isdn: mISDN: avmfritz: constify pci_device_id.
[linux-2.6/btrfs-unstable.git] / kernel / kexec_file.c
blob766e7e4d3ad91d99a7b3cb90bc6f84511d76c72d
1 /*
2 * kexec: kexec_file_load system call
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
30 * Declare these symbols weak so that if architecture provides a purgatory,
31 * these will be overridden.
33 char __weak kexec_purgatory[0];
34 size_t __weak kexec_purgatory_size = 0;
36 static int kexec_calculate_store_digests(struct kimage *image);
38 /* Architectures can provide this probe function */
39 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
40 unsigned long buf_len)
42 return -ENOEXEC;
45 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
47 return ERR_PTR(-ENOEXEC);
50 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
52 return -EINVAL;
55 #ifdef CONFIG_KEXEC_VERIFY_SIG
56 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
57 unsigned long buf_len)
59 return -EKEYREJECTED;
61 #endif
63 /* Apply relocations of type RELA */
64 int __weak
65 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
66 unsigned int relsec)
68 pr_err("RELA relocation unsupported.\n");
69 return -ENOEXEC;
72 /* Apply relocations of type REL */
73 int __weak
74 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
75 unsigned int relsec)
77 pr_err("REL relocation unsupported.\n");
78 return -ENOEXEC;
82 * Free up memory used by kernel, initrd, and command line. This is temporary
83 * memory allocation which is not needed any more after these buffers have
84 * been loaded into separate segments and have been copied elsewhere.
86 void kimage_file_post_load_cleanup(struct kimage *image)
88 struct purgatory_info *pi = &image->purgatory_info;
90 vfree(image->kernel_buf);
91 image->kernel_buf = NULL;
93 vfree(image->initrd_buf);
94 image->initrd_buf = NULL;
96 kfree(image->cmdline_buf);
97 image->cmdline_buf = NULL;
99 vfree(pi->purgatory_buf);
100 pi->purgatory_buf = NULL;
102 vfree(pi->sechdrs);
103 pi->sechdrs = NULL;
105 /* See if architecture has anything to cleanup post load */
106 arch_kimage_file_post_load_cleanup(image);
109 * Above call should have called into bootloader to free up
110 * any data stored in kimage->image_loader_data. It should
111 * be ok now to free it up.
113 kfree(image->image_loader_data);
114 image->image_loader_data = NULL;
118 * In file mode list of segments is prepared by kernel. Copy relevant
119 * data from user space, do error checking, prepare segment list
121 static int
122 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
123 const char __user *cmdline_ptr,
124 unsigned long cmdline_len, unsigned flags)
126 int ret = 0;
127 void *ldata;
128 loff_t size;
130 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
131 &size, INT_MAX, READING_KEXEC_IMAGE);
132 if (ret)
133 return ret;
134 image->kernel_buf_len = size;
136 /* IMA needs to pass the measurement list to the next kernel. */
137 ima_add_kexec_buffer(image);
139 /* Call arch image probe handlers */
140 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
141 image->kernel_buf_len);
142 if (ret)
143 goto out;
145 #ifdef CONFIG_KEXEC_VERIFY_SIG
146 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
147 image->kernel_buf_len);
148 if (ret) {
149 pr_debug("kernel signature verification failed.\n");
150 goto out;
152 pr_debug("kernel signature verification successful.\n");
153 #endif
154 /* It is possible that there no initramfs is being loaded */
155 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
156 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
157 &size, INT_MAX,
158 READING_KEXEC_INITRAMFS);
159 if (ret)
160 goto out;
161 image->initrd_buf_len = size;
164 if (cmdline_len) {
165 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
166 if (IS_ERR(image->cmdline_buf)) {
167 ret = PTR_ERR(image->cmdline_buf);
168 image->cmdline_buf = NULL;
169 goto out;
172 image->cmdline_buf_len = cmdline_len;
174 /* command line should be a string with last byte null */
175 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
176 ret = -EINVAL;
177 goto out;
181 /* Call arch image load handlers */
182 ldata = arch_kexec_kernel_image_load(image);
184 if (IS_ERR(ldata)) {
185 ret = PTR_ERR(ldata);
186 goto out;
189 image->image_loader_data = ldata;
190 out:
191 /* In case of error, free up all allocated memory in this function */
192 if (ret)
193 kimage_file_post_load_cleanup(image);
194 return ret;
197 static int
198 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
199 int initrd_fd, const char __user *cmdline_ptr,
200 unsigned long cmdline_len, unsigned long flags)
202 int ret;
203 struct kimage *image;
204 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
206 image = do_kimage_alloc_init();
207 if (!image)
208 return -ENOMEM;
210 image->file_mode = 1;
212 if (kexec_on_panic) {
213 /* Enable special crash kernel control page alloc policy. */
214 image->control_page = crashk_res.start;
215 image->type = KEXEC_TYPE_CRASH;
218 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
