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3011 struct kvm_dirty_log *log)
3013 int r, i;
3014 struct kvm_memory_slot *memslot;
3015 unsigned long n;
3016 unsigned long is_dirty = 0;
3018 mutex_lock(&kvm->slots_lock);
3020 r = -EINVAL;
3021 if (log->slot >= KVM_MEMORY_SLOTS)
3022 goto out;
3024 memslot = &kvm->memslots->memslots[log->slot];
3025 r = -ENOENT;
3026 if (!memslot->dirty_bitmap)
3027 goto out;
3029 n = kvm_dirty_bitmap_bytes(memslot);
3031 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3032 is_dirty = memslot->dirty_bitmap[i];
3034 /* If nothing is dirty, don't bother messing with page tables. */
3035 if (is_dirty) {
3036 struct kvm_memslots *slots, *old_slots;
3037 unsigned long *dirty_bitmap;
3039 spin_lock(&kvm->mmu_lock);
3040 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3041 spin_unlock(&kvm->mmu_lock);
3043 r = -ENOMEM;
3044 dirty_bitmap = vmalloc(n);
3045 if (!dirty_bitmap)
3046 goto out;
3047 memset(dirty_bitmap, 0, n);
3049 r = -ENOMEM;
3050 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3051 if (!slots) {
3052 vfree(dirty_bitmap);
3053 goto out;
3055 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3056 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3058 old_slots = kvm->memslots;
3059 rcu_assign_pointer(kvm->memslots, slots);
3060 synchronize_srcu_expedited(&kvm->srcu);
3061 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3062 kfree(old_slots);
3064 r = -EFAULT;
3065 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3066 vfree(dirty_bitmap);
3067 goto out;
3069 vfree(dirty_bitmap);
3070 } else {
3071 r = -EFAULT;
3072 if (clear_user(log->dirty_bitmap, n))
3073 goto out;
3076 r = 0;
3077 out:
3078 mutex_unlock(&kvm->slots_lock);
3079 return r;
3082 long kvm_arch_vm_ioctl(struct file *filp,
3083 unsigned int ioctl, unsigned long arg)
3085 struct kvm *kvm = filp->private_data;
3086 void __user *argp = (void __user *)arg;
3087 int r = -ENOTTY;
3089 * This union makes it completely explicit to gcc-3.x
3090 * that these two variables' stack usage should be
3091 * combined, not added together.
3093 union {
3094 struct kvm_pit_state ps;
3095 struct kvm_pit_state2 ps2;
3096 struct kvm_pit_config pit_config;
3097 } u;
3099 switch (ioctl) {
3100 case KVM_SET_TSS_ADDR:
3101 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3102 if (r < 0)
3103 goto out;
3104 break;
3105 case KVM_SET_IDENTITY_MAP_ADDR: {
3106 u64 ident_addr;
3108 r = -EFAULT;
3109 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3110 goto out;
3111 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3112 if (r < 0)
3113 goto out;
3114 break;
3116 case KVM_SET_NR_MMU_PAGES:
3117 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3118 if (r)
3119 goto out;
3120 break;
3121 case KVM_GET_NR_MMU_PAGES:
3122 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3123 break;
3124 case KVM_CREATE_IRQCHIP: {
3125 struct kvm_pic *vpic;
3127 mutex_lock(&kvm->lock);
3128 r = -EEXIST;
3129 if (kvm->arch.vpic)
3130 goto create_irqchip_unlock;
3131 r = -ENOMEM;
3132 vpic = kvm_create_pic(kvm);
3133 if (vpic) {
3134 r = kvm_ioapic_init(kvm);
3135 if (r) {
3136 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3137 &vpic->dev);
3138 kfree(vpic);
3139 goto create_irqchip_unlock;
3141 } else
3142 goto create_irqchip_unlock;
3143 smp_wmb();
3144 kvm->arch.vpic = vpic;
3145 smp_wmb();
3146 r = kvm_setup_default_irq_routing(kvm);
3147 if (r) {
3148 mutex_lock(&kvm->irq_lock);
3149 kvm_ioapic_destroy(kvm);
3150 kvm_destroy_pic(kvm);
3151 mutex_unlock(&kvm->irq_lock);
3153 create_irqchip_unlock:
3154 mutex_unlock(&kvm->lock);
3155 break;
3157 case KVM_CREATE_PIT:
3158 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3159 goto create_pit;
3160 case KVM_CREATE_PIT2:
3161 r = -EFAULT;
3162 if (copy_from_user(&u.pit_config, argp,
3163 sizeof(struct kvm_pit_config)))
3164 goto out;
3165 create_pit:
3166 mutex_lock(&kvm->slots_lock);
3167 r = -EEXIST;
3168 if (kvm->arch.vpit)
3169 goto create_pit_unlock;
3170 r = -ENOMEM;
3171 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3172 if (kvm->arch.vpit)
3173 r = 0;
3174 create_pit_unlock:
3175 mutex_unlock(&kvm->slots_lock);
3176 break;
3177 case KVM_IRQ_LINE_STATUS:
3178 case KVM_IRQ_LINE: {
3179 struct kvm_irq_level irq_event;
3181 r = -EFAULT;
3182 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3183 goto out;
3184 r = -ENXIO;
3185 if (irqchip_in_kernel(kvm)) {
3186 __s32 status;
3187 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3188 irq_event.irq, irq_event.level);
3189 if (ioctl == KVM_IRQ_LINE_STATUS) {
3190 r = -EFAULT;
3191 irq_event.status = status;
3192 if (copy_to_user(argp, &irq_event,
3193 sizeof irq_event))
3194 goto out;
3196 r = 0;
3198 break;
3200 case KVM_GET_IRQCHIP: {
3201 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3202 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3204 r = -ENOMEM;
3205 if (!chip)
3206 goto out;
3207 r = -EFAULT;
3208 if (copy_from_user(chip, argp, sizeof *chip))
3209 goto get_irqchip_out;
3210 r = -ENXIO;
3211 if (!irqchip_in_kernel(kvm))
3212 goto get_irqchip_out;
3213 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3214 if (r)
3215 goto get_irqchip_out;
3216 r = -EFAULT;
3217 if (copy_to_user(argp, chip, sizeof *chip))
3218 goto get_irqchip_out;
3219 r = 0;
3220 get_irqchip_out:
3221 kfree(chip);
3222 if (r)
3223 goto out;
3224 break;
3226 case KVM_SET_IRQCHIP: {
3227 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3228 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3230 r = -ENOMEM;
3231 if (!chip)
3232 goto out;
3233 r = -EFAULT;
3234 if (copy_from_user(chip, argp, sizeof *chip))
3235 goto set_irqchip_out;
3236 r = -ENXIO;
3237 if (!irqchip_in_kernel(kvm))
3238 goto set_irqchip_out;
3239 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3240 if (r)
3241 goto set_irqchip_out;
3242 r = 0;
3243 set_irqchip_out:
3244 kfree(chip);
3245 if (r)
3246 goto out;
3247 break;
3249 case KVM_GET_PIT: {
3250 r = -EFAULT;
3251 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3252 goto out;
3253 r = -ENXIO;
3254 if (!kvm->arch.vpit)
3255 goto out;
3256 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3257 if (r)
3258 goto out;
3259 r = -EFAULT;
3260 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3261 goto out;
3262 r = 0;
3263 break;
3265 case KVM_SET_PIT: {
3266 r = -EFAULT;
3267 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3268 goto out;
3269 r = -ENXIO;
3270 if (!kvm->arch.vpit)
3271 goto out;
3272 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3273 if (r)
3274 goto out;
3275 r = 0;
3276 break;
3278 case KVM_GET_PIT2: {
3279 r = -ENXIO;
3280 if (!kvm->arch.vpit)
3281 goto out;
3282 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3283 if (r)
3284 goto out;
3285 r = -EFAULT;
3286 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3287 goto out;
3288 r = 0;
3289 break;
3291 case KVM_SET_PIT2: {
3292 r = -EFAULT;
3293 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3294 goto out;
3295 r = -ENXIO;
3296 if (!kvm->arch.vpit)
3297 goto out;
3298 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3299 if (r)
3300 goto out;
3301 r = 0;
3302 break;
3304 case KVM_REINJECT_CONTROL: {
3305 struct kvm_reinject_control control;
3306 r = -EFAULT;
3307 if (copy_from_user(&control, argp, sizeof(control)))
3308 goto out;
3309 r = kvm_vm_ioctl_reinject(kvm, &control);
3310 if (r)
3311 goto out;
3312 r = 0;
3313 break;
3315 case KVM_XEN_HVM_CONFIG: {
3316 r = -EFAULT;
3317 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3318 sizeof(struct kvm_xen_hvm_config)))
3319 goto out;
3320 r = -EINVAL;
3321 if (kvm->arch.xen_hvm_config.flags)
3322 goto out;
3323 r = 0;
3324 break;
3326 case KVM_SET_CLOCK: {
3327 struct kvm_clock_data user_ns;
3328 u64 now_ns;
3329 s64 delta;
3331 r = -EFAULT;
3332 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3333 goto out;
3335 r = -EINVAL;
3336 if (user_ns.flags)
3337 goto out;
3339 r = 0;
3340 now_ns = get_kernel_ns();
3341 delta = user_ns.clock - now_ns;
3342 kvm->arch.kvmclock_offset = delta;
3343 break;
3345 case KVM_GET_CLOCK: {
3346 struct kvm_clock_data user_ns;
3347 u64 now_ns;
3349 now_ns = get_kernel_ns();
3350 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3351 user_ns.flags = 0;
3353 r = -EFAULT;
3354 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3355 goto out;
3356 r = 0;
3357 break;
3360 default:
3363 out:
3364 return r;
3367 static void kvm_init_msr_list(void)
3369 u32 dummy[2];
3370 unsigned i, j;
3372 /* skip the first msrs in the list. KVM-specific */
3373 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3374 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3375 continue;
3376 if (j < i)
3377 msrs_to_save[j] = msrs_to_save[i];
3378 j++;
3380 num_msrs_to_save = j;
3383 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3384 const void *v)
3386 if (vcpu->arch.apic &&
3387 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3388 return 0;
3390 return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3393 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3395 if (vcpu->arch.apic &&
