spi/pl022: Revert recent runtime PM changes
[linux-2.6/btrfs-unstable.git] / drivers / spi / spi-pl022.c
bloba1db91a99b89a670cb7979c5fd758c90796aa2a9
1 /*
2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4 * Copyright (C) 2008-2012 ST-Ericsson AB
5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7 * Author: Linus Walleij <linus.walleij@stericsson.com>
9 * Initial version inspired by:
10 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
11 * Initial adoption to PL022 by:
12 * Sachin Verma <sachin.verma@st.com>
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or
17 * (at your option) any later version.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/ioport.h>
29 #include <linux/errno.h>
30 #include <linux/interrupt.h>
31 #include <linux/spi/spi.h>
32 #include <linux/delay.h>
33 #include <linux/clk.h>
34 #include <linux/err.h>
35 #include <linux/amba/bus.h>
36 #include <linux/amba/pl022.h>
37 #include <linux/io.h>
38 #include <linux/slab.h>
39 #include <linux/dmaengine.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/scatterlist.h>
42 #include <linux/pm_runtime.h>
43 #include <linux/gpio.h>
44 #include <linux/of_gpio.h>
45 #include <linux/pinctrl/consumer.h>
48 * This macro is used to define some register default values.
49 * reg is masked with mask, the OR:ed with an (again masked)
50 * val shifted sb steps to the left.
52 #define SSP_WRITE_BITS(reg, val, mask, sb) \
53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
56 * This macro is also used to define some default values.
57 * It will just shift val by sb steps to the left and mask
58 * the result with mask.
60 #define GEN_MASK_BITS(val, mask, sb) \
61 (((val)<<(sb)) & (mask))
63 #define DRIVE_TX 0
64 #define DO_NOT_DRIVE_TX 1
66 #define DO_NOT_QUEUE_DMA 0
67 #define QUEUE_DMA 1
69 #define RX_TRANSFER 1
70 #define TX_TRANSFER 2
73 * Macros to access SSP Registers with their offsets
75 #define SSP_CR0(r) (r + 0x000)
76 #define SSP_CR1(r) (r + 0x004)
77 #define SSP_DR(r) (r + 0x008)
78 #define SSP_SR(r) (r + 0x00C)
79 #define SSP_CPSR(r) (r + 0x010)
80 #define SSP_IMSC(r) (r + 0x014)
81 #define SSP_RIS(r) (r + 0x018)
82 #define SSP_MIS(r) (r + 0x01C)
83 #define SSP_ICR(r) (r + 0x020)
84 #define SSP_DMACR(r) (r + 0x024)
85 #define SSP_ITCR(r) (r + 0x080)
86 #define SSP_ITIP(r) (r + 0x084)
87 #define SSP_ITOP(r) (r + 0x088)
88 #define SSP_TDR(r) (r + 0x08C)
90 #define SSP_PID0(r) (r + 0xFE0)
91 #define SSP_PID1(r) (r + 0xFE4)
92 #define SSP_PID2(r) (r + 0xFE8)
93 #define SSP_PID3(r) (r + 0xFEC)
95 #define SSP_CID0(r) (r + 0xFF0)
96 #define SSP_CID1(r) (r + 0xFF4)
97 #define SSP_CID2(r) (r + 0xFF8)
98 #define SSP_CID3(r) (r + 0xFFC)
101 * SSP Control Register 0 - SSP_CR0
103 #define SSP_CR0_MASK_DSS (0x0FUL << 0)
104 #define SSP_CR0_MASK_FRF (0x3UL << 4)
105 #define SSP_CR0_MASK_SPO (0x1UL << 6)
106 #define SSP_CR0_MASK_SPH (0x1UL << 7)
107 #define SSP_CR0_MASK_SCR (0xFFUL << 8)
110 * The ST version of this block moves som bits
111 * in SSP_CR0 and extends it to 32 bits
113 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0)
114 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
115 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16)
116 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21)
119 * SSP Control Register 0 - SSP_CR1
121 #define SSP_CR1_MASK_LBM (0x1UL << 0)
122 #define SSP_CR1_MASK_SSE (0x1UL << 1)
123 #define SSP_CR1_MASK_MS (0x1UL << 2)
124 #define SSP_CR1_MASK_SOD (0x1UL << 3)
127 * The ST version of this block adds some bits
128 * in SSP_CR1
130 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4)
131 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5)
132 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6)
133 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
134 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
135 /* This one is only in the PL023 variant */
136 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
139 * SSP Status Register - SSP_SR
141 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */
142 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */
143 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */
144 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */
145 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */
148 * SSP Clock Prescale Register - SSP_CPSR
150 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0)
153 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
155 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
156 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */
157 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */
158 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */
161 * SSP Raw Interrupt Status Register - SSP_RIS
163 /* Receive Overrun Raw Interrupt status */
164 #define SSP_RIS_MASK_RORRIS (0x1UL << 0)
165 /* Receive Timeout Raw Interrupt status */
166 #define SSP_RIS_MASK_RTRIS (0x1UL << 1)
167 /* Receive FIFO Raw Interrupt status */
168 #define SSP_RIS_MASK_RXRIS (0x1UL << 2)
169 /* Transmit FIFO Raw Interrupt status */
170 #define SSP_RIS_MASK_TXRIS (0x1UL << 3)
173 * SSP Masked Interrupt Status Register - SSP_MIS
175 /* Receive Overrun Masked Interrupt status */
176 #define SSP_MIS_MASK_RORMIS (0x1UL << 0)
177 /* Receive Timeout Masked Interrupt status */
178 #define SSP_MIS_MASK_RTMIS (0x1UL << 1)
179 /* Receive FIFO Masked Interrupt status */
180 #define SSP_MIS_MASK_RXMIS (0x1UL << 2)
181 /* Transmit FIFO Masked Interrupt status */
182 #define SSP_MIS_MASK_TXMIS (0x1UL << 3)
185 * SSP Interrupt Clear Register - SSP_ICR
187 /* Receive Overrun Raw Clear Interrupt bit */
188 #define SSP_ICR_MASK_RORIC (0x1UL << 0)
189 /* Receive Timeout Clear Interrupt bit */
190 #define SSP_ICR_MASK_RTIC (0x1UL << 1)
193 * SSP DMA Control Register - SSP_DMACR
195 /* Receive DMA Enable bit */
196 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0)
197 /* Transmit DMA Enable bit */
198 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1)
201 * SSP Integration Test control Register - SSP_ITCR
203 #define SSP_ITCR_MASK_ITEN (0x1UL << 0)
204 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1)
207 * SSP Integration Test Input Register - SSP_ITIP
209 #define ITIP_MASK_SSPRXD (0x1UL << 0)
210 #define ITIP_MASK_SSPFSSIN (0x1UL << 1)
211 #define ITIP_MASK_SSPCLKIN (0x1UL << 2)
212 #define ITIP_MASK_RXDMAC (0x1UL << 3)
213 #define ITIP_MASK_TXDMAC (0x1UL << 4)
214 #define ITIP_MASK_SSPTXDIN (0x1UL << 5)
217 * SSP Integration Test output Register - SSP_ITOP
219 #define ITOP_MASK_SSPTXD (0x1UL << 0)
220 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1)
221 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2)
222 #define ITOP_MASK_SSPOEn (0x1UL << 3)
223 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4)
224 #define ITOP_MASK_RORINTR (0x1UL << 5)
225 #define ITOP_MASK_RTINTR (0x1UL << 6)
226 #define ITOP_MASK_RXINTR (0x1UL << 7)
227 #define ITOP_MASK_TXINTR (0x1UL << 8)
228 #define ITOP_MASK_INTR (0x1UL << 9)
229 #define ITOP_MASK_RXDMABREQ (0x1UL << 10)
230 #define ITOP_MASK_RXDMASREQ (0x1UL << 11)
231 #define ITOP_MASK_TXDMABREQ (0x1UL << 12)
232 #define ITOP_MASK_TXDMASREQ (0x1UL << 13)
235 * SSP Test Data Register - SSP_TDR
237 #define TDR_MASK_TESTDATA (0xFFFFFFFF)
240 * Message State
241 * we use the spi_message.state (void *) pointer to
242 * hold a single state value, that's why all this
243 * (void *) casting is done here.
