dma-buf/fence: Fix one more kerneldoc warning
[linux-2.6/btrfs-unstable.git] / mm / zsmalloc.c
blob4e2fc83cb394b9b53384fdc82288e7b6ab793b3a
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * This allocator is designed for use with zram. Thus, the allocator is
16 * supposed to work well under low memory conditions. In particular, it
17 * never attempts higher order page allocation which is very likely to
18 * fail under memory pressure. On the other hand, if we just use single
19 * (0-order) pages, it would suffer from very high fragmentation --
20 * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
21 * This was one of the major issues with its predecessor (xvmalloc).
23 * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
24 * and links them together using various 'struct page' fields. These linked
25 * pages act as a single higher-order page i.e. an object can span 0-order
26 * page boundaries. The code refers to these linked pages as a single entity
27 * called zspage.
29 * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
30 * since this satisfies the requirements of all its current users (in the
31 * worst case, page is incompressible and is thus stored "as-is" i.e. in
32 * uncompressed form). For allocation requests larger than this size, failure
33 * is returned (see zs_malloc).
35 * Additionally, zs_malloc() does not return a dereferenceable pointer.
36 * Instead, it returns an opaque handle (unsigned long) which encodes actual
37 * location of the allocated object. The reason for this indirection is that
38 * zsmalloc does not keep zspages permanently mapped since that would cause
39 * issues on 32-bit systems where the VA region for kernel space mappings
40 * is very small. So, before using the allocating memory, the object has to
41 * be mapped using zs_map_object() to get a usable pointer and subsequently
42 * unmapped using zs_unmap_object().
44 * Following is how we use various fields and flags of underlying
45 * struct page(s) to form a zspage.
47 * Usage of struct page fields:
48 * page->first_page: points to the first component (0-order) page
49 * page->index (union with page->freelist): offset of the first object
50 * starting in this page. For the first page, this is
51 * always 0, so we use this field (aka freelist) to point
52 * to the first free object in zspage.
53 * page->lru: links together all component pages (except the first page)
54 * of a zspage
56 * For _first_ page only:
58 * page->private (union with page->first_page): refers to the
59 * component page after the first page
60 * page->freelist: points to the first free object in zspage.
61 * Free objects are linked together using in-place
62 * metadata.
63 * page->objects: maximum number of objects we can store in this
64 * zspage (class->zspage_order * PAGE_SIZE / class->size)
65 * page->lru: links together first pages of various zspages.
66 * Basically forming list of zspages in a fullness group.
67 * page->mapping: class index and fullness group of the zspage
69 * Usage of struct page flags:
70 * PG_private: identifies the first component page
71 * PG_private2: identifies the last component page
75 #ifdef CONFIG_ZSMALLOC_DEBUG
76 #define DEBUG
77 #endif
79 #include <linux/module.h>
80 #include <linux/kernel.h>
81 #include <linux/bitops.h>
82 #include <linux/errno.h>
83 #include <linux/highmem.h>
84 #include <linux/string.h>
85 #include <linux/slab.h>
86 #include <asm/tlbflush.h>
87 #include <asm/pgtable.h>
88 #include <linux/cpumask.h>
89 #include <linux/cpu.h>
90 #include <linux/vmalloc.h>
91 #include <linux/hardirq.h>
92 #include <linux/spinlock.h>
93 #include <linux/types.h>
94 #include <linux/zsmalloc.h>
95 #include <linux/zpool.h>
98 * This must be power of 2 and greater than of equal to sizeof(link_free).
99 * These two conditions ensure that any 'struct link_free' itself doesn't
100 * span more than 1 page which avoids complex case of mapping 2 pages simply
101 * to restore link_free pointer values.
103 #define ZS_ALIGN 8
106 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
107 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
109 #define ZS_MAX_ZSPAGE_ORDER 2
110 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
113 * Object location (<PFN>, <obj_idx>) is encoded as
114 * as single (unsigned long) handle value.
116 * Note that object index <obj_idx> is relative to system
117 * page <PFN> it is stored in, so for each sub-page belonging
118 * to a zspage, obj_idx starts with 0.
120 * This is made more complicated by various memory models and PAE.