3396 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3397 return 0;
3399 return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3402 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3403 struct kvm_segment *var, int seg)
3405 kvm_x86_ops->set_segment(vcpu, var, seg);
3408 void kvm_get_segment(struct kvm_vcpu *vcpu,
3409 struct kvm_segment *var, int seg)
3411 kvm_x86_ops->get_segment(vcpu, var, seg);
3414 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3416 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3417 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3420 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3422 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3423 access |= PFERR_FETCH_MASK;
3424 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3427 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3429 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3430 access |= PFERR_WRITE_MASK;
3431 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3434 /* uses this to access any guest's mapped memory without checking CPL */
3435 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3437 return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3440 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3441 struct kvm_vcpu *vcpu, u32 access,
3442 u32 *error)
3444 void *data = val;
3445 int r = X86EMUL_CONTINUE;
3447 while (bytes) {
3448 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3449 unsigned offset = addr & (PAGE_SIZE-1);
3450 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3451 int ret;
3453 if (gpa == UNMAPPED_GVA) {
3454 r = X86EMUL_PROPAGATE_FAULT;
3455 goto out;
3457 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3458 if (ret < 0) {
3459 r = X86EMUL_IO_NEEDED;
3460 goto out;
3463 bytes -= toread;
3464 data += toread;
3465 addr += toread;
3467 out:
3468 return r;
3471 /* used for instruction fetching */
3472 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3473 struct kvm_vcpu *vcpu, u32 *error)
3475 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3476 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3477 access | PFERR_FETCH_MASK, error);
3480 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3481 struct kvm_vcpu *vcpu, u32 *error)
3483 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3484 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3485 error);
3488 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3489 struct kvm_vcpu *vcpu, u32 *error)
3491 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3494 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3495 unsigned int bytes,
3496 struct kvm_vcpu *vcpu,
3497 u32 *error)
3499 void *data = val;
3500 int r = X86EMUL_CONTINUE;
3502 while (bytes) {
3503 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3504 PFERR_WRITE_MASK, error);
3505 unsigned offset = addr & (PAGE_SIZE-1);
3506 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3507 int ret;
3509 if (gpa == UNMAPPED_GVA) {
3510 r = X86EMUL_PROPAGATE_FAULT;
3511 goto out;
3513 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3514 if (ret < 0) {
3515 r = X86EMUL_IO_NEEDED;
3516 goto out;
3519 bytes -= towrite;
3520 data += towrite;
3521 addr += towrite;
3523 out:
3524 return r;
3527 static int emulator_read_emulated(unsigned long addr,
3528 void *val,
3529 unsigned int bytes,
3530 unsigned int *error_code,
3531 struct kvm_vcpu *vcpu)
3533 gpa_t gpa;
3535 if (vcpu->mmio_read_completed) {
3536 memcpy(val, vcpu->mmio_data, bytes);
3537 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3538 vcpu->mmio_phys_addr, *(u64 *)val);
3539 vcpu->mmio_read_completed = 0;
3540 return X86EMUL_CONTINUE;
3543 gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3545 if (gpa == UNMAPPED_GVA)
3546 return X86EMUL_PROPAGATE_FAULT;
3548 /* For APIC access vmexit */
3549 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3550 goto mmio;
3552 if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3553 == X86EMUL_CONTINUE)
3554 return X86EMUL_CONTINUE;
3556 mmio:
3558 * Is this MMIO handled locally?
3560 if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3561 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3562 return X86EMUL_CONTINUE;
3565 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3567 vcpu->mmio_needed = 1;
3568 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3569 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3570 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3571 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3573 return X86EMUL_IO_NEEDED;
3576 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3577 const void *val, int bytes)
3579 int ret;
3581 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3582 if (ret < 0)
3583 return 0;
3584 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3585 return 1;
3588 static int emulator_write_emulated_onepage(unsigned long addr,
3589 const void *val,
3590 unsigned int bytes,
3591 unsigned int *error_code,
3592 struct kvm_vcpu *vcpu)
3594 gpa_t gpa;
3596 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3598 if (gpa == UNMAPPED_GVA)
3599 return X86EMUL_PROPAGATE_FAULT;
3601 /* For APIC access vmexit */
3602 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3603 goto mmio;
3605 if (emulator_write_phys(vcpu, gpa, val, bytes))
3606 return X86EMUL_CONTINUE;
3608 mmio:
3609 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3611 * Is this MMIO handled locally?
3613 if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3614 return X86EMUL_CONTINUE;
3616 vcpu->mmio_needed = 1;
3617 vcpu->run->exit_reason = KVM_EXIT_MMIO;
3618 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3619 vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3620 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3621 memcpy(vcpu->run->mmio.data, val, bytes);
3623 return X86EMUL_CONTINUE;
3626 int emulator_write_emulated(unsigned long addr,
3627 const void *val,
3628 unsigned int bytes,
3629 unsigned int *error_code,
3630 struct kvm_vcpu *vcpu)
3632 /* Crossing a page boundary? */
3633 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3634 int rc, now;
3636 now = -addr & ~PAGE_MASK;
3637 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3638 vcpu);
3639 if (rc != X86EMUL_CONTINUE)
3640 return rc;
3641 addr += now;
3642 val += now;
3643 bytes -= now;
3645 return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3646 vcpu);
3649 #define CMPXCHG_TYPE(t, ptr, old, new) \
3650 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3652 #ifdef CONFIG_X86_64
3653 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3654 #else
3655 # define CMPXCHG64(ptr, old, new) \
3656 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3657 #endif
3659 static int emulator_cmpxchg_emulated(unsigned long addr,
3660 const void *old,
3661 const void *new,
3662 unsigned int bytes,
3663 unsigned int *error_code,
3664 struct kvm_vcpu *vcpu)
3666 gpa_t gpa;
3667 struct page *page;
3668 char *kaddr;
3669 bool exchanged;
3671 /* guests cmpxchg8b have to be emulated atomically */
3672 if (bytes > 8 || (bytes & (bytes - 1)))
3673 goto emul_write;
3675 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3677 if (gpa == UNMAPPED_GVA ||
3678 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3679 goto emul_write;
3681 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3682 goto emul_write;
3684 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3685 if (is_error_page(page)) {
3686 kvm_release_page_clean(page);
3687 goto emul_write;
3690 kaddr = kmap_atomic(page, KM_USER0);
3691 kaddr += offset_in_page(gpa);
3692 switch (bytes) {
3693 case 1:
3694 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3695 break;
3696 case 2:
3697 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3698 break;
3699 case 4:
3700 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3701 break;
3702 case 8:
3703 exchanged = CMPXCHG64(kaddr, old, new);
3704 break;
3705 default:
3706 BUG();
3708 kunmap_atomic(kaddr, KM_USER0);
3709 kvm_release_page_dirty(page);
3711 if (!exchanged)
3712 return X86EMUL_CMPXCHG_FAILED;
3714 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3716 return X86EMUL_CONTINUE;
3718 emul_write:
3719 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3721 return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3724 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3726 /* TODO: String I/O for in kernel device */
3727 int r;
3729 if (vcpu->arch.pio.in)
3730 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3731 vcpu->arch.pio.size, pd);
3732 else
3733 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3734 vcpu->arch.pio.port, vcpu->arch.pio.size,
3735 pd);
3736 return r;
3740 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3741 unsigned int count, struct kvm_vcpu *vcpu)
3743 if (vcpu->arch.pio.count)
3744 goto data_avail;
3746 trace_kvm_pio(1, port, size, 1);
3748 vcpu->arch.pio.port = port;
3749 vcpu->arch.pio.in = 1;
