1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
25 #include <asm/pgtable.h>
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
31 static const struct address_space_operations swap_aops
= {
32 .writepage
= swap_writepage
,
33 .set_page_dirty
= swap_set_page_dirty
,
34 #ifdef CONFIG_MIGRATION
35 .migratepage
= migrate_page
,
39 struct address_space
*swapper_spaces
[MAX_SWAPFILES
] __read_mostly
;
40 static unsigned int nr_swapper_spaces
[MAX_SWAPFILES
] __read_mostly
;
41 static bool enable_vma_readahead __read_mostly
= true;
43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52 #define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 #define INC_CACHE_INFO(x) do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr) do { swap_cache_info.x += (nr); } while (0)
65 unsigned long add_total
;
66 unsigned long del_total
;
67 unsigned long find_success
;
68 unsigned long find_total
;
71 unsigned long total_swapcache_pages(void)
73 unsigned int i
, j
, nr
;
74 unsigned long ret
= 0;
75 struct address_space
*spaces
;
78 for (i
= 0; i
< MAX_SWAPFILES
; i
++) {
80 * The corresponding entries in nr_swapper_spaces and
81 * swapper_spaces will be reused only after at least
82 * one grace period. So it is impossible for them
83 * belongs to different usage.
85 nr
= nr_swapper_spaces
[i
];
86 spaces
= rcu_dereference(swapper_spaces
[i
]);
89 for (j
= 0; j
< nr
; j
++)
90 ret
+= spaces
[j
].nrpages
;
96 static atomic_t swapin_readahead_hits
= ATOMIC_INIT(4);
98 void show_swap_cache_info(void)
100 printk("%lu pages in swap cache\n", total_swapcache_pages());
101 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102 swap_cache_info
.add_total
, swap_cache_info
.del_total
,
103 swap_cache_info
.find_success
, swap_cache_info
.find_total
);
104 printk("Free swap = %ldkB\n",
105 get_nr_swap_pages() << (PAGE_SHIFT
- 10));
106 printk("Total swap = %lukB\n", total_swap_pages
<< (PAGE_SHIFT
- 10));
110 * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111 * but sets SwapCache flag and private instead of mapping and index.
113 int __add_to_swap_cache(struct page
*page
, swp_entry_t entry
)
115 int error
, i
, nr
= hpage_nr_pages(page
);
116 struct address_space
*address_space
;
117 pgoff_t idx
= swp_offset(entry
);
119 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
120 VM_BUG_ON_PAGE(PageSwapCache(page
), page
);
121 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
123 page_ref_add(page
, nr
);
124 SetPageSwapCache(page
);
126 address_space
= swap_address_space(entry
);
127 xa_lock_irq(&address_space
->i_pages
);
128 for (i
= 0; i
< nr
; i
++) {
129 set_page_private(page
+ i
, entry
.val
+ i
);
130 error
= radix_tree_insert(&address_space
->i_pages
,
135 if (likely(!error
)) {
136 address_space
->nrpages
+= nr
;
137 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
138 ADD_CACHE_INFO(add_total
, nr
);
141 * Only the context which have set SWAP_HAS_CACHE flag
142 * would call add_to_swap_cache().
143 * So add_to_swap_cache() doesn't returns -EEXIST.
145 VM_BUG_ON(error
== -EEXIST
);
146 set_page_private(page
+ i
, 0UL);
148 radix_tree_delete(&address_space
->i_pages
, idx
+ i
);
149 set_page_private(page
+ i
, 0UL);
151 ClearPageSwapCache(page
);
152 page_ref_sub(page
, nr
);
154 xa_unlock_irq(&address_space
->i_pages
);
160 int add_to_swap_cache(struct page
*page
, swp_entry_t entry
, gfp_t gfp_mask
)
164 error
= radix_tree_maybe_preload_order(gfp_mask
, compound_order(page
));
166 error
= __add_to_swap_cache(page
, entry
);
167 radix_tree_preload_end();
173 * This must be called only on pages that have
174 * been verified to be in the swap cache.