123 #ifndef MAX_PHYSMEM_BITS
124 #ifdef CONFIG_HIGHMEM64G
125 #define MAX_PHYSMEM_BITS 36
126 #else /* !CONFIG_HIGHMEM64G */
128 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
129 * be PAGE_SHIFT
131 #define MAX_PHYSMEM_BITS BITS_PER_LONG
132 #endif
133 #endif
134 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
135 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS)
136 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
138 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
139 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
140 #define ZS_MIN_ALLOC_SIZE \
141 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
142 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
145 * On systems with 4K page size, this gives 255 size classes! There is a
146 * trader-off here:
147 * - Large number of size classes is potentially wasteful as free page are
148 * spread across these classes
149 * - Small number of size classes causes large internal fragmentation
150 * - Probably its better to use specific size classes (empirically
151 * determined). NOTE: all those class sizes must be set as multiple of
152 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
154 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
155 * (reason above)
157 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> 8)
158 #define ZS_SIZE_CLASSES ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / \
159 ZS_SIZE_CLASS_DELTA + 1)
162 * We do not maintain any list for completely empty or full pages
164 enum fullness_group {
165 ZS_ALMOST_FULL,
166 ZS_ALMOST_EMPTY,
167 _ZS_NR_FULLNESS_GROUPS,
169 ZS_EMPTY,
170 ZS_FULL
174 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
175 * n <= N / f, where
176 * n = number of allocated objects
177 * N = total number of objects zspage can store
178 * f = 1/fullness_threshold_frac
180 * Similarly, we assign zspage to:
181 * ZS_ALMOST_FULL when n > N / f
182 * ZS_EMPTY when n == 0
183 * ZS_FULL when n == N
185 * (see: fix_fullness_group())
187 static const int fullness_threshold_frac = 4;
189 struct size_class {
191 * Size of objects stored in this class. Must be multiple
192 * of ZS_ALIGN.
194 int size;
195 unsigned int index;
197 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
198 int pages_per_zspage;
200 spinlock_t lock;
202 /* stats */
203 u64 pages_allocated;
205 struct page *fullness_list[_ZS_NR_FULLNESS_GROUPS];
209 * Placed within free objects to form a singly linked list.
210 * For every zspage, first_page->freelist gives head of this list.
212 * This must be power of 2 and less than or equal to ZS_ALIGN
214 struct link_free {
215 /* Handle of next free chunk (encodes <PFN, obj_idx>) */
216 void *next;
219 struct zs_pool {
220 struct size_class size_class[ZS_SIZE_CLASSES];
222 gfp_t flags; /* allocation flags used when growing pool */
226 * A zspage's class index and fullness group
227 * are encoded in its (first)page->mapping
229 #define CLASS_IDX_BITS 28
230 #define FULLNESS_BITS 4
231 #define CLASS_IDX_MASK ((1 << CLASS_IDX_BITS) - 1)
232 #define FULLNESS_MASK ((1 << FULLNESS_BITS) - 1)
234 struct mapping_area {
235 #ifdef CONFIG_PGTABLE_MAPPING
236 struct vm_struct *vm; /* vm area for mapping object that span pages */
237 #else
238 char *vm_buf; /* copy buffer for objects that span pages */
239 #endif
240 char *vm_addr; /* address of kmap_atomic()'ed pages */
241 enum zs_mapmode vm_mm; /* mapping mode */
244 /* zpool driver */
246 #ifdef CONFIG_ZPOOL
248 static void *zs_zpool_create(gfp_t gfp, struct zpool_ops *zpool_ops)
250 return zs_create_pool(gfp);
253 static void zs_zpool_destroy(void *pool)
255 zs_destroy_pool(pool);
258 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
259 unsigned long *handle)
261 *handle = zs_malloc(pool, size);
262 return *handle ? 0 : -1;
264 static void zs_zpool_free(void *pool, unsigned long handle)
266 zs_free(pool, handle);
269 static int zs_zpool_shrink(void *pool, unsigned int pages,
270 unsigned int *reclaimed)
272 return -EINVAL;
275 static void *zs_zpool_map(void *pool, unsigned long handle,
276 enum zpool_mapmode mm)
278 enum zs_mapmode zs_mm;
280 switch (mm) {
281 case ZPOOL_MM_RO:
282 zs_mm = ZS_MM_RO;
283 break;
284 case ZPOOL_MM_WO:
285 zs_mm = ZS_MM_WO;
286 break;
287 case ZPOOL_MM_RW: /* fallthru */
288 default:
289 zs_mm = ZS_MM_RW;
290 break;
293 return zs_map_object(pool, handle, zs_mm);
295 static void zs_zpool_unmap(void *pool, unsigned long handle)