3750 vcpu->arch.pio.count = count;
3751 vcpu->arch.pio.size = size;
3753 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3754 data_avail:
3755 memcpy(val, vcpu->arch.pio_data, size * count);
3756 vcpu->arch.pio.count = 0;
3757 return 1;
3760 vcpu->run->exit_reason = KVM_EXIT_IO;
3761 vcpu->run->io.direction = KVM_EXIT_IO_IN;
3762 vcpu->run->io.size = size;
3763 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3764 vcpu->run->io.count = count;
3765 vcpu->run->io.port = port;
3767 return 0;
3770 static int emulator_pio_out_emulated(int size, unsigned short port,
3771 const void *val, unsigned int count,
3772 struct kvm_vcpu *vcpu)
3774 trace_kvm_pio(0, port, size, 1);
3776 vcpu->arch.pio.port = port;
3777 vcpu->arch.pio.in = 0;
3778 vcpu->arch.pio.count = count;
3779 vcpu->arch.pio.size = size;
3781 memcpy(vcpu->arch.pio_data, val, size * count);
3783 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3784 vcpu->arch.pio.count = 0;
3785 return 1;
3788 vcpu->run->exit_reason = KVM_EXIT_IO;
3789 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3790 vcpu->run->io.size = size;
3791 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3792 vcpu->run->io.count = count;
3793 vcpu->run->io.port = port;
3795 return 0;
3798 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3800 return kvm_x86_ops->get_segment_base(vcpu, seg);
3803 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3805 kvm_mmu_invlpg(vcpu, address);
3806 return X86EMUL_CONTINUE;
3809 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3811 if (!need_emulate_wbinvd(vcpu))
3812 return X86EMUL_CONTINUE;
3814 if (kvm_x86_ops->has_wbinvd_exit()) {
3815 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3816 wbinvd_ipi, NULL, 1);
3817 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3819 wbinvd();
3820 return X86EMUL_CONTINUE;
3822 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3824 int emulate_clts(struct kvm_vcpu *vcpu)
3826 kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3827 kvm_x86_ops->fpu_activate(vcpu);
3828 return X86EMUL_CONTINUE;
3831 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3833 return _kvm_get_dr(vcpu, dr, dest);
3836 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3839 return __kvm_set_dr(vcpu, dr, value);
3842 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3844 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3847 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3849 unsigned long value;
3851 switch (cr) {
3852 case 0:
3853 value = kvm_read_cr0(vcpu);
3854 break;
3855 case 2:
3856 value = vcpu->arch.cr2;
3857 break;
3858 case 3:
3859 value = vcpu->arch.cr3;
3860 break;
3861 case 4:
3862 value = kvm_read_cr4(vcpu);
3863 break;
3864 case 8:
3865 value = kvm_get_cr8(vcpu);
3866 break;
3867 default:
3868 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3869 return 0;
3872 return value;
3875 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3877 int res = 0;
3879 switch (cr) {
3880 case 0:
3881 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3882 break;
3883 case 2:
3884 vcpu->arch.cr2 = val;
3885 break;
3886 case 3:
3887 res = kvm_set_cr3(vcpu, val);
3888 break;
3889 case 4:
3890 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3891 break;
3892 case 8:
3893 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3894 break;
3895 default:
3896 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3897 res = -1;
3900 return res;
3903 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3905 return kvm_x86_ops->get_cpl(vcpu);
3908 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3910 kvm_x86_ops->get_gdt(vcpu, dt);
3913 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3915 kvm_x86_ops->get_idt(vcpu, dt);
3918 static unsigned long emulator_get_cached_segment_base(int seg,
3919 struct kvm_vcpu *vcpu)
3921 return get_segment_base(vcpu, seg);
3924 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3925 struct kvm_vcpu *vcpu)
3927 struct kvm_segment var;
3929 kvm_get_segment(vcpu, &var, seg);
3931 if (var.unusable)
3932 return false;
3934 if (var.g)
3935 var.limit >>= 12;
3936 set_desc_limit(desc, var.limit);
3937 set_desc_base(desc, (unsigned long)var.base);
3938 desc->type = var.type;
3939 desc->s = var.s;
3940 desc->dpl = var.dpl;
3941 desc->p = var.present;
3942 desc->avl = var.avl;
3943 desc->l = var.l;
3944 desc->d = var.db;
3945 desc->g = var.g;
3947 return true;
3950 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3951 struct kvm_vcpu *vcpu)
3953 struct kvm_segment var;
3955 /* needed to preserve selector */
3956 kvm_get_segment(vcpu, &var, seg);
3958 var.base = get_desc_base(desc);
3959 var.limit = get_desc_limit(desc);
3960 if (desc->g)
3961 var.limit = (var.limit << 12) | 0xfff;
3962 var.type = desc->type;
3963 var.present = desc->p;
3964 var.dpl = desc->dpl;
3965 var.db = desc->d;
3966 var.s = desc->s;
3967 var.l = desc->l;
3968 var.g = desc->g;
3969 var.avl = desc->avl;
3970 var.present = desc->p;
3971 var.unusable = !var.present;
3972 var.padding = 0;
3974 kvm_set_segment(vcpu, &var, seg);
3975 return;
3978 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3980 struct kvm_segment kvm_seg;
3982 kvm_get_segment(vcpu, &kvm_seg, seg);
3983 return kvm_seg.selector;
3986 static void emulator_set_segment_selector(u16 sel, int seg,
3987 struct kvm_vcpu *vcpu)
3989 struct kvm_segment kvm_seg;
3991 kvm_get_segment(vcpu, &kvm_seg, seg);
3992 kvm_seg.selector = sel;
3993 kvm_set_segment(vcpu, &kvm_seg, seg);
3996 static struct x86_emulate_ops emulate_ops = {
3997 .read_std = kvm_read_guest_virt_system,
3998 .write_std = kvm_write_guest_virt_system,
3999 .fetch = kvm_fetch_guest_virt,
4000 .read_emulated = emulator_read_emulated,
4001 .write_emulated = emulator_write_emulated,
4002 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4003 .pio_in_emulated = emulator_pio_in_emulated,
4004 .pio_out_emulated = emulator_pio_out_emulated,
4005 .get_cached_descriptor = emulator_get_cached_descriptor,
4006 .set_cached_descriptor = emulator_set_cached_descriptor,
4007 .get_segment_selector = emulator_get_segment_selector,
4008 .set_segment_selector = emulator_set_segment_selector,
4009 .get_cached_segment_base = emulator_get_cached_segment_base,
4010 .get_gdt = emulator_get_gdt,
4011 .get_idt = emulator_get_idt,
4012 .get_cr = emulator_get_cr,
4013 .set_cr = emulator_set_cr,
4014 .cpl = emulator_get_cpl,
4015 .get_dr = emulator_get_dr,
4016 .set_dr = emulator_set_dr,
4017 .set_msr = kvm_set_msr,
4018 .get_msr = kvm_get_msr,
4021 static void cache_all_regs(struct kvm_vcpu *vcpu)
4023 kvm_register_read(vcpu, VCPU_REGS_RAX);
4024 kvm_register_read(vcpu, VCPU_REGS_RSP);
4025 kvm_register_read(vcpu, VCPU_REGS_RIP);
4026 vcpu->arch.regs_dirty = ~0;
4029 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4031 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4033 * an sti; sti; sequence only disable interrupts for the first
4034 * instruction. So, if the last instruction, be it emulated or
4035 * not, left the system with the INT_STI flag enabled, it
4036 * means that the last instruction is an sti. We should not
4037 * leave the flag on in this case. The same goes for mov ss
4039 if (!(int_shadow & mask))
4040 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4043 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4045 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4046 if (ctxt->exception == PF_VECTOR)
4047 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
4048 else if (ctxt->error_code_valid)
4049 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4050 else
4051 kvm_queue_exception(vcpu, ctxt->exception);
4054 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4056 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4057 int cs_db, cs_l;
4059 cache_all_regs(vcpu);
4061 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4063 vcpu->arch.emulate_ctxt.vcpu = vcpu;
4064 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4065 vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4066 vcpu->arch.emulate_ctxt.mode =
4067 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4068 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4069 ? X86EMUL_MODE_VM86 : cs_l
4070 ? X86EMUL_MODE_PROT64 : cs_db
4071 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4072 memset(c, 0, sizeof(struct decode_cache));
4073 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4076 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4078 ++vcpu->stat.insn_emulation_fail;
4079 trace_kvm_emulate_insn_failed(vcpu);
4080 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4081 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4082 vcpu->run->internal.ndata = 0;
4083 kvm_queue_exception(vcpu, UD_VECTOR);
4084 return EMULATE_FAIL;
4087 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4089 gpa_t gpa;
4091 if (tdp_enabled)
4092 return false;
4095 * if emulation was due to access to shadowed page table
4096 * and it failed try to unshadow page and re-entetr the
4097 * guest to let CPU execute the instruction.