219 cmdline_ptr, cmdline_len, flags);
220 if (ret)
221 goto out_free_image;
223 ret = sanity_check_segment_list(image);
224 if (ret)
225 goto out_free_post_load_bufs;
227 ret = -ENOMEM;
228 image->control_code_page = kimage_alloc_control_pages(image,
229 get_order(KEXEC_CONTROL_PAGE_SIZE));
230 if (!image->control_code_page) {
231 pr_err("Could not allocate control_code_buffer\n");
232 goto out_free_post_load_bufs;
235 if (!kexec_on_panic) {
236 image->swap_page = kimage_alloc_control_pages(image, 0);
237 if (!image->swap_page) {
238 pr_err("Could not allocate swap buffer\n");
239 goto out_free_control_pages;
243 *rimage = image;
244 return 0;
245 out_free_control_pages:
246 kimage_free_page_list(&image->control_pages);
247 out_free_post_load_bufs:
248 kimage_file_post_load_cleanup(image);
249 out_free_image:
250 kfree(image);
251 return ret;
254 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
255 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
256 unsigned long, flags)
258 int ret = 0, i;
259 struct kimage **dest_image, *image;
261 /* We only trust the superuser with rebooting the system. */
262 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
263 return -EPERM;
265 /* Make sure we have a legal set of flags */
266 if (flags != (flags & KEXEC_FILE_FLAGS))
267 return -EINVAL;
269 image = NULL;
271 if (!mutex_trylock(&kexec_mutex))
272 return -EBUSY;
274 dest_image = &kexec_image;
275 if (flags & KEXEC_FILE_ON_CRASH) {
276 dest_image = &kexec_crash_image;
277 if (kexec_crash_image)
278 arch_kexec_unprotect_crashkres();
281 if (flags & KEXEC_FILE_UNLOAD)
282 goto exchange;
285 * In case of crash, new kernel gets loaded in reserved region. It is
286 * same memory where old crash kernel might be loaded. Free any
287 * current crash dump kernel before we corrupt it.
289 if (flags & KEXEC_FILE_ON_CRASH)
290 kimage_free(xchg(&kexec_crash_image, NULL));
292 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
293 cmdline_len, flags);
294 if (ret)
295 goto out;
297 ret = machine_kexec_prepare(image);
298 if (ret)
299 goto out;
301 ret = kexec_calculate_store_digests(image);
302 if (ret)
303 goto out;
305 for (i = 0; i < image->nr_segments; i++) {
306 struct kexec_segment *ksegment;
308 ksegment = &image->segment[i];
309 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
310 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
311 ksegment->memsz);
313 ret = kimage_load_segment(image, &image->segment[i]);
314 if (ret)
315 goto out;
318 kimage_terminate(image);
321 * Free up any temporary buffers allocated which are not needed
322 * after image has been loaded
324 kimage_file_post_load_cleanup(image);
325 exchange:
326 image = xchg(dest_image, image);
327 out:
328 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
329 arch_kexec_protect_crashkres();
331 mutex_unlock(&kexec_mutex);
332 kimage_free(image);
333 return ret;
336 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
337 struct kexec_buf *kbuf)
339 struct kimage *image = kbuf->image;
340 unsigned long temp_start, temp_end;
342 temp_end = min(end, kbuf->buf_max);
343 temp_start = temp_end - kbuf->memsz;
345 do {
346 /* align down start */
347 temp_start = temp_start & (~(kbuf->buf_align - 1));
349 if (temp_start < start || temp_start < kbuf->buf_min)
350 return 0;
352 temp_end = temp_start + kbuf->memsz - 1;
355 * Make sure this does not conflict with any of existing
356 * segments
358 if (kimage_is_destination_range(image, temp_start, temp_end)) {
359 temp_start = temp_start - PAGE_SIZE;
360 continue;
363 /* We found a suitable memory range */
364 break;
365 } while (1);
367 /* If we are here, we found a suitable memory range */
368 kbuf->mem = temp_start;
370 /* Success, stop navigating through remaining System RAM ranges */
371 return 1;
374 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
375 struct kexec_buf *kbuf)
377 struct kimage *image = kbuf->image;
378 unsigned long temp_start, temp_end;
380 temp_start = max(start, kbuf->buf_min);
382 do {
383 temp_start = ALIGN(temp_start, kbuf->buf_align);
384 temp_end = temp_start + kbuf->memsz - 1;
386 if (temp_end > end || temp_end > kbuf->buf_max)
387 return 0;
389 * Make sure this does not conflict with any of existing
390 * segments
392 if (kimage_is_destination_range(image, temp_start, temp_end)) {
393 temp_start = temp_start + PAGE_SIZE;
394 continue;
397 /* We found a suitable memory range */
398 break;
399 } while (1);
401 /* If we are here, we found a suitable memory range */
402 kbuf->mem = temp_start;
404 /* Success, stop navigating through remaining System RAM ranges */
405 return 1;
408 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
410 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
411 unsigned long sz = end - start + 1;
413 /* Returning 0 will take to next memory range */
414 if (sz < kbuf->memsz)
415 return 0;
417 if (end < kbuf->buf_min || start > kbuf->buf_max)
418 return 0;
421 * Allocate memory top down with-in ram range. Otherwise bottom up
422 * allocation.
