net: mvpp2: use "dma" instead of "phys" where appropriate
[linux-2.6/btrfs-unstable.git] / fs / f2fs / gc.c
blob418fd988164677623cf0ad305d34f7855fb608dd
1 /*
2 * fs/f2fs/gc.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
26 static int gc_thread_func(void *data)
28 struct f2fs_sb_info *sbi = data;
29 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 long wait_ms;
33 wait_ms = gc_th->min_sleep_time;
35 do {
36 if (try_to_freeze())
37 continue;
38 else
39 wait_event_interruptible_timeout(*wq,
40 kthread_should_stop(),
41 msecs_to_jiffies(wait_ms));
42 if (kthread_should_stop())
43 break;
45 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
46 increase_sleep_time(gc_th, &wait_ms);
47 continue;
50 #ifdef CONFIG_F2FS_FAULT_INJECTION
51 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
52 f2fs_show_injection_info(FAULT_CHECKPOINT);
53 f2fs_stop_checkpoint(sbi, false);
55 #endif
58 * [GC triggering condition]
59 * 0. GC is not conducted currently.
60 * 1. There are enough dirty segments.
61 * 2. IO subsystem is idle by checking the # of writeback pages.
62 * 3. IO subsystem is idle by checking the # of requests in
63 * bdev's request list.
65 * Note) We have to avoid triggering GCs frequently.
66 * Because it is possible that some segments can be
67 * invalidated soon after by user update or deletion.
68 * So, I'd like to wait some time to collect dirty segments.
70 if (!mutex_trylock(&sbi->gc_mutex))
71 continue;
73 if (!is_idle(sbi)) {
74 increase_sleep_time(gc_th, &wait_ms);
75 mutex_unlock(&sbi->gc_mutex);
76 continue;
79 if (has_enough_invalid_blocks(sbi))
80 decrease_sleep_time(gc_th, &wait_ms);
81 else
82 increase_sleep_time(gc_th, &wait_ms);
84 stat_inc_bggc_count(sbi);
86 /* if return value is not zero, no victim was selected */
87 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true))
88 wait_ms = gc_th->no_gc_sleep_time;
90 trace_f2fs_background_gc(sbi->sb, wait_ms,
91 prefree_segments(sbi), free_segments(sbi));
93 /* balancing f2fs's metadata periodically */
94 f2fs_balance_fs_bg(sbi);
96 } while (!kthread_should_stop());
97 return 0;
100 int start_gc_thread(struct f2fs_sb_info *sbi)
102 struct f2fs_gc_kthread *gc_th;
103 dev_t dev = sbi->sb->s_bdev->bd_dev;
104 int err = 0;
106 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
107 if (!gc_th) {
108 err = -ENOMEM;
109 goto out;
112 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
113 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
114 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
116 gc_th->gc_idle = 0;
118 sbi->gc_thread = gc_th;
119 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
120 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
121 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
122 if (IS_ERR(gc_th->f2fs_gc_task)) {
123 err = PTR_ERR(gc_th->f2fs_gc_task);
124 kfree(gc_th);
125 sbi->gc_thread = NULL;
127 out:
128 return err;
131 void stop_gc_thread(struct f2fs_sb_info *sbi)
133 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
134 if (!gc_th)
135 return;
136 kthread_stop(gc_th->f2fs_gc_task);
137 kfree(gc_th);
138 sbi->gc_thread = NULL;
141 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
143 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
145 if (gc_th && gc_th->gc_idle) {
146 if (gc_th->gc_idle == 1)
147 gc_mode = GC_CB;
148 else if (gc_th->gc_idle == 2)
149 gc_mode = GC_GREEDY;
151 return gc_mode;
154 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
155 int type, struct victim_sel_policy *p)
157 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
159 if (p->alloc_mode == SSR) {
160 p->gc_mode = GC_GREEDY;
161 p->dirty_segmap = dirty_i->dirty_segmap[type];
162 p->max_search = dirty_i->nr_dirty[type];
163 p->ofs_unit = 1;
164 } else {
165 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
166 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
167 p->max_search = dirty_i->nr_dirty[DIRTY];
168 p->ofs_unit = sbi->segs_per_sec;
171 /* we need to check every dirty segments in the FG_GC case */
172 if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
173 p->max_search = sbi->max_victim_search;
175 p->offset = sbi->last_victim[p->gc_mode];
178 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
179 struct victim_sel_policy *p)
181 /* SSR allocates in a segment unit */
182 if (p->alloc_mode == SSR)
183 return sbi->blocks_per_seg;
184 if (p->gc_mode == GC_GREEDY)
185 return sbi->blocks_per_seg * p->ofs_unit;
186 else if (p->gc_mode == GC_CB)
187 return UINT_MAX;
188 else /* No other gc_mode */
189 return 0;
192 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
194 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
195 unsigned int secno;
198 * If the gc_type is FG_GC, we can select victim segments
199 * selected by background GC before.