297 zs_unmap_object(pool, handle);
300 static u64 zs_zpool_total_size(void *pool)
302 return zs_get_total_size_bytes(pool);
305 static struct zpool_driver zs_zpool_driver = {
306 .type = "zsmalloc",
307 .owner = THIS_MODULE,
308 .create = zs_zpool_create,
309 .destroy = zs_zpool_destroy,
310 .malloc = zs_zpool_malloc,
311 .free = zs_zpool_free,
312 .shrink = zs_zpool_shrink,
313 .map = zs_zpool_map,
314 .unmap = zs_zpool_unmap,
315 .total_size = zs_zpool_total_size,
318 #endif /* CONFIG_ZPOOL */
320 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
321 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
323 static int is_first_page(struct page *page)
325 return PagePrivate(page);
328 static int is_last_page(struct page *page)
330 return PagePrivate2(page);
333 static void get_zspage_mapping(struct page *page, unsigned int *class_idx,
334 enum fullness_group *fullness)
336 unsigned long m;
337 BUG_ON(!is_first_page(page));
339 m = (unsigned long)page->mapping;
340 *fullness = m & FULLNESS_MASK;
341 *class_idx = (m >> FULLNESS_BITS) & CLASS_IDX_MASK;
344 static void set_zspage_mapping(struct page *page, unsigned int class_idx,
345 enum fullness_group fullness)
347 unsigned long m;
348 BUG_ON(!is_first_page(page));
350 m = ((class_idx & CLASS_IDX_MASK) << FULLNESS_BITS) |
351 (fullness & FULLNESS_MASK);
352 page->mapping = (struct address_space *)m;
356 * zsmalloc divides the pool into various size classes where each
357 * class maintains a list of zspages where each zspage is divided
358 * into equal sized chunks. Each allocation falls into one of these
359 * classes depending on its size. This function returns index of the
360 * size class which has chunk size big enough to hold the give size.
362 static int get_size_class_index(int size)
364 int idx = 0;
366 if (likely(size > ZS_MIN_ALLOC_SIZE))
367 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
368 ZS_SIZE_CLASS_DELTA);
370 return idx;
374 * For each size class, zspages are divided into different groups
375 * depending on how "full" they are. This was done so that we could
376 * easily find empty or nearly empty zspages when we try to shrink
377 * the pool (not yet implemented). This function returns fullness
378 * status of the given page.
380 static enum fullness_group get_fullness_group(struct page *page)
382 int inuse, max_objects;
383 enum fullness_group fg;
384 BUG_ON(!is_first_page(page));
386 inuse = page->inuse;
387 max_objects = page->objects;
389 if (inuse == 0)
390 fg = ZS_EMPTY;
391 else if (inuse == max_objects)
392 fg = ZS_FULL;
393 else if (inuse <= max_objects / fullness_threshold_frac)
394 fg = ZS_ALMOST_EMPTY;
395 else
396 fg = ZS_ALMOST_FULL;
398 return fg;
402 * Each size class maintains various freelists and zspages are assigned
403 * to one of these freelists based on the number of live objects they
404 * have. This functions inserts the given zspage into the freelist
405 * identified by <class, fullness_group>.
407 static void insert_zspage(struct page *page, struct size_class *class,
408 enum fullness_group fullness)
410 struct page **head;
412 BUG_ON(!is_first_page(page));
414 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
415 return;
417 head = &class->fullness_list[fullness];
418 if (*head)
419 list_add_tail(&page->lru, &(*head)->lru);
421 *head = page;
425 * This function removes the given zspage from the freelist identified
426 * by <class, fullness_group>.
428 static void remove_zspage(struct page *page, struct size_class *class,
429 enum fullness_group fullness)
431 struct page **head;
433 BUG_ON(!is_first_page(page));
435 if (fullness >= _ZS_NR_FULLNESS_GROUPS)
436 return;
438 head = &class->fullness_list[fullness];
439 BUG_ON(!*head);
440 if (list_empty(&(*head)->lru))
441 *head = NULL;
442 else if (*head == page)
443 *head = (struct page *)list_entry((*head)->lru.next,
444 struct page, lru);
446 list_del_init(&page->lru);
450 * Each size class maintains zspages in different fullness groups depending
451 * on the number of live objects they contain. When allocating or freeing
452 * objects, the fullness status of the page can change, say, from ALMOST_FULL
453 * to ALMOST_EMPTY when freeing an object. This function checks if such
454 * a status change has occurred for the given page and accordingly moves the
455 * page from the freelist of the old fullness group to that of the new
456 * fullness group.