4099 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4100 return true;
4102 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4104 if (gpa == UNMAPPED_GVA)
4105 return true; /* let cpu generate fault */
4107 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4108 return true;
4110 return false;
4113 int emulate_instruction(struct kvm_vcpu *vcpu,
4114 unsigned long cr2,
4115 u16 error_code,
4116 int emulation_type)
4118 int r;
4119 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4121 kvm_clear_exception_queue(vcpu);
4122 vcpu->arch.mmio_fault_cr2 = cr2;
4124 * TODO: fix emulate.c to use guest_read/write_register
4125 * instead of direct ->regs accesses, can save hundred cycles
4126 * on Intel for instructions that don't read/change RSP, for
4127 * for example.
4129 cache_all_regs(vcpu);
4131 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4132 init_emulate_ctxt(vcpu);
4133 vcpu->arch.emulate_ctxt.interruptibility = 0;
4134 vcpu->arch.emulate_ctxt.exception = -1;
4135 vcpu->arch.emulate_ctxt.perm_ok = false;
4137 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4138 trace_kvm_emulate_insn_start(vcpu);
4140 /* Only allow emulation of specific instructions on #UD
4141 * (namely VMMCALL, sysenter, sysexit, syscall)*/
4142 if (emulation_type & EMULTYPE_TRAP_UD) {
4143 if (!c->twobyte)
4144 return EMULATE_FAIL;
4145 switch (c->b) {
4146 case 0x01: /* VMMCALL */
4147 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4148 return EMULATE_FAIL;
4149 break;
4150 case 0x34: /* sysenter */
4151 case 0x35: /* sysexit */
4152 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4153 return EMULATE_FAIL;
4154 break;
4155 case 0x05: /* syscall */
4156 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4157 return EMULATE_FAIL;
4158 break;
4159 default:
4160 return EMULATE_FAIL;
4163 if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4164 return EMULATE_FAIL;
4167 ++vcpu->stat.insn_emulation;
4168 if (r) {
4169 if (reexecute_instruction(vcpu, cr2))
4170 return EMULATE_DONE;
4171 if (emulation_type & EMULTYPE_SKIP)
4172 return EMULATE_FAIL;
4173 return handle_emulation_failure(vcpu);
4177 if (emulation_type & EMULTYPE_SKIP) {
4178 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4179 return EMULATE_DONE;
4182 /* this is needed for vmware backdor interface to work since it
4183 changes registers values during IO operation */
4184 memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4186 restart:
4187 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4189 if (r == EMULATION_FAILED) {
4190 if (reexecute_instruction(vcpu, cr2))
4191 return EMULATE_DONE;
4193 return handle_emulation_failure(vcpu);
4196 if (vcpu->arch.emulate_ctxt.exception >= 0) {
4197 inject_emulated_exception(vcpu);
4198 r = EMULATE_DONE;
4199 } else if (vcpu->arch.pio.count) {
4200 if (!vcpu->arch.pio.in)
4201 vcpu->arch.pio.count = 0;
4202 r = EMULATE_DO_MMIO;
4203 } else if (vcpu->mmio_needed) {
4204 if (vcpu->mmio_is_write)
4205 vcpu->mmio_needed = 0;
4206 r = EMULATE_DO_MMIO;
4207 } else if (r == EMULATION_RESTART)
4208 goto restart;
4209 else
4210 r = EMULATE_DONE;
4212 toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4213 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4214 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4215 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4217 return r;
4219 EXPORT_SYMBOL_GPL(emulate_instruction);
4221 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4223 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4224 int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4225 /* do not return to emulator after return from userspace */
4226 vcpu->arch.pio.count = 0;
4227 return ret;
4229 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4231 static void tsc_bad(void *info)
4233 __get_cpu_var(cpu_tsc_khz) = 0;
4236 static void tsc_khz_changed(void *data)
4238 struct cpufreq_freqs *freq = data;
4239 unsigned long khz = 0;
4241 if (data)
4242 khz = freq->new;
4243 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4244 khz = cpufreq_quick_get(raw_smp_processor_id());
4245 if (!khz)
4246 khz = tsc_khz;
4247 __get_cpu_var(cpu_tsc_khz) = khz;
4250 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4251 void *data)
4253 struct cpufreq_freqs *freq = data;
4254 struct kvm *kvm;
4255 struct kvm_vcpu *vcpu;
4256 int i, send_ipi = 0;
4259 * We allow guests to temporarily run on slowing clocks,
4260 * provided we notify them after, or to run on accelerating
4261 * clocks, provided we notify them before. Thus time never
4262 * goes backwards.
4264 * However, we have a problem. We can't atomically update
4265 * the frequency of a given CPU from this function; it is
4266 * merely a notifier, which can be called from any CPU.
4267 * Changing the TSC frequency at arbitrary points in time
4268 * requires a recomputation of local variables related to
4269 * the TSC for each VCPU. We must flag these local variables
4270 * to be updated and be sure the update takes place with the
4271 * new frequency before any guests proceed.
4273 * Unfortunately, the combination of hotplug CPU and frequency
4274 * change creates an intractable locking scenario; the order
4275 * of when these callouts happen is undefined with respect to
4276 * CPU hotplug, and they can race with each other. As such,
4277 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4278 * undefined; you can actually have a CPU frequency change take
4279 * place in between the computation of X and the setting of the
4280 * variable. To protect against this problem, all updates of
4281 * the per_cpu tsc_khz variable are done in an interrupt
4282 * protected IPI, and all callers wishing to update the value
4283 * must wait for a synchronous IPI to complete (which is trivial
4284 * if the caller is on the CPU already). This establishes the
4285 * necessary total order on variable updates.
4287 * Note that because a guest time update may take place
4288 * anytime after the setting of the VCPU's request bit, the
4289 * correct TSC value must be set before the request. However,
4290 * to ensure the update actually makes it to any guest which
4291 * starts running in hardware virtualization between the set
4292 * and the acquisition of the spinlock, we must also ping the
4293 * CPU after setting the request bit.
4297 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4298 return 0;
4299 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4300 return 0;
4302 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4304 spin_lock(&kvm_lock);
4305 list_for_each_entry(kvm, &vm_list, vm_list) {
4306 kvm_for_each_vcpu(i, vcpu, kvm) {
4307 if (vcpu->cpu != freq->cpu)
4308 continue;
4309 if (!kvm_request_guest_time_update(vcpu))
4310 continue;
4311 if (vcpu->cpu != smp_processor_id())
4312 send_ipi = 1;
4315 spin_unlock(&kvm_lock);
4317 if (freq->old < freq->new && send_ipi) {
4319 * We upscale the frequency. Must make the guest
4320 * doesn't see old kvmclock values while running with
4321 * the new frequency, otherwise we risk the guest sees
4322 * time go backwards.
4324 * In case we update the frequency for another cpu
4325 * (which might be in guest context) send an interrupt
4326 * to kick the cpu out of guest context. Next time
4327 * guest context is entered kvmclock will be updated,
4328 * so the guest will not see stale values.
