net: dsa: mv88e6xxx: support VLAN filtering
[linux-2.6/btrfs-unstable.git] / mm / filemap.c
blob23edccecadb076700580b81ec40b9db713334960
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
44 * FIXME: remove all knowledge of the buffer layer from the core VM
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 #include <asm/mman.h>
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
54 * Shared mappings now work. 15.8.1995 Bruno.
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
63 * Lock ordering:
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
122 VM_BUG_ON(!PageLocked(page));
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
126 if (shadow) {
127 mapping->nrexceptional++;
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
134 smp_wmb();
136 mapping->nrpages--;
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
163 * Track node that only contains shadow entries.
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
182 void __delete_from_page_cache(struct page *page, void *shadow,
183 struct mem_cgroup *memcg)
185 struct address_space *mapping = page->mapping;
187 trace_mm_filemap_delete_from_page_cache(page);
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
193 if (PageUptodate(page) && PageMappedToDisk(page))
194 cleancache_put_page(page);
195 else
196 cleancache_invalidate_page(mapping, page);
198 page_cache_tree_delete(mapping, page, shadow);
200 page->mapping = NULL;
201 /* Leave page->index set: truncation lookup relies upon it */
203 /* hugetlb pages do not participate in page cache accounting. */
204 if (!PageHuge(page))
205 __dec_zone_page_state(page, NR_FILE_PAGES);
206 if (PageSwapBacked(page))
207 __dec_zone_page_state(page, NR_SHMEM);
208 VM_BUG_ON_PAGE(page_mapped(page), page);
211 * At this point page must be either written or cleaned by truncate.
212 * Dirty page here signals a bug and loss of unwritten data.
214 * This fixes dirty accounting after removing the page entirely but
215 * leaves PageDirty set: it has no effect for truncated page and
216 * anyway will be cleared before returning page into buddy allocator.
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, memcg,
220 inode_to_wb(mapping->host));
224 * delete_from_page_cache - delete page from page cache
225 * @page: the page which the kernel is trying to remove from page cache
227 * This must be called only on pages that have been verified to be in the page
228 * cache and locked. It will never put the page into the free list, the caller
229 * has a reference on the page.
231 void delete_from_page_cache(struct page *page)
233 struct address_space *mapping = page->mapping;
234 struct mem_cgroup *memcg;
235 unsigned long flags;
237 void (*freepage)(struct page *);
239 BUG_ON(!PageLocked(page));
241 freepage = mapping->a_ops->freepage;
243 memcg = mem_cgroup_begin_page_stat(page);
244 spin_lock_irqsave(&mapping->tree_lock, flags);
245 __delete_from_page_cache(page, NULL, memcg);
246 spin_unlock_irqrestore(&mapping->tree_lock, flags);
247 mem_cgroup_end_page_stat(memcg);
249 if (freepage)
250 freepage(page);
251 page_cache_release(page);
253 EXPORT_SYMBOL(delete_from_page_cache);
255 static int filemap_check_errors(struct address_space *mapping)
257 int ret = 0;
258 /* Check for outstanding write errors */
259 if (test_bit(AS_ENOSPC, &mapping->flags) &&
260 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261 ret = -ENOSPC;
262 if (test_bit(AS_EIO, &mapping->flags) &&
263 test_and_clear_bit(AS_EIO, &mapping->flags))
264 ret = -EIO;
265 return ret;
269 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270 * @mapping: address space structure to write
271 * @start: offset in bytes where the range starts
272 * @end: offset in bytes where the range ends (inclusive)
273 * @sync_mode: enable synchronous operation
275 * Start writeback against all of a mapping's dirty pages that lie
276 * within the byte offsets <start, end> inclusive.
278 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279 * opposed to a regular memory cleansing writeback. The difference between
280 * these two operations is that if a dirty page/buffer is encountered, it must
281 * be waited upon, and not just skipped over.
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284 loff_t end, int sync_mode)
286 int ret;
287 struct writeback_control wbc = {
288 .sync_mode = sync_mode,
289 .nr_to_write = LONG_MAX,
290 .range_start = start,
291 .range_end = end,
294 if (!mapping_cap_writeback_dirty(mapping))
295 return 0;
297 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298 ret = do_writepages(mapping, &wbc);
299 wbc_detach_inode(&wbc);
300 return ret;
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304 int sync_mode)
306 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
309 int filemap_fdatawrite(struct address_space *mapping)
311 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
313 EXPORT_SYMBOL(filemap_fdatawrite);
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316 loff_t end)
318 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
323 * filemap_flush - mostly a non-blocking flush
324 * @mapping: target address_space
326 * This is a mostly non-blocking flush. Not suitable for data-integrity
327 * purposes - I/O may not be started against all dirty pages.
329 int filemap_flush(struct address_space *mapping)
331 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
333 EXPORT_SYMBOL(filemap_flush);
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336 loff_t start_byte, loff_t end_byte)
338 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
340 struct pagevec pvec;
341 int nr_pages;
342 int ret = 0;
344 if (end_byte < start_byte)
345 goto out;
347 pagevec_init(&pvec, 0);
348 while ((index <= end) &&
349 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350 PAGECACHE_TAG_WRITEBACK,
351 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352 unsigned i;
354 for (i = 0; i < nr_pages; i++) {
355 struct page *page = pvec.pages[i];
357 /* until radix tree lookup accepts end_index */
358 if (page->index > end)
359 continue;
361 wait_on_page_writeback(page);
362 if (TestClearPageError(page))
363 ret = -EIO;
365 pagevec_release(&pvec);
366 cond_resched();
368 out:
369 return ret;
373 * filemap_fdatawait_range - wait for writeback to complete
374 * @mapping: address space structure to wait for
375 * @start_byte: offset in bytes where the range starts
376 * @end_byte: offset in bytes where the range ends (inclusive)
378 * Walk the list of under-writeback pages of the given address space
379 * in the given range and wait for all of them. Check error status of
380 * the address space and return it.
382 * Since the error status of the address space is cleared by this function,
383 * callers are responsible for checking the return value and handling and/or
384 * reporting the error.
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387 loff_t end_byte)
389 int ret, ret2;
391 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392 ret2 = filemap_check_errors(mapping);
393 if (!ret)
394 ret = ret2;
396 return ret;
398 EXPORT_SYMBOL(filemap_fdatawait_range);
401 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402 * @mapping: address space structure to wait for
404 * Walk the list of under-writeback pages of the given address space
405 * and wait for all of them. Unlike filemap_fdatawait(), this function
406 * does not clear error status of the address space.
408 * Use this function if callers don't handle errors themselves. Expected
409 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410 * fsfreeze(8)
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
414 loff_t i_size = i_size_read(mapping->host);
416 if (i_size == 0)
417 return;
419 __filemap_fdatawait_range(mapping, 0, i_size - 1);
423 * filemap_fdatawait - wait for all under-writeback pages to complete
424 * @mapping: address space structure to wait for
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Check error status of the address space
428 * and return it.
430 * Since the error status of the address space is cleared by this function,
431 * callers are responsible for checking the return value and handling and/or
432 * reporting the error.
434 int filemap_fdatawait(struct address_space *mapping)
436 loff_t i_size = i_size_read(mapping->host);
438 if (i_size == 0)
439 return 0;
441 return filemap_fdatawait_range(mapping, 0, i_size - 1);
443 EXPORT_SYMBOL(filemap_fdatawait);
445 int filemap_write_and_wait(struct address_space *mapping)
447 int err = 0;
449 if (mapping->nrpages) {
450 err = filemap_fdatawrite(mapping);
452 * Even if the above returned error, the pages may be
453 * written partially (e.g. -ENOSPC), so we wait for it.
454 * But the -EIO is special case, it may indicate the worst
455 * thing (e.g. bug) happened, so we avoid waiting for it.
457 if (err != -EIO) {
458 int err2 = filemap_fdatawait(mapping);
459 if (!err)
460 err = err2;
462 } else {
463 err = filemap_check_errors(mapping);
465 return err;
467 EXPORT_SYMBOL(filemap_write_and_wait);
470 * filemap_write_and_wait_range - write out & wait on a file range
471 * @mapping: the address_space for the pages
472 * @lstart: offset in bytes where the range starts
473 * @lend: offset in bytes where the range ends (inclusive)
475 * Write out and wait upon file offsets lstart->lend, inclusive.
477 * Note that `lend' is inclusive (describes the last byte to be written) so
478 * that this function can be used to write to the very end-of-file (end = -1).
480 int filemap_write_and_wait_range(struct address_space *mapping,
481 loff_t lstart, loff_t lend)
483 int err = 0;
485 if (dax_mapping(mapping) && mapping->nrexceptional) {
486 err = dax_writeback_mapping_range(mapping, lstart, lend);
487 if (err)
488 return err;
491 if (mapping->nrpages) {
492 err = __filemap_fdatawrite_range(mapping, lstart, lend,
493 WB_SYNC_ALL);
494 /* See comment of filemap_write_and_wait() */
495 if (err != -EIO) {
496 int err2 = filemap_fdatawait_range(mapping,
497 lstart, lend);
498 if (!err)
499 err = err2;
501 } else {
502 err = filemap_check_errors(mapping);
504 return err;
506 EXPORT_SYMBOL(filemap_write_and_wait_range);
509 * replace_page_cache_page - replace a pagecache page with a new one
510 * @old: page to be replaced
511 * @new: page to replace with
512 * @gfp_mask: allocation mode
514 * This function replaces a page in the pagecache with a new one. On
515 * success it acquires the pagecache reference for the new page and
516 * drops it for the old page. Both the old and new pages must be
517 * locked. This function does not add the new page to the LRU, the
518 * caller must do that.