245 #define STATE_START ((void *) 0)
246 #define STATE_RUNNING ((void *) 1)
247 #define STATE_DONE ((void *) 2)
248 #define STATE_ERROR ((void *) -1)
251 * SSP State - Whether Enabled or Disabled
253 #define SSP_DISABLED (0)
254 #define SSP_ENABLED (1)
257 * SSP DMA State - Whether DMA Enabled or Disabled
259 #define SSP_DMA_DISABLED (0)
260 #define SSP_DMA_ENABLED (1)
263 * SSP Clock Defaults
265 #define SSP_DEFAULT_CLKRATE 0x2
266 #define SSP_DEFAULT_PRESCALE 0x40
269 * SSP Clock Parameter ranges
271 #define CPSDVR_MIN 0x02
272 #define CPSDVR_MAX 0xFE
273 #define SCR_MIN 0x00
274 #define SCR_MAX 0xFF
277 * SSP Interrupt related Macros
279 #define DEFAULT_SSP_REG_IMSC 0x0UL
280 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
281 #define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
283 #define CLEAR_ALL_INTERRUPTS 0x3
285 #define SPI_POLLING_TIMEOUT 1000
288 * The type of reading going on on this chip
290 enum ssp_reading {
291 READING_NULL,
292 READING_U8,
293 READING_U16,
294 READING_U32
298 * The type of writing going on on this chip
300 enum ssp_writing {
301 WRITING_NULL,
302 WRITING_U8,
303 WRITING_U16,
304 WRITING_U32
308 * struct vendor_data - vendor-specific config parameters
309 * for PL022 derivates
310 * @fifodepth: depth of FIFOs (both)
311 * @max_bpw: maximum number of bits per word
312 * @unidir: supports unidirection transfers
313 * @extended_cr: 32 bit wide control register 0 with extra
314 * features and extra features in CR1 as found in the ST variants
315 * @pl023: supports a subset of the ST extensions called "PL023"
317 struct vendor_data {
318 int fifodepth;
319 int max_bpw;
320 bool unidir;
321 bool extended_cr;
322 bool pl023;
323 bool loopback;
327 * struct pl022 - This is the private SSP driver data structure
328 * @adev: AMBA device model hookup
329 * @vendor: vendor data for the IP block
330 * @phybase: the physical memory where the SSP device resides
331 * @virtbase: the virtual memory where the SSP is mapped
332 * @clk: outgoing clock "SPICLK" for the SPI bus
333 * @master: SPI framework hookup
334 * @master_info: controller-specific data from machine setup
335 * @kworker: thread struct for message pump
336 * @kworker_task: pointer to task for message pump kworker thread
337 * @pump_messages: work struct for scheduling work to the message pump
338 * @queue_lock: spinlock to syncronise access to message queue
339 * @queue: message queue
340 * @busy: message pump is busy
341 * @running: message pump is running
342 * @pump_transfers: Tasklet used in Interrupt Transfer mode
343 * @cur_msg: Pointer to current spi_message being processed
344 * @cur_transfer: Pointer to current spi_transfer
345 * @cur_chip: pointer to current clients chip(assigned from controller_state)
346 * @next_msg_cs_active: the next message in the queue has been examined
347 * and it was found that it uses the same chip select as the previous
348 * message, so we left it active after the previous transfer, and it's
349 * active already.
350 * @tx: current position in TX buffer to be read
351 * @tx_end: end position in TX buffer to be read
352 * @rx: current position in RX buffer to be written
353 * @rx_end: end position in RX buffer to be written
354 * @read: the type of read currently going on
355 * @write: the type of write currently going on
356 * @exp_fifo_level: expected FIFO level
357 * @dma_rx_channel: optional channel for RX DMA
358 * @dma_tx_channel: optional channel for TX DMA
359 * @sgt_rx: scattertable for the RX transfer
360 * @sgt_tx: scattertable for the TX transfer
361 * @dummypage: a dummy page used for driving data on the bus with DMA
362 * @cur_cs: current chip select (gpio)
363 * @chipselects: list of chipselects (gpios)
365 struct pl022 {
366 struct amba_device *adev;
367 struct vendor_data *vendor;
368 resource_size_t phybase;
369 void __iomem *virtbase;
370 struct clk *clk;
371 /* Two optional pin states - default & sleep */
372 struct pinctrl *pinctrl;
373 struct pinctrl_state *pins_default;
374 struct pinctrl_state *pins_sleep;
375 struct spi_master *master;
376 struct pl022_ssp_controller *master_info;
377 /* Message per-transfer pump */
378 struct tasklet_struct pump_transfers;
379 struct spi_message *cur_msg;
380 struct spi_transfer *cur_transfer;
381 struct chip_data *cur_chip;
382 bool next_msg_cs_active;
383 void *tx;
384 void *tx_end;
385 void *rx;
386 void *rx_end;
387 enum ssp_reading read;
388 enum ssp_writing write;
389 u32 exp_fifo_level;
390 enum ssp_rx_level_trig rx_lev_trig;
391 enum ssp_tx_level_trig tx_lev_trig;
392 /* DMA settings */
393 #ifdef CONFIG_DMA_ENGINE
394 struct dma_chan *dma_rx_channel;
395 struct dma_chan *dma_tx_channel;
396 struct sg_table sgt_rx;
397 struct sg_table sgt_tx;
398 char *dummypage;
399 bool dma_running;
400 #endif
401 int cur_cs;
402 int *chipselects;
406 * struct chip_data - To maintain runtime state of SSP for each client chip
407 * @cr0: Value of control register CR0 of SSP - on later ST variants this
408 * register is 32 bits wide rather than just 16
409 * @cr1: Value of control register CR1 of SSP
410 * @dmacr: Value of DMA control Register of SSP
411 * @cpsr: Value of Clock prescale register
412 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
413 * @enable_dma: Whether to enable DMA or not
414 * @read: function ptr to be used to read when doing xfer for this chip
415 * @write: function ptr to be used to write when doing xfer for this chip
416 * @cs_control: chip select callback provided by chip
417 * @xfer_type: polling/interrupt/DMA
419 * Runtime state of the SSP controller, maintained per chip,
420 * This would be set according to the current message that would be served
422 struct chip_data {
423 u32 cr0;
424 u16 cr1;
425 u16 dmacr;
426 u16 cpsr;
427 u8 n_bytes;
428 bool enable_dma;
429 enum ssp_reading read;
430 enum ssp_writing write;
431 void (*cs_control) (u32 command);
432 int xfer_type;
436 * null_cs_control - Dummy chip select function
437 * @command: select/delect the chip
439 * If no chip select function is provided by client this is used as dummy
440 * chip select
442 static void null_cs_control(u32 command)
444 pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
447 static void pl022_cs_control(struct pl022 *pl022, u32 command)
449 if (gpio_is_valid(pl022->cur_cs))
450 gpio_set_value(pl022->cur_cs, command);
451 else
452 pl022->cur_chip->cs_control(command);
456 * giveback - current spi_message is over, schedule next message and call
457 * callback of this message. Assumes that caller already
458 * set message->status; dma and pio irqs are blocked
459 * @pl022: SSP driver private data structure
461 static void giveback(struct pl022 *pl022)
463 struct spi_transfer *last_transfer;
464 pl022->next_msg_cs_active = false;
466 last_transfer = list_entry(pl022->cur_msg->transfers.prev,
467 struct spi_transfer,
468 transfer_list);
470 /* Delay if requested before any change in chip select */
471 if (last_transfer->delay_usecs)
473 * FIXME: This runs in interrupt context.
474 * Is this really smart?
476 udelay(last_transfer->delay_usecs);
478 if (!last_transfer->cs_change) {
479 struct spi_message *next_msg;
482 * cs_change was not set. We can keep the chip select
483 * enabled if there is message in the queue and it is
484 * for the same spi device.
486 * We cannot postpone this until pump_messages, because
487 * after calling msg->complete (below) the driver that
488 * sent the current message could be unloaded, which
489 * could invalidate the cs_control() callback...
491 /* get a pointer to the next message, if any */
492 next_msg = spi_get_next_queued_message(pl022->master);
495 * see if the next and current messages point
496 * to the same spi device.
498 if (next_msg && next_msg->spi != pl022->cur_msg->spi)
499 next_msg = NULL;
500 if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
501 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
502 else
503 pl022->next_msg_cs_active = true;
507 pl022->cur_msg = NULL;
508 pl022->cur_transfer = NULL;
509 pl022->cur_chip = NULL;
510 spi_finalize_current_message(pl022->master);
512 /* disable the SPI/SSP operation */
513 writew((readw(SSP_CR1(pl022->virtbase)) &
514 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
519 * flush - flush the FIFO to reach a clean state
520 * @pl022: SSP driver private data structure
522 static int flush(struct pl022 *pl022)
524 unsigned long limit = loops_per_jiffy << 1;
526 dev_dbg(&pl022->adev->dev, "flush\n");
527 do {
528 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
529 readw(SSP_DR(pl022->virtbase));
530 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
532 pl022->exp_fifo_level = 0;
534 return limit;
538 * restore_state - Load configuration of current chip
539 * @pl022: SSP driver private data structure
541 static void restore_state(struct pl022 *pl022)
543 struct chip_data *chip = pl022->cur_chip;
545 if (pl022->vendor->extended_cr)
546 writel(chip->cr0, SSP_CR0(pl022->virtbase));
547 else
548 writew(chip->cr0, SSP_CR0(pl022->virtbase));
549 writew(chip->cr1, SSP_CR1(pl022->virtbase));
550 writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
551 writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
552 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
553 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
557 * Default SSP Register Values
559 #define DEFAULT_SSP_REG_CR0 ( \
560 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \
561 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
562 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
563 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
564 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
567 /* ST versions have slightly different bit layout */
568 #define DEFAULT_SSP_REG_CR0_ST ( \
569 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
570 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
571 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
572 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
573 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
574 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \
575 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
578 /* The PL023 version is slightly different again */
579 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
581 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
582 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
583 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
586 #define DEFAULT_SSP_REG_CR1 ( \
587 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
588 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
589 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
590 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
593 /* ST versions extend this register to use all 16 bits */
594 #define DEFAULT_SSP_REG_CR1_ST ( \
595 DEFAULT_SSP_REG_CR1 | \
596 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
597 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
598 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
599 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
600 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
604 * The PL023 variant has further differences: no loopback mode, no microwire
605 * support, and a new clock feedback delay setting.