176 void __delete_from_swap_cache(struct page
*page
)
178 struct address_space
*address_space
;
179 int i
, nr
= hpage_nr_pages(page
);
183 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
184 VM_BUG_ON_PAGE(!PageSwapCache(page
), page
);
185 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
187 entry
.val
= page_private(page
);
188 address_space
= swap_address_space(entry
);
189 idx
= swp_offset(entry
);
190 for (i
= 0; i
< nr
; i
++) {
191 radix_tree_delete(&address_space
->i_pages
, idx
+ i
);
192 set_page_private(page
+ i
, 0);
194 ClearPageSwapCache(page
);
195 address_space
->nrpages
-= nr
;
196 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, -nr
);
197 ADD_CACHE_INFO(del_total
, nr
);
201 * add_to_swap - allocate swap space for a page
202 * @page: page we want to move to swap
204 * Allocate swap space for the page and add the page to the
205 * swap cache. Caller needs to hold the page lock.
207 int add_to_swap(struct page
*page
)
212 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
213 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
215 entry
= get_swap_page(page
);
220 * Radix-tree node allocations from PF_MEMALLOC contexts could
221 * completely exhaust the page allocator. __GFP_NOMEMALLOC
222 * stops emergency reserves from being allocated.
224 * TODO: this could cause a theoretical memory reclaim
225 * deadlock in the swap out path.
228 * Add it to the swap cache.
230 err
= add_to_swap_cache(page
, entry
,
231 __GFP_HIGH
|__GFP_NOMEMALLOC
|__GFP_NOWARN
);
232 /* -ENOMEM radix-tree allocation failure */
235 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
236 * clear SWAP_HAS_CACHE flag.
240 * Normally the page will be dirtied in unmap because its pte should be
241 * dirty. A special case is MADV_FREE page. The page'e pte could have
242 * dirty bit cleared but the page's SwapBacked bit is still set because
243 * clearing the dirty bit and SwapBacked bit has no lock protected. For
244 * such page, unmap will not set dirty bit for it, so page reclaim will
245 * not write the page out. This can cause data corruption when the page
246 * is swap in later. Always setting the dirty bit for the page solves
249 set_page_dirty(page
);
254 put_swap_page(page
, entry
);
259 * This must be called only on pages that have
260 * been verified to be in the swap cache and locked.
261 * It will never put the page into the free list,
262 * the caller has a reference on the page.
264 void delete_from_swap_cache(struct page
*page
)
267 struct address_space
*address_space
;
269 entry
.val
= page_private(page
);
271 address_space
= swap_address_space(entry
);
272 xa_lock_irq(&address_space
->i_pages
);
273 __delete_from_swap_cache(page
);
274 xa_unlock_irq(&address_space
->i_pages
);
276 put_swap_page(page
, entry
);
277 page_ref_sub(page
, hpage_nr_pages(page
));
281 * If we are the only user, then try to free up the swap cache.
283 * Its ok to check for PageSwapCache without the page lock
284 * here because we are going to recheck again inside
285 * try_to_free_swap() _with_ the lock.
288 static inline void free_swap_cache(struct page
*page
)
290 if (PageSwapCache(page
) && !page_mapped(page
) && trylock_page(page
)) {
291 try_to_free_swap(page
);
297 * Perform a free_page(), also freeing any swap cache associated with
298 * this page if it is the last user of the page.
300 void free_page_and_swap_cache(struct page
*page
)
302 free_swap_cache(page
);
303 if (!is_huge_zero_page(page
))
308 * Passed an array of pages, drop them all from swapcache and then release
309 * them. They are removed from the LRU and freed if this is their last use.