520 * The remove + add is atomic. The only way this function can fail is
521 * memory allocation failure.
523 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
525 int error;
527 VM_BUG_ON_PAGE(!PageLocked(old), old);
528 VM_BUG_ON_PAGE(!PageLocked(new), new);
529 VM_BUG_ON_PAGE(new->mapping, new);
531 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
532 if (!error) {
533 struct address_space *mapping = old->mapping;
534 void (*freepage)(struct page *);
535 struct mem_cgroup *memcg;
536 unsigned long flags;
538 pgoff_t offset = old->index;
539 freepage = mapping->a_ops->freepage;
541 page_cache_get(new);
542 new->mapping = mapping;
543 new->index = offset;
545 memcg = mem_cgroup_begin_page_stat(old);
546 spin_lock_irqsave(&mapping->tree_lock, flags);
547 __delete_from_page_cache(old, NULL, memcg);
548 error = radix_tree_insert(&mapping->page_tree, offset, new);
549 BUG_ON(error);
550 mapping->nrpages++;
553 * hugetlb pages do not participate in page cache accounting.
555 if (!PageHuge(new))
556 __inc_zone_page_state(new, NR_FILE_PAGES);
557 if (PageSwapBacked(new))
558 __inc_zone_page_state(new, NR_SHMEM);
559 spin_unlock_irqrestore(&mapping->tree_lock, flags);
560 mem_cgroup_end_page_stat(memcg);
561 mem_cgroup_replace_page(old, new);
562 radix_tree_preload_end();
563 if (freepage)
564 freepage(old);
565 page_cache_release(old);
568 return error;
570 EXPORT_SYMBOL_GPL(replace_page_cache_page);
572 static int page_cache_tree_insert(struct address_space *mapping,
573 struct page *page, void **shadowp)
575 struct radix_tree_node *node;
576 void **slot;
577 int error;
579 error = __radix_tree_create(&mapping->page_tree, page->index,
580 &node, &slot);
581 if (error)
582 return error;
583 if (*slot) {
584 void *p;
586 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
587 if (!radix_tree_exceptional_entry(p))
588 return -EEXIST;
590 if (WARN_ON(dax_mapping(mapping)))
591 return -EINVAL;
593 if (shadowp)
594 *shadowp = p;
595 mapping->nrexceptional--;
596 if (node)
597 workingset_node_shadows_dec(node);
599 radix_tree_replace_slot(slot, page);
600 mapping->nrpages++;
601 if (node) {
602 workingset_node_pages_inc(node);
604 * Don't track node that contains actual pages.
606 * Avoid acquiring the list_lru lock if already
607 * untracked. The list_empty() test is safe as
608 * node->private_list is protected by
609 * mapping->tree_lock.
611 if (!list_empty(&node->private_list))
612 list_lru_del(&workingset_shadow_nodes,
613 &node->private_list);
615 return 0;
618 static int __add_to_page_cache_locked(struct page *page,
619 struct address_space *mapping,
620 pgoff_t offset, gfp_t gfp_mask,
621 void **shadowp)
623 int huge = PageHuge(page);
624 struct mem_cgroup *memcg;
625 int error;
627 VM_BUG_ON_PAGE(!PageLocked(page), page);
628 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
630 if (!huge) {
631 error = mem_cgroup_try_charge(page, current->mm,
632 gfp_mask, &memcg, false);
633 if (error)
634 return error;
637 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
638 if (error) {
639 if (!huge)
640 mem_cgroup_cancel_charge(page, memcg, false);
641 return error;
644 page_cache_get(page);
645 page->mapping = mapping;
646 page->index = offset;
648 spin_lock_irq(&mapping->tree_lock);
649 error = page_cache_tree_insert(mapping, page, shadowp);
650 radix_tree_preload_end();
651 if (unlikely(error))
652 goto err_insert;
654 /* hugetlb pages do not participate in page cache accounting. */
655 if (!huge)
656 __inc_zone_page_state(page, NR_FILE_PAGES);
657 spin_unlock_irq(&mapping->tree_lock);
658 if (!huge)
659 mem_cgroup_commit_charge(page, memcg, false, false);
660 trace_mm_filemap_add_to_page_cache(page);
661 return 0;
662 err_insert:
663 page->mapping = NULL;
664 /* Leave page->index set: truncation relies upon it */
665 spin_unlock_irq(&mapping->tree_lock);
666 if (!huge)
667 mem_cgroup_cancel_charge(page, memcg, false);
668 page_cache_release(page);
669 return error;
673 * add_to_page_cache_locked - add a locked page to the pagecache
674 * @page: page to add
675 * @mapping: the page's address_space
676 * @offset: page index
677 * @gfp_mask: page allocation mode
679 * This function is used to add a page to the pagecache. It must be locked.
680 * This function does not add the page to the LRU. The caller must do that.
682 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
683 pgoff_t offset, gfp_t gfp_mask)
685 return __add_to_page_cache_locked(page, mapping, offset,
686 gfp_mask, NULL);
688 EXPORT_SYMBOL(add_to_page_cache_locked);
690 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
691 pgoff_t offset, gfp_t gfp_mask)
693 void *shadow = NULL;
694 int ret;
696 __SetPageLocked(page);
697 ret = __add_to_page_cache_locked(page, mapping, offset,
698 gfp_mask, &shadow);
699 if (unlikely(ret))
700 __ClearPageLocked(page);
701 else {
703 * The page might have been evicted from cache only
704 * recently, in which case it should be activated like
705 * any other repeatedly accessed page.
707 if (shadow && workingset_refault(shadow)) {
708 SetPageActive(page);
709 workingset_activation(page);
710 } else
711 ClearPageActive(page);
712 lru_cache_add(page);
714 return ret;
716 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
718 #ifdef CONFIG_NUMA
719 struct page *__page_cache_alloc(gfp_t gfp)
721 int n;
722 struct page *page;
724 if (cpuset_do_page_mem_spread()) {
725 unsigned int cpuset_mems_cookie;
726 do {
727 cpuset_mems_cookie = read_mems_allowed_begin();
728 n = cpuset_mem_spread_node();
729 page = __alloc_pages_node(n, gfp, 0);
730 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
732 return page;
734 return alloc_pages(gfp, 0);
736 EXPORT_SYMBOL(__page_cache_alloc);
737 #endif
740 * In order to wait for pages to become available there must be
741 * waitqueues associated with pages. By using a hash table of
742 * waitqueues where the bucket discipline is to maintain all
743 * waiters on the same queue and wake all when any of the pages
744 * become available, and for the woken contexts to check to be
745 * sure the appropriate page became available, this saves space
746 * at a cost of "thundering herd" phenomena during rare hash
747 * collisions.
749 wait_queue_head_t *page_waitqueue(struct page *page)
751 const struct zone *zone = page_zone(page);
753 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
755 EXPORT_SYMBOL(page_waitqueue);
757 void wait_on_page_bit(struct page *page, int bit_nr)
759 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
761 if (test_bit(bit_nr, &page->flags))
762 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
763 TASK_UNINTERRUPTIBLE);
765 EXPORT_SYMBOL(wait_on_page_bit);
767 int wait_on_page_bit_killable(struct page *page, int bit_nr)
769 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
771 if (!test_bit(bit_nr, &page->flags))
772 return 0;
774 return __wait_on_bit(page_waitqueue(page), &wait,
775 bit_wait_io, TASK_KILLABLE);
778 int wait_on_page_bit_killable_timeout(struct page *page,
779 int bit_nr, unsigned long timeout)
781 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
783 wait.key.timeout = jiffies + timeout;
784 if (!test_bit(bit_nr, &page->flags))
785 return 0;
786 return __wait_on_bit(page_waitqueue(page), &wait,
787 bit_wait_io_timeout, TASK_KILLABLE);
789 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
792 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
793 * @page: Page defining the wait queue of interest
794 * @waiter: Waiter to add to the queue
796 * Add an arbitrary @waiter to the wait queue for the nominated @page.
798 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
800 wait_queue_head_t *q = page_waitqueue(page);
801 unsigned long flags;
803 spin_lock_irqsave(&q->lock, flags);
804 __add_wait_queue(q, waiter);
805 spin_unlock_irqrestore(&q->lock, flags);
807 EXPORT_SYMBOL_GPL(add_page_wait_queue);
810 * unlock_page - unlock a locked page
811 * @page: the page
813 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
814 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
815 * mechanism between PageLocked pages and PageWriteback pages is shared.