607 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
608 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
609 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
610 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
611 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
612 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
613 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
614 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
615 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
618 #define DEFAULT_SSP_REG_CPSR ( \
619 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
622 #define DEFAULT_SSP_REG_DMACR (\
623 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
624 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
628 * load_ssp_default_config - Load default configuration for SSP
629 * @pl022: SSP driver private data structure
631 static void load_ssp_default_config(struct pl022 *pl022)
633 if (pl022->vendor->pl023) {
634 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
635 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
636 } else if (pl022->vendor->extended_cr) {
637 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
638 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
639 } else {
640 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
641 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
643 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
644 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
645 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
646 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
650 * This will write to TX and read from RX according to the parameters
651 * set in pl022.
653 static void readwriter(struct pl022 *pl022)
657 * The FIFO depth is different between primecell variants.
658 * I believe filling in too much in the FIFO might cause
659 * errons in 8bit wide transfers on ARM variants (just 8 words
660 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
662 * To prevent this issue, the TX FIFO is only filled to the
663 * unused RX FIFO fill length, regardless of what the TX
664 * FIFO status flag indicates.
666 dev_dbg(&pl022->adev->dev,
667 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
668 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
670 /* Read as much as you can */
671 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
672 && (pl022->rx < pl022->rx_end)) {
673 switch (pl022->read) {
674 case READING_NULL:
675 readw(SSP_DR(pl022->virtbase));
676 break;
677 case READING_U8:
678 *(u8 *) (pl022->rx) =
679 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
680 break;
681 case READING_U16:
682 *(u16 *) (pl022->rx) =
683 (u16) readw(SSP_DR(pl022->virtbase));
684 break;
685 case READING_U32:
686 *(u32 *) (pl022->rx) =
687 readl(SSP_DR(pl022->virtbase));
688 break;
690 pl022->rx += (pl022->cur_chip->n_bytes);
691 pl022->exp_fifo_level--;
694 * Write as much as possible up to the RX FIFO size
696 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
697 && (pl022->tx < pl022->tx_end)) {
698 switch (pl022->write) {
699 case WRITING_NULL:
700 writew(0x0, SSP_DR(pl022->virtbase));
701 break;
702 case WRITING_U8:
703 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
704 break;
705 case WRITING_U16:
706 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
707 break;
708 case WRITING_U32:
709 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
710 break;
712 pl022->tx += (pl022->cur_chip->n_bytes);
713 pl022->exp_fifo_level++;
715 * This inner reader takes care of things appearing in the RX
716 * FIFO as we're transmitting. This will happen a lot since the
717 * clock starts running when you put things into the TX FIFO,
718 * and then things are continuously clocked into the RX FIFO.
720 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
721 && (pl022->rx < pl022->rx_end)) {
722 switch (pl022->read) {
723 case READING_NULL:
724 readw(SSP_DR(pl022->virtbase));
725 break;
726 case READING_U8:
727 *(u8 *) (pl022->rx) =
728 readw(SSP_DR(pl022->virtbase)) & 0xFFU;
729 break;
730 case READING_U16:
731 *(u16 *) (pl022->rx) =
732 (u16) readw(SSP_DR(pl022->virtbase));
733 break;
734 case READING_U32:
735 *(u32 *) (pl022->rx) =
736 readl(SSP_DR(pl022->virtbase));
737 break;
739 pl022->rx += (pl022->cur_chip->n_bytes);
740 pl022->exp_fifo_level--;
744 * When we exit here the TX FIFO should be full and the RX FIFO
745 * should be empty
750 * next_transfer - Move to the Next transfer in the current spi message
751 * @pl022: SSP driver private data structure
753 * This function moves though the linked list of spi transfers in the
754 * current spi message and returns with the state of current spi
755 * message i.e whether its last transfer is done(STATE_DONE) or
756 * Next transfer is ready(STATE_RUNNING)
758 static void *next_transfer(struct pl022 *pl022)
760 struct spi_message *msg = pl022->cur_msg;
761 struct spi_transfer *trans = pl022->cur_transfer;
763 /* Move to next transfer */
764 if (trans->transfer_list.next != &msg->transfers) {
765 pl022->cur_transfer =
766 list_entry(trans->transfer_list.next,
767 struct spi_transfer, transfer_list);
768 return STATE_RUNNING;
770 return STATE_DONE;
774 * This DMA functionality is only compiled in if we have
775 * access to the generic DMA devices/DMA engine.
777 #ifdef CONFIG_DMA_ENGINE
778 static void unmap_free_dma_scatter(struct pl022 *pl022)
780 /* Unmap and free the SG tables */
781 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
782 pl022->sgt_tx.nents, DMA_TO_DEVICE);
783 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
784 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
785 sg_free_table(&pl022->sgt_rx);
786 sg_free_table(&pl022->sgt_tx);
789 static void dma_callback(void *data)
791 struct pl022 *pl022 = data;
792 struct spi_message *msg = pl022->cur_msg;
794 BUG_ON(!pl022->sgt_rx.sgl);
796 #ifdef VERBOSE_DEBUG
798 * Optionally dump out buffers to inspect contents, this is
799 * good if you want to convince yourself that the loopback
800 * read/write contents are the same, when adopting to a new
801 * DMA engine.
804 struct scatterlist *sg;
805 unsigned int i;
807 dma_sync_sg_for_cpu(&pl022->adev->dev,
808 pl022->sgt_rx.sgl,
809 pl022->sgt_rx.nents,
810 DMA_FROM_DEVICE);
812 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
813 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
814 print_hex_dump(KERN_ERR, "SPI RX: ",
815 DUMP_PREFIX_OFFSET,
818 sg_virt(sg),
819 sg_dma_len(sg),
822 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
823 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
824 print_hex_dump(KERN_ERR, "SPI TX: ",
825 DUMP_PREFIX_OFFSET,
828 sg_virt(sg),
829 sg_dma_len(sg),
833 #endif
835 unmap_free_dma_scatter(pl022);
837 /* Update total bytes transferred */
838 msg->actual_length += pl022->cur_transfer->len;
839 if (pl022->cur_transfer->cs_change)
840 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
842 /* Move to next transfer */
843 msg->state = next_transfer(pl022);
844 tasklet_schedule(&pl022->pump_transfers);
847 static void setup_dma_scatter(struct pl022 *pl022,
848 void *buffer,
849 unsigned int length,
850 struct sg_table *sgtab)
852 struct scatterlist *sg;
853 int bytesleft = length;
854 void *bufp = buffer;
855 int mapbytes;
856 int i;
858 if (buffer) {
859 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
861 * If there are less bytes left than what fits
862 * in the current page (plus page alignment offset)
863 * we just feed in this, else we stuff in as much
864 * as we can.
866 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
867 mapbytes = bytesleft;
868 else
869 mapbytes = PAGE_SIZE - offset_in_page(bufp);
870 sg_set_page(sg, virt_to_page(bufp),
871 mapbytes, offset_in_page(bufp));
872 bufp += mapbytes;
873 bytesleft -= mapbytes;
874 dev_dbg(&pl022->adev->dev,
875 "set RX/TX target page @ %p, %d bytes, %d left\n",
876 bufp, mapbytes, bytesleft);
878 } else {
879 /* Map the dummy buffer on every page */
880 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
881 if (bytesleft < PAGE_SIZE)
882 mapbytes = bytesleft;
883 else
884 mapbytes = PAGE_SIZE;
885 sg_set_page(sg, virt_to_page(pl022->dummypage),
886 mapbytes, 0);
887 bytesleft -= mapbytes;
888 dev_dbg(&pl022->adev->dev,
889 "set RX/TX to dummy page %d bytes, %d left\n",
890 mapbytes, bytesleft);
894 BUG_ON(bytesleft);
898 * configure_dma - configures the channels for the next transfer
899 * @pl022: SSP driver's private data structure
901 static int configure_dma(struct pl022 *pl022)
903 struct dma_slave_config rx_conf = {
904 .src_addr = SSP_DR(pl022->phybase),
905 .direction = DMA_DEV_TO_MEM,
906 .device_fc = false,
908 struct dma_slave_config tx_conf = {
909 .dst_addr = SSP_DR(pl022->phybase),
910 .direction = DMA_MEM_TO_DEV,
911 .device_fc = false,
913 unsigned int pages;
914 int ret;
915 int rx_sglen, tx_sglen;
916 struct dma_chan *rxchan = pl022->dma_rx_channel;
917 struct dma_chan *txchan = pl022->dma_tx_channel;
918 struct dma_async_tx_descriptor *rxdesc;
919 struct dma_async_tx_descriptor *txdesc;
921 /* Check that the channels are available */
922 if (!rxchan || !txchan)
923 return -ENODEV;
926 * If supplied, the DMA burstsize should equal the FIFO trigger level.
927 * Notice that the DMA engine uses one-to-one mapping. Since we can
928 * not trigger on 2 elements this needs explicit mapping rather than
929 * calculation.