311 void free_pages_and_swap_cache(struct page
**pages
, int nr
)
313 struct page
**pagep
= pages
;
317 for (i
= 0; i
< nr
; i
++)
318 free_swap_cache(pagep
[i
]);
319 release_pages(pagep
, nr
);
322 static inline bool swap_use_vma_readahead(void)
324 return READ_ONCE(enable_vma_readahead
) && !atomic_read(&nr_rotate_swap
);
328 * Lookup a swap entry in the swap cache. A found page will be returned
329 * unlocked and with its refcount incremented - we rely on the kernel
330 * lock getting page table operations atomic even if we drop the page
331 * lock before returning.
333 struct page
*lookup_swap_cache(swp_entry_t entry
, struct vm_area_struct
*vma
,
338 page
= find_get_page(swap_address_space(entry
), swp_offset(entry
));
340 INC_CACHE_INFO(find_total
);
342 bool vma_ra
= swap_use_vma_readahead();
345 INC_CACHE_INFO(find_success
);
347 * At the moment, we don't support PG_readahead for anon THP
348 * so let's bail out rather than confusing the readahead stat.
350 if (unlikely(PageTransCompound(page
)))
353 readahead
= TestClearPageReadahead(page
);
355 unsigned long ra_val
;
358 ra_val
= GET_SWAP_RA_VAL(vma
);
359 win
= SWAP_RA_WIN(ra_val
);
360 hits
= SWAP_RA_HITS(ra_val
);
362 hits
= min_t(int, hits
+ 1, SWAP_RA_HITS_MAX
);
363 atomic_long_set(&vma
->swap_readahead_info
,
364 SWAP_RA_VAL(addr
, win
, hits
));
368 count_vm_event(SWAP_RA_HIT
);
370 atomic_inc(&swapin_readahead_hits
);
377 struct page
*__read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
378 struct vm_area_struct
*vma
, unsigned long addr
,
379 bool *new_page_allocated
)
381 struct page
*found_page
, *new_page
= NULL
;
382 struct address_space
*swapper_space
= swap_address_space(entry
);
384 *new_page_allocated
= false;
388 * First check the swap cache. Since this is normally
389 * called after lookup_swap_cache() failed, re-calling
390 * that would confuse statistics.
392 found_page
= find_get_page(swapper_space
, swp_offset(entry
));
397 * Just skip read ahead for unused swap slot.
398 * During swap_off when swap_slot_cache is disabled,
399 * we have to handle the race between putting
400 * swap entry in swap cache and marking swap slot
401 * as SWAP_HAS_CACHE. That's done in later part of code or
402 * else swap_off will be aborted if we return NULL.
404 if (!__swp_swapcount(entry
) && swap_slot_cache_enabled
)
408 * Get a new page to read into from swap.
411 new_page
= alloc_page_vma(gfp_mask
, vma
, addr
);
413 break; /* Out of memory */
417 * call radix_tree_preload() while we can wait.
419 err
= radix_tree_maybe_preload(gfp_mask
& GFP_KERNEL
);
424 * Swap entry may have been freed since our caller observed it.
426 err
= swapcache_prepare(entry
);
427 if (err
== -EEXIST
) {
428 radix_tree_preload_end();
430 * We might race against get_swap_page() and stumble
431 * across a SWAP_HAS_CACHE swap_map entry whose page
432 * has not been brought into the swapcache yet.
437 if (err
) { /* swp entry is obsolete ? */
438 radix_tree_preload_end();
442 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
443 __SetPageLocked(new_page
);
444 __SetPageSwapBacked(new_page
);
445 err
= __add_to_swap_cache(new_page
, entry
);
447 radix_tree_preload_end();
449 * Initiate read into locked page and return.
451 lru_cache_add_anon(new_page
);
452 *new_page_allocated
= true;
455 radix_tree_preload_end();
456 __ClearPageLocked(new_page
);
458 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
459 * clear SWAP_HAS_CACHE flag.
461 put_swap_page(new_page
, entry
);
462 } while (err
!= -ENOMEM
);
470 * Locate a page of swap in physical memory, reserving swap cache space
471 * and reading the disk if it is not already cached.