200 * Those segments guarantee they have small valid blocks.
202 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
203 if (sec_usage_check(sbi, secno))
204 continue;
206 if (no_fggc_candidate(sbi, secno))
207 continue;
209 clear_bit(secno, dirty_i->victim_secmap);
210 return secno * sbi->segs_per_sec;
212 return NULL_SEGNO;
215 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
217 struct sit_info *sit_i = SIT_I(sbi);
218 unsigned int secno = GET_SECNO(sbi, segno);
219 unsigned int start = secno * sbi->segs_per_sec;
220 unsigned long long mtime = 0;
221 unsigned int vblocks;
222 unsigned char age = 0;
223 unsigned char u;
224 unsigned int i;
226 for (i = 0; i < sbi->segs_per_sec; i++)
227 mtime += get_seg_entry(sbi, start + i)->mtime;
228 vblocks = get_valid_blocks(sbi, segno, sbi->segs_per_sec);
230 mtime = div_u64(mtime, sbi->segs_per_sec);
231 vblocks = div_u64(vblocks, sbi->segs_per_sec);
233 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
235 /* Handle if the system time has changed by the user */
236 if (mtime < sit_i->min_mtime)
237 sit_i->min_mtime = mtime;
238 if (mtime > sit_i->max_mtime)
239 sit_i->max_mtime = mtime;
240 if (sit_i->max_mtime != sit_i->min_mtime)
241 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
242 sit_i->max_mtime - sit_i->min_mtime);
244 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
247 static unsigned int get_greedy_cost(struct f2fs_sb_info *sbi,
248 unsigned int segno)
250 unsigned int valid_blocks =
251 get_valid_blocks(sbi, segno, sbi->segs_per_sec);
253 return IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
254 valid_blocks * 2 : valid_blocks;
257 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
258 unsigned int segno, struct victim_sel_policy *p)
260 if (p->alloc_mode == SSR)
261 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
263 /* alloc_mode == LFS */
264 if (p->gc_mode == GC_GREEDY)
265 return get_greedy_cost(sbi, segno);
266 else
267 return get_cb_cost(sbi, segno);
270 static unsigned int count_bits(const unsigned long *addr,
271 unsigned int offset, unsigned int len)
273 unsigned int end = offset + len, sum = 0;
275 while (offset < end) {
276 if (test_bit(offset++, addr))
277 ++sum;
279 return sum;
283 * This function is called from two paths.
284 * One is garbage collection and the other is SSR segment selection.
285 * When it is called during GC, it just gets a victim segment
286 * and it does not remove it from dirty seglist.
287 * When it is called from SSR segment selection, it finds a segment
288 * which has minimum valid blocks and removes it from dirty seglist.
