powernv: Fix permissions on sysparam sysfs entries
[linux-2.6/btrfs-unstable.git] / net / core / dev.c
blob8908a68db44921c91a4f359b90e575c4a7190468
1 /*
2 * NET3 Protocol independent device support routines.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <linux/ipv6.h>
122 #include <linux/in.h>
123 #include <linux/jhash.h>
124 #include <linux/random.h>
125 #include <trace/events/napi.h>
126 #include <trace/events/net.h>
127 #include <trace/events/skb.h>
128 #include <linux/pci.h>
129 #include <linux/inetdevice.h>
130 #include <linux/cpu_rmap.h>
131 #include <linux/static_key.h>
132 #include <linux/hashtable.h>
133 #include <linux/vmalloc.h>
134 #include <linux/if_macvlan.h>
136 #include "net-sysfs.h"
138 /* Instead of increasing this, you should create a hash table. */
139 #define MAX_GRO_SKBS 8
141 /* This should be increased if a protocol with a bigger head is added. */
142 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 static DEFINE_SPINLOCK(ptype_lock);
145 static DEFINE_SPINLOCK(offload_lock);
146 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
147 struct list_head ptype_all __read_mostly; /* Taps */
148 static struct list_head offload_base __read_mostly;
150 static int netif_rx_internal(struct sk_buff *skb);
153 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
154 * semaphore.
156 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
158 * Writers must hold the rtnl semaphore while they loop through the
159 * dev_base_head list, and hold dev_base_lock for writing when they do the
160 * actual updates. This allows pure readers to access the list even
161 * while a writer is preparing to update it.
163 * To put it another way, dev_base_lock is held for writing only to
164 * protect against pure readers; the rtnl semaphore provides the
165 * protection against other writers.
167 * See, for example usages, register_netdevice() and
168 * unregister_netdevice(), which must be called with the rtnl
169 * semaphore held.
171 DEFINE_RWLOCK(dev_base_lock);
172 EXPORT_SYMBOL(dev_base_lock);
174 /* protects napi_hash addition/deletion and napi_gen_id */
175 static DEFINE_SPINLOCK(napi_hash_lock);
177 static unsigned int napi_gen_id;
178 static DEFINE_HASHTABLE(napi_hash, 8);
180 static seqcount_t devnet_rename_seq;
182 static inline void dev_base_seq_inc(struct net *net)
184 while (++net->dev_base_seq == 0);
187 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
189 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
191 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
194 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
196 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
199 static inline void rps_lock(struct softnet_data *sd)
201 #ifdef CONFIG_RPS
202 spin_lock(&sd->input_pkt_queue.lock);
203 #endif
206 static inline void rps_unlock(struct softnet_data *sd)
208 #ifdef CONFIG_RPS
209 spin_unlock(&sd->input_pkt_queue.lock);
210 #endif
213 /* Device list insertion */
214 static void list_netdevice(struct net_device *dev)
216 struct net *net = dev_net(dev);
218 ASSERT_RTNL();
220 write_lock_bh(&dev_base_lock);
221 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
222 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
223 hlist_add_head_rcu(&dev->index_hlist,
224 dev_index_hash(net, dev->ifindex));
225 write_unlock_bh(&dev_base_lock);
227 dev_base_seq_inc(net);
230 /* Device list removal
231 * caller must respect a RCU grace period before freeing/reusing dev
233 static void unlist_netdevice(struct net_device *dev)
235 ASSERT_RTNL();
237 /* Unlink dev from the device chain */
238 write_lock_bh(&dev_base_lock);
239 list_del_rcu(&dev->dev_list);
240 hlist_del_rcu(&dev->name_hlist);
241 hlist_del_rcu(&dev->index_hlist);
242 write_unlock_bh(&dev_base_lock);
244 dev_base_seq_inc(dev_net(dev));
248 * Our notifier list
251 static RAW_NOTIFIER_HEAD(netdev_chain);
254 * Device drivers call our routines to queue packets here. We empty the
255 * queue in the local softnet handler.
258 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
259 EXPORT_PER_CPU_SYMBOL(softnet_data);
261 #ifdef CONFIG_LOCKDEP
263 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
264 * according to dev->type
266 static const unsigned short netdev_lock_type[] =
267 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
268 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
269 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
270 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
271 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
272 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
273 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
274 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
275 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
276 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
277 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
278 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
279 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
280 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
281 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
283 static const char *const netdev_lock_name[] =
284 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
285 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
286 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
287 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
288 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
289 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
290 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
291 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
292 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
293 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
294 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
295 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
296 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
297 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
298 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
300 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
301 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
303 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
305 int i;
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
314 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
317 int i;
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
324 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
326 int i;
328 i = netdev_lock_pos(dev->type);
329 lockdep_set_class_and_name(&dev->addr_list_lock,
330 &netdev_addr_lock_key[i],
331 netdev_lock_name[i]);
333 #else
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 unsigned short dev_type)
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
341 #endif
343 /*******************************************************************************
345 Protocol management and registration routines
347 *******************************************************************************/
350 * Add a protocol ID to the list. Now that the input handler is
351 * smarter we can dispense with all the messy stuff that used to be
352 * here.
354 * BEWARE!!! Protocol handlers, mangling input packets,
355 * MUST BE last in hash buckets and checking protocol handlers
356 * MUST start from promiscuous ptype_all chain in net_bh.
357 * It is true now, do not change it.
358 * Explanation follows: if protocol handler, mangling packet, will
359 * be the first on list, it is not able to sense, that packet
360 * is cloned and should be copied-on-write, so that it will
361 * change it and subsequent readers will get broken packet.
362 * --ANK (980803)
365 static inline struct list_head *ptype_head(const struct packet_type *pt)
367 if (pt->type == htons(ETH_P_ALL))
368 return &ptype_all;
369 else
370 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
374 * dev_add_pack - add packet handler
375 * @pt: packet type declaration
377 * Add a protocol handler to the networking stack. The passed &packet_type
378 * is linked into kernel lists and may not be freed until it has been
379 * removed from the kernel lists.
381 * This call does not sleep therefore it can not
382 * guarantee all CPU's that are in middle of receiving packets
383 * will see the new packet type (until the next received packet).
386 void dev_add_pack(struct packet_type *pt)
388 struct list_head *head = ptype_head(pt);
390 spin_lock(&ptype_lock);
391 list_add_rcu(&pt->list, head);
392 spin_unlock(&ptype_lock);
394 EXPORT_SYMBOL(dev_add_pack);
397 * __dev_remove_pack - remove packet handler
398 * @pt: packet type declaration
400 * Remove a protocol handler that was previously added to the kernel
401 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
402 * from the kernel lists and can be freed or reused once this function
403 * returns.
405 * The packet type might still be in use by receivers
406 * and must not be freed until after all the CPU's have gone
407 * through a quiescent state.
409 void __dev_remove_pack(struct packet_type *pt)
411 struct list_head *head = ptype_head(pt);
412 struct packet_type *pt1;
414 spin_lock(&ptype_lock);
416 list_for_each_entry(pt1, head, list) {
417 if (pt == pt1) {
418 list_del_rcu(&pt->list);
419 goto out;
423 pr_warn("dev_remove_pack: %p not found\n", pt);
424 out:
425 spin_unlock(&ptype_lock);
427 EXPORT_SYMBOL(__dev_remove_pack);
430 * dev_remove_pack - remove packet handler
431 * @pt: packet type declaration
433 * Remove a protocol handler that was previously added to the kernel
434 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
435 * from the kernel lists and can be freed or reused once this function
436 * returns.
438 * This call sleeps to guarantee that no CPU is looking at the packet
439 * type after return.
441 void dev_remove_pack(struct packet_type *pt)
443 __dev_remove_pack(pt);
445 synchronize_net();
447 EXPORT_SYMBOL(dev_remove_pack);
451 * dev_add_offload - register offload handlers
452 * @po: protocol offload declaration
454 * Add protocol offload handlers to the networking stack. The passed
455 * &proto_offload is linked into kernel lists and may not be freed until
456 * it has been removed from the kernel lists.
458 * This call does not sleep therefore it can not
459 * guarantee all CPU's that are in middle of receiving packets
460 * will see the new offload handlers (until the next received packet).
462 void dev_add_offload(struct packet_offload *po)
464 struct list_head *head = &offload_base;
466 spin_lock(&offload_lock);
467 list_add_rcu(&po->list, head);
468 spin_unlock(&offload_lock);
470 EXPORT_SYMBOL(dev_add_offload);
473 * __dev_remove_offload - remove offload handler
474 * @po: packet offload declaration
476 * Remove a protocol offload handler that was previously added to the
477 * kernel offload handlers by dev_add_offload(). The passed &offload_type
478 * is removed from the kernel lists and can be freed or reused once this
479 * function returns.
481 * The packet type might still be in use by receivers
482 * and must not be freed until after all the CPU's have gone
483 * through a quiescent state.
485 static void __dev_remove_offload(struct packet_offload *po)
487 struct list_head *head = &offload_base;
488 struct packet_offload *po1;
490 spin_lock(&offload_lock);
492 list_for_each_entry(po1, head, list) {
493 if (po == po1) {
494 list_del_rcu(&po->list);
495 goto out;
499 pr_warn("dev_remove_offload: %p not found\n", po);
500 out:
501 spin_unlock(&offload_lock);
505 * dev_remove_offload - remove packet offload handler
506 * @po: packet offload declaration
508 * Remove a packet offload handler that was previously added to the kernel
509 * offload handlers by dev_add_offload(). The passed &offload_type is
510 * removed from the kernel lists and can be freed or reused once this
511 * function returns.
513 * This call sleeps to guarantee that no CPU is looking at the packet
514 * type after return.
516 void dev_remove_offload(struct packet_offload *po)
518 __dev_remove_offload(po);
520 synchronize_net();
522 EXPORT_SYMBOL(dev_remove_offload);
524 /******************************************************************************
526 Device Boot-time Settings Routines
528 *******************************************************************************/
530 /* Boot time configuration table */
531 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
534 * netdev_boot_setup_add - add new setup entry
535 * @name: name of the device
536 * @map: configured settings for the device
538 * Adds new setup entry to the dev_boot_setup list. The function
539 * returns 0 on error and 1 on success. This is a generic routine to
540 * all netdevices.
542 static int netdev_boot_setup_add(char *name, struct ifmap *map)
544 struct netdev_boot_setup *s;
545 int i;
547 s = dev_boot_setup;
548 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
549 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
550 memset(s[i].name, 0, sizeof(s[i].name));
551 strlcpy(s[i].name, name, IFNAMSIZ);
552 memcpy(&s[i].map, map, sizeof(s[i].map));
553 break;
557 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
561 * netdev_boot_setup_check - check boot time settings
562 * @dev: the netdevice
564 * Check boot time settings for the device.
565 * The found settings are set for the device to be used
566 * later in the device probing.
567 * Returns 0 if no settings found, 1 if they are.
569 int netdev_boot_setup_check(struct net_device *dev)
571 struct netdev_boot_setup *s = dev_boot_setup;
572 int i;
574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
576 !strcmp(dev->name, s[i].name)) {
577 dev->irq = s[i].map.irq;
578 dev->base_addr = s[i].map.base_addr;
579 dev->mem_start = s[i].map.mem_start;
580 dev->mem_end = s[i].map.mem_end;
581 return 1;
584 return 0;
586 EXPORT_SYMBOL(netdev_boot_setup_check);
590 * netdev_boot_base - get address from boot time settings
591 * @prefix: prefix for network device
592 * @unit: id for network device
594 * Check boot time settings for the base address of device.
595 * The found settings are set for the device to be used
596 * later in the device probing.
597 * Returns 0 if no settings found.
599 unsigned long netdev_boot_base(const char *prefix, int unit)
601 const struct netdev_boot_setup *s = dev_boot_setup;
602 char name[IFNAMSIZ];
603 int i;
605 sprintf(name, "%s%d", prefix, unit);
608 * If device already registered then return base of 1
609 * to indicate not to probe for this interface
611 if (__dev_get_by_name(&init_net, name))
612 return 1;
614 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
615 if (!strcmp(name, s[i].name))
616 return s[i].map.base_addr;
617 return 0;
621 * Saves at boot time configured settings for any netdevice.
623 int __init netdev_boot_setup(char *str)
625 int ints[5];
626 struct ifmap map;
628 str = get_options(str, ARRAY_SIZE(ints), ints);
629 if (!str || !*str)
630 return 0;
632 /* Save settings */
633 memset(&map, 0, sizeof(map));
634 if (ints[0] > 0)
635 map.irq = ints[1];
636 if (ints[0] > 1)
637 map.base_addr = ints[2];
638 if (ints[0] > 2)
639 map.mem_start = ints[3];
640 if (ints[0] > 3)
641 map.mem_end = ints[4];
643 /* Add new entry to the list */
644 return netdev_boot_setup_add(str, &map);
647 __setup("netdev=", netdev_boot_setup);
649 /*******************************************************************************
651 Device Interface Subroutines
653 *******************************************************************************/
656 * __dev_get_by_name - find a device by its name
657 * @net: the applicable net namespace
658 * @name: name to find
660 * Find an interface by name. Must be called under RTNL semaphore
661 * or @dev_base_lock. If the name is found a pointer to the device
662 * is returned. If the name is not found then %NULL is returned. The
663 * reference counters are not incremented so the caller must be
664 * careful with locks.
667 struct net_device *__dev_get_by_name(struct net *net, const char *name)
669 struct net_device *dev;
670 struct hlist_head *head = dev_name_hash(net, name);
672 hlist_for_each_entry(dev, head, name_hlist)
673 if (!strncmp(dev->name, name, IFNAMSIZ))
674 return dev;
676 return NULL;
678 EXPORT_SYMBOL(__dev_get_by_name);
681 * dev_get_by_name_rcu - find a device by its name
682 * @net: the applicable net namespace
683 * @name: name to find
685 * Find an interface by name.
686 * If the name is found a pointer to the device is returned.
687 * If the name is not found then %NULL is returned.
688 * The reference counters are not incremented so the caller must be
689 * careful with locks. The caller must hold RCU lock.
692 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
694 struct net_device *dev;
695 struct hlist_head *head = dev_name_hash(net, name);
697 hlist_for_each_entry_rcu(dev, head, name_hlist)
698 if (!strncmp(dev->name, name, IFNAMSIZ))
699 return dev;
701 return NULL;
703 EXPORT_SYMBOL(dev_get_by_name_rcu);
706 * dev_get_by_name - find a device by its name
707 * @net: the applicable net namespace
708 * @name: name to find
710 * Find an interface by name. This can be called from any
711 * context and does its own locking. The returned handle has
712 * the usage count incremented and the caller must use dev_put() to
713 * release it when it is no longer needed. %NULL is returned if no
714 * matching device is found.
717 struct net_device *dev_get_by_name(struct net *net, const char *name)
719 struct net_device *dev;
721 rcu_read_lock();
722 dev = dev_get_by_name_rcu(net, name);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
728 EXPORT_SYMBOL(dev_get_by_name);
731 * __dev_get_by_index - find a device by its ifindex
732 * @net: the applicable net namespace
733 * @ifindex: index of device
735 * Search for an interface by index. Returns %NULL if the device
736 * is not found or a pointer to the device. The device has not
737 * had its reference counter increased so the caller must be careful
738 * about locking. The caller must hold either the RTNL semaphore
739 * or @dev_base_lock.
742 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
744 struct net_device *dev;
745 struct hlist_head *head = dev_index_hash(net, ifindex);
747 hlist_for_each_entry(dev, head, index_hlist)
748 if (dev->ifindex == ifindex)
749 return dev;
751 return NULL;
753 EXPORT_SYMBOL(__dev_get_by_index);
756 * dev_get_by_index_rcu - find a device by its ifindex
757 * @net: the applicable net namespace
758 * @ifindex: index of device
760 * Search for an interface by index. Returns %NULL if the device
761 * is not found or a pointer to the device. The device has not
762 * had its reference counter increased so the caller must be careful
763 * about locking. The caller must hold RCU lock.
766 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
768 struct net_device *dev;
769 struct hlist_head *head = dev_index_hash(net, ifindex);
771 hlist_for_each_entry_rcu(dev, head, index_hlist)
772 if (dev->ifindex == ifindex)
773 return dev;
775 return NULL;
777 EXPORT_SYMBOL(dev_get_by_index_rcu);
781 * dev_get_by_index - find a device by its ifindex
782 * @net: the applicable net namespace
783 * @ifindex: index of device
785 * Search for an interface by index. Returns NULL if the device
786 * is not found or a pointer to the device. The device returned has
787 * had a reference added and the pointer is safe until the user calls
788 * dev_put to indicate they have finished with it.
791 struct net_device *dev_get_by_index(struct net *net, int ifindex)
793 struct net_device *dev;
795 rcu_read_lock();
796 dev = dev_get_by_index_rcu(net, ifindex);
797 if (dev)
798 dev_hold(dev);
799 rcu_read_unlock();
800 return dev;
802 EXPORT_SYMBOL(dev_get_by_index);
805 * netdev_get_name - get a netdevice name, knowing its ifindex.
806 * @net: network namespace
807 * @name: a pointer to the buffer where the name will be stored.
808 * @ifindex: the ifindex of the interface to get the name from.
810 * The use of raw_seqcount_begin() and cond_resched() before
811 * retrying is required as we want to give the writers a chance
812 * to complete when CONFIG_PREEMPT is not set.
814 int netdev_get_name(struct net *net, char *name, int ifindex)
816 struct net_device *dev;
817 unsigned int seq;
819 retry:
820 seq = raw_seqcount_begin(&devnet_rename_seq);
821 rcu_read_lock();
822 dev = dev_get_by_index_rcu(net, ifindex);
823 if (!dev) {
824 rcu_read_unlock();
825 return -ENODEV;
828 strcpy(name, dev->name);
829 rcu_read_unlock();
830 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
831 cond_resched();
832 goto retry;
835 return 0;
839 * dev_getbyhwaddr_rcu - find a device by its hardware address
840 * @net: the applicable net namespace
841 * @type: media type of device
842 * @ha: hardware address
844 * Search for an interface by MAC address. Returns NULL if the device
845 * is not found or a pointer to the device.
846 * The caller must hold RCU or RTNL.
847 * The returned device has not had its ref count increased
848 * and the caller must therefore be careful about locking
852 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
853 const char *ha)
855 struct net_device *dev;
857 for_each_netdev_rcu(net, dev)
858 if (dev->type == type &&
859 !memcmp(dev->dev_addr, ha, dev->addr_len))
860 return dev;
862 return NULL;
864 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
866 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
868 struct net_device *dev;
870 ASSERT_RTNL();
871 for_each_netdev(net, dev)
872 if (dev->type == type)
873 return dev;
875 return NULL;
877 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
879 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
881 struct net_device *dev, *ret = NULL;
883 rcu_read_lock();
884 for_each_netdev_rcu(net, dev)
885 if (dev->type == type) {
886 dev_hold(dev);
887 ret = dev;
888 break;
890 rcu_read_unlock();
891 return ret;
893 EXPORT_SYMBOL(dev_getfirstbyhwtype);
896 * dev_get_by_flags_rcu - find any device with given flags
897 * @net: the applicable net namespace
898 * @if_flags: IFF_* values
899 * @mask: bitmask of bits in if_flags to check
901 * Search for any interface with the given flags. Returns NULL if a device
902 * is not found or a pointer to the device. Must be called inside
903 * rcu_read_lock(), and result refcount is unchanged.