458 static enum fullness_group fix_fullness_group(struct zs_pool *pool,
459 struct page *page)
461 int class_idx;
462 struct size_class *class;
463 enum fullness_group currfg, newfg;
465 BUG_ON(!is_first_page(page));
467 get_zspage_mapping(page, &class_idx, &currfg);
468 newfg = get_fullness_group(page);
469 if (newfg == currfg)
470 goto out;
472 class = &pool->size_class[class_idx];
473 remove_zspage(page, class, currfg);
474 insert_zspage(page, class, newfg);
475 set_zspage_mapping(page, class_idx, newfg);
477 out:
478 return newfg;
482 * We have to decide on how many pages to link together
483 * to form a zspage for each size class. This is important
484 * to reduce wastage due to unusable space left at end of
485 * each zspage which is given as:
486 * wastage = Zp - Zp % size_class
487 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
489 * For example, for size class of 3/8 * PAGE_SIZE, we should
490 * link together 3 PAGE_SIZE sized pages to form a zspage
491 * since then we can perfectly fit in 8 such objects.
493 static int get_pages_per_zspage(int class_size)
495 int i, max_usedpc = 0;
496 /* zspage order which gives maximum used size per KB */
497 int max_usedpc_order = 1;
499 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
500 int zspage_size;
501 int waste, usedpc;
503 zspage_size = i * PAGE_SIZE;
504 waste = zspage_size % class_size;
505 usedpc = (zspage_size - waste) * 100 / zspage_size;
507 if (usedpc > max_usedpc) {
508 max_usedpc = usedpc;
509 max_usedpc_order = i;
513 return max_usedpc_order;
517 * A single 'zspage' is composed of many system pages which are
518 * linked together using fields in struct page. This function finds
519 * the first/head page, given any component page of a zspage.
521 static struct page *get_first_page(struct page *page)
523 if (is_first_page(page))
524 return page;
525 else
526 return page->first_page;
529 static struct page *get_next_page(struct page *page)
531 struct page *next;
533 if (is_last_page(page))
534 next = NULL;
535 else if (is_first_page(page))
536 next = (struct page *)page_private(page);
537 else
538 next = list_entry(page->lru.next, struct page, lru);
540 return next;
544 * Encode <page, obj_idx> as a single handle value.
545 * On hardware platforms with physical memory starting at 0x0 the pfn
546 * could be 0 so we ensure that the handle will never be 0 by adjusting the
547 * encoded obj_idx value before encoding.
549 static void *obj_location_to_handle(struct page *page, unsigned long obj_idx)
551 unsigned long handle;
553 if (!page) {
554 BUG_ON(obj_idx);
555 return NULL;
558 handle = page_to_pfn(page) << OBJ_INDEX_BITS;
559 handle |= ((obj_idx + 1) & OBJ_INDEX_MASK);
561 return (void *)handle;
565 * Decode <page, obj_idx> pair from the given object handle. We adjust the
566 * decoded obj_idx back to its original value since it was adjusted in
567 * obj_location_to_handle().
