mm: sanitize page->mapping for tail pages
[linux-2.6/btrfs-unstable.git] / mm / page_alloc.c
blobd02d6436add03a98ca2cfd776dabc39c1535d9ed
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
93 * Array of node states.
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
109 EXPORT_SYMBOL(node_states);
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
118 int percpu_pagelist_fraction;
119 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122 * A cached value of the page's pageblock's migratetype, used when the page is
123 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
124 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
125 * Also the migratetype set in the page does not necessarily match the pcplist
126 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
127 * other index - this ensures that it will be put on the correct CMA freelist.
129 static inline int get_pcppage_migratetype(struct page *page)
131 return page->index;
134 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 page->index = migratetype;
139 #ifdef CONFIG_PM_SLEEP
141 * The following functions are used by the suspend/hibernate code to temporarily
142 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
143 * while devices are suspended. To avoid races with the suspend/hibernate code,
144 * they should always be called with pm_mutex held (gfp_allowed_mask also should
145 * only be modified with pm_mutex held, unless the suspend/hibernate code is
146 * guaranteed not to run in parallel with that modification).
149 static gfp_t saved_gfp_mask;
151 void pm_restore_gfp_mask(void)
153 WARN_ON(!mutex_is_locked(&pm_mutex));
154 if (saved_gfp_mask) {
155 gfp_allowed_mask = saved_gfp_mask;
156 saved_gfp_mask = 0;
160 void pm_restrict_gfp_mask(void)
162 WARN_ON(!mutex_is_locked(&pm_mutex));
163 WARN_ON(saved_gfp_mask);
164 saved_gfp_mask = gfp_allowed_mask;
165 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 bool pm_suspended_storage(void)
170 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
171 return false;
172 return true;
174 #endif /* CONFIG_PM_SLEEP */
176 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
177 unsigned int pageblock_order __read_mostly;
178 #endif
180 static void __free_pages_ok(struct page *page, unsigned int order);
183 * results with 256, 32 in the lowmem_reserve sysctl:
184 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
185 * 1G machine -> (16M dma, 784M normal, 224M high)
186 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
187 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
188 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 * TBD: should special case ZONE_DMA32 machines here - in those we normally
191 * don't need any ZONE_NORMAL reservation
193 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
194 #ifdef CONFIG_ZONE_DMA
195 256,
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 256,
199 #endif
200 #ifdef CONFIG_HIGHMEM
202 #endif
206 EXPORT_SYMBOL(totalram_pages);
208 static char * const zone_names[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 "DMA",
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 "DMA32",
214 #endif
215 "Normal",
216 #ifdef CONFIG_HIGHMEM
217 "HighMem",
218 #endif
219 "Movable",
220 #ifdef CONFIG_ZONE_DEVICE
221 "Device",
222 #endif
225 static void free_compound_page(struct page *page);
226 compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229 #ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231 #endif
234 int min_free_kbytes = 1024;
235 int user_min_free_kbytes = -1;
237 static unsigned long __meminitdata nr_kernel_pages;
238 static unsigned long __meminitdata nr_all_pages;
239 static unsigned long __meminitdata dma_reserve;
241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
242 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
243 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
244 static unsigned long __initdata required_kernelcore;
245 static unsigned long __initdata required_movablecore;
246 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
248 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
249 int movable_zone;
250 EXPORT_SYMBOL(movable_zone);
251 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
253 #if MAX_NUMNODES > 1
254 int nr_node_ids __read_mostly = MAX_NUMNODES;
255 int nr_online_nodes __read_mostly = 1;
256 EXPORT_SYMBOL(nr_node_ids);
257 EXPORT_SYMBOL(nr_online_nodes);
258 #endif
260 int page_group_by_mobility_disabled __read_mostly;
262 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
263 static inline void reset_deferred_meminit(pg_data_t *pgdat)
265 pgdat->first_deferred_pfn = ULONG_MAX;
268 /* Returns true if the struct page for the pfn is uninitialised */
269 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
271 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
272 return true;
274 return false;
277 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
279 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
280 return true;
282 return false;
286 * Returns false when the remaining initialisation should be deferred until
287 * later in the boot cycle when it can be parallelised.
289 static inline bool update_defer_init(pg_data_t *pgdat,
290 unsigned long pfn, unsigned long zone_end,
291 unsigned long *nr_initialised)
293 /* Always populate low zones for address-contrained allocations */
294 if (zone_end < pgdat_end_pfn(pgdat))
295 return true;
297 /* Initialise at least 2G of the highest zone */
298 (*nr_initialised)++;
299 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
300 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
301 pgdat->first_deferred_pfn = pfn;
302 return false;
305 return true;
307 #else
308 static inline void reset_deferred_meminit(pg_data_t *pgdat)
312 static inline bool early_page_uninitialised(unsigned long pfn)
314 return false;
317 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
319 return false;
322 static inline bool update_defer_init(pg_data_t *pgdat,
323 unsigned long pfn, unsigned long zone_end,
324 unsigned long *nr_initialised)
326 return true;
328 #endif
331 void set_pageblock_migratetype(struct page *page, int migratetype)
333 if (unlikely(page_group_by_mobility_disabled &&
334 migratetype < MIGRATE_PCPTYPES))
335 migratetype = MIGRATE_UNMOVABLE;
337 set_pageblock_flags_group(page, (unsigned long)migratetype,
338 PB_migrate, PB_migrate_end);
341 #ifdef CONFIG_DEBUG_VM
342 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
344 int ret = 0;
345 unsigned seq;
346 unsigned long pfn = page_to_pfn(page);
347 unsigned long sp, start_pfn;
349 do {
350 seq = zone_span_seqbegin(zone);
351 start_pfn = zone->zone_start_pfn;
352 sp = zone->spanned_pages;
353 if (!zone_spans_pfn(zone, pfn))
354 ret = 1;
355 } while (zone_span_seqretry(zone, seq));
357 if (ret)
358 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
359 pfn, zone_to_nid(zone), zone->name,
360 start_pfn, start_pfn + sp);
362 return ret;
365 static int page_is_consistent(struct zone *zone, struct page *page)
367 if (!pfn_valid_within(page_to_pfn(page)))
368 return 0;
369 if (zone != page_zone(page))
370 return 0;
372 return 1;
375 * Temporary debugging check for pages not lying within a given zone.
377 static int bad_range(struct zone *zone, struct page *page)
379 if (page_outside_zone_boundaries(zone, page))
380 return 1;
381 if (!page_is_consistent(zone, page))
382 return 1;
384 return 0;
386 #else
387 static inline int bad_range(struct zone *zone, struct page *page)
389 return 0;
391 #endif
393 static void bad_page(struct page *page, const char *reason,
394 unsigned long bad_flags)
396 static unsigned long resume;
397 static unsigned long nr_shown;
398 static unsigned long nr_unshown;
400 /* Don't complain about poisoned pages */
401 if (PageHWPoison(page)) {
402 page_mapcount_reset(page); /* remove PageBuddy */
403 return;
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 goto out;
415 if (nr_unshown) {
416 printk(KERN_ALERT
417 "BUG: Bad page state: %lu messages suppressed\n",
418 nr_unshown);
419 nr_unshown = 0;
421 nr_shown = 0;
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
426 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
427 current->comm, page_to_pfn(page));
428 dump_page_badflags(page, reason, bad_flags);
430 print_modules();
431 dump_stack();
432 out:
433 /* Leave bad fields for debug, except PageBuddy could make trouble */
434 page_mapcount_reset(page); /* remove PageBuddy */
435 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
439 * Higher-order pages are called "compound pages". They are structured thusly:
441 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
443 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
444 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
446 * The first tail page's ->compound_dtor holds the offset in array of compound
447 * page destructors. See compound_page_dtors.
449 * The first tail page's ->compound_order holds the order of allocation.
450 * This usage means that zero-order pages may not be compound.
453 static void free_compound_page(struct page *page)
455 __free_pages_ok(page, compound_order(page));
458 void prep_compound_page(struct page *page, unsigned int order)
460 int i;
461 int nr_pages = 1 << order;
463 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
464 set_compound_order(page, order);
465 __SetPageHead(page);
466 for (i = 1; i < nr_pages; i++) {
467 struct page *p = page + i;
468 set_page_count(p, 0);
469 p->mapping = TAIL_MAPPING;
470 set_compound_head(p, page);
474 #ifdef CONFIG_DEBUG_PAGEALLOC
475 unsigned int _debug_guardpage_minorder;
476 bool _debug_pagealloc_enabled __read_mostly;
477 bool _debug_guardpage_enabled __read_mostly;
479 static int __init early_debug_pagealloc(char *buf)
481 if (!buf)
482 return -EINVAL;
484 if (strcmp(buf, "on") == 0)
485 _debug_pagealloc_enabled = true;
487 return 0;
489 early_param("debug_pagealloc", early_debug_pagealloc);
491 static bool need_debug_guardpage(void)
493 /* If we don't use debug_pagealloc, we don't need guard page */
494 if (!debug_pagealloc_enabled())
495 return false;
497 return true;
500 static void init_debug_guardpage(void)
502 if (!debug_pagealloc_enabled())
503 return;
505 _debug_guardpage_enabled = true;
508 struct page_ext_operations debug_guardpage_ops = {
509 .need = need_debug_guardpage,
510 .init = init_debug_guardpage,
513 static int __init debug_guardpage_minorder_setup(char *buf)
515 unsigned long res;
517 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
518 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
519 return 0;
521 _debug_guardpage_minorder = res;
522 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
523 return 0;
525 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
527 static inline void set_page_guard(struct zone *zone, struct page *page,
528 unsigned int order, int migratetype)
530 struct page_ext *page_ext;
532 if (!debug_guardpage_enabled())
533 return;
535 page_ext = lookup_page_ext(page);
536 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
538 INIT_LIST_HEAD(&page->lru);
539 set_page_private(page, order);
540 /* Guard pages are not available for any usage */
541 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
544 static inline void clear_page_guard(struct zone *zone, struct page *page,
545 unsigned int order, int migratetype)
547 struct page_ext *page_ext;
549 if (!debug_guardpage_enabled())
550 return;
552 page_ext = lookup_page_ext(page);
553 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
555 set_page_private(page, 0);
556 if (!is_migrate_isolate(migratetype))
557 __mod_zone_freepage_state(zone, (1 << order), migratetype);
559 #else
560 struct page_ext_operations debug_guardpage_ops = { NULL, };
561 static inline void set_page_guard(struct zone *zone, struct page *page,
562 unsigned int order, int migratetype) {}
563 static inline void clear_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype) {}
565 #endif
567 static inline void set_page_order(struct page *page, unsigned int order)
569 set_page_private(page, order);
570 __SetPageBuddy(page);
573 static inline void rmv_page_order(struct page *page)
575 __ClearPageBuddy(page);
576 set_page_private(page, 0);
580 * This function checks whether a page is free && is the buddy
581 * we can do coalesce a page and its buddy if
582 * (a) the buddy is not in a hole &&
583 * (b) the buddy is in the buddy system &&
584 * (c) a page and its buddy have the same order &&
585 * (d) a page and its buddy are in the same zone.
587 * For recording whether a page is in the buddy system, we set ->_mapcount
588 * PAGE_BUDDY_MAPCOUNT_VALUE.
589 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
590 * serialized by zone->lock.
592 * For recording page's order, we use page_private(page).
594 static inline int page_is_buddy(struct page *page, struct page *buddy,
595 unsigned int order)
597 if (!pfn_valid_within(page_to_pfn(buddy)))
598 return 0;
600 if (page_is_guard(buddy) && page_order(buddy) == order) {
601 if (page_zone_id(page) != page_zone_id(buddy))
602 return 0;
604 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
606 return 1;
609 if (PageBuddy(buddy) && page_order(buddy) == order) {
611 * zone check is done late to avoid uselessly
612 * calculating zone/node ids for pages that could
613 * never merge.
615 if (page_zone_id(page) != page_zone_id(buddy))
616 return 0;
618 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
620 return 1;
622 return 0;
626 * Freeing function for a buddy system allocator.
628 * The concept of a buddy system is to maintain direct-mapped table
629 * (containing bit values) for memory blocks of various "orders".
630 * The bottom level table contains the map for the smallest allocatable
631 * units of memory (here, pages), and each level above it describes
632 * pairs of units from the levels below, hence, "buddies".
633 * At a high level, all that happens here is marking the table entry
634 * at the bottom level available, and propagating the changes upward
635 * as necessary, plus some accounting needed to play nicely with other
636 * parts of the VM system.
637 * At each level, we keep a list of pages, which are heads of continuous
638 * free pages of length of (1 << order) and marked with _mapcount
639 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
640 * field.
641 * So when we are allocating or freeing one, we can derive the state of the
642 * other. That is, if we allocate a small block, and both were
643 * free, the remainder of the region must be split into blocks.
644 * If a block is freed, and its buddy is also free, then this
645 * triggers coalescing into a block of larger size.
647 * -- nyc
650 static inline void __free_one_page(struct page *page,
651 unsigned long pfn,
652 struct zone *zone, unsigned int order,
653 int migratetype)
655 unsigned long page_idx;
656 unsigned long combined_idx;
657 unsigned long uninitialized_var(buddy_idx);
658 struct page *buddy;
659 unsigned int max_order = MAX_ORDER;
661 VM_BUG_ON(!zone_is_initialized(zone));
662 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
664 VM_BUG_ON(migratetype == -1);
665 if (is_migrate_isolate(migratetype)) {
667 * We restrict max order of merging to prevent merge
668 * between freepages on isolate pageblock and normal
669 * pageblock. Without this, pageblock isolation
670 * could cause incorrect freepage accounting.
672 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
673 } else {
674 __mod_zone_freepage_state(zone, 1 << order, migratetype);
677 page_idx = pfn & ((1 << max_order) - 1);
679 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
680 VM_BUG_ON_PAGE(bad_range(zone, page), page);
682 while (order < max_order - 1) {
683 buddy_idx = __find_buddy_index(page_idx, order);
684 buddy = page + (buddy_idx - page_idx);
685 if (!page_is_buddy(page, buddy, order))
686 break;
688 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
689 * merge with it and move up one order.
691 if (page_is_guard(buddy)) {
692 clear_page_guard(zone, buddy, order, migratetype);
693 } else {
694 list_del(&buddy->lru);
695 zone->free_area[order].nr_free--;
696 rmv_page_order(buddy);
698 combined_idx = buddy_idx & page_idx;
699 page = page + (combined_idx - page_idx);
700 page_idx = combined_idx;
701 order++;
703 set_page_order(page, order);
706 * If this is not the largest possible page, check if the buddy
707 * of the next-highest order is free. If it is, it's possible
708 * that pages are being freed that will coalesce soon. In case,
709 * that is happening, add the free page to the tail of the list
710 * so it's less likely to be used soon and more likely to be merged
711 * as a higher order page
713 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
714 struct page *higher_page, *higher_buddy;
715 combined_idx = buddy_idx & page_idx;
716 higher_page = page + (combined_idx - page_idx);
717 buddy_idx = __find_buddy_index(combined_idx, order + 1);
718 higher_buddy = higher_page + (buddy_idx - combined_idx);
719 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
720 list_add_tail(&page->lru,
721 &zone->free_area[order].free_list[migratetype]);
722 goto out;
726 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
727 out:
728 zone->free_area[order].nr_free++;
731 static inline int free_pages_check(struct page *page)
733 const char *bad_reason = NULL;
734 unsigned long bad_flags = 0;
736 if (unlikely(page_mapcount(page)))
737 bad_reason = "nonzero mapcount";
738 if (unlikely(page->mapping != NULL))
739 bad_reason = "non-NULL mapping";
740 if (unlikely(atomic_read(&page->_count) != 0))
741 bad_reason = "nonzero _count";
742 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
743 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
744 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
746 #ifdef CONFIG_MEMCG
747 if (unlikely(page->mem_cgroup))
748 bad_reason = "page still charged to cgroup";
749 #endif
750 if (unlikely(bad_reason)) {
751 bad_page(page, bad_reason, bad_flags);
752 return 1;
754 page_cpupid_reset_last(page);
755 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
756 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
757 return 0;
761 * Frees a number of pages from the PCP lists
762 * Assumes all pages on list are in same zone, and of same order.
763 * count is the number of pages to free.
765 * If the zone was previously in an "all pages pinned" state then look to
766 * see if this freeing clears that state.
768 * And clear the zone's pages_scanned counter, to hold off the "all pages are
769 * pinned" detection logic.
771 static void free_pcppages_bulk(struct zone *zone, int count,
772 struct per_cpu_pages *pcp)
774 int migratetype = 0;
775 int batch_free = 0;
776 int to_free = count;
777 unsigned long nr_scanned;
779 spin_lock(&zone->lock);
780 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
781 if (nr_scanned)
782 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
784 while (to_free) {
785 struct page *page;
786 struct list_head *list;
789 * Remove pages from lists in a round-robin fashion. A
790 * batch_free count is maintained that is incremented when an
791 * empty list is encountered. This is so more pages are freed
792 * off fuller lists instead of spinning excessively around empty
793 * lists
795 do {
796 batch_free++;
797 if (++migratetype == MIGRATE_PCPTYPES)
798 migratetype = 0;
799 list = &pcp->lists[migratetype];
800 } while (list_empty(list));
802 /* This is the only non-empty list. Free them all. */
803 if (batch_free == MIGRATE_PCPTYPES)
804 batch_free = to_free;
806 do {
807 int mt; /* migratetype of the to-be-freed page */
809 page = list_last_entry(list, struct page, lru);
810 /* must delete as __free_one_page list manipulates */
811 list_del(&page->lru);
813 mt = get_pcppage_migratetype(page);
814 /* MIGRATE_ISOLATE page should not go to pcplists */
815 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
816 /* Pageblock could have been isolated meanwhile */
817 if (unlikely(has_isolate_pageblock(zone)))
818 mt = get_pageblock_migratetype(page);
820 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
821 trace_mm_page_pcpu_drain(page, 0, mt);
822 } while (--to_free && --batch_free && !list_empty(list));
824 spin_unlock(&zone->lock);
827 static void free_one_page(struct zone *zone,
828 struct page *page, unsigned long pfn,
829 unsigned int order,
830 int migratetype)
832 unsigned long nr_scanned;
833 spin_lock(&zone->lock);
834 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
835 if (nr_scanned)
836 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
838 if (unlikely(has_isolate_pageblock(zone) ||
839 is_migrate_isolate(migratetype))) {
840 migratetype = get_pfnblock_migratetype(page, pfn);
842 __free_one_page(page, pfn, zone, order, migratetype);
843 spin_unlock(&zone->lock);
846 static int free_tail_pages_check(struct page *head_page, struct page *page)
848 int ret = 1;
851 * We rely page->lru.next never has bit 0 set, unless the page
852 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
854 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
856 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
857 ret = 0;
858 goto out;
860 if (page->mapping != TAIL_MAPPING) {
861 bad_page(page, "corrupted mapping in tail page", 0);
862 goto out;
864 if (unlikely(!PageTail(page))) {
865 bad_page(page, "PageTail not set", 0);
866 goto out;
868 if (unlikely(compound_head(page) != head_page)) {
869 bad_page(page, "compound_head not consistent", 0);
870 goto out;
872 ret = 0;
873 out:
874 page->mapping = NULL;
875 clear_compound_head(page);
876 return ret;
879 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
880 unsigned long zone, int nid)
882 set_page_links(page, zone, nid, pfn);
883 init_page_count(page);
884 page_mapcount_reset(page);
885 page_cpupid_reset_last(page);
887 INIT_LIST_HEAD(&page->lru);
888 #ifdef WANT_PAGE_VIRTUAL
889 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
890 if (!is_highmem_idx(zone))
891 set_page_address(page, __va(pfn << PAGE_SHIFT));
892 #endif
895 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
896 int nid)
898 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
901 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
902 static void init_reserved_page(unsigned long pfn)
904 pg_data_t *pgdat;
905 int nid, zid;
907 if (!early_page_uninitialised(pfn))
908 return;
910 nid = early_pfn_to_nid(pfn);
911 pgdat = NODE_DATA(nid);
913 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
914 struct zone *zone = &pgdat->node_zones[zid];
916 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
917 break;
919 __init_single_pfn(pfn, zid, nid);
921 #else
922 static inline void init_reserved_page(unsigned long pfn)
925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
928 * Initialised pages do not have PageReserved set. This function is
929 * called for each range allocated by the bootmem allocator and
930 * marks the pages PageReserved. The remaining valid pages are later
931 * sent to the buddy page allocator.