906 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
907 unsigned short mask)
909 struct net_device *dev, *ret;
911 ret = NULL;
912 for_each_netdev_rcu(net, dev) {
913 if (((dev->flags ^ if_flags) & mask) == 0) {
914 ret = dev;
915 break;
918 return ret;
920 EXPORT_SYMBOL(dev_get_by_flags_rcu);
923 * dev_valid_name - check if name is okay for network device
924 * @name: name string
926 * Network device names need to be valid file names to
927 * to allow sysfs to work. We also disallow any kind of
928 * whitespace.
930 bool dev_valid_name(const char *name)
932 if (*name == '\0')
933 return false;
934 if (strlen(name) >= IFNAMSIZ)
935 return false;
936 if (!strcmp(name, ".") || !strcmp(name, ".."))
937 return false;
939 while (*name) {
940 if (*name == '/' || isspace(*name))
941 return false;
942 name++;
944 return true;
946 EXPORT_SYMBOL(dev_valid_name);
949 * __dev_alloc_name - allocate a name for a device
950 * @net: network namespace to allocate the device name in
951 * @name: name format string
952 * @buf: scratch buffer and result name string
954 * Passed a format string - eg "lt%d" it will try and find a suitable
955 * id. It scans list of devices to build up a free map, then chooses
956 * the first empty slot. The caller must hold the dev_base or rtnl lock
957 * while allocating the name and adding the device in order to avoid
958 * duplicates.
959 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
960 * Returns the number of the unit assigned or a negative errno code.
963 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
965 int i = 0;
966 const char *p;
967 const int max_netdevices = 8*PAGE_SIZE;
968 unsigned long *inuse;
969 struct net_device *d;
971 p = strnchr(name, IFNAMSIZ-1, '%');
972 if (p) {
974 * Verify the string as this thing may have come from
975 * the user. There must be either one "%d" and no other "%"
976 * characters.
978 if (p[1] != 'd' || strchr(p + 2, '%'))
979 return -EINVAL;
981 /* Use one page as a bit array of possible slots */
982 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
983 if (!inuse)
984 return -ENOMEM;
986 for_each_netdev(net, d) {
987 if (!sscanf(d->name, name, &i))
988 continue;
989 if (i < 0 || i >= max_netdevices)
990 continue;
992 /* avoid cases where sscanf is not exact inverse of printf */
993 snprintf(buf, IFNAMSIZ, name, i);
994 if (!strncmp(buf, d->name, IFNAMSIZ))
995 set_bit(i, inuse);
998 i = find_first_zero_bit(inuse, max_netdevices);
999 free_page((unsigned long) inuse);
1002 if (buf != name)
1003 snprintf(buf, IFNAMSIZ, name, i);
1004 if (!__dev_get_by_name(net, buf))
1005 return i;
1007 /* It is possible to run out of possible slots
1008 * when the name is long and there isn't enough space left
1009 * for the digits, or if all bits are used.
1011 return -ENFILE;
1015 * dev_alloc_name - allocate a name for a device
1016 * @dev: device
1017 * @name: name format string
1019 * Passed a format string - eg "lt%d" it will try and find a suitable
1020 * id. It scans list of devices to build up a free map, then chooses
1021 * the first empty slot. The caller must hold the dev_base or rtnl lock
1022 * while allocating the name and adding the device in order to avoid
1023 * duplicates.
1024 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025 * Returns the number of the unit assigned or a negative errno code.
1028 int dev_alloc_name(struct net_device *dev, const char *name)
1030 char buf[IFNAMSIZ];
1031 struct net *net;
1032 int ret;
1034 BUG_ON(!dev_net(dev));
1035 net = dev_net(dev);
1036 ret = __dev_alloc_name(net, name, buf);
1037 if (ret >= 0)
1038 strlcpy(dev->name, buf, IFNAMSIZ);
1039 return ret;
1041 EXPORT_SYMBOL(dev_alloc_name);
1043 static int dev_alloc_name_ns(struct net *net,
1044 struct net_device *dev,
1045 const char *name)
1047 char buf[IFNAMSIZ];
1048 int ret;
1050 ret = __dev_alloc_name(net, name, buf);
1051 if (ret >= 0)
1052 strlcpy(dev->name, buf, IFNAMSIZ);
1053 return ret;
1056 static int dev_get_valid_name(struct net *net,
1057 struct net_device *dev,
1058 const char *name)
1060 BUG_ON(!net);
1062 if (!dev_valid_name(name))
1063 return -EINVAL;
1065 if (strchr(name, '%'))
1066 return dev_alloc_name_ns(net, dev, name);
1067 else if (__dev_get_by_name(net, name))
1068 return -EEXIST;
1069 else if (dev->name != name)
1070 strlcpy(dev->name, name, IFNAMSIZ);
1072 return 0;
1076 * dev_change_name - change name of a device
1077 * @dev: device
1078 * @newname: name (or format string) must be at least IFNAMSIZ
1080 * Change name of a device, can pass format strings "eth%d".
1081 * for wildcarding.
1083 int dev_change_name(struct net_device *dev, const char *newname)
1085 char oldname[IFNAMSIZ];
1086 int err = 0;
1087 int ret;
1088 struct net *net;
1090 ASSERT_RTNL();
1091 BUG_ON(!dev_net(dev));
1093 net = dev_net(dev);
1094 if (dev->flags & IFF_UP)
1095 return -EBUSY;
1097 write_seqcount_begin(&devnet_rename_seq);
1099 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1100 write_seqcount_end(&devnet_rename_seq);
1101 return 0;
1104 memcpy(oldname, dev->name, IFNAMSIZ);
1106 err = dev_get_valid_name(net, dev, newname);
1107 if (err < 0) {
1108 write_seqcount_end(&devnet_rename_seq);
1109 return err;
1112 rollback:
1113 ret = device_rename(&dev->dev, dev->name);
1114 if (ret) {
1115 memcpy(dev->name, oldname, IFNAMSIZ);
1116 write_seqcount_end(&devnet_rename_seq);
1117 return ret;
1120 write_seqcount_end(&devnet_rename_seq);
1122 netdev_adjacent_rename_links(dev, oldname);
1124 write_lock_bh(&dev_base_lock);
1125 hlist_del_rcu(&dev->name_hlist);
1126 write_unlock_bh(&dev_base_lock);
1128 synchronize_rcu();
1130 write_lock_bh(&dev_base_lock);
1131 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1132 write_unlock_bh(&dev_base_lock);
1134 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1135 ret = notifier_to_errno(ret);
1137 if (ret) {
1138 /* err >= 0 after dev_alloc_name() or stores the first errno */
1139 if (err >= 0) {
1140 err = ret;
1141 write_seqcount_begin(&devnet_rename_seq);
1142 memcpy(dev->name, oldname, IFNAMSIZ);
1143 memcpy(oldname, newname, IFNAMSIZ);
1144 goto rollback;
1145 } else {
1146 pr_err("%s: name change rollback failed: %d\n",
1147 dev->name, ret);
1151 return err;
1155 * dev_set_alias - change ifalias of a device
1156 * @dev: device
1157 * @alias: name up to IFALIASZ
1158 * @len: limit of bytes to copy from info
1160 * Set ifalias for a device,
1162 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1164 char *new_ifalias;
1166 ASSERT_RTNL();
1168 if (len >= IFALIASZ)
1169 return -EINVAL;
1171 if (!len) {
1172 kfree(dev->ifalias);
1173 dev->ifalias = NULL;
1174 return 0;
1177 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1178 if (!new_ifalias)
1179 return -ENOMEM;
1180 dev->ifalias = new_ifalias;
1182 strlcpy(dev->ifalias, alias, len+1);
1183 return len;
1188 * netdev_features_change - device changes features
1189 * @dev: device to cause notification
1191 * Called to indicate a device has changed features.
1193 void netdev_features_change(struct net_device *dev)
1195 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1197 EXPORT_SYMBOL(netdev_features_change);
1200 * netdev_state_change - device changes state
1201 * @dev: device to cause notification
1203 * Called to indicate a device has changed state. This function calls
1204 * the notifier chains for netdev_chain and sends a NEWLINK message
1205 * to the routing socket.
1207 void netdev_state_change(struct net_device *dev)
1209 if (dev->flags & IFF_UP) {
1210 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1214 EXPORT_SYMBOL(netdev_state_change);
1217 * netdev_notify_peers - notify network peers about existence of @dev
1218 * @dev: network device
1220 * Generate traffic such that interested network peers are aware of
1221 * @dev, such as by generating a gratuitous ARP. This may be used when
1222 * a device wants to inform the rest of the network about some sort of
1223 * reconfiguration such as a failover event or virtual machine
1224 * migration.
1226 void netdev_notify_peers(struct net_device *dev)
1228 rtnl_lock();
1229 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1230 rtnl_unlock();
1232 EXPORT_SYMBOL(netdev_notify_peers);
1234 static int __dev_open(struct net_device *dev)
1236 const struct net_device_ops *ops = dev->netdev_ops;
1237 int ret;
1239 ASSERT_RTNL();
1241 if (!netif_device_present(dev))
1242 return -ENODEV;
1244 /* Block netpoll from trying to do any rx path servicing.
1245 * If we don't do this there is a chance ndo_poll_controller
1246 * or ndo_poll may be running while we open the device
1248 netpoll_poll_disable(dev);
1250 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1251 ret = notifier_to_errno(ret);
1252 if (ret)
1253 return ret;
1255 set_bit(__LINK_STATE_START, &dev->state);
1257 if (ops->ndo_validate_addr)
1258 ret = ops->ndo_validate_addr(dev);
1260 if (!ret && ops->ndo_open)
1261 ret = ops->ndo_open(dev);
1263 netpoll_poll_enable(dev);
1265 if (ret)
1266 clear_bit(__LINK_STATE_START, &dev->state);
1267 else {
1268 dev->flags |= IFF_UP;
1269 net_dmaengine_get();
1270 dev_set_rx_mode(dev);
1271 dev_activate(dev);
1272 add_device_randomness(dev->dev_addr, dev->addr_len);
1275 return ret;
1279 * dev_open - prepare an interface for use.
1280 * @dev: device to open
1282 * Takes a device from down to up state. The device's private open
1283 * function is invoked and then the multicast lists are loaded. Finally
1284 * the device is moved into the up state and a %NETDEV_UP message is
1285 * sent to the netdev notifier chain.
1287 * Calling this function on an active interface is a nop. On a failure
1288 * a negative errno code is returned.
1290 int dev_open(struct net_device *dev)
1292 int ret;
1294 if (dev->flags & IFF_UP)
1295 return 0;
1297 ret = __dev_open(dev);
1298 if (ret < 0)
1299 return ret;
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1302 call_netdevice_notifiers(NETDEV_UP, dev);
1304 return ret;
1306 EXPORT_SYMBOL(dev_open);
1308 static int __dev_close_many(struct list_head *head)
1310 struct net_device *dev;
1312 ASSERT_RTNL();
1313 might_sleep();
1315 list_for_each_entry(dev, head, close_list) {
1316 /* Temporarily disable netpoll until the interface is down */
1317 netpoll_poll_disable(dev);
1319 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1321 clear_bit(__LINK_STATE_START, &dev->state);
1323 /* Synchronize to scheduled poll. We cannot touch poll list, it
1324 * can be even on different cpu. So just clear netif_running().
1326 * dev->stop() will invoke napi_disable() on all of it's
1327 * napi_struct instances on this device.
1329 smp_mb__after_atomic(); /* Commit netif_running(). */
1332 dev_deactivate_many(head);
1334 list_for_each_entry(dev, head, close_list) {
1335 const struct net_device_ops *ops = dev->netdev_ops;
1338 * Call the device specific close. This cannot fail.
1339 * Only if device is UP
1341 * We allow it to be called even after a DETACH hot-plug
1342 * event.
1344 if (ops->ndo_stop)
1345 ops->ndo_stop(dev);
1347 dev->flags &= ~IFF_UP;
1348 net_dmaengine_put();
1349 netpoll_poll_enable(dev);
1352 return 0;
1355 static int __dev_close(struct net_device *dev)
1357 int retval;
1358 LIST_HEAD(single);
1360 list_add(&dev->close_list, &single);
1361 retval = __dev_close_many(&single);
1362 list_del(&single);
1364 return retval;
1367 static int dev_close_many(struct list_head *head)
1369 struct net_device *dev, *tmp;
1371 /* Remove the devices that don't need to be closed */
1372 list_for_each_entry_safe(dev, tmp, head, close_list)
1373 if (!(dev->flags & IFF_UP))
1374 list_del_init(&dev->close_list);
1376 __dev_close_many(head);
1378 list_for_each_entry_safe(dev, tmp, head, close_list) {
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1380 call_netdevice_notifiers(NETDEV_DOWN, dev);
1381 list_del_init(&dev->close_list);
1384 return 0;
1388 * dev_close - shutdown an interface.
1389 * @dev: device to shutdown
1391 * This function moves an active device into down state. A
1392 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1393 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1394 * chain.
1396 int dev_close(struct net_device *dev)
1398 if (dev->flags & IFF_UP) {
1399 LIST_HEAD(single);
1401 list_add(&dev->close_list, &single);
1402 dev_close_many(&single);
1403 list_del(&single);
1405 return 0;
1407 EXPORT_SYMBOL(dev_close);
1411 * dev_disable_lro - disable Large Receive Offload on a device
1412 * @dev: device
1414 * Disable Large Receive Offload (LRO) on a net device. Must be
1415 * called under RTNL. This is needed if received packets may be
1416 * forwarded to another interface.
1418 void dev_disable_lro(struct net_device *dev)
1421 * If we're trying to disable lro on a vlan device
1422 * use the underlying physical device instead
1424 if (is_vlan_dev(dev))
1425 dev = vlan_dev_real_dev(dev);
1427 /* the same for macvlan devices */
1428 if (netif_is_macvlan(dev))
1429 dev = macvlan_dev_real_dev(dev);
1431 dev->wanted_features &= ~NETIF_F_LRO;
1432 netdev_update_features(dev);
1434 if (unlikely(dev->features & NETIF_F_LRO))
1435 netdev_WARN(dev, "failed to disable LRO!\n");
1437 EXPORT_SYMBOL(dev_disable_lro);
1439 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1440 struct net_device *dev)
1442 struct netdev_notifier_info info;
1444 netdev_notifier_info_init(&info, dev);
1445 return nb->notifier_call(nb, val, &info);
1448 static int dev_boot_phase = 1;
1451 * register_netdevice_notifier - register a network notifier block
1452 * @nb: notifier
1454 * Register a notifier to be called when network device events occur.
1455 * The notifier passed is linked into the kernel structures and must
1456 * not be reused until it has been unregistered. A negative errno code
1457 * is returned on a failure.
1459 * When registered all registration and up events are replayed
1460 * to the new notifier to allow device to have a race free
1461 * view of the network device list.
1464 int register_netdevice_notifier(struct notifier_block *nb)
1466 struct net_device *dev;
1467 struct net_device *last;
1468 struct net *net;
1469 int err;
1471 rtnl_lock();
1472 err = raw_notifier_chain_register(&netdev_chain, nb);
1473 if (err)
1474 goto unlock;
1475 if (dev_boot_phase)
1476 goto unlock;
1477 for_each_net(net) {
1478 for_each_netdev(net, dev) {
1479 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1480 err = notifier_to_errno(err);
1481 if (err)
1482 goto rollback;
1484 if (!(dev->flags & IFF_UP))
1485 continue;
1487 call_netdevice_notifier(nb, NETDEV_UP, dev);
1491 unlock:
1492 rtnl_unlock();
1493 return err;
1495 rollback:
1496 last = dev;
1497 for_each_net(net) {
1498 for_each_netdev(net, dev) {
1499 if (dev == last)
1500 goto outroll;
1502 if (dev->flags & IFF_UP) {
1503 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1504 dev);
1505 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1507 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1511 outroll:
1512 raw_notifier_chain_unregister(&netdev_chain, nb);
1513 goto unlock;
1515 EXPORT_SYMBOL(register_netdevice_notifier);
1518 * unregister_netdevice_notifier - unregister a network notifier block
1519 * @nb: notifier
1521 * Unregister a notifier previously registered by
1522 * register_netdevice_notifier(). The notifier is unlinked into the
1523 * kernel structures and may then be reused. A negative errno code
1524 * is returned on a failure.
1526 * After unregistering unregister and down device events are synthesized
1527 * for all devices on the device list to the removed notifier to remove
1528 * the need for special case cleanup code.
1531 int unregister_netdevice_notifier(struct notifier_block *nb)
1533 struct net_device *dev;
1534 struct net *net;
1535 int err;
1537 rtnl_lock();
1538 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1539 if (err)
1540 goto unlock;
1542 for_each_net(net) {
1543 for_each_netdev(net, dev) {
1544 if (dev->flags & IFF_UP) {
1545 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1546 dev);
1547 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1549 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1552 unlock:
1553 rtnl_unlock();
1554 return err;
1556 EXPORT_SYMBOL(unregister_netdevice_notifier);
1559 * call_netdevice_notifiers_info - call all network notifier blocks
1560 * @val: value passed unmodified to notifier function
1561 * @dev: net_device pointer passed unmodified to notifier function
1562 * @info: notifier information data
1564 * Call all network notifier blocks. Parameters and return value
1565 * are as for raw_notifier_call_chain().
1568 static int call_netdevice_notifiers_info(unsigned long val,
1569 struct net_device *dev,
1570 struct netdev_notifier_info *info)
1572 ASSERT_RTNL();
1573 netdev_notifier_info_init(info, dev);
1574 return raw_notifier_call_chain(&netdev_chain, val, info);
1578 * call_netdevice_notifiers - call all network notifier blocks
1579 * @val: value passed unmodified to notifier function
1580 * @dev: net_device pointer passed unmodified to notifier function
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1586 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1588 struct netdev_notifier_info info;
1590 return call_netdevice_notifiers_info(val, dev, &info);
1592 EXPORT_SYMBOL(call_netdevice_notifiers);
1594 static struct static_key netstamp_needed __read_mostly;
1595 #ifdef HAVE_JUMP_LABEL
1596 /* We are not allowed to call static_key_slow_dec() from irq context
1597 * If net_disable_timestamp() is called from irq context, defer the
1598 * static_key_slow_dec() calls.