569 static void obj_handle_to_location(unsigned long handle, struct page **page,
570 unsigned long *obj_idx)
572 *page = pfn_to_page(handle >> OBJ_INDEX_BITS);
573 *obj_idx = (handle & OBJ_INDEX_MASK) - 1;
576 static unsigned long obj_idx_to_offset(struct page *page,
577 unsigned long obj_idx, int class_size)
579 unsigned long off = 0;
581 if (!is_first_page(page))
582 off = page->index;
584 return off + obj_idx * class_size;
587 static void reset_page(struct page *page)
589 clear_bit(PG_private, &page->flags);
590 clear_bit(PG_private_2, &page->flags);
591 set_page_private(page, 0);
592 page->mapping = NULL;
593 page->freelist = NULL;
594 page_mapcount_reset(page);
597 static void free_zspage(struct page *first_page)
599 struct page *nextp, *tmp, *head_extra;
601 BUG_ON(!is_first_page(first_page));
602 BUG_ON(first_page->inuse);
604 head_extra = (struct page *)page_private(first_page);
606 reset_page(first_page);
607 __free_page(first_page);
609 /* zspage with only 1 system page */
610 if (!head_extra)
611 return;
613 list_for_each_entry_safe(nextp, tmp, &head_extra->lru, lru) {
614 list_del(&nextp->lru);
615 reset_page(nextp);
616 __free_page(nextp);
618 reset_page(head_extra);
619 __free_page(head_extra);
622 /* Initialize a newly allocated zspage */
623 static void init_zspage(struct page *first_page, struct size_class *class)
625 unsigned long off = 0;
626 struct page *page = first_page;
628 BUG_ON(!is_first_page(first_page));
629 while (page) {
630 struct page *next_page;
631 struct link_free *link;
632 unsigned int i, objs_on_page;
635 * page->index stores offset of first object starting
636 * in the page. For the first page, this is always 0,
637 * so we use first_page->index (aka ->freelist) to store
638 * head of corresponding zspage's freelist.
640 if (page != first_page)
641 page->index = off;
643 link = (struct link_free *)kmap_atomic(page) +
644 off / sizeof(*link);
645 objs_on_page = (PAGE_SIZE - off) / class->size;
647 for (i = 1; i <= objs_on_page; i++) {
648 off += class->size;
649 if (off < PAGE_SIZE) {
650 link->next = obj_location_to_handle(page, i);
651 link += class->size / sizeof(*link);
656 * We now come to the last (full or partial) object on this
657 * page, which must point to the first object on the next
658 * page (if present)
660 next_page = get_next_page(page);
661 link->next = obj_location_to_handle(next_page, 0);
662 kunmap_atomic(link);
663 page = next_page;
664 off = (off + class->size) % PAGE_SIZE;
669 * Allocate a zspage for the given size class
671 static struct page *alloc_zspage(struct size_class *class, gfp_t flags)
673 int i, error;
674 struct page *first_page = NULL, *uninitialized_var(prev_page);
677 * Allocate individual pages and link them together as:
678 * 1. first page->private = first sub-page
679 * 2. all sub-pages are linked together using page->lru
680 * 3. each sub-page is linked to the first page using page->first_page
682 * For each size class, First/Head pages are linked together using
683 * page->lru. Also, we set PG_private to identify the first page
684 * (i.e. no other sub-page has this flag set) and PG_private_2 to
685 * identify the last page.
687 error = -ENOMEM;
688 for (i = 0; i < class->pages_per_zspage; i++) {
689 struct page *page;
691 page = alloc_page(flags);
692 if (!page)
693 goto cleanup;
695 INIT_LIST_HEAD(&page->lru);
696 if (i == 0) { /* first page */
697 SetPagePrivate(page);
698 set_page_private(page, 0);
699 first_page = page;
700 first_page->inuse = 0;
702 if (i == 1)
703 set_page_private(first_page, (unsigned long)page);
704 if (i >= 1)
705 page->first_page = first_page;
706 if (i >= 2)
707 list_add(&page->lru, &prev_page->lru);
708 if (i == class->pages_per_zspage - 1) /* last page */
709 SetPagePrivate2(page);
710 prev_page = page;
713 init_zspage(first_page, class);
715 first_page->freelist = obj_location_to_handle(first_page, 0);
716 /* Maximum number of objects we can store in this zspage */
717 first_page->objects = class->pages_per_zspage * PAGE_SIZE / class->size;
719 error = 0; /* Success */
721 cleanup:
722 if (unlikely(error) && first_page) {
723 free_zspage(first_page);
724 first_page = NULL;
727 return first_page;
730 static struct page *find_get_zspage(struct size_class *class)
732 int i;
733 struct page *page;
735 for (i = 0; i < _ZS_NR_FULLNESS_GROUPS; i++) {
736 page = class->fullness_list[i];
