ARM: Orion: DTify the watchdog timer.
[linux-2.6/btrfs-unstable.git] / net / core / sock.c
blob9e5b71fda6ec0d726bd356bce1658f55091ebcf8
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/types.h>
97 #include <linux/socket.h>
98 #include <linux/in.h>
99 #include <linux/kernel.h>
100 #include <linux/module.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/sched.h>
104 #include <linux/timer.h>
105 #include <linux/string.h>
106 #include <linux/sockios.h>
107 #include <linux/net.h>
108 #include <linux/mm.h>
109 #include <linux/slab.h>
110 #include <linux/interrupt.h>
111 #include <linux/poll.h>
112 #include <linux/tcp.h>
113 #include <linux/init.h>
114 #include <linux/highmem.h>
115 #include <linux/user_namespace.h>
116 #include <linux/static_key.h>
117 #include <linux/memcontrol.h>
118 #include <linux/prefetch.h>
120 #include <asm/uaccess.h>
122 #include <linux/netdevice.h>
123 #include <net/protocol.h>
124 #include <linux/skbuff.h>
125 #include <net/net_namespace.h>
126 #include <net/request_sock.h>
127 #include <net/sock.h>
128 #include <linux/net_tstamp.h>
129 #include <net/xfrm.h>
130 #include <linux/ipsec.h>
131 #include <net/cls_cgroup.h>
132 #include <net/netprio_cgroup.h>
134 #include <linux/filter.h>
136 #include <trace/events/sock.h>
138 #ifdef CONFIG_INET
139 #include <net/tcp.h>
140 #endif
142 static DEFINE_MUTEX(proto_list_mutex);
143 static LIST_HEAD(proto_list);
145 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
146 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
148 struct proto *proto;
149 int ret = 0;
151 mutex_lock(&proto_list_mutex);
152 list_for_each_entry(proto, &proto_list, node) {
153 if (proto->init_cgroup) {
154 ret = proto->init_cgroup(memcg, ss);
155 if (ret)
156 goto out;
160 mutex_unlock(&proto_list_mutex);
161 return ret;
162 out:
163 list_for_each_entry_continue_reverse(proto, &proto_list, node)
164 if (proto->destroy_cgroup)
165 proto->destroy_cgroup(memcg);
166 mutex_unlock(&proto_list_mutex);
167 return ret;
170 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
172 struct proto *proto;
174 mutex_lock(&proto_list_mutex);
175 list_for_each_entry_reverse(proto, &proto_list, node)
176 if (proto->destroy_cgroup)
177 proto->destroy_cgroup(memcg);
178 mutex_unlock(&proto_list_mutex);
180 #endif
183 * Each address family might have different locking rules, so we have
184 * one slock key per address family:
186 static struct lock_class_key af_family_keys[AF_MAX];
187 static struct lock_class_key af_family_slock_keys[AF_MAX];
189 struct static_key memcg_socket_limit_enabled;
190 EXPORT_SYMBOL(memcg_socket_limit_enabled);
193 * Make lock validator output more readable. (we pre-construct these
194 * strings build-time, so that runtime initialization of socket
195 * locks is fast):
197 static const char *const af_family_key_strings[AF_MAX+1] = {
198 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
199 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
200 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
201 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
202 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
203 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
204 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
205 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
206 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
207 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
208 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
209 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
210 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
211 "sk_lock-AF_NFC" , "sk_lock-AF_MAX"
213 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
214 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
215 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
216 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
217 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
218 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
219 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
220 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
221 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
222 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
223 "slock-27" , "slock-28" , "slock-AF_CAN" ,
224 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
225 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
226 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
227 "slock-AF_NFC" , "slock-AF_MAX"
229 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
230 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
231 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
232 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
233 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
234 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
235 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
236 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
237 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
238 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
239 "clock-27" , "clock-28" , "clock-AF_CAN" ,
240 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
241 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
242 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
243 "clock-AF_NFC" , "clock-AF_MAX"
247 * sk_callback_lock locking rules are per-address-family,
248 * so split the lock classes by using a per-AF key:
250 static struct lock_class_key af_callback_keys[AF_MAX];
252 /* Take into consideration the size of the struct sk_buff overhead in the
253 * determination of these values, since that is non-constant across
254 * platforms. This makes socket queueing behavior and performance
255 * not depend upon such differences.
257 #define _SK_MEM_PACKETS 256
258 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
259 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
260 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
262 /* Run time adjustable parameters. */
263 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
264 EXPORT_SYMBOL(sysctl_wmem_max);
265 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
266 EXPORT_SYMBOL(sysctl_rmem_max);
267 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
268 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
270 /* Maximal space eaten by iovec or ancillary data plus some space */
271 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
272 EXPORT_SYMBOL(sysctl_optmem_max);
274 #if defined(CONFIG_CGROUPS)
275 #if !defined(CONFIG_NET_CLS_CGROUP)
276 int net_cls_subsys_id = -1;
277 EXPORT_SYMBOL_GPL(net_cls_subsys_id);
278 #endif
279 #if !defined(CONFIG_NETPRIO_CGROUP)
280 int net_prio_subsys_id = -1;
281 EXPORT_SYMBOL_GPL(net_prio_subsys_id);
282 #endif
283 #endif
285 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
287 struct timeval tv;
289 if (optlen < sizeof(tv))
290 return -EINVAL;
291 if (copy_from_user(&tv, optval, sizeof(tv)))
292 return -EFAULT;
293 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
294 return -EDOM;
296 if (tv.tv_sec < 0) {
297 static int warned __read_mostly;
299 *timeo_p = 0;
300 if (warned < 10 && net_ratelimit()) {
301 warned++;
302 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
303 __func__, current->comm, task_pid_nr(current));
305 return 0;
307 *timeo_p = MAX_SCHEDULE_TIMEOUT;
308 if (tv.tv_sec == 0 && tv.tv_usec == 0)
309 return 0;
310 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
311 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
312 return 0;
315 static void sock_warn_obsolete_bsdism(const char *name)
317 static int warned;
318 static char warncomm[TASK_COMM_LEN];
319 if (strcmp(warncomm, current->comm) && warned < 5) {
320 strcpy(warncomm, current->comm);
321 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
322 warncomm, name);
323 warned++;
327 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
329 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
331 if (sk->sk_flags & flags) {
332 sk->sk_flags &= ~flags;
333 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
334 net_disable_timestamp();
339 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
341 int err;
342 int skb_len;
343 unsigned long flags;
344 struct sk_buff_head *list = &sk->sk_receive_queue;
346 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
347 atomic_inc(&sk->sk_drops);
348 trace_sock_rcvqueue_full(sk, skb);
349 return -ENOMEM;
352 err = sk_filter(sk, skb);
353 if (err)
354 return err;
356 if (!sk_rmem_schedule(sk, skb->truesize)) {
357 atomic_inc(&sk->sk_drops);
358 return -ENOBUFS;
361 skb->dev = NULL;
362 skb_set_owner_r(skb, sk);
364 /* Cache the SKB length before we tack it onto the receive
365 * queue. Once it is added it no longer belongs to us and
366 * may be freed by other threads of control pulling packets
367 * from the queue.