933 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
935 unsigned long start_pfn = PFN_DOWN(start);
936 unsigned long end_pfn = PFN_UP(end);
938 for (; start_pfn < end_pfn; start_pfn++) {
939 if (pfn_valid(start_pfn)) {
940 struct page *page = pfn_to_page(start_pfn);
942 init_reserved_page(start_pfn);
944 /* Avoid false-positive PageTail() */
945 INIT_LIST_HEAD(&page->lru);
947 SetPageReserved(page);
952 static bool free_pages_prepare(struct page *page, unsigned int order)
954 bool compound = PageCompound(page);
955 int i, bad = 0;
957 VM_BUG_ON_PAGE(PageTail(page), page);
958 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
960 trace_mm_page_free(page, order);
961 kmemcheck_free_shadow(page, order);
962 kasan_free_pages(page, order);
964 if (PageAnon(page))
965 page->mapping = NULL;
966 bad += free_pages_check(page);
967 for (i = 1; i < (1 << order); i++) {
968 if (compound)
969 bad += free_tail_pages_check(page, page + i);
970 bad += free_pages_check(page + i);
972 if (bad)
973 return false;
975 reset_page_owner(page, order);
977 if (!PageHighMem(page)) {
978 debug_check_no_locks_freed(page_address(page),
979 PAGE_SIZE << order);
980 debug_check_no_obj_freed(page_address(page),
981 PAGE_SIZE << order);
983 arch_free_page(page, order);
984 kernel_map_pages(page, 1 << order, 0);
986 return true;
989 static void __free_pages_ok(struct page *page, unsigned int order)
991 unsigned long flags;
992 int migratetype;
993 unsigned long pfn = page_to_pfn(page);
995 if (!free_pages_prepare(page, order))
996 return;
998 migratetype = get_pfnblock_migratetype(page, pfn);
999 local_irq_save(flags);
1000 __count_vm_events(PGFREE, 1 << order);
1001 free_one_page(page_zone(page), page, pfn, order, migratetype);
1002 local_irq_restore(flags);
1005 static void __init __free_pages_boot_core(struct page *page,
1006 unsigned long pfn, unsigned int order)
1008 unsigned int nr_pages = 1 << order;
1009 struct page *p = page;
1010 unsigned int loop;
1012 prefetchw(p);
1013 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1014 prefetchw(p + 1);
1015 __ClearPageReserved(p);
1016 set_page_count(p, 0);
1018 __ClearPageReserved(p);
1019 set_page_count(p, 0);
1021 page_zone(page)->managed_pages += nr_pages;
1022 set_page_refcounted(page);
1023 __free_pages(page, order);
1026 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1027 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1029 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1031 int __meminit early_pfn_to_nid(unsigned long pfn)
1033 static DEFINE_SPINLOCK(early_pfn_lock);
1034 int nid;
1036 spin_lock(&early_pfn_lock);
1037 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1038 if (nid < 0)
1039 nid = 0;
1040 spin_unlock(&early_pfn_lock);
1042 return nid;
1044 #endif
1046 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1047 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1048 struct mminit_pfnnid_cache *state)
1050 int nid;
1052 nid = __early_pfn_to_nid(pfn, state);
1053 if (nid >= 0 && nid != node)
1054 return false;
1055 return true;
1058 /* Only safe to use early in boot when initialisation is single-threaded */
1059 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1061 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1064 #else
1066 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1068 return true;
1070 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1071 struct mminit_pfnnid_cache *state)
1073 return true;
1075 #endif
1078 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1079 unsigned int order)
1081 if (early_page_uninitialised(pfn))
1082 return;
1083 return __free_pages_boot_core(page, pfn, order);
1086 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1087 static void __init deferred_free_range(struct page *page,
1088 unsigned long pfn, int nr_pages)
1090 int i;
1092 if (!page)
1093 return;
1095 /* Free a large naturally-aligned chunk if possible */
1096 if (nr_pages == MAX_ORDER_NR_PAGES &&
1097 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1098 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1099 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1100 return;
1103 for (i = 0; i < nr_pages; i++, page++, pfn++)
1104 __free_pages_boot_core(page, pfn, 0);
1107 /* Completion tracking for deferred_init_memmap() threads */
1108 static atomic_t pgdat_init_n_undone __initdata;
1109 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1111 static inline void __init pgdat_init_report_one_done(void)
1113 if (atomic_dec_and_test(&pgdat_init_n_undone))
1114 complete(&pgdat_init_all_done_comp);
1117 /* Initialise remaining memory on a node */
1118 static int __init deferred_init_memmap(void *data)
1120 pg_data_t *pgdat = data;
1121 int nid = pgdat->node_id;
1122 struct mminit_pfnnid_cache nid_init_state = { };
1123 unsigned long start = jiffies;
1124 unsigned long nr_pages = 0;
1125 unsigned long walk_start, walk_end;
1126 int i, zid;
1127 struct zone *zone;
1128 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1129 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1131 if (first_init_pfn == ULONG_MAX) {
1132 pgdat_init_report_one_done();
1133 return 0;
1136 /* Bind memory initialisation thread to a local node if possible */
1137 if (!cpumask_empty(cpumask))
1138 set_cpus_allowed_ptr(current, cpumask);
1140 /* Sanity check boundaries */
1141 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1142 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1143 pgdat->first_deferred_pfn = ULONG_MAX;
1145 /* Only the highest zone is deferred so find it */
1146 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1147 zone = pgdat->node_zones + zid;
1148 if (first_init_pfn < zone_end_pfn(zone))
1149 break;
1152 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1153 unsigned long pfn, end_pfn;
1154 struct page *page = NULL;
1155 struct page *free_base_page = NULL;
1156 unsigned long free_base_pfn = 0;
1157 int nr_to_free = 0;
1159 end_pfn = min(walk_end, zone_end_pfn(zone));
1160 pfn = first_init_pfn;
1161 if (pfn < walk_start)
1162 pfn = walk_start;
1163 if (pfn < zone->zone_start_pfn)
1164 pfn = zone->zone_start_pfn;
1166 for (; pfn < end_pfn; pfn++) {
1167 if (!pfn_valid_within(pfn))
1168 goto free_range;
1171 * Ensure pfn_valid is checked every
1172 * MAX_ORDER_NR_PAGES for memory holes
1174 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1175 if (!pfn_valid(pfn)) {
1176 page = NULL;
1177 goto free_range;
1181 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1182 page = NULL;
1183 goto free_range;
1186 /* Minimise pfn page lookups and scheduler checks */
1187 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1188 page++;
1189 } else {
1190 nr_pages += nr_to_free;
1191 deferred_free_range(free_base_page,
1192 free_base_pfn, nr_to_free);
1193 free_base_page = NULL;
1194 free_base_pfn = nr_to_free = 0;
1196 page = pfn_to_page(pfn);
1197 cond_resched();
1200 if (page->flags) {
1201 VM_BUG_ON(page_zone(page) != zone);
1202 goto free_range;
1205 __init_single_page(page, pfn, zid, nid);
1206 if (!free_base_page) {
1207 free_base_page = page;
1208 free_base_pfn = pfn;
1209 nr_to_free = 0;
1211 nr_to_free++;
1213 /* Where possible, batch up pages for a single free */
1214 continue;
1215 free_range:
1216 /* Free the current block of pages to allocator */
1217 nr_pages += nr_to_free;
1218 deferred_free_range(free_base_page, free_base_pfn,
1219 nr_to_free);
1220 free_base_page = NULL;
1221 free_base_pfn = nr_to_free = 0;
1224 first_init_pfn = max(end_pfn, first_init_pfn);
1227 /* Sanity check that the next zone really is unpopulated */
1228 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1230 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1231 jiffies_to_msecs(jiffies - start));
1233 pgdat_init_report_one_done();
1234 return 0;
1237 void __init page_alloc_init_late(void)
1239 int nid;
1241 /* There will be num_node_state(N_MEMORY) threads */
1242 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1243 for_each_node_state(nid, N_MEMORY) {
1244 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1247 /* Block until all are initialised */
1248 wait_for_completion(&pgdat_init_all_done_comp);
1250 /* Reinit limits that are based on free pages after the kernel is up */
1251 files_maxfiles_init();
1253 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1255 #ifdef CONFIG_CMA
1256 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1257 void __init init_cma_reserved_pageblock(struct page *page)
1259 unsigned i = pageblock_nr_pages;
1260 struct page *p = page;
1262 do {
1263 __ClearPageReserved(p);
1264 set_page_count(p, 0);
1265 } while (++p, --i);
1267 set_pageblock_migratetype(page, MIGRATE_CMA);
1269 if (pageblock_order >= MAX_ORDER) {
1270 i = pageblock_nr_pages;
1271 p = page;
1272 do {
1273 set_page_refcounted(p);
1274 __free_pages(p, MAX_ORDER - 1);
1275 p += MAX_ORDER_NR_PAGES;
1276 } while (i -= MAX_ORDER_NR_PAGES);
1277 } else {
1278 set_page_refcounted(page);
1279 __free_pages(page, pageblock_order);
1282 adjust_managed_page_count(page, pageblock_nr_pages);
1284 #endif
1287 * The order of subdivision here is critical for the IO subsystem.
1288 * Please do not alter this order without good reasons and regression
1289 * testing. Specifically, as large blocks of memory are subdivided,
1290 * the order in which smaller blocks are delivered depends on the order
1291 * they're subdivided in this function. This is the primary factor
1292 * influencing the order in which pages are delivered to the IO
1293 * subsystem according to empirical testing, and this is also justified
1294 * by considering the behavior of a buddy system containing a single
1295 * large block of memory acted on by a series of small allocations.
1296 * This behavior is a critical factor in sglist merging's success.
1298 * -- nyc
1300 static inline void expand(struct zone *zone, struct page *page,
1301 int low, int high, struct free_area *area,
1302 int migratetype)
1304 unsigned long size = 1 << high;
1306 while (high > low) {
1307 area--;
1308 high--;
1309 size >>= 1;
1310 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1312 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1313 debug_guardpage_enabled() &&
1314 high < debug_guardpage_minorder()) {
1316 * Mark as guard pages (or page), that will allow to
1317 * merge back to allocator when buddy will be freed.
1318 * Corresponding page table entries will not be touched,
1319 * pages will stay not present in virtual address space
1321 set_page_guard(zone, &page[size], high, migratetype);
1322 continue;
1324 list_add(&page[size].lru, &area->free_list[migratetype]);
1325 area->nr_free++;
1326 set_page_order(&page[size], high);
1331 * This page is about to be returned from the page allocator
1333 static inline int check_new_page(struct page *page)
1335 const char *bad_reason = NULL;
1336 unsigned long bad_flags = 0;
1338 if (unlikely(page_mapcount(page)))
1339 bad_reason = "nonzero mapcount";
1340 if (unlikely(page->mapping != NULL))
1341 bad_reason = "non-NULL mapping";
1342 if (unlikely(atomic_read(&page->_count) != 0))
1343 bad_reason = "nonzero _count";
1344 if (unlikely(page->flags & __PG_HWPOISON)) {
1345 bad_reason = "HWPoisoned (hardware-corrupted)";
1346 bad_flags = __PG_HWPOISON;
1348 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1349 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1350 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1352 #ifdef CONFIG_MEMCG
1353 if (unlikely(page->mem_cgroup))
1354 bad_reason = "page still charged to cgroup";
1355 #endif
1356 if (unlikely(bad_reason)) {
1357 bad_page(page, bad_reason, bad_flags);
1358 return 1;
1360 return 0;
1363 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1364 int alloc_flags)
1366 int i;
1368 for (i = 0; i < (1 << order); i++) {
1369 struct page *p = page + i;
1370 if (unlikely(check_new_page(p)))
1371 return 1;
1374 set_page_private(page, 0);
1375 set_page_refcounted(page);
1377 arch_alloc_page(page, order);
1378 kernel_map_pages(page, 1 << order, 1);
1379 kasan_alloc_pages(page, order);
1381 if (gfp_flags & __GFP_ZERO)
1382 for (i = 0; i < (1 << order); i++)
1383 clear_highpage(page + i);
1385 if (order && (gfp_flags & __GFP_COMP))
1386 prep_compound_page(page, order);
1388 set_page_owner(page, order, gfp_flags);
1391 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1392 * allocate the page. The expectation is that the caller is taking
1393 * steps that will free more memory. The caller should avoid the page
1394 * being used for !PFMEMALLOC purposes.
1396 if (alloc_flags & ALLOC_NO_WATERMARKS)
1397 set_page_pfmemalloc(page);
1398 else
1399 clear_page_pfmemalloc(page);
1401 return 0;
1405 * Go through the free lists for the given migratetype and remove
1406 * the smallest available page from the freelists
1408 static inline
1409 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1410 int migratetype)
1412 unsigned int current_order;
1413 struct free_area *area;
1414 struct page *page;
1416 /* Find a page of the appropriate size in the preferred list */
1417 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1418 area = &(zone->free_area[current_order]);
1419 page = list_first_entry_or_null(&area->free_list[migratetype],
1420 struct page, lru);
1421 if (!page)
1422 continue;
1423 list_del(&page->lru);
1424 rmv_page_order(page);
1425 area->nr_free--;
1426 expand(zone, page, order, current_order, area, migratetype);
1427 set_pcppage_migratetype(page, migratetype);
1428 return page;
1431 return NULL;
1436 * This array describes the order lists are fallen back to when
1437 * the free lists for the desirable migrate type are depleted
1439 static int fallbacks[MIGRATE_TYPES][4] = {
1440 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1441 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1442 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1443 #ifdef CONFIG_CMA
1444 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1445 #endif
1446 #ifdef CONFIG_MEMORY_ISOLATION
1447 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1448 #endif
1451 #ifdef CONFIG_CMA
1452 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1453 unsigned int order)
1455 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1457 #else
1458 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1459 unsigned int order) { return NULL; }
1460 #endif
1463 * Move the free pages in a range to the free lists of the requested type.
1464 * Note that start_page and end_pages are not aligned on a pageblock
1465 * boundary. If alignment is required, use move_freepages_block()
1467 int move_freepages(struct zone *zone,
1468 struct page *start_page, struct page *end_page,
1469 int migratetype)
1471 struct page *page;
1472 unsigned int order;
1473 int pages_moved = 0;
1475 #ifndef CONFIG_HOLES_IN_ZONE
1477 * page_zone is not safe to call in this context when
1478 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1479 * anyway as we check zone boundaries in move_freepages_block().
1480 * Remove at a later date when no bug reports exist related to
1481 * grouping pages by mobility
1483 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1484 #endif
1486 for (page = start_page; page <= end_page;) {
1487 /* Make sure we are not inadvertently changing nodes */
1488 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1490 if (!pfn_valid_within(page_to_pfn(page))) {
1491 page++;
1492 continue;
1495 if (!PageBuddy(page)) {
1496 page++;
1497 continue;
1500 order = page_order(page);
1501 list_move(&page->lru,
1502 &zone->free_area[order].free_list[migratetype]);
1503 page += 1 << order;
1504 pages_moved += 1 << order;
1507 return pages_moved;
1510 int move_freepages_block(struct zone *zone, struct page *page,
1511 int migratetype)
1513 unsigned long start_pfn, end_pfn;
1514 struct page *start_page, *end_page;
1516 start_pfn = page_to_pfn(page);
1517 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1518 start_page = pfn_to_page(start_pfn);
1519 end_page = start_page + pageblock_nr_pages - 1;
1520 end_pfn = start_pfn + pageblock_nr_pages - 1;
1522 /* Do not cross zone boundaries */
1523 if (!zone_spans_pfn(zone, start_pfn))
1524 start_page = page;
1525 if (!zone_spans_pfn(zone, end_pfn))
1526 return 0;
1528 return move_freepages(zone, start_page, end_page, migratetype);
1531 static void change_pageblock_range(struct page *pageblock_page,
1532 int start_order, int migratetype)
1534 int nr_pageblocks = 1 << (start_order - pageblock_order);
1536 while (nr_pageblocks--) {
1537 set_pageblock_migratetype(pageblock_page, migratetype);
1538 pageblock_page += pageblock_nr_pages;
1543 * When we are falling back to another migratetype during allocation, try to
1544 * steal extra free pages from the same pageblocks to satisfy further
1545 * allocations, instead of polluting multiple pageblocks.
1547 * If we are stealing a relatively large buddy page, it is likely there will
1548 * be more free pages in the pageblock, so try to steal them all. For
1549 * reclaimable and unmovable allocations, we steal regardless of page size,
1550 * as fragmentation caused by those allocations polluting movable pageblocks
1551 * is worse than movable allocations stealing from unmovable and reclaimable
1552 * pageblocks.
1554 static bool can_steal_fallback(unsigned int order, int start_mt)
1557 * Leaving this order check is intended, although there is
1558 * relaxed order check in next check. The reason is that
1559 * we can actually steal whole pageblock if this condition met,
1560 * but, below check doesn't guarantee it and that is just heuristic
1561 * so could be changed anytime.
1563 if (order >= pageblock_order)
1564 return true;
1566 if (order >= pageblock_order / 2 ||
1567 start_mt == MIGRATE_RECLAIMABLE ||
1568 start_mt == MIGRATE_UNMOVABLE ||
1569 page_group_by_mobility_disabled)
1570 return true;
1572 return false;
1576 * This function implements actual steal behaviour. If order is large enough,
1577 * we can steal whole pageblock. If not, we first move freepages in this
1578 * pageblock and check whether half of pages are moved or not. If half of
1579 * pages are moved, we can change migratetype of pageblock and permanently
1580 * use it's pages as requested migratetype in the future.
1582 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1583 int start_type)
1585 unsigned int current_order = page_order(page);
1586 int pages;
1588 /* Take ownership for orders >= pageblock_order */
1589 if (current_order >= pageblock_order) {
1590 change_pageblock_range(page, current_order, start_type);
1591 return;
1594 pages = move_freepages_block(zone, page, start_type);
1596 /* Claim the whole block if over half of it is free */
1597 if (pages >= (1 << (pageblock_order-1)) ||
1598 page_group_by_mobility_disabled)
1599 set_pageblock_migratetype(page, start_type);
1603 * Check whether there is a suitable fallback freepage with requested order.
1604 * If only_stealable is true, this function returns fallback_mt only if
1605 * we can steal other freepages all together. This would help to reduce
1606 * fragmentation due to mixed migratetype pages in one pageblock.
1608 int find_suitable_fallback(struct free_area *area, unsigned int order,
1609 int migratetype, bool only_stealable, bool *can_steal)
1611 int i;
1612 int fallback_mt;
1614 if (area->nr_free == 0)
1615 return -1;
1617 *can_steal = false;
1618 for (i = 0;; i++) {
1619 fallback_mt = fallbacks[migratetype][i];
1620 if (fallback_mt == MIGRATE_TYPES)
1621 break;
1623 if (list_empty(&area->free_list[fallback_mt]))
1624 continue;
1626 if (can_steal_fallback(order, migratetype))
1627 *can_steal = true;
1629 if (!only_stealable)
1630 return fallback_mt;
1632 if (*can_steal)
1633 return fallback_mt;
1636 return -1;
1640 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1641 * there are no empty page blocks that contain a page with a suitable order
1643 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1644 unsigned int alloc_order)
1646 int mt;
1647 unsigned long max_managed, flags;
1650 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1651 * Check is race-prone but harmless.
1653 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1654 if (zone->nr_reserved_highatomic >= max_managed)
1655 return;
1657 spin_lock_irqsave(&zone->lock, flags);
1659 /* Recheck the nr_reserved_highatomic limit under the lock */
1660 if (zone->nr_reserved_highatomic >= max_managed)
1661 goto out_unlock;
1663 /* Yoink! */
1664 mt = get_pageblock_migratetype(page);
1665 if (mt != MIGRATE_HIGHATOMIC &&
1666 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1667 zone->nr_reserved_highatomic += pageblock_nr_pages;
1668 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1669 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1672 out_unlock:
1673 spin_unlock_irqrestore(&zone->lock, flags);
1677 * Used when an allocation is about to fail under memory pressure. This
1678 * potentially hurts the reliability of high-order allocations when under
1679 * intense memory pressure but failed atomic allocations should be easier
1680 * to recover from than an OOM.
1682 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1684 struct zonelist *zonelist = ac->zonelist;
1685 unsigned long flags;
1686 struct zoneref *z;
1687 struct zone *zone;
1688 struct page *page;
1689 int order;
1691 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1692 ac->nodemask) {
1693 /* Preserve at least one pageblock */
1694 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1695 continue;
1697 spin_lock_irqsave(&zone->lock, flags);
1698 for (order = 0; order < MAX_ORDER; order++) {
1699 struct free_area *area = &(zone->free_area[order]);
1701 page = list_first_entry_or_null(
1702 &area->free_list[MIGRATE_HIGHATOMIC],
1703 struct page, lru);
1704 if (!page)
1705 continue;
1708 * It should never happen but changes to locking could
1709 * inadvertently allow a per-cpu drain to add pages
1710 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1711 * and watch for underflows.
1713 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1714 zone->nr_reserved_highatomic);
1717 * Convert to ac->migratetype and avoid the normal
1718 * pageblock stealing heuristics. Minimally, the caller
1719 * is doing the work and needs the pages. More
1720 * importantly, if the block was always converted to
1721 * MIGRATE_UNMOVABLE or another type then the number
1722 * of pageblocks that cannot be completely freed
1723 * may increase.
1725 set_pageblock_migratetype(page, ac->migratetype);
1726 move_freepages_block(zone, page, ac->migratetype);
1727 spin_unlock_irqrestore(&zone->lock, flags);
1728 return;
1730 spin_unlock_irqrestore(&zone->lock, flags);
1734 /* Remove an element from the buddy allocator from the fallback list */
1735 static inline struct page *
1736 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1738 struct free_area *area;
1739 unsigned int current_order;
1740 struct page *page;
1741 int fallback_mt;
1742 bool can_steal;
1744 /* Find the largest possible block of pages in the other list */
1745 for (current_order = MAX_ORDER-1;
1746 current_order >= order && current_order <= MAX_ORDER-1;
1747 --current_order) {
1748 area = &(zone->free_area[current_order]);
1749 fallback_mt = find_suitable_fallback(area, current_order,
1750 start_migratetype, false, &can_steal);
1751 if (fallback_mt == -1)
1752 continue;
1754 page = list_first_entry(&area->free_list[fallback_mt],
1755 struct page, lru);
1756 if (can_steal)
1757 steal_suitable_fallback(zone, page, start_migratetype);
1759 /* Remove the page from the freelists */
1760 area->nr_free--;
1761 list_del(&page->lru);
1762 rmv_page_order(page);
1764 expand(zone, page, order, current_order, area,
1765 start_migratetype);
1767 * The pcppage_migratetype may differ from pageblock's
1768 * migratetype depending on the decisions in
1769 * find_suitable_fallback(). This is OK as long as it does not
1770 * differ for MIGRATE_CMA pageblocks. Those can be used as
1771 * fallback only via special __rmqueue_cma_fallback() function
1773 set_pcppage_migratetype(page, start_migratetype);
1775 trace_mm_page_alloc_extfrag(page, order, current_order,
1776 start_migratetype, fallback_mt);
1778 return page;
1781 return NULL;
1785 * Do the hard work of removing an element from the buddy allocator.
1786 * Call me with the zone->lock already held.
1788 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1789 int migratetype)
1791 struct page *page;
1793 page = __rmqueue_smallest(zone, order, migratetype);
1794 if (unlikely(!page)) {
1795 if (migratetype == MIGRATE_MOVABLE)
1796 page = __rmqueue_cma_fallback(zone, order);
1798 if (!page)
1799 page = __rmqueue_fallback(zone, order, migratetype);
1802 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1803 return page;
1807 * Obtain a specified number of elements from the buddy allocator, all under
1808 * a single hold of the lock, for efficiency. Add them to the supplied list.
1809 * Returns the number of new pages which were placed at *list.
1811 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1812 unsigned long count, struct list_head *list,
1813 int migratetype, bool cold)
1815 int i;
1817 spin_lock(&zone->lock);
1818 for (i = 0; i < count; ++i) {
1819 struct page *page = __rmqueue(zone, order, migratetype);
1820 if (unlikely(page == NULL))
1821 break;
1824 * Split buddy pages returned by expand() are received here
1825 * in physical page order. The page is added to the callers and
1826 * list and the list head then moves forward. From the callers
1827 * perspective, the linked list is ordered by page number in
1828 * some conditions. This is useful for IO devices that can
1829 * merge IO requests if the physical pages are ordered
1830 * properly.
1832 if (likely(!cold))
1833 list_add(&page->lru, list);
1834 else
1835 list_add_tail(&page->lru, list);
1836 list = &page->lru;
1837 if (is_migrate_cma(get_pcppage_migratetype(page)))
1838 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1839 -(1 << order));
1841 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1842 spin_unlock(&zone->lock);
1843 return i;
1846 #ifdef CONFIG_NUMA
1848 * Called from the vmstat counter updater to drain pagesets of this
1849 * currently executing processor on remote nodes after they have
1850 * expired.
1852 * Note that this function must be called with the thread pinned to
1853 * a single processor.
1855 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1857 unsigned long flags;
1858 int to_drain, batch;
1860 local_irq_save(flags);
1861 batch = READ_ONCE(pcp->batch);
1862 to_drain = min(pcp->count, batch);
1863 if (to_drain > 0) {
1864 free_pcppages_bulk(zone, to_drain, pcp);
1865 pcp->count -= to_drain;
1867 local_irq_restore(flags);
1869 #endif
1872 * Drain pcplists of the indicated processor and zone.