737 if (page)
738 break;
741 return page;
744 #ifdef CONFIG_PGTABLE_MAPPING
745 static inline int __zs_cpu_up(struct mapping_area *area)
748 * Make sure we don't leak memory if a cpu UP notification
749 * and zs_init() race and both call zs_cpu_up() on the same cpu
751 if (area->vm)
752 return 0;
753 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
754 if (!area->vm)
755 return -ENOMEM;
756 return 0;
759 static inline void __zs_cpu_down(struct mapping_area *area)
761 if (area->vm)
762 free_vm_area(area->vm);
763 area->vm = NULL;
766 static inline void *__zs_map_object(struct mapping_area *area,
767 struct page *pages[2], int off, int size)
769 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
770 area->vm_addr = area->vm->addr;
771 return area->vm_addr + off;
774 static inline void __zs_unmap_object(struct mapping_area *area,
775 struct page *pages[2], int off, int size)
777 unsigned long addr = (unsigned long)area->vm_addr;
779 unmap_kernel_range(addr, PAGE_SIZE * 2);
782 #else /* CONFIG_PGTABLE_MAPPING */
784 static inline int __zs_cpu_up(struct mapping_area *area)
787 * Make sure we don't leak memory if a cpu UP notification
788 * and zs_init() race and both call zs_cpu_up() on the same cpu
790 if (area->vm_buf)
791 return 0;
792 area->vm_buf = (char *)__get_free_page(GFP_KERNEL);
793 if (!area->vm_buf)
794 return -ENOMEM;
795 return 0;
798 static inline void __zs_cpu_down(struct mapping_area *area)
800 if (area->vm_buf)
801 free_page((unsigned long)area->vm_buf);
802 area->vm_buf = NULL;
805 static void *__zs_map_object(struct mapping_area *area,
806 struct page *pages[2], int off, int size)
808 int sizes[2];
809 void *addr;
810 char *buf = area->vm_buf;
812 /* disable page faults to match kmap_atomic() return conditions */
813 pagefault_disable();
815 /* no read fastpath */
816 if (area->vm_mm == ZS_MM_WO)
817 goto out;
819 sizes[0] = PAGE_SIZE - off;
820 sizes[1] = size - sizes[0];
822 /* copy object to per-cpu buffer */
823 addr = kmap_atomic(pages[0]);
824 memcpy(buf, addr + off, sizes[0]);
825 kunmap_atomic(addr);
826 addr = kmap_atomic(pages[1]);
827 memcpy(buf + sizes[0], addr, sizes[1]);
828 kunmap_atomic(addr);
829 out:
830 return area->vm_buf;
833 static void __zs_unmap_object(struct mapping_area *area,
834 struct page *pages[2], int off, int size)
836 int sizes[2];
837 void *addr;
838 char *buf = area->vm_buf;
840 /* no write fastpath */
841 if (area->vm_mm == ZS_MM_RO)
842 goto out;
844 sizes[0] = PAGE_SIZE - off;
845 sizes[1] = size - sizes[0];
847 /* copy per-cpu buffer to object */
848 addr = kmap_atomic(pages[0]);
849 memcpy(addr + off, buf, sizes[0]);
850 kunmap_atomic(addr);
851 addr = kmap_atomic(pages[1]);
852 memcpy(addr, buf + sizes[0], sizes[1]);
853 kunmap_atomic(addr);
855 out:
856 /* enable page faults to match kunmap_atomic() return conditions */
857 pagefault_enable();
860 #endif /* CONFIG_PGTABLE_MAPPING */
862 static int zs_cpu_notifier(struct notifier_block *nb, unsigned long action,
863 void *pcpu)
865 int ret, cpu = (long)pcpu;
866 struct mapping_area *area;
868 switch (action) {
869 case CPU_UP_PREPARE:
870 area = &per_cpu(zs_map_area, cpu);
871 ret = __zs_cpu_up(area);
872 if (ret)
873 return notifier_from_errno(ret);
874 break;
875 case CPU_DEAD:
876 case CPU_UP_CANCELED:
877 area = &per_cpu(zs_map_area, cpu);
878 __zs_cpu_down(area);
879 break;
882 return NOTIFY_OK;
885 static struct notifier_block zs_cpu_nb = {
886 .notifier_call = zs_cpu_notifier
889 static void zs_exit(void)
891 int cpu;
893 #ifdef CONFIG_ZPOOL
894 zpool_unregister_driver(&zs_zpool_driver);
895 #endif
897 cpu_notifier_register_begin();
899 for_each_online_cpu(cpu)
900 zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
901 __unregister_cpu_notifier(&zs_cpu_nb);
903 cpu_notifier_register_done();
906 static int zs_init(void)
908 int cpu, ret;
910 cpu_notifier_register_begin();
912 __register_cpu_notifier(&zs_cpu_nb);
913 for_each_online_cpu(cpu) {
914 ret = zs_cpu_notifier(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
915 if (notifier_to_errno(ret)) {
916 cpu_notifier_register_done();
917 goto fail;
921 cpu_notifier_register_done();
923 #ifdef CONFIG_ZPOOL
924 zpool_register_driver(&zs_zpool_driver);
925 #endif
927 return 0;
928 fail:
929 zs_exit();
930 return notifier_to_errno(ret);
934 * zs_create_pool - Creates an allocation pool to work from.