931 switch (pl022->rx_lev_trig) {
932 case SSP_RX_1_OR_MORE_ELEM:
933 rx_conf.src_maxburst = 1;
934 break;
935 case SSP_RX_4_OR_MORE_ELEM:
936 rx_conf.src_maxburst = 4;
937 break;
938 case SSP_RX_8_OR_MORE_ELEM:
939 rx_conf.src_maxburst = 8;
940 break;
941 case SSP_RX_16_OR_MORE_ELEM:
942 rx_conf.src_maxburst = 16;
943 break;
944 case SSP_RX_32_OR_MORE_ELEM:
945 rx_conf.src_maxburst = 32;
946 break;
947 default:
948 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
949 break;
952 switch (pl022->tx_lev_trig) {
953 case SSP_TX_1_OR_MORE_EMPTY_LOC:
954 tx_conf.dst_maxburst = 1;
955 break;
956 case SSP_TX_4_OR_MORE_EMPTY_LOC:
957 tx_conf.dst_maxburst = 4;
958 break;
959 case SSP_TX_8_OR_MORE_EMPTY_LOC:
960 tx_conf.dst_maxburst = 8;
961 break;
962 case SSP_TX_16_OR_MORE_EMPTY_LOC:
963 tx_conf.dst_maxburst = 16;
964 break;
965 case SSP_TX_32_OR_MORE_EMPTY_LOC:
966 tx_conf.dst_maxburst = 32;
967 break;
968 default:
969 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
970 break;
973 switch (pl022->read) {
974 case READING_NULL:
975 /* Use the same as for writing */
976 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
977 break;
978 case READING_U8:
979 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
980 break;
981 case READING_U16:
982 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
983 break;
984 case READING_U32:
985 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
986 break;
989 switch (pl022->write) {
990 case WRITING_NULL:
991 /* Use the same as for reading */
992 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
993 break;
994 case WRITING_U8:
995 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
996 break;
997 case WRITING_U16:
998 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
999 break;
1000 case WRITING_U32:
1001 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1002 break;
1005 /* SPI pecularity: we need to read and write the same width */
1006 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1007 rx_conf.src_addr_width = tx_conf.dst_addr_width;
1008 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1009 tx_conf.dst_addr_width = rx_conf.src_addr_width;
1010 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1012 dmaengine_slave_config(rxchan, &rx_conf);
1013 dmaengine_slave_config(txchan, &tx_conf);
1015 /* Create sglists for the transfers */
1016 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1017 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1019 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1020 if (ret)
1021 goto err_alloc_rx_sg;
1023 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1024 if (ret)
1025 goto err_alloc_tx_sg;
1027 /* Fill in the scatterlists for the RX+TX buffers */
1028 setup_dma_scatter(pl022, pl022->rx,
1029 pl022->cur_transfer->len, &pl022->sgt_rx);
1030 setup_dma_scatter(pl022, pl022->tx,
1031 pl022->cur_transfer->len, &pl022->sgt_tx);
1033 /* Map DMA buffers */
1034 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1035 pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1036 if (!rx_sglen)
1037 goto err_rx_sgmap;
1039 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1040 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1041 if (!tx_sglen)
1042 goto err_tx_sgmap;
1044 /* Send both scatterlists */
1045 rxdesc = dmaengine_prep_slave_sg(rxchan,
1046 pl022->sgt_rx.sgl,
1047 rx_sglen,
1048 DMA_DEV_TO_MEM,
1049 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1050 if (!rxdesc)
1051 goto err_rxdesc;
1053 txdesc = dmaengine_prep_slave_sg(txchan,
1054 pl022->sgt_tx.sgl,
1055 tx_sglen,
1056 DMA_MEM_TO_DEV,
1057 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1058 if (!txdesc)
1059 goto err_txdesc;
1061 /* Put the callback on the RX transfer only, that should finish last */
1062 rxdesc->callback = dma_callback;
1063 rxdesc->callback_param = pl022;
1065 /* Submit and fire RX and TX with TX last so we're ready to read! */
1066 dmaengine_submit(rxdesc);
1067 dmaengine_submit(txdesc);
1068 dma_async_issue_pending(rxchan);
1069 dma_async_issue_pending(txchan);
1070 pl022->dma_running = true;
1072 return 0;
1074 err_txdesc:
1075 dmaengine_terminate_all(txchan);
1076 err_rxdesc:
1077 dmaengine_terminate_all(rxchan);
1078 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1079 pl022->sgt_tx.nents, DMA_TO_DEVICE);
1080 err_tx_sgmap:
1081 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1082 pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1083 err_rx_sgmap:
1084 sg_free_table(&pl022->sgt_tx);
1085 err_alloc_tx_sg:
1086 sg_free_table(&pl022->sgt_rx);
1087 err_alloc_rx_sg:
1088 return -ENOMEM;
1091 static int __devinit pl022_dma_probe(struct pl022 *pl022)
1093 dma_cap_mask_t mask;
1095 /* Try to acquire a generic DMA engine slave channel */
1096 dma_cap_zero(mask);
1097 dma_cap_set(DMA_SLAVE, mask);
1099 * We need both RX and TX channels to do DMA, else do none
1100 * of them.
1102 pl022->dma_rx_channel = dma_request_channel(mask,
1103 pl022->master_info->dma_filter,
1104 pl022->master_info->dma_rx_param);
1105 if (!pl022->dma_rx_channel) {
1106 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1107 goto err_no_rxchan;
1110 pl022->dma_tx_channel = dma_request_channel(mask,
1111 pl022->master_info->dma_filter,
1112 pl022->master_info->dma_tx_param);
1113 if (!pl022->dma_tx_channel) {
1114 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1115 goto err_no_txchan;
1118 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1119 if (!pl022->dummypage) {
1120 dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1121 goto err_no_dummypage;
1124 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1125 dma_chan_name(pl022->dma_rx_channel),
1126 dma_chan_name(pl022->dma_tx_channel));
1128 return 0;
1130 err_no_dummypage:
1131 dma_release_channel(pl022->dma_tx_channel);
1132 err_no_txchan:
1133 dma_release_channel(pl022->dma_rx_channel);
1134 pl022->dma_rx_channel = NULL;
1135 err_no_rxchan:
1136 dev_err(&pl022->adev->dev,
1137 "Failed to work in dma mode, work without dma!\n");
1138 return -ENODEV;
1141 static void terminate_dma(struct pl022 *pl022)
1143 struct dma_chan *rxchan = pl022->dma_rx_channel;
1144 struct dma_chan *txchan = pl022->dma_tx_channel;
1146 dmaengine_terminate_all(rxchan);
1147 dmaengine_terminate_all(txchan);
1148 unmap_free_dma_scatter(pl022);
1149 pl022->dma_running = false;
1152 static void pl022_dma_remove(struct pl022 *pl022)
1154 if (pl022->dma_running)
1155 terminate_dma(pl022);
1156 if (pl022->dma_tx_channel)
1157 dma_release_channel(pl022->dma_tx_channel);
1158 if (pl022->dma_rx_channel)
1159 dma_release_channel(pl022->dma_rx_channel);
1160 kfree(pl022->dummypage);
1163 #else
1164 static inline int configure_dma(struct pl022 *pl022)
1166 return -ENODEV;
1169 static inline int pl022_dma_probe(struct pl022 *pl022)
1171 return 0;
1174 static inline void pl022_dma_remove(struct pl022 *pl022)
1177 #endif
1180 * pl022_interrupt_handler - Interrupt handler for SSP controller
1182 * This function handles interrupts generated for an interrupt based transfer.
1183 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1184 * current message's state as STATE_ERROR and schedule the tasklet
1185 * pump_transfers which will do the postprocessing of the current message by
1186 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1187 * more data, and writes data in TX FIFO till it is not full. If we complete
1188 * the transfer we move to the next transfer and schedule the tasklet.
1190 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1192 struct pl022 *pl022 = dev_id;
1193 struct spi_message *msg = pl022->cur_msg;
1194 u16 irq_status = 0;
1195 u16 flag = 0;
1197 if (unlikely(!msg)) {
1198 dev_err(&pl022->adev->dev,
1199 "bad message state in interrupt handler");
1200 /* Never fail */
1201 return IRQ_HANDLED;
1204 /* Read the Interrupt Status Register */
1205 irq_status = readw(SSP_MIS(pl022->virtbase));
1207 if (unlikely(!irq_status))
1208 return IRQ_NONE;
1211 * This handles the FIFO interrupts, the timeout
1212 * interrupts are flatly ignored, they cannot be
1213 * trusted.
1215 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1217 * Overrun interrupt - bail out since our Data has been
1218 * corrupted
1220 dev_err(&pl022->adev->dev, "FIFO overrun\n");
1221 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1222 dev_err(&pl022->adev->dev,
1223 "RXFIFO is full\n");
1224 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1225 dev_err(&pl022->adev->dev,
1226 "TXFIFO is full\n");
1229 * Disable and clear interrupts, disable SSP,
1230 * mark message with bad status so it can be
1231 * retried.
1233 writew(DISABLE_ALL_INTERRUPTS,
1234 SSP_IMSC(pl022->virtbase));
1235 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1236 writew((readw(SSP_CR1(pl022->virtbase)) &
1237 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1238 msg->state = STATE_ERROR;
1240 /* Schedule message queue handler */
1241 tasklet_schedule(&pl022->pump_transfers);
1242 return IRQ_HANDLED;
1245 readwriter(pl022);
1247 if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1248 flag = 1;
1249 /* Disable Transmit interrupt, enable receive interrupt */
1250 writew((readw(SSP_IMSC(pl022->virtbase)) &
1251 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1252 SSP_IMSC(pl022->virtbase));
1256 * Since all transactions must write as much as shall be read,
1257 * we can conclude the entire transaction once RX is complete.
1258 * At this point, all TX will always be finished.