472 * A failure return means that either the page allocation failed or that
473 * the swap entry is no longer in use.
475 struct page
*read_swap_cache_async(swp_entry_t entry
, gfp_t gfp_mask
,
476 struct vm_area_struct
*vma
, unsigned long addr
, bool do_poll
)
478 bool page_was_allocated
;
479 struct page
*retpage
= __read_swap_cache_async(entry
, gfp_mask
,
480 vma
, addr
, &page_was_allocated
);
482 if (page_was_allocated
)
483 swap_readpage(retpage
, do_poll
);
488 static unsigned int __swapin_nr_pages(unsigned long prev_offset
,
489 unsigned long offset
,
494 unsigned int pages
, last_ra
;
497 * This heuristic has been found to work well on both sequential and
498 * random loads, swapping to hard disk or to SSD: please don't ask
499 * what the "+ 2" means, it just happens to work well, that's all.
504 * We can have no readahead hits to judge by: but must not get
505 * stuck here forever, so check for an adjacent offset instead
506 * (and don't even bother to check whether swap type is same).
508 if (offset
!= prev_offset
+ 1 && offset
!= prev_offset
- 1)
511 unsigned int roundup
= 4;
512 while (roundup
< pages
)
517 if (pages
> max_pages
)
520 /* Don't shrink readahead too fast */
521 last_ra
= prev_win
/ 2;
528 static unsigned long swapin_nr_pages(unsigned long offset
)
530 static unsigned long prev_offset
;
531 unsigned int hits
, pages
, max_pages
;
532 static atomic_t last_readahead_pages
;
534 max_pages
= 1 << READ_ONCE(page_cluster
);
538 hits
= atomic_xchg(&swapin_readahead_hits
, 0);
539 pages
= __swapin_nr_pages(prev_offset
, offset
, hits
, max_pages
,
540 atomic_read(&last_readahead_pages
));
542 prev_offset
= offset
;
543 atomic_set(&last_readahead_pages
, pages
);
549 * swap_cluster_readahead - swap in pages in hope we need them soon
550 * @entry: swap entry of this memory
551 * @gfp_mask: memory allocation flags
552 * @vmf: fault information
554 * Returns the struct page for entry and addr, after queueing swapin.
556 * Primitive swap readahead code. We simply read an aligned block of
557 * (1 << page_cluster) entries in the swap area. This method is chosen
558 * because it doesn't cost us any seek time. We also make sure to queue
559 * the 'original' request together with the readahead ones...
561 * This has been extended to use the NUMA policies from the mm triggering
564 * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
566 struct page
*swap_cluster_readahead(swp_entry_t entry
, gfp_t gfp_mask
,
567 struct vm_fault
*vmf
)
570 unsigned long entry_offset
= swp_offset(entry
);
571 unsigned long offset
= entry_offset
;
572 unsigned long start_offset
, end_offset
;
574 struct swap_info_struct
*si
= swp_swap_info(entry
);
575 struct blk_plug plug
;
576 bool do_poll
= true, page_allocated
;
577 struct vm_area_struct
*vma
= vmf
->vma
;
578 unsigned long addr
= vmf
->address
;
580 mask
= swapin_nr_pages(offset
) - 1;
585 /* Read a page_cluster sized and aligned cluster around offset. */
586 start_offset
= offset
& ~mask
;