935 * @flags: allocation flags used to allocate pool metadata
937 * This function must be called before anything when using
938 * the zsmalloc allocator.
940 * On success, a pointer to the newly created pool is returned,
941 * otherwise NULL.
943 struct zs_pool *zs_create_pool(gfp_t flags)
945 int i, ovhd_size;
946 struct zs_pool *pool;
948 ovhd_size = roundup(sizeof(*pool), PAGE_SIZE);
949 pool = kzalloc(ovhd_size, GFP_KERNEL);
950 if (!pool)
951 return NULL;
953 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
954 int size;
955 struct size_class *class;
957 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
958 if (size > ZS_MAX_ALLOC_SIZE)
959 size = ZS_MAX_ALLOC_SIZE;
961 class = &pool->size_class[i];
962 class->size = size;
963 class->index = i;
964 spin_lock_init(&class->lock);
965 class->pages_per_zspage = get_pages_per_zspage(size);
969 pool->flags = flags;
971 return pool;
973 EXPORT_SYMBOL_GPL(zs_create_pool);
975 void zs_destroy_pool(struct zs_pool *pool)
977 int i;
979 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
980 int fg;
981 struct size_class *class = &pool->size_class[i];
983 for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
984 if (class->fullness_list[fg]) {
985 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
986 class->size, fg);
990 kfree(pool);
992 EXPORT_SYMBOL_GPL(zs_destroy_pool);
995 * zs_malloc - Allocate block of given size from pool.
996 * @pool: pool to allocate from
997 * @size: size of block to allocate
999 * On success, handle to the allocated object is returned,
1000 * otherwise 0.
1001 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1003 unsigned long zs_malloc(struct zs_pool *pool, size_t size)
1005 unsigned long obj;
1006 struct link_free *link;
1007 int class_idx;
1008 struct size_class *class;
1010 struct page *first_page, *m_page;
1011 unsigned long m_objidx, m_offset;
1013 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1014 return 0;
1016 class_idx = get_size_class_index(size);
1017 class = &pool->size_class[class_idx];
1018 BUG_ON(class_idx != class->index);
1020 spin_lock(&class->lock);
1021 first_page = find_get_zspage(class);
1023 if (!first_page) {
1024 spin_unlock(&class->lock);
1025 first_page = alloc_zspage(class, pool->flags);
1026 if (unlikely(!first_page))
1027 return 0;
1029 set_zspage_mapping(first_page, class->index, ZS_EMPTY);
1030 spin_lock(&class->lock);
1031 class->pages_allocated += class->pages_per_zspage;
1034 obj = (unsigned long)first_page->freelist;
1035 obj_handle_to_location(obj, &m_page, &m_objidx);
1036 m_offset = obj_idx_to_offset(m_page, m_objidx, class->size);
1038 link = (struct link_free *)kmap_atomic(m_page) +
1039 m_offset / sizeof(*link);
1040 first_page->freelist = link->next;
1041 memset(link, POISON_INUSE, sizeof(*link));
1042 kunmap_atomic(link);
1044 first_page->inuse++;
1045 /* Now move the zspage to another fullness group, if required */
1046 fix_fullness_group(pool, first_page);
1047 spin_unlock(&class->lock);
1049 return obj;
1051 EXPORT_SYMBOL_GPL(zs_malloc);
1053 void zs_free(struct zs_pool *pool, unsigned long obj)
1055 struct link_free *link;
1056 struct page *first_page, *f_page;
1057 unsigned long f_objidx, f_offset;
1059 int class_idx;
1060 struct size_class *class;
1061 enum fullness_group fullness;
1063 if (unlikely(!obj))
1064 return;
1066 obj_handle_to_location(obj, &f_page, &f_objidx);
1067 first_page = get_first_page(f_page);
1069 get_zspage_mapping(first_page, &class_idx, &fullness);
1070 class = &pool->size_class[class_idx];
1071 f_offset = obj_idx_to_offset(f_page, f_objidx, class->size);
1073 spin_lock(&class->lock);
1075 /* Insert this object in containing zspage's freelist */
1076 link = (struct link_free *)((unsigned char *)kmap_atomic(f_page)
1077 + f_offset);
1078 link->next = first_page->freelist;
1079 kunmap_atomic(link);
1080 first_page->freelist = (void *)obj;
1082 first_page->inuse--;
1083 fullness = fix_fullness_group(pool, first_page);
1085 if (fullness == ZS_EMPTY)
1086 class->pages_allocated -= class->pages_per_zspage;
1088 spin_unlock(&class->lock);
1090 if (fullness == ZS_EMPTY)
1091 free_zspage(first_page);
1093 EXPORT_SYMBOL_GPL(zs_free);
1096 * zs_map_object - get address of allocated object from handle.