1600 static atomic_t netstamp_needed_deferred;
1601 #endif
1603 void net_enable_timestamp(void)
1605 #ifdef HAVE_JUMP_LABEL
1606 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1608 if (deferred) {
1609 while (--deferred)
1610 static_key_slow_dec(&netstamp_needed);
1611 return;
1613 #endif
1614 static_key_slow_inc(&netstamp_needed);
1616 EXPORT_SYMBOL(net_enable_timestamp);
1618 void net_disable_timestamp(void)
1620 #ifdef HAVE_JUMP_LABEL
1621 if (in_interrupt()) {
1622 atomic_inc(&netstamp_needed_deferred);
1623 return;
1625 #endif
1626 static_key_slow_dec(&netstamp_needed);
1628 EXPORT_SYMBOL(net_disable_timestamp);
1630 static inline void net_timestamp_set(struct sk_buff *skb)
1632 skb->tstamp.tv64 = 0;
1633 if (static_key_false(&netstamp_needed))
1634 __net_timestamp(skb);
1637 #define net_timestamp_check(COND, SKB) \
1638 if (static_key_false(&netstamp_needed)) { \
1639 if ((COND) && !(SKB)->tstamp.tv64) \
1640 __net_timestamp(SKB); \
1643 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1645 unsigned int len;
1647 if (!(dev->flags & IFF_UP))
1648 return false;
1650 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1651 if (skb->len <= len)
1652 return true;
1654 /* if TSO is enabled, we don't care about the length as the packet
1655 * could be forwarded without being segmented before
1657 if (skb_is_gso(skb))
1658 return true;
1660 return false;
1662 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1665 * dev_forward_skb - loopback an skb to another netif
1667 * @dev: destination network device
1668 * @skb: buffer to forward
1670 * return values:
1671 * NET_RX_SUCCESS (no congestion)
1672 * NET_RX_DROP (packet was dropped, but freed)
1674 * dev_forward_skb can be used for injecting an skb from the
1675 * start_xmit function of one device into the receive queue
1676 * of another device.
1678 * The receiving device may be in another namespace, so
1679 * we have to clear all information in the skb that could
1680 * impact namespace isolation.
1682 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1701 return netif_rx_internal(skb);
1703 EXPORT_SYMBOL_GPL(dev_forward_skb);
1705 static inline int deliver_skb(struct sk_buff *skb,
1706 struct packet_type *pt_prev,
1707 struct net_device *orig_dev)
1709 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1710 return -ENOMEM;
1711 atomic_inc(&skb->users);
1712 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1715 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1717 if (!ptype->af_packet_priv || !skb->sk)
1718 return false;
1720 if (ptype->id_match)
1721 return ptype->id_match(ptype, skb->sk);
1722 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1723 return true;
1725 return false;
1729 * Support routine. Sends outgoing frames to any network
1730 * taps currently in use.
1733 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1735 struct packet_type *ptype;
1736 struct sk_buff *skb2 = NULL;
1737 struct packet_type *pt_prev = NULL;
1739 rcu_read_lock();
1740 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1741 /* Never send packets back to the socket
1742 * they originated from - MvS (miquels@drinkel.ow.org)
1744 if ((ptype->dev == dev || !ptype->dev) &&
1745 (!skb_loop_sk(ptype, skb))) {
1746 if (pt_prev) {
1747 deliver_skb(skb2, pt_prev, skb->dev);
1748 pt_prev = ptype;
1749 continue;
1752 skb2 = skb_clone(skb, GFP_ATOMIC);
1753 if (!skb2)
1754 break;
1756 net_timestamp_set(skb2);
1758 /* skb->nh should be correctly
1759 set by sender, so that the second statement is
1760 just protection against buggy protocols.
1762 skb_reset_mac_header(skb2);
1764 if (skb_network_header(skb2) < skb2->data ||
1765 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1766 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1767 ntohs(skb2->protocol),
1768 dev->name);
1769 skb_reset_network_header(skb2);
1772 skb2->transport_header = skb2->network_header;
1773 skb2->pkt_type = PACKET_OUTGOING;
1774 pt_prev = ptype;
1777 if (pt_prev)
1778 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1779 rcu_read_unlock();
1783 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1784 * @dev: Network device
1785 * @txq: number of queues available
1787 * If real_num_tx_queues is changed the tc mappings may no longer be
1788 * valid. To resolve this verify the tc mapping remains valid and if
1789 * not NULL the mapping. With no priorities mapping to this
1790 * offset/count pair it will no longer be used. In the worst case TC0
1791 * is invalid nothing can be done so disable priority mappings. If is
1792 * expected that drivers will fix this mapping if they can before
1793 * calling netif_set_real_num_tx_queues.
1795 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1797 int i;
1798 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1800 /* If TC0 is invalidated disable TC mapping */
1801 if (tc->offset + tc->count > txq) {
1802 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1803 dev->num_tc = 0;
1804 return;
1807 /* Invalidated prio to tc mappings set to TC0 */
1808 for (i = 1; i < TC_BITMASK + 1; i++) {
1809 int q = netdev_get_prio_tc_map(dev, i);
1811 tc = &dev->tc_to_txq[q];
1812 if (tc->offset + tc->count > txq) {
1813 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1814 i, q);
1815 netdev_set_prio_tc_map(dev, i, 0);
1820 #ifdef CONFIG_XPS
1821 static DEFINE_MUTEX(xps_map_mutex);
1822 #define xmap_dereference(P) \
1823 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1825 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1826 int cpu, u16 index)
1828 struct xps_map *map = NULL;
1829 int pos;
1831 if (dev_maps)
1832 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1834 for (pos = 0; map && pos < map->len; pos++) {
1835 if (map->queues[pos] == index) {
1836 if (map->len > 1) {
1837 map->queues[pos] = map->queues[--map->len];
1838 } else {
1839 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1840 kfree_rcu(map, rcu);
1841 map = NULL;
1843 break;
1847 return map;
1850 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1852 struct xps_dev_maps *dev_maps;
1853 int cpu, i;
1854 bool active = false;
1856 mutex_lock(&xps_map_mutex);
1857 dev_maps = xmap_dereference(dev->xps_maps);
1859 if (!dev_maps)
1860 goto out_no_maps;
1862 for_each_possible_cpu(cpu) {
1863 for (i = index; i < dev->num_tx_queues; i++) {
1864 if (!remove_xps_queue(dev_maps, cpu, i))
1865 break;
1867 if (i == dev->num_tx_queues)
1868 active = true;
1871 if (!active) {
1872 RCU_INIT_POINTER(dev->xps_maps, NULL);
1873 kfree_rcu(dev_maps, rcu);
1876 for (i = index; i < dev->num_tx_queues; i++)
1877 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1878 NUMA_NO_NODE);
1880 out_no_maps:
1881 mutex_unlock(&xps_map_mutex);
1884 static struct xps_map *expand_xps_map(struct xps_map *map,
1885 int cpu, u16 index)
1887 struct xps_map *new_map;
1888 int alloc_len = XPS_MIN_MAP_ALLOC;
1889 int i, pos;
1891 for (pos = 0; map && pos < map->len; pos++) {
1892 if (map->queues[pos] != index)
1893 continue;
1894 return map;
1897 /* Need to add queue to this CPU's existing map */
1898 if (map) {
1899 if (pos < map->alloc_len)
1900 return map;
1902 alloc_len = map->alloc_len * 2;
1905 /* Need to allocate new map to store queue on this CPU's map */
1906 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1907 cpu_to_node(cpu));
1908 if (!new_map)
1909 return NULL;
1911 for (i = 0; i < pos; i++)
1912 new_map->queues[i] = map->queues[i];
1913 new_map->alloc_len = alloc_len;
1914 new_map->len = pos;
1916 return new_map;
1919 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1920 u16 index)
1922 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1923 struct xps_map *map, *new_map;
1924 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1925 int cpu, numa_node_id = -2;
1926 bool active = false;
1928 mutex_lock(&xps_map_mutex);
1930 dev_maps = xmap_dereference(dev->xps_maps);
1932 /* allocate memory for queue storage */
1933 for_each_online_cpu(cpu) {
1934 if (!cpumask_test_cpu(cpu, mask))
1935 continue;
1937 if (!new_dev_maps)
1938 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1939 if (!new_dev_maps) {
1940 mutex_unlock(&xps_map_mutex);
1941 return -ENOMEM;
1944 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1945 NULL;
1947 map = expand_xps_map(map, cpu, index);
1948 if (!map)
1949 goto error;
1951 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1954 if (!new_dev_maps)
1955 goto out_no_new_maps;
1957 for_each_possible_cpu(cpu) {
1958 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1959 /* add queue to CPU maps */
1960 int pos = 0;
1962 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1963 while ((pos < map->len) && (map->queues[pos] != index))
1964 pos++;
1966 if (pos == map->len)
1967 map->queues[map->len++] = index;
1968 #ifdef CONFIG_NUMA
1969 if (numa_node_id == -2)
1970 numa_node_id = cpu_to_node(cpu);
1971 else if (numa_node_id != cpu_to_node(cpu))
1972 numa_node_id = -1;
1973 #endif
1974 } else if (dev_maps) {
1975 /* fill in the new device map from the old device map */
1976 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1977 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1982 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
1984 /* Cleanup old maps */
1985 if (dev_maps) {
1986 for_each_possible_cpu(cpu) {
1987 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1988 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1989 if (map && map != new_map)
1990 kfree_rcu(map, rcu);
1993 kfree_rcu(dev_maps, rcu);
1996 dev_maps = new_dev_maps;
1997 active = true;
1999 out_no_new_maps:
2000 /* update Tx queue numa node */
2001 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2002 (numa_node_id >= 0) ? numa_node_id :
2003 NUMA_NO_NODE);
2005 if (!dev_maps)
2006 goto out_no_maps;
2008 /* removes queue from unused CPUs */
2009 for_each_possible_cpu(cpu) {
2010 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2011 continue;
2013 if (remove_xps_queue(dev_maps, cpu, index))
2014 active = true;
2017 /* free map if not active */
2018 if (!active) {
2019 RCU_INIT_POINTER(dev->xps_maps, NULL);
2020 kfree_rcu(dev_maps, rcu);
2023 out_no_maps:
2024 mutex_unlock(&xps_map_mutex);
2026 return 0;
2027 error:
2028 /* remove any maps that we added */
2029 for_each_possible_cpu(cpu) {
2030 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2031 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2032 NULL;
2033 if (new_map && new_map != map)
2034 kfree(new_map);
2037 mutex_unlock(&xps_map_mutex);
2039 kfree(new_dev_maps);
2040 return -ENOMEM;
2042 EXPORT_SYMBOL(netif_set_xps_queue);
2044 #endif
2046 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2047 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2049 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2051 int rc;
2053 if (txq < 1 || txq > dev->num_tx_queues)
2054 return -EINVAL;
2056 if (dev->reg_state == NETREG_REGISTERED ||
2057 dev->reg_state == NETREG_UNREGISTERING) {
2058 ASSERT_RTNL();
2060 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2061 txq);
2062 if (rc)
2063 return rc;
2065 if (dev->num_tc)
2066 netif_setup_tc(dev, txq);
2068 if (txq < dev->real_num_tx_queues) {
2069 qdisc_reset_all_tx_gt(dev, txq);
2070 #ifdef CONFIG_XPS
2071 netif_reset_xps_queues_gt(dev, txq);
2072 #endif
2076 dev->real_num_tx_queues = txq;
2077 return 0;
2079 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2081 #ifdef CONFIG_SYSFS
2083 * netif_set_real_num_rx_queues - set actual number of RX queues used
2084 * @dev: Network device
2085 * @rxq: Actual number of RX queues
2087 * This must be called either with the rtnl_lock held or before
2088 * registration of the net device. Returns 0 on success, or a
2089 * negative error code. If called before registration, it always
2090 * succeeds.
2092 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2094 int rc;
2096 if (rxq < 1 || rxq > dev->num_rx_queues)
2097 return -EINVAL;
2099 if (dev->reg_state == NETREG_REGISTERED) {
2100 ASSERT_RTNL();
2102 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2103 rxq);
2104 if (rc)
2105 return rc;
2108 dev->real_num_rx_queues = rxq;
2109 return 0;
2111 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2112 #endif
2115 * netif_get_num_default_rss_queues - default number of RSS queues
2117 * This routine should set an upper limit on the number of RSS queues
2118 * used by default by multiqueue devices.
2120 int netif_get_num_default_rss_queues(void)
2122 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2124 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2126 static inline void __netif_reschedule(struct Qdisc *q)
2128 struct softnet_data *sd;
2129 unsigned long flags;
2131 local_irq_save(flags);
2132 sd = &__get_cpu_var(softnet_data);
2133 q->next_sched = NULL;
2134 *sd->output_queue_tailp = q;
2135 sd->output_queue_tailp = &q->next_sched;
2136 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2137 local_irq_restore(flags);
2140 void __netif_schedule(struct Qdisc *q)
2142 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2143 __netif_reschedule(q);
2145 EXPORT_SYMBOL(__netif_schedule);
2147 struct dev_kfree_skb_cb {
2148 enum skb_free_reason reason;
2151 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2153 return (struct dev_kfree_skb_cb *)skb->cb;
2156 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2158 unsigned long flags;
2160 if (likely(atomic_read(&skb->users) == 1)) {
2161 smp_rmb();
2162 atomic_set(&skb->users, 0);
2163 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2164 return;
2166 get_kfree_skb_cb(skb)->reason = reason;
2167 local_irq_save(flags);
2168 skb->next = __this_cpu_read(softnet_data.completion_queue);
2169 __this_cpu_write(softnet_data.completion_queue, skb);
2170 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2171 local_irq_restore(flags);
2173 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2175 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2177 if (in_irq() || irqs_disabled())
2178 __dev_kfree_skb_irq(skb, reason);
2179 else
2180 dev_kfree_skb(skb);
2182 EXPORT_SYMBOL(__dev_kfree_skb_any);
2186 * netif_device_detach - mark device as removed
2187 * @dev: network device
2189 * Mark device as removed from system and therefore no longer available.
2191 void netif_device_detach(struct net_device *dev)
2193 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2194 netif_running(dev)) {
2195 netif_tx_stop_all_queues(dev);
2198 EXPORT_SYMBOL(netif_device_detach);
2201 * netif_device_attach - mark device as attached
2202 * @dev: network device
2204 * Mark device as attached from system and restart if needed.
2206 void netif_device_attach(struct net_device *dev)
2208 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2209 netif_running(dev)) {
2210 netif_tx_wake_all_queues(dev);
2211 __netdev_watchdog_up(dev);
2214 EXPORT_SYMBOL(netif_device_attach);
2216 static void skb_warn_bad_offload(const struct sk_buff *skb)
2218 static const netdev_features_t null_features = 0;
2219 struct net_device *dev = skb->dev;
2220 const char *driver = "";
2222 if (!net_ratelimit())
2223 return;
2225 if (dev && dev->dev.parent)
2226 driver = dev_driver_string(dev->dev.parent);
2228 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2229 "gso_type=%d ip_summed=%d\n",
2230 driver, dev ? &dev->features : &null_features,
2231 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2232 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2233 skb_shinfo(skb)->gso_type, skb->ip_summed);
2237 * Invalidate hardware checksum when packet is to be mangled, and
2238 * complete checksum manually on outgoing path.
2240 int skb_checksum_help(struct sk_buff *skb)
2242 __wsum csum;
2243 int ret = 0, offset;
2245 if (skb->ip_summed == CHECKSUM_COMPLETE)
2246 goto out_set_summed;
2248 if (unlikely(skb_shinfo(skb)->gso_size)) {
2249 skb_warn_bad_offload(skb);
2250 return -EINVAL;
2253 /* Before computing a checksum, we should make sure no frag could
2254 * be modified by an external entity : checksum could be wrong.
2256 if (skb_has_shared_frag(skb)) {
2257 ret = __skb_linearize(skb);
2258 if (ret)
2259 goto out;
2262 offset = skb_checksum_start_offset(skb);
2263 BUG_ON(offset >= skb_headlen(skb));
2264 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2266 offset += skb->csum_offset;
2267 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2269 if (skb_cloned(skb) &&
2270 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2271 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2272 if (ret)
2273 goto out;
2276 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2277 out_set_summed:
2278 skb->ip_summed = CHECKSUM_NONE;
2279 out:
2280 return ret;
2282 EXPORT_SYMBOL(skb_checksum_help);
2284 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2286 unsigned int vlan_depth = skb->mac_len;
2287 __be16 type = skb->protocol;
2289 /* Tunnel gso handlers can set protocol to ethernet. */
2290 if (type == htons(ETH_P_TEB)) {
2291 struct ethhdr *eth;
2293 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2294 return 0;
2296 eth = (struct ethhdr *)skb_mac_header(skb);
2297 type = eth->h_proto;
2300 /* if skb->protocol is 802.1Q/AD then the header should already be
2301 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2302 * ETH_HLEN otherwise
2304 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2305 if (vlan_depth) {
2306 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN)))
2307 return 0;
2308 vlan_depth -= VLAN_HLEN;
2309 } else {
2310 vlan_depth = ETH_HLEN;
2312 do {
2313 struct vlan_hdr *vh;
2315 if (unlikely(!pskb_may_pull(skb,
2316 vlan_depth + VLAN_HLEN)))
2317 return 0;
2319 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2320 type = vh->h_vlan_encapsulated_proto;
2321 vlan_depth += VLAN_HLEN;
2322 } while (type == htons(ETH_P_8021Q) ||
2323 type == htons(ETH_P_8021AD));
2326 *depth = vlan_depth;
2328 return type;
2332 * skb_mac_gso_segment - mac layer segmentation handler.
2333 * @skb: buffer to segment
2334 * @features: features for the output path (see dev->features)
2336 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2337 netdev_features_t features)
2339 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2340 struct packet_offload *ptype;
2341 int vlan_depth = skb->mac_len;
2342 __be16 type = skb_network_protocol(skb, &vlan_depth);
2344 if (unlikely(!type))
2345 return ERR_PTR(-EINVAL);
2347 __skb_pull(skb, vlan_depth);
2349 rcu_read_lock();
2350 list_for_each_entry_rcu(ptype, &offload_base, list) {
2351 if (ptype->type == type && ptype->callbacks.gso_segment) {
2352 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
2353 int err;
2355 err = ptype->callbacks.gso_send_check(skb);
2356 segs = ERR_PTR(err);
2357 if (err || skb_gso_ok(skb, features))
2358 break;
2359 __skb_push(skb, (skb->data -
2360 skb_network_header(skb)));
2362 segs = ptype->callbacks.gso_segment(skb, features);
2363 break;
2366 rcu_read_unlock();
2368 __skb_push(skb, skb->data - skb_mac_header(skb));
2370 return segs;
2372 EXPORT_SYMBOL(skb_mac_gso_segment);
2375 /* openvswitch calls this on rx path, so we need a different check.
2377 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2379 if (tx_path)
2380 return skb->ip_summed != CHECKSUM_PARTIAL;
2381 else
2382 return skb->ip_summed == CHECKSUM_NONE;
2386 * __skb_gso_segment - Perform segmentation on skb.
2387 * @skb: buffer to segment
2388 * @features: features for the output path (see dev->features)
2389 * @tx_path: whether it is called in TX path
2391 * This function segments the given skb and returns a list of segments.
2393 * It may return NULL if the skb requires no segmentation. This is
2394 * only possible when GSO is used for verifying header integrity.