1260 if (pl022->rx >= pl022->rx_end) {
1261 writew(DISABLE_ALL_INTERRUPTS,
1262 SSP_IMSC(pl022->virtbase));
1263 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1264 if (unlikely(pl022->rx > pl022->rx_end)) {
1265 dev_warn(&pl022->adev->dev, "read %u surplus "
1266 "bytes (did you request an odd "
1267 "number of bytes on a 16bit bus?)\n",
1268 (u32) (pl022->rx - pl022->rx_end));
1270 /* Update total bytes transferred */
1271 msg->actual_length += pl022->cur_transfer->len;
1272 if (pl022->cur_transfer->cs_change)
1273 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1274 /* Move to next transfer */
1275 msg->state = next_transfer(pl022);
1276 tasklet_schedule(&pl022->pump_transfers);
1277 return IRQ_HANDLED;
1280 return IRQ_HANDLED;
1284 * This sets up the pointers to memory for the next message to
1285 * send out on the SPI bus.
1287 static int set_up_next_transfer(struct pl022 *pl022,
1288 struct spi_transfer *transfer)
1290 int residue;
1292 /* Sanity check the message for this bus width */
1293 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1294 if (unlikely(residue != 0)) {
1295 dev_err(&pl022->adev->dev,
1296 "message of %u bytes to transmit but the current "
1297 "chip bus has a data width of %u bytes!\n",
1298 pl022->cur_transfer->len,
1299 pl022->cur_chip->n_bytes);
1300 dev_err(&pl022->adev->dev, "skipping this message\n");
1301 return -EIO;
1303 pl022->tx = (void *)transfer->tx_buf;
1304 pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1305 pl022->rx = (void *)transfer->rx_buf;
1306 pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1307 pl022->write =
1308 pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1309 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1310 return 0;
1314 * pump_transfers - Tasklet function which schedules next transfer
1315 * when running in interrupt or DMA transfer mode.
1316 * @data: SSP driver private data structure
1319 static void pump_transfers(unsigned long data)
1321 struct pl022 *pl022 = (struct pl022 *) data;
1322 struct spi_message *message = NULL;
1323 struct spi_transfer *transfer = NULL;
1324 struct spi_transfer *previous = NULL;
1326 /* Get current state information */
1327 message = pl022->cur_msg;
1328 transfer = pl022->cur_transfer;
1330 /* Handle for abort */
1331 if (message->state == STATE_ERROR) {
1332 message->status = -EIO;
1333 giveback(pl022);
1334 return;
1337 /* Handle end of message */
1338 if (message->state == STATE_DONE) {
1339 message->status = 0;
1340 giveback(pl022);
1341 return;
1344 /* Delay if requested at end of transfer before CS change */
1345 if (message->state == STATE_RUNNING) {
1346 previous = list_entry(transfer->transfer_list.prev,
1347 struct spi_transfer,
1348 transfer_list);
1349 if (previous->delay_usecs)
1351 * FIXME: This runs in interrupt context.
1352 * Is this really smart?
1354 udelay(previous->delay_usecs);
1356 /* Reselect chip select only if cs_change was requested */
1357 if (previous->cs_change)
1358 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1359 } else {
1360 /* STATE_START */
1361 message->state = STATE_RUNNING;
1364 if (set_up_next_transfer(pl022, transfer)) {
1365 message->state = STATE_ERROR;
1366 message->status = -EIO;
1367 giveback(pl022);
1368 return;
1370 /* Flush the FIFOs and let's go! */
1371 flush(pl022);
1373 if (pl022->cur_chip->enable_dma) {
1374 if (configure_dma(pl022)) {
1375 dev_dbg(&pl022->adev->dev,
1376 "configuration of DMA failed, fall back to interrupt mode\n");
1377 goto err_config_dma;
1379 return;
1382 err_config_dma:
1383 /* enable all interrupts except RX */
1384 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1387 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1390 * Default is to enable all interrupts except RX -
1391 * this will be enabled once TX is complete
1393 u32 irqflags = ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM;
1395 /* Enable target chip, if not already active */
1396 if (!pl022->next_msg_cs_active)
1397 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1399 if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1400 /* Error path */
1401 pl022->cur_msg->state = STATE_ERROR;
1402 pl022->cur_msg->status = -EIO;
1403 giveback(pl022);
1404 return;
1406 /* If we're using DMA, set up DMA here */
1407 if (pl022->cur_chip->enable_dma) {
1408 /* Configure DMA transfer */
1409 if (configure_dma(pl022)) {
1410 dev_dbg(&pl022->adev->dev,
1411 "configuration of DMA failed, fall back to interrupt mode\n");
1412 goto err_config_dma;
1414 /* Disable interrupts in DMA mode, IRQ from DMA controller */
1415 irqflags = DISABLE_ALL_INTERRUPTS;
1417 err_config_dma:
1418 /* Enable SSP, turn on interrupts */
1419 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1420 SSP_CR1(pl022->virtbase));
1421 writew(irqflags, SSP_IMSC(pl022->virtbase));
1424 static void do_polling_transfer(struct pl022 *pl022)
1426 struct spi_message *message = NULL;
1427 struct spi_transfer *transfer = NULL;
1428 struct spi_transfer *previous = NULL;
1429 struct chip_data *chip;
1430 unsigned long time, timeout;
1432 chip = pl022->cur_chip;
1433 message = pl022->cur_msg;
1435 while (message->state != STATE_DONE) {
1436 /* Handle for abort */
1437 if (message->state == STATE_ERROR)
1438 break;
1439 transfer = pl022->cur_transfer;
1441 /* Delay if requested at end of transfer */
1442 if (message->state == STATE_RUNNING) {
1443 previous =
1444 list_entry(transfer->transfer_list.prev,
1445 struct spi_transfer, transfer_list);
1446 if (previous->delay_usecs)
1447 udelay(previous->delay_usecs);
1448 if (previous->cs_change)
1449 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1450 } else {
1451 /* STATE_START */
1452 message->state = STATE_RUNNING;
1453 if (!pl022->next_msg_cs_active)
1454 pl022_cs_control(pl022, SSP_CHIP_SELECT);
1457 /* Configuration Changing Per Transfer */
1458 if (set_up_next_transfer(pl022, transfer)) {
1459 /* Error path */
1460 message->state = STATE_ERROR;
1461 break;
1463 /* Flush FIFOs and enable SSP */
1464 flush(pl022);
1465 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1466 SSP_CR1(pl022->virtbase));
1468 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1470 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1471 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1472 time = jiffies;
1473 readwriter(pl022);
1474 if (time_after(time, timeout)) {
1475 dev_warn(&pl022->adev->dev,
1476 "%s: timeout!\n", __func__);
1477 message->state = STATE_ERROR;
1478 goto out;
1480 cpu_relax();
1483 /* Update total byte transferred */
1484 message->actual_length += pl022->cur_transfer->len;
1485 if (pl022->cur_transfer->cs_change)
1486 pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1487 /* Move to next transfer */
1488 message->state = next_transfer(pl022);
1490 out:
1491 /* Handle end of message */
1492 if (message->state == STATE_DONE)
1493 message->status = 0;
1494 else
1495 message->status = -EIO;
1497 giveback(pl022);
1498 return;
1501 static int pl022_transfer_one_message(struct spi_master *master,
1502 struct spi_message *msg)
1504 struct pl022 *pl022 = spi_master_get_devdata(master);
1506 /* Initial message state */
1507 pl022->cur_msg = msg;
1508 msg->state = STATE_START;
1510 pl022->cur_transfer = list_entry(msg->transfers.next,
1511 struct spi_transfer, transfer_list);
1513 /* Setup the SPI using the per chip configuration */
1514 pl022->cur_chip = spi_get_ctldata(msg->spi);
1515 pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1517 restore_state(pl022);
1518 flush(pl022);
1520 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1521 do_polling_transfer(pl022);
1522 else
1523 do_interrupt_dma_transfer(pl022);
1525 return 0;
1528 static int pl022_prepare_transfer_hardware(struct spi_master *master)
1530 struct pl022 *pl022 = spi_master_get_devdata(master);
1533 * Just make sure we have all we need to run the transfer by syncing
1534 * with the runtime PM framework.