587 end_offset
= offset
| mask
;
588 if (!start_offset
) /* First page is swap header. */
590 if (end_offset
>= si
->max
)
591 end_offset
= si
->max
- 1;
593 blk_start_plug(&plug
);
594 for (offset
= start_offset
; offset
<= end_offset
; offset
++) {
595 /* Ok, do the async read-ahead now */
596 page
= __read_swap_cache_async(
597 swp_entry(swp_type(entry
), offset
),
598 gfp_mask
, vma
, addr
, &page_allocated
);
601 if (page_allocated
) {
602 swap_readpage(page
, false);
603 if (offset
!= entry_offset
) {
604 SetPageReadahead(page
);
605 count_vm_event(SWAP_RA
);
610 blk_finish_plug(&plug
);
612 lru_add_drain(); /* Push any new pages onto the LRU now */
614 return read_swap_cache_async(entry
, gfp_mask
, vma
, addr
, do_poll
);
617 int init_swap_address_space(unsigned int type
, unsigned long nr_pages
)
619 struct address_space
*spaces
, *space
;
622 nr
= DIV_ROUND_UP(nr_pages
, SWAP_ADDRESS_SPACE_PAGES
);
623 spaces
= kvcalloc(nr
, sizeof(struct address_space
), GFP_KERNEL
);
626 for (i
= 0; i
< nr
; i
++) {
628 INIT_RADIX_TREE(&space
->i_pages
, GFP_ATOMIC
|__GFP_NOWARN
);
629 atomic_set(&space
->i_mmap_writable
, 0);
630 space
->a_ops
= &swap_aops
;
631 /* swap cache doesn't use writeback related tags */
632 mapping_set_no_writeback_tags(space
);
634 nr_swapper_spaces
[type
] = nr
;
635 rcu_assign_pointer(swapper_spaces
[type
], spaces
);
640 void exit_swap_address_space(unsigned int type
)
642 struct address_space
*spaces
;
644 spaces
= swapper_spaces
[type
];
645 nr_swapper_spaces
[type
] = 0;
646 rcu_assign_pointer(swapper_spaces
[type
], NULL
);
651 static inline void swap_ra_clamp_pfn(struct vm_area_struct
*vma
,
655 unsigned long *start
,
658 *start
= max3(lpfn
, PFN_DOWN(vma
->vm_start
),
659 PFN_DOWN(faddr
& PMD_MASK
));
660 *end
= min3(rpfn
, PFN_DOWN(vma
->vm_end
),
661 PFN_DOWN((faddr
& PMD_MASK
) + PMD_SIZE
));
664 static void swap_ra_info(struct vm_fault
*vmf
,
665 struct vma_swap_readahead
*ra_info
)
667 struct vm_area_struct
*vma
= vmf
->vma
;
668 unsigned long ra_val
;
670 unsigned long faddr
, pfn
, fpfn
;
671 unsigned long start
, end
;
672 pte_t
*pte
, *orig_pte
;
673 unsigned int max_win
, hits
, prev_win
, win
, left
;
678 max_win
= 1 << min_t(unsigned int, READ_ONCE(page_cluster
),
679 SWAP_RA_ORDER_CEILING
);
685 faddr
= vmf
->address
;
686 orig_pte
= pte
= pte_offset_map(vmf
->pmd
, faddr
);
687 entry
= pte_to_swp_entry(*pte
);
688 if ((unlikely(non_swap_entry(entry
)))) {
693 fpfn
= PFN_DOWN(faddr
);
694 ra_val
= GET_SWAP_RA_VAL(vma
);
695 pfn
= PFN_DOWN(SWAP_RA_ADDR(ra_val
));
696 prev_win
= SWAP_RA_WIN(ra_val
);
697 hits
= SWAP_RA_HITS(ra_val
);
698 ra_info
->win
= win
= __swapin_nr_pages(pfn
, fpfn
, hits
,
700 atomic_long_set(&vma
->swap_readahead_info
,
701 SWAP_RA_VAL(faddr
, win
, 0));
708 /* Copy the PTEs because the page table may be unmapped */
710 swap_ra_clamp_pfn(vma
, faddr
, fpfn
, fpfn
+ win
, &start
, &end
);
711 else if (pfn
== fpfn
+ 1)
712 swap_ra_clamp_pfn(vma
, faddr
, fpfn
- win
+ 1, fpfn
+ 1,