2396 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2397 netdev_features_t features, bool tx_path)
2399 if (unlikely(skb_needs_check(skb, tx_path))) {
2400 int err;
2402 skb_warn_bad_offload(skb);
2404 if (skb_header_cloned(skb) &&
2405 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
2406 return ERR_PTR(err);
2409 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2410 SKB_GSO_CB(skb)->encap_level = 0;
2412 skb_reset_mac_header(skb);
2413 skb_reset_mac_len(skb);
2415 return skb_mac_gso_segment(skb, features);
2417 EXPORT_SYMBOL(__skb_gso_segment);
2419 /* Take action when hardware reception checksum errors are detected. */
2420 #ifdef CONFIG_BUG
2421 void netdev_rx_csum_fault(struct net_device *dev)
2423 if (net_ratelimit()) {
2424 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2425 dump_stack();
2428 EXPORT_SYMBOL(netdev_rx_csum_fault);
2429 #endif
2431 /* Actually, we should eliminate this check as soon as we know, that:
2432 * 1. IOMMU is present and allows to map all the memory.
2433 * 2. No high memory really exists on this machine.
2436 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2438 #ifdef CONFIG_HIGHMEM
2439 int i;
2440 if (!(dev->features & NETIF_F_HIGHDMA)) {
2441 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2442 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2443 if (PageHighMem(skb_frag_page(frag)))
2444 return 1;
2448 if (PCI_DMA_BUS_IS_PHYS) {
2449 struct device *pdev = dev->dev.parent;
2451 if (!pdev)
2452 return 0;
2453 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2454 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2455 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2456 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2457 return 1;
2460 #endif
2461 return 0;
2464 struct dev_gso_cb {
2465 void (*destructor)(struct sk_buff *skb);
2468 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
2470 static void dev_gso_skb_destructor(struct sk_buff *skb)
2472 struct dev_gso_cb *cb;
2474 kfree_skb_list(skb->next);
2475 skb->next = NULL;
2477 cb = DEV_GSO_CB(skb);
2478 if (cb->destructor)
2479 cb->destructor(skb);
2483 * dev_gso_segment - Perform emulated hardware segmentation on skb.
2484 * @skb: buffer to segment
2485 * @features: device features as applicable to this skb
2487 * This function segments the given skb and stores the list of segments
2488 * in skb->next.
2490 static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features)
2492 struct sk_buff *segs;
2494 segs = skb_gso_segment(skb, features);
2496 /* Verifying header integrity only. */
2497 if (!segs)
2498 return 0;
2500 if (IS_ERR(segs))
2501 return PTR_ERR(segs);
2503 skb->next = segs;
2504 DEV_GSO_CB(skb)->destructor = skb->destructor;
2505 skb->destructor = dev_gso_skb_destructor;
2507 return 0;
2510 static netdev_features_t harmonize_features(struct sk_buff *skb,
2511 netdev_features_t features)
2513 int tmp;
2515 if (skb->ip_summed != CHECKSUM_NONE &&
2516 !can_checksum_protocol(features, skb_network_protocol(skb, &tmp))) {
2517 features &= ~NETIF_F_ALL_CSUM;
2518 } else if (illegal_highdma(skb->dev, skb)) {
2519 features &= ~NETIF_F_SG;
2522 return features;
2525 netdev_features_t netif_skb_features(struct sk_buff *skb)
2527 __be16 protocol = skb->protocol;
2528 netdev_features_t features = skb->dev->features;
2530 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs)
2531 features &= ~NETIF_F_GSO_MASK;
2533 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2534 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2535 protocol = veh->h_vlan_encapsulated_proto;
2536 } else if (!vlan_tx_tag_present(skb)) {
2537 return harmonize_features(skb, features);
2540 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX |
2541 NETIF_F_HW_VLAN_STAG_TX);
2543 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2544 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2545 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX |
2546 NETIF_F_HW_VLAN_STAG_TX;
2548 return harmonize_features(skb, features);
2550 EXPORT_SYMBOL(netif_skb_features);
2552 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2553 struct netdev_queue *txq)
2555 const struct net_device_ops *ops = dev->netdev_ops;
2556 int rc = NETDEV_TX_OK;
2557 unsigned int skb_len;
2559 if (likely(!skb->next)) {
2560 netdev_features_t features;
2563 * If device doesn't need skb->dst, release it right now while
2564 * its hot in this cpu cache
2566 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2567 skb_dst_drop(skb);
2569 features = netif_skb_features(skb);
2571 if (vlan_tx_tag_present(skb) &&
2572 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2573 skb = __vlan_put_tag(skb, skb->vlan_proto,
2574 vlan_tx_tag_get(skb));
2575 if (unlikely(!skb))
2576 goto out;
2578 skb->vlan_tci = 0;
2581 /* If encapsulation offload request, verify we are testing
2582 * hardware encapsulation features instead of standard
2583 * features for the netdev
2585 if (skb->encapsulation)
2586 features &= dev->hw_enc_features;
2588 if (netif_needs_gso(skb, features)) {
2589 if (unlikely(dev_gso_segment(skb, features)))
2590 goto out_kfree_skb;
2591 if (skb->next)
2592 goto gso;
2593 } else {
2594 if (skb_needs_linearize(skb, features) &&
2595 __skb_linearize(skb))
2596 goto out_kfree_skb;
2598 /* If packet is not checksummed and device does not
2599 * support checksumming for this protocol, complete
2600 * checksumming here.
2602 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2603 if (skb->encapsulation)
2604 skb_set_inner_transport_header(skb,
2605 skb_checksum_start_offset(skb));
2606 else
2607 skb_set_transport_header(skb,
2608 skb_checksum_start_offset(skb));
2609 if (!(features & NETIF_F_ALL_CSUM) &&
2610 skb_checksum_help(skb))
2611 goto out_kfree_skb;
2615 if (!list_empty(&ptype_all))
2616 dev_queue_xmit_nit(skb, dev);
2618 skb_len = skb->len;
2619 trace_net_dev_start_xmit(skb, dev);
2620 rc = ops->ndo_start_xmit(skb, dev);
2621 trace_net_dev_xmit(skb, rc, dev, skb_len);
2622 if (rc == NETDEV_TX_OK)
2623 txq_trans_update(txq);
2624 return rc;
2627 gso:
2628 do {
2629 struct sk_buff *nskb = skb->next;
2631 skb->next = nskb->next;
2632 nskb->next = NULL;
2634 if (!list_empty(&ptype_all))
2635 dev_queue_xmit_nit(nskb, dev);
2637 skb_len = nskb->len;
2638 trace_net_dev_start_xmit(nskb, dev);
2639 rc = ops->ndo_start_xmit(nskb, dev);
2640 trace_net_dev_xmit(nskb, rc, dev, skb_len);
2641 if (unlikely(rc != NETDEV_TX_OK)) {
2642 if (rc & ~NETDEV_TX_MASK)
2643 goto out_kfree_gso_skb;
2644 nskb->next = skb->next;
2645 skb->next = nskb;
2646 return rc;
2648 txq_trans_update(txq);
2649 if (unlikely(netif_xmit_stopped(txq) && skb->next))
2650 return NETDEV_TX_BUSY;
2651 } while (skb->next);
2653 out_kfree_gso_skb:
2654 if (likely(skb->next == NULL)) {
2655 skb->destructor = DEV_GSO_CB(skb)->destructor;
2656 consume_skb(skb);
2657 return rc;
2659 out_kfree_skb:
2660 kfree_skb(skb);
2661 out:
2662 return rc;
2664 EXPORT_SYMBOL_GPL(dev_hard_start_xmit);
2666 static void qdisc_pkt_len_init(struct sk_buff *skb)
2668 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2670 qdisc_skb_cb(skb)->pkt_len = skb->len;
2672 /* To get more precise estimation of bytes sent on wire,
2673 * we add to pkt_len the headers size of all segments
2675 if (shinfo->gso_size) {
2676 unsigned int hdr_len;
2677 u16 gso_segs = shinfo->gso_segs;
2679 /* mac layer + network layer */
2680 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2682 /* + transport layer */
2683 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2684 hdr_len += tcp_hdrlen(skb);
2685 else
2686 hdr_len += sizeof(struct udphdr);
2688 if (shinfo->gso_type & SKB_GSO_DODGY)
2689 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2690 shinfo->gso_size);
2692 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2696 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2697 struct net_device *dev,
2698 struct netdev_queue *txq)
2700 spinlock_t *root_lock = qdisc_lock(q);
2701 bool contended;
2702 int rc;
2704 qdisc_pkt_len_init(skb);
2705 qdisc_calculate_pkt_len(skb, q);
2707 * Heuristic to force contended enqueues to serialize on a
2708 * separate lock before trying to get qdisc main lock.
2709 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2710 * and dequeue packets faster.
2712 contended = qdisc_is_running(q);
2713 if (unlikely(contended))
2714 spin_lock(&q->busylock);
2716 spin_lock(root_lock);
2717 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2718 kfree_skb(skb);
2719 rc = NET_XMIT_DROP;
2720 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2721 qdisc_run_begin(q)) {
2723 * This is a work-conserving queue; there are no old skbs
2724 * waiting to be sent out; and the qdisc is not running -
2725 * xmit the skb directly.
2727 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2728 skb_dst_force(skb);
2730 qdisc_bstats_update(q, skb);
2732 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2733 if (unlikely(contended)) {
2734 spin_unlock(&q->busylock);
2735 contended = false;
2737 __qdisc_run(q);
2738 } else
2739 qdisc_run_end(q);
2741 rc = NET_XMIT_SUCCESS;
2742 } else {
2743 skb_dst_force(skb);
2744 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2745 if (qdisc_run_begin(q)) {
2746 if (unlikely(contended)) {
2747 spin_unlock(&q->busylock);
2748 contended = false;
2750 __qdisc_run(q);
2753 spin_unlock(root_lock);
2754 if (unlikely(contended))
2755 spin_unlock(&q->busylock);
2756 return rc;
2759 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2760 static void skb_update_prio(struct sk_buff *skb)
2762 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2764 if (!skb->priority && skb->sk && map) {
2765 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2767 if (prioidx < map->priomap_len)
2768 skb->priority = map->priomap[prioidx];
2771 #else
2772 #define skb_update_prio(skb)
2773 #endif
2775 static DEFINE_PER_CPU(int, xmit_recursion);
2776 #define RECURSION_LIMIT 10
2779 * dev_loopback_xmit - loop back @skb
2780 * @skb: buffer to transmit
2782 int dev_loopback_xmit(struct sk_buff *skb)
2784 skb_reset_mac_header(skb);
2785 __skb_pull(skb, skb_network_offset(skb));
2786 skb->pkt_type = PACKET_LOOPBACK;
2787 skb->ip_summed = CHECKSUM_UNNECESSARY;
2788 WARN_ON(!skb_dst(skb));
2789 skb_dst_force(skb);
2790 netif_rx_ni(skb);
2791 return 0;
2793 EXPORT_SYMBOL(dev_loopback_xmit);
2796 * __dev_queue_xmit - transmit a buffer
2797 * @skb: buffer to transmit
2798 * @accel_priv: private data used for L2 forwarding offload
2800 * Queue a buffer for transmission to a network device. The caller must
2801 * have set the device and priority and built the buffer before calling
2802 * this function. The function can be called from an interrupt.
2804 * A negative errno code is returned on a failure. A success does not
2805 * guarantee the frame will be transmitted as it may be dropped due
2806 * to congestion or traffic shaping.
2808 * -----------------------------------------------------------------------------------
2809 * I notice this method can also return errors from the queue disciplines,
2810 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2811 * be positive.
2813 * Regardless of the return value, the skb is consumed, so it is currently
2814 * difficult to retry a send to this method. (You can bump the ref count
2815 * before sending to hold a reference for retry if you are careful.)
2817 * When calling this method, interrupts MUST be enabled. This is because
2818 * the BH enable code must have IRQs enabled so that it will not deadlock.
2819 * --BLG
2821 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2823 struct net_device *dev = skb->dev;
2824 struct netdev_queue *txq;
2825 struct Qdisc *q;
2826 int rc = -ENOMEM;
2828 skb_reset_mac_header(skb);
2830 /* Disable soft irqs for various locks below. Also
2831 * stops preemption for RCU.
2833 rcu_read_lock_bh();
2835 skb_update_prio(skb);
2837 txq = netdev_pick_tx(dev, skb, accel_priv);
2838 q = rcu_dereference_bh(txq->qdisc);
2840 #ifdef CONFIG_NET_CLS_ACT
2841 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2842 #endif
2843 trace_net_dev_queue(skb);
2844 if (q->enqueue) {
2845 rc = __dev_xmit_skb(skb, q, dev, txq);
2846 goto out;
2849 /* The device has no queue. Common case for software devices:
2850 loopback, all the sorts of tunnels...
2852 Really, it is unlikely that netif_tx_lock protection is necessary
2853 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2854 counters.)
2855 However, it is possible, that they rely on protection
2856 made by us here.
2858 Check this and shot the lock. It is not prone from deadlocks.
2859 Either shot noqueue qdisc, it is even simpler 8)
2861 if (dev->flags & IFF_UP) {
2862 int cpu = smp_processor_id(); /* ok because BHs are off */
2864 if (txq->xmit_lock_owner != cpu) {
2866 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2867 goto recursion_alert;
2869 HARD_TX_LOCK(dev, txq, cpu);
2871 if (!netif_xmit_stopped(txq)) {
2872 __this_cpu_inc(xmit_recursion);
2873 rc = dev_hard_start_xmit(skb, dev, txq);
2874 __this_cpu_dec(xmit_recursion);
2875 if (dev_xmit_complete(rc)) {
2876 HARD_TX_UNLOCK(dev, txq);
2877 goto out;
2880 HARD_TX_UNLOCK(dev, txq);
2881 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2882 dev->name);
2883 } else {
2884 /* Recursion is detected! It is possible,
2885 * unfortunately
2887 recursion_alert:
2888 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2889 dev->name);
2893 rc = -ENETDOWN;
2894 rcu_read_unlock_bh();
2896 atomic_long_inc(&dev->tx_dropped);
2897 kfree_skb(skb);
2898 return rc;
2899 out:
2900 rcu_read_unlock_bh();
2901 return rc;
2904 int dev_queue_xmit(struct sk_buff *skb)
2906 return __dev_queue_xmit(skb, NULL);
2908 EXPORT_SYMBOL(dev_queue_xmit);
2910 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
2912 return __dev_queue_xmit(skb, accel_priv);
2914 EXPORT_SYMBOL(dev_queue_xmit_accel);
2917 /*=======================================================================
2918 Receiver routines
2919 =======================================================================*/
2921 int netdev_max_backlog __read_mostly = 1000;
2922 EXPORT_SYMBOL(netdev_max_backlog);
2924 int netdev_tstamp_prequeue __read_mostly = 1;
2925 int netdev_budget __read_mostly = 300;
2926 int weight_p __read_mostly = 64; /* old backlog weight */
2928 /* Called with irq disabled */
2929 static inline void ____napi_schedule(struct softnet_data *sd,
2930 struct napi_struct *napi)
2932 list_add_tail(&napi->poll_list, &sd->poll_list);
2933 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2936 #ifdef CONFIG_RPS
2938 /* One global table that all flow-based protocols share. */
2939 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2940 EXPORT_SYMBOL(rps_sock_flow_table);
2942 struct static_key rps_needed __read_mostly;
2944 static struct rps_dev_flow *
2945 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2946 struct rps_dev_flow *rflow, u16 next_cpu)
2948 if (next_cpu != RPS_NO_CPU) {
2949 #ifdef CONFIG_RFS_ACCEL
2950 struct netdev_rx_queue *rxqueue;
2951 struct rps_dev_flow_table *flow_table;
2952 struct rps_dev_flow *old_rflow;
2953 u32 flow_id;
2954 u16 rxq_index;
2955 int rc;
2957 /* Should we steer this flow to a different hardware queue? */
2958 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2959 !(dev->features & NETIF_F_NTUPLE))
2960 goto out;
2961 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2962 if (rxq_index == skb_get_rx_queue(skb))
2963 goto out;
2965 rxqueue = dev->_rx + rxq_index;
2966 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2967 if (!flow_table)
2968 goto out;
2969 flow_id = skb_get_hash(skb) & flow_table->mask;
2970 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2971 rxq_index, flow_id);
2972 if (rc < 0)
2973 goto out;
2974 old_rflow = rflow;
2975 rflow = &flow_table->flows[flow_id];
2976 rflow->filter = rc;
2977 if (old_rflow->filter == rflow->filter)
2978 old_rflow->filter = RPS_NO_FILTER;
2979 out:
2980 #endif
2981 rflow->last_qtail =
2982 per_cpu(softnet_data, next_cpu).input_queue_head;
2985 rflow->cpu = next_cpu;
2986 return rflow;
2990 * get_rps_cpu is called from netif_receive_skb and returns the target
2991 * CPU from the RPS map of the receiving queue for a given skb.
2992 * rcu_read_lock must be held on entry.
2994 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2995 struct rps_dev_flow **rflowp)
2997 struct netdev_rx_queue *rxqueue;
2998 struct rps_map *map;
2999 struct rps_dev_flow_table *flow_table;
3000 struct rps_sock_flow_table *sock_flow_table;
3001 int cpu = -1;
3002 u16 tcpu;
3003 u32 hash;
3005 if (skb_rx_queue_recorded(skb)) {
3006 u16 index = skb_get_rx_queue(skb);
3007 if (unlikely(index >= dev->real_num_rx_queues)) {
3008 WARN_ONCE(dev->real_num_rx_queues > 1,
3009 "%s received packet on queue %u, but number "
3010 "of RX queues is %u\n",
3011 dev->name, index, dev->real_num_rx_queues);
3012 goto done;
3014 rxqueue = dev->_rx + index;
3015 } else
3016 rxqueue = dev->_rx;
3018 map = rcu_dereference(rxqueue->rps_map);
3019 if (map) {
3020 if (map->len == 1 &&
3021 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3022 tcpu = map->cpus[0];
3023 if (cpu_online(tcpu))
3024 cpu = tcpu;
3025 goto done;
3027 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3028 goto done;
3031 skb_reset_network_header(skb);
3032 hash = skb_get_hash(skb);
3033 if (!hash)
3034 goto done;
3036 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3037 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3038 if (flow_table && sock_flow_table) {
3039 u16 next_cpu;
3040 struct rps_dev_flow *rflow;
3042 rflow = &flow_table->flows[hash & flow_table->mask];
3043 tcpu = rflow->cpu;
3045 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3048 * If the desired CPU (where last recvmsg was done) is
3049 * different from current CPU (one in the rx-queue flow
3050 * table entry), switch if one of the following holds:
3051 * - Current CPU is unset (equal to RPS_NO_CPU).
3052 * - Current CPU is offline.
3053 * - The current CPU's queue tail has advanced beyond the
3054 * last packet that was enqueued using this table entry.
3055 * This guarantees that all previous packets for the flow
3056 * have been dequeued, thus preserving in order delivery.
3058 if (unlikely(tcpu != next_cpu) &&
3059 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3060 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3061 rflow->last_qtail)) >= 0)) {
3062 tcpu = next_cpu;
3063 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3066 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3067 *rflowp = rflow;
3068 cpu = tcpu;
3069 goto done;
3073 if (map) {
3074 tcpu = map->cpus[((u64) hash * map->len) >> 32];
3076 if (cpu_online(tcpu)) {
3077 cpu = tcpu;
3078 goto done;
3082 done:
3083 return cpu;
3086 #ifdef CONFIG_RFS_ACCEL
3089 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3090 * @dev: Device on which the filter was set
3091 * @rxq_index: RX queue index
3092 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3093 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3095 * Drivers that implement ndo_rx_flow_steer() should periodically call
3096 * this function for each installed filter and remove the filters for
3097 * which it returns %true.