1536 pm_runtime_get_sync(&pl022->adev->dev);
1537 return 0;
1540 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1542 struct pl022 *pl022 = spi_master_get_devdata(master);
1544 /* nothing more to do - disable spi/ssp and power off */
1545 writew((readw(SSP_CR1(pl022->virtbase)) &
1546 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1548 if (pl022->master_info->autosuspend_delay > 0) {
1549 pm_runtime_mark_last_busy(&pl022->adev->dev);
1550 pm_runtime_put_autosuspend(&pl022->adev->dev);
1551 } else {
1552 pm_runtime_put(&pl022->adev->dev);
1555 return 0;
1558 static int verify_controller_parameters(struct pl022 *pl022,
1559 struct pl022_config_chip const *chip_info)
1561 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1562 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1563 dev_err(&pl022->adev->dev,
1564 "interface is configured incorrectly\n");
1565 return -EINVAL;
1567 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1568 (!pl022->vendor->unidir)) {
1569 dev_err(&pl022->adev->dev,
1570 "unidirectional mode not supported in this "
1571 "hardware version\n");
1572 return -EINVAL;
1574 if ((chip_info->hierarchy != SSP_MASTER)
1575 && (chip_info->hierarchy != SSP_SLAVE)) {
1576 dev_err(&pl022->adev->dev,
1577 "hierarchy is configured incorrectly\n");
1578 return -EINVAL;
1580 if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1581 && (chip_info->com_mode != DMA_TRANSFER)
1582 && (chip_info->com_mode != POLLING_TRANSFER)) {
1583 dev_err(&pl022->adev->dev,
1584 "Communication mode is configured incorrectly\n");
1585 return -EINVAL;
1587 switch (chip_info->rx_lev_trig) {
1588 case SSP_RX_1_OR_MORE_ELEM:
1589 case SSP_RX_4_OR_MORE_ELEM:
1590 case SSP_RX_8_OR_MORE_ELEM:
1591 /* These are always OK, all variants can handle this */
1592 break;
1593 case SSP_RX_16_OR_MORE_ELEM:
1594 if (pl022->vendor->fifodepth < 16) {
1595 dev_err(&pl022->adev->dev,
1596 "RX FIFO Trigger Level is configured incorrectly\n");
1597 return -EINVAL;
1599 break;
1600 case SSP_RX_32_OR_MORE_ELEM:
1601 if (pl022->vendor->fifodepth < 32) {
1602 dev_err(&pl022->adev->dev,
1603 "RX FIFO Trigger Level is configured incorrectly\n");
1604 return -EINVAL;
1606 break;
1607 default:
1608 dev_err(&pl022->adev->dev,
1609 "RX FIFO Trigger Level is configured incorrectly\n");
1610 return -EINVAL;
1611 break;
1613 switch (chip_info->tx_lev_trig) {
1614 case SSP_TX_1_OR_MORE_EMPTY_LOC:
1615 case SSP_TX_4_OR_MORE_EMPTY_LOC:
1616 case SSP_TX_8_OR_MORE_EMPTY_LOC:
1617 /* These are always OK, all variants can handle this */
1618 break;
1619 case SSP_TX_16_OR_MORE_EMPTY_LOC:
1620 if (pl022->vendor->fifodepth < 16) {
1621 dev_err(&pl022->adev->dev,
1622 "TX FIFO Trigger Level is configured incorrectly\n");
1623 return -EINVAL;
1625 break;
1626 case SSP_TX_32_OR_MORE_EMPTY_LOC:
1627 if (pl022->vendor->fifodepth < 32) {
1628 dev_err(&pl022->adev->dev,
1629 "TX FIFO Trigger Level is configured incorrectly\n");
1630 return -EINVAL;
1632 break;
1633 default:
1634 dev_err(&pl022->adev->dev,
1635 "TX FIFO Trigger Level is configured incorrectly\n");
1636 return -EINVAL;
1637 break;
1639 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1640 if ((chip_info->ctrl_len < SSP_BITS_4)
1641 || (chip_info->ctrl_len > SSP_BITS_32)) {
1642 dev_err(&pl022->adev->dev,
1643 "CTRL LEN is configured incorrectly\n");
1644 return -EINVAL;
1646 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1647 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1648 dev_err(&pl022->adev->dev,
1649 "Wait State is configured incorrectly\n");
1650 return -EINVAL;
1652 /* Half duplex is only available in the ST Micro version */
1653 if (pl022->vendor->extended_cr) {
1654 if ((chip_info->duplex !=
1655 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1656 && (chip_info->duplex !=
1657 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1658 dev_err(&pl022->adev->dev,
1659 "Microwire duplex mode is configured incorrectly\n");
1660 return -EINVAL;
1662 } else {
1663 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1664 dev_err(&pl022->adev->dev,
1665 "Microwire half duplex mode requested,"
1666 " but this is only available in the"
1667 " ST version of PL022\n");
1668 return -EINVAL;
1671 return 0;
1674 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1676 return rate / (cpsdvsr * (1 + scr));
1679 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1680 ssp_clock_params * clk_freq)
1682 /* Lets calculate the frequency parameters */
1683 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1684 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1685 best_scr = 0, tmp, found = 0;
1687 rate = clk_get_rate(pl022->clk);
1688 /* cpsdvscr = 2 & scr 0 */
1689 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1690 /* cpsdvsr = 254 & scr = 255 */
1691 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1693 if (freq > max_tclk)
1694 dev_warn(&pl022->adev->dev,
1695 "Max speed that can be programmed is %d Hz, you requested %d\n",
1696 max_tclk, freq);
1698 if (freq < min_tclk) {
1699 dev_err(&pl022->adev->dev,
1700 "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1701 freq, min_tclk);
1702 return -EINVAL;
1706 * best_freq will give closest possible available rate (<= requested
1707 * freq) for all values of scr & cpsdvsr.
1709 while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1710 while (scr <= SCR_MAX) {
1711 tmp = spi_rate(rate, cpsdvsr, scr);
1713 if (tmp > freq) {
1714 /* we need lower freq */
1715 scr++;
1716 continue;
1720 * If found exact value, mark found and break.
1721 * If found more closer value, update and break.
1723 if (tmp > best_freq) {
1724 best_freq = tmp;
1725 best_cpsdvsr = cpsdvsr;
1726 best_scr = scr;
1728 if (tmp == freq)
1729 found = 1;
1732 * increased scr will give lower rates, which are not
1733 * required
1735 break;
1737 cpsdvsr += 2;
1738 scr = SCR_MIN;
1741 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1742 freq);
1744 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1745 clk_freq->scr = (u8) (best_scr & 0xFF);
1746 dev_dbg(&pl022->adev->dev,
1747 "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1748 freq, best_freq);
1749 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1750 clk_freq->cpsdvsr, clk_freq->scr);
1752 return 0;
1756 * A piece of default chip info unless the platform
1757 * supplies it.
1759 static const struct pl022_config_chip pl022_default_chip_info = {
1760 .com_mode = POLLING_TRANSFER,
1761 .iface = SSP_INTERFACE_MOTOROLA_SPI,
1762 .hierarchy = SSP_SLAVE,
1763 .slave_tx_disable = DO_NOT_DRIVE_TX,
1764 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1765 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1766 .ctrl_len = SSP_BITS_8,
1767 .wait_state = SSP_MWIRE_WAIT_ZERO,
1768 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1769 .cs_control = null_cs_control,
1773 * pl022_setup - setup function registered to SPI master framework
1774 * @spi: spi device which is requesting setup
1776 * This function is registered to the SPI framework for this SPI master
1777 * controller. If it is the first time when setup is called by this device,
1778 * this function will initialize the runtime state for this chip and save
1779 * the same in the device structure. Else it will update the runtime info
1780 * with the updated chip info. Nothing is really being written to the
1781 * controller hardware here, that is not done until the actual transfer
1782 * commence.
1784 static int pl022_setup(struct spi_device *spi)
1786 struct pl022_config_chip const *chip_info;
1787 struct pl022_config_chip chip_info_dt;
1788 struct chip_data *chip;
1789 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1790 int status = 0;
1791 struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1792 unsigned int bits = spi->bits_per_word;
1793 u32 tmp;
1794 struct device_node *np = spi->dev.of_node;
1796 if (!spi->max_speed_hz)
1797 return -EINVAL;
1799 /* Get controller_state if one is supplied */
1800 chip = spi_get_ctldata(spi);
1802 if (chip == NULL) {
1803 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1804 if (!chip) {
1805 dev_err(&spi->dev,
1806 "cannot allocate controller state\n");
1807 return -ENOMEM;
1809 dev_dbg(&spi->dev,
1810 "allocated memory for controller's runtime state\n");
1813 /* Get controller data if one is supplied */
1814 chip_info = spi->controller_data;
1816 if (chip_info == NULL) {
1817 if (np) {
1818 chip_info_dt = pl022_default_chip_info;
1820 chip_info_dt.hierarchy = SSP_MASTER;
1821 of_property_read_u32(np, "pl022,interface",
1822 &chip_info_dt.iface);
1823 of_property_read_u32(np, "pl022,com-mode",
1824 &chip_info_dt.com_mode);
1825 of_property_read_u32(np, "pl022,rx-level-trig",
1826 &chip_info_dt.rx_lev_trig);
1827 of_property_read_u32(np, "pl022,tx-level-trig",
1828 &chip_info_dt.tx_lev_trig);
1829 of_property_read_u32(np, "pl022,ctrl-len",
1830 &chip_info_dt.ctrl_len);
1831 of_property_read_u32(np, "pl022,wait-state",
1832 &chip_info_dt.wait_state);
1833 of_property_read_u32(np, "pl022,duplex",
1834 &chip_info_dt.duplex);
1836 chip_info = &chip_info_dt;
1837 } else {
1838 chip_info = &pl022_default_chip_info;
1839 /* spi_board_info.controller_data not is supplied */
1840 dev_dbg(&spi->dev,
1841 "using default controller_data settings\n");
1843 } else
1844 dev_dbg(&spi->dev,
1845 "using user supplied controller_data settings\n");
1848 * We can override with custom divisors, else we use the board
1849 * frequency setting
1851 if ((0 == chip_info->clk_freq.cpsdvsr)
1852 && (0 == chip_info->clk_freq.scr)) {
1853 status = calculate_effective_freq(pl022,
1854 spi->max_speed_hz,
1855 &clk_freq);
1856 if (status < 0)