4330 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4332 return 0;
4335 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4336 .notifier_call = kvmclock_cpufreq_notifier
4339 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4340 unsigned long action, void *hcpu)
4342 unsigned int cpu = (unsigned long)hcpu;
4344 switch (action) {
4345 case CPU_ONLINE:
4346 case CPU_DOWN_FAILED:
4347 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4348 break;
4349 case CPU_DOWN_PREPARE:
4350 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4351 break;
4353 return NOTIFY_OK;
4356 static struct notifier_block kvmclock_cpu_notifier_block = {
4357 .notifier_call = kvmclock_cpu_notifier,
4358 .priority = -INT_MAX
4361 static void kvm_timer_init(void)
4363 int cpu;
4365 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4366 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4367 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4368 CPUFREQ_TRANSITION_NOTIFIER);
4370 for_each_online_cpu(cpu)
4371 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4374 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4376 static int kvm_is_in_guest(void)
4378 return percpu_read(current_vcpu) != NULL;
4381 static int kvm_is_user_mode(void)
4383 int user_mode = 3;
4385 if (percpu_read(current_vcpu))
4386 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4388 return user_mode != 0;
4391 static unsigned long kvm_get_guest_ip(void)
4393 unsigned long ip = 0;
4395 if (percpu_read(current_vcpu))
4396 ip = kvm_rip_read(percpu_read(current_vcpu));
4398 return ip;
4401 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4402 .is_in_guest = kvm_is_in_guest,
4403 .is_user_mode = kvm_is_user_mode,
4404 .get_guest_ip = kvm_get_guest_ip,
4407 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4409 percpu_write(current_vcpu, vcpu);
4411 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4413 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4415 percpu_write(current_vcpu, NULL);
4417 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4419 int kvm_arch_init(void *opaque)
4421 int r;
4422 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4424 if (kvm_x86_ops) {
4425 printk(KERN_ERR "kvm: already loaded the other module\n");
4426 r = -EEXIST;
4427 goto out;
4430 if (!ops->cpu_has_kvm_support()) {
4431 printk(KERN_ERR "kvm: no hardware support\n");
4432 r = -EOPNOTSUPP;
4433 goto out;
4435 if (ops->disabled_by_bios()) {
4436 printk(KERN_ERR "kvm: disabled by bios\n");
4437 r = -EOPNOTSUPP;
4438 goto out;
4441 r = kvm_mmu_module_init();
4442 if (r)
4443 goto out;
4445 kvm_init_msr_list();
4447 kvm_x86_ops = ops;
4448 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4449 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4450 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4451 PT_DIRTY_MASK, PT64_NX_MASK, 0);
4453 kvm_timer_init();
4455 perf_register_guest_info_callbacks(&kvm_guest_cbs);
4457 if (cpu_has_xsave)
4458 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4460 return 0;
4462 out:
4463 return r;
4466 void kvm_arch_exit(void)
4468 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4470 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4471 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4472 CPUFREQ_TRANSITION_NOTIFIER);
4473 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4474 kvm_x86_ops = NULL;
4475 kvm_mmu_module_exit();
4478 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4480 ++vcpu->stat.halt_exits;
4481 if (irqchip_in_kernel(vcpu->kvm)) {
4482 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4483 return 1;
4484 } else {
4485 vcpu->run->exit_reason = KVM_EXIT_HLT;
4486 return 0;
4489 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4491 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4492 unsigned long a1)
4494 if (is_long_mode(vcpu))
4495 return a0;
4496 else
4497 return a0 | ((gpa_t)a1 << 32);
4500 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4502 u64 param, ingpa, outgpa, ret;
4503 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4504 bool fast, longmode;
4505 int cs_db, cs_l;
4508 * hypercall generates UD from non zero cpl and real mode
4509 * per HYPER-V spec
4511 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4512 kvm_queue_exception(vcpu, UD_VECTOR);
4513 return 0;
4516 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4517 longmode = is_long_mode(vcpu) && cs_l == 1;
4519 if (!longmode) {
4520 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4521 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4522 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4523 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4524 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4525 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4527 #ifdef CONFIG_X86_64
4528 else {
4529 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4530 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4531 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4533 #endif
4535 code = param & 0xffff;
4536 fast = (param >> 16) & 0x1;
4537 rep_cnt = (param >> 32) & 0xfff;
4538 rep_idx = (param >> 48) & 0xfff;
4540 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4542 switch (code) {
4543 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4544 kvm_vcpu_on_spin(vcpu);
4545 break;
4546 default:
4547 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4548 break;
4551 ret = res | (((u64)rep_done & 0xfff) << 32);
4552 if (longmode) {
4553 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4554 } else {
4555 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4556 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4559 return 1;
4562 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4564 unsigned long nr, a0, a1, a2, a3, ret;
4565 int r = 1;
4567 if (kvm_hv_hypercall_enabled(vcpu->kvm))
4568 return kvm_hv_hypercall(vcpu);
4570 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4571 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4572 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4573 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4574 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4576 trace_kvm_hypercall(nr, a0, a1, a2, a3);
4578 if (!is_long_mode(vcpu)) {
4579 nr &= 0xFFFFFFFF;
4580 a0 &= 0xFFFFFFFF;
4581 a1 &= 0xFFFFFFFF;
4582 a2 &= 0xFFFFFFFF;
4583 a3 &= 0xFFFFFFFF;
4586 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4587 ret = -KVM_EPERM;
4588 goto out;
4591 switch (nr) {
4592 case KVM_HC_VAPIC_POLL_IRQ:
4593 ret = 0;
4594 break;
4595 case KVM_HC_MMU_OP:
4596 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4597 break;
4598 default:
4599 ret = -KVM_ENOSYS;
4600 break;
4602 out:
4603 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4604 ++vcpu->stat.hypercalls;
4605 return r;
4607 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4609 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4611 char instruction[3];
4612 unsigned long rip = kvm_rip_read(vcpu);
4615 * Blow out the MMU to ensure that no other VCPU has an active mapping
4616 * to ensure that the updated hypercall appears atomically across all
4617 * VCPUs.
4619 kvm_mmu_zap_all(vcpu->kvm);
4621 kvm_x86_ops->patch_hypercall(vcpu, instruction);
4623 return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4626 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4628 struct desc_ptr dt = { limit, base };
4630 kvm_x86_ops->set_gdt(vcpu, &dt);
4633 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4635 struct desc_ptr dt = { limit, base };
4637 kvm_x86_ops->set_idt(vcpu, &dt);
4640 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4642 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4643 int j, nent = vcpu->arch.cpuid_nent;
4645 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4646 /* when no next entry is found, the current entry[i] is reselected */
4647 for (j = i + 1; ; j = (j + 1) % nent) {
4648 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4649 if (ej->function == e->function) {
4650 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4651 return j;
4654 return 0; /* silence gcc, even though control never reaches here */
4657 /* find an entry with matching function, matching index (if needed), and that
4658 * should be read next (if it's stateful) */
4659 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4660 u32 function, u32 index)
4662 if (e->function != function)
4663 return 0;
4664 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4665 return 0;
4666 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4667 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4668 return 0;
4669 return 1;
4672 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4673 u32 function, u32 index)
4675 int i;
4676 struct kvm_cpuid_entry2 *best = NULL;
4678 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4679 struct kvm_cpuid_entry2 *e;
4681 e = &vcpu->arch.cpuid_entries[i];
4682 if (is_matching_cpuid_entry(e, function, index)) {
4683 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4684 move_to_next_stateful_cpuid_entry(vcpu, i);
4685 best = e;
4686 break;
4689 * Both basic or both extended?
4691 if (((e->function ^ function) & 0x80000000) == 0)
4692 if (!best || e->function > best->function)
4693 best = e;
4695 return best;
4697 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4699 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4701 struct kvm_cpuid_entry2 *best;
4703 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4704 if (!best || best->eax < 0x80000008)
4705 goto not_found;
4706 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4707 if (best)
4708 return best->eax & 0xff;
4709 not_found:
4710 return 36;
4713 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4715 u32 function, index;
4716 struct kvm_cpuid_entry2 *best;
4718 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4719 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4720 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4721 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4722 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4723 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4724 best = kvm_find_cpuid_entry(vcpu, function, index);
4725 if (best) {
4726 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4727 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4728 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4729 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4731 kvm_x86_ops->skip_emulated_instruction(vcpu);
4732 trace_kvm_cpuid(function,
4733 kvm_register_read(vcpu, VCPU_REGS_RAX),
4734 kvm_register_read(vcpu, VCPU_REGS_RBX),
4735 kvm_register_read(vcpu, VCPU_REGS_RCX),
4736 kvm_register_read(vcpu, VCPU_REGS_RDX));
4738 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4741 * Check if userspace requested an interrupt window, and that the
4742 * interrupt window is open.
4744 * No need to exit to userspace if we already have an interrupt queued.