3099 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3100 u32 flow_id, u16 filter_id)
3102 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3103 struct rps_dev_flow_table *flow_table;
3104 struct rps_dev_flow *rflow;
3105 bool expire = true;
3106 int cpu;
3108 rcu_read_lock();
3109 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3110 if (flow_table && flow_id <= flow_table->mask) {
3111 rflow = &flow_table->flows[flow_id];
3112 cpu = ACCESS_ONCE(rflow->cpu);
3113 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3114 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3115 rflow->last_qtail) <
3116 (int)(10 * flow_table->mask)))
3117 expire = false;
3119 rcu_read_unlock();
3120 return expire;
3122 EXPORT_SYMBOL(rps_may_expire_flow);
3124 #endif /* CONFIG_RFS_ACCEL */
3126 /* Called from hardirq (IPI) context */
3127 static void rps_trigger_softirq(void *data)
3129 struct softnet_data *sd = data;
3131 ____napi_schedule(sd, &sd->backlog);
3132 sd->received_rps++;
3135 #endif /* CONFIG_RPS */
3138 * Check if this softnet_data structure is another cpu one
3139 * If yes, queue it to our IPI list and return 1
3140 * If no, return 0
3142 static int rps_ipi_queued(struct softnet_data *sd)
3144 #ifdef CONFIG_RPS
3145 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
3147 if (sd != mysd) {
3148 sd->rps_ipi_next = mysd->rps_ipi_list;
3149 mysd->rps_ipi_list = sd;
3151 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3152 return 1;
3154 #endif /* CONFIG_RPS */
3155 return 0;
3158 #ifdef CONFIG_NET_FLOW_LIMIT
3159 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3160 #endif
3162 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3164 #ifdef CONFIG_NET_FLOW_LIMIT
3165 struct sd_flow_limit *fl;
3166 struct softnet_data *sd;
3167 unsigned int old_flow, new_flow;
3169 if (qlen < (netdev_max_backlog >> 1))
3170 return false;
3172 sd = &__get_cpu_var(softnet_data);
3174 rcu_read_lock();
3175 fl = rcu_dereference(sd->flow_limit);
3176 if (fl) {
3177 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3178 old_flow = fl->history[fl->history_head];
3179 fl->history[fl->history_head] = new_flow;
3181 fl->history_head++;
3182 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3184 if (likely(fl->buckets[old_flow]))
3185 fl->buckets[old_flow]--;
3187 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3188 fl->count++;
3189 rcu_read_unlock();
3190 return true;
3193 rcu_read_unlock();
3194 #endif
3195 return false;
3199 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3200 * queue (may be a remote CPU queue).
3202 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3203 unsigned int *qtail)
3205 struct softnet_data *sd;
3206 unsigned long flags;
3207 unsigned int qlen;
3209 sd = &per_cpu(softnet_data, cpu);
3211 local_irq_save(flags);
3213 rps_lock(sd);
3214 qlen = skb_queue_len(&sd->input_pkt_queue);
3215 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3216 if (skb_queue_len(&sd->input_pkt_queue)) {
3217 enqueue:
3218 __skb_queue_tail(&sd->input_pkt_queue, skb);
3219 input_queue_tail_incr_save(sd, qtail);
3220 rps_unlock(sd);
3221 local_irq_restore(flags);
3222 return NET_RX_SUCCESS;
3225 /* Schedule NAPI for backlog device
3226 * We can use non atomic operation since we own the queue lock
3228 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3229 if (!rps_ipi_queued(sd))
3230 ____napi_schedule(sd, &sd->backlog);
3232 goto enqueue;
3235 sd->dropped++;
3236 rps_unlock(sd);
3238 local_irq_restore(flags);
3240 atomic_long_inc(&skb->dev->rx_dropped);
3241 kfree_skb(skb);
3242 return NET_RX_DROP;
3245 static int netif_rx_internal(struct sk_buff *skb)
3247 int ret;
3249 net_timestamp_check(netdev_tstamp_prequeue, skb);
3251 trace_netif_rx(skb);
3252 #ifdef CONFIG_RPS
3253 if (static_key_false(&rps_needed)) {
3254 struct rps_dev_flow voidflow, *rflow = &voidflow;
3255 int cpu;
3257 preempt_disable();
3258 rcu_read_lock();
3260 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3261 if (cpu < 0)
3262 cpu = smp_processor_id();
3264 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3266 rcu_read_unlock();
3267 preempt_enable();
3268 } else
3269 #endif
3271 unsigned int qtail;
3272 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3273 put_cpu();
3275 return ret;
3279 * netif_rx - post buffer to the network code
3280 * @skb: buffer to post
3282 * This function receives a packet from a device driver and queues it for
3283 * the upper (protocol) levels to process. It always succeeds. The buffer
3284 * may be dropped during processing for congestion control or by the
3285 * protocol layers.
3287 * return values:
3288 * NET_RX_SUCCESS (no congestion)
3289 * NET_RX_DROP (packet was dropped)
3293 int netif_rx(struct sk_buff *skb)
3295 trace_netif_rx_entry(skb);
3297 return netif_rx_internal(skb);
3299 EXPORT_SYMBOL(netif_rx);
3301 int netif_rx_ni(struct sk_buff *skb)
3303 int err;
3305 trace_netif_rx_ni_entry(skb);
3307 preempt_disable();
3308 err = netif_rx_internal(skb);
3309 if (local_softirq_pending())
3310 do_softirq();
3311 preempt_enable();
3313 return err;
3315 EXPORT_SYMBOL(netif_rx_ni);
3317 static void net_tx_action(struct softirq_action *h)
3319 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3321 if (sd->completion_queue) {
3322 struct sk_buff *clist;
3324 local_irq_disable();
3325 clist = sd->completion_queue;
3326 sd->completion_queue = NULL;
3327 local_irq_enable();
3329 while (clist) {
3330 struct sk_buff *skb = clist;
3331 clist = clist->next;
3333 WARN_ON(atomic_read(&skb->users));
3334 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3335 trace_consume_skb(skb);
3336 else
3337 trace_kfree_skb(skb, net_tx_action);
3338 __kfree_skb(skb);
3342 if (sd->output_queue) {
3343 struct Qdisc *head;
3345 local_irq_disable();
3346 head = sd->output_queue;
3347 sd->output_queue = NULL;
3348 sd->output_queue_tailp = &sd->output_queue;
3349 local_irq_enable();
3351 while (head) {
3352 struct Qdisc *q = head;
3353 spinlock_t *root_lock;
3355 head = head->next_sched;
3357 root_lock = qdisc_lock(q);
3358 if (spin_trylock(root_lock)) {
3359 smp_mb__before_atomic();
3360 clear_bit(__QDISC_STATE_SCHED,
3361 &q->state);
3362 qdisc_run(q);
3363 spin_unlock(root_lock);
3364 } else {
3365 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3366 &q->state)) {
3367 __netif_reschedule(q);
3368 } else {
3369 smp_mb__before_atomic();
3370 clear_bit(__QDISC_STATE_SCHED,
3371 &q->state);
3378 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3379 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3380 /* This hook is defined here for ATM LANE */
3381 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3382 unsigned char *addr) __read_mostly;
3383 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3384 #endif
3386 #ifdef CONFIG_NET_CLS_ACT
3387 /* TODO: Maybe we should just force sch_ingress to be compiled in
3388 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3389 * a compare and 2 stores extra right now if we dont have it on
3390 * but have CONFIG_NET_CLS_ACT
3391 * NOTE: This doesn't stop any functionality; if you dont have
3392 * the ingress scheduler, you just can't add policies on ingress.
3395 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3397 struct net_device *dev = skb->dev;
3398 u32 ttl = G_TC_RTTL(skb->tc_verd);
3399 int result = TC_ACT_OK;
3400 struct Qdisc *q;
3402 if (unlikely(MAX_RED_LOOP < ttl++)) {
3403 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3404 skb->skb_iif, dev->ifindex);
3405 return TC_ACT_SHOT;
3408 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3409 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3411 q = rxq->qdisc;
3412 if (q != &noop_qdisc) {
3413 spin_lock(qdisc_lock(q));
3414 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3415 result = qdisc_enqueue_root(skb, q);
3416 spin_unlock(qdisc_lock(q));
3419 return result;
3422 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3423 struct packet_type **pt_prev,
3424 int *ret, struct net_device *orig_dev)
3426 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3428 if (!rxq || rxq->qdisc == &noop_qdisc)
3429 goto out;
3431 if (*pt_prev) {
3432 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3433 *pt_prev = NULL;
3436 switch (ing_filter(skb, rxq)) {
3437 case TC_ACT_SHOT:
3438 case TC_ACT_STOLEN:
3439 kfree_skb(skb);
3440 return NULL;
3443 out:
3444 skb->tc_verd = 0;
3445 return skb;
3447 #endif
3450 * netdev_rx_handler_register - register receive handler
3451 * @dev: device to register a handler for
3452 * @rx_handler: receive handler to register
3453 * @rx_handler_data: data pointer that is used by rx handler
3455 * Register a receive handler for a device. This handler will then be
3456 * called from __netif_receive_skb. A negative errno code is returned
3457 * on a failure.
3459 * The caller must hold the rtnl_mutex.
3461 * For a general description of rx_handler, see enum rx_handler_result.
3463 int netdev_rx_handler_register(struct net_device *dev,
3464 rx_handler_func_t *rx_handler,
3465 void *rx_handler_data)
3467 ASSERT_RTNL();
3469 if (dev->rx_handler)
3470 return -EBUSY;
3472 /* Note: rx_handler_data must be set before rx_handler */
3473 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3474 rcu_assign_pointer(dev->rx_handler, rx_handler);
3476 return 0;
3478 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3481 * netdev_rx_handler_unregister - unregister receive handler
3482 * @dev: device to unregister a handler from
3484 * Unregister a receive handler from a device.
3486 * The caller must hold the rtnl_mutex.
3488 void netdev_rx_handler_unregister(struct net_device *dev)
3491 ASSERT_RTNL();
3492 RCU_INIT_POINTER(dev->rx_handler, NULL);
3493 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3494 * section has a guarantee to see a non NULL rx_handler_data
3495 * as well.
3497 synchronize_net();
3498 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3500 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3503 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3504 * the special handling of PFMEMALLOC skbs.
3506 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3508 switch (skb->protocol) {
3509 case htons(ETH_P_ARP):
3510 case htons(ETH_P_IP):
3511 case htons(ETH_P_IPV6):
3512 case htons(ETH_P_8021Q):
3513 case htons(ETH_P_8021AD):
3514 return true;
3515 default:
3516 return false;
3520 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3522 struct packet_type *ptype, *pt_prev;
3523 rx_handler_func_t *rx_handler;
3524 struct net_device *orig_dev;
3525 struct net_device *null_or_dev;
3526 bool deliver_exact = false;
3527 int ret = NET_RX_DROP;
3528 __be16 type;
3530 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3532 trace_netif_receive_skb(skb);
3534 orig_dev = skb->dev;
3536 skb_reset_network_header(skb);
3537 if (!skb_transport_header_was_set(skb))
3538 skb_reset_transport_header(skb);
3539 skb_reset_mac_len(skb);
3541 pt_prev = NULL;
3543 rcu_read_lock();
3545 another_round:
3546 skb->skb_iif = skb->dev->ifindex;
3548 __this_cpu_inc(softnet_data.processed);
3550 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3551 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3552 skb = vlan_untag(skb);
3553 if (unlikely(!skb))
3554 goto unlock;
3557 #ifdef CONFIG_NET_CLS_ACT
3558 if (skb->tc_verd & TC_NCLS) {
3559 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3560 goto ncls;
3562 #endif
3564 if (pfmemalloc)
3565 goto skip_taps;
3567 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3568 if (!ptype->dev || ptype->dev == skb->dev) {
3569 if (pt_prev)
3570 ret = deliver_skb(skb, pt_prev, orig_dev);
3571 pt_prev = ptype;
3575 skip_taps:
3576 #ifdef CONFIG_NET_CLS_ACT
3577 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3578 if (!skb)
3579 goto unlock;
3580 ncls:
3581 #endif
3583 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3584 goto drop;
3586 if (vlan_tx_tag_present(skb)) {
3587 if (pt_prev) {
3588 ret = deliver_skb(skb, pt_prev, orig_dev);
3589 pt_prev = NULL;
3591 if (vlan_do_receive(&skb))
3592 goto another_round;
3593 else if (unlikely(!skb))
3594 goto unlock;
3597 rx_handler = rcu_dereference(skb->dev->rx_handler);
3598 if (rx_handler) {
3599 if (pt_prev) {
3600 ret = deliver_skb(skb, pt_prev, orig_dev);
3601 pt_prev = NULL;
3603 switch (rx_handler(&skb)) {
3604 case RX_HANDLER_CONSUMED:
3605 ret = NET_RX_SUCCESS;
3606 goto unlock;
3607 case RX_HANDLER_ANOTHER:
3608 goto another_round;
3609 case RX_HANDLER_EXACT:
3610 deliver_exact = true;
3611 case RX_HANDLER_PASS:
3612 break;
3613 default:
3614 BUG();
3618 if (unlikely(vlan_tx_tag_present(skb))) {
3619 if (vlan_tx_tag_get_id(skb))
3620 skb->pkt_type = PACKET_OTHERHOST;
3621 /* Note: we might in the future use prio bits
3622 * and set skb->priority like in vlan_do_receive()
3623 * For the time being, just ignore Priority Code Point
3625 skb->vlan_tci = 0;
3628 /* deliver only exact match when indicated */
3629 null_or_dev = deliver_exact ? skb->dev : NULL;
3631 type = skb->protocol;
3632 list_for_each_entry_rcu(ptype,
3633 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3634 if (ptype->type == type &&
3635 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3636 ptype->dev == orig_dev)) {
3637 if (pt_prev)
3638 ret = deliver_skb(skb, pt_prev, orig_dev);
3639 pt_prev = ptype;
3643 if (pt_prev) {
3644 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3645 goto drop;
3646 else
3647 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3648 } else {
3649 drop:
3650 atomic_long_inc(&skb->dev->rx_dropped);
3651 kfree_skb(skb);
3652 /* Jamal, now you will not able to escape explaining
3653 * me how you were going to use this. :-)
3655 ret = NET_RX_DROP;
3658 unlock:
3659 rcu_read_unlock();
3660 return ret;
3663 static int __netif_receive_skb(struct sk_buff *skb)
3665 int ret;
3667 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3668 unsigned long pflags = current->flags;
3671 * PFMEMALLOC skbs are special, they should
3672 * - be delivered to SOCK_MEMALLOC sockets only
3673 * - stay away from userspace
3674 * - have bounded memory usage
3676 * Use PF_MEMALLOC as this saves us from propagating the allocation
3677 * context down to all allocation sites.
3679 current->flags |= PF_MEMALLOC;
3680 ret = __netif_receive_skb_core(skb, true);
3681 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3682 } else
3683 ret = __netif_receive_skb_core(skb, false);
3685 return ret;
3688 static int netif_receive_skb_internal(struct sk_buff *skb)
3690 net_timestamp_check(netdev_tstamp_prequeue, skb);
3692 if (skb_defer_rx_timestamp(skb))
3693 return NET_RX_SUCCESS;
3695 #ifdef CONFIG_RPS
3696 if (static_key_false(&rps_needed)) {
3697 struct rps_dev_flow voidflow, *rflow = &voidflow;
3698 int cpu, ret;
3700 rcu_read_lock();
3702 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3704 if (cpu >= 0) {
3705 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3706 rcu_read_unlock();
3707 return ret;
3709 rcu_read_unlock();
3711 #endif
3712 return __netif_receive_skb(skb);
3716 * netif_receive_skb - process receive buffer from network
3717 * @skb: buffer to process
3719 * netif_receive_skb() is the main receive data processing function.
3720 * It always succeeds. The buffer may be dropped during processing
3721 * for congestion control or by the protocol layers.
3723 * This function may only be called from softirq context and interrupts
3724 * should be enabled.
3726 * Return values (usually ignored):
3727 * NET_RX_SUCCESS: no congestion
3728 * NET_RX_DROP: packet was dropped
3730 int netif_receive_skb(struct sk_buff *skb)
3732 trace_netif_receive_skb_entry(skb);
3734 return netif_receive_skb_internal(skb);
3736 EXPORT_SYMBOL(netif_receive_skb);
3738 /* Network device is going away, flush any packets still pending
3739 * Called with irqs disabled.
3741 static void flush_backlog(void *arg)
3743 struct net_device *dev = arg;
3744 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3745 struct sk_buff *skb, *tmp;
3747 rps_lock(sd);
3748 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3749 if (skb->dev == dev) {
3750 __skb_unlink(skb, &sd->input_pkt_queue);
3751 kfree_skb(skb);
3752 input_queue_head_incr(sd);
3755 rps_unlock(sd);
3757 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3758 if (skb->dev == dev) {
3759 __skb_unlink(skb, &sd->process_queue);
3760 kfree_skb(skb);
3761 input_queue_head_incr(sd);
3766 static int napi_gro_complete(struct sk_buff *skb)
3768 struct packet_offload *ptype;
3769 __be16 type = skb->protocol;
3770 struct list_head *head = &offload_base;
3771 int err = -ENOENT;
3773 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3775 if (NAPI_GRO_CB(skb)->count == 1) {
3776 skb_shinfo(skb)->gso_size = 0;
3777 goto out;
3780 rcu_read_lock();
3781 list_for_each_entry_rcu(ptype, head, list) {
3782 if (ptype->type != type || !ptype->callbacks.gro_complete)
3783 continue;
3785 err = ptype->callbacks.gro_complete(skb, 0);
3786 break;
3788 rcu_read_unlock();
3790 if (err) {
3791 WARN_ON(&ptype->list == head);
3792 kfree_skb(skb);
3793 return NET_RX_SUCCESS;
3796 out:
3797 return netif_receive_skb_internal(skb);
3800 /* napi->gro_list contains packets ordered by age.
3801 * youngest packets at the head of it.
3802 * Complete skbs in reverse order to reduce latencies.