1857 goto err_config_params;
1858 } else {
1859 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1860 if ((clk_freq.cpsdvsr % 2) != 0)
1861 clk_freq.cpsdvsr =
1862 clk_freq.cpsdvsr - 1;
1864 if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1865 || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1866 status = -EINVAL;
1867 dev_err(&spi->dev,
1868 "cpsdvsr is configured incorrectly\n");
1869 goto err_config_params;
1872 status = verify_controller_parameters(pl022, chip_info);
1873 if (status) {
1874 dev_err(&spi->dev, "controller data is incorrect");
1875 goto err_config_params;
1878 pl022->rx_lev_trig = chip_info->rx_lev_trig;
1879 pl022->tx_lev_trig = chip_info->tx_lev_trig;
1881 /* Now set controller state based on controller data */
1882 chip->xfer_type = chip_info->com_mode;
1883 if (!chip_info->cs_control) {
1884 chip->cs_control = null_cs_control;
1885 if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1886 dev_warn(&spi->dev,
1887 "invalid chip select\n");
1888 } else
1889 chip->cs_control = chip_info->cs_control;
1891 /* Check bits per word with vendor specific range */
1892 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1893 status = -ENOTSUPP;
1894 dev_err(&spi->dev, "illegal data size for this controller!\n");
1895 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1896 pl022->vendor->max_bpw);
1897 goto err_config_params;
1898 } else if (bits <= 8) {
1899 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1900 chip->n_bytes = 1;
1901 chip->read = READING_U8;
1902 chip->write = WRITING_U8;
1903 } else if (bits <= 16) {
1904 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1905 chip->n_bytes = 2;
1906 chip->read = READING_U16;
1907 chip->write = WRITING_U16;
1908 } else {
1909 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1910 chip->n_bytes = 4;
1911 chip->read = READING_U32;
1912 chip->write = WRITING_U32;
1915 /* Now Initialize all register settings required for this chip */
1916 chip->cr0 = 0;
1917 chip->cr1 = 0;
1918 chip->dmacr = 0;
1919 chip->cpsr = 0;
1920 if ((chip_info->com_mode == DMA_TRANSFER)
1921 && ((pl022->master_info)->enable_dma)) {
1922 chip->enable_dma = true;
1923 dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1924 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1925 SSP_DMACR_MASK_RXDMAE, 0);
1926 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1927 SSP_DMACR_MASK_TXDMAE, 1);
1928 } else {
1929 chip->enable_dma = false;
1930 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1931 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1932 SSP_DMACR_MASK_RXDMAE, 0);
1933 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1934 SSP_DMACR_MASK_TXDMAE, 1);
1937 chip->cpsr = clk_freq.cpsdvsr;
1939 /* Special setup for the ST micro extended control registers */
1940 if (pl022->vendor->extended_cr) {
1941 u32 etx;
1943 if (pl022->vendor->pl023) {
1944 /* These bits are only in the PL023 */
1945 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1946 SSP_CR1_MASK_FBCLKDEL_ST, 13);
1947 } else {
1948 /* These bits are in the PL022 but not PL023 */
1949 SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1950 SSP_CR0_MASK_HALFDUP_ST, 5);
1951 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1952 SSP_CR0_MASK_CSS_ST, 16);
1953 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1954 SSP_CR0_MASK_FRF_ST, 21);
1955 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1956 SSP_CR1_MASK_MWAIT_ST, 6);
1958 SSP_WRITE_BITS(chip->cr0, bits - 1,
1959 SSP_CR0_MASK_DSS_ST, 0);
1961 if (spi->mode & SPI_LSB_FIRST) {
1962 tmp = SSP_RX_LSB;
1963 etx = SSP_TX_LSB;
1964 } else {
1965 tmp = SSP_RX_MSB;
1966 etx = SSP_TX_MSB;
1968 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1969 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1970 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1971 SSP_CR1_MASK_RXIFLSEL_ST, 7);
1972 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1973 SSP_CR1_MASK_TXIFLSEL_ST, 10);
1974 } else {
1975 SSP_WRITE_BITS(chip->cr0, bits - 1,
1976 SSP_CR0_MASK_DSS, 0);
1977 SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1978 SSP_CR0_MASK_FRF, 4);
1981 /* Stuff that is common for all versions */
1982 if (spi->mode & SPI_CPOL)
1983 tmp = SSP_CLK_POL_IDLE_HIGH;
1984 else
1985 tmp = SSP_CLK_POL_IDLE_LOW;
1986 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1988 if (spi->mode & SPI_CPHA)
1989 tmp = SSP_CLK_SECOND_EDGE;
1990 else
1991 tmp = SSP_CLK_FIRST_EDGE;
1992 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1994 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1995 /* Loopback is available on all versions except PL023 */
1996 if (pl022->vendor->loopback) {
1997 if (spi->mode & SPI_LOOP)
1998 tmp = LOOPBACK_ENABLED;
1999 else
2000 tmp = LOOPBACK_DISABLED;
2001 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2003 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2004 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2005 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2008 /* Save controller_state */
2009 spi_set_ctldata(spi, chip);
2010 return status;
2011 err_config_params:
2012 spi_set_ctldata(spi, NULL);
2013 kfree(chip);
2014 return status;
2018 * pl022_cleanup - cleanup function registered to SPI master framework
2019 * @spi: spi device which is requesting cleanup
2021 * This function is registered to the SPI framework for this SPI master
2022 * controller. It will free the runtime state of chip.
2024 static void pl022_cleanup(struct spi_device *spi)
2026 struct chip_data *chip = spi_get_ctldata(spi);
2028 spi_set_ctldata(spi, NULL);
2029 kfree(chip);
2032 static struct pl022_ssp_controller *
2033 pl022_platform_data_dt_get(struct device *dev)
2035 struct device_node *np = dev->of_node;
2036 struct pl022_ssp_controller *pd;
2037 u32 tmp;
2039 if (!np) {
2040 dev_err(dev, "no dt node defined\n");
2041 return NULL;
2044 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2045 if (!pd) {
2046 dev_err(dev, "cannot allocate platform data memory\n");
2047 return NULL;
2050 pd->bus_id = -1;
2051 of_property_read_u32(np, "num-cs", &tmp);
2052 pd->num_chipselect = tmp;
2053 of_property_read_u32(np, "pl022,autosuspend-delay",
2054 &pd->autosuspend_delay);
2055 pd->rt = of_property_read_bool(np, "pl022,rt");
2057 return pd;
2060 static int __devinit
2061 pl022_probe(struct amba_device *adev, const struct amba_id *id)
2063 struct device *dev = &adev->dev;
2064 struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2065 struct spi_master *master;
2066 struct pl022 *pl022 = NULL; /*Data for this driver */
2067 struct device_node *np = adev->dev.of_node;
2068 int status = 0, i, num_cs;
2070 dev_info(&adev->dev,
2071 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2072 if (!platform_info && IS_ENABLED(CONFIG_OF))
2073 platform_info = pl022_platform_data_dt_get(dev);
2075 if (!platform_info) {
2076 dev_err(dev, "probe: no platform data defined\n");
2077 return -ENODEV;
2080 if (platform_info->num_chipselect) {
2081 num_cs = platform_info->num_chipselect;
2082 } else {
2083 dev_err(dev, "probe: no chip select defined\n");
2084 return -ENODEV;
2087 /* Allocate master with space for data */
2088 master = spi_alloc_master(dev, sizeof(struct pl022));
2089 if (master == NULL) {
2090 dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2091 return -ENOMEM;
2094 pl022 = spi_master_get_devdata(master);
2095 pl022->master = master;
2096 pl022->master_info = platform_info;
2097 pl022->adev = adev;
2098 pl022->vendor = id->data;
2099 pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2100 GFP_KERNEL);
2102 pl022->pinctrl = devm_pinctrl_get(dev);
2103 if (IS_ERR(pl022->pinctrl)) {
2104 status = PTR_ERR(pl022->pinctrl);
2105 goto err_no_pinctrl;
2108 pl022->pins_default = pinctrl_lookup_state(pl022->pinctrl,
2109 PINCTRL_STATE_DEFAULT);
2110 /* enable pins to be muxed in and configured */
2111 if (!IS_ERR(pl022->pins_default)) {
2112 status = pinctrl_select_state(pl022->pinctrl,
2113 pl022->pins_default);
2114 if (status)
2115 dev_err(dev, "could not set default pins\n");
2116 } else
2117 dev_err(dev, "could not get default pinstate\n");
2119 pl022->pins_sleep = pinctrl_lookup_state(pl022->pinctrl,
2120 PINCTRL_STATE_SLEEP);
2121 if (IS_ERR(pl022->pins_sleep))
2122 dev_dbg(dev, "could not get sleep pinstate\n");
2125 * Bus Number Which has been Assigned to this SSP controller
2126 * on this board
2128 master->bus_num = platform_info->bus_id;
2129 master->num_chipselect = num_cs;
2130 master->cleanup = pl022_cleanup;
2131 master->setup = pl022_setup;
2132 master->prepare_transfer_hardware = pl022_prepare_transfer_hardware;
2133 master->transfer_one_message = pl022_transfer_one_message;
2134 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2135 master->rt = platform_info->rt;
2136 master->dev.of_node = dev->of_node;
2138 if (platform_info->num_chipselect && platform_info->chipselects) {
2139 for (i = 0; i < num_cs; i++)
2140 pl022->chipselects[i] = platform_info->chipselects[i];
2141 } else if (IS_ENABLED(CONFIG_OF)) {
2142 for (i = 0; i < num_cs; i++) {
2143 int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2145 if (cs_gpio == -EPROBE_DEFER) {
2146 status = -EPROBE_DEFER;
2147 goto err_no_gpio;
2150 pl022->chipselects[i] = cs_gpio;
2152 if (gpio_is_valid(cs_gpio)) {
2153 if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2154 dev_err(&adev->dev,
2155 "could not request %d gpio\n",
2156 cs_gpio);
2157 else if (gpio_direction_output(cs_gpio, 1))
2158 dev_err(&adev->dev,
2159 "could set gpio %d as output\n",
2160 cs_gpio);
2166 * Supports mode 0-3, loopback, and active low CS. Transfers are
2167 * always MS bit first on the original pl022.