4746 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4748 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4749 vcpu->run->request_interrupt_window &&
4750 kvm_arch_interrupt_allowed(vcpu));
4753 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4755 struct kvm_run *kvm_run = vcpu->run;
4757 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4758 kvm_run->cr8 = kvm_get_cr8(vcpu);
4759 kvm_run->apic_base = kvm_get_apic_base(vcpu);
4760 if (irqchip_in_kernel(vcpu->kvm))
4761 kvm_run->ready_for_interrupt_injection = 1;
4762 else
4763 kvm_run->ready_for_interrupt_injection =
4764 kvm_arch_interrupt_allowed(vcpu) &&
4765 !kvm_cpu_has_interrupt(vcpu) &&
4766 !kvm_event_needs_reinjection(vcpu);
4769 static void vapic_enter(struct kvm_vcpu *vcpu)
4771 struct kvm_lapic *apic = vcpu->arch.apic;
4772 struct page *page;
4774 if (!apic || !apic->vapic_addr)
4775 return;
4777 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4779 vcpu->arch.apic->vapic_page = page;
4782 static void vapic_exit(struct kvm_vcpu *vcpu)
4784 struct kvm_lapic *apic = vcpu->arch.apic;
4785 int idx;
4787 if (!apic || !apic->vapic_addr)
4788 return;
4790 idx = srcu_read_lock(&vcpu->kvm->srcu);
4791 kvm_release_page_dirty(apic->vapic_page);
4792 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4793 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4796 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4798 int max_irr, tpr;
4800 if (!kvm_x86_ops->update_cr8_intercept)
4801 return;
4803 if (!vcpu->arch.apic)
4804 return;
4806 if (!vcpu->arch.apic->vapic_addr)
4807 max_irr = kvm_lapic_find_highest_irr(vcpu);
4808 else
4809 max_irr = -1;
4811 if (max_irr != -1)
4812 max_irr >>= 4;
4814 tpr = kvm_lapic_get_cr8(vcpu);
4816 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4819 static void inject_pending_event(struct kvm_vcpu *vcpu)
4821 /* try to reinject previous events if any */
4822 if (vcpu->arch.exception.pending) {
4823 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4824 vcpu->arch.exception.has_error_code,
4825 vcpu->arch.exception.error_code);
4826 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4827 vcpu->arch.exception.has_error_code,
4828 vcpu->arch.exception.error_code,
4829 vcpu->arch.exception.reinject);
4830 return;
4833 if (vcpu->arch.nmi_injected) {
4834 kvm_x86_ops->set_nmi(vcpu);
4835 return;
4838 if (vcpu->arch.interrupt.pending) {
4839 kvm_x86_ops->set_irq(vcpu);
4840 return;
4843 /* try to inject new event if pending */
4844 if (vcpu->arch.nmi_pending) {
4845 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4846 vcpu->arch.nmi_pending = false;
4847 vcpu->arch.nmi_injected = true;
4848 kvm_x86_ops->set_nmi(vcpu);
4850 } else if (kvm_cpu_has_interrupt(vcpu)) {
4851 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4852 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4853 false);
4854 kvm_x86_ops->set_irq(vcpu);
4859 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4861 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4862 !vcpu->guest_xcr0_loaded) {
4863 /* kvm_set_xcr() also depends on this */
4864 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4865 vcpu->guest_xcr0_loaded = 1;
4869 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4871 if (vcpu->guest_xcr0_loaded) {
4872 if (vcpu->arch.xcr0 != host_xcr0)
4873 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4874 vcpu->guest_xcr0_loaded = 0;
4878 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4880 int r;
4881 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4882 vcpu->run->request_interrupt_window;
4884 if (vcpu->requests) {
4885 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4886 kvm_mmu_unload(vcpu);
4887 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4888 __kvm_migrate_timers(vcpu);
4889 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
4890 r = kvm_write_guest_time(vcpu);
4891 if (unlikely(r))
4892 goto out;
4894 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4895 kvm_mmu_sync_roots(vcpu);
4896 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4897 kvm_x86_ops->tlb_flush(vcpu);
4898 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4899 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4900 r = 0;
4901 goto out;
4903 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4904 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4905 r = 0;
4906 goto out;
4908 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4909 vcpu->fpu_active = 0;
4910 kvm_x86_ops->fpu_deactivate(vcpu);
4914 r = kvm_mmu_reload(vcpu);
4915 if (unlikely(r))
4916 goto out;
4918 preempt_disable();
4920 kvm_x86_ops->prepare_guest_switch(vcpu);
4921 if (vcpu->fpu_active)
4922 kvm_load_guest_fpu(vcpu);
4923 kvm_load_guest_xcr0(vcpu);
4925 atomic_set(&vcpu->guest_mode, 1);
4926 smp_wmb();
4928 local_irq_disable();
4930 if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4931 || need_resched() || signal_pending(current)) {
4932 atomic_set(&vcpu->guest_mode, 0);
4933 smp_wmb();
4934 local_irq_enable();
4935 preempt_enable();
4936 r = 1;
4937 goto out;
4940 inject_pending_event(vcpu);
4942 /* enable NMI/IRQ window open exits if needed */
4943 if (vcpu->arch.nmi_pending)
4944 kvm_x86_ops->enable_nmi_window(vcpu);
4945 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4946 kvm_x86_ops->enable_irq_window(vcpu);
4948 if (kvm_lapic_enabled(vcpu)) {
4949 update_cr8_intercept(vcpu);
4950 kvm_lapic_sync_to_vapic(vcpu);
4953 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4955 kvm_guest_enter();
4957 if (unlikely(vcpu->arch.switch_db_regs)) {
4958 set_debugreg(0, 7);
4959 set_debugreg(vcpu->arch.eff_db[0], 0);
4960 set_debugreg(vcpu->arch.eff_db[1], 1);
4961 set_debugreg(vcpu->arch.eff_db[2], 2);
4962 set_debugreg(vcpu->arch.eff_db[3], 3);
4965 trace_kvm_entry(vcpu->vcpu_id);
4966 kvm_x86_ops->run(vcpu);
4969 * If the guest has used debug registers, at least dr7
4970 * will be disabled while returning to the host.
4971 * If we don't have active breakpoints in the host, we don't
4972 * care about the messed up debug address registers. But if
4973 * we have some of them active, restore the old state.
4975 if (hw_breakpoint_active())
4976 hw_breakpoint_restore();
4978 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
4980 atomic_set(&vcpu->guest_mode, 0);
4981 smp_wmb();
4982 local_irq_enable();
4984 ++vcpu->stat.exits;
4987 * We must have an instruction between local_irq_enable() and
4988 * kvm_guest_exit(), so the timer interrupt isn't delayed by
4989 * the interrupt shadow. The stat.exits increment will do nicely.
4990 * But we need to prevent reordering, hence this barrier():
4992 barrier();
4994 kvm_guest_exit();
4996 preempt_enable();
4998 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5001 * Profile KVM exit RIPs:
5003 if (unlikely(prof_on == KVM_PROFILING)) {
5004 unsigned long rip = kvm_rip_read(vcpu);
5005 profile_hit(KVM_PROFILING, (void *)rip);
5009 kvm_lapic_sync_from_vapic(vcpu);
5011 r = kvm_x86_ops->handle_exit(vcpu);
5012 out:
5013 return r;
5017 static int __vcpu_run(struct kvm_vcpu *vcpu)
5019 int r;
5020 struct kvm *kvm = vcpu->kvm;
5022 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5023 pr_debug("vcpu %d received sipi with vector # %x\n",
5024 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5025 kvm_lapic_reset(vcpu);
5026 r = kvm_arch_vcpu_reset(vcpu);
5027 if (r)
5028 return r;
5029 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5032 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5033 vapic_enter(vcpu);
5035 r = 1;
5036 while (r > 0) {
5037 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5038 r = vcpu_enter_guest(vcpu);
5039 else {
5040 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5041 kvm_vcpu_block(vcpu);
5042 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5043 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5045 switch(vcpu->arch.mp_state) {
5046 case KVM_MP_STATE_HALTED:
5047 vcpu->arch.mp_state =
5048 KVM_MP_STATE_RUNNABLE;
5049 case KVM_MP_STATE_RUNNABLE:
5050 break;
5051 case KVM_MP_STATE_SIPI_RECEIVED:
5052 default:
5053 r = -EINTR;
5054 break;
5059 if (r <= 0)
5060 break;
5062 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5063 if (kvm_cpu_has_pending_timer(vcpu))
5064 kvm_inject_pending_timer_irqs(vcpu);
5066 if (dm_request_for_irq_injection(vcpu)) {
5067 r = -EINTR;
5068 vcpu->run->exit_reason = KVM_EXIT_INTR;
5069 ++vcpu->stat.request_irq_exits;
5071 if (signal_pending(current)) {
5072 r = -EINTR;
5073 vcpu->run->exit_reason = KVM_EXIT_INTR;
5074 ++vcpu->stat.signal_exits;
5076 if (need_resched()) {
5077 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5078 kvm_resched(vcpu);
5079 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5083 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5085 vapic_exit(vcpu);
5087 return r;
5090 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5092 int r;
5093 sigset_t sigsaved;
5095 if (vcpu->sigset_active)
5096 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5098 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5099 kvm_vcpu_block(vcpu);
5100 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5101 r = -EAGAIN;
5102 goto out;
5105 /* re-sync apic's tpr */
5106 if (!irqchip_in_kernel(vcpu->kvm))
5107 kvm_set_cr8(vcpu, kvm_run->cr8);
5109 if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5110 if (vcpu->mmio_needed) {
5111 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5112 vcpu->mmio_read_completed = 1;
5113 vcpu->mmio_needed = 0;
5115 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5116 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5117 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5118 if (r != EMULATE_DONE) {
5119 r = 0;
5120 goto out;
5123 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5124 kvm_register_write(vcpu, VCPU_REGS_RAX,
5125 kvm_run->hypercall.ret);
5127 r = __vcpu_run(vcpu);
5129 out:
5130 post_kvm_run_save(vcpu);
5131 if (vcpu->sigset_active)
5132 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5134 return r;
5137 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5139 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5140 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5141 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5142 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5143 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5144 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5145 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5146 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5147 #ifdef CONFIG_X86_64