369 skb_len = skb->len;
371 /* we escape from rcu protected region, make sure we dont leak
372 * a norefcounted dst
374 skb_dst_force(skb);
376 spin_lock_irqsave(&list->lock, flags);
377 skb->dropcount = atomic_read(&sk->sk_drops);
378 __skb_queue_tail(list, skb);
379 spin_unlock_irqrestore(&list->lock, flags);
381 if (!sock_flag(sk, SOCK_DEAD))
382 sk->sk_data_ready(sk, skb_len);
383 return 0;
385 EXPORT_SYMBOL(sock_queue_rcv_skb);
387 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
389 int rc = NET_RX_SUCCESS;
391 if (sk_filter(sk, skb))
392 goto discard_and_relse;
394 skb->dev = NULL;
396 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
397 atomic_inc(&sk->sk_drops);
398 goto discard_and_relse;
400 if (nested)
401 bh_lock_sock_nested(sk);
402 else
403 bh_lock_sock(sk);
404 if (!sock_owned_by_user(sk)) {
406 * trylock + unlock semantics:
408 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
410 rc = sk_backlog_rcv(sk, skb);
412 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
413 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
414 bh_unlock_sock(sk);
415 atomic_inc(&sk->sk_drops);
416 goto discard_and_relse;
419 bh_unlock_sock(sk);
420 out:
421 sock_put(sk);
422 return rc;
423 discard_and_relse:
424 kfree_skb(skb);
425 goto out;
427 EXPORT_SYMBOL(sk_receive_skb);
429 void sk_reset_txq(struct sock *sk)
431 sk_tx_queue_clear(sk);
433 EXPORT_SYMBOL(sk_reset_txq);
435 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
437 struct dst_entry *dst = __sk_dst_get(sk);
439 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
440 sk_tx_queue_clear(sk);
441 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
442 dst_release(dst);
443 return NULL;
446 return dst;
448 EXPORT_SYMBOL(__sk_dst_check);
450 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
452 struct dst_entry *dst = sk_dst_get(sk);
454 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
455 sk_dst_reset(sk);
456 dst_release(dst);
457 return NULL;
460 return dst;
462 EXPORT_SYMBOL(sk_dst_check);
464 static int sock_bindtodevice(struct sock *sk, char __user *optval, int optlen)
466 int ret = -ENOPROTOOPT;
467 #ifdef CONFIG_NETDEVICES
468 struct net *net = sock_net(sk);
469 char devname[IFNAMSIZ];
470 int index;
472 /* Sorry... */
473 ret = -EPERM;
474 if (!capable(CAP_NET_RAW))
475 goto out;
477 ret = -EINVAL;
478 if (optlen < 0)
479 goto out;
481 /* Bind this socket to a particular device like "eth0",
482 * as specified in the passed interface name. If the
483 * name is "" or the option length is zero the socket
484 * is not bound.
486 if (optlen > IFNAMSIZ - 1)
487 optlen = IFNAMSIZ - 1;
488 memset(devname, 0, sizeof(devname));
490 ret = -EFAULT;
491 if (copy_from_user(devname, optval, optlen))
492 goto out;
494 index = 0;
495 if (devname[0] != '\0') {
496 struct net_device *dev;
498 rcu_read_lock();
499 dev = dev_get_by_name_rcu(net, devname);
500 if (dev)
501 index = dev->ifindex;
502 rcu_read_unlock();
503 ret = -ENODEV;
504 if (!dev)
505 goto out;
508 lock_sock(sk);
509 sk->sk_bound_dev_if = index;
510 sk_dst_reset(sk);
511 release_sock(sk);
513 ret = 0;
515 out:
516 #endif
518 return ret;
521 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
523 if (valbool)
524 sock_set_flag(sk, bit);
525 else
526 sock_reset_flag(sk, bit);
530 * This is meant for all protocols to use and covers goings on
531 * at the socket level. Everything here is generic.
534 int sock_setsockopt(struct socket *sock, int level, int optname,
535 char __user *optval, unsigned int optlen)
537 struct sock *sk = sock->sk;
538 int val;
539 int valbool;
540 struct linger ling;
541 int ret = 0;
544 * Options without arguments
547 if (optname == SO_BINDTODEVICE)
548 return sock_bindtodevice(sk, optval, optlen);
550 if (optlen < sizeof(int))
551 return -EINVAL;
553 if (get_user(val, (int __user *)optval))
554 return -EFAULT;
556 valbool = val ? 1 : 0;
558 lock_sock(sk);
560 switch (optname) {
561 case SO_DEBUG:
562 if (val && !capable(CAP_NET_ADMIN))
563 ret = -EACCES;
564 else
565 sock_valbool_flag(sk, SOCK_DBG, valbool);
566 break;
567 case SO_REUSEADDR:
568 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
569 break;
570 case SO_TYPE:
571 case SO_PROTOCOL:
572 case SO_DOMAIN:
573 case SO_ERROR:
574 ret = -ENOPROTOOPT;
575 break;
576 case SO_DONTROUTE:
577 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
578 break;
579 case SO_BROADCAST:
580 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
581 break;
582 case SO_SNDBUF:
583 /* Don't error on this BSD doesn't and if you think
584 * about it this is right. Otherwise apps have to
585 * play 'guess the biggest size' games. RCVBUF/SNDBUF
586 * are treated in BSD as hints
588 val = min_t(u32, val, sysctl_wmem_max);
589 set_sndbuf:
590 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
591 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
592 /* Wake up sending tasks if we upped the value. */
593 sk->sk_write_space(sk);
594 break;
596 case SO_SNDBUFFORCE:
597 if (!capable(CAP_NET_ADMIN)) {
598 ret = -EPERM;
599 break;
601 goto set_sndbuf;
603 case SO_RCVBUF:
604 /* Don't error on this BSD doesn't and if you think
605 * about it this is right. Otherwise apps have to
606 * play 'guess the biggest size' games. RCVBUF/SNDBUF
607 * are treated in BSD as hints
609 val = min_t(u32, val, sysctl_rmem_max);
610 set_rcvbuf:
611 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
613 * We double it on the way in to account for
614 * "struct sk_buff" etc. overhead. Applications
615 * assume that the SO_RCVBUF setting they make will
616 * allow that much actual data to be received on that
617 * socket.
619 * Applications are unaware that "struct sk_buff" and
620 * other overheads allocate from the receive buffer
621 * during socket buffer allocation.
623 * And after considering the possible alternatives,
624 * returning the value we actually used in getsockopt
625 * is the most desirable behavior.
627 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
628 break;
630 case SO_RCVBUFFORCE:
631 if (!capable(CAP_NET_ADMIN)) {
632 ret = -EPERM;
633 break;
635 goto set_rcvbuf;
637 case SO_KEEPALIVE:
638 #ifdef CONFIG_INET
639 if (sk->sk_protocol == IPPROTO_TCP)
640 tcp_set_keepalive(sk, valbool);
641 #endif
642 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
643 break;
645 case SO_OOBINLINE:
646 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
647 break;
649 case SO_NO_CHECK:
650 sk->sk_no_check = valbool;
651 break;
653 case SO_PRIORITY:
654 if ((val >= 0 && val <= 6) || capable(CAP_NET_ADMIN))
655 sk->sk_priority = val;
656 else
657 ret = -EPERM;
658 break;
660 case SO_LINGER:
661 if (optlen < sizeof(ling)) {
662 ret = -EINVAL; /* 1003.1g */
663 break;
665 if (copy_from_user(&ling, optval, sizeof(ling))) {
666 ret = -EFAULT;
667 break;
669 if (!ling.l_onoff)
670 sock_reset_flag(sk, SOCK_LINGER);
671 else {
672 #if (BITS_PER_LONG == 32)
673 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
674 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
675 else
676 #endif
677 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
678 sock_set_flag(sk, SOCK_LINGER);
680 break;
682 case SO_BSDCOMPAT:
683 sock_warn_obsolete_bsdism("setsockopt");
684 break;
686 case SO_PASSCRED:
687 if (valbool)
688 set_bit(SOCK_PASSCRED, &sock->flags);
689 else
690 clear_bit(SOCK_PASSCRED, &sock->flags);
691 break;
693 case SO_TIMESTAMP:
694 case SO_TIMESTAMPNS:
695 if (valbool) {
696 if (optname == SO_TIMESTAMP)
697 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
698 else
699 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
700 sock_set_flag(sk, SOCK_RCVTSTAMP);
701 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
702 } else {
703 sock_reset_flag(sk, SOCK_RCVTSTAMP);
704 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
706 break;
708 case SO_TIMESTAMPING:
709 if (val & ~SOF_TIMESTAMPING_MASK) {
710 ret = -EINVAL;
711 break;
713 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
714 val & SOF_TIMESTAMPING_TX_HARDWARE);
715 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
716 val & SOF_TIMESTAMPING_TX_SOFTWARE);
717 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
718 val & SOF_TIMESTAMPING_RX_HARDWARE);
719 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
720 sock_enable_timestamp(sk,
721 SOCK_TIMESTAMPING_RX_SOFTWARE);
722 else
723 sock_disable_timestamp(sk,