290 static int get_victim_by_default(struct f2fs_sb_info *sbi,
291 unsigned int *result, int gc_type, int type, char alloc_mode)
293 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
294 struct victim_sel_policy p;
295 unsigned int secno, last_victim;
296 unsigned int last_segment = MAIN_SEGS(sbi);
297 unsigned int nsearched = 0;
299 mutex_lock(&dirty_i->seglist_lock);
301 p.alloc_mode = alloc_mode;
302 select_policy(sbi, gc_type, type, &p);
304 p.min_segno = NULL_SEGNO;
305 p.min_cost = get_max_cost(sbi, &p);
307 if (p.max_search == 0)
308 goto out;
310 last_victim = sbi->last_victim[p.gc_mode];
311 if (p.alloc_mode == LFS && gc_type == FG_GC) {
312 p.min_segno = check_bg_victims(sbi);
313 if (p.min_segno != NULL_SEGNO)
314 goto got_it;
317 while (1) {
318 unsigned long cost;
319 unsigned int segno;
321 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
322 if (segno >= last_segment) {
323 if (sbi->last_victim[p.gc_mode]) {
324 last_segment = sbi->last_victim[p.gc_mode];
325 sbi->last_victim[p.gc_mode] = 0;
326 p.offset = 0;
327 continue;
329 break;
332 p.offset = segno + p.ofs_unit;
333 if (p.ofs_unit > 1) {
334 p.offset -= segno % p.ofs_unit;
335 nsearched += count_bits(p.dirty_segmap,
336 p.offset - p.ofs_unit,
337 p.ofs_unit);
338 } else {
339 nsearched++;
342 secno = GET_SECNO(sbi, segno);
344 if (sec_usage_check(sbi, secno))
345 goto next;
346 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
347 goto next;
348 if (gc_type == FG_GC && p.alloc_mode == LFS &&
349 no_fggc_candidate(sbi, secno))
350 goto next;
352 cost = get_gc_cost(sbi, segno, &p);
354 if (p.min_cost > cost) {
355 p.min_segno = segno;
356 p.min_cost = cost;
358 next:
359 if (nsearched >= p.max_search) {
360 if (!sbi->last_victim[p.gc_mode] && segno <= last_victim)
361 sbi->last_victim[p.gc_mode] = last_victim + 1;
362 else
363 sbi->last_victim[p.gc_mode] = segno + 1;
364 break;
367 if (p.min_segno != NULL_SEGNO) {
368 got_it:
369 if (p.alloc_mode == LFS) {
370 secno = GET_SECNO(sbi, p.min_segno);
371 if (gc_type == FG_GC)
372 sbi->cur_victim_sec = secno;
373 else
374 set_bit(secno, dirty_i->victim_secmap);
376 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
378 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
379 sbi->cur_victim_sec,
380 prefree_segments(sbi), free_segments(sbi));
382 out:
383 mutex_unlock(&dirty_i->seglist_lock);
385 return (p.min_segno == NULL_SEGNO) ? 0 : 1;
388 static const struct victim_selection default_v_ops = {
389 .get_victim = get_victim_by_default,
392 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
394 struct inode_entry *ie;
396 ie = radix_tree_lookup(&gc_list->iroot, ino);
397 if (ie)
398 return ie->inode;
399 return NULL;
402 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
404 struct inode_entry *new_ie;
406 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
407 iput(inode);
408 return;
410 new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
411 new_ie->inode = inode;
413 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
414 list_add_tail(&new_ie->list, &gc_list->ilist);
417 static void put_gc_inode(struct gc_inode_list *gc_list)
419 struct inode_entry *ie, *next_ie;
420 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
421 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
422 iput(ie->inode);
423 list_del(&ie->list);
424 kmem_cache_free(inode_entry_slab, ie);
428 static int check_valid_map(struct f2fs_sb_info *sbi,
429 unsigned int segno, int offset)
431 struct sit_info *sit_i = SIT_I(sbi);
432 struct seg_entry *sentry;
433 int ret;
435 mutex_lock(&sit_i->sentry_lock);
436 sentry = get_seg_entry(sbi, segno);
437 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
438 mutex_unlock(&sit_i->sentry_lock);
439 return ret;
443 * This function compares node address got in summary with that in NAT.