816 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
818 * The mb is necessary to enforce ordering between the clear_bit and the read
819 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
821 void unlock_page(struct page *page)
823 page = compound_head(page);
824 VM_BUG_ON_PAGE(!PageLocked(page), page);
825 clear_bit_unlock(PG_locked, &page->flags);
826 smp_mb__after_atomic();
827 wake_up_page(page, PG_locked);
829 EXPORT_SYMBOL(unlock_page);
832 * end_page_writeback - end writeback against a page
833 * @page: the page
835 void end_page_writeback(struct page *page)
838 * TestClearPageReclaim could be used here but it is an atomic
839 * operation and overkill in this particular case. Failing to
840 * shuffle a page marked for immediate reclaim is too mild to
841 * justify taking an atomic operation penalty at the end of
842 * ever page writeback.
844 if (PageReclaim(page)) {
845 ClearPageReclaim(page);
846 rotate_reclaimable_page(page);
849 if (!test_clear_page_writeback(page))
850 BUG();
852 smp_mb__after_atomic();
853 wake_up_page(page, PG_writeback);
855 EXPORT_SYMBOL(end_page_writeback);
858 * After completing I/O on a page, call this routine to update the page
859 * flags appropriately
861 void page_endio(struct page *page, int rw, int err)
863 if (rw == READ) {
864 if (!err) {
865 SetPageUptodate(page);
866 } else {
867 ClearPageUptodate(page);
868 SetPageError(page);
870 unlock_page(page);
871 } else { /* rw == WRITE */
872 if (err) {
873 SetPageError(page);
874 if (page->mapping)
875 mapping_set_error(page->mapping, err);
877 end_page_writeback(page);
880 EXPORT_SYMBOL_GPL(page_endio);
883 * __lock_page - get a lock on the page, assuming we need to sleep to get it
884 * @page: the page to lock
886 void __lock_page(struct page *page)
888 struct page *page_head = compound_head(page);
889 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
891 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
892 TASK_UNINTERRUPTIBLE);
894 EXPORT_SYMBOL(__lock_page);
896 int __lock_page_killable(struct page *page)
898 struct page *page_head = compound_head(page);
899 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
901 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
902 bit_wait_io, TASK_KILLABLE);
904 EXPORT_SYMBOL_GPL(__lock_page_killable);
907 * Return values:
908 * 1 - page is locked; mmap_sem is still held.
909 * 0 - page is not locked.
910 * mmap_sem has been released (up_read()), unless flags had both
911 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
912 * which case mmap_sem is still held.
914 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
915 * with the page locked and the mmap_sem unperturbed.
917 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
918 unsigned int flags)
920 if (flags & FAULT_FLAG_ALLOW_RETRY) {
922 * CAUTION! In this case, mmap_sem is not released
923 * even though return 0.
925 if (flags & FAULT_FLAG_RETRY_NOWAIT)
926 return 0;
928 up_read(&mm->mmap_sem);
929 if (flags & FAULT_FLAG_KILLABLE)
930 wait_on_page_locked_killable(page);
931 else
932 wait_on_page_locked(page);
933 return 0;
934 } else {
935 if (flags & FAULT_FLAG_KILLABLE) {
936 int ret;
938 ret = __lock_page_killable(page);
939 if (ret) {
940 up_read(&mm->mmap_sem);
941 return 0;
943 } else
944 __lock_page(page);
945 return 1;
950 * page_cache_next_hole - find the next hole (not-present entry)
951 * @mapping: mapping
952 * @index: index
953 * @max_scan: maximum range to search
955 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
956 * lowest indexed hole.
958 * Returns: the index of the hole if found, otherwise returns an index
959 * outside of the set specified (in which case 'return - index >=
960 * max_scan' will be true). In rare cases of index wrap-around, 0 will
961 * be returned.
963 * page_cache_next_hole may be called under rcu_read_lock. However,
964 * like radix_tree_gang_lookup, this will not atomically search a
965 * snapshot of the tree at a single point in time. For example, if a
966 * hole is created at index 5, then subsequently a hole is created at
967 * index 10, page_cache_next_hole covering both indexes may return 10
968 * if called under rcu_read_lock.
970 pgoff_t page_cache_next_hole(struct address_space *mapping,
971 pgoff_t index, unsigned long max_scan)
973 unsigned long i;
975 for (i = 0; i < max_scan; i++) {
976 struct page *page;
978 page = radix_tree_lookup(&mapping->page_tree, index);
979 if (!page || radix_tree_exceptional_entry(page))
980 break;
981 index++;
982 if (index == 0)
983 break;
986 return index;
988 EXPORT_SYMBOL(page_cache_next_hole);
991 * page_cache_prev_hole - find the prev hole (not-present entry)
992 * @mapping: mapping
993 * @index: index
994 * @max_scan: maximum range to search
996 * Search backwards in the range [max(index-max_scan+1, 0), index] for
997 * the first hole.
999 * Returns: the index of the hole if found, otherwise returns an index
1000 * outside of the set specified (in which case 'index - return >=
1001 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1002 * will be returned.
1004 * page_cache_prev_hole may be called under rcu_read_lock. However,
1005 * like radix_tree_gang_lookup, this will not atomically search a
1006 * snapshot of the tree at a single point in time. For example, if a
1007 * hole is created at index 10, then subsequently a hole is created at
1008 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1009 * called under rcu_read_lock.
1011 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1012 pgoff_t index, unsigned long max_scan)
1014 unsigned long i;
1016 for (i = 0; i < max_scan; i++) {
1017 struct page *page;
1019 page = radix_tree_lookup(&mapping->page_tree, index);
1020 if (!page || radix_tree_exceptional_entry(page))
1021 break;
1022 index--;
1023 if (index == ULONG_MAX)
1024 break;
1027 return index;
1029 EXPORT_SYMBOL(page_cache_prev_hole);
1032 * find_get_entry - find and get a page cache entry
1033 * @mapping: the address_space to search
1034 * @offset: the page cache index
1036 * Looks up the page cache slot at @mapping & @offset. If there is a
1037 * page cache page, it is returned with an increased refcount.
1039 * If the slot holds a shadow entry of a previously evicted page, or a
1040 * swap entry from shmem/tmpfs, it is returned.
1042 * Otherwise, %NULL is returned.
1044 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1046 void **pagep;
1047 struct page *page;
1049 rcu_read_lock();
1050 repeat:
1051 page = NULL;
1052 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1053 if (pagep) {
1054 page = radix_tree_deref_slot(pagep);
1055 if (unlikely(!page))
1056 goto out;
1057 if (radix_tree_exception(page)) {
1058 if (radix_tree_deref_retry(page))
1059 goto repeat;
1061 * A shadow entry of a recently evicted page,
1062 * or a swap entry from shmem/tmpfs. Return
1063 * it without attempting to raise page count.
1065 goto out;
1067 if (!page_cache_get_speculative(page))
1068 goto repeat;
1071 * Has the page moved?
1072 * This is part of the lockless pagecache protocol. See
1073 * include/linux/pagemap.h for details.
1075 if (unlikely(page != *pagep)) {
1076 page_cache_release(page);
1077 goto repeat;
1080 out:
1081 rcu_read_unlock();
1083 return page;
1085 EXPORT_SYMBOL(find_get_entry);
1088 * find_lock_entry - locate, pin and lock a page cache entry
1089 * @mapping: the address_space to search
1090 * @offset: the page cache index
1092 * Looks up the page cache slot at @mapping & @offset. If there is a
1093 * page cache page, it is returned locked and with an increased
1094 * refcount.
1096 * If the slot holds a shadow entry of a previously evicted page, or a
1097 * swap entry from shmem/tmpfs, it is returned.
1099 * Otherwise, %NULL is returned.
1101 * find_lock_entry() may sleep.
1103 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1105 struct page *page;
1107 repeat:
1108 page = find_get_entry(mapping, offset);
1109 if (page && !radix_tree_exception(page)) {
1110 lock_page(page);
1111 /* Has the page been truncated? */
1112 if (unlikely(page->mapping != mapping)) {
1113 unlock_page(page);
1114 page_cache_release(page);
1115 goto repeat;
1117 VM_BUG_ON_PAGE(page->index != offset, page);
1119 return page;
1121 EXPORT_SYMBOL(find_lock_entry);
1124 * pagecache_get_page - find and get a page reference
1125 * @mapping: the address_space to search
1126 * @offset: the page index
1127 * @fgp_flags: PCG flags
1128 * @gfp_mask: gfp mask to use for the page cache data page allocation
1130 * Looks up the page cache slot at @mapping & @offset.
1132 * PCG flags modify how the page is returned.
1134 * FGP_ACCESSED: the page will be marked accessed
1135 * FGP_LOCK: Page is return locked
1136 * FGP_CREAT: If page is not present then a new page is allocated using
1137 * @gfp_mask and added to the page cache and the VM's LRU
1138 * list. The page is returned locked and with an increased
1139 * refcount. Otherwise, %NULL is returned.
1141 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1142 * if the GFP flags specified for FGP_CREAT are atomic.
1144 * If there is a page cache page, it is returned with an increased refcount.