724 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
725 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
726 val & SOF_TIMESTAMPING_SOFTWARE);
727 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
728 val & SOF_TIMESTAMPING_SYS_HARDWARE);
729 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
730 val & SOF_TIMESTAMPING_RAW_HARDWARE);
731 break;
733 case SO_RCVLOWAT:
734 if (val < 0)
735 val = INT_MAX;
736 sk->sk_rcvlowat = val ? : 1;
737 break;
739 case SO_RCVTIMEO:
740 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
741 break;
743 case SO_SNDTIMEO:
744 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
745 break;
747 case SO_ATTACH_FILTER:
748 ret = -EINVAL;
749 if (optlen == sizeof(struct sock_fprog)) {
750 struct sock_fprog fprog;
752 ret = -EFAULT;
753 if (copy_from_user(&fprog, optval, sizeof(fprog)))
754 break;
756 ret = sk_attach_filter(&fprog, sk);
758 break;
760 case SO_DETACH_FILTER:
761 ret = sk_detach_filter(sk);
762 break;
764 case SO_PASSSEC:
765 if (valbool)
766 set_bit(SOCK_PASSSEC, &sock->flags);
767 else
768 clear_bit(SOCK_PASSSEC, &sock->flags);
769 break;
770 case SO_MARK:
771 if (!capable(CAP_NET_ADMIN))
772 ret = -EPERM;
773 else
774 sk->sk_mark = val;
775 break;
777 /* We implement the SO_SNDLOWAT etc to
778 not be settable (1003.1g 5.3) */
779 case SO_RXQ_OVFL:
780 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
781 break;
783 case SO_WIFI_STATUS:
784 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
785 break;
787 case SO_PEEK_OFF:
788 if (sock->ops->set_peek_off)
789 sock->ops->set_peek_off(sk, val);
790 else
791 ret = -EOPNOTSUPP;
792 break;
794 case SO_NOFCS:
795 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
796 break;
798 default:
799 ret = -ENOPROTOOPT;
800 break;
802 release_sock(sk);
803 return ret;
805 EXPORT_SYMBOL(sock_setsockopt);
808 void cred_to_ucred(struct pid *pid, const struct cred *cred,
809 struct ucred *ucred)
811 ucred->pid = pid_vnr(pid);
812 ucred->uid = ucred->gid = -1;
813 if (cred) {
814 struct user_namespace *current_ns = current_user_ns();
816 ucred->uid = from_kuid(current_ns, cred->euid);
817 ucred->gid = from_kgid(current_ns, cred->egid);
820 EXPORT_SYMBOL_GPL(cred_to_ucred);
822 int sock_getsockopt(struct socket *sock, int level, int optname,
823 char __user *optval, int __user *optlen)
825 struct sock *sk = sock->sk;
827 union {
828 int val;
829 struct linger ling;
830 struct timeval tm;
831 } v;
833 int lv = sizeof(int);
834 int len;
836 if (get_user(len, optlen))
837 return -EFAULT;
838 if (len < 0)
839 return -EINVAL;
841 memset(&v, 0, sizeof(v));
843 switch (optname) {
844 case SO_DEBUG:
845 v.val = sock_flag(sk, SOCK_DBG);
846 break;
848 case SO_DONTROUTE:
849 v.val = sock_flag(sk, SOCK_LOCALROUTE);
850 break;
852 case SO_BROADCAST:
853 v.val = sock_flag(sk, SOCK_BROADCAST);
854 break;
856 case SO_SNDBUF:
857 v.val = sk->sk_sndbuf;
858 break;
860 case SO_RCVBUF:
861 v.val = sk->sk_rcvbuf;
862 break;
864 case SO_REUSEADDR:
865 v.val = sk->sk_reuse;
866 break;
868 case SO_KEEPALIVE:
869 v.val = sock_flag(sk, SOCK_KEEPOPEN);
870 break;
872 case SO_TYPE:
873 v.val = sk->sk_type;
874 break;
876 case SO_PROTOCOL:
877 v.val = sk->sk_protocol;
878 break;
880 case SO_DOMAIN:
881 v.val = sk->sk_family;
882 break;
884 case SO_ERROR:
885 v.val = -sock_error(sk);
886 if (v.val == 0)
887 v.val = xchg(&sk->sk_err_soft, 0);
888 break;
890 case SO_OOBINLINE:
891 v.val = sock_flag(sk, SOCK_URGINLINE);
892 break;
894 case SO_NO_CHECK:
895 v.val = sk->sk_no_check;
896 break;
898 case SO_PRIORITY:
899 v.val = sk->sk_priority;
900 break;
902 case SO_LINGER:
903 lv = sizeof(v.ling);
904 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
905 v.ling.l_linger = sk->sk_lingertime / HZ;
906 break;
908 case SO_BSDCOMPAT:
909 sock_warn_obsolete_bsdism("getsockopt");
910 break;
912 case SO_TIMESTAMP:
913 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
914 !sock_flag(sk, SOCK_RCVTSTAMPNS);
915 break;
917 case SO_TIMESTAMPNS:
918 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
919 break;
921 case SO_TIMESTAMPING:
922 v.val = 0;
923 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
924 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
925 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
926 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
927 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
928 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
929 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
930 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
931 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
932 v.val |= SOF_TIMESTAMPING_SOFTWARE;
933 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
934 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
935 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
936 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
937 break;
939 case SO_RCVTIMEO:
940 lv = sizeof(struct timeval);
941 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
942 v.tm.tv_sec = 0;
943 v.tm.tv_usec = 0;
944 } else {
945 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
946 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
948 break;
950 case SO_SNDTIMEO:
951 lv = sizeof(struct timeval);
952 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
953 v.tm.tv_sec = 0;
954 v.tm.tv_usec = 0;
955 } else {
956 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
957 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
959 break;
961 case SO_RCVLOWAT:
962 v.val = sk->sk_rcvlowat;
963 break;
965 case SO_SNDLOWAT:
966 v.val = 1;
967 break;
969 case SO_PASSCRED:
970 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
971 break;
973 case SO_PEERCRED:
975 struct ucred peercred;
976 if (len > sizeof(peercred))
977 len = sizeof(peercred);
978 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
979 if (copy_to_user(optval, &peercred, len))
980 return -EFAULT;
981 goto lenout;
984 case SO_PEERNAME:
986 char address[128];
988 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
989 return -ENOTCONN;
990 if (lv < len)
991 return -EINVAL;
992 if (copy_to_user(optval, address, len))
993 return -EFAULT;
994 goto lenout;
997 /* Dubious BSD thing... Probably nobody even uses it, but
998 * the UNIX standard wants it for whatever reason... -DaveM
1000 case SO_ACCEPTCONN:
1001 v.val = sk->sk_state == TCP_LISTEN;
1002 break;
1004 case SO_PASSSEC:
1005 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1006 break;
1008 case SO_PEERSEC:
1009 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1011 case SO_MARK:
1012 v.val = sk->sk_mark;
1013 break;
1015 case SO_RXQ_OVFL:
1016 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1017 break;
1019 case SO_WIFI_STATUS:
1020 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1021 break;
1023 case SO_PEEK_OFF:
1024 if (!sock->ops->set_peek_off)
1025 return -EOPNOTSUPP;
1027 v.val = sk->sk_peek_off;
1028 break;
1029 case SO_NOFCS:
1030 v.val = sock_flag(sk, SOCK_NOFCS);
1031 break;
1032 default:
1033 return -ENOPROTOOPT;
1036 if (len > lv)
1037 len = lv;
1038 if (copy_to_user(optval, &v, len))
1039 return -EFAULT;
1040 lenout:
1041 if (put_user(len, optlen))
1042 return -EFAULT;
1043 return 0;
1047 * Initialize an sk_lock.
1049 * (We also register the sk_lock with the lock validator.)
1051 static inline void sock_lock_init(struct sock *sk)
1053 sock_lock_init_class_and_name(sk,
1054 af_family_slock_key_strings[sk->sk_family],
1055 af_family_slock_keys + sk->sk_family,
1056 af_family_key_strings[sk->sk_family],
1057 af_family_keys + sk->sk_family);
1061 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1062 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1063 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1065 static void sock_copy(struct sock *nsk, const struct sock *osk)
1067 #ifdef CONFIG_SECURITY_NETWORK
1068 void *sptr = nsk->sk_security;
1069 #endif
1070 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1072 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1073 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1075 #ifdef CONFIG_SECURITY_NETWORK
1076 nsk->sk_security = sptr;
1077 security_sk_clone(osk, nsk);
1078 #endif
1082 * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes
1083 * un-modified. Special care is taken when initializing object to zero.