1874 * The processor must either be the current processor and the
1875 * thread pinned to the current processor or a processor that
1876 * is not online.
1878 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1880 unsigned long flags;
1881 struct per_cpu_pageset *pset;
1882 struct per_cpu_pages *pcp;
1884 local_irq_save(flags);
1885 pset = per_cpu_ptr(zone->pageset, cpu);
1887 pcp = &pset->pcp;
1888 if (pcp->count) {
1889 free_pcppages_bulk(zone, pcp->count, pcp);
1890 pcp->count = 0;
1892 local_irq_restore(flags);
1896 * Drain pcplists of all zones on the indicated processor.
1898 * The processor must either be the current processor and the
1899 * thread pinned to the current processor or a processor that
1900 * is not online.
1902 static void drain_pages(unsigned int cpu)
1904 struct zone *zone;
1906 for_each_populated_zone(zone) {
1907 drain_pages_zone(cpu, zone);
1912 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1914 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1915 * the single zone's pages.
1917 void drain_local_pages(struct zone *zone)
1919 int cpu = smp_processor_id();
1921 if (zone)
1922 drain_pages_zone(cpu, zone);
1923 else
1924 drain_pages(cpu);
1928 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1930 * When zone parameter is non-NULL, spill just the single zone's pages.
1932 * Note that this code is protected against sending an IPI to an offline
1933 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1934 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1935 * nothing keeps CPUs from showing up after we populated the cpumask and
1936 * before the call to on_each_cpu_mask().
1938 void drain_all_pages(struct zone *zone)
1940 int cpu;
1943 * Allocate in the BSS so we wont require allocation in
1944 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1946 static cpumask_t cpus_with_pcps;
1949 * We don't care about racing with CPU hotplug event
1950 * as offline notification will cause the notified
1951 * cpu to drain that CPU pcps and on_each_cpu_mask
1952 * disables preemption as part of its processing
1954 for_each_online_cpu(cpu) {
1955 struct per_cpu_pageset *pcp;
1956 struct zone *z;
1957 bool has_pcps = false;
1959 if (zone) {
1960 pcp = per_cpu_ptr(zone->pageset, cpu);
1961 if (pcp->pcp.count)
1962 has_pcps = true;
1963 } else {
1964 for_each_populated_zone(z) {
1965 pcp = per_cpu_ptr(z->pageset, cpu);
1966 if (pcp->pcp.count) {
1967 has_pcps = true;
1968 break;
1973 if (has_pcps)
1974 cpumask_set_cpu(cpu, &cpus_with_pcps);
1975 else
1976 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1978 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1979 zone, 1);
1982 #ifdef CONFIG_HIBERNATION
1984 void mark_free_pages(struct zone *zone)
1986 unsigned long pfn, max_zone_pfn;
1987 unsigned long flags;
1988 unsigned int order, t;
1989 struct page *page;
1991 if (zone_is_empty(zone))
1992 return;
1994 spin_lock_irqsave(&zone->lock, flags);
1996 max_zone_pfn = zone_end_pfn(zone);
1997 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1998 if (pfn_valid(pfn)) {
1999 page = pfn_to_page(pfn);
2000 if (!swsusp_page_is_forbidden(page))
2001 swsusp_unset_page_free(page);
2004 for_each_migratetype_order(order, t) {
2005 list_for_each_entry(page,
2006 &zone->free_area[order].free_list[t], lru) {
2007 unsigned long i;
2009 pfn = page_to_pfn(page);
2010 for (i = 0; i < (1UL << order); i++)
2011 swsusp_set_page_free(pfn_to_page(pfn + i));
2014 spin_unlock_irqrestore(&zone->lock, flags);
2016 #endif /* CONFIG_PM */
2019 * Free a 0-order page
2020 * cold == true ? free a cold page : free a hot page
2022 void free_hot_cold_page(struct page *page, bool cold)
2024 struct zone *zone = page_zone(page);
2025 struct per_cpu_pages *pcp;
2026 unsigned long flags;
2027 unsigned long pfn = page_to_pfn(page);
2028 int migratetype;
2030 if (!free_pages_prepare(page, 0))
2031 return;
2033 migratetype = get_pfnblock_migratetype(page, pfn);
2034 set_pcppage_migratetype(page, migratetype);
2035 local_irq_save(flags);
2036 __count_vm_event(PGFREE);
2039 * We only track unmovable, reclaimable and movable on pcp lists.
2040 * Free ISOLATE pages back to the allocator because they are being
2041 * offlined but treat RESERVE as movable pages so we can get those
2042 * areas back if necessary. Otherwise, we may have to free
2043 * excessively into the page allocator
2045 if (migratetype >= MIGRATE_PCPTYPES) {
2046 if (unlikely(is_migrate_isolate(migratetype))) {
2047 free_one_page(zone, page, pfn, 0, migratetype);
2048 goto out;
2050 migratetype = MIGRATE_MOVABLE;
2053 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2054 if (!cold)
2055 list_add(&page->lru, &pcp->lists[migratetype]);
2056 else
2057 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2058 pcp->count++;
2059 if (pcp->count >= pcp->high) {
2060 unsigned long batch = READ_ONCE(pcp->batch);
2061 free_pcppages_bulk(zone, batch, pcp);
2062 pcp->count -= batch;
2065 out:
2066 local_irq_restore(flags);
2070 * Free a list of 0-order pages
2072 void free_hot_cold_page_list(struct list_head *list, bool cold)
2074 struct page *page, *next;
2076 list_for_each_entry_safe(page, next, list, lru) {
2077 trace_mm_page_free_batched(page, cold);
2078 free_hot_cold_page(page, cold);
2083 * split_page takes a non-compound higher-order page, and splits it into
2084 * n (1<<order) sub-pages: page[0..n]
2085 * Each sub-page must be freed individually.
2087 * Note: this is probably too low level an operation for use in drivers.
2088 * Please consult with lkml before using this in your driver.
2090 void split_page(struct page *page, unsigned int order)
2092 int i;
2093 gfp_t gfp_mask;
2095 VM_BUG_ON_PAGE(PageCompound(page), page);
2096 VM_BUG_ON_PAGE(!page_count(page), page);
2098 #ifdef CONFIG_KMEMCHECK
2100 * Split shadow pages too, because free(page[0]) would
2101 * otherwise free the whole shadow.
2103 if (kmemcheck_page_is_tracked(page))
2104 split_page(virt_to_page(page[0].shadow), order);
2105 #endif
2107 gfp_mask = get_page_owner_gfp(page);
2108 set_page_owner(page, 0, gfp_mask);
2109 for (i = 1; i < (1 << order); i++) {
2110 set_page_refcounted(page + i);
2111 set_page_owner(page + i, 0, gfp_mask);
2114 EXPORT_SYMBOL_GPL(split_page);
2116 int __isolate_free_page(struct page *page, unsigned int order)
2118 unsigned long watermark;
2119 struct zone *zone;
2120 int mt;
2122 BUG_ON(!PageBuddy(page));
2124 zone = page_zone(page);
2125 mt = get_pageblock_migratetype(page);
2127 if (!is_migrate_isolate(mt)) {
2128 /* Obey watermarks as if the page was being allocated */
2129 watermark = low_wmark_pages(zone) + (1 << order);
2130 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2131 return 0;
2133 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2136 /* Remove page from free list */
2137 list_del(&page->lru);
2138 zone->free_area[order].nr_free--;
2139 rmv_page_order(page);
2141 set_page_owner(page, order, __GFP_MOVABLE);
2143 /* Set the pageblock if the isolated page is at least a pageblock */
2144 if (order >= pageblock_order - 1) {
2145 struct page *endpage = page + (1 << order) - 1;
2146 for (; page < endpage; page += pageblock_nr_pages) {
2147 int mt = get_pageblock_migratetype(page);
2148 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2149 set_pageblock_migratetype(page,
2150 MIGRATE_MOVABLE);
2155 return 1UL << order;
2159 * Similar to split_page except the page is already free. As this is only
2160 * being used for migration, the migratetype of the block also changes.
2161 * As this is called with interrupts disabled, the caller is responsible
2162 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2163 * are enabled.
2165 * Note: this is probably too low level an operation for use in drivers.
2166 * Please consult with lkml before using this in your driver.
2168 int split_free_page(struct page *page)
2170 unsigned int order;
2171 int nr_pages;
2173 order = page_order(page);
2175 nr_pages = __isolate_free_page(page, order);
2176 if (!nr_pages)
2177 return 0;
2179 /* Split into individual pages */
2180 set_page_refcounted(page);
2181 split_page(page, order);
2182 return nr_pages;
2186 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2188 static inline
2189 struct page *buffered_rmqueue(struct zone *preferred_zone,
2190 struct zone *zone, unsigned int order,
2191 gfp_t gfp_flags, int alloc_flags, int migratetype)
2193 unsigned long flags;
2194 struct page *page;
2195 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2197 if (likely(order == 0)) {
2198 struct per_cpu_pages *pcp;
2199 struct list_head *list;
2201 local_irq_save(flags);
2202 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2203 list = &pcp->lists[migratetype];
2204 if (list_empty(list)) {
2205 pcp->count += rmqueue_bulk(zone, 0,
2206 pcp->batch, list,
2207 migratetype, cold);
2208 if (unlikely(list_empty(list)))
2209 goto failed;
2212 if (cold)
2213 page = list_last_entry(list, struct page, lru);
2214 else
2215 page = list_first_entry(list, struct page, lru);
2217 list_del(&page->lru);
2218 pcp->count--;
2219 } else {
2220 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2222 * __GFP_NOFAIL is not to be used in new code.
2224 * All __GFP_NOFAIL callers should be fixed so that they
2225 * properly detect and handle allocation failures.
2227 * We most definitely don't want callers attempting to
2228 * allocate greater than order-1 page units with
2229 * __GFP_NOFAIL.
2231 WARN_ON_ONCE(order > 1);
2233 spin_lock_irqsave(&zone->lock, flags);
2235 page = NULL;
2236 if (alloc_flags & ALLOC_HARDER) {
2237 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2238 if (page)
2239 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2241 if (!page)
2242 page = __rmqueue(zone, order, migratetype);
2243 spin_unlock(&zone->lock);
2244 if (!page)
2245 goto failed;
2246 __mod_zone_freepage_state(zone, -(1 << order),
2247 get_pcppage_migratetype(page));
2250 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2251 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2252 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2253 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2255 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2256 zone_statistics(preferred_zone, zone, gfp_flags);
2257 local_irq_restore(flags);
2259 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2260 return page;
2262 failed:
2263 local_irq_restore(flags);
2264 return NULL;
2267 #ifdef CONFIG_FAIL_PAGE_ALLOC
2269 static struct {
2270 struct fault_attr attr;
2272 bool ignore_gfp_highmem;
2273 bool ignore_gfp_reclaim;
2274 u32 min_order;
2275 } fail_page_alloc = {
2276 .attr = FAULT_ATTR_INITIALIZER,
2277 .ignore_gfp_reclaim = true,
2278 .ignore_gfp_highmem = true,
2279 .min_order = 1,
2282 static int __init setup_fail_page_alloc(char *str)
2284 return setup_fault_attr(&fail_page_alloc.attr, str);
2286 __setup("fail_page_alloc=", setup_fail_page_alloc);
2288 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2290 if (order < fail_page_alloc.min_order)
2291 return false;
2292 if (gfp_mask & __GFP_NOFAIL)
2293 return false;
2294 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2295 return false;
2296 if (fail_page_alloc.ignore_gfp_reclaim &&
2297 (gfp_mask & __GFP_DIRECT_RECLAIM))
2298 return false;
2300 return should_fail(&fail_page_alloc.attr, 1 << order);
2303 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2305 static int __init fail_page_alloc_debugfs(void)
2307 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2308 struct dentry *dir;
2310 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2311 &fail_page_alloc.attr);
2312 if (IS_ERR(dir))
2313 return PTR_ERR(dir);
2315 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2316 &fail_page_alloc.ignore_gfp_reclaim))
2317 goto fail;
2318 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2319 &fail_page_alloc.ignore_gfp_highmem))
2320 goto fail;
2321 if (!debugfs_create_u32("min-order", mode, dir,
2322 &fail_page_alloc.min_order))
2323 goto fail;
2325 return 0;
2326 fail:
2327 debugfs_remove_recursive(dir);
2329 return -ENOMEM;
2332 late_initcall(fail_page_alloc_debugfs);
2334 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2336 #else /* CONFIG_FAIL_PAGE_ALLOC */
2338 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2340 return false;
2343 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2346 * Return true if free base pages are above 'mark'. For high-order checks it
2347 * will return true of the order-0 watermark is reached and there is at least
2348 * one free page of a suitable size. Checking now avoids taking the zone lock
2349 * to check in the allocation paths if no pages are free.
2351 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2352 unsigned long mark, int classzone_idx, int alloc_flags,
2353 long free_pages)
2355 long min = mark;
2356 int o;
2357 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2359 /* free_pages may go negative - that's OK */
2360 free_pages -= (1 << order) - 1;
2362 if (alloc_flags & ALLOC_HIGH)
2363 min -= min / 2;
2366 * If the caller does not have rights to ALLOC_HARDER then subtract
2367 * the high-atomic reserves. This will over-estimate the size of the
2368 * atomic reserve but it avoids a search.
2370 if (likely(!alloc_harder))
2371 free_pages -= z->nr_reserved_highatomic;
2372 else
2373 min -= min / 4;
2375 #ifdef CONFIG_CMA
2376 /* If allocation can't use CMA areas don't use free CMA pages */
2377 if (!(alloc_flags & ALLOC_CMA))
2378 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2379 #endif
2382 * Check watermarks for an order-0 allocation request. If these
2383 * are not met, then a high-order request also cannot go ahead
2384 * even if a suitable page happened to be free.
2386 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2387 return false;
2389 /* If this is an order-0 request then the watermark is fine */
2390 if (!order)
2391 return true;
2393 /* For a high-order request, check at least one suitable page is free */
2394 for (o = order; o < MAX_ORDER; o++) {
2395 struct free_area *area = &z->free_area[o];
2396 int mt;
2398 if (!area->nr_free)
2399 continue;
2401 if (alloc_harder)
2402 return true;
2404 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2405 if (!list_empty(&area->free_list[mt]))
2406 return true;
2409 #ifdef CONFIG_CMA
2410 if ((alloc_flags & ALLOC_CMA) &&
2411 !list_empty(&area->free_list[MIGRATE_CMA])) {
2412 return true;
2414 #endif
2416 return false;
2419 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2420 int classzone_idx, int alloc_flags)
2422 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2423 zone_page_state(z, NR_FREE_PAGES));
2426 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2427 unsigned long mark, int classzone_idx)
2429 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2431 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2432 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2434 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2435 free_pages);
2438 #ifdef CONFIG_NUMA
2439 static bool zone_local(struct zone *local_zone, struct zone *zone)
2441 return local_zone->node == zone->node;
2444 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2446 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2447 RECLAIM_DISTANCE;
2449 #else /* CONFIG_NUMA */
2450 static bool zone_local(struct zone *local_zone, struct zone *zone)
2452 return true;
2455 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2457 return true;
2459 #endif /* CONFIG_NUMA */
2461 static void reset_alloc_batches(struct zone *preferred_zone)
2463 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2465 do {
2466 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2467 high_wmark_pages(zone) - low_wmark_pages(zone) -
2468 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2469 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2470 } while (zone++ != preferred_zone);
2474 * get_page_from_freelist goes through the zonelist trying to allocate
2475 * a page.
2477 static struct page *
2478 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2479 const struct alloc_context *ac)
2481 struct zonelist *zonelist = ac->zonelist;
2482 struct zoneref *z;
2483 struct page *page = NULL;
2484 struct zone *zone;
2485 int nr_fair_skipped = 0;
2486 bool zonelist_rescan;
2488 zonelist_scan:
2489 zonelist_rescan = false;
2492 * Scan zonelist, looking for a zone with enough free.
2493 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2495 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2496 ac->nodemask) {
2497 unsigned long mark;
2499 if (cpusets_enabled() &&
2500 (alloc_flags & ALLOC_CPUSET) &&
2501 !cpuset_zone_allowed(zone, gfp_mask))
2502 continue;
2504 * Distribute pages in proportion to the individual
2505 * zone size to ensure fair page aging. The zone a
2506 * page was allocated in should have no effect on the
2507 * time the page has in memory before being reclaimed.
2509 if (alloc_flags & ALLOC_FAIR) {
2510 if (!zone_local(ac->preferred_zone, zone))
2511 break;
2512 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2513 nr_fair_skipped++;
2514 continue;
2518 * When allocating a page cache page for writing, we
2519 * want to get it from a zone that is within its dirty
2520 * limit, such that no single zone holds more than its
2521 * proportional share of globally allowed dirty pages.
2522 * The dirty limits take into account the zone's
2523 * lowmem reserves and high watermark so that kswapd
2524 * should be able to balance it without having to
2525 * write pages from its LRU list.
2527 * This may look like it could increase pressure on
2528 * lower zones by failing allocations in higher zones
2529 * before they are full. But the pages that do spill
2530 * over are limited as the lower zones are protected
2531 * by this very same mechanism. It should not become
2532 * a practical burden to them.
2534 * XXX: For now, allow allocations to potentially
2535 * exceed the per-zone dirty limit in the slowpath
2536 * (spread_dirty_pages unset) before going into reclaim,
2537 * which is important when on a NUMA setup the allowed
2538 * zones are together not big enough to reach the
2539 * global limit. The proper fix for these situations
2540 * will require awareness of zones in the
2541 * dirty-throttling and the flusher threads.
2543 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2544 continue;
2546 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2547 if (!zone_watermark_ok(zone, order, mark,
2548 ac->classzone_idx, alloc_flags)) {
2549 int ret;
2551 /* Checked here to keep the fast path fast */
2552 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2553 if (alloc_flags & ALLOC_NO_WATERMARKS)
2554 goto try_this_zone;
2556 if (zone_reclaim_mode == 0 ||
2557 !zone_allows_reclaim(ac->preferred_zone, zone))
2558 continue;
2560 ret = zone_reclaim(zone, gfp_mask, order);
2561 switch (ret) {
2562 case ZONE_RECLAIM_NOSCAN:
2563 /* did not scan */
2564 continue;
2565 case ZONE_RECLAIM_FULL:
2566 /* scanned but unreclaimable */
2567 continue;
2568 default:
2569 /* did we reclaim enough */
2570 if (zone_watermark_ok(zone, order, mark,
2571 ac->classzone_idx, alloc_flags))
2572 goto try_this_zone;
2574 continue;
2578 try_this_zone:
2579 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2580 gfp_mask, alloc_flags, ac->migratetype);
2581 if (page) {
2582 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2583 goto try_this_zone;
2586 * If this is a high-order atomic allocation then check
2587 * if the pageblock should be reserved for the future
2589 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2590 reserve_highatomic_pageblock(page, zone, order);
2592 return page;
2597 * The first pass makes sure allocations are spread fairly within the
2598 * local node. However, the local node might have free pages left
2599 * after the fairness batches are exhausted, and remote zones haven't
2600 * even been considered yet. Try once more without fairness, and
2601 * include remote zones now, before entering the slowpath and waking
2602 * kswapd: prefer spilling to a remote zone over swapping locally.
2604 if (alloc_flags & ALLOC_FAIR) {
2605 alloc_flags &= ~ALLOC_FAIR;
2606 if (nr_fair_skipped) {
2607 zonelist_rescan = true;
2608 reset_alloc_batches(ac->preferred_zone);
2610 if (nr_online_nodes > 1)
2611 zonelist_rescan = true;
2614 if (zonelist_rescan)
2615 goto zonelist_scan;
2617 return NULL;
2621 * Large machines with many possible nodes should not always dump per-node
2622 * meminfo in irq context.
2624 static inline bool should_suppress_show_mem(void)
2626 bool ret = false;
2628 #if NODES_SHIFT > 8
2629 ret = in_interrupt();
2630 #endif
2631 return ret;
2634 static DEFINE_RATELIMIT_STATE(nopage_rs,
2635 DEFAULT_RATELIMIT_INTERVAL,
2636 DEFAULT_RATELIMIT_BURST);
2638 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2640 unsigned int filter = SHOW_MEM_FILTER_NODES;
2642 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2643 debug_guardpage_minorder() > 0)
2644 return;
2647 * This documents exceptions given to allocations in certain
2648 * contexts that are allowed to allocate outside current's set
2649 * of allowed nodes.
2651 if (!(gfp_mask & __GFP_NOMEMALLOC))
2652 if (test_thread_flag(TIF_MEMDIE) ||
2653 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2654 filter &= ~SHOW_MEM_FILTER_NODES;
2655 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2656 filter &= ~SHOW_MEM_FILTER_NODES;
2658 if (fmt) {
2659 struct va_format vaf;
2660 va_list args;
2662 va_start(args, fmt);
2664 vaf.fmt = fmt;
2665 vaf.va = &args;
2667 pr_warn("%pV", &vaf);
2669 va_end(args);
2672 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2673 current->comm, order, gfp_mask);
2675 dump_stack();
2676 if (!should_suppress_show_mem())
2677 show_mem(filter);
2680 static inline struct page *
2681 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2682 const struct alloc_context *ac, unsigned long *did_some_progress)
2684 struct oom_control oc = {
2685 .zonelist = ac->zonelist,
2686 .nodemask = ac->nodemask,
2687 .gfp_mask = gfp_mask,
2688 .order = order,
2690 struct page *page;
2692 *did_some_progress = 0;
2695 * Acquire the oom lock. If that fails, somebody else is
2696 * making progress for us.
2698 if (!mutex_trylock(&oom_lock)) {
2699 *did_some_progress = 1;
2700 schedule_timeout_uninterruptible(1);
2701 return NULL;
2705 * Go through the zonelist yet one more time, keep very high watermark
2706 * here, this is only to catch a parallel oom killing, we must fail if
2707 * we're still under heavy pressure.
2709 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2710 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2711 if (page)
2712 goto out;
2714 if (!(gfp_mask & __GFP_NOFAIL)) {
2715 /* Coredumps can quickly deplete all memory reserves */
2716 if (current->flags & PF_DUMPCORE)
2717 goto out;
2718 /* The OOM killer will not help higher order allocs */
2719 if (order > PAGE_ALLOC_COSTLY_ORDER)
2720 goto out;
2721 /* The OOM killer does not needlessly kill tasks for lowmem */
2722 if (ac->high_zoneidx < ZONE_NORMAL)
2723 goto out;
2724 /* The OOM killer does not compensate for IO-less reclaim */
2725 if (!(gfp_mask & __GFP_FS)) {
2727 * XXX: Page reclaim didn't yield anything,
2728 * and the OOM killer can't be invoked, but
2729 * keep looping as per tradition.