715 left
= (win
- 1) / 2;
716 swap_ra_clamp_pfn(vma
, faddr
, fpfn
- left
, fpfn
+ win
- left
,
719 ra_info
->nr_pte
= end
- start
;
720 ra_info
->offset
= fpfn
- start
;
721 pte
-= ra_info
->offset
;
725 tpte
= ra_info
->ptes
;
726 for (pfn
= start
; pfn
!= end
; pfn
++)
732 static struct page
*swap_vma_readahead(swp_entry_t fentry
, gfp_t gfp_mask
,
733 struct vm_fault
*vmf
)
735 struct blk_plug plug
;
736 struct vm_area_struct
*vma
= vmf
->vma
;
742 struct vma_swap_readahead ra_info
= {0,};
744 swap_ra_info(vmf
, &ra_info
);
745 if (ra_info
.win
== 1)
748 blk_start_plug(&plug
);
749 for (i
= 0, pte
= ra_info
.ptes
; i
< ra_info
.nr_pte
;
752 if (pte_none(pentry
))
754 if (pte_present(pentry
))
756 entry
= pte_to_swp_entry(pentry
);
757 if (unlikely(non_swap_entry(entry
)))
759 page
= __read_swap_cache_async(entry
, gfp_mask
, vma
,
760 vmf
->address
, &page_allocated
);
763 if (page_allocated
) {
764 swap_readpage(page
, false);
765 if (i
!= ra_info
.offset
) {
766 SetPageReadahead(page
);
767 count_vm_event(SWAP_RA
);
772 blk_finish_plug(&plug
);
775 return read_swap_cache_async(fentry
, gfp_mask
, vma
, vmf
->address
,
780 * swapin_readahead - swap in pages in hope we need them soon
781 * @entry: swap entry of this memory
782 * @gfp_mask: memory allocation flags
783 * @vmf: fault information
785 * Returns the struct page for entry and addr, after queueing swapin.
787 * It's a main entry function for swap readahead. By the configuration,
788 * it will read ahead blocks by cluster-based(ie, physical disk based)
789 * or vma-based(ie, virtual address based on faulty address) readahead.
791 struct page
*swapin_readahead(swp_entry_t entry
, gfp_t gfp_mask
,
792 struct vm_fault
*vmf
)
794 return swap_use_vma_readahead() ?
795 swap_vma_readahead(entry
, gfp_mask
, vmf
) :
796 swap_cluster_readahead(entry
, gfp_mask
, vmf
);
800 static ssize_t
vma_ra_enabled_show(struct kobject
*kobj
,
801 struct kobj_attribute
*attr
, char *buf
)
803 return sprintf(buf
, "%s\n", enable_vma_readahead
? "true" : "false");
805 static ssize_t
vma_ra_enabled_store(struct kobject
*kobj
,
806 struct kobj_attribute
*attr
,
807 const char *buf
, size_t count
)
809 if (!strncmp(buf
, "true", 4) || !strncmp(buf
, "1", 1))
810 enable_vma_readahead
= true;
811 else if (!strncmp(buf
, "false", 5) || !strncmp(buf
, "0", 1))
812 enable_vma_readahead
= false;
818 static struct kobj_attribute vma_ra_enabled_attr
=
819 __ATTR(vma_ra_enabled
, 0644, vma_ra_enabled_show
,
820 vma_ra_enabled_store
);
822 static struct attribute
*swap_attrs
[] = {
823 &vma_ra_enabled_attr
.attr
,
827 static struct attribute_group swap_attr_group
= {
831 static int __init
swap_init_sysfs(void)
834 struct kobject
*swap_kobj
;
836 swap_kobj
= kobject_create_and_add("swap", mm_kobj
);
838 pr_err("failed to create swap kobject\n");
841 err
= sysfs_create_group(swap_kobj
, &swap_attr_group
);
843 pr_err("failed to register swap group\n");
849 kobject_put(swap_kobj
);
852 subsys_initcall(swap_init_sysfs
);