1085 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1087 if (offsetof(struct sock, sk_node.next) != 0)
1088 memset(sk, 0, offsetof(struct sock, sk_node.next));
1089 memset(&sk->sk_node.pprev, 0,
1090 size - offsetof(struct sock, sk_node.pprev));
1093 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1095 unsigned long nulls1, nulls2;
1097 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1098 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1099 if (nulls1 > nulls2)
1100 swap(nulls1, nulls2);
1102 if (nulls1 != 0)
1103 memset((char *)sk, 0, nulls1);
1104 memset((char *)sk + nulls1 + sizeof(void *), 0,
1105 nulls2 - nulls1 - sizeof(void *));
1106 memset((char *)sk + nulls2 + sizeof(void *), 0,
1107 size - nulls2 - sizeof(void *));
1109 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1111 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1112 int family)
1114 struct sock *sk;
1115 struct kmem_cache *slab;
1117 slab = prot->slab;
1118 if (slab != NULL) {
1119 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1120 if (!sk)
1121 return sk;
1122 if (priority & __GFP_ZERO) {
1123 if (prot->clear_sk)
1124 prot->clear_sk(sk, prot->obj_size);
1125 else
1126 sk_prot_clear_nulls(sk, prot->obj_size);
1128 } else
1129 sk = kmalloc(prot->obj_size, priority);
1131 if (sk != NULL) {
1132 kmemcheck_annotate_bitfield(sk, flags);
1134 if (security_sk_alloc(sk, family, priority))
1135 goto out_free;
1137 if (!try_module_get(prot->owner))
1138 goto out_free_sec;
1139 sk_tx_queue_clear(sk);
1142 return sk;
1144 out_free_sec:
1145 security_sk_free(sk);
1146 out_free:
1147 if (slab != NULL)
1148 kmem_cache_free(slab, sk);
1149 else
1150 kfree(sk);
1151 return NULL;
1154 static void sk_prot_free(struct proto *prot, struct sock *sk)
1156 struct kmem_cache *slab;
1157 struct module *owner;
1159 owner = prot->owner;
1160 slab = prot->slab;
1162 security_sk_free(sk);
1163 if (slab != NULL)
1164 kmem_cache_free(slab, sk);
1165 else
1166 kfree(sk);
1167 module_put(owner);
1170 #ifdef CONFIG_CGROUPS
1171 void sock_update_classid(struct sock *sk)
1173 u32 classid;
1175 rcu_read_lock(); /* doing current task, which cannot vanish. */
1176 classid = task_cls_classid(current);
1177 rcu_read_unlock();
1178 if (classid && classid != sk->sk_classid)
1179 sk->sk_classid = classid;
1181 EXPORT_SYMBOL(sock_update_classid);
1183 void sock_update_netprioidx(struct sock *sk)
1185 if (in_interrupt())
1186 return;
1188 sk->sk_cgrp_prioidx = task_netprioidx(current);
1190 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1191 #endif
1194 * sk_alloc - All socket objects are allocated here
1195 * @net: the applicable net namespace
1196 * @family: protocol family
1197 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1198 * @prot: struct proto associated with this new sock instance
1200 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1201 struct proto *prot)
1203 struct sock *sk;
1205 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1206 if (sk) {
1207 sk->sk_family = family;
1209 * See comment in struct sock definition to understand
1210 * why we need sk_prot_creator -acme
1212 sk->sk_prot = sk->sk_prot_creator = prot;
1213 sock_lock_init(sk);
1214 sock_net_set(sk, get_net(net));
1215 atomic_set(&sk->sk_wmem_alloc, 1);
1217 sock_update_classid(sk);
1218 sock_update_netprioidx(sk);
1221 return sk;
1223 EXPORT_SYMBOL(sk_alloc);
1225 static void __sk_free(struct sock *sk)
1227 struct sk_filter *filter;
1229 if (sk->sk_destruct)
1230 sk->sk_destruct(sk);
1232 filter = rcu_dereference_check(sk->sk_filter,
1233 atomic_read(&sk->sk_wmem_alloc) == 0);
1234 if (filter) {
1235 sk_filter_uncharge(sk, filter);
1236 RCU_INIT_POINTER(sk->sk_filter, NULL);
1239 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1241 if (atomic_read(&sk->sk_omem_alloc))
1242 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1243 __func__, atomic_read(&sk->sk_omem_alloc));
1245 if (sk->sk_peer_cred)
1246 put_cred(sk->sk_peer_cred);
1247 put_pid(sk->sk_peer_pid);
1248 put_net(sock_net(sk));
1249 sk_prot_free(sk->sk_prot_creator, sk);
1252 void sk_free(struct sock *sk)
1255 * We subtract one from sk_wmem_alloc and can know if
1256 * some packets are still in some tx queue.
1257 * If not null, sock_wfree() will call __sk_free(sk) later
1259 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1260 __sk_free(sk);
1262 EXPORT_SYMBOL(sk_free);
1265 * Last sock_put should drop reference to sk->sk_net. It has already
1266 * been dropped in sk_change_net. Taking reference to stopping namespace
1267 * is not an option.
1268 * Take reference to a socket to remove it from hash _alive_ and after that
1269 * destroy it in the context of init_net.
1271 void sk_release_kernel(struct sock *sk)
1273 if (sk == NULL || sk->sk_socket == NULL)
1274 return;
1276 sock_hold(sk);
1277 sock_release(sk->sk_socket);
1278 release_net(sock_net(sk));
1279 sock_net_set(sk, get_net(&init_net));
1280 sock_put(sk);
1282 EXPORT_SYMBOL(sk_release_kernel);
1284 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1286 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1287 sock_update_memcg(newsk);
1291 * sk_clone_lock - clone a socket, and lock its clone
1292 * @sk: the socket to clone
1293 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1295 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1297 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1299 struct sock *newsk;
1301 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1302 if (newsk != NULL) {
1303 struct sk_filter *filter;
1305 sock_copy(newsk, sk);
1307 /* SANITY */
1308 get_net(sock_net(newsk));
1309 sk_node_init(&newsk->sk_node);
1310 sock_lock_init(newsk);
1311 bh_lock_sock(newsk);
1312 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1313 newsk->sk_backlog.len = 0;
1315 atomic_set(&newsk->sk_rmem_alloc, 0);
1317 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1319 atomic_set(&newsk->sk_wmem_alloc, 1);
1320 atomic_set(&newsk->sk_omem_alloc, 0);
1321 skb_queue_head_init(&newsk->sk_receive_queue);
1322 skb_queue_head_init(&newsk->sk_write_queue);
1323 #ifdef CONFIG_NET_DMA
1324 skb_queue_head_init(&newsk->sk_async_wait_queue);
1325 #endif
1327 spin_lock_init(&newsk->sk_dst_lock);
1328 rwlock_init(&newsk->sk_callback_lock);
1329 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1330 af_callback_keys + newsk->sk_family,
1331 af_family_clock_key_strings[newsk->sk_family]);
1333 newsk->sk_dst_cache = NULL;
1334 newsk->sk_wmem_queued = 0;
1335 newsk->sk_forward_alloc = 0;
1336 newsk->sk_send_head = NULL;
1337 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1339 sock_reset_flag(newsk, SOCK_DONE);
1340 skb_queue_head_init(&newsk->sk_error_queue);
1342 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1343 if (filter != NULL)
1344 sk_filter_charge(newsk, filter);
1346 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1347 /* It is still raw copy of parent, so invalidate
1348 * destructor and make plain sk_free() */
1349 newsk->sk_destruct = NULL;
1350 bh_unlock_sock(newsk);
1351 sk_free(newsk);
1352 newsk = NULL;
1353 goto out;
1356 newsk->sk_err = 0;
1357 newsk->sk_priority = 0;
1359 * Before updating sk_refcnt, we must commit prior changes to memory
1360 * (Documentation/RCU/rculist_nulls.txt for details)
1362 smp_wmb();
1363 atomic_set(&newsk->sk_refcnt, 2);
1366 * Increment the counter in the same struct proto as the master
1367 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1368 * is the same as sk->sk_prot->socks, as this field was copied
1369 * with memcpy).
1371 * This _changes_ the previous behaviour, where
1372 * tcp_create_openreq_child always was incrementing the
1373 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1374 * to be taken into account in all callers. -acme
1376 sk_refcnt_debug_inc(newsk);
1377 sk_set_socket(newsk, NULL);
1378 newsk->sk_wq = NULL;
1380 sk_update_clone(sk, newsk);
1382 if (newsk->sk_prot->sockets_allocated)
1383 sk_sockets_allocated_inc(newsk);
1385 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1386 net_enable_timestamp();
1388 out:
1389 return newsk;
1391 EXPORT_SYMBOL_GPL(sk_clone_lock);
1393 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1395 __sk_dst_set(sk, dst);
1396 sk->sk_route_caps = dst->dev->features;
1397 if (sk->sk_route_caps & NETIF_F_GSO)
1398 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1399 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1400 if (sk_can_gso(sk)) {
1401 if (dst->header_len) {
1402 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1403 } else {
1404 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1405 sk->sk_gso_max_size = dst->dev->gso_max_size;
1409 EXPORT_SYMBOL_GPL(sk_setup_caps);
1411 void __init sk_init(void)
1413 if (totalram_pages <= 4096) {
1414 sysctl_wmem_max = 32767;
1415 sysctl_rmem_max = 32767;
1416 sysctl_wmem_default = 32767;
1417 sysctl_rmem_default = 32767;
1418 } else if (totalram_pages >= 131072) {
1419 sysctl_wmem_max = 131071;
1420 sysctl_rmem_max = 131071;
1425 * Simple resource managers for sockets.