424 if (kbuf->top_down)
425 return locate_mem_hole_top_down(start, end, kbuf);
426 return locate_mem_hole_bottom_up(start, end, kbuf);
430 * arch_kexec_walk_mem - call func(data) on free memory regions
431 * @kbuf: Context info for the search. Also passed to @func.
432 * @func: Function to call for each memory region.
434 * Return: The memory walk will stop when func returns a non-zero value
435 * and that value will be returned. If all free regions are visited without
436 * func returning non-zero, then zero will be returned.
438 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
439 int (*func)(u64, u64, void *))
441 if (kbuf->image->type == KEXEC_TYPE_CRASH)
442 return walk_iomem_res_desc(crashk_res.desc,
443 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
444 crashk_res.start, crashk_res.end,
445 kbuf, func);
446 else
447 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
451 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
452 * @kbuf: Parameters for the memory search.
454 * On success, kbuf->mem will have the start address of the memory region found.
456 * Return: 0 on success, negative errno on error.
458 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
460 int ret;
462 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
464 return ret == 1 ? 0 : -EADDRNOTAVAIL;
468 * kexec_add_buffer - place a buffer in a kexec segment
469 * @kbuf: Buffer contents and memory parameters.
471 * This function assumes that kexec_mutex is held.
472 * On successful return, @kbuf->mem will have the physical address of
473 * the buffer in memory.
475 * Return: 0 on success, negative errno on error.
477 int kexec_add_buffer(struct kexec_buf *kbuf)
480 struct kexec_segment *ksegment;
481 int ret;
483 /* Currently adding segment this way is allowed only in file mode */
484 if (!kbuf->image->file_mode)
485 return -EINVAL;
487 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
488 return -EINVAL;
491 * Make sure we are not trying to add buffer after allocating
492 * control pages. All segments need to be placed first before
493 * any control pages are allocated. As control page allocation
494 * logic goes through list of segments to make sure there are
495 * no destination overlaps.
497 if (!list_empty(&kbuf->image->control_pages)) {
498 WARN_ON(1);
499 return -EINVAL;
502 /* Ensure minimum alignment needed for segments. */
503 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
504 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
506 /* Walk the RAM ranges and allocate a suitable range for the buffer */
507 ret = kexec_locate_mem_hole(kbuf);
508 if (ret)
509 return ret;
511 /* Found a suitable memory range */
512 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
513 ksegment->kbuf = kbuf->buffer;
514 ksegment->bufsz = kbuf->bufsz;
515 ksegment->mem = kbuf->mem;
516 ksegment->memsz = kbuf->memsz;
517 kbuf->image->nr_segments++;
518 return 0;
521 /* Calculate and store the digest of segments */
522 static int kexec_calculate_store_digests(struct kimage *image)
524 struct crypto_shash *tfm;
525 struct shash_desc *desc;
526 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
527 size_t desc_size, nullsz;
528 char *digest;
529 void *zero_buf;
530 struct kexec_sha_region *sha_regions;
531 struct purgatory_info *pi = &image->purgatory_info;
533 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
534 zero_buf_sz = PAGE_SIZE;
536 tfm = crypto_alloc_shash("sha256", 0, 0);
537 if (IS_ERR(tfm)) {
538 ret = PTR_ERR(tfm);
539 goto out;
542 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
543 desc = kzalloc(desc_size, GFP_KERNEL);
544 if (!desc) {
545 ret = -ENOMEM;
546 goto out_free_tfm;
549 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
550 sha_regions = vzalloc(sha_region_sz);
551 if (!sha_regions)
552 goto out_free_desc;
554 desc->tfm = tfm;
555 desc->flags = 0;
557 ret = crypto_shash_init(desc);
558 if (ret < 0)
559 goto out_free_sha_regions;
561 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
562 if (!digest) {
563 ret = -ENOMEM;
564 goto out_free_sha_regions;
567 for (j = i = 0; i < image->nr_segments; i++) {
568 struct kexec_segment *ksegment;
570 ksegment = &image->segment[i];
572 * Skip purgatory as it will be modified once we put digest
573 * info in purgatory.