2731 *did_some_progress = 1;
2732 goto out;
2734 if (pm_suspended_storage())
2735 goto out;
2736 /* The OOM killer may not free memory on a specific node */
2737 if (gfp_mask & __GFP_THISNODE)
2738 goto out;
2740 /* Exhausted what can be done so it's blamo time */
2741 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2742 *did_some_progress = 1;
2744 if (gfp_mask & __GFP_NOFAIL) {
2745 page = get_page_from_freelist(gfp_mask, order,
2746 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2748 * fallback to ignore cpuset restriction if our nodes
2749 * are depleted
2751 if (!page)
2752 page = get_page_from_freelist(gfp_mask, order,
2753 ALLOC_NO_WATERMARKS, ac);
2756 out:
2757 mutex_unlock(&oom_lock);
2758 return page;
2761 #ifdef CONFIG_COMPACTION
2762 /* Try memory compaction for high-order allocations before reclaim */
2763 static struct page *
2764 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2765 int alloc_flags, const struct alloc_context *ac,
2766 enum migrate_mode mode, int *contended_compaction,
2767 bool *deferred_compaction)
2769 unsigned long compact_result;
2770 struct page *page;
2772 if (!order)
2773 return NULL;
2775 current->flags |= PF_MEMALLOC;
2776 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2777 mode, contended_compaction);
2778 current->flags &= ~PF_MEMALLOC;
2780 switch (compact_result) {
2781 case COMPACT_DEFERRED:
2782 *deferred_compaction = true;
2783 /* fall-through */
2784 case COMPACT_SKIPPED:
2785 return NULL;
2786 default:
2787 break;
2791 * At least in one zone compaction wasn't deferred or skipped, so let's
2792 * count a compaction stall
2794 count_vm_event(COMPACTSTALL);
2796 page = get_page_from_freelist(gfp_mask, order,
2797 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2799 if (page) {
2800 struct zone *zone = page_zone(page);
2802 zone->compact_blockskip_flush = false;
2803 compaction_defer_reset(zone, order, true);
2804 count_vm_event(COMPACTSUCCESS);
2805 return page;
2809 * It's bad if compaction run occurs and fails. The most likely reason
2810 * is that pages exist, but not enough to satisfy watermarks.
2812 count_vm_event(COMPACTFAIL);
2814 cond_resched();
2816 return NULL;
2818 #else
2819 static inline struct page *
2820 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2821 int alloc_flags, const struct alloc_context *ac,
2822 enum migrate_mode mode, int *contended_compaction,
2823 bool *deferred_compaction)
2825 return NULL;
2827 #endif /* CONFIG_COMPACTION */
2829 /* Perform direct synchronous page reclaim */
2830 static int
2831 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2832 const struct alloc_context *ac)
2834 struct reclaim_state reclaim_state;
2835 int progress;
2837 cond_resched();
2839 /* We now go into synchronous reclaim */
2840 cpuset_memory_pressure_bump();
2841 current->flags |= PF_MEMALLOC;
2842 lockdep_set_current_reclaim_state(gfp_mask);
2843 reclaim_state.reclaimed_slab = 0;
2844 current->reclaim_state = &reclaim_state;
2846 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2847 ac->nodemask);
2849 current->reclaim_state = NULL;
2850 lockdep_clear_current_reclaim_state();
2851 current->flags &= ~PF_MEMALLOC;
2853 cond_resched();
2855 return progress;
2858 /* The really slow allocator path where we enter direct reclaim */
2859 static inline struct page *
2860 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2861 int alloc_flags, const struct alloc_context *ac,
2862 unsigned long *did_some_progress)
2864 struct page *page = NULL;
2865 bool drained = false;
2867 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2868 if (unlikely(!(*did_some_progress)))
2869 return NULL;
2871 retry:
2872 page = get_page_from_freelist(gfp_mask, order,
2873 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2876 * If an allocation failed after direct reclaim, it could be because
2877 * pages are pinned on the per-cpu lists or in high alloc reserves.
2878 * Shrink them them and try again
2880 if (!page && !drained) {
2881 unreserve_highatomic_pageblock(ac);
2882 drain_all_pages(NULL);
2883 drained = true;
2884 goto retry;
2887 return page;
2890 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2892 struct zoneref *z;
2893 struct zone *zone;
2895 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2896 ac->high_zoneidx, ac->nodemask)
2897 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2900 static inline int
2901 gfp_to_alloc_flags(gfp_t gfp_mask)
2903 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2905 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2906 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2909 * The caller may dip into page reserves a bit more if the caller
2910 * cannot run direct reclaim, or if the caller has realtime scheduling
2911 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2912 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2914 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2916 if (gfp_mask & __GFP_ATOMIC) {
2918 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2919 * if it can't schedule.
2921 if (!(gfp_mask & __GFP_NOMEMALLOC))
2922 alloc_flags |= ALLOC_HARDER;
2924 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2925 * comment for __cpuset_node_allowed().
2927 alloc_flags &= ~ALLOC_CPUSET;
2928 } else if (unlikely(rt_task(current)) && !in_interrupt())
2929 alloc_flags |= ALLOC_HARDER;
2931 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2932 if (gfp_mask & __GFP_MEMALLOC)
2933 alloc_flags |= ALLOC_NO_WATERMARKS;
2934 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2935 alloc_flags |= ALLOC_NO_WATERMARKS;
2936 else if (!in_interrupt() &&
2937 ((current->flags & PF_MEMALLOC) ||
2938 unlikely(test_thread_flag(TIF_MEMDIE))))
2939 alloc_flags |= ALLOC_NO_WATERMARKS;
2941 #ifdef CONFIG_CMA
2942 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2943 alloc_flags |= ALLOC_CMA;
2944 #endif
2945 return alloc_flags;
2948 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2950 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2953 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2955 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2958 static inline struct page *
2959 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2960 struct alloc_context *ac)
2962 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2963 struct page *page = NULL;
2964 int alloc_flags;
2965 unsigned long pages_reclaimed = 0;
2966 unsigned long did_some_progress;
2967 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2968 bool deferred_compaction = false;
2969 int contended_compaction = COMPACT_CONTENDED_NONE;
2972 * In the slowpath, we sanity check order to avoid ever trying to
2973 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2974 * be using allocators in order of preference for an area that is
2975 * too large.
2977 if (order >= MAX_ORDER) {
2978 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2979 return NULL;
2983 * We also sanity check to catch abuse of atomic reserves being used by
2984 * callers that are not in atomic context.
2986 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2987 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2988 gfp_mask &= ~__GFP_ATOMIC;
2991 * If this allocation cannot block and it is for a specific node, then
2992 * fail early. There's no need to wakeup kswapd or retry for a
2993 * speculative node-specific allocation.
2995 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
2996 goto nopage;
2998 retry:
2999 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3000 wake_all_kswapds(order, ac);
3003 * OK, we're below the kswapd watermark and have kicked background
3004 * reclaim. Now things get more complex, so set up alloc_flags according
3005 * to how we want to proceed.
3007 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3010 * Find the true preferred zone if the allocation is unconstrained by
3011 * cpusets.
3013 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3014 struct zoneref *preferred_zoneref;
3015 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3016 ac->high_zoneidx, NULL, &ac->preferred_zone);
3017 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3020 /* This is the last chance, in general, before the goto nopage. */
3021 page = get_page_from_freelist(gfp_mask, order,
3022 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3023 if (page)
3024 goto got_pg;
3026 /* Allocate without watermarks if the context allows */
3027 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3029 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3030 * the allocation is high priority and these type of
3031 * allocations are system rather than user orientated
3033 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3034 page = get_page_from_freelist(gfp_mask, order,
3035 ALLOC_NO_WATERMARKS, ac);
3036 if (page)
3037 goto got_pg;
3040 /* Caller is not willing to reclaim, we can't balance anything */
3041 if (!can_direct_reclaim) {
3043 * All existing users of the __GFP_NOFAIL are blockable, so warn
3044 * of any new users that actually allow this type of allocation
3045 * to fail.
3047 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3048 goto nopage;
3051 /* Avoid recursion of direct reclaim */
3052 if (current->flags & PF_MEMALLOC) {
3054 * __GFP_NOFAIL request from this context is rather bizarre
3055 * because we cannot reclaim anything and only can loop waiting
3056 * for somebody to do a work for us.
3058 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3059 cond_resched();
3060 goto retry;
3062 goto nopage;
3065 /* Avoid allocations with no watermarks from looping endlessly */
3066 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3067 goto nopage;
3070 * Try direct compaction. The first pass is asynchronous. Subsequent
3071 * attempts after direct reclaim are synchronous
3073 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3074 migration_mode,
3075 &contended_compaction,
3076 &deferred_compaction);
3077 if (page)
3078 goto got_pg;
3080 /* Checks for THP-specific high-order allocations */
3081 if (is_thp_gfp_mask(gfp_mask)) {
3083 * If compaction is deferred for high-order allocations, it is
3084 * because sync compaction recently failed. If this is the case
3085 * and the caller requested a THP allocation, we do not want
3086 * to heavily disrupt the system, so we fail the allocation
3087 * instead of entering direct reclaim.
3089 if (deferred_compaction)
3090 goto nopage;
3093 * In all zones where compaction was attempted (and not
3094 * deferred or skipped), lock contention has been detected.
3095 * For THP allocation we do not want to disrupt the others
3096 * so we fallback to base pages instead.
3098 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3099 goto nopage;
3102 * If compaction was aborted due to need_resched(), we do not
3103 * want to further increase allocation latency, unless it is
3104 * khugepaged trying to collapse.
3106 if (contended_compaction == COMPACT_CONTENDED_SCHED
3107 && !(current->flags & PF_KTHREAD))
3108 goto nopage;
3112 * It can become very expensive to allocate transparent hugepages at
3113 * fault, so use asynchronous memory compaction for THP unless it is
3114 * khugepaged trying to collapse.
3116 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3117 migration_mode = MIGRATE_SYNC_LIGHT;
3119 /* Try direct reclaim and then allocating */
3120 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3121 &did_some_progress);
3122 if (page)
3123 goto got_pg;
3125 /* Do not loop if specifically requested */
3126 if (gfp_mask & __GFP_NORETRY)
3127 goto noretry;
3129 /* Keep reclaiming pages as long as there is reasonable progress */
3130 pages_reclaimed += did_some_progress;
3131 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3132 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3133 /* Wait for some write requests to complete then retry */
3134 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3135 goto retry;
3138 /* Reclaim has failed us, start killing things */
3139 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3140 if (page)
3141 goto got_pg;
3143 /* Retry as long as the OOM killer is making progress */
3144 if (did_some_progress)
3145 goto retry;
3147 noretry:
3149 * High-order allocations do not necessarily loop after
3150 * direct reclaim and reclaim/compaction depends on compaction
3151 * being called after reclaim so call directly if necessary
3153 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3154 ac, migration_mode,
3155 &contended_compaction,
3156 &deferred_compaction);
3157 if (page)
3158 goto got_pg;
3159 nopage:
3160 warn_alloc_failed(gfp_mask, order, NULL);
3161 got_pg:
3162 return page;
3166 * This is the 'heart' of the zoned buddy allocator.
3168 struct page *
3169 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3170 struct zonelist *zonelist, nodemask_t *nodemask)
3172 struct zoneref *preferred_zoneref;
3173 struct page *page = NULL;
3174 unsigned int cpuset_mems_cookie;
3175 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3176 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3177 struct alloc_context ac = {
3178 .high_zoneidx = gfp_zone(gfp_mask),
3179 .nodemask = nodemask,
3180 .migratetype = gfpflags_to_migratetype(gfp_mask),
3183 gfp_mask &= gfp_allowed_mask;
3185 lockdep_trace_alloc(gfp_mask);
3187 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3189 if (should_fail_alloc_page(gfp_mask, order))
3190 return NULL;
3193 * Check the zones suitable for the gfp_mask contain at least one
3194 * valid zone. It's possible to have an empty zonelist as a result
3195 * of __GFP_THISNODE and a memoryless node
3197 if (unlikely(!zonelist->_zonerefs->zone))
3198 return NULL;
3200 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3201 alloc_flags |= ALLOC_CMA;
3203 retry_cpuset:
3204 cpuset_mems_cookie = read_mems_allowed_begin();
3206 /* We set it here, as __alloc_pages_slowpath might have changed it */
3207 ac.zonelist = zonelist;
3209 /* Dirty zone balancing only done in the fast path */
3210 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3212 /* The preferred zone is used for statistics later */
3213 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3214 ac.nodemask ? : &cpuset_current_mems_allowed,
3215 &ac.preferred_zone);
3216 if (!ac.preferred_zone)
3217 goto out;
3218 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3220 /* First allocation attempt */
3221 alloc_mask = gfp_mask|__GFP_HARDWALL;
3222 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3223 if (unlikely(!page)) {
3225 * Runtime PM, block IO and its error handling path
3226 * can deadlock because I/O on the device might not
3227 * complete.
3229 alloc_mask = memalloc_noio_flags(gfp_mask);
3230 ac.spread_dirty_pages = false;
3232 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3235 if (kmemcheck_enabled && page)
3236 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3238 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3240 out:
3242 * When updating a task's mems_allowed, it is possible to race with
3243 * parallel threads in such a way that an allocation can fail while
3244 * the mask is being updated. If a page allocation is about to fail,
3245 * check if the cpuset changed during allocation and if so, retry.
3247 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3248 goto retry_cpuset;
3250 return page;
3252 EXPORT_SYMBOL(__alloc_pages_nodemask);
3255 * Common helper functions.
3257 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3259 struct page *page;
3262 * __get_free_pages() returns a 32-bit address, which cannot represent
3263 * a highmem page
3265 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3267 page = alloc_pages(gfp_mask, order);
3268 if (!page)
3269 return 0;
3270 return (unsigned long) page_address(page);
3272 EXPORT_SYMBOL(__get_free_pages);
3274 unsigned long get_zeroed_page(gfp_t gfp_mask)
3276 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3278 EXPORT_SYMBOL(get_zeroed_page);
3280 void __free_pages(struct page *page, unsigned int order)
3282 if (put_page_testzero(page)) {
3283 if (order == 0)
3284 free_hot_cold_page(page, false);
3285 else
3286 __free_pages_ok(page, order);
3290 EXPORT_SYMBOL(__free_pages);
3292 void free_pages(unsigned long addr, unsigned int order)
3294 if (addr != 0) {
3295 VM_BUG_ON(!virt_addr_valid((void *)addr));
3296 __free_pages(virt_to_page((void *)addr), order);
3300 EXPORT_SYMBOL(free_pages);
3303 * Page Fragment:
3304 * An arbitrary-length arbitrary-offset area of memory which resides
3305 * within a 0 or higher order page. Multiple fragments within that page
3306 * are individually refcounted, in the page's reference counter.
3308 * The page_frag functions below provide a simple allocation framework for
3309 * page fragments. This is used by the network stack and network device
3310 * drivers to provide a backing region of memory for use as either an
3311 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3313 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3314 gfp_t gfp_mask)
3316 struct page *page = NULL;
3317 gfp_t gfp = gfp_mask;
3319 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3320 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3321 __GFP_NOMEMALLOC;
3322 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3323 PAGE_FRAG_CACHE_MAX_ORDER);
3324 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3325 #endif
3326 if (unlikely(!page))
3327 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3329 nc->va = page ? page_address(page) : NULL;
3331 return page;
3334 void *__alloc_page_frag(struct page_frag_cache *nc,
3335 unsigned int fragsz, gfp_t gfp_mask)
3337 unsigned int size = PAGE_SIZE;
3338 struct page *page;
3339 int offset;
3341 if (unlikely(!nc->va)) {
3342 refill:
3343 page = __page_frag_refill(nc, gfp_mask);
3344 if (!page)
3345 return NULL;
3347 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3348 /* if size can vary use size else just use PAGE_SIZE */
3349 size = nc->size;
3350 #endif
3351 /* Even if we own the page, we do not use atomic_set().
3352 * This would break get_page_unless_zero() users.
3354 atomic_add(size - 1, &page->_count);
3356 /* reset page count bias and offset to start of new frag */
3357 nc->pfmemalloc = page_is_pfmemalloc(page);
3358 nc->pagecnt_bias = size;
3359 nc->offset = size;
3362 offset = nc->offset - fragsz;
3363 if (unlikely(offset < 0)) {
3364 page = virt_to_page(nc->va);
3366 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3367 goto refill;
3369 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3370 /* if size can vary use size else just use PAGE_SIZE */
3371 size = nc->size;
3372 #endif
3373 /* OK, page count is 0, we can safely set it */
3374 atomic_set(&page->_count, size);
3376 /* reset page count bias and offset to start of new frag */
3377 nc->pagecnt_bias = size;
3378 offset = size - fragsz;
3381 nc->pagecnt_bias--;
3382 nc->offset = offset;
3384 return nc->va + offset;
3386 EXPORT_SYMBOL(__alloc_page_frag);
3389 * Frees a page fragment allocated out of either a compound or order 0 page.
3391 void __free_page_frag(void *addr)
3393 struct page *page = virt_to_head_page(addr);
3395 if (unlikely(put_page_testzero(page)))
3396 __free_pages_ok(page, compound_order(page));
3398 EXPORT_SYMBOL(__free_page_frag);
3401 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3402 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3403 * equivalent to alloc_pages.
3405 * It should be used when the caller would like to use kmalloc, but since the
3406 * allocation is large, it has to fall back to the page allocator.
3408 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3410 struct page *page;
3412 page = alloc_pages(gfp_mask, order);
3413 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3414 __free_pages(page, order);
3415 page = NULL;
3417 return page;
3420 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3422 struct page *page;
3424 page = alloc_pages_node(nid, gfp_mask, order);
3425 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3426 __free_pages(page, order);
3427 page = NULL;
3429 return page;
3433 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3434 * alloc_kmem_pages.
3436 void __free_kmem_pages(struct page *page, unsigned int order)
3438 memcg_kmem_uncharge(page, order);
3439 __free_pages(page, order);
3442 void free_kmem_pages(unsigned long addr, unsigned int order)
3444 if (addr != 0) {
3445 VM_BUG_ON(!virt_addr_valid((void *)addr));
3446 __free_kmem_pages(virt_to_page((void *)addr), order);
3450 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3451 size_t size)
3453 if (addr) {
3454 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3455 unsigned long used = addr + PAGE_ALIGN(size);
3457 split_page(virt_to_page((void *)addr), order);
3458 while (used < alloc_end) {
3459 free_page(used);
3460 used += PAGE_SIZE;
3463 return (void *)addr;
3467 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3468 * @size: the number of bytes to allocate
3469 * @gfp_mask: GFP flags for the allocation
3471 * This function is similar to alloc_pages(), except that it allocates the
3472 * minimum number of pages to satisfy the request. alloc_pages() can only
3473 * allocate memory in power-of-two pages.
3475 * This function is also limited by MAX_ORDER.
3477 * Memory allocated by this function must be released by free_pages_exact().
3479 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3481 unsigned int order = get_order(size);
3482 unsigned long addr;
3484 addr = __get_free_pages(gfp_mask, order);
3485 return make_alloc_exact(addr, order, size);
3487 EXPORT_SYMBOL(alloc_pages_exact);
3490 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3491 * pages on a node.
3492 * @nid: the preferred node ID where memory should be allocated
3493 * @size: the number of bytes to allocate
3494 * @gfp_mask: GFP flags for the allocation
3496 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3497 * back.
3499 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3501 unsigned int order = get_order(size);
3502 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3503 if (!p)
3504 return NULL;
3505 return make_alloc_exact((unsigned long)page_address(p), order, size);
3509 * free_pages_exact - release memory allocated via alloc_pages_exact()
3510 * @virt: the value returned by alloc_pages_exact.
3511 * @size: size of allocation, same value as passed to alloc_pages_exact().
3513 * Release the memory allocated by a previous call to alloc_pages_exact.
3515 void free_pages_exact(void *virt, size_t size)
3517 unsigned long addr = (unsigned long)virt;
3518 unsigned long end = addr + PAGE_ALIGN(size);
3520 while (addr < end) {
3521 free_page(addr);
3522 addr += PAGE_SIZE;
3525 EXPORT_SYMBOL(free_pages_exact);
3528 * nr_free_zone_pages - count number of pages beyond high watermark
3529 * @offset: The zone index of the highest zone
3531 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3532 * high watermark within all zones at or below a given zone index. For each
3533 * zone, the number of pages is calculated as:
3534 * managed_pages - high_pages
3536 static unsigned long nr_free_zone_pages(int offset)
3538 struct zoneref *z;
3539 struct zone *zone;
3541 /* Just pick one node, since fallback list is circular */
3542 unsigned long sum = 0;
3544 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3546 for_each_zone_zonelist(zone, z, zonelist, offset) {
3547 unsigned long size = zone->managed_pages;
3548 unsigned long high = high_wmark_pages(zone);
3549 if (size > high)
3550 sum += size - high;
3553 return sum;
3557 * nr_free_buffer_pages - count number of pages beyond high watermark
3559 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3560 * watermark within ZONE_DMA and ZONE_NORMAL.
3562 unsigned long nr_free_buffer_pages(void)
3564 return nr_free_zone_pages(gfp_zone(GFP_USER));
3566 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3569 * nr_free_pagecache_pages - count number of pages beyond high watermark
3571 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3572 * high watermark within all zones.
3574 unsigned long nr_free_pagecache_pages(void)
3576 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3579 static inline void show_node(struct zone *zone)
3581 if (IS_ENABLED(CONFIG_NUMA))
3582 printk("Node %d ", zone_to_nid(zone));
3585 void si_meminfo(struct sysinfo *val)
3587 val->totalram = totalram_pages;
3588 val->sharedram = global_page_state(NR_SHMEM);
3589 val->freeram = global_page_state(NR_FREE_PAGES);
3590 val->bufferram = nr_blockdev_pages();
3591 val->totalhigh = totalhigh_pages;
3592 val->freehigh = nr_free_highpages();
3593 val->mem_unit = PAGE_SIZE;
3596 EXPORT_SYMBOL(si_meminfo);
3598 #ifdef CONFIG_NUMA
3599 void si_meminfo_node(struct sysinfo *val, int nid)
3601 int zone_type; /* needs to be signed */
3602 unsigned long managed_pages = 0;
3603 pg_data_t *pgdat = NODE_DATA(nid);
3605 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3606 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3607 val->totalram = managed_pages;
3608 val->sharedram = node_page_state(nid, NR_SHMEM);
3609 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3610 #ifdef CONFIG_HIGHMEM
3611 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3612 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3613 NR_FREE_PAGES);
3614 #else
3615 val->totalhigh = 0;
3616 val->freehigh = 0;
3617 #endif
3618 val->mem_unit = PAGE_SIZE;
3620 #endif
3623 * Determine whether the node should be displayed or not, depending on whether
3624 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3626 bool skip_free_areas_node(unsigned int flags, int nid)
3628 bool ret = false;
3629 unsigned int cpuset_mems_cookie;
3631 if (!(flags & SHOW_MEM_FILTER_NODES))
3632 goto out;
3634 do {
3635 cpuset_mems_cookie = read_mems_allowed_begin();
3636 ret = !node_isset(nid, cpuset_current_mems_allowed);
3637 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3638 out:
3639 return ret;
3642 #define K(x) ((x) << (PAGE_SHIFT-10))
3644 static void show_migration_types(unsigned char type)
3646 static const char types[MIGRATE_TYPES] = {
3647 [MIGRATE_UNMOVABLE] = 'U',
3648 [MIGRATE_MOVABLE] = 'M',
3649 [MIGRATE_RECLAIMABLE] = 'E',
3650 [MIGRATE_HIGHATOMIC] = 'H',
3651 #ifdef CONFIG_CMA
3652 [MIGRATE_CMA] = 'C',
3653 #endif
3654 #ifdef CONFIG_MEMORY_ISOLATION
3655 [MIGRATE_ISOLATE] = 'I',
3656 #endif
3658 char tmp[MIGRATE_TYPES + 1];
3659 char *p = tmp;
3660 int i;
3662 for (i = 0; i < MIGRATE_TYPES; i++) {
3663 if (type & (1 << i))
3664 *p++ = types[i];
3667 *p = '\0';
3668 printk("(%s) ", tmp);
3672 * Show free area list (used inside shift_scroll-lock stuff)
3673 * We also calculate the percentage fragmentation. We do this by counting the
3674 * memory on each free list with the exception of the first item on the list.