1430 * Write buffer destructor automatically called from kfree_skb.
1432 void sock_wfree(struct sk_buff *skb)
1434 struct sock *sk = skb->sk;
1435 unsigned int len = skb->truesize;
1437 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1439 * Keep a reference on sk_wmem_alloc, this will be released
1440 * after sk_write_space() call
1442 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1443 sk->sk_write_space(sk);
1444 len = 1;
1447 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1448 * could not do because of in-flight packets
1450 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1451 __sk_free(sk);
1453 EXPORT_SYMBOL(sock_wfree);
1456 * Read buffer destructor automatically called from kfree_skb.
1458 void sock_rfree(struct sk_buff *skb)
1460 struct sock *sk = skb->sk;
1461 unsigned int len = skb->truesize;
1463 atomic_sub(len, &sk->sk_rmem_alloc);
1464 sk_mem_uncharge(sk, len);
1466 EXPORT_SYMBOL(sock_rfree);
1469 int sock_i_uid(struct sock *sk)
1471 int uid;
1473 read_lock_bh(&sk->sk_callback_lock);
1474 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : 0;
1475 read_unlock_bh(&sk->sk_callback_lock);
1476 return uid;
1478 EXPORT_SYMBOL(sock_i_uid);
1480 unsigned long sock_i_ino(struct sock *sk)
1482 unsigned long ino;
1484 read_lock_bh(&sk->sk_callback_lock);
1485 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1486 read_unlock_bh(&sk->sk_callback_lock);
1487 return ino;
1489 EXPORT_SYMBOL(sock_i_ino);
1492 * Allocate a skb from the socket's send buffer.
1494 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1495 gfp_t priority)
1497 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1498 struct sk_buff *skb = alloc_skb(size, priority);
1499 if (skb) {
1500 skb_set_owner_w(skb, sk);
1501 return skb;
1504 return NULL;
1506 EXPORT_SYMBOL(sock_wmalloc);
1509 * Allocate a skb from the socket's receive buffer.
1511 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1512 gfp_t priority)
1514 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1515 struct sk_buff *skb = alloc_skb(size, priority);
1516 if (skb) {
1517 skb_set_owner_r(skb, sk);
1518 return skb;
1521 return NULL;
1525 * Allocate a memory block from the socket's option memory buffer.
1527 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1529 if ((unsigned int)size <= sysctl_optmem_max &&
1530 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1531 void *mem;
1532 /* First do the add, to avoid the race if kmalloc
1533 * might sleep.
1535 atomic_add(size, &sk->sk_omem_alloc);
1536 mem = kmalloc(size, priority);
1537 if (mem)
1538 return mem;
1539 atomic_sub(size, &sk->sk_omem_alloc);
1541 return NULL;
1543 EXPORT_SYMBOL(sock_kmalloc);
1546 * Free an option memory block.
1548 void sock_kfree_s(struct sock *sk, void *mem, int size)
1550 kfree(mem);
1551 atomic_sub(size, &sk->sk_omem_alloc);
1553 EXPORT_SYMBOL(sock_kfree_s);
1555 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1556 I think, these locks should be removed for datagram sockets.
1558 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1560 DEFINE_WAIT(wait);
1562 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1563 for (;;) {
1564 if (!timeo)
1565 break;
1566 if (signal_pending(current))
1567 break;
1568 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1569 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1570 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1571 break;
1572 if (sk->sk_shutdown & SEND_SHUTDOWN)
1573 break;
1574 if (sk->sk_err)
1575 break;
1576 timeo = schedule_timeout(timeo);
1578 finish_wait(sk_sleep(sk), &wait);
1579 return timeo;
1584 * Generic send/receive buffer handlers
1587 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1588 unsigned long data_len, int noblock,
1589 int *errcode)
1591 struct sk_buff *skb;
1592 gfp_t gfp_mask;
1593 long timeo;
1594 int err;
1595 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1597 err = -EMSGSIZE;
1598 if (npages > MAX_SKB_FRAGS)
1599 goto failure;
1601 gfp_mask = sk->sk_allocation;
1602 if (gfp_mask & __GFP_WAIT)
1603 gfp_mask |= __GFP_REPEAT;
1605 timeo = sock_sndtimeo(sk, noblock);
1606 while (1) {
1607 err = sock_error(sk);
1608 if (err != 0)
1609 goto failure;
1611 err = -EPIPE;
1612 if (sk->sk_shutdown & SEND_SHUTDOWN)
1613 goto failure;
1615 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1616 skb = alloc_skb(header_len, gfp_mask);
1617 if (skb) {
1618 int i;
1620 /* No pages, we're done... */
1621 if (!data_len)
1622 break;
1624 skb->truesize += data_len;
1625 skb_shinfo(skb)->nr_frags = npages;
1626 for (i = 0; i < npages; i++) {
1627 struct page *page;
1629 page = alloc_pages(sk->sk_allocation, 0);
1630 if (!page) {
1631 err = -ENOBUFS;
1632 skb_shinfo(skb)->nr_frags = i;
1633 kfree_skb(skb);
1634 goto failure;
1637 __skb_fill_page_desc(skb, i,
1638 page, 0,
1639 (data_len >= PAGE_SIZE ?
1640 PAGE_SIZE :
1641 data_len));
1642 data_len -= PAGE_SIZE;
1645 /* Full success... */
1646 break;
1648 err = -ENOBUFS;
1649 goto failure;
1651 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1652 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1653 err = -EAGAIN;
1654 if (!timeo)
1655 goto failure;
1656 if (signal_pending(current))
1657 goto interrupted;
1658 timeo = sock_wait_for_wmem(sk, timeo);
1661 skb_set_owner_w(skb, sk);
1662 return skb;
1664 interrupted:
1665 err = sock_intr_errno(timeo);
1666 failure:
1667 *errcode = err;
1668 return NULL;
1670 EXPORT_SYMBOL(sock_alloc_send_pskb);
1672 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1673 int noblock, int *errcode)
1675 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1677 EXPORT_SYMBOL(sock_alloc_send_skb);
1679 static void __lock_sock(struct sock *sk)
1680 __releases(&sk->sk_lock.slock)
1681 __acquires(&sk->sk_lock.slock)
1683 DEFINE_WAIT(wait);
1685 for (;;) {
1686 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1687 TASK_UNINTERRUPTIBLE);
1688 spin_unlock_bh(&sk->sk_lock.slock);
1689 schedule();
1690 spin_lock_bh(&sk->sk_lock.slock);
1691 if (!sock_owned_by_user(sk))
1692 break;
1694 finish_wait(&sk->sk_lock.wq, &wait);
1697 static void __release_sock(struct sock *sk)
1698 __releases(&sk->sk_lock.slock)
1699 __acquires(&sk->sk_lock.slock)
1701 struct sk_buff *skb = sk->sk_backlog.head;
1703 do {
1704 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1705 bh_unlock_sock(sk);
1707 do {
1708 struct sk_buff *next = skb->next;
1710 prefetch(next);
1711 WARN_ON_ONCE(skb_dst_is_noref(skb));
1712 skb->next = NULL;
1713 sk_backlog_rcv(sk, skb);
1716 * We are in process context here with softirqs
1717 * disabled, use cond_resched_softirq() to preempt.
1718 * This is safe to do because we've taken the backlog
1719 * queue private:
1721 cond_resched_softirq();
1723 skb = next;
1724 } while (skb != NULL);
1726 bh_lock_sock(sk);
1727 } while ((skb = sk->sk_backlog.head) != NULL);
1730 * Doing the zeroing here guarantee we can not loop forever
1731 * while a wild producer attempts to flood us.
1733 sk->sk_backlog.len = 0;
1737 * sk_wait_data - wait for data to arrive at sk_receive_queue
1738 * @sk: sock to wait on
1739 * @timeo: for how long
1741 * Now socket state including sk->sk_err is changed only under lock,
1742 * hence we may omit checks after joining wait queue.
1743 * We check receive queue before schedule() only as optimization;
1744 * it is very likely that release_sock() added new data.