575 if (ksegment->kbuf == pi->purgatory_buf)
576 continue;
578 ret = crypto_shash_update(desc, ksegment->kbuf,
579 ksegment->bufsz);
580 if (ret)
581 break;
584 * Assume rest of the buffer is filled with zero and
585 * update digest accordingly.
587 nullsz = ksegment->memsz - ksegment->bufsz;
588 while (nullsz) {
589 unsigned long bytes = nullsz;
591 if (bytes > zero_buf_sz)
592 bytes = zero_buf_sz;
593 ret = crypto_shash_update(desc, zero_buf, bytes);
594 if (ret)
595 break;
596 nullsz -= bytes;
599 if (ret)
600 break;
602 sha_regions[j].start = ksegment->mem;
603 sha_regions[j].len = ksegment->memsz;
604 j++;
607 if (!ret) {
608 ret = crypto_shash_final(desc, digest);
609 if (ret)
610 goto out_free_digest;
611 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
612 sha_regions, sha_region_sz, 0);
613 if (ret)
614 goto out_free_digest;
616 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
617 digest, SHA256_DIGEST_SIZE, 0);
618 if (ret)
619 goto out_free_digest;
622 out_free_digest:
623 kfree(digest);
624 out_free_sha_regions:
625 vfree(sha_regions);
626 out_free_desc:
627 kfree(desc);
628 out_free_tfm:
629 kfree(tfm);
630 out:
631 return ret;
634 /* Actually load purgatory. Lot of code taken from kexec-tools */
635 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
636 unsigned long max, int top_down)
638 struct purgatory_info *pi = &image->purgatory_info;
639 unsigned long align, bss_align, bss_sz, bss_pad;
640 unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
641 unsigned char *buf_addr, *src;
642 int i, ret = 0, entry_sidx = -1;
643 const Elf_Shdr *sechdrs_c;
644 Elf_Shdr *sechdrs = NULL;
645 struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
646 .buf_min = min, .buf_max = max,
647 .top_down = top_down };
650 * sechdrs_c points to section headers in purgatory and are read
651 * only. No modifications allowed.
653 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
656 * We can not modify sechdrs_c[] and its fields. It is read only.
657 * Copy it over to a local copy where one can store some temporary
658 * data and free it at the end. We need to modify ->sh_addr and
659 * ->sh_offset fields to keep track of permanent and temporary
660 * locations of sections.
662 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
663 if (!sechdrs)
664 return -ENOMEM;
666 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
669 * We seem to have multiple copies of sections. First copy is which
670 * is embedded in kernel in read only section. Some of these sections
671 * will be copied to a temporary buffer and relocated. And these
672 * sections will finally be copied to their final destination at
673 * segment load time.
675 * Use ->sh_offset to reflect section address in memory. It will
676 * point to original read only copy if section is not allocatable.
677 * Otherwise it will point to temporary copy which will be relocated.
679 * Use ->sh_addr to contain final address of the section where it
680 * will go during execution time.
682 for (i = 0; i < pi->ehdr->e_shnum; i++) {
683 if (sechdrs[i].sh_type == SHT_NOBITS)
684 continue;
686 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
687 sechdrs[i].sh_offset;
691 * Identify entry point section and make entry relative to section
692 * start.