1097 * @pool: pool from which the object was allocated
1098 * @handle: handle returned from zs_malloc
1100 * Before using an object allocated from zs_malloc, it must be mapped using
1101 * this function. When done with the object, it must be unmapped using
1102 * zs_unmap_object.
1104 * Only one object can be mapped per cpu at a time. There is no protection
1105 * against nested mappings.
1107 * This function returns with preemption and page faults disabled.
1109 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1110 enum zs_mapmode mm)
1112 struct page *page;
1113 unsigned long obj_idx, off;
1115 unsigned int class_idx;
1116 enum fullness_group fg;
1117 struct size_class *class;
1118 struct mapping_area *area;
1119 struct page *pages[2];
1121 BUG_ON(!handle);
1124 * Because we use per-cpu mapping areas shared among the
1125 * pools/users, we can't allow mapping in interrupt context
1126 * because it can corrupt another users mappings.
1128 BUG_ON(in_interrupt());
1130 obj_handle_to_location(handle, &page, &obj_idx);
1131 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1132 class = &pool->size_class[class_idx];
1133 off = obj_idx_to_offset(page, obj_idx, class->size);
1135 area = &get_cpu_var(zs_map_area);
1136 area->vm_mm = mm;
1137 if (off + class->size <= PAGE_SIZE) {
1138 /* this object is contained entirely within a page */
1139 area->vm_addr = kmap_atomic(page);
1140 return area->vm_addr + off;
1143 /* this object spans two pages */
1144 pages[0] = page;
1145 pages[1] = get_next_page(page);
1146 BUG_ON(!pages[1]);
1148 return __zs_map_object(area, pages, off, class->size);
1150 EXPORT_SYMBOL_GPL(zs_map_object);
1152 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1154 struct page *page;
1155 unsigned long obj_idx, off;
1157 unsigned int class_idx;
1158 enum fullness_group fg;
1159 struct size_class *class;
1160 struct mapping_area *area;
1162 BUG_ON(!handle);
1164 obj_handle_to_location(handle, &page, &obj_idx);
1165 get_zspage_mapping(get_first_page(page), &class_idx, &fg);
1166 class = &pool->size_class[class_idx];
1167 off = obj_idx_to_offset(page, obj_idx, class->size);
1169 area = this_cpu_ptr(&zs_map_area);
1170 if (off + class->size <= PAGE_SIZE)
1171 kunmap_atomic(area->vm_addr);
1172 else {
1173 struct page *pages[2];
1175 pages[0] = page;
1176 pages[1] = get_next_page(page);
1177 BUG_ON(!pages[1]);
1179 __zs_unmap_object(area, pages, off, class->size);
1181 put_cpu_var(zs_map_area);
1183 EXPORT_SYMBOL_GPL(zs_unmap_object);
1185 u64 zs_get_total_size_bytes(struct zs_pool *pool)
1187 int i;
1188 u64 npages = 0;
1190 for (i = 0; i < ZS_SIZE_CLASSES; i++)
1191 npages += pool->size_class[i].pages_allocated;
1193 return npages << PAGE_SHIFT;
1195 EXPORT_SYMBOL_GPL(zs_get_total_size_bytes);
1197 module_init(zs_init);
1198 module_exit(zs_exit);
1200 MODULE_LICENSE("Dual BSD/GPL");
1201 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");