1746 int sk_wait_data(struct sock *sk, long *timeo)
1748 int rc;
1749 DEFINE_WAIT(wait);
1751 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1752 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1753 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1754 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1755 finish_wait(sk_sleep(sk), &wait);
1756 return rc;
1758 EXPORT_SYMBOL(sk_wait_data);
1761 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1762 * @sk: socket
1763 * @size: memory size to allocate
1764 * @kind: allocation type
1766 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1767 * rmem allocation. This function assumes that protocols which have
1768 * memory_pressure use sk_wmem_queued as write buffer accounting.
1770 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1772 struct proto *prot = sk->sk_prot;
1773 int amt = sk_mem_pages(size);
1774 long allocated;
1775 int parent_status = UNDER_LIMIT;
1777 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1779 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1781 /* Under limit. */
1782 if (parent_status == UNDER_LIMIT &&
1783 allocated <= sk_prot_mem_limits(sk, 0)) {
1784 sk_leave_memory_pressure(sk);
1785 return 1;
1788 /* Under pressure. (we or our parents) */
1789 if ((parent_status > SOFT_LIMIT) ||
1790 allocated > sk_prot_mem_limits(sk, 1))
1791 sk_enter_memory_pressure(sk);
1793 /* Over hard limit (we or our parents) */
1794 if ((parent_status == OVER_LIMIT) ||
1795 (allocated > sk_prot_mem_limits(sk, 2)))
1796 goto suppress_allocation;
1798 /* guarantee minimum buffer size under pressure */
1799 if (kind == SK_MEM_RECV) {
1800 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1801 return 1;
1803 } else { /* SK_MEM_SEND */
1804 if (sk->sk_type == SOCK_STREAM) {
1805 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1806 return 1;
1807 } else if (atomic_read(&sk->sk_wmem_alloc) <
1808 prot->sysctl_wmem[0])
1809 return 1;
1812 if (sk_has_memory_pressure(sk)) {
1813 int alloc;
1815 if (!sk_under_memory_pressure(sk))
1816 return 1;
1817 alloc = sk_sockets_allocated_read_positive(sk);
1818 if (sk_prot_mem_limits(sk, 2) > alloc *
1819 sk_mem_pages(sk->sk_wmem_queued +
1820 atomic_read(&sk->sk_rmem_alloc) +
1821 sk->sk_forward_alloc))
1822 return 1;
1825 suppress_allocation:
1827 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
1828 sk_stream_moderate_sndbuf(sk);
1830 /* Fail only if socket is _under_ its sndbuf.
1831 * In this case we cannot block, so that we have to fail.
1833 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
1834 return 1;
1837 trace_sock_exceed_buf_limit(sk, prot, allocated);
1839 /* Alas. Undo changes. */
1840 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
1842 sk_memory_allocated_sub(sk, amt);
1844 return 0;
1846 EXPORT_SYMBOL(__sk_mem_schedule);
1849 * __sk_reclaim - reclaim memory_allocated
1850 * @sk: socket
1852 void __sk_mem_reclaim(struct sock *sk)
1854 sk_memory_allocated_sub(sk,
1855 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
1856 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
1858 if (sk_under_memory_pressure(sk) &&
1859 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
1860 sk_leave_memory_pressure(sk);
1862 EXPORT_SYMBOL(__sk_mem_reclaim);
1866 * Set of default routines for initialising struct proto_ops when
1867 * the protocol does not support a particular function. In certain
1868 * cases where it makes no sense for a protocol to have a "do nothing"
1869 * function, some default processing is provided.
1872 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
1874 return -EOPNOTSUPP;
1876 EXPORT_SYMBOL(sock_no_bind);
1878 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
1879 int len, int flags)
1881 return -EOPNOTSUPP;
1883 EXPORT_SYMBOL(sock_no_connect);
1885 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
1887 return -EOPNOTSUPP;
1889 EXPORT_SYMBOL(sock_no_socketpair);
1891 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
1893 return -EOPNOTSUPP;
1895 EXPORT_SYMBOL(sock_no_accept);
1897 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
1898 int *len, int peer)
1900 return -EOPNOTSUPP;
1902 EXPORT_SYMBOL(sock_no_getname);
1904 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
1906 return 0;
1908 EXPORT_SYMBOL(sock_no_poll);
1910 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1912 return -EOPNOTSUPP;
1914 EXPORT_SYMBOL(sock_no_ioctl);
1916 int sock_no_listen(struct socket *sock, int backlog)
1918 return -EOPNOTSUPP;
1920 EXPORT_SYMBOL(sock_no_listen);
1922 int sock_no_shutdown(struct socket *sock, int how)
1924 return -EOPNOTSUPP;
1926 EXPORT_SYMBOL(sock_no_shutdown);
1928 int sock_no_setsockopt(struct socket *sock, int level, int optname,
1929 char __user *optval, unsigned int optlen)
1931 return -EOPNOTSUPP;
1933 EXPORT_SYMBOL(sock_no_setsockopt);
1935 int sock_no_getsockopt(struct socket *sock, int level, int optname,
1936 char __user *optval, int __user *optlen)
1938 return -EOPNOTSUPP;
1940 EXPORT_SYMBOL(sock_no_getsockopt);
1942 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1943 size_t len)
1945 return -EOPNOTSUPP;
1947 EXPORT_SYMBOL(sock_no_sendmsg);
1949 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
1950 size_t len, int flags)
1952 return -EOPNOTSUPP;
1954 EXPORT_SYMBOL(sock_no_recvmsg);
1956 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
1958 /* Mirror missing mmap method error code */
1959 return -ENODEV;
1961 EXPORT_SYMBOL(sock_no_mmap);
1963 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
1965 ssize_t res;
1966 struct msghdr msg = {.msg_flags = flags};
1967 struct kvec iov;
1968 char *kaddr = kmap(page);
1969 iov.iov_base = kaddr + offset;
1970 iov.iov_len = size;
1971 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
1972 kunmap(page);
1973 return res;
1975 EXPORT_SYMBOL(sock_no_sendpage);
1978 * Default Socket Callbacks
1981 static void sock_def_wakeup(struct sock *sk)
1983 struct socket_wq *wq;
1985 rcu_read_lock();
1986 wq = rcu_dereference(sk->sk_wq);
1987 if (wq_has_sleeper(wq))
1988 wake_up_interruptible_all(&wq->wait);
1989 rcu_read_unlock();
1992 static void sock_def_error_report(struct sock *sk)
1994 struct socket_wq *wq;
1996 rcu_read_lock();
1997 wq = rcu_dereference(sk->sk_wq);
1998 if (wq_has_sleeper(wq))
1999 wake_up_interruptible_poll(&wq->wait, POLLERR);
2000 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2001 rcu_read_unlock();
2004 static void sock_def_readable(struct sock *sk, int len)
2006 struct socket_wq *wq;
2008 rcu_read_lock();
2009 wq = rcu_dereference(sk->sk_wq);
2010 if (wq_has_sleeper(wq))
2011 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2012 POLLRDNORM | POLLRDBAND);
2013 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2014 rcu_read_unlock();
2017 static void sock_def_write_space(struct sock *sk)
2019 struct socket_wq *wq;
2021 rcu_read_lock();
2023 /* Do not wake up a writer until he can make "significant"
2024 * progress. --DaveM
2026 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2027 wq = rcu_dereference(sk->sk_wq);
2028 if (wq_has_sleeper(wq))
2029 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2030 POLLWRNORM | POLLWRBAND);
2032 /* Should agree with poll, otherwise some programs break */
2033 if (sock_writeable(sk))
2034 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2037 rcu_read_unlock();
2040 static void sock_def_destruct(struct sock *sk)
2042 kfree(sk->sk_protinfo);
2045 void sk_send_sigurg(struct sock *sk)
2047 if (sk->sk_socket && sk->sk_socket->file)
2048 if (send_sigurg(&sk->sk_socket->file->f_owner))
2049 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2051 EXPORT_SYMBOL(sk_send_sigurg);
2053 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2054 unsigned long expires)
2056 if (!mod_timer(timer, expires))
2057 sock_hold(sk);
2059 EXPORT_SYMBOL(sk_reset_timer);