1146 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1147 int fgp_flags, gfp_t gfp_mask)
1149 struct page *page;
1151 repeat:
1152 page = find_get_entry(mapping, offset);
1153 if (radix_tree_exceptional_entry(page))
1154 page = NULL;
1155 if (!page)
1156 goto no_page;
1158 if (fgp_flags & FGP_LOCK) {
1159 if (fgp_flags & FGP_NOWAIT) {
1160 if (!trylock_page(page)) {
1161 page_cache_release(page);
1162 return NULL;
1164 } else {
1165 lock_page(page);
1168 /* Has the page been truncated? */
1169 if (unlikely(page->mapping != mapping)) {
1170 unlock_page(page);
1171 page_cache_release(page);
1172 goto repeat;
1174 VM_BUG_ON_PAGE(page->index != offset, page);
1177 if (page && (fgp_flags & FGP_ACCESSED))
1178 mark_page_accessed(page);
1180 no_page:
1181 if (!page && (fgp_flags & FGP_CREAT)) {
1182 int err;
1183 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1184 gfp_mask |= __GFP_WRITE;
1185 if (fgp_flags & FGP_NOFS)
1186 gfp_mask &= ~__GFP_FS;
1188 page = __page_cache_alloc(gfp_mask);
1189 if (!page)
1190 return NULL;
1192 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1193 fgp_flags |= FGP_LOCK;
1195 /* Init accessed so avoid atomic mark_page_accessed later */
1196 if (fgp_flags & FGP_ACCESSED)
1197 __SetPageReferenced(page);
1199 err = add_to_page_cache_lru(page, mapping, offset,
1200 gfp_mask & GFP_RECLAIM_MASK);
1201 if (unlikely(err)) {
1202 page_cache_release(page);
1203 page = NULL;
1204 if (err == -EEXIST)
1205 goto repeat;
1209 return page;
1211 EXPORT_SYMBOL(pagecache_get_page);
1214 * find_get_entries - gang pagecache lookup
1215 * @mapping: The address_space to search
1216 * @start: The starting page cache index
1217 * @nr_entries: The maximum number of entries
1218 * @entries: Where the resulting entries are placed
1219 * @indices: The cache indices corresponding to the entries in @entries
1221 * find_get_entries() will search for and return a group of up to
1222 * @nr_entries entries in the mapping. The entries are placed at
1223 * @entries. find_get_entries() takes a reference against any actual
1224 * pages it returns.
1226 * The search returns a group of mapping-contiguous page cache entries
1227 * with ascending indexes. There may be holes in the indices due to
1228 * not-present pages.
1230 * Any shadow entries of evicted pages, or swap entries from
1231 * shmem/tmpfs, are included in the returned array.
1233 * find_get_entries() returns the number of pages and shadow entries
1234 * which were found.
1236 unsigned find_get_entries(struct address_space *mapping,
1237 pgoff_t start, unsigned int nr_entries,
1238 struct page **entries, pgoff_t *indices)
1240 void **slot;
1241 unsigned int ret = 0;
1242 struct radix_tree_iter iter;
1244 if (!nr_entries)
1245 return 0;
1247 rcu_read_lock();
1248 restart:
1249 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1250 struct page *page;
1251 repeat:
1252 page = radix_tree_deref_slot(slot);
1253 if (unlikely(!page))
1254 continue;
1255 if (radix_tree_exception(page)) {
1256 if (radix_tree_deref_retry(page))
1257 goto restart;
1259 * A shadow entry of a recently evicted page, a swap
1260 * entry from shmem/tmpfs or a DAX entry. Return it
1261 * without attempting to raise page count.
1263 goto export;
1265 if (!page_cache_get_speculative(page))
1266 goto repeat;
1268 /* Has the page moved? */
1269 if (unlikely(page != *slot)) {
1270 page_cache_release(page);
1271 goto repeat;
1273 export:
1274 indices[ret] = iter.index;
1275 entries[ret] = page;
1276 if (++ret == nr_entries)
1277 break;
1279 rcu_read_unlock();
1280 return ret;
1284 * find_get_pages - gang pagecache lookup
1285 * @mapping: The address_space to search
1286 * @start: The starting page index
1287 * @nr_pages: The maximum number of pages
1288 * @pages: Where the resulting pages are placed
1290 * find_get_pages() will search for and return a group of up to
1291 * @nr_pages pages in the mapping. The pages are placed at @pages.
1292 * find_get_pages() takes a reference against the returned pages.
1294 * The search returns a group of mapping-contiguous pages with ascending
1295 * indexes. There may be holes in the indices due to not-present pages.
1297 * find_get_pages() returns the number of pages which were found.
1299 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1300 unsigned int nr_pages, struct page **pages)
1302 struct radix_tree_iter iter;
1303 void **slot;
1304 unsigned ret = 0;
1306 if (unlikely(!nr_pages))
1307 return 0;
1309 rcu_read_lock();
1310 restart:
1311 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1312 struct page *page;
1313 repeat:
1314 page = radix_tree_deref_slot(slot);
1315 if (unlikely(!page))
1316 continue;
1318 if (radix_tree_exception(page)) {
1319 if (radix_tree_deref_retry(page)) {
1321 * Transient condition which can only trigger
1322 * when entry at index 0 moves out of or back
1323 * to root: none yet gotten, safe to restart.
1325 WARN_ON(iter.index);
1326 goto restart;
1329 * A shadow entry of a recently evicted page,
1330 * or a swap entry from shmem/tmpfs. Skip
1331 * over it.
1333 continue;
1336 if (!page_cache_get_speculative(page))
1337 goto repeat;
1339 /* Has the page moved? */
1340 if (unlikely(page != *slot)) {
1341 page_cache_release(page);
1342 goto repeat;
1345 pages[ret] = page;
1346 if (++ret == nr_pages)
1347 break;
1350 rcu_read_unlock();
1351 return ret;
1355 * find_get_pages_contig - gang contiguous pagecache lookup
1356 * @mapping: The address_space to search
1357 * @index: The starting page index
1358 * @nr_pages: The maximum number of pages
1359 * @pages: Where the resulting pages are placed
1361 * find_get_pages_contig() works exactly like find_get_pages(), except
1362 * that the returned number of pages are guaranteed to be contiguous.
1364 * find_get_pages_contig() returns the number of pages which were found.
1366 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1367 unsigned int nr_pages, struct page **pages)
1369 struct radix_tree_iter iter;
1370 void **slot;
1371 unsigned int ret = 0;
1373 if (unlikely(!nr_pages))
1374 return 0;
1376 rcu_read_lock();
1377 restart:
1378 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1379 struct page *page;
1380 repeat:
1381 page = radix_tree_deref_slot(slot);
1382 /* The hole, there no reason to continue */
1383 if (unlikely(!page))
1384 break;
1386 if (radix_tree_exception(page)) {
1387 if (radix_tree_deref_retry(page)) {
1389 * Transient condition which can only trigger
1390 * when entry at index 0 moves out of or back
1391 * to root: none yet gotten, safe to restart.
1393 goto restart;
1396 * A shadow entry of a recently evicted page,
1397 * or a swap entry from shmem/tmpfs. Stop
1398 * looking for contiguous pages.
1400 break;
1403 if (!page_cache_get_speculative(page))
1404 goto repeat;
1406 /* Has the page moved? */
1407 if (unlikely(page != *slot)) {
1408 page_cache_release(page);
1409 goto repeat;
1413 * must check mapping and index after taking the ref.
1414 * otherwise we can get both false positives and false
1415 * negatives, which is just confusing to the caller.
1417 if (page->mapping == NULL || page->index != iter.index) {
1418 page_cache_release(page);
1419 break;
1422 pages[ret] = page;
1423 if (++ret == nr_pages)
1424 break;
1426 rcu_read_unlock();
1427 return ret;
1429 EXPORT_SYMBOL(find_get_pages_contig);
1432 * find_get_pages_tag - find and return pages that match @tag
1433 * @mapping: the address_space to search
1434 * @index: the starting page index
1435 * @tag: the tag index
1436 * @nr_pages: the maximum number of pages
1437 * @pages: where the resulting pages are placed
1439 * Like find_get_pages, except we only return pages which are tagged with
1440 * @tag. We update @index to index the next page for the traversal.
1442 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1443 int tag, unsigned int nr_pages, struct page **pages)
1445 struct radix_tree_iter iter;
1446 void **slot;
1447 unsigned ret = 0;
1449 if (unlikely(!nr_pages))
1450 return 0;
1452 rcu_read_lock();
1453 restart:
1454 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1455 &iter, *index, tag) {
1456 struct page *page;
1457 repeat:
1458 page = radix_tree_deref_slot(slot);
1459 if (unlikely(!page))
1460 continue;
1462 if (radix_tree_exception(page)) {
1463 if (radix_tree_deref_retry(page)) {
1465 * Transient condition which can only trigger
1466 * when entry at index 0 moves out of or back
1467 * to root: none yet gotten, safe to restart.
1469 goto restart;
1472 * A shadow entry of a recently evicted page.
1474 * Those entries should never be tagged, but
1475 * this tree walk is lockless and the tags are
1476 * looked up in bulk, one radix tree node at a
1477 * time, so there is a sizable window for page
1478 * reclaim to evict a page we saw tagged.
1480 * Skip over it.