3676 * Bits in @filter:
3677 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3678 * cpuset.
3680 void show_free_areas(unsigned int filter)
3682 unsigned long free_pcp = 0;
3683 int cpu;
3684 struct zone *zone;
3686 for_each_populated_zone(zone) {
3687 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3688 continue;
3690 for_each_online_cpu(cpu)
3691 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3694 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3695 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3696 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3697 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3698 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3699 " free:%lu free_pcp:%lu free_cma:%lu\n",
3700 global_page_state(NR_ACTIVE_ANON),
3701 global_page_state(NR_INACTIVE_ANON),
3702 global_page_state(NR_ISOLATED_ANON),
3703 global_page_state(NR_ACTIVE_FILE),
3704 global_page_state(NR_INACTIVE_FILE),
3705 global_page_state(NR_ISOLATED_FILE),
3706 global_page_state(NR_UNEVICTABLE),
3707 global_page_state(NR_FILE_DIRTY),
3708 global_page_state(NR_WRITEBACK),
3709 global_page_state(NR_UNSTABLE_NFS),
3710 global_page_state(NR_SLAB_RECLAIMABLE),
3711 global_page_state(NR_SLAB_UNRECLAIMABLE),
3712 global_page_state(NR_FILE_MAPPED),
3713 global_page_state(NR_SHMEM),
3714 global_page_state(NR_PAGETABLE),
3715 global_page_state(NR_BOUNCE),
3716 global_page_state(NR_FREE_PAGES),
3717 free_pcp,
3718 global_page_state(NR_FREE_CMA_PAGES));
3720 for_each_populated_zone(zone) {
3721 int i;
3723 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3724 continue;
3726 free_pcp = 0;
3727 for_each_online_cpu(cpu)
3728 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3730 show_node(zone);
3731 printk("%s"
3732 " free:%lukB"
3733 " min:%lukB"
3734 " low:%lukB"
3735 " high:%lukB"
3736 " active_anon:%lukB"
3737 " inactive_anon:%lukB"
3738 " active_file:%lukB"
3739 " inactive_file:%lukB"
3740 " unevictable:%lukB"
3741 " isolated(anon):%lukB"
3742 " isolated(file):%lukB"
3743 " present:%lukB"
3744 " managed:%lukB"
3745 " mlocked:%lukB"
3746 " dirty:%lukB"
3747 " writeback:%lukB"
3748 " mapped:%lukB"
3749 " shmem:%lukB"
3750 " slab_reclaimable:%lukB"
3751 " slab_unreclaimable:%lukB"
3752 " kernel_stack:%lukB"
3753 " pagetables:%lukB"
3754 " unstable:%lukB"
3755 " bounce:%lukB"
3756 " free_pcp:%lukB"
3757 " local_pcp:%ukB"
3758 " free_cma:%lukB"
3759 " writeback_tmp:%lukB"
3760 " pages_scanned:%lu"
3761 " all_unreclaimable? %s"
3762 "\n",
3763 zone->name,
3764 K(zone_page_state(zone, NR_FREE_PAGES)),
3765 K(min_wmark_pages(zone)),
3766 K(low_wmark_pages(zone)),
3767 K(high_wmark_pages(zone)),
3768 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3769 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3770 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3771 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3772 K(zone_page_state(zone, NR_UNEVICTABLE)),
3773 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3774 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3775 K(zone->present_pages),
3776 K(zone->managed_pages),
3777 K(zone_page_state(zone, NR_MLOCK)),
3778 K(zone_page_state(zone, NR_FILE_DIRTY)),
3779 K(zone_page_state(zone, NR_WRITEBACK)),
3780 K(zone_page_state(zone, NR_FILE_MAPPED)),
3781 K(zone_page_state(zone, NR_SHMEM)),
3782 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3783 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3784 zone_page_state(zone, NR_KERNEL_STACK) *
3785 THREAD_SIZE / 1024,
3786 K(zone_page_state(zone, NR_PAGETABLE)),
3787 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3788 K(zone_page_state(zone, NR_BOUNCE)),
3789 K(free_pcp),
3790 K(this_cpu_read(zone->pageset->pcp.count)),
3791 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3792 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3793 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3794 (!zone_reclaimable(zone) ? "yes" : "no")
3796 printk("lowmem_reserve[]:");
3797 for (i = 0; i < MAX_NR_ZONES; i++)
3798 printk(" %ld", zone->lowmem_reserve[i]);
3799 printk("\n");
3802 for_each_populated_zone(zone) {
3803 unsigned int order;
3804 unsigned long nr[MAX_ORDER], flags, total = 0;
3805 unsigned char types[MAX_ORDER];
3807 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3808 continue;
3809 show_node(zone);
3810 printk("%s: ", zone->name);
3812 spin_lock_irqsave(&zone->lock, flags);
3813 for (order = 0; order < MAX_ORDER; order++) {
3814 struct free_area *area = &zone->free_area[order];
3815 int type;
3817 nr[order] = area->nr_free;
3818 total += nr[order] << order;
3820 types[order] = 0;
3821 for (type = 0; type < MIGRATE_TYPES; type++) {
3822 if (!list_empty(&area->free_list[type]))
3823 types[order] |= 1 << type;
3826 spin_unlock_irqrestore(&zone->lock, flags);
3827 for (order = 0; order < MAX_ORDER; order++) {
3828 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3829 if (nr[order])
3830 show_migration_types(types[order]);
3832 printk("= %lukB\n", K(total));
3835 hugetlb_show_meminfo();
3837 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3839 show_swap_cache_info();
3842 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3844 zoneref->zone = zone;
3845 zoneref->zone_idx = zone_idx(zone);
3849 * Builds allocation fallback zone lists.
3851 * Add all populated zones of a node to the zonelist.
3853 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3854 int nr_zones)
3856 struct zone *zone;
3857 enum zone_type zone_type = MAX_NR_ZONES;
3859 do {
3860 zone_type--;
3861 zone = pgdat->node_zones + zone_type;
3862 if (populated_zone(zone)) {
3863 zoneref_set_zone(zone,
3864 &zonelist->_zonerefs[nr_zones++]);
3865 check_highest_zone(zone_type);
3867 } while (zone_type);
3869 return nr_zones;
3874 * zonelist_order:
3875 * 0 = automatic detection of better ordering.
3876 * 1 = order by ([node] distance, -zonetype)
3877 * 2 = order by (-zonetype, [node] distance)
3879 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3880 * the same zonelist. So only NUMA can configure this param.
3882 #define ZONELIST_ORDER_DEFAULT 0
3883 #define ZONELIST_ORDER_NODE 1
3884 #define ZONELIST_ORDER_ZONE 2
3886 /* zonelist order in the kernel.
3887 * set_zonelist_order() will set this to NODE or ZONE.
3889 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3890 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3893 #ifdef CONFIG_NUMA
3894 /* The value user specified ....changed by config */
3895 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3896 /* string for sysctl */
3897 #define NUMA_ZONELIST_ORDER_LEN 16
3898 char numa_zonelist_order[16] = "default";
3901 * interface for configure zonelist ordering.
3902 * command line option "numa_zonelist_order"
3903 * = "[dD]efault - default, automatic configuration.
3904 * = "[nN]ode - order by node locality, then by zone within node
3905 * = "[zZ]one - order by zone, then by locality within zone
3908 static int __parse_numa_zonelist_order(char *s)
3910 if (*s == 'd' || *s == 'D') {
3911 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3912 } else if (*s == 'n' || *s == 'N') {
3913 user_zonelist_order = ZONELIST_ORDER_NODE;
3914 } else if (*s == 'z' || *s == 'Z') {
3915 user_zonelist_order = ZONELIST_ORDER_ZONE;
3916 } else {
3917 printk(KERN_WARNING
3918 "Ignoring invalid numa_zonelist_order value: "
3919 "%s\n", s);
3920 return -EINVAL;
3922 return 0;
3925 static __init int setup_numa_zonelist_order(char *s)
3927 int ret;
3929 if (!s)
3930 return 0;
3932 ret = __parse_numa_zonelist_order(s);
3933 if (ret == 0)
3934 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3936 return ret;
3938 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3941 * sysctl handler for numa_zonelist_order
3943 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3944 void __user *buffer, size_t *length,
3945 loff_t *ppos)
3947 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3948 int ret;
3949 static DEFINE_MUTEX(zl_order_mutex);
3951 mutex_lock(&zl_order_mutex);
3952 if (write) {
3953 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3954 ret = -EINVAL;
3955 goto out;
3957 strcpy(saved_string, (char *)table->data);
3959 ret = proc_dostring(table, write, buffer, length, ppos);
3960 if (ret)
3961 goto out;
3962 if (write) {
3963 int oldval = user_zonelist_order;
3965 ret = __parse_numa_zonelist_order((char *)table->data);
3966 if (ret) {
3968 * bogus value. restore saved string
3970 strncpy((char *)table->data, saved_string,
3971 NUMA_ZONELIST_ORDER_LEN);
3972 user_zonelist_order = oldval;
3973 } else if (oldval != user_zonelist_order) {
3974 mutex_lock(&zonelists_mutex);
3975 build_all_zonelists(NULL, NULL);
3976 mutex_unlock(&zonelists_mutex);
3979 out:
3980 mutex_unlock(&zl_order_mutex);
3981 return ret;
3985 #define MAX_NODE_LOAD (nr_online_nodes)
3986 static int node_load[MAX_NUMNODES];
3989 * find_next_best_node - find the next node that should appear in a given node's fallback list
3990 * @node: node whose fallback list we're appending
3991 * @used_node_mask: nodemask_t of already used nodes
3993 * We use a number of factors to determine which is the next node that should
3994 * appear on a given node's fallback list. The node should not have appeared
3995 * already in @node's fallback list, and it should be the next closest node
3996 * according to the distance array (which contains arbitrary distance values
3997 * from each node to each node in the system), and should also prefer nodes
3998 * with no CPUs, since presumably they'll have very little allocation pressure
3999 * on them otherwise.
4000 * It returns -1 if no node is found.
4002 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4004 int n, val;
4005 int min_val = INT_MAX;
4006 int best_node = NUMA_NO_NODE;
4007 const struct cpumask *tmp = cpumask_of_node(0);
4009 /* Use the local node if we haven't already */
4010 if (!node_isset(node, *used_node_mask)) {
4011 node_set(node, *used_node_mask);
4012 return node;
4015 for_each_node_state(n, N_MEMORY) {
4017 /* Don't want a node to appear more than once */
4018 if (node_isset(n, *used_node_mask))
4019 continue;
4021 /* Use the distance array to find the distance */
4022 val = node_distance(node, n);
4024 /* Penalize nodes under us ("prefer the next node") */
4025 val += (n < node);
4027 /* Give preference to headless and unused nodes */
4028 tmp = cpumask_of_node(n);
4029 if (!cpumask_empty(tmp))
4030 val += PENALTY_FOR_NODE_WITH_CPUS;
4032 /* Slight preference for less loaded node */
4033 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4034 val += node_load[n];
4036 if (val < min_val) {
4037 min_val = val;
4038 best_node = n;
4042 if (best_node >= 0)
4043 node_set(best_node, *used_node_mask);
4045 return best_node;
4050 * Build zonelists ordered by node and zones within node.
4051 * This results in maximum locality--normal zone overflows into local
4052 * DMA zone, if any--but risks exhausting DMA zone.
4054 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4056 int j;
4057 struct zonelist *zonelist;
4059 zonelist = &pgdat->node_zonelists[0];
4060 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4062 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4063 zonelist->_zonerefs[j].zone = NULL;
4064 zonelist->_zonerefs[j].zone_idx = 0;
4068 * Build gfp_thisnode zonelists
4070 static void build_thisnode_zonelists(pg_data_t *pgdat)
4072 int j;
4073 struct zonelist *zonelist;
4075 zonelist = &pgdat->node_zonelists[1];
4076 j = build_zonelists_node(pgdat, zonelist, 0);
4077 zonelist->_zonerefs[j].zone = NULL;
4078 zonelist->_zonerefs[j].zone_idx = 0;
4082 * Build zonelists ordered by zone and nodes within zones.
4083 * This results in conserving DMA zone[s] until all Normal memory is
4084 * exhausted, but results in overflowing to remote node while memory
4085 * may still exist in local DMA zone.
4087 static int node_order[MAX_NUMNODES];
4089 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4091 int pos, j, node;
4092 int zone_type; /* needs to be signed */
4093 struct zone *z;
4094 struct zonelist *zonelist;
4096 zonelist = &pgdat->node_zonelists[0];
4097 pos = 0;
4098 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4099 for (j = 0; j < nr_nodes; j++) {
4100 node = node_order[j];
4101 z = &NODE_DATA(node)->node_zones[zone_type];
4102 if (populated_zone(z)) {
4103 zoneref_set_zone(z,
4104 &zonelist->_zonerefs[pos++]);
4105 check_highest_zone(zone_type);
4109 zonelist->_zonerefs[pos].zone = NULL;
4110 zonelist->_zonerefs[pos].zone_idx = 0;
4113 #if defined(CONFIG_64BIT)
4115 * Devices that require DMA32/DMA are relatively rare and do not justify a
4116 * penalty to every machine in case the specialised case applies. Default
4117 * to Node-ordering on 64-bit NUMA machines
4119 static int default_zonelist_order(void)
4121 return ZONELIST_ORDER_NODE;
4123 #else
4125 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4126 * by the kernel. If processes running on node 0 deplete the low memory zone
4127 * then reclaim will occur more frequency increasing stalls and potentially
4128 * be easier to OOM if a large percentage of the zone is under writeback or
4129 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4130 * Hence, default to zone ordering on 32-bit.
4132 static int default_zonelist_order(void)
4134 return ZONELIST_ORDER_ZONE;
4136 #endif /* CONFIG_64BIT */
4138 static void set_zonelist_order(void)
4140 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4141 current_zonelist_order = default_zonelist_order();
4142 else
4143 current_zonelist_order = user_zonelist_order;
4146 static void build_zonelists(pg_data_t *pgdat)
4148 int i, node, load;
4149 nodemask_t used_mask;
4150 int local_node, prev_node;
4151 struct zonelist *zonelist;
4152 unsigned int order = current_zonelist_order;
4154 /* initialize zonelists */
4155 for (i = 0; i < MAX_ZONELISTS; i++) {
4156 zonelist = pgdat->node_zonelists + i;
4157 zonelist->_zonerefs[0].zone = NULL;
4158 zonelist->_zonerefs[0].zone_idx = 0;
4161 /* NUMA-aware ordering of nodes */
4162 local_node = pgdat->node_id;
4163 load = nr_online_nodes;
4164 prev_node = local_node;
4165 nodes_clear(used_mask);
4167 memset(node_order, 0, sizeof(node_order));
4168 i = 0;
4170 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4172 * We don't want to pressure a particular node.
4173 * So adding penalty to the first node in same
4174 * distance group to make it round-robin.
4176 if (node_distance(local_node, node) !=
4177 node_distance(local_node, prev_node))
4178 node_load[node] = load;
4180 prev_node = node;
4181 load--;
4182 if (order == ZONELIST_ORDER_NODE)
4183 build_zonelists_in_node_order(pgdat, node);
4184 else
4185 node_order[i++] = node; /* remember order */
4188 if (order == ZONELIST_ORDER_ZONE) {
4189 /* calculate node order -- i.e., DMA last! */
4190 build_zonelists_in_zone_order(pgdat, i);
4193 build_thisnode_zonelists(pgdat);
4196 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4198 * Return node id of node used for "local" allocations.
4199 * I.e., first node id of first zone in arg node's generic zonelist.
4200 * Used for initializing percpu 'numa_mem', which is used primarily
4201 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4203 int local_memory_node(int node)
4205 struct zone *zone;
4207 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4208 gfp_zone(GFP_KERNEL),
4209 NULL,
4210 &zone);
4211 return zone->node;
4213 #endif
4215 #else /* CONFIG_NUMA */
4217 static void set_zonelist_order(void)
4219 current_zonelist_order = ZONELIST_ORDER_ZONE;
4222 static void build_zonelists(pg_data_t *pgdat)
4224 int node, local_node;
4225 enum zone_type j;
4226 struct zonelist *zonelist;
4228 local_node = pgdat->node_id;
4230 zonelist = &pgdat->node_zonelists[0];
4231 j = build_zonelists_node(pgdat, zonelist, 0);
4234 * Now we build the zonelist so that it contains the zones
4235 * of all the other nodes.
4236 * We don't want to pressure a particular node, so when
4237 * building the zones for node N, we make sure that the
4238 * zones coming right after the local ones are those from
4239 * node N+1 (modulo N)
4241 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4242 if (!node_online(node))
4243 continue;
4244 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4246 for (node = 0; node < local_node; node++) {
4247 if (!node_online(node))
4248 continue;
4249 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4252 zonelist->_zonerefs[j].zone = NULL;
4253 zonelist->_zonerefs[j].zone_idx = 0;
4256 #endif /* CONFIG_NUMA */
4259 * Boot pageset table. One per cpu which is going to be used for all
4260 * zones and all nodes. The parameters will be set in such a way
4261 * that an item put on a list will immediately be handed over to
4262 * the buddy list. This is safe since pageset manipulation is done
4263 * with interrupts disabled.
4265 * The boot_pagesets must be kept even after bootup is complete for
4266 * unused processors and/or zones. They do play a role for bootstrapping
4267 * hotplugged processors.
4269 * zoneinfo_show() and maybe other functions do
4270 * not check if the processor is online before following the pageset pointer.
4271 * Other parts of the kernel may not check if the zone is available.
4273 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4274 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4275 static void setup_zone_pageset(struct zone *zone);
4278 * Global mutex to protect against size modification of zonelists
4279 * as well as to serialize pageset setup for the new populated zone.
4281 DEFINE_MUTEX(zonelists_mutex);
4283 /* return values int ....just for stop_machine() */
4284 static int __build_all_zonelists(void *data)
4286 int nid;
4287 int cpu;
4288 pg_data_t *self = data;
4290 #ifdef CONFIG_NUMA
4291 memset(node_load, 0, sizeof(node_load));
4292 #endif
4294 if (self && !node_online(self->node_id)) {
4295 build_zonelists(self);
4298 for_each_online_node(nid) {
4299 pg_data_t *pgdat = NODE_DATA(nid);
4301 build_zonelists(pgdat);
4305 * Initialize the boot_pagesets that are going to be used
4306 * for bootstrapping processors. The real pagesets for
4307 * each zone will be allocated later when the per cpu
4308 * allocator is available.
4310 * boot_pagesets are used also for bootstrapping offline
4311 * cpus if the system is already booted because the pagesets
4312 * are needed to initialize allocators on a specific cpu too.
4313 * F.e. the percpu allocator needs the page allocator which
4314 * needs the percpu allocator in order to allocate its pagesets
4315 * (a chicken-egg dilemma).
4317 for_each_possible_cpu(cpu) {
4318 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4320 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4322 * We now know the "local memory node" for each node--
4323 * i.e., the node of the first zone in the generic zonelist.
4324 * Set up numa_mem percpu variable for on-line cpus. During
4325 * boot, only the boot cpu should be on-line; we'll init the
4326 * secondary cpus' numa_mem as they come on-line. During
4327 * node/memory hotplug, we'll fixup all on-line cpus.
4329 if (cpu_online(cpu))
4330 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4331 #endif
4334 return 0;
4337 static noinline void __init
4338 build_all_zonelists_init(void)
4340 __build_all_zonelists(NULL);
4341 mminit_verify_zonelist();
4342 cpuset_init_current_mems_allowed();
4346 * Called with zonelists_mutex held always
4347 * unless system_state == SYSTEM_BOOTING.
4349 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4350 * [we're only called with non-NULL zone through __meminit paths] and
4351 * (2) call of __init annotated helper build_all_zonelists_init
4352 * [protected by SYSTEM_BOOTING].
4354 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4356 set_zonelist_order();
4358 if (system_state == SYSTEM_BOOTING) {
4359 build_all_zonelists_init();
4360 } else {
4361 #ifdef CONFIG_MEMORY_HOTPLUG
4362 if (zone)
4363 setup_zone_pageset(zone);
4364 #endif
4365 /* we have to stop all cpus to guarantee there is no user
4366 of zonelist */
4367 stop_machine(__build_all_zonelists, pgdat, NULL);
4368 /* cpuset refresh routine should be here */
4370 vm_total_pages = nr_free_pagecache_pages();
4372 * Disable grouping by mobility if the number of pages in the
4373 * system is too low to allow the mechanism to work. It would be
4374 * more accurate, but expensive to check per-zone. This check is
4375 * made on memory-hotadd so a system can start with mobility
4376 * disabled and enable it later
4378 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4379 page_group_by_mobility_disabled = 1;
4380 else
4381 page_group_by_mobility_disabled = 0;
4383 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4384 "Total pages: %ld\n",
4385 nr_online_nodes,
4386 zonelist_order_name[current_zonelist_order],
4387 page_group_by_mobility_disabled ? "off" : "on",
4388 vm_total_pages);
4389 #ifdef CONFIG_NUMA
4390 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4391 #endif
4395 * Helper functions to size the waitqueue hash table.
4396 * Essentially these want to choose hash table sizes sufficiently
4397 * large so that collisions trying to wait on pages are rare.
4398 * But in fact, the number of active page waitqueues on typical
4399 * systems is ridiculously low, less than 200. So this is even
4400 * conservative, even though it seems large.
4402 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4403 * waitqueues, i.e. the size of the waitq table given the number of pages.
4405 #define PAGES_PER_WAITQUEUE 256
4407 #ifndef CONFIG_MEMORY_HOTPLUG
4408 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4410 unsigned long size = 1;
4412 pages /= PAGES_PER_WAITQUEUE;
4414 while (size < pages)
4415 size <<= 1;
4418 * Once we have dozens or even hundreds of threads sleeping
4419 * on IO we've got bigger problems than wait queue collision.
4420 * Limit the size of the wait table to a reasonable size.