2061 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2063 if (timer_pending(timer) && del_timer(timer))
2064 __sock_put(sk);
2066 EXPORT_SYMBOL(sk_stop_timer);
2068 void sock_init_data(struct socket *sock, struct sock *sk)
2070 skb_queue_head_init(&sk->sk_receive_queue);
2071 skb_queue_head_init(&sk->sk_write_queue);
2072 skb_queue_head_init(&sk->sk_error_queue);
2073 #ifdef CONFIG_NET_DMA
2074 skb_queue_head_init(&sk->sk_async_wait_queue);
2075 #endif
2077 sk->sk_send_head = NULL;
2079 init_timer(&sk->sk_timer);
2081 sk->sk_allocation = GFP_KERNEL;
2082 sk->sk_rcvbuf = sysctl_rmem_default;
2083 sk->sk_sndbuf = sysctl_wmem_default;
2084 sk->sk_state = TCP_CLOSE;
2085 sk_set_socket(sk, sock);
2087 sock_set_flag(sk, SOCK_ZAPPED);
2089 if (sock) {
2090 sk->sk_type = sock->type;
2091 sk->sk_wq = sock->wq;
2092 sock->sk = sk;
2093 } else
2094 sk->sk_wq = NULL;
2096 spin_lock_init(&sk->sk_dst_lock);
2097 rwlock_init(&sk->sk_callback_lock);
2098 lockdep_set_class_and_name(&sk->sk_callback_lock,
2099 af_callback_keys + sk->sk_family,
2100 af_family_clock_key_strings[sk->sk_family]);
2102 sk->sk_state_change = sock_def_wakeup;
2103 sk->sk_data_ready = sock_def_readable;
2104 sk->sk_write_space = sock_def_write_space;
2105 sk->sk_error_report = sock_def_error_report;
2106 sk->sk_destruct = sock_def_destruct;
2108 sk->sk_sndmsg_page = NULL;
2109 sk->sk_sndmsg_off = 0;
2110 sk->sk_peek_off = -1;
2112 sk->sk_peer_pid = NULL;
2113 sk->sk_peer_cred = NULL;
2114 sk->sk_write_pending = 0;
2115 sk->sk_rcvlowat = 1;
2116 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2117 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2119 sk->sk_stamp = ktime_set(-1L, 0);
2122 * Before updating sk_refcnt, we must commit prior changes to memory
2123 * (Documentation/RCU/rculist_nulls.txt for details)
2125 smp_wmb();
2126 atomic_set(&sk->sk_refcnt, 1);
2127 atomic_set(&sk->sk_drops, 0);
2129 EXPORT_SYMBOL(sock_init_data);
2131 void lock_sock_nested(struct sock *sk, int subclass)
2133 might_sleep();
2134 spin_lock_bh(&sk->sk_lock.slock);
2135 if (sk->sk_lock.owned)
2136 __lock_sock(sk);
2137 sk->sk_lock.owned = 1;
2138 spin_unlock(&sk->sk_lock.slock);
2140 * The sk_lock has mutex_lock() semantics here:
2142 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2143 local_bh_enable();
2145 EXPORT_SYMBOL(lock_sock_nested);
2147 void release_sock(struct sock *sk)
2150 * The sk_lock has mutex_unlock() semantics:
2152 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2154 spin_lock_bh(&sk->sk_lock.slock);
2155 if (sk->sk_backlog.tail)
2156 __release_sock(sk);
2157 sk->sk_lock.owned = 0;
2158 if (waitqueue_active(&sk->sk_lock.wq))
2159 wake_up(&sk->sk_lock.wq);
2160 spin_unlock_bh(&sk->sk_lock.slock);
2162 EXPORT_SYMBOL(release_sock);
2165 * lock_sock_fast - fast version of lock_sock
2166 * @sk: socket
2168 * This version should be used for very small section, where process wont block
2169 * return false if fast path is taken
2170 * sk_lock.slock locked, owned = 0, BH disabled
2171 * return true if slow path is taken
2172 * sk_lock.slock unlocked, owned = 1, BH enabled
2174 bool lock_sock_fast(struct sock *sk)
2176 might_sleep();
2177 spin_lock_bh(&sk->sk_lock.slock);
2179 if (!sk->sk_lock.owned)
2181 * Note : We must disable BH
2183 return false;
2185 __lock_sock(sk);
2186 sk->sk_lock.owned = 1;
2187 spin_unlock(&sk->sk_lock.slock);
2189 * The sk_lock has mutex_lock() semantics here:
2191 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2192 local_bh_enable();
2193 return true;
2195 EXPORT_SYMBOL(lock_sock_fast);
2197 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2199 struct timeval tv;
2200 if (!sock_flag(sk, SOCK_TIMESTAMP))
2201 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2202 tv = ktime_to_timeval(sk->sk_stamp);
2203 if (tv.tv_sec == -1)
2204 return -ENOENT;
2205 if (tv.tv_sec == 0) {
2206 sk->sk_stamp = ktime_get_real();
2207 tv = ktime_to_timeval(sk->sk_stamp);
2209 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2211 EXPORT_SYMBOL(sock_get_timestamp);
2213 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2215 struct timespec ts;
2216 if (!sock_flag(sk, SOCK_TIMESTAMP))
2217 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2218 ts = ktime_to_timespec(sk->sk_stamp);
2219 if (ts.tv_sec == -1)
2220 return -ENOENT;
2221 if (ts.tv_sec == 0) {
2222 sk->sk_stamp = ktime_get_real();
2223 ts = ktime_to_timespec(sk->sk_stamp);
2225 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2227 EXPORT_SYMBOL(sock_get_timestampns);
2229 void sock_enable_timestamp(struct sock *sk, int flag)
2231 if (!sock_flag(sk, flag)) {
2232 unsigned long previous_flags = sk->sk_flags;
2234 sock_set_flag(sk, flag);
2236 * we just set one of the two flags which require net
2237 * time stamping, but time stamping might have been on
2238 * already because of the other one
2240 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2241 net_enable_timestamp();
2246 * Get a socket option on an socket.
2248 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2249 * asynchronous errors should be reported by getsockopt. We assume
2250 * this means if you specify SO_ERROR (otherwise whats the point of it).
2252 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2253 char __user *optval, int __user *optlen)
2255 struct sock *sk = sock->sk;
2257 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2259 EXPORT_SYMBOL(sock_common_getsockopt);
2261 #ifdef CONFIG_COMPAT
2262 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2263 char __user *optval, int __user *optlen)
2265 struct sock *sk = sock->sk;
2267 if (sk->sk_prot->compat_getsockopt != NULL)
2268 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2269 optval, optlen);
2270 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2272 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2273 #endif
2275 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2276 struct msghdr *msg, size_t size, int flags)
2278 struct sock *sk = sock->sk;
2279 int addr_len = 0;
2280 int err;
2282 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2283 flags & ~MSG_DONTWAIT, &addr_len);
2284 if (err >= 0)
2285 msg->msg_namelen = addr_len;
2286 return err;
2288 EXPORT_SYMBOL(sock_common_recvmsg);
2291 * Set socket options on an inet socket.
2293 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2294 char __user *optval, unsigned int optlen)
2296 struct sock *sk = sock->sk;
2298 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2300 EXPORT_SYMBOL(sock_common_setsockopt);
2302 #ifdef CONFIG_COMPAT
2303 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2304 char __user *optval, unsigned int optlen)
2306 struct sock *sk = sock->sk;
2308 if (sk->sk_prot->compat_setsockopt != NULL)
2309 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2310 optval, optlen);
2311 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2313 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2314 #endif
2316 void sk_common_release(struct sock *sk)
2318 if (sk->sk_prot->destroy)
2319 sk->sk_prot->destroy(sk);
2322 * Observation: when sock_common_release is called, processes have
2323 * no access to socket. But net still has.
2324 * Step one, detach it from networking:
2326 * A. Remove from hash tables.
2329 sk->sk_prot->unhash(sk);
2332 * In this point socket cannot receive new packets, but it is possible
2333 * that some packets are in flight because some CPU runs receiver and
2334 * did hash table lookup before we unhashed socket. They will achieve
2335 * receive queue and will be purged by socket destructor.
2337 * Also we still have packets pending on receive queue and probably,
2338 * our own packets waiting in device queues. sock_destroy will drain
2339 * receive queue, but transmitted packets will delay socket destruction
2340 * until the last reference will be released.