1482 continue;
1485 if (!page_cache_get_speculative(page))
1486 goto repeat;
1488 /* Has the page moved? */
1489 if (unlikely(page != *slot)) {
1490 page_cache_release(page);
1491 goto repeat;
1494 pages[ret] = page;
1495 if (++ret == nr_pages)
1496 break;
1499 rcu_read_unlock();
1501 if (ret)
1502 *index = pages[ret - 1]->index + 1;
1504 return ret;
1506 EXPORT_SYMBOL(find_get_pages_tag);
1509 * find_get_entries_tag - find and return entries that match @tag
1510 * @mapping: the address_space to search
1511 * @start: the starting page cache index
1512 * @tag: the tag index
1513 * @nr_entries: the maximum number of entries
1514 * @entries: where the resulting entries are placed
1515 * @indices: the cache indices corresponding to the entries in @entries
1517 * Like find_get_entries, except we only return entries which are tagged with
1518 * @tag.
1520 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1521 int tag, unsigned int nr_entries,
1522 struct page **entries, pgoff_t *indices)
1524 void **slot;
1525 unsigned int ret = 0;
1526 struct radix_tree_iter iter;
1528 if (!nr_entries)
1529 return 0;
1531 rcu_read_lock();
1532 restart:
1533 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1534 &iter, start, tag) {
1535 struct page *page;
1536 repeat:
1537 page = radix_tree_deref_slot(slot);
1538 if (unlikely(!page))
1539 continue;
1540 if (radix_tree_exception(page)) {
1541 if (radix_tree_deref_retry(page)) {
1543 * Transient condition which can only trigger
1544 * when entry at index 0 moves out of or back
1545 * to root: none yet gotten, safe to restart.
1547 goto restart;
1551 * A shadow entry of a recently evicted page, a swap
1552 * entry from shmem/tmpfs or a DAX entry. Return it
1553 * without attempting to raise page count.
1555 goto export;
1557 if (!page_cache_get_speculative(page))
1558 goto repeat;
1560 /* Has the page moved? */
1561 if (unlikely(page != *slot)) {
1562 page_cache_release(page);
1563 goto repeat;
1565 export:
1566 indices[ret] = iter.index;
1567 entries[ret] = page;
1568 if (++ret == nr_entries)
1569 break;
1571 rcu_read_unlock();
1572 return ret;
1574 EXPORT_SYMBOL(find_get_entries_tag);
1577 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1578 * a _large_ part of the i/o request. Imagine the worst scenario:
1580 * ---R__________________________________________B__________
1581 * ^ reading here ^ bad block(assume 4k)
1583 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1584 * => failing the whole request => read(R) => read(R+1) =>
1585 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1586 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1587 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1589 * It is going insane. Fix it by quickly scaling down the readahead size.
1591 static void shrink_readahead_size_eio(struct file *filp,
1592 struct file_ra_state *ra)
1594 ra->ra_pages /= 4;
1598 * do_generic_file_read - generic file read routine
1599 * @filp: the file to read
1600 * @ppos: current file position
1601 * @iter: data destination
1602 * @written: already copied
1604 * This is a generic file read routine, and uses the
1605 * mapping->a_ops->readpage() function for the actual low-level stuff.
1607 * This is really ugly. But the goto's actually try to clarify some
1608 * of the logic when it comes to error handling etc.
1610 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1611 struct iov_iter *iter, ssize_t written)
1613 struct address_space *mapping = filp->f_mapping;
1614 struct inode *inode = mapping->host;
1615 struct file_ra_state *ra = &filp->f_ra;
1616 pgoff_t index;
1617 pgoff_t last_index;
1618 pgoff_t prev_index;
1619 unsigned long offset; /* offset into pagecache page */
1620 unsigned int prev_offset;
1621 int error = 0;
1623 index = *ppos >> PAGE_CACHE_SHIFT;
1624 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1625 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1626 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1627 offset = *ppos & ~PAGE_CACHE_MASK;
1629 for (;;) {
1630 struct page *page;
1631 pgoff_t end_index;
1632 loff_t isize;
1633 unsigned long nr, ret;
1635 cond_resched();
1636 find_page:
1637 page = find_get_page(mapping, index);
1638 if (!page) {
1639 page_cache_sync_readahead(mapping,
1640 ra, filp,
1641 index, last_index - index);
1642 page = find_get_page(mapping, index);
1643 if (unlikely(page == NULL))
1644 goto no_cached_page;
1646 if (PageReadahead(page)) {
1647 page_cache_async_readahead(mapping,
1648 ra, filp, page,
1649 index, last_index - index);
1651 if (!PageUptodate(page)) {
1652 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1653 !mapping->a_ops->is_partially_uptodate)
1654 goto page_not_up_to_date;
1655 if (!trylock_page(page))
1656 goto page_not_up_to_date;
1657 /* Did it get truncated before we got the lock? */
1658 if (!page->mapping)
1659 goto page_not_up_to_date_locked;
1660 if (!mapping->a_ops->is_partially_uptodate(page,
1661 offset, iter->count))
1662 goto page_not_up_to_date_locked;
1663 unlock_page(page);
1665 page_ok:
1667 * i_size must be checked after we know the page is Uptodate.
1669 * Checking i_size after the check allows us to calculate
1670 * the correct value for "nr", which means the zero-filled
1671 * part of the page is not copied back to userspace (unless
1672 * another truncate extends the file - this is desired though).
1675 isize = i_size_read(inode);
1676 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1677 if (unlikely(!isize || index > end_index)) {
1678 page_cache_release(page);
1679 goto out;
1682 /* nr is the maximum number of bytes to copy from this page */
1683 nr = PAGE_CACHE_SIZE;
1684 if (index == end_index) {
1685 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1686 if (nr <= offset) {
1687 page_cache_release(page);
1688 goto out;
1691 nr = nr - offset;
1693 /* If users can be writing to this page using arbitrary
1694 * virtual addresses, take care about potential aliasing
1695 * before reading the page on the kernel side.
1697 if (mapping_writably_mapped(mapping))
1698 flush_dcache_page(page);
1701 * When a sequential read accesses a page several times,
1702 * only mark it as accessed the first time.
1704 if (prev_index != index || offset != prev_offset)
1705 mark_page_accessed(page);
1706 prev_index = index;
1709 * Ok, we have the page, and it's up-to-date, so
1710 * now we can copy it to user space...
1713 ret = copy_page_to_iter(page, offset, nr, iter);
1714 offset += ret;
1715 index += offset >> PAGE_CACHE_SHIFT;
1716 offset &= ~PAGE_CACHE_MASK;
1717 prev_offset = offset;
1719 page_cache_release(page);
1720 written += ret;
1721 if (!iov_iter_count(iter))
1722 goto out;
1723 if (ret < nr) {
1724 error = -EFAULT;
1725 goto out;
1727 continue;
1729 page_not_up_to_date:
1730 /* Get exclusive access to the page ... */
1731 error = lock_page_killable(page);
1732 if (unlikely(error))
1733 goto readpage_error;
1735 page_not_up_to_date_locked:
1736 /* Did it get truncated before we got the lock? */
1737 if (!page->mapping) {
1738 unlock_page(page);
1739 page_cache_release(page);
1740 continue;
1743 /* Did somebody else fill it already? */
1744 if (PageUptodate(page)) {
1745 unlock_page(page);
1746 goto page_ok;
1749 readpage:
1751 * A previous I/O error may have been due to temporary
1752 * failures, eg. multipath errors.
1753 * PG_error will be set again if readpage fails.
1755 ClearPageError(page);
1756 /* Start the actual read. The read will unlock the page. */
1757 error = mapping->a_ops->readpage(filp, page);
1759 if (unlikely(error)) {
1760 if (error == AOP_TRUNCATED_PAGE) {
1761 page_cache_release(page);
1762 error = 0;
1763 goto find_page;
1765 goto readpage_error;
1768 if (!PageUptodate(page)) {
1769 error = lock_page_killable(page);
1770 if (unlikely(error))
1771 goto readpage_error;
1772 if (!PageUptodate(page)) {
1773 if (page->mapping == NULL) {
1775 * invalidate_mapping_pages got it
1777 unlock_page(page);
1778 page_cache_release(page);
1779 goto find_page;
1781 unlock_page(page);
1782 shrink_readahead_size_eio(filp, ra);
1783 error = -EIO;
1784 goto readpage_error;
1786 unlock_page(page);
1789 goto page_ok;
1791 readpage_error:
1792 /* UHHUH! A synchronous read error occurred. Report it */
1793 page_cache_release(page);
1794 goto out;
1796 no_cached_page:
1798 * Ok, it wasn't cached, so we need to create a new
1799 * page..
1801 page = page_cache_alloc_cold(mapping);
1802 if (!page) {
1803 error = -ENOMEM;
1804 goto out;
1806 error = add_to_page_cache_lru(page, mapping, index,
1807 mapping_gfp_constraint(mapping, GFP_KERNEL));
1808 if (error) {
1809 page_cache_release(page);
1810 if (error == -EEXIST) {
1811 error = 0;
1812 goto find_page;
1814 goto out;
1816 goto readpage;
1819 out:
1820 ra->prev_pos = prev_index;
1821 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1822 ra->prev_pos |= prev_offset;
1824 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1825 file_accessed(filp);
1826 return written ? written : error;
1830 * generic_file_read_iter - generic filesystem read routine
1831 * @iocb: kernel I/O control block
1832 * @iter: destination for the data read
1834 * This is the "read_iter()" routine for all filesystems
1835 * that can use the page cache directly.