3804 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3806 struct sk_buff *skb, *prev = NULL;
3808 /* scan list and build reverse chain */
3809 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3810 skb->prev = prev;
3811 prev = skb;
3814 for (skb = prev; skb; skb = prev) {
3815 skb->next = NULL;
3817 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3818 return;
3820 prev = skb->prev;
3821 napi_gro_complete(skb);
3822 napi->gro_count--;
3825 napi->gro_list = NULL;
3827 EXPORT_SYMBOL(napi_gro_flush);
3829 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3831 struct sk_buff *p;
3832 unsigned int maclen = skb->dev->hard_header_len;
3833 u32 hash = skb_get_hash_raw(skb);
3835 for (p = napi->gro_list; p; p = p->next) {
3836 unsigned long diffs;
3838 NAPI_GRO_CB(p)->flush = 0;
3840 if (hash != skb_get_hash_raw(p)) {
3841 NAPI_GRO_CB(p)->same_flow = 0;
3842 continue;
3845 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3846 diffs |= p->vlan_tci ^ skb->vlan_tci;
3847 if (maclen == ETH_HLEN)
3848 diffs |= compare_ether_header(skb_mac_header(p),
3849 skb_mac_header(skb));
3850 else if (!diffs)
3851 diffs = memcmp(skb_mac_header(p),
3852 skb_mac_header(skb),
3853 maclen);
3854 NAPI_GRO_CB(p)->same_flow = !diffs;
3858 static void skb_gro_reset_offset(struct sk_buff *skb)
3860 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3861 const skb_frag_t *frag0 = &pinfo->frags[0];
3863 NAPI_GRO_CB(skb)->data_offset = 0;
3864 NAPI_GRO_CB(skb)->frag0 = NULL;
3865 NAPI_GRO_CB(skb)->frag0_len = 0;
3867 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3868 pinfo->nr_frags &&
3869 !PageHighMem(skb_frag_page(frag0))) {
3870 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3871 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3875 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3877 struct skb_shared_info *pinfo = skb_shinfo(skb);
3879 BUG_ON(skb->end - skb->tail < grow);
3881 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3883 skb->data_len -= grow;
3884 skb->tail += grow;
3886 pinfo->frags[0].page_offset += grow;
3887 skb_frag_size_sub(&pinfo->frags[0], grow);
3889 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3890 skb_frag_unref(skb, 0);
3891 memmove(pinfo->frags, pinfo->frags + 1,
3892 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3896 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3898 struct sk_buff **pp = NULL;
3899 struct packet_offload *ptype;
3900 __be16 type = skb->protocol;
3901 struct list_head *head = &offload_base;
3902 int same_flow;
3903 enum gro_result ret;
3904 int grow;
3906 if (!(skb->dev->features & NETIF_F_GRO))
3907 goto normal;
3909 if (skb_is_gso(skb) || skb_has_frag_list(skb))
3910 goto normal;
3912 gro_list_prepare(napi, skb);
3913 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */
3915 rcu_read_lock();
3916 list_for_each_entry_rcu(ptype, head, list) {
3917 if (ptype->type != type || !ptype->callbacks.gro_receive)
3918 continue;
3920 skb_set_network_header(skb, skb_gro_offset(skb));
3921 skb_reset_mac_len(skb);
3922 NAPI_GRO_CB(skb)->same_flow = 0;
3923 NAPI_GRO_CB(skb)->flush = 0;
3924 NAPI_GRO_CB(skb)->free = 0;
3925 NAPI_GRO_CB(skb)->udp_mark = 0;
3927 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
3928 break;
3930 rcu_read_unlock();
3932 if (&ptype->list == head)
3933 goto normal;
3935 same_flow = NAPI_GRO_CB(skb)->same_flow;
3936 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3938 if (pp) {
3939 struct sk_buff *nskb = *pp;
3941 *pp = nskb->next;
3942 nskb->next = NULL;
3943 napi_gro_complete(nskb);
3944 napi->gro_count--;
3947 if (same_flow)
3948 goto ok;
3950 if (NAPI_GRO_CB(skb)->flush)
3951 goto normal;
3953 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
3954 struct sk_buff *nskb = napi->gro_list;
3956 /* locate the end of the list to select the 'oldest' flow */
3957 while (nskb->next) {
3958 pp = &nskb->next;
3959 nskb = *pp;
3961 *pp = NULL;
3962 nskb->next = NULL;
3963 napi_gro_complete(nskb);
3964 } else {
3965 napi->gro_count++;
3967 NAPI_GRO_CB(skb)->count = 1;
3968 NAPI_GRO_CB(skb)->age = jiffies;
3969 NAPI_GRO_CB(skb)->last = skb;
3970 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3971 skb->next = napi->gro_list;
3972 napi->gro_list = skb;
3973 ret = GRO_HELD;
3975 pull:
3976 grow = skb_gro_offset(skb) - skb_headlen(skb);
3977 if (grow > 0)
3978 gro_pull_from_frag0(skb, grow);
3980 return ret;
3982 normal:
3983 ret = GRO_NORMAL;
3984 goto pull;
3987 struct packet_offload *gro_find_receive_by_type(__be16 type)
3989 struct list_head *offload_head = &offload_base;
3990 struct packet_offload *ptype;
3992 list_for_each_entry_rcu(ptype, offload_head, list) {
3993 if (ptype->type != type || !ptype->callbacks.gro_receive)
3994 continue;
3995 return ptype;
3997 return NULL;
3999 EXPORT_SYMBOL(gro_find_receive_by_type);
4001 struct packet_offload *gro_find_complete_by_type(__be16 type)
4003 struct list_head *offload_head = &offload_base;
4004 struct packet_offload *ptype;
4006 list_for_each_entry_rcu(ptype, offload_head, list) {
4007 if (ptype->type != type || !ptype->callbacks.gro_complete)
4008 continue;
4009 return ptype;
4011 return NULL;
4013 EXPORT_SYMBOL(gro_find_complete_by_type);
4015 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4017 switch (ret) {
4018 case GRO_NORMAL:
4019 if (netif_receive_skb_internal(skb))
4020 ret = GRO_DROP;
4021 break;
4023 case GRO_DROP:
4024 kfree_skb(skb);
4025 break;
4027 case GRO_MERGED_FREE:
4028 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4029 kmem_cache_free(skbuff_head_cache, skb);
4030 else
4031 __kfree_skb(skb);
4032 break;
4034 case GRO_HELD:
4035 case GRO_MERGED:
4036 break;
4039 return ret;
4042 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4044 trace_napi_gro_receive_entry(skb);
4046 skb_gro_reset_offset(skb);
4048 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4050 EXPORT_SYMBOL(napi_gro_receive);
4052 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4054 __skb_pull(skb, skb_headlen(skb));
4055 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4056 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4057 skb->vlan_tci = 0;
4058 skb->dev = napi->dev;
4059 skb->skb_iif = 0;
4060 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4062 napi->skb = skb;
4065 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4067 struct sk_buff *skb = napi->skb;
4069 if (!skb) {
4070 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4071 napi->skb = skb;
4073 return skb;
4075 EXPORT_SYMBOL(napi_get_frags);
4077 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4078 struct sk_buff *skb,
4079 gro_result_t ret)
4081 switch (ret) {
4082 case GRO_NORMAL:
4083 case GRO_HELD:
4084 __skb_push(skb, ETH_HLEN);
4085 skb->protocol = eth_type_trans(skb, skb->dev);
4086 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4087 ret = GRO_DROP;
4088 break;
4090 case GRO_DROP:
4091 case GRO_MERGED_FREE:
4092 napi_reuse_skb(napi, skb);
4093 break;
4095 case GRO_MERGED:
4096 break;
4099 return ret;
4102 /* Upper GRO stack assumes network header starts at gro_offset=0
4103 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4104 * We copy ethernet header into skb->data to have a common layout.
4106 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4108 struct sk_buff *skb = napi->skb;
4109 const struct ethhdr *eth;
4110 unsigned int hlen = sizeof(*eth);
4112 napi->skb = NULL;
4114 skb_reset_mac_header(skb);
4115 skb_gro_reset_offset(skb);
4117 eth = skb_gro_header_fast(skb, 0);
4118 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4119 eth = skb_gro_header_slow(skb, hlen, 0);
4120 if (unlikely(!eth)) {
4121 napi_reuse_skb(napi, skb);
4122 return NULL;
4124 } else {
4125 gro_pull_from_frag0(skb, hlen);
4126 NAPI_GRO_CB(skb)->frag0 += hlen;
4127 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4129 __skb_pull(skb, hlen);
4132 * This works because the only protocols we care about don't require
4133 * special handling.
4134 * We'll fix it up properly in napi_frags_finish()
4136 skb->protocol = eth->h_proto;
4138 return skb;
4141 gro_result_t napi_gro_frags(struct napi_struct *napi)
4143 struct sk_buff *skb = napi_frags_skb(napi);
4145 if (!skb)
4146 return GRO_DROP;
4148 trace_napi_gro_frags_entry(skb);
4150 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4152 EXPORT_SYMBOL(napi_gro_frags);
4155 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4156 * Note: called with local irq disabled, but exits with local irq enabled.
4158 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4160 #ifdef CONFIG_RPS
4161 struct softnet_data *remsd = sd->rps_ipi_list;
4163 if (remsd) {
4164 sd->rps_ipi_list = NULL;
4166 local_irq_enable();
4168 /* Send pending IPI's to kick RPS processing on remote cpus. */
4169 while (remsd) {
4170 struct softnet_data *next = remsd->rps_ipi_next;
4172 if (cpu_online(remsd->cpu))
4173 smp_call_function_single_async(remsd->cpu,
4174 &remsd->csd);
4175 remsd = next;
4177 } else
4178 #endif
4179 local_irq_enable();
4182 static int process_backlog(struct napi_struct *napi, int quota)
4184 int work = 0;
4185 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4187 #ifdef CONFIG_RPS
4188 /* Check if we have pending ipi, its better to send them now,
4189 * not waiting net_rx_action() end.
4191 if (sd->rps_ipi_list) {
4192 local_irq_disable();
4193 net_rps_action_and_irq_enable(sd);
4195 #endif
4196 napi->weight = weight_p;
4197 local_irq_disable();
4198 while (work < quota) {
4199 struct sk_buff *skb;
4200 unsigned int qlen;
4202 while ((skb = __skb_dequeue(&sd->process_queue))) {
4203 local_irq_enable();
4204 __netif_receive_skb(skb);
4205 local_irq_disable();
4206 input_queue_head_incr(sd);
4207 if (++work >= quota) {
4208 local_irq_enable();
4209 return work;
4213 rps_lock(sd);
4214 qlen = skb_queue_len(&sd->input_pkt_queue);
4215 if (qlen)
4216 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4217 &sd->process_queue);
4219 if (qlen < quota - work) {
4221 * Inline a custom version of __napi_complete().
4222 * only current cpu owns and manipulates this napi,
4223 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
4224 * we can use a plain write instead of clear_bit(),
4225 * and we dont need an smp_mb() memory barrier.
4227 list_del(&napi->poll_list);
4228 napi->state = 0;
4230 quota = work + qlen;
4232 rps_unlock(sd);
4234 local_irq_enable();
4236 return work;
4240 * __napi_schedule - schedule for receive
4241 * @n: entry to schedule
4243 * The entry's receive function will be scheduled to run
4245 void __napi_schedule(struct napi_struct *n)
4247 unsigned long flags;
4249 local_irq_save(flags);
4250 ____napi_schedule(&__get_cpu_var(softnet_data), n);
4251 local_irq_restore(flags);
4253 EXPORT_SYMBOL(__napi_schedule);
4255 void __napi_complete(struct napi_struct *n)
4257 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4258 BUG_ON(n->gro_list);
4260 list_del(&n->poll_list);
4261 smp_mb__before_atomic();
4262 clear_bit(NAPI_STATE_SCHED, &n->state);
4264 EXPORT_SYMBOL(__napi_complete);
4266 void napi_complete(struct napi_struct *n)
4268 unsigned long flags;
4271 * don't let napi dequeue from the cpu poll list
4272 * just in case its running on a different cpu
4274 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4275 return;
4277 napi_gro_flush(n, false);
4278 local_irq_save(flags);
4279 __napi_complete(n);
4280 local_irq_restore(flags);
4282 EXPORT_SYMBOL(napi_complete);
4284 /* must be called under rcu_read_lock(), as we dont take a reference */
4285 struct napi_struct *napi_by_id(unsigned int napi_id)
4287 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4288 struct napi_struct *napi;
4290 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4291 if (napi->napi_id == napi_id)
4292 return napi;
4294 return NULL;
4296 EXPORT_SYMBOL_GPL(napi_by_id);
4298 void napi_hash_add(struct napi_struct *napi)
4300 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4302 spin_lock(&napi_hash_lock);
4304 /* 0 is not a valid id, we also skip an id that is taken
4305 * we expect both events to be extremely rare
4307 napi->napi_id = 0;
4308 while (!napi->napi_id) {
4309 napi->napi_id = ++napi_gen_id;
4310 if (napi_by_id(napi->napi_id))
4311 napi->napi_id = 0;
4314 hlist_add_head_rcu(&napi->napi_hash_node,
4315 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4317 spin_unlock(&napi_hash_lock);
4320 EXPORT_SYMBOL_GPL(napi_hash_add);
4322 /* Warning : caller is responsible to make sure rcu grace period
4323 * is respected before freeing memory containing @napi
4325 void napi_hash_del(struct napi_struct *napi)
4327 spin_lock(&napi_hash_lock);
4329 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4330 hlist_del_rcu(&napi->napi_hash_node);
4332 spin_unlock(&napi_hash_lock);
4334 EXPORT_SYMBOL_GPL(napi_hash_del);
4336 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4337 int (*poll)(struct napi_struct *, int), int weight)
4339 INIT_LIST_HEAD(&napi->poll_list);
4340 napi->gro_count = 0;
4341 napi->gro_list = NULL;
4342 napi->skb = NULL;
4343 napi->poll = poll;
4344 if (weight > NAPI_POLL_WEIGHT)
4345 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4346 weight, dev->name);
4347 napi->weight = weight;
4348 list_add(&napi->dev_list, &dev->napi_list);
4349 napi->dev = dev;
4350 #ifdef CONFIG_NETPOLL
4351 spin_lock_init(&napi->poll_lock);
4352 napi->poll_owner = -1;
4353 #endif
4354 set_bit(NAPI_STATE_SCHED, &napi->state);
4356 EXPORT_SYMBOL(netif_napi_add);
4358 void netif_napi_del(struct napi_struct *napi)
4360 list_del_init(&napi->dev_list);
4361 napi_free_frags(napi);
4363 kfree_skb_list(napi->gro_list);
4364 napi->gro_list = NULL;
4365 napi->gro_count = 0;
4367 EXPORT_SYMBOL(netif_napi_del);
4369 static void net_rx_action(struct softirq_action *h)
4371 struct softnet_data *sd = &__get_cpu_var(softnet_data);
4372 unsigned long time_limit = jiffies + 2;
4373 int budget = netdev_budget;
4374 void *have;
4376 local_irq_disable();
4378 while (!list_empty(&sd->poll_list)) {
4379 struct napi_struct *n;
4380 int work, weight;
4382 /* If softirq window is exhuasted then punt.
4383 * Allow this to run for 2 jiffies since which will allow
4384 * an average latency of 1.5/HZ.
4386 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4387 goto softnet_break;
4389 local_irq_enable();
4391 /* Even though interrupts have been re-enabled, this
4392 * access is safe because interrupts can only add new
4393 * entries to the tail of this list, and only ->poll()
4394 * calls can remove this head entry from the list.
4396 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4398 have = netpoll_poll_lock(n);
4400 weight = n->weight;
4402 /* This NAPI_STATE_SCHED test is for avoiding a race
4403 * with netpoll's poll_napi(). Only the entity which
4404 * obtains the lock and sees NAPI_STATE_SCHED set will
4405 * actually make the ->poll() call. Therefore we avoid
4406 * accidentally calling ->poll() when NAPI is not scheduled.
4408 work = 0;
4409 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4410 work = n->poll(n, weight);
4411 trace_napi_poll(n);
4414 WARN_ON_ONCE(work > weight);
4416 budget -= work;
4418 local_irq_disable();
4420 /* Drivers must not modify the NAPI state if they
4421 * consume the entire weight. In such cases this code
4422 * still "owns" the NAPI instance and therefore can
4423 * move the instance around on the list at-will.
4425 if (unlikely(work == weight)) {
4426 if (unlikely(napi_disable_pending(n))) {
4427 local_irq_enable();
4428 napi_complete(n);
4429 local_irq_disable();
4430 } else {
4431 if (n->gro_list) {
4432 /* flush too old packets
4433 * If HZ < 1000, flush all packets.
4435 local_irq_enable();
4436 napi_gro_flush(n, HZ >= 1000);
4437 local_irq_disable();
4439 list_move_tail(&n->poll_list, &sd->poll_list);
4443 netpoll_poll_unlock(have);
4445 out:
4446 net_rps_action_and_irq_enable(sd);
4448 #ifdef CONFIG_NET_DMA
4450 * There may not be any more sk_buffs coming right now, so push
4451 * any pending DMA copies to hardware
4453 dma_issue_pending_all();
4454 #endif
4456 return;
4458 softnet_break:
4459 sd->time_squeeze++;
4460 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4461 goto out;
4464 struct netdev_adjacent {
4465 struct net_device *dev;
4467 /* upper master flag, there can only be one master device per list */
4468 bool master;
4470 /* counter for the number of times this device was added to us */
4471 u16 ref_nr;
4473 /* private field for the users */
4474 void *private;
4476 struct list_head list;
4477 struct rcu_head rcu;
4480 static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4481 struct net_device *adj_dev,
4482 struct list_head *adj_list)
4484 struct netdev_adjacent *adj;
4486 list_for_each_entry(adj, adj_list, list) {
4487 if (adj->dev == adj_dev)
4488 return adj;
4490 return NULL;
4494 * netdev_has_upper_dev - Check if device is linked to an upper device
4495 * @dev: device
4496 * @upper_dev: upper device to check
4498 * Find out if a device is linked to specified upper device and return true
4499 * in case it is. Note that this checks only immediate upper device,
4500 * not through a complete stack of devices. The caller must hold the RTNL lock.
4502 bool netdev_has_upper_dev(struct net_device *dev,
4503 struct net_device *upper_dev)
4505 ASSERT_RTNL();
4507 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4509 EXPORT_SYMBOL(netdev_has_upper_dev);
4512 * netdev_has_any_upper_dev - Check if device is linked to some device
4513 * @dev: device
4515 * Find out if a device is linked to an upper device and return true in case
4516 * it is. The caller must hold the RTNL lock.
4518 static bool netdev_has_any_upper_dev(struct net_device *dev)
4520 ASSERT_RTNL();
4522 return !list_empty(&dev->all_adj_list.upper);
4526 * netdev_master_upper_dev_get - Get master upper device
4527 * @dev: device
4529 * Find a master upper device and return pointer to it or NULL in case
4530 * it's not there. The caller must hold the RTNL lock.
4532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4534 struct netdev_adjacent *upper;
4536 ASSERT_RTNL();
4538 if (list_empty(&dev->adj_list.upper))
4539 return NULL;
4541 upper = list_first_entry(&dev->adj_list.upper,
4542 struct netdev_adjacent, list);
4543 if (likely(upper->master))
4544 return upper->dev;
4545 return NULL;
4547 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4549 void *netdev_adjacent_get_private(struct list_head *adj_list)
4551 struct netdev_adjacent *adj;
4553 adj = list_entry(adj_list, struct netdev_adjacent, list);
4555 return adj->private;
4557 EXPORT_SYMBOL(netdev_adjacent_get_private);
4560 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4561 * @dev: device
4562 * @iter: list_head ** of the current position
4564 * Gets the next device from the dev's upper list, starting from iter
4565 * position. The caller must hold RCU read lock.