444 * On validity, copy that node with cold status, otherwise (invalid node)
445 * ignore that.
447 static void gc_node_segment(struct f2fs_sb_info *sbi,
448 struct f2fs_summary *sum, unsigned int segno, int gc_type)
450 struct f2fs_summary *entry;
451 block_t start_addr;
452 int off;
453 int phase = 0;
455 start_addr = START_BLOCK(sbi, segno);
457 next_step:
458 entry = sum;
460 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
461 nid_t nid = le32_to_cpu(entry->nid);
462 struct page *node_page;
463 struct node_info ni;
465 /* stop BG_GC if there is not enough free sections. */
466 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
467 return;
469 if (check_valid_map(sbi, segno, off) == 0)
470 continue;
472 if (phase == 0) {
473 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
474 META_NAT, true);
475 continue;
478 if (phase == 1) {
479 ra_node_page(sbi, nid);
480 continue;
483 /* phase == 2 */
484 node_page = get_node_page(sbi, nid);
485 if (IS_ERR(node_page))
486 continue;
488 /* block may become invalid during get_node_page */
489 if (check_valid_map(sbi, segno, off) == 0) {
490 f2fs_put_page(node_page, 1);
491 continue;
494 get_node_info(sbi, nid, &ni);
495 if (ni.blk_addr != start_addr + off) {
496 f2fs_put_page(node_page, 1);
497 continue;
500 move_node_page(node_page, gc_type);
501 stat_inc_node_blk_count(sbi, 1, gc_type);
504 if (++phase < 3)
505 goto next_step;
509 * Calculate start block index indicating the given node offset.
510 * Be careful, caller should give this node offset only indicating direct node
511 * blocks. If any node offsets, which point the other types of node blocks such
512 * as indirect or double indirect node blocks, are given, it must be a caller's
513 * bug.
515 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
517 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
518 unsigned int bidx;
520 if (node_ofs == 0)
521 return 0;
523 if (node_ofs <= 2) {
524 bidx = node_ofs - 1;
525 } else if (node_ofs <= indirect_blks) {
526 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
527 bidx = node_ofs - 2 - dec;
528 } else {
529 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
530 bidx = node_ofs - 5 - dec;
532 return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
535 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
536 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
538 struct page *node_page;
539 nid_t nid;
540 unsigned int ofs_in_node;
541 block_t source_blkaddr;
543 nid = le32_to_cpu(sum->nid);
544 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
546 node_page = get_node_page(sbi, nid);
547 if (IS_ERR(node_page))
548 return false;
550 get_node_info(sbi, nid, dni);
552 if (sum->version != dni->version) {
553 f2fs_put_page(node_page, 1);
554 return false;
557 *nofs = ofs_of_node(node_page);
558 source_blkaddr = datablock_addr(node_page, ofs_in_node);
559 f2fs_put_page(node_page, 1);
561 if (source_blkaddr != blkaddr)
562 return false;
563 return true;
566 static void move_encrypted_block(struct inode *inode, block_t bidx,
567 unsigned int segno, int off)
569 struct f2fs_io_info fio = {
570 .sbi = F2FS_I_SB(inode),
571 .type = DATA,
572 .op = REQ_OP_READ,
573 .op_flags = 0,
574 .encrypted_page = NULL,
576 struct dnode_of_data dn;
577 struct f2fs_summary sum;
578 struct node_info ni;
579 struct page *page;
580 block_t newaddr;
581 int err;
583 /* do not read out */
584 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
585 if (!page)
586 return;
588 if (!check_valid_map(F2FS_I_SB(inode), segno, off))
589 goto out;
591 if (f2fs_is_atomic_file(inode))
592 goto out;
594 set_new_dnode(&dn, inode, NULL, NULL, 0);
595 err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
596 if (err)
597 goto out;
599 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
600 ClearPageUptodate(page);
601 goto put_out;
605 * don't cache encrypted data into meta inode until previous dirty
606 * data were writebacked to avoid racing between GC and flush.