5148 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5149 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5150 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5151 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5152 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5153 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5154 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5155 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5156 #endif
5158 regs->rip = kvm_rip_read(vcpu);
5159 regs->rflags = kvm_get_rflags(vcpu);
5161 return 0;
5164 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5166 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5167 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5168 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5169 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5170 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5171 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5172 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5173 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5174 #ifdef CONFIG_X86_64
5175 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5176 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5177 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5178 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5179 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5180 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5181 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5182 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5183 #endif
5185 kvm_rip_write(vcpu, regs->rip);
5186 kvm_set_rflags(vcpu, regs->rflags);
5188 vcpu->arch.exception.pending = false;
5190 return 0;
5193 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5195 struct kvm_segment cs;
5197 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5198 *db = cs.db;
5199 *l = cs.l;
5201 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5203 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5204 struct kvm_sregs *sregs)
5206 struct desc_ptr dt;
5208 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5209 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5210 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5211 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5212 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5213 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5215 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5216 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5218 kvm_x86_ops->get_idt(vcpu, &dt);
5219 sregs->idt.limit = dt.size;
5220 sregs->idt.base = dt.address;
5221 kvm_x86_ops->get_gdt(vcpu, &dt);
5222 sregs->gdt.limit = dt.size;
5223 sregs->gdt.base = dt.address;
5225 sregs->cr0 = kvm_read_cr0(vcpu);
5226 sregs->cr2 = vcpu->arch.cr2;
5227 sregs->cr3 = vcpu->arch.cr3;
5228 sregs->cr4 = kvm_read_cr4(vcpu);
5229 sregs->cr8 = kvm_get_cr8(vcpu);
5230 sregs->efer = vcpu->arch.efer;
5231 sregs->apic_base = kvm_get_apic_base(vcpu);
5233 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5235 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5236 set_bit(vcpu->arch.interrupt.nr,
5237 (unsigned long *)sregs->interrupt_bitmap);
5239 return 0;
5242 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5243 struct kvm_mp_state *mp_state)
5245 mp_state->mp_state = vcpu->arch.mp_state;
5246 return 0;
5249 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5250 struct kvm_mp_state *mp_state)
5252 vcpu->arch.mp_state = mp_state->mp_state;
5253 return 0;
5256 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5257 bool has_error_code, u32 error_code)
5259 struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5260 int ret;
5262 init_emulate_ctxt(vcpu);
5264 ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5265 tss_selector, reason, has_error_code,
5266 error_code);
5268 if (ret)
5269 return EMULATE_FAIL;
5271 memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5272 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5273 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5274 return EMULATE_DONE;
5276 EXPORT_SYMBOL_GPL(kvm_task_switch);
5278 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5279 struct kvm_sregs *sregs)
5281 int mmu_reset_needed = 0;
5282 int pending_vec, max_bits;
5283 struct desc_ptr dt;
5285 dt.size = sregs->idt.limit;
5286 dt.address = sregs->idt.base;
5287 kvm_x86_ops->set_idt(vcpu, &dt);
5288 dt.size = sregs->gdt.limit;
5289 dt.address = sregs->gdt.base;
5290 kvm_x86_ops->set_gdt(vcpu, &dt);
5292 vcpu->arch.cr2 = sregs->cr2;
5293 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5294 vcpu->arch.cr3 = sregs->cr3;
5296 kvm_set_cr8(vcpu, sregs->cr8);
5298 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5299 kvm_x86_ops->set_efer(vcpu, sregs->efer);
5300 kvm_set_apic_base(vcpu, sregs->apic_base);
5302 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5303 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5304 vcpu->arch.cr0 = sregs->cr0;
5306 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5307 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5308 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5309 load_pdptrs(vcpu, vcpu->arch.cr3);
5310 mmu_reset_needed = 1;
5313 if (mmu_reset_needed)
5314 kvm_mmu_reset_context(vcpu);
5316 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5317 pending_vec = find_first_bit(
5318 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5319 if (pending_vec < max_bits) {
5320 kvm_queue_interrupt(vcpu, pending_vec, false);
5321 pr_debug("Set back pending irq %d\n", pending_vec);
5322 if (irqchip_in_kernel(vcpu->kvm))
5323 kvm_pic_clear_isr_ack(vcpu->kvm);
5326 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5327 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5328 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5329 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5330 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5331 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5333 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5334 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5336 update_cr8_intercept(vcpu);
5338 /* Older userspace won't unhalt the vcpu on reset. */
5339 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5340 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5341 !is_protmode(vcpu))
5342 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5344 return 0;
5347 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5348 struct kvm_guest_debug *dbg)
5350 unsigned long rflags;
5351 int i, r;
5353 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5354 r = -EBUSY;
5355 if (vcpu->arch.exception.pending)
5356 goto out;
5357 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5358 kvm_queue_exception(vcpu, DB_VECTOR);
5359 else
5360 kvm_queue_exception(vcpu, BP_VECTOR);
5364 * Read rflags as long as potentially injected trace flags are still
5365 * filtered out.
5367 rflags = kvm_get_rflags(vcpu);
5369 vcpu->guest_debug = dbg->control;
5370 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5371 vcpu->guest_debug = 0;
5373 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5374 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5375 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5376 vcpu->arch.switch_db_regs =
5377 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5378 } else {
5379 for (i = 0; i < KVM_NR_DB_REGS; i++)
5380 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5381 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5384 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5385 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5386 get_segment_base(vcpu, VCPU_SREG_CS);
5389 * Trigger an rflags update that will inject or remove the trace
5390 * flags.
5392 kvm_set_rflags(vcpu, rflags);
5394 kvm_x86_ops->set_guest_debug(vcpu, dbg);
5396 r = 0;
5398 out:
5400 return r;
5404 * Translate a guest virtual address to a guest physical address.
5406 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5407 struct kvm_translation *tr)
5409 unsigned long vaddr = tr->linear_address;
5410 gpa_t gpa;
5411 int idx;
5413 idx = srcu_read_lock(&vcpu->kvm->srcu);
5414 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5415 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5416 tr->physical_address = gpa;
5417 tr->valid = gpa != UNMAPPED_GVA;
5418 tr->writeable = 1;
5419 tr->usermode = 0;
5421 return 0;
5424 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5426 struct i387_fxsave_struct *fxsave =
5427 &vcpu->arch.guest_fpu.state->fxsave;
5429 memcpy(fpu->fpr, fxsave->st_space, 128);
5430 fpu->fcw = fxsave->cwd;
5431 fpu->fsw = fxsave->swd;
5432 fpu->ftwx = fxsave->twd;
5433 fpu->last_opcode = fxsave->fop;
5434 fpu->last_ip = fxsave->rip;
5435 fpu->last_dp = fxsave->rdp;
5436 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5438 return 0;
5441 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5443 struct i387_fxsave_struct *fxsave =
5444 &vcpu->arch.guest_fpu.state->fxsave;
5446 memcpy(fxsave->st_space, fpu->fpr, 128);
5447 fxsave->cwd = fpu->fcw;
5448 fxsave->swd = fpu->fsw;
5449 fxsave->twd = fpu->ftwx;
5450 fxsave->fop = fpu->last_opcode;
5451 fxsave->rip = fpu->last_ip;
5452 fxsave->rdp = fpu->last_dp;
5453 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5455 return 0;
5458 int fx_init(struct kvm_vcpu *vcpu)
5460 int err;
5462 err = fpu_alloc(&vcpu->arch.guest_fpu);
5463 if (err)
5464 return err;
5466 fpu_finit(&vcpu->arch.guest_fpu);
5469 * Ensure guest xcr0 is valid for loading
5471 vcpu->arch.xcr0 = XSTATE_FP;
5473 vcpu->arch.cr0 |= X86_CR0_ET;
5475 return 0;
5477 EXPORT_SYMBOL_GPL(fx_init);
5479 static void fx_free(struct kvm_vcpu *vcpu)
5481 fpu_free(&vcpu->arch.guest_fpu);
5484 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5486 if (vcpu->guest_fpu_loaded)
5487 return;
5490 * Restore all possible states in the guest,
5491 * and assume host would use all available bits.
5492 * Guest xcr0 would be loaded later.