4567 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4568 struct list_head **iter)
4570 struct netdev_adjacent *upper;
4572 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4574 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4576 if (&upper->list == &dev->adj_list.upper)
4577 return NULL;
4579 *iter = &upper->list;
4581 return upper->dev;
4583 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4586 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4587 * @dev: device
4588 * @iter: list_head ** of the current position
4590 * Gets the next device from the dev's upper list, starting from iter
4591 * position. The caller must hold RCU read lock.
4593 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4594 struct list_head **iter)
4596 struct netdev_adjacent *upper;
4598 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4600 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4602 if (&upper->list == &dev->all_adj_list.upper)
4603 return NULL;
4605 *iter = &upper->list;
4607 return upper->dev;
4609 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4612 * netdev_lower_get_next_private - Get the next ->private from the
4613 * lower neighbour list
4614 * @dev: device
4615 * @iter: list_head ** of the current position
4617 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4618 * list, starting from iter position. The caller must hold either hold the
4619 * RTNL lock or its own locking that guarantees that the neighbour lower
4620 * list will remain unchainged.
4622 void *netdev_lower_get_next_private(struct net_device *dev,
4623 struct list_head **iter)
4625 struct netdev_adjacent *lower;
4627 lower = list_entry(*iter, struct netdev_adjacent, list);
4629 if (&lower->list == &dev->adj_list.lower)
4630 return NULL;
4632 *iter = lower->list.next;
4634 return lower->private;
4636 EXPORT_SYMBOL(netdev_lower_get_next_private);
4639 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4640 * lower neighbour list, RCU
4641 * variant
4642 * @dev: device
4643 * @iter: list_head ** of the current position
4645 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4646 * list, starting from iter position. The caller must hold RCU read lock.
4648 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4649 struct list_head **iter)
4651 struct netdev_adjacent *lower;
4653 WARN_ON_ONCE(!rcu_read_lock_held());
4655 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4657 if (&lower->list == &dev->adj_list.lower)
4658 return NULL;
4660 *iter = &lower->list;
4662 return lower->private;
4664 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4667 * netdev_lower_get_next - Get the next device from the lower neighbour
4668 * list
4669 * @dev: device
4670 * @iter: list_head ** of the current position
4672 * Gets the next netdev_adjacent from the dev's lower neighbour
4673 * list, starting from iter position. The caller must hold RTNL lock or
4674 * its own locking that guarantees that the neighbour lower
4675 * list will remain unchainged.
4677 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4679 struct netdev_adjacent *lower;
4681 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4683 if (&lower->list == &dev->adj_list.lower)
4684 return NULL;
4686 *iter = &lower->list;
4688 return lower->dev;
4690 EXPORT_SYMBOL(netdev_lower_get_next);
4693 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4694 * lower neighbour list, RCU
4695 * variant
4696 * @dev: device
4698 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4699 * list. The caller must hold RCU read lock.
4701 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4703 struct netdev_adjacent *lower;
4705 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4706 struct netdev_adjacent, list);
4707 if (lower)
4708 return lower->private;
4709 return NULL;
4711 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4714 * netdev_master_upper_dev_get_rcu - Get master upper device
4715 * @dev: device
4717 * Find a master upper device and return pointer to it or NULL in case
4718 * it's not there. The caller must hold the RCU read lock.
4720 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4722 struct netdev_adjacent *upper;
4724 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4725 struct netdev_adjacent, list);
4726 if (upper && likely(upper->master))
4727 return upper->dev;
4728 return NULL;
4730 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4732 static int netdev_adjacent_sysfs_add(struct net_device *dev,
4733 struct net_device *adj_dev,
4734 struct list_head *dev_list)
4736 char linkname[IFNAMSIZ+7];
4737 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4738 "upper_%s" : "lower_%s", adj_dev->name);
4739 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4740 linkname);
4742 static void netdev_adjacent_sysfs_del(struct net_device *dev,
4743 char *name,
4744 struct list_head *dev_list)
4746 char linkname[IFNAMSIZ+7];
4747 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4748 "upper_%s" : "lower_%s", name);
4749 sysfs_remove_link(&(dev->dev.kobj), linkname);
4752 #define netdev_adjacent_is_neigh_list(dev, dev_list) \
4753 (dev_list == &dev->adj_list.upper || \
4754 dev_list == &dev->adj_list.lower)
4756 static int __netdev_adjacent_dev_insert(struct net_device *dev,
4757 struct net_device *adj_dev,
4758 struct list_head *dev_list,
4759 void *private, bool master)
4761 struct netdev_adjacent *adj;
4762 int ret;
4764 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4766 if (adj) {
4767 adj->ref_nr++;
4768 return 0;
4771 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4772 if (!adj)
4773 return -ENOMEM;
4775 adj->dev = adj_dev;
4776 adj->master = master;
4777 adj->ref_nr = 1;
4778 adj->private = private;
4779 dev_hold(adj_dev);
4781 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4782 adj_dev->name, dev->name, adj_dev->name);
4784 if (netdev_adjacent_is_neigh_list(dev, dev_list)) {
4785 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4786 if (ret)
4787 goto free_adj;
4790 /* Ensure that master link is always the first item in list. */
4791 if (master) {
4792 ret = sysfs_create_link(&(dev->dev.kobj),
4793 &(adj_dev->dev.kobj), "master");
4794 if (ret)
4795 goto remove_symlinks;
4797 list_add_rcu(&adj->list, dev_list);
4798 } else {
4799 list_add_tail_rcu(&adj->list, dev_list);
4802 return 0;
4804 remove_symlinks:
4805 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4806 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4807 free_adj:
4808 kfree(adj);
4809 dev_put(adj_dev);
4811 return ret;
4814 static void __netdev_adjacent_dev_remove(struct net_device *dev,
4815 struct net_device *adj_dev,
4816 struct list_head *dev_list)
4818 struct netdev_adjacent *adj;
4820 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4822 if (!adj) {
4823 pr_err("tried to remove device %s from %s\n",
4824 dev->name, adj_dev->name);
4825 BUG();
4828 if (adj->ref_nr > 1) {
4829 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4830 adj->ref_nr-1);
4831 adj->ref_nr--;
4832 return;
4835 if (adj->master)
4836 sysfs_remove_link(&(dev->dev.kobj), "master");
4838 if (netdev_adjacent_is_neigh_list(dev, dev_list))
4839 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4841 list_del_rcu(&adj->list);
4842 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4843 adj_dev->name, dev->name, adj_dev->name);
4844 dev_put(adj_dev);
4845 kfree_rcu(adj, rcu);
4848 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4849 struct net_device *upper_dev,
4850 struct list_head *up_list,
4851 struct list_head *down_list,
4852 void *private, bool master)
4854 int ret;
4856 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4857 master);
4858 if (ret)
4859 return ret;
4861 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4862 false);
4863 if (ret) {
4864 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4865 return ret;
4868 return 0;
4871 static int __netdev_adjacent_dev_link(struct net_device *dev,
4872 struct net_device *upper_dev)
4874 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
4875 &dev->all_adj_list.upper,
4876 &upper_dev->all_adj_list.lower,
4877 NULL, false);
4880 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
4881 struct net_device *upper_dev,
4882 struct list_head *up_list,
4883 struct list_head *down_list)
4885 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4886 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
4889 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
4890 struct net_device *upper_dev)
4892 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4893 &dev->all_adj_list.upper,
4894 &upper_dev->all_adj_list.lower);
4897 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
4898 struct net_device *upper_dev,
4899 void *private, bool master)
4901 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
4903 if (ret)
4904 return ret;
4906 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
4907 &dev->adj_list.upper,
4908 &upper_dev->adj_list.lower,
4909 private, master);
4910 if (ret) {
4911 __netdev_adjacent_dev_unlink(dev, upper_dev);
4912 return ret;
4915 return 0;
4918 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
4919 struct net_device *upper_dev)
4921 __netdev_adjacent_dev_unlink(dev, upper_dev);
4922 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
4923 &dev->adj_list.upper,
4924 &upper_dev->adj_list.lower);
4927 static int __netdev_upper_dev_link(struct net_device *dev,
4928 struct net_device *upper_dev, bool master,
4929 void *private)
4931 struct netdev_adjacent *i, *j, *to_i, *to_j;
4932 int ret = 0;
4934 ASSERT_RTNL();
4936 if (dev == upper_dev)
4937 return -EBUSY;
4939 /* To prevent loops, check if dev is not upper device to upper_dev. */
4940 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
4941 return -EBUSY;
4943 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
4944 return -EEXIST;
4946 if (master && netdev_master_upper_dev_get(dev))
4947 return -EBUSY;
4949 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
4950 master);
4951 if (ret)
4952 return ret;
4954 /* Now that we linked these devs, make all the upper_dev's
4955 * all_adj_list.upper visible to every dev's all_adj_list.lower an
4956 * versa, and don't forget the devices itself. All of these
4957 * links are non-neighbours.
4959 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4960 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
4961 pr_debug("Interlinking %s with %s, non-neighbour\n",
4962 i->dev->name, j->dev->name);
4963 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
4964 if (ret)
4965 goto rollback_mesh;
4969 /* add dev to every upper_dev's upper device */
4970 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
4971 pr_debug("linking %s's upper device %s with %s\n",
4972 upper_dev->name, i->dev->name, dev->name);
4973 ret = __netdev_adjacent_dev_link(dev, i->dev);
4974 if (ret)
4975 goto rollback_upper_mesh;
4978 /* add upper_dev to every dev's lower device */
4979 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4980 pr_debug("linking %s's lower device %s with %s\n", dev->name,
4981 i->dev->name, upper_dev->name);
4982 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
4983 if (ret)
4984 goto rollback_lower_mesh;
4987 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
4988 return 0;
4990 rollback_lower_mesh:
4991 to_i = i;
4992 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
4993 if (i == to_i)
4994 break;
4995 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
4998 i = NULL;
5000 rollback_upper_mesh:
5001 to_i = i;
5002 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5003 if (i == to_i)
5004 break;
5005 __netdev_adjacent_dev_unlink(dev, i->dev);
5008 i = j = NULL;
5010 rollback_mesh:
5011 to_i = i;
5012 to_j = j;
5013 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5014 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5015 if (i == to_i && j == to_j)
5016 break;
5017 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5019 if (i == to_i)
5020 break;
5023 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5025 return ret;
5029 * netdev_upper_dev_link - Add a link to the upper device
5030 * @dev: device
5031 * @upper_dev: new upper device
5033 * Adds a link to device which is upper to this one. The caller must hold
5034 * the RTNL lock. On a failure a negative errno code is returned.
5035 * On success the reference counts are adjusted and the function
5036 * returns zero.
5038 int netdev_upper_dev_link(struct net_device *dev,
5039 struct net_device *upper_dev)
5041 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5043 EXPORT_SYMBOL(netdev_upper_dev_link);
5046 * netdev_master_upper_dev_link - Add a master link to the upper device
5047 * @dev: device
5048 * @upper_dev: new upper device
5050 * Adds a link to device which is upper to this one. In this case, only
5051 * one master upper device can be linked, although other non-master devices
5052 * might be linked as well. The caller must hold the RTNL lock.
5053 * On a failure a negative errno code is returned. On success the reference
5054 * counts are adjusted and the function returns zero.
5056 int netdev_master_upper_dev_link(struct net_device *dev,
5057 struct net_device *upper_dev)
5059 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5061 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5063 int netdev_master_upper_dev_link_private(struct net_device *dev,
5064 struct net_device *upper_dev,
5065 void *private)
5067 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5069 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5072 * netdev_upper_dev_unlink - Removes a link to upper device
5073 * @dev: device
5074 * @upper_dev: new upper device
5076 * Removes a link to device which is upper to this one. The caller must hold
5077 * the RTNL lock.
5079 void netdev_upper_dev_unlink(struct net_device *dev,
5080 struct net_device *upper_dev)
5082 struct netdev_adjacent *i, *j;
5083 ASSERT_RTNL();
5085 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5087 /* Here is the tricky part. We must remove all dev's lower
5088 * devices from all upper_dev's upper devices and vice
5089 * versa, to maintain the graph relationship.
5091 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5092 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5093 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5095 /* remove also the devices itself from lower/upper device
5096 * list
5098 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5099 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5101 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5102 __netdev_adjacent_dev_unlink(dev, i->dev);
5104 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5106 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5108 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5110 struct netdev_adjacent *iter;
5112 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5113 netdev_adjacent_sysfs_del(iter->dev, oldname,
5114 &iter->dev->adj_list.lower);
5115 netdev_adjacent_sysfs_add(iter->dev, dev,
5116 &iter->dev->adj_list.lower);
5119 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5120 netdev_adjacent_sysfs_del(iter->dev, oldname,
5121 &iter->dev->adj_list.upper);
5122 netdev_adjacent_sysfs_add(iter->dev, dev,
5123 &iter->dev->adj_list.upper);
5127 void *netdev_lower_dev_get_private(struct net_device *dev,
5128 struct net_device *lower_dev)
5130 struct netdev_adjacent *lower;
5132 if (!lower_dev)
5133 return NULL;
5134 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5135 if (!lower)
5136 return NULL;
5138 return lower->private;
5140 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5143 int dev_get_nest_level(struct net_device *dev,
5144 bool (*type_check)(struct net_device *dev))
5146 struct net_device *lower = NULL;
5147 struct list_head *iter;
5148 int max_nest = -1;
5149 int nest;
5151 ASSERT_RTNL();
5153 netdev_for_each_lower_dev(dev, lower, iter) {
5154 nest = dev_get_nest_level(lower, type_check);
5155 if (max_nest < nest)
5156 max_nest = nest;
5159 if (type_check(dev))
5160 max_nest++;
5162 return max_nest;
5164 EXPORT_SYMBOL(dev_get_nest_level);
5166 static void dev_change_rx_flags(struct net_device *dev, int flags)
5168 const struct net_device_ops *ops = dev->netdev_ops;
5170 if (ops->ndo_change_rx_flags)
5171 ops->ndo_change_rx_flags(dev, flags);
5174 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5176 unsigned int old_flags = dev->flags;
5177 kuid_t uid;
5178 kgid_t gid;
5180 ASSERT_RTNL();
5182 dev->flags |= IFF_PROMISC;
5183 dev->promiscuity += inc;
5184 if (dev->promiscuity == 0) {
5186 * Avoid overflow.
5187 * If inc causes overflow, untouch promisc and return error.
5189 if (inc < 0)
5190 dev->flags &= ~IFF_PROMISC;
5191 else {
5192 dev->promiscuity -= inc;
5193 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5194 dev->name);
5195 return -EOVERFLOW;
5198 if (dev->flags != old_flags) {
5199 pr_info("device %s %s promiscuous mode\n",
5200 dev->name,
5201 dev->flags & IFF_PROMISC ? "entered" : "left");
5202 if (audit_enabled) {
5203 current_uid_gid(&uid, &gid);
5204 audit_log(current->audit_context, GFP_ATOMIC,
5205 AUDIT_ANOM_PROMISCUOUS,
5206 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5207 dev->name, (dev->flags & IFF_PROMISC),
5208 (old_flags & IFF_PROMISC),
5209 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5210 from_kuid(&init_user_ns, uid),
5211 from_kgid(&init_user_ns, gid),
5212 audit_get_sessionid(current));
5215 dev_change_rx_flags(dev, IFF_PROMISC);
5217 if (notify)
5218 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5219 return 0;
5223 * dev_set_promiscuity - update promiscuity count on a device
5224 * @dev: device
5225 * @inc: modifier
5227 * Add or remove promiscuity from a device. While the count in the device
5228 * remains above zero the interface remains promiscuous. Once it hits zero
5229 * the device reverts back to normal filtering operation. A negative inc
5230 * value is used to drop promiscuity on the device.
5231 * Return 0 if successful or a negative errno code on error.
5233 int dev_set_promiscuity(struct net_device *dev, int inc)
5235 unsigned int old_flags = dev->flags;
5236 int err;
5238 err = __dev_set_promiscuity(dev, inc, true);
5239 if (err < 0)
5240 return err;
5241 if (dev->flags != old_flags)
5242 dev_set_rx_mode(dev);
5243 return err;
5245 EXPORT_SYMBOL(dev_set_promiscuity);
5247 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5249 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5251 ASSERT_RTNL();
5253 dev->flags |= IFF_ALLMULTI;
5254 dev->allmulti += inc;
5255 if (dev->allmulti == 0) {
5257 * Avoid overflow.
5258 * If inc causes overflow, untouch allmulti and return error.
5260 if (inc < 0)
5261 dev->flags &= ~IFF_ALLMULTI;
5262 else {
5263 dev->allmulti -= inc;
5264 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5265 dev->name);
5266 return -EOVERFLOW;
5269 if (dev->flags ^ old_flags) {
5270 dev_change_rx_flags(dev, IFF_ALLMULTI);
5271 dev_set_rx_mode(dev);
5272 if (notify)
5273 __dev_notify_flags(dev, old_flags,
5274 dev->gflags ^ old_gflags);
5276 return 0;
5280 * dev_set_allmulti - update allmulti count on a device
5281 * @dev: device
5282 * @inc: modifier
5284 * Add or remove reception of all multicast frames to a device. While the
5285 * count in the device remains above zero the interface remains listening
5286 * to all interfaces. Once it hits zero the device reverts back to normal
5287 * filtering operation. A negative @inc value is used to drop the counter
5288 * when releasing a resource needing all multicasts.
5289 * Return 0 if successful or a negative errno code on error.
5292 int dev_set_allmulti(struct net_device *dev, int inc)
5294 return __dev_set_allmulti(dev, inc, true);
5296 EXPORT_SYMBOL(dev_set_allmulti);
5299 * Upload unicast and multicast address lists to device and
5300 * configure RX filtering. When the device doesn't support unicast
5301 * filtering it is put in promiscuous mode while unicast addresses
5302 * are present.
5304 void __dev_set_rx_mode(struct net_device *dev)
5306 const struct net_device_ops *ops = dev->netdev_ops;
5308 /* dev_open will call this function so the list will stay sane. */
5309 if (!(dev->flags&IFF_UP))
5310 return;
5312 if (!netif_device_present(dev))
5313 return;
5315 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5316 /* Unicast addresses changes may only happen under the rtnl,
5317 * therefore calling __dev_set_promiscuity here is safe.
5319 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5320 __dev_set_promiscuity(dev, 1, false);
5321 dev->uc_promisc = true;
5322 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5323 __dev_set_promiscuity(dev, -1, false);
5324 dev->uc_promisc = false;
5328 if (ops->ndo_set_rx_mode)
5329 ops->ndo_set_rx_mode(dev);
5332 void dev_set_rx_mode(struct net_device *dev)
5334 netif_addr_lock_bh(dev);
5335 __dev_set_rx_mode(dev);
5336 netif_addr_unlock_bh(dev);
5340 * dev_get_flags - get flags reported to userspace
5341 * @dev: device
5343 * Get the combination of flag bits exported through APIs to userspace.