608 f2fs_wait_on_page_writeback(page, DATA, true);
610 get_node_info(fio.sbi, dn.nid, &ni);
611 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
613 /* read page */
614 fio.page = page;
615 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
617 allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
618 &sum, CURSEG_COLD_DATA);
620 fio.encrypted_page = pagecache_get_page(META_MAPPING(fio.sbi), newaddr,
621 FGP_LOCK | FGP_CREAT, GFP_NOFS);
622 if (!fio.encrypted_page) {
623 err = -ENOMEM;
624 goto recover_block;
627 err = f2fs_submit_page_bio(&fio);
628 if (err)
629 goto put_page_out;
631 /* write page */
632 lock_page(fio.encrypted_page);
634 if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
635 err = -EIO;
636 goto put_page_out;
638 if (unlikely(!PageUptodate(fio.encrypted_page))) {
639 err = -EIO;
640 goto put_page_out;
643 set_page_dirty(fio.encrypted_page);
644 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
645 if (clear_page_dirty_for_io(fio.encrypted_page))
646 dec_page_count(fio.sbi, F2FS_DIRTY_META);
648 set_page_writeback(fio.encrypted_page);
650 /* allocate block address */
651 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
653 fio.op = REQ_OP_WRITE;
654 fio.op_flags = REQ_SYNC;
655 fio.new_blkaddr = newaddr;
656 f2fs_submit_page_mbio(&fio);
658 f2fs_update_data_blkaddr(&dn, newaddr);
659 set_inode_flag(inode, FI_APPEND_WRITE);
660 if (page->index == 0)
661 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
662 put_page_out:
663 f2fs_put_page(fio.encrypted_page, 1);
664 recover_block:
665 if (err)
666 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
667 true, true);
668 put_out:
669 f2fs_put_dnode(&dn);
670 out:
671 f2fs_put_page(page, 1);
674 static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
675 unsigned int segno, int off)
677 struct page *page;
679 page = get_lock_data_page(inode, bidx, true);
680 if (IS_ERR(page))
681 return;
683 if (!check_valid_map(F2FS_I_SB(inode), segno, off))
684 goto out;
686 if (f2fs_is_atomic_file(inode))
687 goto out;
689 if (gc_type == BG_GC) {
690 if (PageWriteback(page))
691 goto out;
692 set_page_dirty(page);
693 set_cold_data(page);
694 } else {
695 struct f2fs_io_info fio = {
696 .sbi = F2FS_I_SB(inode),
697 .type = DATA,
698 .op = REQ_OP_WRITE,
699 .op_flags = REQ_SYNC,
700 .page = page,
701 .encrypted_page = NULL,
703 bool is_dirty = PageDirty(page);
704 int err;
706 retry:
707 set_page_dirty(page);
708 f2fs_wait_on_page_writeback(page, DATA, true);
709 if (clear_page_dirty_for_io(page)) {
710 inode_dec_dirty_pages(inode);
711 remove_dirty_inode(inode);
714 set_cold_data(page);
716 err = do_write_data_page(&fio);
717 if (err == -ENOMEM && is_dirty) {
718 congestion_wait(BLK_RW_ASYNC, HZ/50);
719 goto retry;
722 out:
723 f2fs_put_page(page, 1);
727 * This function tries to get parent node of victim data block, and identifies
728 * data block validity. If the block is valid, copy that with cold status and
729 * modify parent node.
730 * If the parent node is not valid or the data block address is different,
731 * the victim data block is ignored.