4422 size = min(size, 4096UL);
4424 return max(size, 4UL);
4426 #else
4428 * A zone's size might be changed by hot-add, so it is not possible to determine
4429 * a suitable size for its wait_table. So we use the maximum size now.
4431 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4433 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4434 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4435 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4437 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4438 * or more by the traditional way. (See above). It equals:
4440 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4441 * ia64(16K page size) : = ( 8G + 4M)byte.
4442 * powerpc (64K page size) : = (32G +16M)byte.
4444 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4446 return 4096UL;
4448 #endif
4451 * This is an integer logarithm so that shifts can be used later
4452 * to extract the more random high bits from the multiplicative
4453 * hash function before the remainder is taken.
4455 static inline unsigned long wait_table_bits(unsigned long size)
4457 return ffz(~size);
4461 * Initially all pages are reserved - free ones are freed
4462 * up by free_all_bootmem() once the early boot process is
4463 * done. Non-atomic initialization, single-pass.
4465 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4466 unsigned long start_pfn, enum memmap_context context)
4468 pg_data_t *pgdat = NODE_DATA(nid);
4469 unsigned long end_pfn = start_pfn + size;
4470 unsigned long pfn;
4471 struct zone *z;
4472 unsigned long nr_initialised = 0;
4474 if (highest_memmap_pfn < end_pfn - 1)
4475 highest_memmap_pfn = end_pfn - 1;
4477 z = &pgdat->node_zones[zone];
4478 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4480 * There can be holes in boot-time mem_map[]s
4481 * handed to this function. They do not
4482 * exist on hotplugged memory.
4484 if (context == MEMMAP_EARLY) {
4485 if (!early_pfn_valid(pfn))
4486 continue;
4487 if (!early_pfn_in_nid(pfn, nid))
4488 continue;
4489 if (!update_defer_init(pgdat, pfn, end_pfn,
4490 &nr_initialised))
4491 break;
4495 * Mark the block movable so that blocks are reserved for
4496 * movable at startup. This will force kernel allocations
4497 * to reserve their blocks rather than leaking throughout
4498 * the address space during boot when many long-lived
4499 * kernel allocations are made.
4501 * bitmap is created for zone's valid pfn range. but memmap
4502 * can be created for invalid pages (for alignment)
4503 * check here not to call set_pageblock_migratetype() against
4504 * pfn out of zone.
4506 if (!(pfn & (pageblock_nr_pages - 1))) {
4507 struct page *page = pfn_to_page(pfn);
4509 __init_single_page(page, pfn, zone, nid);
4510 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4511 } else {
4512 __init_single_pfn(pfn, zone, nid);
4517 static void __meminit zone_init_free_lists(struct zone *zone)
4519 unsigned int order, t;
4520 for_each_migratetype_order(order, t) {
4521 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4522 zone->free_area[order].nr_free = 0;
4526 #ifndef __HAVE_ARCH_MEMMAP_INIT
4527 #define memmap_init(size, nid, zone, start_pfn) \
4528 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4529 #endif
4531 static int zone_batchsize(struct zone *zone)
4533 #ifdef CONFIG_MMU
4534 int batch;
4537 * The per-cpu-pages pools are set to around 1000th of the
4538 * size of the zone. But no more than 1/2 of a meg.
4540 * OK, so we don't know how big the cache is. So guess.
4542 batch = zone->managed_pages / 1024;
4543 if (batch * PAGE_SIZE > 512 * 1024)
4544 batch = (512 * 1024) / PAGE_SIZE;
4545 batch /= 4; /* We effectively *= 4 below */
4546 if (batch < 1)
4547 batch = 1;
4550 * Clamp the batch to a 2^n - 1 value. Having a power
4551 * of 2 value was found to be more likely to have
4552 * suboptimal cache aliasing properties in some cases.
4554 * For example if 2 tasks are alternately allocating
4555 * batches of pages, one task can end up with a lot
4556 * of pages of one half of the possible page colors
4557 * and the other with pages of the other colors.
4559 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4561 return batch;
4563 #else
4564 /* The deferral and batching of frees should be suppressed under NOMMU
4565 * conditions.
4567 * The problem is that NOMMU needs to be able to allocate large chunks
4568 * of contiguous memory as there's no hardware page translation to
4569 * assemble apparent contiguous memory from discontiguous pages.
4571 * Queueing large contiguous runs of pages for batching, however,
4572 * causes the pages to actually be freed in smaller chunks. As there
4573 * can be a significant delay between the individual batches being
4574 * recycled, this leads to the once large chunks of space being
4575 * fragmented and becoming unavailable for high-order allocations.
4577 return 0;
4578 #endif
4582 * pcp->high and pcp->batch values are related and dependent on one another:
4583 * ->batch must never be higher then ->high.
4584 * The following function updates them in a safe manner without read side
4585 * locking.
4587 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4588 * those fields changing asynchronously (acording the the above rule).
4590 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4591 * outside of boot time (or some other assurance that no concurrent updaters
4592 * exist).
4594 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4595 unsigned long batch)
4597 /* start with a fail safe value for batch */
4598 pcp->batch = 1;
4599 smp_wmb();
4601 /* Update high, then batch, in order */
4602 pcp->high = high;
4603 smp_wmb();
4605 pcp->batch = batch;
4608 /* a companion to pageset_set_high() */
4609 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4611 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4614 static void pageset_init(struct per_cpu_pageset *p)
4616 struct per_cpu_pages *pcp;
4617 int migratetype;
4619 memset(p, 0, sizeof(*p));
4621 pcp = &p->pcp;
4622 pcp->count = 0;
4623 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4624 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4627 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4629 pageset_init(p);
4630 pageset_set_batch(p, batch);
4634 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4635 * to the value high for the pageset p.
4637 static void pageset_set_high(struct per_cpu_pageset *p,
4638 unsigned long high)
4640 unsigned long batch = max(1UL, high / 4);
4641 if ((high / 4) > (PAGE_SHIFT * 8))
4642 batch = PAGE_SHIFT * 8;
4644 pageset_update(&p->pcp, high, batch);
4647 static void pageset_set_high_and_batch(struct zone *zone,
4648 struct per_cpu_pageset *pcp)
4650 if (percpu_pagelist_fraction)
4651 pageset_set_high(pcp,
4652 (zone->managed_pages /
4653 percpu_pagelist_fraction));
4654 else
4655 pageset_set_batch(pcp, zone_batchsize(zone));
4658 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4660 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4662 pageset_init(pcp);
4663 pageset_set_high_and_batch(zone, pcp);
4666 static void __meminit setup_zone_pageset(struct zone *zone)
4668 int cpu;
4669 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4670 for_each_possible_cpu(cpu)
4671 zone_pageset_init(zone, cpu);
4675 * Allocate per cpu pagesets and initialize them.
4676 * Before this call only boot pagesets were available.
4678 void __init setup_per_cpu_pageset(void)
4680 struct zone *zone;
4682 for_each_populated_zone(zone)
4683 setup_zone_pageset(zone);
4686 static noinline __init_refok
4687 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4689 int i;
4690 size_t alloc_size;
4693 * The per-page waitqueue mechanism uses hashed waitqueues
4694 * per zone.
4696 zone->wait_table_hash_nr_entries =
4697 wait_table_hash_nr_entries(zone_size_pages);
4698 zone->wait_table_bits =
4699 wait_table_bits(zone->wait_table_hash_nr_entries);
4700 alloc_size = zone->wait_table_hash_nr_entries
4701 * sizeof(wait_queue_head_t);
4703 if (!slab_is_available()) {
4704 zone->wait_table = (wait_queue_head_t *)
4705 memblock_virt_alloc_node_nopanic(
4706 alloc_size, zone->zone_pgdat->node_id);
4707 } else {
4709 * This case means that a zone whose size was 0 gets new memory
4710 * via memory hot-add.
4711 * But it may be the case that a new node was hot-added. In
4712 * this case vmalloc() will not be able to use this new node's
4713 * memory - this wait_table must be initialized to use this new
4714 * node itself as well.
4715 * To use this new node's memory, further consideration will be
4716 * necessary.
4718 zone->wait_table = vmalloc(alloc_size);
4720 if (!zone->wait_table)
4721 return -ENOMEM;
4723 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4724 init_waitqueue_head(zone->wait_table + i);
4726 return 0;
4729 static __meminit void zone_pcp_init(struct zone *zone)
4732 * per cpu subsystem is not up at this point. The following code
4733 * relies on the ability of the linker to provide the
4734 * offset of a (static) per cpu variable into the per cpu area.
4736 zone->pageset = &boot_pageset;
4738 if (populated_zone(zone))
4739 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4740 zone->name, zone->present_pages,
4741 zone_batchsize(zone));
4744 int __meminit init_currently_empty_zone(struct zone *zone,
4745 unsigned long zone_start_pfn,
4746 unsigned long size)
4748 struct pglist_data *pgdat = zone->zone_pgdat;
4749 int ret;
4750 ret = zone_wait_table_init(zone, size);
4751 if (ret)
4752 return ret;
4753 pgdat->nr_zones = zone_idx(zone) + 1;
4755 zone->zone_start_pfn = zone_start_pfn;
4757 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4758 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4759 pgdat->node_id,
4760 (unsigned long)zone_idx(zone),
4761 zone_start_pfn, (zone_start_pfn + size));
4763 zone_init_free_lists(zone);
4765 return 0;
4768 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4769 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4772 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4774 int __meminit __early_pfn_to_nid(unsigned long pfn,
4775 struct mminit_pfnnid_cache *state)
4777 unsigned long start_pfn, end_pfn;
4778 int nid;
4780 if (state->last_start <= pfn && pfn < state->last_end)
4781 return state->last_nid;
4783 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4784 if (nid != -1) {
4785 state->last_start = start_pfn;
4786 state->last_end = end_pfn;
4787 state->last_nid = nid;
4790 return nid;
4792 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4795 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4796 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4797 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4799 * If an architecture guarantees that all ranges registered contain no holes
4800 * and may be freed, this this function may be used instead of calling
4801 * memblock_free_early_nid() manually.
4803 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4805 unsigned long start_pfn, end_pfn;
4806 int i, this_nid;
4808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4809 start_pfn = min(start_pfn, max_low_pfn);
4810 end_pfn = min(end_pfn, max_low_pfn);
4812 if (start_pfn < end_pfn)
4813 memblock_free_early_nid(PFN_PHYS(start_pfn),
4814 (end_pfn - start_pfn) << PAGE_SHIFT,
4815 this_nid);
4820 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4821 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4823 * If an architecture guarantees that all ranges registered contain no holes and may
4824 * be freed, this function may be used instead of calling memory_present() manually.
4826 void __init sparse_memory_present_with_active_regions(int nid)
4828 unsigned long start_pfn, end_pfn;
4829 int i, this_nid;
4831 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4832 memory_present(this_nid, start_pfn, end_pfn);
4836 * get_pfn_range_for_nid - Return the start and end page frames for a node
4837 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4838 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4839 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4841 * It returns the start and end page frame of a node based on information
4842 * provided by memblock_set_node(). If called for a node
4843 * with no available memory, a warning is printed and the start and end
4844 * PFNs will be 0.
4846 void __meminit get_pfn_range_for_nid(unsigned int nid,
4847 unsigned long *start_pfn, unsigned long *end_pfn)
4849 unsigned long this_start_pfn, this_end_pfn;
4850 int i;
4852 *start_pfn = -1UL;
4853 *end_pfn = 0;
4855 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4856 *start_pfn = min(*start_pfn, this_start_pfn);
4857 *end_pfn = max(*end_pfn, this_end_pfn);
4860 if (*start_pfn == -1UL)
4861 *start_pfn = 0;
4865 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4866 * assumption is made that zones within a node are ordered in monotonic
4867 * increasing memory addresses so that the "highest" populated zone is used
4869 static void __init find_usable_zone_for_movable(void)
4871 int zone_index;
4872 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4873 if (zone_index == ZONE_MOVABLE)
4874 continue;
4876 if (arch_zone_highest_possible_pfn[zone_index] >
4877 arch_zone_lowest_possible_pfn[zone_index])
4878 break;
4881 VM_BUG_ON(zone_index == -1);
4882 movable_zone = zone_index;
4886 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4887 * because it is sized independent of architecture. Unlike the other zones,
4888 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4889 * in each node depending on the size of each node and how evenly kernelcore
4890 * is distributed. This helper function adjusts the zone ranges
4891 * provided by the architecture for a given node by using the end of the
4892 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4893 * zones within a node are in order of monotonic increases memory addresses
4895 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4896 unsigned long zone_type,
4897 unsigned long node_start_pfn,
4898 unsigned long node_end_pfn,
4899 unsigned long *zone_start_pfn,
4900 unsigned long *zone_end_pfn)
4902 /* Only adjust if ZONE_MOVABLE is on this node */
4903 if (zone_movable_pfn[nid]) {
4904 /* Size ZONE_MOVABLE */
4905 if (zone_type == ZONE_MOVABLE) {
4906 *zone_start_pfn = zone_movable_pfn[nid];
4907 *zone_end_pfn = min(node_end_pfn,
4908 arch_zone_highest_possible_pfn[movable_zone]);
4910 /* Adjust for ZONE_MOVABLE starting within this range */
4911 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4912 *zone_end_pfn > zone_movable_pfn[nid]) {
4913 *zone_end_pfn = zone_movable_pfn[nid];
4915 /* Check if this whole range is within ZONE_MOVABLE */
4916 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4917 *zone_start_pfn = *zone_end_pfn;
4922 * Return the number of pages a zone spans in a node, including holes
4923 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4925 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4926 unsigned long zone_type,
4927 unsigned long node_start_pfn,
4928 unsigned long node_end_pfn,
4929 unsigned long *ignored)
4931 unsigned long zone_start_pfn, zone_end_pfn;
4933 /* When hotadd a new node from cpu_up(), the node should be empty */
4934 if (!node_start_pfn && !node_end_pfn)
4935 return 0;
4937 /* Get the start and end of the zone */
4938 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4939 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4940 adjust_zone_range_for_zone_movable(nid, zone_type,
4941 node_start_pfn, node_end_pfn,
4942 &zone_start_pfn, &zone_end_pfn);
4944 /* Check that this node has pages within the zone's required range */
4945 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4946 return 0;
4948 /* Move the zone boundaries inside the node if necessary */
4949 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4950 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4952 /* Return the spanned pages */
4953 return zone_end_pfn - zone_start_pfn;
4957 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4958 * then all holes in the requested range will be accounted for.
4960 unsigned long __meminit __absent_pages_in_range(int nid,
4961 unsigned long range_start_pfn,
4962 unsigned long range_end_pfn)
4964 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4965 unsigned long start_pfn, end_pfn;
4966 int i;
4968 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4969 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4970 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4971 nr_absent -= end_pfn - start_pfn;
4973 return nr_absent;
4977 * absent_pages_in_range - Return number of page frames in holes within a range
4978 * @start_pfn: The start PFN to start searching for holes
4979 * @end_pfn: The end PFN to stop searching for holes
4981 * It returns the number of pages frames in memory holes within a range.
4983 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4984 unsigned long end_pfn)
4986 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4989 /* Return the number of page frames in holes in a zone on a node */
4990 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4991 unsigned long zone_type,
4992 unsigned long node_start_pfn,
4993 unsigned long node_end_pfn,
4994 unsigned long *ignored)
4996 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4997 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4998 unsigned long zone_start_pfn, zone_end_pfn;
5000 /* When hotadd a new node from cpu_up(), the node should be empty */
5001 if (!node_start_pfn && !node_end_pfn)
5002 return 0;
5004 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5005 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5007 adjust_zone_range_for_zone_movable(nid, zone_type,
5008 node_start_pfn, node_end_pfn,
5009 &zone_start_pfn, &zone_end_pfn);
5010 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5013 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5014 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5015 unsigned long zone_type,
5016 unsigned long node_start_pfn,
5017 unsigned long node_end_pfn,
5018 unsigned long *zones_size)
5020 return zones_size[zone_type];
5023 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5024 unsigned long zone_type,
5025 unsigned long node_start_pfn,
5026 unsigned long node_end_pfn,
5027 unsigned long *zholes_size)
5029 if (!zholes_size)
5030 return 0;
5032 return zholes_size[zone_type];
5035 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5037 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5038 unsigned long node_start_pfn,
5039 unsigned long node_end_pfn,
5040 unsigned long *zones_size,
5041 unsigned long *zholes_size)
5043 unsigned long realtotalpages = 0, totalpages = 0;
5044 enum zone_type i;
5046 for (i = 0; i < MAX_NR_ZONES; i++) {
5047 struct zone *zone = pgdat->node_zones + i;
5048 unsigned long size, real_size;
5050 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5051 node_start_pfn,
5052 node_end_pfn,
5053 zones_size);
5054 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5055 node_start_pfn, node_end_pfn,
5056 zholes_size);
5057 zone->spanned_pages = size;
5058 zone->present_pages = real_size;
5060 totalpages += size;
5061 realtotalpages += real_size;
5064 pgdat->node_spanned_pages = totalpages;
5065 pgdat->node_present_pages = realtotalpages;
5066 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5067 realtotalpages);
5070 #ifndef CONFIG_SPARSEMEM
5072 * Calculate the size of the zone->blockflags rounded to an unsigned long
5073 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5074 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5075 * round what is now in bits to nearest long in bits, then return it in
5076 * bytes.
5078 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5080 unsigned long usemapsize;
5082 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5083 usemapsize = roundup(zonesize, pageblock_nr_pages);
5084 usemapsize = usemapsize >> pageblock_order;
5085 usemapsize *= NR_PAGEBLOCK_BITS;
5086 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5088 return usemapsize / 8;
5091 static void __init setup_usemap(struct pglist_data *pgdat,
5092 struct zone *zone,
5093 unsigned long zone_start_pfn,
5094 unsigned long zonesize)
5096 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5097 zone->pageblock_flags = NULL;
5098 if (usemapsize)
5099 zone->pageblock_flags =
5100 memblock_virt_alloc_node_nopanic(usemapsize,
5101 pgdat->node_id);
5103 #else
5104 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5105 unsigned long zone_start_pfn, unsigned long zonesize) {}
5106 #endif /* CONFIG_SPARSEMEM */
5108 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5110 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5111 void __paginginit set_pageblock_order(void)
5113 unsigned int order;
5115 /* Check that pageblock_nr_pages has not already been setup */
5116 if (pageblock_order)
5117 return;
5119 if (HPAGE_SHIFT > PAGE_SHIFT)
5120 order = HUGETLB_PAGE_ORDER;
5121 else
5122 order = MAX_ORDER - 1;
5125 * Assume the largest contiguous order of interest is a huge page.
5126 * This value may be variable depending on boot parameters on IA64 and
5127 * powerpc.
5129 pageblock_order = order;
5131 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5134 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5135 * is unused as pageblock_order is set at compile-time. See
5136 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5137 * the kernel config
5139 void __paginginit set_pageblock_order(void)
5143 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5145 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5146 unsigned long present_pages)
5148 unsigned long pages = spanned_pages;
5151 * Provide a more accurate estimation if there are holes within
5152 * the zone and SPARSEMEM is in use. If there are holes within the
5153 * zone, each populated memory region may cost us one or two extra
5154 * memmap pages due to alignment because memmap pages for each
5155 * populated regions may not naturally algined on page boundary.
5156 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5158 if (spanned_pages > present_pages + (present_pages >> 4) &&
5159 IS_ENABLED(CONFIG_SPARSEMEM))
5160 pages = present_pages;
5162 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5166 * Set up the zone data structures:
5167 * - mark all pages reserved
5168 * - mark all memory queues empty
5169 * - clear the memory bitmaps
5171 * NOTE: pgdat should get zeroed by caller.
5173 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5175 enum zone_type j;
5176 int nid = pgdat->node_id;
5177 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5178 int ret;
5180 pgdat_resize_init(pgdat);
5181 #ifdef CONFIG_NUMA_BALANCING
5182 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5183 pgdat->numabalancing_migrate_nr_pages = 0;
5184 pgdat->numabalancing_migrate_next_window = jiffies;
5185 #endif
5186 init_waitqueue_head(&pgdat->kswapd_wait);
5187 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5188 pgdat_page_ext_init(pgdat);
5190 for (j = 0; j < MAX_NR_ZONES; j++) {
5191 struct zone *zone = pgdat->node_zones + j;
5192 unsigned long size, realsize, freesize, memmap_pages;
5194 size = zone->spanned_pages;
5195 realsize = freesize = zone->present_pages;
5198 * Adjust freesize so that it accounts for how much memory
5199 * is used by this zone for memmap. This affects the watermark
5200 * and per-cpu initialisations
5202 memmap_pages = calc_memmap_size(size, realsize);
5203 if (!is_highmem_idx(j)) {
5204 if (freesize >= memmap_pages) {
5205 freesize -= memmap_pages;
5206 if (memmap_pages)
5207 printk(KERN_DEBUG
5208 " %s zone: %lu pages used for memmap\n",
5209 zone_names[j], memmap_pages);
5210 } else
5211 printk(KERN_WARNING
5212 " %s zone: %lu pages exceeds freesize %lu\n",
5213 zone_names[j], memmap_pages, freesize);
5216 /* Account for reserved pages */
5217 if (j == 0 && freesize > dma_reserve) {
5218 freesize -= dma_reserve;
5219 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5220 zone_names[0], dma_reserve);
5223 if (!is_highmem_idx(j))
5224 nr_kernel_pages += freesize;
5225 /* Charge for highmem memmap if there are enough kernel pages */
5226 else if (nr_kernel_pages > memmap_pages * 2)
5227 nr_kernel_pages -= memmap_pages;
5228 nr_all_pages += freesize;
5231 * Set an approximate value for lowmem here, it will be adjusted
5232 * when the bootmem allocator frees pages into the buddy system.
5233 * And all highmem pages will be managed by the buddy system.
5235 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5236 #ifdef CONFIG_NUMA
5237 zone->node = nid;
5238 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5239 / 100;
5240 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5241 #endif
5242 zone->name = zone_names[j];
5243 spin_lock_init(&zone->lock);
5244 spin_lock_init(&zone->lru_lock);
5245 zone_seqlock_init(zone);
5246 zone->zone_pgdat = pgdat;
5247 zone_pcp_init(zone);
5249 /* For bootup, initialized properly in watermark setup */
5250 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5252 lruvec_init(&zone->lruvec);
5253 if (!size)
5254 continue;
5256 set_pageblock_order();
5257 setup_usemap(pgdat, zone, zone_start_pfn, size);
5258 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5259 BUG_ON(ret);
5260 memmap_init(size, nid, j, zone_start_pfn);
5261 zone_start_pfn += size;
5265 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5267 unsigned long __maybe_unused start = 0;
5268 unsigned long __maybe_unused offset = 0;
5270 /* Skip empty nodes */
5271 if (!pgdat->node_spanned_pages)
5272 return;
5274 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5275 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5276 offset = pgdat->node_start_pfn - start;
5277 /* ia64 gets its own node_mem_map, before this, without bootmem */
5278 if (!pgdat->node_mem_map) {
5279 unsigned long size, end;
5280 struct page *map;
5283 * The zone's endpoints aren't required to be MAX_ORDER
5284 * aligned but the node_mem_map endpoints must be in order
5285 * for the buddy allocator to function correctly.