1837 ssize_t
1838 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1840 struct file *file = iocb->ki_filp;
1841 ssize_t retval = 0;
1842 loff_t *ppos = &iocb->ki_pos;
1843 loff_t pos = *ppos;
1845 if (iocb->ki_flags & IOCB_DIRECT) {
1846 struct address_space *mapping = file->f_mapping;
1847 struct inode *inode = mapping->host;
1848 size_t count = iov_iter_count(iter);
1849 loff_t size;
1851 if (!count)
1852 goto out; /* skip atime */
1853 size = i_size_read(inode);
1854 retval = filemap_write_and_wait_range(mapping, pos,
1855 pos + count - 1);
1856 if (!retval) {
1857 struct iov_iter data = *iter;
1858 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1861 if (retval > 0) {
1862 *ppos = pos + retval;
1863 iov_iter_advance(iter, retval);
1867 * Btrfs can have a short DIO read if we encounter
1868 * compressed extents, so if there was an error, or if
1869 * we've already read everything we wanted to, or if
1870 * there was a short read because we hit EOF, go ahead
1871 * and return. Otherwise fallthrough to buffered io for
1872 * the rest of the read. Buffered reads will not work for
1873 * DAX files, so don't bother trying.
1875 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1876 IS_DAX(inode)) {
1877 file_accessed(file);
1878 goto out;
1882 retval = do_generic_file_read(file, ppos, iter, retval);
1883 out:
1884 return retval;
1886 EXPORT_SYMBOL(generic_file_read_iter);
1888 #ifdef CONFIG_MMU
1890 * page_cache_read - adds requested page to the page cache if not already there
1891 * @file: file to read
1892 * @offset: page index
1893 * @gfp_mask: memory allocation flags
1895 * This adds the requested page to the page cache if it isn't already there,
1896 * and schedules an I/O to read in its contents from disk.
1898 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1900 struct address_space *mapping = file->f_mapping;
1901 struct page *page;
1902 int ret;
1904 do {
1905 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1906 if (!page)
1907 return -ENOMEM;
1909 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1910 if (ret == 0)
1911 ret = mapping->a_ops->readpage(file, page);
1912 else if (ret == -EEXIST)
1913 ret = 0; /* losing race to add is OK */
1915 page_cache_release(page);
1917 } while (ret == AOP_TRUNCATED_PAGE);
1919 return ret;
1922 #define MMAP_LOTSAMISS (100)
1925 * Synchronous readahead happens when we don't even find
1926 * a page in the page cache at all.
1928 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1929 struct file_ra_state *ra,
1930 struct file *file,
1931 pgoff_t offset)
1933 struct address_space *mapping = file->f_mapping;
1935 /* If we don't want any read-ahead, don't bother */
1936 if (vma->vm_flags & VM_RAND_READ)
1937 return;
1938 if (!ra->ra_pages)
1939 return;
1941 if (vma->vm_flags & VM_SEQ_READ) {
1942 page_cache_sync_readahead(mapping, ra, file, offset,
1943 ra->ra_pages);
1944 return;
1947 /* Avoid banging the cache line if not needed */
1948 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1949 ra->mmap_miss++;
1952 * Do we miss much more than hit in this file? If so,
1953 * stop bothering with read-ahead. It will only hurt.
1955 if (ra->mmap_miss > MMAP_LOTSAMISS)
1956 return;
1959 * mmap read-around
1961 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1962 ra->size = ra->ra_pages;
1963 ra->async_size = ra->ra_pages / 4;
1964 ra_submit(ra, mapping, file);
1968 * Asynchronous readahead happens when we find the page and PG_readahead,
1969 * so we want to possibly extend the readahead further..
1971 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1972 struct file_ra_state *ra,
1973 struct file *file,
1974 struct page *page,
1975 pgoff_t offset)
1977 struct address_space *mapping = file->f_mapping;
1979 /* If we don't want any read-ahead, don't bother */
1980 if (vma->vm_flags & VM_RAND_READ)
1981 return;
1982 if (ra->mmap_miss > 0)
1983 ra->mmap_miss--;
1984 if (PageReadahead(page))
1985 page_cache_async_readahead(mapping, ra, file,
1986 page, offset, ra->ra_pages);
1990 * filemap_fault - read in file data for page fault handling
1991 * @vma: vma in which the fault was taken
1992 * @vmf: struct vm_fault containing details of the fault
1994 * filemap_fault() is invoked via the vma operations vector for a
1995 * mapped memory region to read in file data during a page fault.
1997 * The goto's are kind of ugly, but this streamlines the normal case of having
1998 * it in the page cache, and handles the special cases reasonably without
1999 * having a lot of duplicated code.
2001 * vma->vm_mm->mmap_sem must be held on entry.
2003 * If our return value has VM_FAULT_RETRY set, it's because
2004 * lock_page_or_retry() returned 0.
2005 * The mmap_sem has usually been released in this case.
2006 * See __lock_page_or_retry() for the exception.
2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2009 * has not been released.
2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2013 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2015 int error;
2016 struct file *file = vma->vm_file;
2017 struct address_space *mapping = file->f_mapping;
2018 struct file_ra_state *ra = &file->f_ra;
2019 struct inode *inode = mapping->host;
2020 pgoff_t offset = vmf->pgoff;
2021 struct page *page;
2022 loff_t size;
2023 int ret = 0;
2025 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2026 if (offset >= size >> PAGE_CACHE_SHIFT)
2027 return VM_FAULT_SIGBUS;
2030 * Do we have something in the page cache already?
2032 page = find_get_page(mapping, offset);
2033 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2035 * We found the page, so try async readahead before
2036 * waiting for the lock.
2038 do_async_mmap_readahead(vma, ra, file, page, offset);
2039 } else if (!page) {
2040 /* No page in the page cache at all */
2041 do_sync_mmap_readahead(vma, ra, file, offset);
2042 count_vm_event(PGMAJFAULT);
2043 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2044 ret = VM_FAULT_MAJOR;
2045 retry_find:
2046 page = find_get_page(mapping, offset);
2047 if (!page)
2048 goto no_cached_page;
2051 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2052 page_cache_release(page);
2053 return ret | VM_FAULT_RETRY;
2056 /* Did it get truncated? */
2057 if (unlikely(page->mapping != mapping)) {
2058 unlock_page(page);
2059 put_page(page);
2060 goto retry_find;
2062 VM_BUG_ON_PAGE(page->index != offset, page);
2065 * We have a locked page in the page cache, now we need to check
2066 * that it's up-to-date. If not, it is going to be due to an error.
2068 if (unlikely(!PageUptodate(page)))
2069 goto page_not_uptodate;
2072 * Found the page and have a reference on it.
2073 * We must recheck i_size under page lock.
2075 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2076 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2077 unlock_page(page);
2078 page_cache_release(page);
2079 return VM_FAULT_SIGBUS;
2082 vmf->page = page;
2083 return ret | VM_FAULT_LOCKED;
2085 no_cached_page:
2087 * We're only likely to ever get here if MADV_RANDOM is in
2088 * effect.
2090 error = page_cache_read(file, offset, vmf->gfp_mask);
2093 * The page we want has now been added to the page cache.
2094 * In the unlikely event that someone removed it in the
2095 * meantime, we'll just come back here and read it again.
2097 if (error >= 0)
2098 goto retry_find;
2101 * An error return from page_cache_read can result if the
2102 * system is low on memory, or a problem occurs while trying
2103 * to schedule I/O.
2105 if (error == -ENOMEM)
2106 return VM_FAULT_OOM;
2107 return VM_FAULT_SIGBUS;
2109 page_not_uptodate:
2111 * Umm, take care of errors if the page isn't up-to-date.
2112 * Try to re-read it _once_. We do this synchronously,
2113 * because there really aren't any performance issues here
2114 * and we need to check for errors.