733 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
734 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
736 struct super_block *sb = sbi->sb;
737 struct f2fs_summary *entry;
738 block_t start_addr;
739 int off;
740 int phase = 0;
742 start_addr = START_BLOCK(sbi, segno);
744 next_step:
745 entry = sum;
747 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
748 struct page *data_page;
749 struct inode *inode;
750 struct node_info dni; /* dnode info for the data */
751 unsigned int ofs_in_node, nofs;
752 block_t start_bidx;
753 nid_t nid = le32_to_cpu(entry->nid);
755 /* stop BG_GC if there is not enough free sections. */
756 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
757 return;
759 if (check_valid_map(sbi, segno, off) == 0)
760 continue;
762 if (phase == 0) {
763 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
764 META_NAT, true);
765 continue;
768 if (phase == 1) {
769 ra_node_page(sbi, nid);
770 continue;
773 /* Get an inode by ino with checking validity */
774 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
775 continue;
777 if (phase == 2) {
778 ra_node_page(sbi, dni.ino);
779 continue;
782 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
784 if (phase == 3) {
785 inode = f2fs_iget(sb, dni.ino);
786 if (IS_ERR(inode) || is_bad_inode(inode))
787 continue;
789 /* if encrypted inode, let's go phase 3 */
790 if (f2fs_encrypted_inode(inode) &&
791 S_ISREG(inode->i_mode)) {
792 add_gc_inode(gc_list, inode);
793 continue;
796 start_bidx = start_bidx_of_node(nofs, inode);
797 data_page = get_read_data_page(inode,
798 start_bidx + ofs_in_node, REQ_RAHEAD,
799 true);
800 if (IS_ERR(data_page)) {
801 iput(inode);
802 continue;
805 f2fs_put_page(data_page, 0);
806 add_gc_inode(gc_list, inode);
807 continue;
810 /* phase 4 */
811 inode = find_gc_inode(gc_list, dni.ino);
812 if (inode) {
813 struct f2fs_inode_info *fi = F2FS_I(inode);
814 bool locked = false;
816 if (S_ISREG(inode->i_mode)) {
817 if (!down_write_trylock(&fi->dio_rwsem[READ]))
818 continue;
819 if (!down_write_trylock(
820 &fi->dio_rwsem[WRITE])) {
821 up_write(&fi->dio_rwsem[READ]);
822 continue;
824 locked = true;
827 start_bidx = start_bidx_of_node(nofs, inode)
828 + ofs_in_node;
829 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
830 move_encrypted_block(inode, start_bidx, segno, off);
831 else
832 move_data_page(inode, start_bidx, gc_type, segno, off);
834 if (locked) {
835 up_write(&fi->dio_rwsem[WRITE]);
836 up_write(&fi->dio_rwsem[READ]);
839 stat_inc_data_blk_count(sbi, 1, gc_type);
843 if (++phase < 5)
844 goto next_step;
847 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
848 int gc_type)
850 struct sit_info *sit_i = SIT_I(sbi);
851 int ret;
853 mutex_lock(&sit_i->sentry_lock);
854 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
855 NO_CHECK_TYPE, LFS);
856 mutex_unlock(&sit_i->sentry_lock);
857 return ret;
860 static int do_garbage_collect(struct f2fs_sb_info *sbi,
861 unsigned int start_segno,
862 struct gc_inode_list *gc_list, int gc_type)
864 struct page *sum_page;
865 struct f2fs_summary_block *sum;
866 struct blk_plug plug;
867 unsigned int segno = start_segno;
868 unsigned int end_segno = start_segno + sbi->segs_per_sec;
869 int sec_freed = 0;
870 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
871 SUM_TYPE_DATA : SUM_TYPE_NODE;
873 /* readahead multi ssa blocks those have contiguous address */
874 if (sbi->segs_per_sec > 1)
875 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
876 sbi->segs_per_sec, META_SSA, true);