5287 end = pgdat_end_pfn(pgdat);
5288 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5289 size = (end - start) * sizeof(struct page);
5290 map = alloc_remap(pgdat->node_id, size);
5291 if (!map)
5292 map = memblock_virt_alloc_node_nopanic(size,
5293 pgdat->node_id);
5294 pgdat->node_mem_map = map + offset;
5296 #ifndef CONFIG_NEED_MULTIPLE_NODES
5298 * With no DISCONTIG, the global mem_map is just set as node 0's
5300 if (pgdat == NODE_DATA(0)) {
5301 mem_map = NODE_DATA(0)->node_mem_map;
5302 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5303 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5304 mem_map -= offset;
5305 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5307 #endif
5308 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5311 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5312 unsigned long node_start_pfn, unsigned long *zholes_size)
5314 pg_data_t *pgdat = NODE_DATA(nid);
5315 unsigned long start_pfn = 0;
5316 unsigned long end_pfn = 0;
5318 /* pg_data_t should be reset to zero when it's allocated */
5319 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5321 reset_deferred_meminit(pgdat);
5322 pgdat->node_id = nid;
5323 pgdat->node_start_pfn = node_start_pfn;
5324 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5326 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5327 (u64)start_pfn << PAGE_SHIFT,
5328 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5329 #endif
5330 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5331 zones_size, zholes_size);
5333 alloc_node_mem_map(pgdat);
5334 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5335 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5336 nid, (unsigned long)pgdat,
5337 (unsigned long)pgdat->node_mem_map);
5338 #endif
5340 free_area_init_core(pgdat);
5343 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5345 #if MAX_NUMNODES > 1
5347 * Figure out the number of possible node ids.
5349 void __init setup_nr_node_ids(void)
5351 unsigned int highest;
5353 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5354 nr_node_ids = highest + 1;
5356 #endif
5359 * node_map_pfn_alignment - determine the maximum internode alignment
5361 * This function should be called after node map is populated and sorted.
5362 * It calculates the maximum power of two alignment which can distinguish
5363 * all the nodes.
5365 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5366 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5367 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5368 * shifted, 1GiB is enough and this function will indicate so.
5370 * This is used to test whether pfn -> nid mapping of the chosen memory
5371 * model has fine enough granularity to avoid incorrect mapping for the
5372 * populated node map.
5374 * Returns the determined alignment in pfn's. 0 if there is no alignment
5375 * requirement (single node).
5377 unsigned long __init node_map_pfn_alignment(void)
5379 unsigned long accl_mask = 0, last_end = 0;
5380 unsigned long start, end, mask;
5381 int last_nid = -1;
5382 int i, nid;
5384 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5385 if (!start || last_nid < 0 || last_nid == nid) {
5386 last_nid = nid;
5387 last_end = end;
5388 continue;
5392 * Start with a mask granular enough to pin-point to the
5393 * start pfn and tick off bits one-by-one until it becomes
5394 * too coarse to separate the current node from the last.
5396 mask = ~((1 << __ffs(start)) - 1);
5397 while (mask && last_end <= (start & (mask << 1)))
5398 mask <<= 1;
5400 /* accumulate all internode masks */
5401 accl_mask |= mask;
5404 /* convert mask to number of pages */
5405 return ~accl_mask + 1;
5408 /* Find the lowest pfn for a node */
5409 static unsigned long __init find_min_pfn_for_node(int nid)
5411 unsigned long min_pfn = ULONG_MAX;
5412 unsigned long start_pfn;
5413 int i;
5415 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5416 min_pfn = min(min_pfn, start_pfn);
5418 if (min_pfn == ULONG_MAX) {
5419 printk(KERN_WARNING
5420 "Could not find start_pfn for node %d\n", nid);
5421 return 0;
5424 return min_pfn;
5428 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5430 * It returns the minimum PFN based on information provided via
5431 * memblock_set_node().
5433 unsigned long __init find_min_pfn_with_active_regions(void)
5435 return find_min_pfn_for_node(MAX_NUMNODES);
5439 * early_calculate_totalpages()
5440 * Sum pages in active regions for movable zone.
5441 * Populate N_MEMORY for calculating usable_nodes.
5443 static unsigned long __init early_calculate_totalpages(void)
5445 unsigned long totalpages = 0;
5446 unsigned long start_pfn, end_pfn;
5447 int i, nid;
5449 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5450 unsigned long pages = end_pfn - start_pfn;
5452 totalpages += pages;
5453 if (pages)
5454 node_set_state(nid, N_MEMORY);
5456 return totalpages;
5460 * Find the PFN the Movable zone begins in each node. Kernel memory
5461 * is spread evenly between nodes as long as the nodes have enough
5462 * memory. When they don't, some nodes will have more kernelcore than
5463 * others
5465 static void __init find_zone_movable_pfns_for_nodes(void)
5467 int i, nid;
5468 unsigned long usable_startpfn;
5469 unsigned long kernelcore_node, kernelcore_remaining;
5470 /* save the state before borrow the nodemask */
5471 nodemask_t saved_node_state = node_states[N_MEMORY];
5472 unsigned long totalpages = early_calculate_totalpages();
5473 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5474 struct memblock_region *r;
5476 /* Need to find movable_zone earlier when movable_node is specified. */
5477 find_usable_zone_for_movable();
5480 * If movable_node is specified, ignore kernelcore and movablecore
5481 * options.
5483 if (movable_node_is_enabled()) {
5484 for_each_memblock(memory, r) {
5485 if (!memblock_is_hotpluggable(r))
5486 continue;
5488 nid = r->nid;
5490 usable_startpfn = PFN_DOWN(r->base);
5491 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5492 min(usable_startpfn, zone_movable_pfn[nid]) :
5493 usable_startpfn;
5496 goto out2;
5500 * If movablecore=nn[KMG] was specified, calculate what size of
5501 * kernelcore that corresponds so that memory usable for
5502 * any allocation type is evenly spread. If both kernelcore
5503 * and movablecore are specified, then the value of kernelcore
5504 * will be used for required_kernelcore if it's greater than
5505 * what movablecore would have allowed.
5507 if (required_movablecore) {
5508 unsigned long corepages;
5511 * Round-up so that ZONE_MOVABLE is at least as large as what
5512 * was requested by the user
5514 required_movablecore =
5515 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5516 required_movablecore = min(totalpages, required_movablecore);
5517 corepages = totalpages - required_movablecore;
5519 required_kernelcore = max(required_kernelcore, corepages);
5523 * If kernelcore was not specified or kernelcore size is larger
5524 * than totalpages, there is no ZONE_MOVABLE.
5526 if (!required_kernelcore || required_kernelcore >= totalpages)
5527 goto out;
5529 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5530 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5532 restart:
5533 /* Spread kernelcore memory as evenly as possible throughout nodes */
5534 kernelcore_node = required_kernelcore / usable_nodes;
5535 for_each_node_state(nid, N_MEMORY) {
5536 unsigned long start_pfn, end_pfn;
5539 * Recalculate kernelcore_node if the division per node
5540 * now exceeds what is necessary to satisfy the requested
5541 * amount of memory for the kernel
5543 if (required_kernelcore < kernelcore_node)
5544 kernelcore_node = required_kernelcore / usable_nodes;
5547 * As the map is walked, we track how much memory is usable
5548 * by the kernel using kernelcore_remaining. When it is
5549 * 0, the rest of the node is usable by ZONE_MOVABLE
5551 kernelcore_remaining = kernelcore_node;
5553 /* Go through each range of PFNs within this node */
5554 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5555 unsigned long size_pages;
5557 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5558 if (start_pfn >= end_pfn)
5559 continue;
5561 /* Account for what is only usable for kernelcore */
5562 if (start_pfn < usable_startpfn) {
5563 unsigned long kernel_pages;
5564 kernel_pages = min(end_pfn, usable_startpfn)
5565 - start_pfn;
5567 kernelcore_remaining -= min(kernel_pages,
5568 kernelcore_remaining);
5569 required_kernelcore -= min(kernel_pages,
5570 required_kernelcore);
5572 /* Continue if range is now fully accounted */
5573 if (end_pfn <= usable_startpfn) {
5576 * Push zone_movable_pfn to the end so
5577 * that if we have to rebalance
5578 * kernelcore across nodes, we will
5579 * not double account here
5581 zone_movable_pfn[nid] = end_pfn;
5582 continue;
5584 start_pfn = usable_startpfn;
5588 * The usable PFN range for ZONE_MOVABLE is from
5589 * start_pfn->end_pfn. Calculate size_pages as the
5590 * number of pages used as kernelcore
5592 size_pages = end_pfn - start_pfn;
5593 if (size_pages > kernelcore_remaining)
5594 size_pages = kernelcore_remaining;
5595 zone_movable_pfn[nid] = start_pfn + size_pages;
5598 * Some kernelcore has been met, update counts and
5599 * break if the kernelcore for this node has been
5600 * satisfied
5602 required_kernelcore -= min(required_kernelcore,
5603 size_pages);
5604 kernelcore_remaining -= size_pages;
5605 if (!kernelcore_remaining)
5606 break;
5611 * If there is still required_kernelcore, we do another pass with one
5612 * less node in the count. This will push zone_movable_pfn[nid] further
5613 * along on the nodes that still have memory until kernelcore is
5614 * satisfied
5616 usable_nodes--;
5617 if (usable_nodes && required_kernelcore > usable_nodes)
5618 goto restart;
5620 out2:
5621 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5622 for (nid = 0; nid < MAX_NUMNODES; nid++)
5623 zone_movable_pfn[nid] =
5624 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5626 out:
5627 /* restore the node_state */
5628 node_states[N_MEMORY] = saved_node_state;
5631 /* Any regular or high memory on that node ? */
5632 static void check_for_memory(pg_data_t *pgdat, int nid)
5634 enum zone_type zone_type;
5636 if (N_MEMORY == N_NORMAL_MEMORY)
5637 return;
5639 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5640 struct zone *zone = &pgdat->node_zones[zone_type];
5641 if (populated_zone(zone)) {
5642 node_set_state(nid, N_HIGH_MEMORY);
5643 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5644 zone_type <= ZONE_NORMAL)
5645 node_set_state(nid, N_NORMAL_MEMORY);
5646 break;
5652 * free_area_init_nodes - Initialise all pg_data_t and zone data
5653 * @max_zone_pfn: an array of max PFNs for each zone
5655 * This will call free_area_init_node() for each active node in the system.
5656 * Using the page ranges provided by memblock_set_node(), the size of each
5657 * zone in each node and their holes is calculated. If the maximum PFN
5658 * between two adjacent zones match, it is assumed that the zone is empty.
5659 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5660 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5661 * starts where the previous one ended. For example, ZONE_DMA32 starts
5662 * at arch_max_dma_pfn.
5664 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5666 unsigned long start_pfn, end_pfn;
5667 int i, nid;
5669 /* Record where the zone boundaries are */
5670 memset(arch_zone_lowest_possible_pfn, 0,
5671 sizeof(arch_zone_lowest_possible_pfn));
5672 memset(arch_zone_highest_possible_pfn, 0,
5673 sizeof(arch_zone_highest_possible_pfn));
5674 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5675 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5676 for (i = 1; i < MAX_NR_ZONES; i++) {
5677 if (i == ZONE_MOVABLE)
5678 continue;
5679 arch_zone_lowest_possible_pfn[i] =
5680 arch_zone_highest_possible_pfn[i-1];
5681 arch_zone_highest_possible_pfn[i] =
5682 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5684 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5685 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5687 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5688 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5689 find_zone_movable_pfns_for_nodes();
5691 /* Print out the zone ranges */
5692 pr_info("Zone ranges:\n");
5693 for (i = 0; i < MAX_NR_ZONES; i++) {
5694 if (i == ZONE_MOVABLE)
5695 continue;
5696 pr_info(" %-8s ", zone_names[i]);
5697 if (arch_zone_lowest_possible_pfn[i] ==
5698 arch_zone_highest_possible_pfn[i])
5699 pr_cont("empty\n");
5700 else
5701 pr_cont("[mem %#018Lx-%#018Lx]\n",
5702 (u64)arch_zone_lowest_possible_pfn[i]
5703 << PAGE_SHIFT,
5704 ((u64)arch_zone_highest_possible_pfn[i]
5705 << PAGE_SHIFT) - 1);
5708 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5709 pr_info("Movable zone start for each node\n");
5710 for (i = 0; i < MAX_NUMNODES; i++) {
5711 if (zone_movable_pfn[i])
5712 pr_info(" Node %d: %#018Lx\n", i,
5713 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5716 /* Print out the early node map */
5717 pr_info("Early memory node ranges\n");
5718 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5719 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5720 (u64)start_pfn << PAGE_SHIFT,
5721 ((u64)end_pfn << PAGE_SHIFT) - 1);
5723 /* Initialise every node */
5724 mminit_verify_pageflags_layout();
5725 setup_nr_node_ids();
5726 for_each_online_node(nid) {
5727 pg_data_t *pgdat = NODE_DATA(nid);
5728 free_area_init_node(nid, NULL,
5729 find_min_pfn_for_node(nid), NULL);
5731 /* Any memory on that node */
5732 if (pgdat->node_present_pages)
5733 node_set_state(nid, N_MEMORY);
5734 check_for_memory(pgdat, nid);
5738 static int __init cmdline_parse_core(char *p, unsigned long *core)
5740 unsigned long long coremem;
5741 if (!p)
5742 return -EINVAL;
5744 coremem = memparse(p, &p);
5745 *core = coremem >> PAGE_SHIFT;
5747 /* Paranoid check that UL is enough for the coremem value */
5748 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5750 return 0;
5754 * kernelcore=size sets the amount of memory for use for allocations that
5755 * cannot be reclaimed or migrated.
5757 static int __init cmdline_parse_kernelcore(char *p)
5759 return cmdline_parse_core(p, &required_kernelcore);
5763 * movablecore=size sets the amount of memory for use for allocations that
5764 * can be reclaimed or migrated.
5766 static int __init cmdline_parse_movablecore(char *p)
5768 return cmdline_parse_core(p, &required_movablecore);
5771 early_param("kernelcore", cmdline_parse_kernelcore);
5772 early_param("movablecore", cmdline_parse_movablecore);
5774 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5776 void adjust_managed_page_count(struct page *page, long count)
5778 spin_lock(&managed_page_count_lock);
5779 page_zone(page)->managed_pages += count;
5780 totalram_pages += count;
5781 #ifdef CONFIG_HIGHMEM
5782 if (PageHighMem(page))
5783 totalhigh_pages += count;
5784 #endif
5785 spin_unlock(&managed_page_count_lock);
5787 EXPORT_SYMBOL(adjust_managed_page_count);
5789 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5791 void *pos;
5792 unsigned long pages = 0;
5794 start = (void *)PAGE_ALIGN((unsigned long)start);
5795 end = (void *)((unsigned long)end & PAGE_MASK);
5796 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5797 if ((unsigned int)poison <= 0xFF)
5798 memset(pos, poison, PAGE_SIZE);
5799 free_reserved_page(virt_to_page(pos));
5802 if (pages && s)
5803 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5804 s, pages << (PAGE_SHIFT - 10), start, end);
5806 return pages;
5808 EXPORT_SYMBOL(free_reserved_area);
5810 #ifdef CONFIG_HIGHMEM
5811 void free_highmem_page(struct page *page)
5813 __free_reserved_page(page);
5814 totalram_pages++;
5815 page_zone(page)->managed_pages++;
5816 totalhigh_pages++;
5818 #endif
5821 void __init mem_init_print_info(const char *str)
5823 unsigned long physpages, codesize, datasize, rosize, bss_size;
5824 unsigned long init_code_size, init_data_size;
5826 physpages = get_num_physpages();
5827 codesize = _etext - _stext;
5828 datasize = _edata - _sdata;
5829 rosize = __end_rodata - __start_rodata;
5830 bss_size = __bss_stop - __bss_start;
5831 init_data_size = __init_end - __init_begin;
5832 init_code_size = _einittext - _sinittext;
5835 * Detect special cases and adjust section sizes accordingly:
5836 * 1) .init.* may be embedded into .data sections
5837 * 2) .init.text.* may be out of [__init_begin, __init_end],
5838 * please refer to arch/tile/kernel/vmlinux.lds.S.
5839 * 3) .rodata.* may be embedded into .text or .data sections.
5841 #define adj_init_size(start, end, size, pos, adj) \
5842 do { \
5843 if (start <= pos && pos < end && size > adj) \
5844 size -= adj; \
5845 } while (0)
5847 adj_init_size(__init_begin, __init_end, init_data_size,
5848 _sinittext, init_code_size);
5849 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5850 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5851 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5852 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5854 #undef adj_init_size
5856 pr_info("Memory: %luK/%luK available "
5857 "(%luK kernel code, %luK rwdata, %luK rodata, "
5858 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5859 #ifdef CONFIG_HIGHMEM
5860 ", %luK highmem"
5861 #endif
5862 "%s%s)\n",
5863 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5864 codesize >> 10, datasize >> 10, rosize >> 10,
5865 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5866 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5867 totalcma_pages << (PAGE_SHIFT-10),
5868 #ifdef CONFIG_HIGHMEM
5869 totalhigh_pages << (PAGE_SHIFT-10),
5870 #endif
5871 str ? ", " : "", str ? str : "");
5875 * set_dma_reserve - set the specified number of pages reserved in the first zone
5876 * @new_dma_reserve: The number of pages to mark reserved
5878 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5879 * In the DMA zone, a significant percentage may be consumed by kernel image
5880 * and other unfreeable allocations which can skew the watermarks badly. This
5881 * function may optionally be used to account for unfreeable pages in the
5882 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5883 * smaller per-cpu batchsize.
5885 void __init set_dma_reserve(unsigned long new_dma_reserve)
5887 dma_reserve = new_dma_reserve;
5890 void __init free_area_init(unsigned long *zones_size)
5892 free_area_init_node(0, zones_size,
5893 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5896 static int page_alloc_cpu_notify(struct notifier_block *self,
5897 unsigned long action, void *hcpu)
5899 int cpu = (unsigned long)hcpu;
5901 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5902 lru_add_drain_cpu(cpu);
5903 drain_pages(cpu);
5906 * Spill the event counters of the dead processor
5907 * into the current processors event counters.
5908 * This artificially elevates the count of the current
5909 * processor.
5911 vm_events_fold_cpu(cpu);
5914 * Zero the differential counters of the dead processor
5915 * so that the vm statistics are consistent.
5917 * This is only okay since the processor is dead and cannot
5918 * race with what we are doing.
5920 cpu_vm_stats_fold(cpu);
5922 return NOTIFY_OK;
5925 void __init page_alloc_init(void)
5927 hotcpu_notifier(page_alloc_cpu_notify, 0);
5931 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5932 * or min_free_kbytes changes.
5934 static void calculate_totalreserve_pages(void)
5936 struct pglist_data *pgdat;
5937 unsigned long reserve_pages = 0;
5938 enum zone_type i, j;
5940 for_each_online_pgdat(pgdat) {
5941 for (i = 0; i < MAX_NR_ZONES; i++) {
5942 struct zone *zone = pgdat->node_zones + i;
5943 long max = 0;
5945 /* Find valid and maximum lowmem_reserve in the zone */
5946 for (j = i; j < MAX_NR_ZONES; j++) {
5947 if (zone->lowmem_reserve[j] > max)
5948 max = zone->lowmem_reserve[j];
5951 /* we treat the high watermark as reserved pages. */
5952 max += high_wmark_pages(zone);
5954 if (max > zone->managed_pages)
5955 max = zone->managed_pages;
5957 zone->totalreserve_pages = max;
5959 reserve_pages += max;
5962 totalreserve_pages = reserve_pages;
5966 * setup_per_zone_lowmem_reserve - called whenever
5967 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5968 * has a correct pages reserved value, so an adequate number of
5969 * pages are left in the zone after a successful __alloc_pages().
5971 static void setup_per_zone_lowmem_reserve(void)
5973 struct pglist_data *pgdat;
5974 enum zone_type j, idx;
5976 for_each_online_pgdat(pgdat) {
5977 for (j = 0; j < MAX_NR_ZONES; j++) {
5978 struct zone *zone = pgdat->node_zones + j;
5979 unsigned long managed_pages = zone->managed_pages;
5981 zone->lowmem_reserve[j] = 0;
5983 idx = j;
5984 while (idx) {
5985 struct zone *lower_zone;
5987 idx--;
5989 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5990 sysctl_lowmem_reserve_ratio[idx] = 1;
5992 lower_zone = pgdat->node_zones + idx;
5993 lower_zone->lowmem_reserve[j] = managed_pages /
5994 sysctl_lowmem_reserve_ratio[idx];
5995 managed_pages += lower_zone->managed_pages;
6000 /* update totalreserve_pages */
6001 calculate_totalreserve_pages();
6004 static void __setup_per_zone_wmarks(void)
6006 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6007 unsigned long lowmem_pages = 0;
6008 struct zone *zone;
6009 unsigned long flags;
6011 /* Calculate total number of !ZONE_HIGHMEM pages */
6012 for_each_zone(zone) {
6013 if (!is_highmem(zone))
6014 lowmem_pages += zone->managed_pages;
6017 for_each_zone(zone) {
6018 u64 tmp;
6020 spin_lock_irqsave(&zone->lock, flags);
6021 tmp = (u64)pages_min * zone->managed_pages;
6022 do_div(tmp, lowmem_pages);
6023 if (is_highmem(zone)) {
6025 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6026 * need highmem pages, so cap pages_min to a small
6027 * value here.
6029 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6030 * deltas control asynch page reclaim, and so should
6031 * not be capped for highmem.
6033 unsigned long min_pages;
6035 min_pages = zone->managed_pages / 1024;
6036 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6037 zone->watermark[WMARK_MIN] = min_pages;
6038 } else {
6040 * If it's a lowmem zone, reserve a number of pages
6041 * proportionate to the zone's size.
6043 zone->watermark[WMARK_MIN] = tmp;
6046 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6047 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6049 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6050 high_wmark_pages(zone) - low_wmark_pages(zone) -
6051 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6053 spin_unlock_irqrestore(&zone->lock, flags);
6056 /* update totalreserve_pages */
6057 calculate_totalreserve_pages();
6061 * setup_per_zone_wmarks - called when min_free_kbytes changes
6062 * or when memory is hot-{added|removed}
6064 * Ensures that the watermark[min,low,high] values for each zone are set
6065 * correctly with respect to min_free_kbytes.
6067 void setup_per_zone_wmarks(void)
6069 mutex_lock(&zonelists_mutex);
6070 __setup_per_zone_wmarks();
6071 mutex_unlock(&zonelists_mutex);
6075 * The inactive anon list should be small enough that the VM never has to
6076 * do too much work, but large enough that each inactive page has a chance
6077 * to be referenced again before it is swapped out.
6079 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6080 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6081 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6082 * the anonymous pages are kept on the inactive list.