5494 kvm_put_guest_xcr0(vcpu);
5495 vcpu->guest_fpu_loaded = 1;
5496 unlazy_fpu(current);
5497 fpu_restore_checking(&vcpu->arch.guest_fpu);
5498 trace_kvm_fpu(1);
5501 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5503 kvm_put_guest_xcr0(vcpu);
5505 if (!vcpu->guest_fpu_loaded)
5506 return;
5508 vcpu->guest_fpu_loaded = 0;
5509 fpu_save_init(&vcpu->arch.guest_fpu);
5510 ++vcpu->stat.fpu_reload;
5511 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5512 trace_kvm_fpu(0);
5515 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5517 if (vcpu->arch.time_page) {
5518 kvm_release_page_dirty(vcpu->arch.time_page);
5519 vcpu->arch.time_page = NULL;
5522 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5523 fx_free(vcpu);
5524 kvm_x86_ops->vcpu_free(vcpu);
5527 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5528 unsigned int id)
5530 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5531 printk_once(KERN_WARNING
5532 "kvm: SMP vm created on host with unstable TSC; "
5533 "guest TSC will not be reliable\n");
5534 return kvm_x86_ops->vcpu_create(kvm, id);
5537 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5539 int r;
5541 vcpu->arch.mtrr_state.have_fixed = 1;
5542 vcpu_load(vcpu);
5543 r = kvm_arch_vcpu_reset(vcpu);
5544 if (r == 0)
5545 r = kvm_mmu_setup(vcpu);
5546 vcpu_put(vcpu);
5547 if (r < 0)
5548 goto free_vcpu;
5550 return 0;
5551 free_vcpu:
5552 kvm_x86_ops->vcpu_free(vcpu);
5553 return r;
5556 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5558 vcpu_load(vcpu);
5559 kvm_mmu_unload(vcpu);
5560 vcpu_put(vcpu);
5562 fx_free(vcpu);
5563 kvm_x86_ops->vcpu_free(vcpu);
5566 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5568 vcpu->arch.nmi_pending = false;
5569 vcpu->arch.nmi_injected = false;
5571 vcpu->arch.switch_db_regs = 0;
5572 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5573 vcpu->arch.dr6 = DR6_FIXED_1;
5574 vcpu->arch.dr7 = DR7_FIXED_1;
5576 return kvm_x86_ops->vcpu_reset(vcpu);
5579 int kvm_arch_hardware_enable(void *garbage)
5581 struct kvm *kvm;
5582 struct kvm_vcpu *vcpu;
5583 int i;
5585 kvm_shared_msr_cpu_online();
5586 list_for_each_entry(kvm, &vm_list, vm_list)
5587 kvm_for_each_vcpu(i, vcpu, kvm)
5588 if (vcpu->cpu == smp_processor_id())
5589 kvm_request_guest_time_update(vcpu);
5590 return kvm_x86_ops->hardware_enable(garbage);
5593 void kvm_arch_hardware_disable(void *garbage)
5595 kvm_x86_ops->hardware_disable(garbage);
5596 drop_user_return_notifiers(garbage);
5599 int kvm_arch_hardware_setup(void)
5601 return kvm_x86_ops->hardware_setup();
5604 void kvm_arch_hardware_unsetup(void)
5606 kvm_x86_ops->hardware_unsetup();
5609 void kvm_arch_check_processor_compat(void *rtn)
5611 kvm_x86_ops->check_processor_compatibility(rtn);
5614 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5616 struct page *page;
5617 struct kvm *kvm;
5618 int r;
5620 BUG_ON(vcpu->kvm == NULL);
5621 kvm = vcpu->kvm;
5623 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5624 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5625 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5626 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5627 else
5628 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5630 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5631 if (!page) {
5632 r = -ENOMEM;
5633 goto fail;
5635 vcpu->arch.pio_data = page_address(page);
5637 r = kvm_mmu_create(vcpu);
5638 if (r < 0)
5639 goto fail_free_pio_data;
5641 if (irqchip_in_kernel(kvm)) {
5642 r = kvm_create_lapic(vcpu);
5643 if (r < 0)
5644 goto fail_mmu_destroy;
5647 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5648 GFP_KERNEL);
5649 if (!vcpu->arch.mce_banks) {
5650 r = -ENOMEM;
5651 goto fail_free_lapic;
5653 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5655 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5656 goto fail_free_mce_banks;
5658 return 0;
5659 fail_free_mce_banks:
5660 kfree(vcpu->arch.mce_banks);
5661 fail_free_lapic:
5662 kvm_free_lapic(vcpu);
5663 fail_mmu_destroy:
5664 kvm_mmu_destroy(vcpu);
5665 fail_free_pio_data:
5666 free_page((unsigned long)vcpu->arch.pio_data);
5667 fail:
5668 return r;
5671 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5673 int idx;
5675 kfree(vcpu->arch.mce_banks);
5676 kvm_free_lapic(vcpu);
5677 idx = srcu_read_lock(&vcpu->kvm->srcu);
5678 kvm_mmu_destroy(vcpu);
5679 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5680 free_page((unsigned long)vcpu->arch.pio_data);
5683 struct kvm *kvm_arch_create_vm(void)
5685 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5687 if (!kvm)
5688 return ERR_PTR(-ENOMEM);
5690 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5691 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5693 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5694 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5696 spin_lock_init(&kvm->arch.tsc_write_lock);
5698 return kvm;
5701 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5703 vcpu_load(vcpu);
5704 kvm_mmu_unload(vcpu);
5705 vcpu_put(vcpu);
5708 static void kvm_free_vcpus(struct kvm *kvm)
5710 unsigned int i;
5711 struct kvm_vcpu *vcpu;
5714 * Unpin any mmu pages first.
5716 kvm_for_each_vcpu(i, vcpu, kvm)
5717 kvm_unload_vcpu_mmu(vcpu);
5718 kvm_for_each_vcpu(i, vcpu, kvm)
5719 kvm_arch_vcpu_free(vcpu);
5721 mutex_lock(&kvm->lock);
5722 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5723 kvm->vcpus[i] = NULL;
5725 atomic_set(&kvm->online_vcpus, 0);
5726 mutex_unlock(&kvm->lock);
5729 void kvm_arch_sync_events(struct kvm *kvm)
5731 kvm_free_all_assigned_devices(kvm);
5732 kvm_free_pit(kvm);
5735 void kvm_arch_destroy_vm(struct kvm *kvm)
5737 kvm_iommu_unmap_guest(kvm);
5738 kfree(kvm->arch.vpic);
5739 kfree(kvm->arch.vioapic);
5740 kvm_free_vcpus(kvm);
5741 kvm_free_physmem(kvm);
5742 if (kvm->arch.apic_access_page)
5743 put_page(kvm->arch.apic_access_page);
5744 if (kvm->arch.ept_identity_pagetable)
5745 put_page(kvm->arch.ept_identity_pagetable);
5746 cleanup_srcu_struct(&kvm->srcu);
5747 kfree(kvm);
5750 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5751 struct kvm_memory_slot *memslot,
5752 struct kvm_memory_slot old,
5753 struct kvm_userspace_memory_region *mem,
5754 int user_alloc)
5756 int npages = memslot->npages;
5757 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5759 /* Prevent internal slot pages from being moved by fork()/COW. */
5760 if (memslot->id >= KVM_MEMORY_SLOTS)
5761 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5763 /*To keep backward compatibility with older userspace,
5764 *x86 needs to hanlde !user_alloc case.
5766 if (!user_alloc) {
5767 if (npages && !old.rmap) {
5768 unsigned long userspace_addr;
5770 down_write(&current->mm->mmap_sem);
5771 userspace_addr = do_mmap(NULL, 0,
5772 npages * PAGE_SIZE,
5773 PROT_READ | PROT_WRITE,
5774 map_flags,
5776 up_write(&current->mm->mmap_sem);
5778 if (IS_ERR((void *)userspace_addr))
5779 return PTR_ERR((void *)userspace_addr);
5781 memslot->userspace_addr = userspace_addr;
5786 return 0;
5789 void kvm_arch_commit_memory_region(struct kvm *kvm,
5790 struct kvm_userspace_memory_region *mem,
5791 struct kvm_memory_slot old,
5792 int user_alloc)
5795 int npages = mem->memory_size >> PAGE_SHIFT;
5797 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5798 int ret;
5800 down_write(&current->mm->mmap_sem);
5801 ret = do_munmap(current->mm, old.userspace_addr,
5802 old.npages * PAGE_SIZE);
5803 up_write(&current->mm->mmap_sem);
5804 if (ret < 0)
5805 printk(KERN_WARNING
5806 "kvm_vm_ioctl_set_memory_region: "
5807 "failed to munmap memory\n");
5810 spin_lock(&kvm->mmu_lock);
5811 if (!kvm->arch.n_requested_mmu_pages) {
5812 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5813 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5816 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5817 spin_unlock(&kvm->mmu_lock);
5820 void kvm_arch_flush_shadow(struct kvm *kvm)
5822 kvm_mmu_zap_all(kvm);
5823 kvm_reload_remote_mmus(kvm);
5826 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5828 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5829 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5830 || vcpu->arch.nmi_pending ||
5831 (kvm_arch_interrupt_allowed(vcpu) &&
5832 kvm_cpu_has_interrupt(vcpu));
5835 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5837 int me;
5838 int cpu = vcpu->cpu;
5840 if (waitqueue_active(&vcpu->wq)) {
5841 wake_up_interruptible(&vcpu->wq);
5842 ++vcpu->stat.halt_wakeup;
5845 me = get_cpu();
5846 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5847 if (atomic_xchg(&vcpu->guest_mode, 0))
5848 smp_send_reschedule(cpu);
5849 put_cpu();
5852 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5854 return kvm_x86_ops->interrupt_allowed(vcpu);
5857 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5859 unsigned long current_rip = kvm_rip_read(vcpu) +
5860 get_segment_base(vcpu, VCPU_SREG_CS);
5862 return current_rip == linear_rip;
5864 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5866 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5868 unsigned long rflags;
5870 rflags = kvm_x86_ops->get_rflags(vcpu);
5871 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5872 rflags &= ~X86_EFLAGS_TF;
5873 return rflags;
5875 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5877 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5879 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5880 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5881 rflags |= X86_EFLAGS_TF;
5882 kvm_x86_ops->set_rflags(vcpu, rflags);
5884 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);