694 entry = pi->ehdr->e_entry;
695 for (i = 0; i < pi->ehdr->e_shnum; i++) {
696 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
697 continue;
699 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
700 continue;
702 /* Make entry section relative */
703 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
704 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
705 pi->ehdr->e_entry)) {
706 entry_sidx = i;
707 entry -= sechdrs[i].sh_addr;
708 break;
712 /* Determine how much memory is needed to load relocatable object. */
713 bss_align = 1;
714 bss_sz = 0;
716 for (i = 0; i < pi->ehdr->e_shnum; i++) {
717 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
718 continue;
720 align = sechdrs[i].sh_addralign;
721 if (sechdrs[i].sh_type != SHT_NOBITS) {
722 if (kbuf.buf_align < align)
723 kbuf.buf_align = align;
724 kbuf.bufsz = ALIGN(kbuf.bufsz, align);
725 kbuf.bufsz += sechdrs[i].sh_size;
726 } else {
727 /* bss section */
728 if (bss_align < align)
729 bss_align = align;
730 bss_sz = ALIGN(bss_sz, align);
731 bss_sz += sechdrs[i].sh_size;
735 /* Determine the bss padding required to align bss properly */
736 bss_pad = 0;
737 if (kbuf.bufsz & (bss_align - 1))
738 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
740 kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
742 /* Allocate buffer for purgatory */
743 kbuf.buffer = vzalloc(kbuf.bufsz);
744 if (!kbuf.buffer) {
745 ret = -ENOMEM;
746 goto out;
749 if (kbuf.buf_align < bss_align)
750 kbuf.buf_align = bss_align;
752 /* Add buffer to segment list */
753 ret = kexec_add_buffer(&kbuf);
754 if (ret)
755 goto out;
756 pi->purgatory_load_addr = kbuf.mem;
758 /* Load SHF_ALLOC sections */
759 buf_addr = kbuf.buffer;
760 load_addr = curr_load_addr = pi->purgatory_load_addr;
761 bss_addr = load_addr + kbuf.bufsz + bss_pad;
763 for (i = 0; i < pi->ehdr->e_shnum; i++) {
764 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
765 continue;
767 align = sechdrs[i].sh_addralign;
768 if (sechdrs[i].sh_type != SHT_NOBITS) {
769 curr_load_addr = ALIGN(curr_load_addr, align);
770 offset = curr_load_addr - load_addr;
771 /* We already modifed ->sh_offset to keep src addr */
772 src = (char *) sechdrs[i].sh_offset;
773 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
775 /* Store load address and source address of section */
776 sechdrs[i].sh_addr = curr_load_addr;
779 * This section got copied to temporary buffer. Update
780 * ->sh_offset accordingly.
782 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
784 /* Advance to the next address */
785 curr_load_addr += sechdrs[i].sh_size;
786 } else {
787 bss_addr = ALIGN(bss_addr, align);
788 sechdrs[i].sh_addr = bss_addr;
789 bss_addr += sechdrs[i].sh_size;
793 /* Update entry point based on load address of text section */
794 if (entry_sidx >= 0)
795 entry += sechdrs[entry_sidx].sh_addr;
797 /* Make kernel jump to purgatory after shutdown */
798 image->start = entry;
800 /* Used later to get/set symbol values */
801 pi->sechdrs = sechdrs;
804 * Used later to identify which section is purgatory and skip it
805 * from checksumming.
807 pi->purgatory_buf = kbuf.buffer;
808 return ret;
809 out:
810 vfree(sechdrs);
811 vfree(kbuf.buffer);
812 return ret;
815 static int kexec_apply_relocations(struct kimage *image)
817 int i, ret;
818 struct purgatory_info *pi = &image->purgatory_info;
819 Elf_Shdr *sechdrs = pi->sechdrs;
821 /* Apply relocations */
822 for (i = 0; i < pi->ehdr->e_shnum; i++) {
823 Elf_Shdr *section, *symtab;
825 if (sechdrs[i].sh_type != SHT_RELA &&
826 sechdrs[i].sh_type != SHT_REL)
827 continue;
830 * For section of type SHT_RELA/SHT_REL,
831 * ->sh_link contains section header index of associated
832 * symbol table. And ->sh_info contains section header
833 * index of section to which relocations apply.
835 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
836 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
837 return -ENOEXEC;
839 section = &sechdrs[sechdrs[i].sh_info];
840 symtab = &sechdrs[sechdrs[i].sh_link];
842 if (!(section->sh_flags & SHF_ALLOC))
843 continue;
846 * symtab->sh_link contain section header index of associated
847 * string table.
849 if (symtab->sh_link >= pi->ehdr->e_shnum)
850 /* Invalid section number? */
851 continue;
854 * Respective architecture needs to provide support for applying
855 * relocations of type SHT_RELA/SHT_REL.