6084 * total target max
6085 * memory ratio inactive anon
6086 * -------------------------------------
6087 * 10MB 1 5MB
6088 * 100MB 1 50MB
6089 * 1GB 3 250MB
6090 * 10GB 10 0.9GB
6091 * 100GB 31 3GB
6092 * 1TB 101 10GB
6093 * 10TB 320 32GB
6095 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6097 unsigned int gb, ratio;
6099 /* Zone size in gigabytes */
6100 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6101 if (gb)
6102 ratio = int_sqrt(10 * gb);
6103 else
6104 ratio = 1;
6106 zone->inactive_ratio = ratio;
6109 static void __meminit setup_per_zone_inactive_ratio(void)
6111 struct zone *zone;
6113 for_each_zone(zone)
6114 calculate_zone_inactive_ratio(zone);
6118 * Initialise min_free_kbytes.
6120 * For small machines we want it small (128k min). For large machines
6121 * we want it large (64MB max). But it is not linear, because network
6122 * bandwidth does not increase linearly with machine size. We use
6124 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6125 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6127 * which yields
6129 * 16MB: 512k
6130 * 32MB: 724k
6131 * 64MB: 1024k
6132 * 128MB: 1448k
6133 * 256MB: 2048k
6134 * 512MB: 2896k
6135 * 1024MB: 4096k
6136 * 2048MB: 5792k
6137 * 4096MB: 8192k
6138 * 8192MB: 11584k
6139 * 16384MB: 16384k
6141 int __meminit init_per_zone_wmark_min(void)
6143 unsigned long lowmem_kbytes;
6144 int new_min_free_kbytes;
6146 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6147 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6149 if (new_min_free_kbytes > user_min_free_kbytes) {
6150 min_free_kbytes = new_min_free_kbytes;
6151 if (min_free_kbytes < 128)
6152 min_free_kbytes = 128;
6153 if (min_free_kbytes > 65536)
6154 min_free_kbytes = 65536;
6155 } else {
6156 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6157 new_min_free_kbytes, user_min_free_kbytes);
6159 setup_per_zone_wmarks();
6160 refresh_zone_stat_thresholds();
6161 setup_per_zone_lowmem_reserve();
6162 setup_per_zone_inactive_ratio();
6163 return 0;
6165 module_init(init_per_zone_wmark_min)
6168 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6169 * that we can call two helper functions whenever min_free_kbytes
6170 * changes.
6172 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6173 void __user *buffer, size_t *length, loff_t *ppos)
6175 int rc;
6177 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6178 if (rc)
6179 return rc;
6181 if (write) {
6182 user_min_free_kbytes = min_free_kbytes;
6183 setup_per_zone_wmarks();
6185 return 0;
6188 #ifdef CONFIG_NUMA
6189 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6190 void __user *buffer, size_t *length, loff_t *ppos)
6192 struct zone *zone;
6193 int rc;
6195 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6196 if (rc)
6197 return rc;
6199 for_each_zone(zone)
6200 zone->min_unmapped_pages = (zone->managed_pages *
6201 sysctl_min_unmapped_ratio) / 100;
6202 return 0;
6205 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6206 void __user *buffer, size_t *length, loff_t *ppos)
6208 struct zone *zone;
6209 int rc;
6211 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6212 if (rc)
6213 return rc;
6215 for_each_zone(zone)
6216 zone->min_slab_pages = (zone->managed_pages *
6217 sysctl_min_slab_ratio) / 100;
6218 return 0;
6220 #endif
6223 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6224 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6225 * whenever sysctl_lowmem_reserve_ratio changes.
6227 * The reserve ratio obviously has absolutely no relation with the
6228 * minimum watermarks. The lowmem reserve ratio can only make sense
6229 * if in function of the boot time zone sizes.
6231 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6232 void __user *buffer, size_t *length, loff_t *ppos)
6234 proc_dointvec_minmax(table, write, buffer, length, ppos);
6235 setup_per_zone_lowmem_reserve();
6236 return 0;
6240 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6241 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6242 * pagelist can have before it gets flushed back to buddy allocator.
6244 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6245 void __user *buffer, size_t *length, loff_t *ppos)
6247 struct zone *zone;
6248 int old_percpu_pagelist_fraction;
6249 int ret;
6251 mutex_lock(&pcp_batch_high_lock);
6252 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6254 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6255 if (!write || ret < 0)
6256 goto out;
6258 /* Sanity checking to avoid pcp imbalance */
6259 if (percpu_pagelist_fraction &&
6260 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6261 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6262 ret = -EINVAL;
6263 goto out;
6266 /* No change? */
6267 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6268 goto out;
6270 for_each_populated_zone(zone) {
6271 unsigned int cpu;
6273 for_each_possible_cpu(cpu)
6274 pageset_set_high_and_batch(zone,
6275 per_cpu_ptr(zone->pageset, cpu));
6277 out:
6278 mutex_unlock(&pcp_batch_high_lock);
6279 return ret;
6282 #ifdef CONFIG_NUMA
6283 int hashdist = HASHDIST_DEFAULT;
6285 static int __init set_hashdist(char *str)
6287 if (!str)
6288 return 0;
6289 hashdist = simple_strtoul(str, &str, 0);
6290 return 1;
6292 __setup("hashdist=", set_hashdist);
6293 #endif
6296 * allocate a large system hash table from bootmem
6297 * - it is assumed that the hash table must contain an exact power-of-2
6298 * quantity of entries
6299 * - limit is the number of hash buckets, not the total allocation size
6301 void *__init alloc_large_system_hash(const char *tablename,
6302 unsigned long bucketsize,
6303 unsigned long numentries,
6304 int scale,
6305 int flags,
6306 unsigned int *_hash_shift,
6307 unsigned int *_hash_mask,
6308 unsigned long low_limit,
6309 unsigned long high_limit)
6311 unsigned long long max = high_limit;
6312 unsigned long log2qty, size;
6313 void *table = NULL;
6315 /* allow the kernel cmdline to have a say */
6316 if (!numentries) {
6317 /* round applicable memory size up to nearest megabyte */
6318 numentries = nr_kernel_pages;
6320 /* It isn't necessary when PAGE_SIZE >= 1MB */
6321 if (PAGE_SHIFT < 20)
6322 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6324 /* limit to 1 bucket per 2^scale bytes of low memory */
6325 if (scale > PAGE_SHIFT)
6326 numentries >>= (scale - PAGE_SHIFT);
6327 else
6328 numentries <<= (PAGE_SHIFT - scale);
6330 /* Make sure we've got at least a 0-order allocation.. */
6331 if (unlikely(flags & HASH_SMALL)) {
6332 /* Makes no sense without HASH_EARLY */
6333 WARN_ON(!(flags & HASH_EARLY));
6334 if (!(numentries >> *_hash_shift)) {
6335 numentries = 1UL << *_hash_shift;
6336 BUG_ON(!numentries);
6338 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6339 numentries = PAGE_SIZE / bucketsize;
6341 numentries = roundup_pow_of_two(numentries);
6343 /* limit allocation size to 1/16 total memory by default */
6344 if (max == 0) {
6345 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6346 do_div(max, bucketsize);
6348 max = min(max, 0x80000000ULL);
6350 if (numentries < low_limit)
6351 numentries = low_limit;
6352 if (numentries > max)
6353 numentries = max;
6355 log2qty = ilog2(numentries);
6357 do {
6358 size = bucketsize << log2qty;
6359 if (flags & HASH_EARLY)
6360 table = memblock_virt_alloc_nopanic(size, 0);
6361 else if (hashdist)
6362 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6363 else {
6365 * If bucketsize is not a power-of-two, we may free
6366 * some pages at the end of hash table which
6367 * alloc_pages_exact() automatically does
6369 if (get_order(size) < MAX_ORDER) {
6370 table = alloc_pages_exact(size, GFP_ATOMIC);
6371 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6374 } while (!table && size > PAGE_SIZE && --log2qty);
6376 if (!table)
6377 panic("Failed to allocate %s hash table\n", tablename);
6379 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6380 tablename,
6381 (1UL << log2qty),
6382 ilog2(size) - PAGE_SHIFT,
6383 size);
6385 if (_hash_shift)
6386 *_hash_shift = log2qty;
6387 if (_hash_mask)
6388 *_hash_mask = (1 << log2qty) - 1;
6390 return table;
6393 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6394 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6395 unsigned long pfn)
6397 #ifdef CONFIG_SPARSEMEM
6398 return __pfn_to_section(pfn)->pageblock_flags;
6399 #else
6400 return zone->pageblock_flags;
6401 #endif /* CONFIG_SPARSEMEM */
6404 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6406 #ifdef CONFIG_SPARSEMEM
6407 pfn &= (PAGES_PER_SECTION-1);
6408 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6409 #else
6410 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6411 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6412 #endif /* CONFIG_SPARSEMEM */
6416 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6417 * @page: The page within the block of interest
6418 * @pfn: The target page frame number
6419 * @end_bitidx: The last bit of interest to retrieve
6420 * @mask: mask of bits that the caller is interested in
6422 * Return: pageblock_bits flags
6424 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6425 unsigned long end_bitidx,
6426 unsigned long mask)
6428 struct zone *zone;
6429 unsigned long *bitmap;
6430 unsigned long bitidx, word_bitidx;
6431 unsigned long word;
6433 zone = page_zone(page);
6434 bitmap = get_pageblock_bitmap(zone, pfn);
6435 bitidx = pfn_to_bitidx(zone, pfn);
6436 word_bitidx = bitidx / BITS_PER_LONG;
6437 bitidx &= (BITS_PER_LONG-1);
6439 word = bitmap[word_bitidx];
6440 bitidx += end_bitidx;
6441 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6445 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6446 * @page: The page within the block of interest
6447 * @flags: The flags to set
6448 * @pfn: The target page frame number
6449 * @end_bitidx: The last bit of interest
6450 * @mask: mask of bits that the caller is interested in
6452 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6453 unsigned long pfn,
6454 unsigned long end_bitidx,
6455 unsigned long mask)
6457 struct zone *zone;
6458 unsigned long *bitmap;
6459 unsigned long bitidx, word_bitidx;
6460 unsigned long old_word, word;
6462 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6464 zone = page_zone(page);
6465 bitmap = get_pageblock_bitmap(zone, pfn);
6466 bitidx = pfn_to_bitidx(zone, pfn);
6467 word_bitidx = bitidx / BITS_PER_LONG;
6468 bitidx &= (BITS_PER_LONG-1);
6470 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6472 bitidx += end_bitidx;
6473 mask <<= (BITS_PER_LONG - bitidx - 1);
6474 flags <<= (BITS_PER_LONG - bitidx - 1);
6476 word = READ_ONCE(bitmap[word_bitidx]);
6477 for (;;) {
6478 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6479 if (word == old_word)
6480 break;
6481 word = old_word;
6486 * This function checks whether pageblock includes unmovable pages or not.
6487 * If @count is not zero, it is okay to include less @count unmovable pages
6489 * PageLRU check without isolation or lru_lock could race so that
6490 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6491 * expect this function should be exact.
6493 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6494 bool skip_hwpoisoned_pages)
6496 unsigned long pfn, iter, found;
6497 int mt;
6500 * For avoiding noise data, lru_add_drain_all() should be called
6501 * If ZONE_MOVABLE, the zone never contains unmovable pages
6503 if (zone_idx(zone) == ZONE_MOVABLE)
6504 return false;
6505 mt = get_pageblock_migratetype(page);
6506 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6507 return false;
6509 pfn = page_to_pfn(page);
6510 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6511 unsigned long check = pfn + iter;
6513 if (!pfn_valid_within(check))
6514 continue;
6516 page = pfn_to_page(check);
6519 * Hugepages are not in LRU lists, but they're movable.
6520 * We need not scan over tail pages bacause we don't
6521 * handle each tail page individually in migration.
6523 if (PageHuge(page)) {
6524 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6525 continue;
6529 * We can't use page_count without pin a page
6530 * because another CPU can free compound page.
6531 * This check already skips compound tails of THP
6532 * because their page->_count is zero at all time.
6534 if (!atomic_read(&page->_count)) {
6535 if (PageBuddy(page))
6536 iter += (1 << page_order(page)) - 1;
6537 continue;
6541 * The HWPoisoned page may be not in buddy system, and
6542 * page_count() is not 0.
6544 if (skip_hwpoisoned_pages && PageHWPoison(page))
6545 continue;
6547 if (!PageLRU(page))
6548 found++;
6550 * If there are RECLAIMABLE pages, we need to check
6551 * it. But now, memory offline itself doesn't call
6552 * shrink_node_slabs() and it still to be fixed.
6555 * If the page is not RAM, page_count()should be 0.
6556 * we don't need more check. This is an _used_ not-movable page.
6558 * The problematic thing here is PG_reserved pages. PG_reserved
6559 * is set to both of a memory hole page and a _used_ kernel
6560 * page at boot.
6562 if (found > count)
6563 return true;
6565 return false;
6568 bool is_pageblock_removable_nolock(struct page *page)
6570 struct zone *zone;
6571 unsigned long pfn;
6574 * We have to be careful here because we are iterating over memory
6575 * sections which are not zone aware so we might end up outside of
6576 * the zone but still within the section.
6577 * We have to take care about the node as well. If the node is offline
6578 * its NODE_DATA will be NULL - see page_zone.
6580 if (!node_online(page_to_nid(page)))
6581 return false;
6583 zone = page_zone(page);
6584 pfn = page_to_pfn(page);
6585 if (!zone_spans_pfn(zone, pfn))
6586 return false;
6588 return !has_unmovable_pages(zone, page, 0, true);
6591 #ifdef CONFIG_CMA
6593 static unsigned long pfn_max_align_down(unsigned long pfn)
6595 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6596 pageblock_nr_pages) - 1);
6599 static unsigned long pfn_max_align_up(unsigned long pfn)
6601 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6602 pageblock_nr_pages));
6605 /* [start, end) must belong to a single zone. */
6606 static int __alloc_contig_migrate_range(struct compact_control *cc,
6607 unsigned long start, unsigned long end)
6609 /* This function is based on compact_zone() from compaction.c. */
6610 unsigned long nr_reclaimed;
6611 unsigned long pfn = start;
6612 unsigned int tries = 0;
6613 int ret = 0;
6615 migrate_prep();
6617 while (pfn < end || !list_empty(&cc->migratepages)) {
6618 if (fatal_signal_pending(current)) {
6619 ret = -EINTR;
6620 break;
6623 if (list_empty(&cc->migratepages)) {
6624 cc->nr_migratepages = 0;
6625 pfn = isolate_migratepages_range(cc, pfn, end);
6626 if (!pfn) {
6627 ret = -EINTR;
6628 break;
6630 tries = 0;
6631 } else if (++tries == 5) {
6632 ret = ret < 0 ? ret : -EBUSY;
6633 break;
6636 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6637 &cc->migratepages);
6638 cc->nr_migratepages -= nr_reclaimed;
6640 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6641 NULL, 0, cc->mode, MR_CMA);
6643 if (ret < 0) {
6644 putback_movable_pages(&cc->migratepages);
6645 return ret;
6647 return 0;
6651 * alloc_contig_range() -- tries to allocate given range of pages
6652 * @start: start PFN to allocate
6653 * @end: one-past-the-last PFN to allocate
6654 * @migratetype: migratetype of the underlaying pageblocks (either
6655 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6656 * in range must have the same migratetype and it must
6657 * be either of the two.
6659 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6660 * aligned, however it's the caller's responsibility to guarantee that
6661 * we are the only thread that changes migrate type of pageblocks the
6662 * pages fall in.
6664 * The PFN range must belong to a single zone.
6666 * Returns zero on success or negative error code. On success all
6667 * pages which PFN is in [start, end) are allocated for the caller and
6668 * need to be freed with free_contig_range().
6670 int alloc_contig_range(unsigned long start, unsigned long end,
6671 unsigned migratetype)
6673 unsigned long outer_start, outer_end;
6674 unsigned int order;
6675 int ret = 0;
6677 struct compact_control cc = {
6678 .nr_migratepages = 0,
6679 .order = -1,
6680 .zone = page_zone(pfn_to_page(start)),
6681 .mode = MIGRATE_SYNC,
6682 .ignore_skip_hint = true,
6684 INIT_LIST_HEAD(&cc.migratepages);
6687 * What we do here is we mark all pageblocks in range as
6688 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6689 * have different sizes, and due to the way page allocator
6690 * work, we align the range to biggest of the two pages so
6691 * that page allocator won't try to merge buddies from
6692 * different pageblocks and change MIGRATE_ISOLATE to some
6693 * other migration type.
6695 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6696 * migrate the pages from an unaligned range (ie. pages that
6697 * we are interested in). This will put all the pages in
6698 * range back to page allocator as MIGRATE_ISOLATE.
6700 * When this is done, we take the pages in range from page
6701 * allocator removing them from the buddy system. This way
6702 * page allocator will never consider using them.
6704 * This lets us mark the pageblocks back as
6705 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6706 * aligned range but not in the unaligned, original range are
6707 * put back to page allocator so that buddy can use them.
6710 ret = start_isolate_page_range(pfn_max_align_down(start),
6711 pfn_max_align_up(end), migratetype,
6712 false);
6713 if (ret)
6714 return ret;
6717 * In case of -EBUSY, we'd like to know which page causes problem.
6718 * So, just fall through. We will check it in test_pages_isolated().
6720 ret = __alloc_contig_migrate_range(&cc, start, end);
6721 if (ret && ret != -EBUSY)
6722 goto done;
6725 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6726 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6727 * more, all pages in [start, end) are free in page allocator.
6728 * What we are going to do is to allocate all pages from
6729 * [start, end) (that is remove them from page allocator).
6731 * The only problem is that pages at the beginning and at the
6732 * end of interesting range may be not aligned with pages that
6733 * page allocator holds, ie. they can be part of higher order
6734 * pages. Because of this, we reserve the bigger range and
6735 * once this is done free the pages we are not interested in.
6737 * We don't have to hold zone->lock here because the pages are
6738 * isolated thus they won't get removed from buddy.
6741 lru_add_drain_all();
6742 drain_all_pages(cc.zone);
6744 order = 0;
6745 outer_start = start;
6746 while (!PageBuddy(pfn_to_page(outer_start))) {
6747 if (++order >= MAX_ORDER) {
6748 outer_start = start;
6749 break;
6751 outer_start &= ~0UL << order;
6754 if (outer_start != start) {
6755 order = page_order(pfn_to_page(outer_start));
6758 * outer_start page could be small order buddy page and
6759 * it doesn't include start page. Adjust outer_start
6760 * in this case to report failed page properly
6761 * on tracepoint in test_pages_isolated()
6763 if (outer_start + (1UL << order) <= start)
6764 outer_start = start;
6767 /* Make sure the range is really isolated. */
6768 if (test_pages_isolated(outer_start, end, false)) {
6769 pr_info("%s: [%lx, %lx) PFNs busy\n",
6770 __func__, outer_start, end);
6771 ret = -EBUSY;
6772 goto done;
6775 /* Grab isolated pages from freelists. */
6776 outer_end = isolate_freepages_range(&cc, outer_start, end);
6777 if (!outer_end) {
6778 ret = -EBUSY;
6779 goto done;
6782 /* Free head and tail (if any) */
6783 if (start != outer_start)
6784 free_contig_range(outer_start, start - outer_start);
6785 if (end != outer_end)
6786 free_contig_range(end, outer_end - end);
6788 done:
6789 undo_isolate_page_range(pfn_max_align_down(start),
6790 pfn_max_align_up(end), migratetype);
6791 return ret;
6794 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6796 unsigned int count = 0;
6798 for (; nr_pages--; pfn++) {
6799 struct page *page = pfn_to_page(pfn);
6801 count += page_count(page) != 1;
6802 __free_page(page);
6804 WARN(count != 0, "%d pages are still in use!\n", count);
6806 #endif
6808 #ifdef CONFIG_MEMORY_HOTPLUG
6810 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6811 * page high values need to be recalulated.
6813 void __meminit zone_pcp_update(struct zone *zone)
6815 unsigned cpu;
6816 mutex_lock(&pcp_batch_high_lock);
6817 for_each_possible_cpu(cpu)
6818 pageset_set_high_and_batch(zone,
6819 per_cpu_ptr(zone->pageset, cpu));
6820 mutex_unlock(&pcp_batch_high_lock);
6822 #endif
6824 void zone_pcp_reset(struct zone *zone)
6826 unsigned long flags;
6827 int cpu;
6828 struct per_cpu_pageset *pset;
6830 /* avoid races with drain_pages() */
6831 local_irq_save(flags);
6832 if (zone->pageset != &boot_pageset) {
6833 for_each_online_cpu(cpu) {
6834 pset = per_cpu_ptr(zone->pageset, cpu);
6835 drain_zonestat(zone, pset);
6837 free_percpu(zone->pageset);
6838 zone->pageset = &boot_pageset;
6840 local_irq_restore(flags);
6843 #ifdef CONFIG_MEMORY_HOTREMOVE
6845 * All pages in the range must be isolated before calling this.
6847 void
6848 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6850 struct page *page;
6851 struct zone *zone;
6852 unsigned int order, i;
6853 unsigned long pfn;
6854 unsigned long flags;
6855 /* find the first valid pfn */
6856 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6857 if (pfn_valid(pfn))
6858 break;
6859 if (pfn == end_pfn)
6860 return;
6861 zone = page_zone(pfn_to_page(pfn));
6862 spin_lock_irqsave(&zone->lock, flags);
6863 pfn = start_pfn;
6864 while (pfn < end_pfn) {
6865 if (!pfn_valid(pfn)) {
6866 pfn++;
6867 continue;
6869 page = pfn_to_page(pfn);
6871 * The HWPoisoned page may be not in buddy system, and
6872 * page_count() is not 0.
6874 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6875 pfn++;
6876 SetPageReserved(page);
6877 continue;
6880 BUG_ON(page_count(page));
6881 BUG_ON(!PageBuddy(page));
6882 order = page_order(page);
6883 #ifdef CONFIG_DEBUG_VM
6884 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6885 pfn, 1 << order, end_pfn);
6886 #endif
6887 list_del(&page->lru);
6888 rmv_page_order(page);
6889 zone->free_area[order].nr_free--;
6890 for (i = 0; i < (1 << order); i++)
6891 SetPageReserved((page+i));
6892 pfn += (1 << order);
6894 spin_unlock_irqrestore(&zone->lock, flags);
6896 #endif
6898 #ifdef CONFIG_MEMORY_FAILURE
6899 bool is_free_buddy_page(struct page *page)
6901 struct zone *zone = page_zone(page);
6902 unsigned long pfn = page_to_pfn(page);
6903 unsigned long flags;
6904 unsigned int order;
6906 spin_lock_irqsave(&zone->lock, flags);
6907 for (order = 0; order < MAX_ORDER; order++) {
6908 struct page *page_head = page - (pfn & ((1 << order) - 1));
6910 if (PageBuddy(page_head) && page_order(page_head) >= order)
6911 break;
6913 spin_unlock_irqrestore(&zone->lock, flags);
6915 return order < MAX_ORDER;
6917 #endif