2116 ClearPageError(page);
2117 error = mapping->a_ops->readpage(file, page);
2118 if (!error) {
2119 wait_on_page_locked(page);
2120 if (!PageUptodate(page))
2121 error = -EIO;
2123 page_cache_release(page);
2125 if (!error || error == AOP_TRUNCATED_PAGE)
2126 goto retry_find;
2128 /* Things didn't work out. Return zero to tell the mm layer so. */
2129 shrink_readahead_size_eio(file, ra);
2130 return VM_FAULT_SIGBUS;
2132 EXPORT_SYMBOL(filemap_fault);
2134 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2136 struct radix_tree_iter iter;
2137 void **slot;
2138 struct file *file = vma->vm_file;
2139 struct address_space *mapping = file->f_mapping;
2140 loff_t size;
2141 struct page *page;
2142 unsigned long address = (unsigned long) vmf->virtual_address;
2143 unsigned long addr;
2144 pte_t *pte;
2146 rcu_read_lock();
2147 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2148 if (iter.index > vmf->max_pgoff)
2149 break;
2150 repeat:
2151 page = radix_tree_deref_slot(slot);
2152 if (unlikely(!page))
2153 goto next;
2154 if (radix_tree_exception(page)) {
2155 if (radix_tree_deref_retry(page))
2156 break;
2157 else
2158 goto next;
2161 if (!page_cache_get_speculative(page))
2162 goto repeat;
2164 /* Has the page moved? */
2165 if (unlikely(page != *slot)) {
2166 page_cache_release(page);
2167 goto repeat;
2170 if (!PageUptodate(page) ||
2171 PageReadahead(page) ||
2172 PageHWPoison(page))
2173 goto skip;
2174 if (!trylock_page(page))
2175 goto skip;
2177 if (page->mapping != mapping || !PageUptodate(page))
2178 goto unlock;
2180 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2181 if (page->index >= size >> PAGE_CACHE_SHIFT)
2182 goto unlock;
2184 pte = vmf->pte + page->index - vmf->pgoff;
2185 if (!pte_none(*pte))
2186 goto unlock;
2188 if (file->f_ra.mmap_miss > 0)
2189 file->f_ra.mmap_miss--;
2190 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2191 do_set_pte(vma, addr, page, pte, false, false);
2192 unlock_page(page);
2193 goto next;
2194 unlock:
2195 unlock_page(page);
2196 skip:
2197 page_cache_release(page);
2198 next:
2199 if (iter.index == vmf->max_pgoff)
2200 break;
2202 rcu_read_unlock();
2204 EXPORT_SYMBOL(filemap_map_pages);
2206 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2208 struct page *page = vmf->page;
2209 struct inode *inode = file_inode(vma->vm_file);
2210 int ret = VM_FAULT_LOCKED;
2212 sb_start_pagefault(inode->i_sb);
2213 file_update_time(vma->vm_file);
2214 lock_page(page);
2215 if (page->mapping != inode->i_mapping) {
2216 unlock_page(page);
2217 ret = VM_FAULT_NOPAGE;
2218 goto out;
2221 * We mark the page dirty already here so that when freeze is in
2222 * progress, we are guaranteed that writeback during freezing will
2223 * see the dirty page and writeprotect it again.
2225 set_page_dirty(page);
2226 wait_for_stable_page(page);
2227 out:
2228 sb_end_pagefault(inode->i_sb);
2229 return ret;
2231 EXPORT_SYMBOL(filemap_page_mkwrite);
2233 const struct vm_operations_struct generic_file_vm_ops = {
2234 .fault = filemap_fault,
2235 .map_pages = filemap_map_pages,
2236 .page_mkwrite = filemap_page_mkwrite,
2239 /* This is used for a general mmap of a disk file */
2241 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2243 struct address_space *mapping = file->f_mapping;
2245 if (!mapping->a_ops->readpage)
2246 return -ENOEXEC;
2247 file_accessed(file);
2248 vma->vm_ops = &generic_file_vm_ops;
2249 return 0;
2253 * This is for filesystems which do not implement ->writepage.
2255 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2257 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2258 return -EINVAL;
2259 return generic_file_mmap(file, vma);
2261 #else
2262 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2264 return -ENOSYS;
2266 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2268 return -ENOSYS;
2270 #endif /* CONFIG_MMU */
2272 EXPORT_SYMBOL(generic_file_mmap);
2273 EXPORT_SYMBOL(generic_file_readonly_mmap);
2275 static struct page *wait_on_page_read(struct page *page)
2277 if (!IS_ERR(page)) {
2278 wait_on_page_locked(page);
2279 if (!PageUptodate(page)) {
2280 page_cache_release(page);
2281 page = ERR_PTR(-EIO);
2284 return page;
2287 static struct page *__read_cache_page(struct address_space *mapping,
2288 pgoff_t index,
2289 int (*filler)(void *, struct page *),
2290 void *data,
2291 gfp_t gfp)
2293 struct page *page;
2294 int err;
2295 repeat:
2296 page = find_get_page(mapping, index);
2297 if (!page) {
2298 page = __page_cache_alloc(gfp | __GFP_COLD);
2299 if (!page)
2300 return ERR_PTR(-ENOMEM);
2301 err = add_to_page_cache_lru(page, mapping, index, gfp);
2302 if (unlikely(err)) {
2303 page_cache_release(page);
2304 if (err == -EEXIST)
2305 goto repeat;
2306 /* Presumably ENOMEM for radix tree node */
2307 return ERR_PTR(err);
2309 err = filler(data, page);
2310 if (err < 0) {
2311 page_cache_release(page);
2312 page = ERR_PTR(err);
2313 } else {
2314 page = wait_on_page_read(page);
2317 return page;
2320 static struct page *do_read_cache_page(struct address_space *mapping,
2321 pgoff_t index,
2322 int (*filler)(void *, struct page *),
2323 void *data,
2324 gfp_t gfp)
2327 struct page *page;
2328 int err;
2330 retry:
2331 page = __read_cache_page(mapping, index, filler, data, gfp);
2332 if (IS_ERR(page))
2333 return page;
2334 if (PageUptodate(page))
2335 goto out;
2337 lock_page(page);
2338 if (!page->mapping) {
2339 unlock_page(page);
2340 page_cache_release(page);
2341 goto retry;
2343 if (PageUptodate(page)) {
2344 unlock_page(page);
2345 goto out;
2347 err = filler(data, page);
2348 if (err < 0) {
2349 page_cache_release(page);
2350 return ERR_PTR(err);
2351 } else {
2352 page = wait_on_page_read(page);
2353 if (IS_ERR(page))
2354 return page;
2356 out:
2357 mark_page_accessed(page);
2358 return page;
2362 * read_cache_page - read into page cache, fill it if needed
2363 * @mapping: the page's address_space
2364 * @index: the page index
2365 * @filler: function to perform the read
2366 * @data: first arg to filler(data, page) function, often left as NULL
2368 * Read into the page cache. If a page already exists, and PageUptodate() is
2369 * not set, try to fill the page and wait for it to become unlocked.
2371 * If the page does not get brought uptodate, return -EIO.
2373 struct page *read_cache_page(struct address_space *mapping,
2374 pgoff_t index,
2375 int (*filler)(void *, struct page *),
2376 void *data)
2378 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2380 EXPORT_SYMBOL(read_cache_page);
2383 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2384 * @mapping: the page's address_space
2385 * @index: the page index
2386 * @gfp: the page allocator flags to use if allocating
2388 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2389 * any new page allocations done using the specified allocation flags.
2391 * If the page does not get brought uptodate, return -EIO.
2393 struct page *read_cache_page_gfp(struct address_space *mapping,
2394 pgoff_t index,
2395 gfp_t gfp)
2397 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2399 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2401 EXPORT_SYMBOL(read_cache_page_gfp);
2404 * Performs necessary checks before doing a write
2406 * Can adjust writing position or amount of bytes to write.
2407 * Returns appropriate error code that caller should return or
2408 * zero in case that write should be allowed.
2410 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2412 struct file *file = iocb->ki_filp;
2413 struct inode *inode = file->f_mapping->host;
2414 unsigned long limit = rlimit(RLIMIT_FSIZE);
2415 loff_t pos;
2417 if (!iov_iter_count(from))
2418 return 0;
2420 /* FIXME: this is for backwards compatibility with 2.4 */
2421 if (iocb->ki_flags & IOCB_APPEND)
2422 iocb->ki_pos = i_size_read(inode);
2424 pos = iocb->ki_pos;
2426 if (limit != RLIM_INFINITY) {
2427 if (iocb->ki_pos >= limit) {
2428 send_sig(SIGXFSZ, current, 0);
2429 return -EFBIG;
2431 iov_iter_truncate(from, limit - (unsigned long)pos);
2435 * LFS rule
2437 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2438 !(file->f_flags & O_LARGEFILE))) {
2439 if (pos >= MAX_NON_LFS)
2440 return -EFBIG;
2441 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2445 * Are we about to exceed the fs block limit ?
2447 * If we have written data it becomes a short write. If we have
2448 * exceeded without writing data we send a signal and return EFBIG.
2449 * Linus frestrict idea will clean these up nicely..
2451 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2452 return -EFBIG;
2454 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2455 return iov_iter_count(from);
2457 EXPORT_SYMBOL(generic_write_checks);
2459 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2460 loff_t pos, unsigned len, unsigned flags,
2461 struct page **pagep, void **fsdata)
2463 const struct address_space_operations *aops = mapping->a_ops;
2465 return aops->write_begin(file, mapping, pos, len, flags,
2466 pagep, fsdata);
2468 EXPORT_SYMBOL(pagecache_write_begin);
2470 int pagecache_write_end(struct file *file, struct address_space *mapping,
2471 loff_t pos, unsigned len, unsigned copied,
2472 struct page *page, void *fsdata)
2474 const struct address_space_operations *aops = mapping->a_ops;
2476 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2478 EXPORT_SYMBOL(pagecache_write_end);
2480 ssize_t
2481 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2483 struct file *file = iocb->ki_filp;
2484 struct address_space *mapping = file->f_mapping;
2485 struct inode *inode = mapping->host;
2486 ssize_t written;
2487 size_t write_len;
2488 pgoff_t end;
2489 struct iov_iter data;
2491 write_len = iov_iter_count(from);
2492 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2494 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2495 if (written)
2496 goto out;
2499 * After a write we want buffered reads to be sure to go to disk to get
2500 * the new data. We invalidate clean cached page from the region we're
2501 * about to write. We do this *before* the write so that we can return
2502 * without clobbering -EIOCBQUEUED from ->direct_IO().