857 if (sechdrs[i].sh_type == SHT_RELA)
858 ret = arch_kexec_apply_relocations_add(pi->ehdr,
859 sechdrs, i);
860 else if (sechdrs[i].sh_type == SHT_REL)
861 ret = arch_kexec_apply_relocations(pi->ehdr,
862 sechdrs, i);
863 if (ret)
864 return ret;
867 return 0;
870 /* Load relocatable purgatory object and relocate it appropriately */
871 int kexec_load_purgatory(struct kimage *image, unsigned long min,
872 unsigned long max, int top_down,
873 unsigned long *load_addr)
875 struct purgatory_info *pi = &image->purgatory_info;
876 int ret;
878 if (kexec_purgatory_size <= 0)
879 return -EINVAL;
881 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
882 return -ENOEXEC;
884 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
886 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
887 || pi->ehdr->e_type != ET_REL
888 || !elf_check_arch(pi->ehdr)
889 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
890 return -ENOEXEC;
892 if (pi->ehdr->e_shoff >= kexec_purgatory_size
893 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
894 kexec_purgatory_size - pi->ehdr->e_shoff))
895 return -ENOEXEC;
897 ret = __kexec_load_purgatory(image, min, max, top_down);
898 if (ret)
899 return ret;
901 ret = kexec_apply_relocations(image);
902 if (ret)
903 goto out;
905 *load_addr = pi->purgatory_load_addr;
906 return 0;
907 out:
908 vfree(pi->sechdrs);
909 pi->sechdrs = NULL;
911 vfree(pi->purgatory_buf);
912 pi->purgatory_buf = NULL;
913 return ret;
916 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
917 const char *name)
919 Elf_Sym *syms;
920 Elf_Shdr *sechdrs;
921 Elf_Ehdr *ehdr;
922 int i, k;
923 const char *strtab;
925 if (!pi->sechdrs || !pi->ehdr)
926 return NULL;
928 sechdrs = pi->sechdrs;
929 ehdr = pi->ehdr;
931 for (i = 0; i < ehdr->e_shnum; i++) {
932 if (sechdrs[i].sh_type != SHT_SYMTAB)
933 continue;
935 if (sechdrs[i].sh_link >= ehdr->e_shnum)
936 /* Invalid strtab section number */
937 continue;
938 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
939 syms = (Elf_Sym *)sechdrs[i].sh_offset;
941 /* Go through symbols for a match */
942 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
943 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
944 continue;
946 if (strcmp(strtab + syms[k].st_name, name) != 0)
947 continue;
949 if (syms[k].st_shndx == SHN_UNDEF ||
950 syms[k].st_shndx >= ehdr->e_shnum) {
951 pr_debug("Symbol: %s has bad section index %d.\n",
952 name, syms[k].st_shndx);
953 return NULL;
956 /* Found the symbol we are looking for */
957 return &syms[k];
961 return NULL;
964 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
966 struct purgatory_info *pi = &image->purgatory_info;
967 Elf_Sym *sym;
968 Elf_Shdr *sechdr;
970 sym = kexec_purgatory_find_symbol(pi, name);
971 if (!sym)
972 return ERR_PTR(-EINVAL);
974 sechdr = &pi->sechdrs[sym->st_shndx];
977 * Returns the address where symbol will finally be loaded after
978 * kexec_load_segment()
980 return (void *)(sechdr->sh_addr + sym->st_value);
984 * Get or set value of a symbol. If "get_value" is true, symbol value is
985 * returned in buf otherwise symbol value is set based on value in buf.
987 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
988 void *buf, unsigned int size, bool get_value)
990 Elf_Sym *sym;
991 Elf_Shdr *sechdrs;
992 struct purgatory_info *pi = &image->purgatory_info;
993 char *sym_buf;
995 sym = kexec_purgatory_find_symbol(pi, name);
996 if (!sym)
997 return -EINVAL;
999 if (sym->st_size != size) {
1000 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1001 name, (unsigned long)sym->st_size, size);
1002 return -EINVAL;
1005 sechdrs = pi->sechdrs;
1007 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1008 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1009 get_value ? "get" : "set");
1010 return -EINVAL;
1013 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1014 sym->st_value;
1016 if (get_value)
1017 memcpy((void *)buf, sym_buf, size);
1018 else
1019 memcpy((void *)sym_buf, buf, size);
1021 return 0;