2169 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2170 if (pl022->vendor->extended_cr)
2171 master->mode_bits |= SPI_LSB_FIRST;
2173 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2175 status = amba_request_regions(adev, NULL);
2176 if (status)
2177 goto err_no_ioregion;
2179 pl022->phybase = adev->res.start;
2180 pl022->virtbase = devm_ioremap(dev, adev->res.start,
2181 resource_size(&adev->res));
2182 if (pl022->virtbase == NULL) {
2183 status = -ENOMEM;
2184 goto err_no_ioremap;
2186 printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2187 adev->res.start, pl022->virtbase);
2189 pl022->clk = devm_clk_get(&adev->dev, NULL);
2190 if (IS_ERR(pl022->clk)) {
2191 status = PTR_ERR(pl022->clk);
2192 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2193 goto err_no_clk;
2196 status = clk_prepare(pl022->clk);
2197 if (status) {
2198 dev_err(&adev->dev, "could not prepare SSP/SPI bus clock\n");
2199 goto err_clk_prep;
2202 status = clk_enable(pl022->clk);
2203 if (status) {
2204 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2205 goto err_no_clk_en;
2208 /* Initialize transfer pump */
2209 tasklet_init(&pl022->pump_transfers, pump_transfers,
2210 (unsigned long)pl022);
2212 /* Disable SSP */
2213 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2214 SSP_CR1(pl022->virtbase));
2215 load_ssp_default_config(pl022);
2217 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2218 0, "pl022", pl022);
2219 if (status < 0) {
2220 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2221 goto err_no_irq;
2224 /* Get DMA channels */
2225 if (platform_info->enable_dma) {
2226 status = pl022_dma_probe(pl022);
2227 if (status != 0)
2228 platform_info->enable_dma = 0;
2231 /* Register with the SPI framework */
2232 amba_set_drvdata(adev, pl022);
2233 status = spi_register_master(master);
2234 if (status != 0) {
2235 dev_err(&adev->dev,
2236 "probe - problem registering spi master\n");
2237 goto err_spi_register;
2239 dev_dbg(dev, "probe succeeded\n");
2241 /* let runtime pm put suspend */
2242 if (platform_info->autosuspend_delay > 0) {
2243 dev_info(&adev->dev,
2244 "will use autosuspend for runtime pm, delay %dms\n",
2245 platform_info->autosuspend_delay);
2246 pm_runtime_set_autosuspend_delay(dev,
2247 platform_info->autosuspend_delay);
2248 pm_runtime_use_autosuspend(dev);
2249 pm_runtime_put_autosuspend(dev);
2250 } else {
2251 pm_runtime_put(dev);
2253 return 0;
2255 err_spi_register:
2256 if (platform_info->enable_dma)
2257 pl022_dma_remove(pl022);
2258 err_no_irq:
2259 clk_disable(pl022->clk);
2260 err_no_clk_en:
2261 clk_unprepare(pl022->clk);
2262 err_clk_prep:
2263 err_no_clk:
2264 err_no_ioremap:
2265 amba_release_regions(adev);
2266 err_no_ioregion:
2267 err_no_gpio:
2268 err_no_pinctrl:
2269 spi_master_put(master);
2270 return status;
2273 static int __devexit
2274 pl022_remove(struct amba_device *adev)
2276 struct pl022 *pl022 = amba_get_drvdata(adev);
2278 if (!pl022)
2279 return 0;
2282 * undo pm_runtime_put() in probe. I assume that we're not
2283 * accessing the primecell here.
2285 pm_runtime_get_noresume(&adev->dev);
2287 load_ssp_default_config(pl022);
2288 if (pl022->master_info->enable_dma)
2289 pl022_dma_remove(pl022);
2291 clk_disable(pl022->clk);
2292 clk_unprepare(pl022->clk);
2293 amba_release_regions(adev);
2294 tasklet_disable(&pl022->pump_transfers);
2295 spi_unregister_master(pl022->master);
2296 amba_set_drvdata(adev, NULL);
2297 return 0;
2300 #if defined(CONFIG_SUSPEND) || defined(CONFIG_PM_RUNTIME)
2302 * These two functions are used from both suspend/resume and
2303 * the runtime counterparts to handle external resources like
2304 * clocks, pins and regulators when going to sleep.
2306 static void pl022_suspend_resources(struct pl022 *pl022)
2308 int ret;
2310 clk_disable(pl022->clk);
2312 /* Optionally let pins go into sleep states */
2313 if (!IS_ERR(pl022->pins_sleep)) {
2314 ret = pinctrl_select_state(pl022->pinctrl,
2315 pl022->pins_sleep);
2316 if (ret)
2317 dev_err(&pl022->adev->dev,
2318 "could not set pins to sleep state\n");
2322 static void pl022_resume_resources(struct pl022 *pl022)
2324 int ret;
2326 /* Optionaly enable pins to be muxed in and configured */
2327 if (!IS_ERR(pl022->pins_default)) {
2328 ret = pinctrl_select_state(pl022->pinctrl,
2329 pl022->pins_default);
2330 if (ret)
2331 dev_err(&pl022->adev->dev,
2332 "could not set default pins\n");
2335 clk_enable(pl022->clk);
2337 #endif
2339 #ifdef CONFIG_SUSPEND
2340 static int pl022_suspend(struct device *dev)
2342 struct pl022 *pl022 = dev_get_drvdata(dev);
2343 int ret;
2345 ret = spi_master_suspend(pl022->master);
2346 if (ret) {
2347 dev_warn(dev, "cannot suspend master\n");
2348 return ret;
2350 pl022_suspend_resources(pl022);
2352 dev_dbg(dev, "suspended\n");
2353 return 0;
2356 static int pl022_resume(struct device *dev)
2358 struct pl022 *pl022 = dev_get_drvdata(dev);
2359 int ret;
2361 pl022_resume_resources(pl022);
2363 /* Start the queue running */
2364 ret = spi_master_resume(pl022->master);
2365 if (ret)
2366 dev_err(dev, "problem starting queue (%d)\n", ret);
2367 else
2368 dev_dbg(dev, "resumed\n");
2370 return ret;
2372 #endif /* CONFIG_PM */
2374 #ifdef CONFIG_PM_RUNTIME
2375 static int pl022_runtime_suspend(struct device *dev)
2377 struct pl022 *pl022 = dev_get_drvdata(dev);
2379 pl022_suspend_resources(pl022);
2380 return 0;
2383 static int pl022_runtime_resume(struct device *dev)
2385 struct pl022 *pl022 = dev_get_drvdata(dev);
2387 pl022_resume_resources(pl022);
2388 return 0;
2390 #endif
2392 static const struct dev_pm_ops pl022_dev_pm_ops = {
2393 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2394 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2397 static struct vendor_data vendor_arm = {
2398 .fifodepth = 8,
2399 .max_bpw = 16,
2400 .unidir = false,
2401 .extended_cr = false,
2402 .pl023 = false,
2403 .loopback = true,
2406 static struct vendor_data vendor_st = {
2407 .fifodepth = 32,
2408 .max_bpw = 32,
2409 .unidir = false,
2410 .extended_cr = true,
2411 .pl023 = false,
2412 .loopback = true,
2415 static struct vendor_data vendor_st_pl023 = {
2416 .fifodepth = 32,
2417 .max_bpw = 32,
2418 .unidir = false,
2419 .extended_cr = true,
2420 .pl023 = true,
2421 .loopback = false,
2424 static struct amba_id pl022_ids[] = {
2427 * ARM PL022 variant, this has a 16bit wide
2428 * and 8 locations deep TX/RX FIFO
2430 .id = 0x00041022,
2431 .mask = 0x000fffff,
2432 .data = &vendor_arm,
2436 * ST Micro derivative, this has 32bit wide
2437 * and 32 locations deep TX/RX FIFO
2439 .id = 0x01080022,
2440 .mask = 0xffffffff,
2441 .data = &vendor_st,
2445 * ST-Ericsson derivative "PL023" (this is not
2446 * an official ARM number), this is a PL022 SSP block
2447 * stripped to SPI mode only, it has 32bit wide
2448 * and 32 locations deep TX/RX FIFO but no extended
2449 * CR0/CR1 register
2451 .id = 0x00080023,
2452 .mask = 0xffffffff,
2453 .data = &vendor_st_pl023,
2455 { 0, 0 },
2458 MODULE_DEVICE_TABLE(amba, pl022_ids);
2460 static struct amba_driver pl022_driver = {
2461 .drv = {
2462 .name = "ssp-pl022",
2463 .pm = &pl022_dev_pm_ops,
2465 .id_table = pl022_ids,
2466 .probe = pl022_probe,
2467 .remove = __devexit_p(pl022_remove),
2470 static int __init pl022_init(void)
2472 return amba_driver_register(&pl022_driver);
2474 subsys_initcall(pl022_init);
2476 static void __exit pl022_exit(void)
2478 amba_driver_unregister(&pl022_driver);
2480 module_exit(pl022_exit);
2482 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2483 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2484 MODULE_LICENSE("GPL");