2504 if (mapping->nrpages) {
2505 written = invalidate_inode_pages2_range(mapping,
2506 pos >> PAGE_CACHE_SHIFT, end);
2508 * If a page can not be invalidated, return 0 to fall back
2509 * to buffered write.
2511 if (written) {
2512 if (written == -EBUSY)
2513 return 0;
2514 goto out;
2518 data = *from;
2519 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2522 * Finally, try again to invalidate clean pages which might have been
2523 * cached by non-direct readahead, or faulted in by get_user_pages()
2524 * if the source of the write was an mmap'ed region of the file
2525 * we're writing. Either one is a pretty crazy thing to do,
2526 * so we don't support it 100%. If this invalidation
2527 * fails, tough, the write still worked...
2529 if (mapping->nrpages) {
2530 invalidate_inode_pages2_range(mapping,
2531 pos >> PAGE_CACHE_SHIFT, end);
2534 if (written > 0) {
2535 pos += written;
2536 iov_iter_advance(from, written);
2537 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2538 i_size_write(inode, pos);
2539 mark_inode_dirty(inode);
2541 iocb->ki_pos = pos;
2543 out:
2544 return written;
2546 EXPORT_SYMBOL(generic_file_direct_write);
2549 * Find or create a page at the given pagecache position. Return the locked
2550 * page. This function is specifically for buffered writes.
2552 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2553 pgoff_t index, unsigned flags)
2555 struct page *page;
2556 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2558 if (flags & AOP_FLAG_NOFS)
2559 fgp_flags |= FGP_NOFS;
2561 page = pagecache_get_page(mapping, index, fgp_flags,
2562 mapping_gfp_mask(mapping));
2563 if (page)
2564 wait_for_stable_page(page);
2566 return page;
2568 EXPORT_SYMBOL(grab_cache_page_write_begin);
2570 ssize_t generic_perform_write(struct file *file,
2571 struct iov_iter *i, loff_t pos)
2573 struct address_space *mapping = file->f_mapping;
2574 const struct address_space_operations *a_ops = mapping->a_ops;
2575 long status = 0;
2576 ssize_t written = 0;
2577 unsigned int flags = 0;
2580 * Copies from kernel address space cannot fail (NFSD is a big user).
2582 if (!iter_is_iovec(i))
2583 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2585 do {
2586 struct page *page;
2587 unsigned long offset; /* Offset into pagecache page */
2588 unsigned long bytes; /* Bytes to write to page */
2589 size_t copied; /* Bytes copied from user */
2590 void *fsdata;
2592 offset = (pos & (PAGE_CACHE_SIZE - 1));
2593 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2594 iov_iter_count(i));
2596 again:
2598 * Bring in the user page that we will copy from _first_.
2599 * Otherwise there's a nasty deadlock on copying from the
2600 * same page as we're writing to, without it being marked
2601 * up-to-date.
2603 * Not only is this an optimisation, but it is also required
2604 * to check that the address is actually valid, when atomic
2605 * usercopies are used, below.
2607 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2608 status = -EFAULT;
2609 break;
2612 if (fatal_signal_pending(current)) {
2613 status = -EINTR;
2614 break;
2617 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2618 &page, &fsdata);
2619 if (unlikely(status < 0))
2620 break;
2622 if (mapping_writably_mapped(mapping))
2623 flush_dcache_page(page);
2625 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2626 flush_dcache_page(page);
2628 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2629 page, fsdata);
2630 if (unlikely(status < 0))
2631 break;
2632 copied = status;
2634 cond_resched();
2636 iov_iter_advance(i, copied);
2637 if (unlikely(copied == 0)) {
2639 * If we were unable to copy any data at all, we must
2640 * fall back to a single segment length write.
2642 * If we didn't fallback here, we could livelock
2643 * because not all segments in the iov can be copied at
2644 * once without a pagefault.
2646 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2647 iov_iter_single_seg_count(i));
2648 goto again;
2650 pos += copied;
2651 written += copied;
2653 balance_dirty_pages_ratelimited(mapping);
2654 } while (iov_iter_count(i));
2656 return written ? written : status;
2658 EXPORT_SYMBOL(generic_perform_write);
2661 * __generic_file_write_iter - write data to a file
2662 * @iocb: IO state structure (file, offset, etc.)
2663 * @from: iov_iter with data to write
2665 * This function does all the work needed for actually writing data to a
2666 * file. It does all basic checks, removes SUID from the file, updates
2667 * modification times and calls proper subroutines depending on whether we
2668 * do direct IO or a standard buffered write.
2670 * It expects i_mutex to be grabbed unless we work on a block device or similar
2671 * object which does not need locking at all.
2673 * This function does *not* take care of syncing data in case of O_SYNC write.
2674 * A caller has to handle it. This is mainly due to the fact that we want to
2675 * avoid syncing under i_mutex.
2677 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2679 struct file *file = iocb->ki_filp;
2680 struct address_space * mapping = file->f_mapping;
2681 struct inode *inode = mapping->host;
2682 ssize_t written = 0;
2683 ssize_t err;
2684 ssize_t status;
2686 /* We can write back this queue in page reclaim */
2687 current->backing_dev_info = inode_to_bdi(inode);
2688 err = file_remove_privs(file);
2689 if (err)
2690 goto out;
2692 err = file_update_time(file);
2693 if (err)
2694 goto out;
2696 if (iocb->ki_flags & IOCB_DIRECT) {
2697 loff_t pos, endbyte;
2699 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2701 * If the write stopped short of completing, fall back to
2702 * buffered writes. Some filesystems do this for writes to
2703 * holes, for example. For DAX files, a buffered write will
2704 * not succeed (even if it did, DAX does not handle dirty
2705 * page-cache pages correctly).
2707 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2708 goto out;
2710 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2712 * If generic_perform_write() returned a synchronous error
2713 * then we want to return the number of bytes which were
2714 * direct-written, or the error code if that was zero. Note
2715 * that this differs from normal direct-io semantics, which
2716 * will return -EFOO even if some bytes were written.
2718 if (unlikely(status < 0)) {
2719 err = status;
2720 goto out;
2723 * We need to ensure that the page cache pages are written to
2724 * disk and invalidated to preserve the expected O_DIRECT
2725 * semantics.
2727 endbyte = pos + status - 1;
2728 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2729 if (err == 0) {
2730 iocb->ki_pos = endbyte + 1;
2731 written += status;
2732 invalidate_mapping_pages(mapping,
2733 pos >> PAGE_CACHE_SHIFT,
2734 endbyte >> PAGE_CACHE_SHIFT);
2735 } else {
2737 * We don't know how much we wrote, so just return
2738 * the number of bytes which were direct-written
2741 } else {
2742 written = generic_perform_write(file, from, iocb->ki_pos);
2743 if (likely(written > 0))
2744 iocb->ki_pos += written;
2746 out:
2747 current->backing_dev_info = NULL;
2748 return written ? written : err;
2750 EXPORT_SYMBOL(__generic_file_write_iter);
2753 * generic_file_write_iter - write data to a file
2754 * @iocb: IO state structure
2755 * @from: iov_iter with data to write
2757 * This is a wrapper around __generic_file_write_iter() to be used by most
2758 * filesystems. It takes care of syncing the file in case of O_SYNC file
2759 * and acquires i_mutex as needed.
2761 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2763 struct file *file = iocb->ki_filp;
2764 struct inode *inode = file->f_mapping->host;
2765 ssize_t ret;
2767 inode_lock(inode);
2768 ret = generic_write_checks(iocb, from);
2769 if (ret > 0)
2770 ret = __generic_file_write_iter(iocb, from);
2771 inode_unlock(inode);
2773 if (ret > 0) {
2774 ssize_t err;
2776 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2777 if (err < 0)
2778 ret = err;
2780 return ret;
2782 EXPORT_SYMBOL(generic_file_write_iter);
2785 * try_to_release_page() - release old fs-specific metadata on a page
2787 * @page: the page which the kernel is trying to free
2788 * @gfp_mask: memory allocation flags (and I/O mode)
2790 * The address_space is to try to release any data against the page
2791 * (presumably at page->private). If the release was successful, return `1'.
2792 * Otherwise return zero.
2794 * This may also be called if PG_fscache is set on a page, indicating that the
2795 * page is known to the local caching routines.
2797 * The @gfp_mask argument specifies whether I/O may be performed to release
2798 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2801 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2803 struct address_space * const mapping = page->mapping;
2805 BUG_ON(!PageLocked(page));
2806 if (PageWriteback(page))
2807 return 0;
2809 if (mapping && mapping->a_ops->releasepage)
2810 return mapping->a_ops->releasepage(page, gfp_mask);
2811 return try_to_free_buffers(page);
2814 EXPORT_SYMBOL(try_to_release_page);