2343 sock_orphan(sk);
2345 xfrm_sk_free_policy(sk);
2347 sk_refcnt_debug_release(sk);
2348 sock_put(sk);
2350 EXPORT_SYMBOL(sk_common_release);
2352 #ifdef CONFIG_PROC_FS
2353 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2354 struct prot_inuse {
2355 int val[PROTO_INUSE_NR];
2358 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2360 #ifdef CONFIG_NET_NS
2361 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2363 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2365 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2367 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2369 int cpu, idx = prot->inuse_idx;
2370 int res = 0;
2372 for_each_possible_cpu(cpu)
2373 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2375 return res >= 0 ? res : 0;
2377 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2379 static int __net_init sock_inuse_init_net(struct net *net)
2381 net->core.inuse = alloc_percpu(struct prot_inuse);
2382 return net->core.inuse ? 0 : -ENOMEM;
2385 static void __net_exit sock_inuse_exit_net(struct net *net)
2387 free_percpu(net->core.inuse);
2390 static struct pernet_operations net_inuse_ops = {
2391 .init = sock_inuse_init_net,
2392 .exit = sock_inuse_exit_net,
2395 static __init int net_inuse_init(void)
2397 if (register_pernet_subsys(&net_inuse_ops))
2398 panic("Cannot initialize net inuse counters");
2400 return 0;
2403 core_initcall(net_inuse_init);
2404 #else
2405 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2407 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2409 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2411 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2413 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2415 int cpu, idx = prot->inuse_idx;
2416 int res = 0;
2418 for_each_possible_cpu(cpu)
2419 res += per_cpu(prot_inuse, cpu).val[idx];
2421 return res >= 0 ? res : 0;
2423 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2424 #endif
2426 static void assign_proto_idx(struct proto *prot)
2428 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2430 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2431 pr_err("PROTO_INUSE_NR exhausted\n");
2432 return;
2435 set_bit(prot->inuse_idx, proto_inuse_idx);
2438 static void release_proto_idx(struct proto *prot)
2440 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2441 clear_bit(prot->inuse_idx, proto_inuse_idx);
2443 #else
2444 static inline void assign_proto_idx(struct proto *prot)
2448 static inline void release_proto_idx(struct proto *prot)
2451 #endif
2453 int proto_register(struct proto *prot, int alloc_slab)
2455 if (alloc_slab) {
2456 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2457 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2458 NULL);
2460 if (prot->slab == NULL) {
2461 pr_crit("%s: Can't create sock SLAB cache!\n",
2462 prot->name);
2463 goto out;
2466 if (prot->rsk_prot != NULL) {
2467 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2468 if (prot->rsk_prot->slab_name == NULL)
2469 goto out_free_sock_slab;
2471 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2472 prot->rsk_prot->obj_size, 0,
2473 SLAB_HWCACHE_ALIGN, NULL);
2475 if (prot->rsk_prot->slab == NULL) {
2476 pr_crit("%s: Can't create request sock SLAB cache!\n",
2477 prot->name);
2478 goto out_free_request_sock_slab_name;
2482 if (prot->twsk_prot != NULL) {
2483 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2485 if (prot->twsk_prot->twsk_slab_name == NULL)
2486 goto out_free_request_sock_slab;
2488 prot->twsk_prot->twsk_slab =
2489 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2490 prot->twsk_prot->twsk_obj_size,
2492 SLAB_HWCACHE_ALIGN |
2493 prot->slab_flags,
2494 NULL);
2495 if (prot->twsk_prot->twsk_slab == NULL)
2496 goto out_free_timewait_sock_slab_name;
2500 mutex_lock(&proto_list_mutex);
2501 list_add(&prot->node, &proto_list);
2502 assign_proto_idx(prot);
2503 mutex_unlock(&proto_list_mutex);
2504 return 0;
2506 out_free_timewait_sock_slab_name:
2507 kfree(prot->twsk_prot->twsk_slab_name);
2508 out_free_request_sock_slab:
2509 if (prot->rsk_prot && prot->rsk_prot->slab) {
2510 kmem_cache_destroy(prot->rsk_prot->slab);
2511 prot->rsk_prot->slab = NULL;
2513 out_free_request_sock_slab_name:
2514 if (prot->rsk_prot)
2515 kfree(prot->rsk_prot->slab_name);
2516 out_free_sock_slab:
2517 kmem_cache_destroy(prot->slab);
2518 prot->slab = NULL;
2519 out:
2520 return -ENOBUFS;
2522 EXPORT_SYMBOL(proto_register);
2524 void proto_unregister(struct proto *prot)
2526 mutex_lock(&proto_list_mutex);
2527 release_proto_idx(prot);
2528 list_del(&prot->node);
2529 mutex_unlock(&proto_list_mutex);
2531 if (prot->slab != NULL) {
2532 kmem_cache_destroy(prot->slab);
2533 prot->slab = NULL;
2536 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2537 kmem_cache_destroy(prot->rsk_prot->slab);
2538 kfree(prot->rsk_prot->slab_name);
2539 prot->rsk_prot->slab = NULL;
2542 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2543 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2544 kfree(prot->twsk_prot->twsk_slab_name);
2545 prot->twsk_prot->twsk_slab = NULL;
2548 EXPORT_SYMBOL(proto_unregister);
2550 #ifdef CONFIG_PROC_FS
2551 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2552 __acquires(proto_list_mutex)
2554 mutex_lock(&proto_list_mutex);
2555 return seq_list_start_head(&proto_list, *pos);
2558 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2560 return seq_list_next(v, &proto_list, pos);
2563 static void proto_seq_stop(struct seq_file *seq, void *v)
2564 __releases(proto_list_mutex)
2566 mutex_unlock(&proto_list_mutex);
2569 static char proto_method_implemented(const void *method)
2571 return method == NULL ? 'n' : 'y';
2573 static long sock_prot_memory_allocated(struct proto *proto)
2575 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2578 static char *sock_prot_memory_pressure(struct proto *proto)
2580 return proto->memory_pressure != NULL ?
2581 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2584 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2587 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2588 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2589 proto->name,
2590 proto->obj_size,
2591 sock_prot_inuse_get(seq_file_net(seq), proto),
2592 sock_prot_memory_allocated(proto),
2593 sock_prot_memory_pressure(proto),
2594 proto->max_header,
2595 proto->slab == NULL ? "no" : "yes",
2596 module_name(proto->owner),
2597 proto_method_implemented(proto->close),
2598 proto_method_implemented(proto->connect),
2599 proto_method_implemented(proto->disconnect),
2600 proto_method_implemented(proto->accept),
2601 proto_method_implemented(proto->ioctl),
2602 proto_method_implemented(proto->init),
2603 proto_method_implemented(proto->destroy),
2604 proto_method_implemented(proto->shutdown),
2605 proto_method_implemented(proto->setsockopt),
2606 proto_method_implemented(proto->getsockopt),
2607 proto_method_implemented(proto->sendmsg),
2608 proto_method_implemented(proto->recvmsg),
2609 proto_method_implemented(proto->sendpage),
2610 proto_method_implemented(proto->bind),
2611 proto_method_implemented(proto->backlog_rcv),
2612 proto_method_implemented(proto->hash),
2613 proto_method_implemented(proto->unhash),
2614 proto_method_implemented(proto->get_port),
2615 proto_method_implemented(proto->enter_memory_pressure));
2618 static int proto_seq_show(struct seq_file *seq, void *v)
2620 if (v == &proto_list)
2621 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2622 "protocol",
2623 "size",
2624 "sockets",
2625 "memory",
2626 "press",
2627 "maxhdr",
2628 "slab",
2629 "module",
2630 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2631 else
2632 proto_seq_printf(seq, list_entry(v, struct proto, node));
2633 return 0;
2636 static const struct seq_operations proto_seq_ops = {
2637 .start = proto_seq_start,
2638 .next = proto_seq_next,
2639 .stop = proto_seq_stop,
2640 .show = proto_seq_show,
2643 static int proto_seq_open(struct inode *inode, struct file *file)
2645 return seq_open_net(inode, file, &proto_seq_ops,
2646 sizeof(struct seq_net_private));
2649 static const struct file_operations proto_seq_fops = {
2650 .owner = THIS_MODULE,
2651 .open = proto_seq_open,
2652 .read = seq_read,
2653 .llseek = seq_lseek,
2654 .release = seq_release_net,
2657 static __net_init int proto_init_net(struct net *net)
2659 if (!proc_net_fops_create(net, "protocols", S_IRUGO, &proto_seq_fops))
2660 return -ENOMEM;
2662 return 0;
2665 static __net_exit void proto_exit_net(struct net *net)
2667 proc_net_remove(net, "protocols");
2671 static __net_initdata struct pernet_operations proto_net_ops = {
2672 .init = proto_init_net,
2673 .exit = proto_exit_net,
2676 static int __init proto_init(void)
2678 return register_pernet_subsys(&proto_net_ops);
2681 subsys_initcall(proto_init);
2683 #endif /* PROC_FS */