878 /* reference all summary page */
879 while (segno < end_segno) {
880 sum_page = get_sum_page(sbi, segno++);
881 unlock_page(sum_page);
884 blk_start_plug(&plug);
886 for (segno = start_segno; segno < end_segno; segno++) {
888 /* find segment summary of victim */
889 sum_page = find_get_page(META_MAPPING(sbi),
890 GET_SUM_BLOCK(sbi, segno));
891 f2fs_put_page(sum_page, 0);
893 if (get_valid_blocks(sbi, segno, 1) == 0 ||
894 !PageUptodate(sum_page) ||
895 unlikely(f2fs_cp_error(sbi)))
896 goto next;
898 sum = page_address(sum_page);
899 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
902 * this is to avoid deadlock:
903 * - lock_page(sum_page) - f2fs_replace_block
904 * - check_valid_map() - mutex_lock(sentry_lock)
905 * - mutex_lock(sentry_lock) - change_curseg()
906 * - lock_page(sum_page)
909 if (type == SUM_TYPE_NODE)
910 gc_node_segment(sbi, sum->entries, segno, gc_type);
911 else
912 gc_data_segment(sbi, sum->entries, gc_list, segno,
913 gc_type);
915 stat_inc_seg_count(sbi, type, gc_type);
916 next:
917 f2fs_put_page(sum_page, 0);
920 if (gc_type == FG_GC)
921 f2fs_submit_merged_bio(sbi,
922 (type == SUM_TYPE_NODE) ? NODE : DATA, WRITE);
924 blk_finish_plug(&plug);
926 if (gc_type == FG_GC &&
927 get_valid_blocks(sbi, start_segno, sbi->segs_per_sec) == 0)
928 sec_freed = 1;
930 stat_inc_call_count(sbi->stat_info);
932 return sec_freed;
935 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background)
937 unsigned int segno;
938 int gc_type = sync ? FG_GC : BG_GC;
939 int sec_freed = 0;
940 int ret = -EINVAL;
941 struct cp_control cpc;
942 struct gc_inode_list gc_list = {
943 .ilist = LIST_HEAD_INIT(gc_list.ilist),
944 .iroot = RADIX_TREE_INIT(GFP_NOFS),
947 cpc.reason = __get_cp_reason(sbi);
948 gc_more:
949 if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE)))
950 goto stop;
951 if (unlikely(f2fs_cp_error(sbi))) {
952 ret = -EIO;
953 goto stop;
956 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
958 * For example, if there are many prefree_segments below given
959 * threshold, we can make them free by checkpoint. Then, we
960 * secure free segments which doesn't need fggc any more.
962 ret = write_checkpoint(sbi, &cpc);
963 if (ret)
964 goto stop;
965 if (has_not_enough_free_secs(sbi, 0, 0))
966 gc_type = FG_GC;
969 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
970 if (gc_type == BG_GC && !background)
971 goto stop;
972 if (!__get_victim(sbi, &segno, gc_type))
973 goto stop;
974 ret = 0;
976 if (do_garbage_collect(sbi, segno, &gc_list, gc_type) &&
977 gc_type == FG_GC)
978 sec_freed++;
980 if (gc_type == FG_GC)
981 sbi->cur_victim_sec = NULL_SEGNO;
983 if (!sync) {
984 if (has_not_enough_free_secs(sbi, sec_freed, 0))
985 goto gc_more;
987 if (gc_type == FG_GC)
988 ret = write_checkpoint(sbi, &cpc);
990 stop:
991 mutex_unlock(&sbi->gc_mutex);
993 put_gc_inode(&gc_list);
995 if (sync)
996 ret = sec_freed ? 0 : -EAGAIN;
997 return ret;
1000 void build_gc_manager(struct f2fs_sb_info *sbi)
1002 u64 main_count, resv_count, ovp_count, blocks_per_sec;
1004 DIRTY_I(sbi)->v_ops = &default_v_ops;
1006 /* threshold of # of valid blocks in a section for victims of FG_GC */
1007 main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
1008 resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
1009 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1010 blocks_per_sec = sbi->blocks_per_seg * sbi->segs_per_sec;
1012 sbi->fggc_threshold = div64_u64((main_count - ovp_count) * blocks_per_sec,
1013 (main_count - resv_count));