5345 unsigned int dev_get_flags(const struct net_device *dev)
5347 unsigned int flags;
5349 flags = (dev->flags & ~(IFF_PROMISC |
5350 IFF_ALLMULTI |
5351 IFF_RUNNING |
5352 IFF_LOWER_UP |
5353 IFF_DORMANT)) |
5354 (dev->gflags & (IFF_PROMISC |
5355 IFF_ALLMULTI));
5357 if (netif_running(dev)) {
5358 if (netif_oper_up(dev))
5359 flags |= IFF_RUNNING;
5360 if (netif_carrier_ok(dev))
5361 flags |= IFF_LOWER_UP;
5362 if (netif_dormant(dev))
5363 flags |= IFF_DORMANT;
5366 return flags;
5368 EXPORT_SYMBOL(dev_get_flags);
5370 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5372 unsigned int old_flags = dev->flags;
5373 int ret;
5375 ASSERT_RTNL();
5378 * Set the flags on our device.
5381 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5382 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5383 IFF_AUTOMEDIA)) |
5384 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5385 IFF_ALLMULTI));
5388 * Load in the correct multicast list now the flags have changed.
5391 if ((old_flags ^ flags) & IFF_MULTICAST)
5392 dev_change_rx_flags(dev, IFF_MULTICAST);
5394 dev_set_rx_mode(dev);
5397 * Have we downed the interface. We handle IFF_UP ourselves
5398 * according to user attempts to set it, rather than blindly
5399 * setting it.
5402 ret = 0;
5403 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
5404 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5406 if (!ret)
5407 dev_set_rx_mode(dev);
5410 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5411 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5412 unsigned int old_flags = dev->flags;
5414 dev->gflags ^= IFF_PROMISC;
5416 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5417 if (dev->flags != old_flags)
5418 dev_set_rx_mode(dev);
5421 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5422 is important. Some (broken) drivers set IFF_PROMISC, when
5423 IFF_ALLMULTI is requested not asking us and not reporting.
5425 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5426 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5428 dev->gflags ^= IFF_ALLMULTI;
5429 __dev_set_allmulti(dev, inc, false);
5432 return ret;
5435 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5436 unsigned int gchanges)
5438 unsigned int changes = dev->flags ^ old_flags;
5440 if (gchanges)
5441 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5443 if (changes & IFF_UP) {
5444 if (dev->flags & IFF_UP)
5445 call_netdevice_notifiers(NETDEV_UP, dev);
5446 else
5447 call_netdevice_notifiers(NETDEV_DOWN, dev);
5450 if (dev->flags & IFF_UP &&
5451 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5452 struct netdev_notifier_change_info change_info;
5454 change_info.flags_changed = changes;
5455 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5456 &change_info.info);
5461 * dev_change_flags - change device settings
5462 * @dev: device
5463 * @flags: device state flags
5465 * Change settings on device based state flags. The flags are
5466 * in the userspace exported format.
5468 int dev_change_flags(struct net_device *dev, unsigned int flags)
5470 int ret;
5471 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5473 ret = __dev_change_flags(dev, flags);
5474 if (ret < 0)
5475 return ret;
5477 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5478 __dev_notify_flags(dev, old_flags, changes);
5479 return ret;
5481 EXPORT_SYMBOL(dev_change_flags);
5483 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5485 const struct net_device_ops *ops = dev->netdev_ops;
5487 if (ops->ndo_change_mtu)
5488 return ops->ndo_change_mtu(dev, new_mtu);
5490 dev->mtu = new_mtu;
5491 return 0;
5495 * dev_set_mtu - Change maximum transfer unit
5496 * @dev: device
5497 * @new_mtu: new transfer unit
5499 * Change the maximum transfer size of the network device.
5501 int dev_set_mtu(struct net_device *dev, int new_mtu)
5503 int err, orig_mtu;
5505 if (new_mtu == dev->mtu)
5506 return 0;
5508 /* MTU must be positive. */
5509 if (new_mtu < 0)
5510 return -EINVAL;
5512 if (!netif_device_present(dev))
5513 return -ENODEV;
5515 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5516 err = notifier_to_errno(err);
5517 if (err)
5518 return err;
5520 orig_mtu = dev->mtu;
5521 err = __dev_set_mtu(dev, new_mtu);
5523 if (!err) {
5524 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5525 err = notifier_to_errno(err);
5526 if (err) {
5527 /* setting mtu back and notifying everyone again,
5528 * so that they have a chance to revert changes.
5530 __dev_set_mtu(dev, orig_mtu);
5531 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5534 return err;
5536 EXPORT_SYMBOL(dev_set_mtu);
5539 * dev_set_group - Change group this device belongs to
5540 * @dev: device
5541 * @new_group: group this device should belong to
5543 void dev_set_group(struct net_device *dev, int new_group)
5545 dev->group = new_group;
5547 EXPORT_SYMBOL(dev_set_group);
5550 * dev_set_mac_address - Change Media Access Control Address
5551 * @dev: device
5552 * @sa: new address
5554 * Change the hardware (MAC) address of the device
5556 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5558 const struct net_device_ops *ops = dev->netdev_ops;
5559 int err;
5561 if (!ops->ndo_set_mac_address)
5562 return -EOPNOTSUPP;
5563 if (sa->sa_family != dev->type)
5564 return -EINVAL;
5565 if (!netif_device_present(dev))
5566 return -ENODEV;
5567 err = ops->ndo_set_mac_address(dev, sa);
5568 if (err)
5569 return err;
5570 dev->addr_assign_type = NET_ADDR_SET;
5571 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5572 add_device_randomness(dev->dev_addr, dev->addr_len);
5573 return 0;
5575 EXPORT_SYMBOL(dev_set_mac_address);
5578 * dev_change_carrier - Change device carrier
5579 * @dev: device
5580 * @new_carrier: new value
5582 * Change device carrier
5584 int dev_change_carrier(struct net_device *dev, bool new_carrier)
5586 const struct net_device_ops *ops = dev->netdev_ops;
5588 if (!ops->ndo_change_carrier)
5589 return -EOPNOTSUPP;
5590 if (!netif_device_present(dev))
5591 return -ENODEV;
5592 return ops->ndo_change_carrier(dev, new_carrier);
5594 EXPORT_SYMBOL(dev_change_carrier);
5597 * dev_get_phys_port_id - Get device physical port ID
5598 * @dev: device
5599 * @ppid: port ID
5601 * Get device physical port ID
5603 int dev_get_phys_port_id(struct net_device *dev,
5604 struct netdev_phys_port_id *ppid)
5606 const struct net_device_ops *ops = dev->netdev_ops;
5608 if (!ops->ndo_get_phys_port_id)
5609 return -EOPNOTSUPP;
5610 return ops->ndo_get_phys_port_id(dev, ppid);
5612 EXPORT_SYMBOL(dev_get_phys_port_id);
5615 * dev_new_index - allocate an ifindex
5616 * @net: the applicable net namespace
5618 * Returns a suitable unique value for a new device interface
5619 * number. The caller must hold the rtnl semaphore or the
5620 * dev_base_lock to be sure it remains unique.
5622 static int dev_new_index(struct net *net)
5624 int ifindex = net->ifindex;
5625 for (;;) {
5626 if (++ifindex <= 0)
5627 ifindex = 1;
5628 if (!__dev_get_by_index(net, ifindex))
5629 return net->ifindex = ifindex;
5633 /* Delayed registration/unregisteration */
5634 static LIST_HEAD(net_todo_list);
5635 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5637 static void net_set_todo(struct net_device *dev)
5639 list_add_tail(&dev->todo_list, &net_todo_list);
5640 dev_net(dev)->dev_unreg_count++;
5643 static void rollback_registered_many(struct list_head *head)
5645 struct net_device *dev, *tmp;
5646 LIST_HEAD(close_head);
5648 BUG_ON(dev_boot_phase);
5649 ASSERT_RTNL();
5651 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5652 /* Some devices call without registering
5653 * for initialization unwind. Remove those
5654 * devices and proceed with the remaining.
5656 if (dev->reg_state == NETREG_UNINITIALIZED) {
5657 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5658 dev->name, dev);
5660 WARN_ON(1);
5661 list_del(&dev->unreg_list);
5662 continue;
5664 dev->dismantle = true;
5665 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5668 /* If device is running, close it first. */
5669 list_for_each_entry(dev, head, unreg_list)
5670 list_add_tail(&dev->close_list, &close_head);
5671 dev_close_many(&close_head);
5673 list_for_each_entry(dev, head, unreg_list) {
5674 /* And unlink it from device chain. */
5675 unlist_netdevice(dev);
5677 dev->reg_state = NETREG_UNREGISTERING;
5680 synchronize_net();
5682 list_for_each_entry(dev, head, unreg_list) {
5683 /* Shutdown queueing discipline. */
5684 dev_shutdown(dev);
5687 /* Notify protocols, that we are about to destroy
5688 this device. They should clean all the things.
5690 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5692 if (!dev->rtnl_link_ops ||
5693 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5694 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5697 * Flush the unicast and multicast chains
5699 dev_uc_flush(dev);
5700 dev_mc_flush(dev);
5702 if (dev->netdev_ops->ndo_uninit)
5703 dev->netdev_ops->ndo_uninit(dev);
5705 /* Notifier chain MUST detach us all upper devices. */
5706 WARN_ON(netdev_has_any_upper_dev(dev));
5708 /* Remove entries from kobject tree */
5709 netdev_unregister_kobject(dev);
5710 #ifdef CONFIG_XPS
5711 /* Remove XPS queueing entries */
5712 netif_reset_xps_queues_gt(dev, 0);
5713 #endif
5716 synchronize_net();
5718 list_for_each_entry(dev, head, unreg_list)
5719 dev_put(dev);
5722 static void rollback_registered(struct net_device *dev)
5724 LIST_HEAD(single);
5726 list_add(&dev->unreg_list, &single);
5727 rollback_registered_many(&single);
5728 list_del(&single);
5731 static netdev_features_t netdev_fix_features(struct net_device *dev,
5732 netdev_features_t features)
5734 /* Fix illegal checksum combinations */
5735 if ((features & NETIF_F_HW_CSUM) &&
5736 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5737 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5738 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5741 /* TSO requires that SG is present as well. */
5742 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5743 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5744 features &= ~NETIF_F_ALL_TSO;
5747 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5748 !(features & NETIF_F_IP_CSUM)) {
5749 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5750 features &= ~NETIF_F_TSO;
5751 features &= ~NETIF_F_TSO_ECN;
5754 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5755 !(features & NETIF_F_IPV6_CSUM)) {
5756 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5757 features &= ~NETIF_F_TSO6;
5760 /* TSO ECN requires that TSO is present as well. */
5761 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5762 features &= ~NETIF_F_TSO_ECN;
5764 /* Software GSO depends on SG. */
5765 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5766 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5767 features &= ~NETIF_F_GSO;
5770 /* UFO needs SG and checksumming */
5771 if (features & NETIF_F_UFO) {
5772 /* maybe split UFO into V4 and V6? */
5773 if (!((features & NETIF_F_GEN_CSUM) ||
5774 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5775 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5776 netdev_dbg(dev,
5777 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5778 features &= ~NETIF_F_UFO;
5781 if (!(features & NETIF_F_SG)) {
5782 netdev_dbg(dev,
5783 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5784 features &= ~NETIF_F_UFO;
5788 #ifdef CONFIG_NET_RX_BUSY_POLL
5789 if (dev->netdev_ops->ndo_busy_poll)
5790 features |= NETIF_F_BUSY_POLL;
5791 else
5792 #endif
5793 features &= ~NETIF_F_BUSY_POLL;
5795 return features;
5798 int __netdev_update_features(struct net_device *dev)
5800 netdev_features_t features;
5801 int err = 0;
5803 ASSERT_RTNL();
5805 features = netdev_get_wanted_features(dev);
5807 if (dev->netdev_ops->ndo_fix_features)
5808 features = dev->netdev_ops->ndo_fix_features(dev, features);
5810 /* driver might be less strict about feature dependencies */
5811 features = netdev_fix_features(dev, features);
5813 if (dev->features == features)
5814 return 0;
5816 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
5817 &dev->features, &features);
5819 if (dev->netdev_ops->ndo_set_features)
5820 err = dev->netdev_ops->ndo_set_features(dev, features);
5822 if (unlikely(err < 0)) {
5823 netdev_err(dev,
5824 "set_features() failed (%d); wanted %pNF, left %pNF\n",
5825 err, &features, &dev->features);
5826 return -1;
5829 if (!err)
5830 dev->features = features;
5832 return 1;
5836 * netdev_update_features - recalculate device features
5837 * @dev: the device to check
5839 * Recalculate dev->features set and send notifications if it
5840 * has changed. Should be called after driver or hardware dependent
5841 * conditions might have changed that influence the features.
5843 void netdev_update_features(struct net_device *dev)
5845 if (__netdev_update_features(dev))
5846 netdev_features_change(dev);
5848 EXPORT_SYMBOL(netdev_update_features);
5851 * netdev_change_features - recalculate device features
5852 * @dev: the device to check
5854 * Recalculate dev->features set and send notifications even
5855 * if they have not changed. Should be called instead of
5856 * netdev_update_features() if also dev->vlan_features might
5857 * have changed to allow the changes to be propagated to stacked
5858 * VLAN devices.
5860 void netdev_change_features(struct net_device *dev)
5862 __netdev_update_features(dev);
5863 netdev_features_change(dev);
5865 EXPORT_SYMBOL(netdev_change_features);
5868 * netif_stacked_transfer_operstate - transfer operstate
5869 * @rootdev: the root or lower level device to transfer state from
5870 * @dev: the device to transfer operstate to
5872 * Transfer operational state from root to device. This is normally
5873 * called when a stacking relationship exists between the root
5874 * device and the device(a leaf device).
5876 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5877 struct net_device *dev)
5879 if (rootdev->operstate == IF_OPER_DORMANT)
5880 netif_dormant_on(dev);
5881 else
5882 netif_dormant_off(dev);
5884 if (netif_carrier_ok(rootdev)) {
5885 if (!netif_carrier_ok(dev))
5886 netif_carrier_on(dev);
5887 } else {
5888 if (netif_carrier_ok(dev))
5889 netif_carrier_off(dev);
5892 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5894 #ifdef CONFIG_SYSFS
5895 static int netif_alloc_rx_queues(struct net_device *dev)
5897 unsigned int i, count = dev->num_rx_queues;
5898 struct netdev_rx_queue *rx;
5900 BUG_ON(count < 1);
5902 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5903 if (!rx)
5904 return -ENOMEM;
5906 dev->_rx = rx;
5908 for (i = 0; i < count; i++)
5909 rx[i].dev = dev;
5910 return 0;
5912 #endif
5914 static void netdev_init_one_queue(struct net_device *dev,
5915 struct netdev_queue *queue, void *_unused)
5917 /* Initialize queue lock */
5918 spin_lock_init(&queue->_xmit_lock);
5919 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5920 queue->xmit_lock_owner = -1;
5921 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5922 queue->dev = dev;
5923 #ifdef CONFIG_BQL
5924 dql_init(&queue->dql, HZ);
5925 #endif
5928 static void netif_free_tx_queues(struct net_device *dev)
5930 if (is_vmalloc_addr(dev->_tx))
5931 vfree(dev->_tx);
5932 else
5933 kfree(dev->_tx);
5936 static int netif_alloc_netdev_queues(struct net_device *dev)
5938 unsigned int count = dev->num_tx_queues;
5939 struct netdev_queue *tx;
5940 size_t sz = count * sizeof(*tx);
5942 BUG_ON(count < 1 || count > 0xffff);
5944 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
5945 if (!tx) {
5946 tx = vzalloc(sz);
5947 if (!tx)
5948 return -ENOMEM;
5950 dev->_tx = tx;
5952 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5953 spin_lock_init(&dev->tx_global_lock);
5955 return 0;
5959 * register_netdevice - register a network device
5960 * @dev: device to register
5962 * Take a completed network device structure and add it to the kernel
5963 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5964 * chain. 0 is returned on success. A negative errno code is returned
5965 * on a failure to set up the device, or if the name is a duplicate.
5967 * Callers must hold the rtnl semaphore. You may want
5968 * register_netdev() instead of this.
5970 * BUGS:
5971 * The locking appears insufficient to guarantee two parallel registers
5972 * will not get the same name.
5975 int register_netdevice(struct net_device *dev)
5977 int ret;
5978 struct net *net = dev_net(dev);
5980 BUG_ON(dev_boot_phase);
5981 ASSERT_RTNL();
5983 might_sleep();
5985 /* When net_device's are persistent, this will be fatal. */
5986 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5987 BUG_ON(!net);
5989 spin_lock_init(&dev->addr_list_lock);
5990 netdev_set_addr_lockdep_class(dev);
5992 dev->iflink = -1;
5994 ret = dev_get_valid_name(net, dev, dev->name);
5995 if (ret < 0)
5996 goto out;
5998 /* Init, if this function is available */
5999 if (dev->netdev_ops->ndo_init) {
6000 ret = dev->netdev_ops->ndo_init(dev);
6001 if (ret) {
6002 if (ret > 0)
6003 ret = -EIO;
6004 goto out;
6008 if (((dev->hw_features | dev->features) &
6009 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6010 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6011 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6012 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6013 ret = -EINVAL;
6014 goto err_uninit;
6017 ret = -EBUSY;
6018 if (!dev->ifindex)
6019 dev->ifindex = dev_new_index(net);
6020 else if (__dev_get_by_index(net, dev->ifindex))
6021 goto err_uninit;
6023 if (dev->iflink == -1)
6024 dev->iflink = dev->ifindex;
6026 /* Transfer changeable features to wanted_features and enable
6027 * software offloads (GSO and GRO).
6029 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6030 dev->features |= NETIF_F_SOFT_FEATURES;
6031 dev->wanted_features = dev->features & dev->hw_features;
6033 if (!(dev->flags & IFF_LOOPBACK)) {
6034 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6037 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6039 dev->vlan_features |= NETIF_F_HIGHDMA;
6041 /* Make NETIF_F_SG inheritable to tunnel devices.
6043 dev->hw_enc_features |= NETIF_F_SG;
6045 /* Make NETIF_F_SG inheritable to MPLS.
6047 dev->mpls_features |= NETIF_F_SG;
6049 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6050 ret = notifier_to_errno(ret);
6051 if (ret)
6052 goto err_uninit;
6054 ret = netdev_register_kobject(dev);
6055 if (ret)
6056 goto err_uninit;
6057 dev->reg_state = NETREG_REGISTERED;
6059 __netdev_update_features(dev);
6062 * Default initial state at registry is that the
6063 * device is present.
6066 set_bit(__LINK_STATE_PRESENT, &dev->state);
6068 linkwatch_init_dev(dev);
6070 dev_init_scheduler(dev);
6071 dev_hold(dev);
6072 list_netdevice(dev);
6073 add_device_randomness(dev->dev_addr, dev->addr_len);
6075 /* If the device has permanent device address, driver should
6076 * set dev_addr and also addr_assign_type should be set to
6077 * NET_ADDR_PERM (default value).
6079 if (dev->addr_assign_type == NET_ADDR_PERM)
6080 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6082 /* Notify protocols, that a new device appeared. */
6083 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6084 ret = notifier_to_errno(ret);
6085 if (ret) {
6086 rollback_registered(dev);
6087 dev->reg_state = NETREG_UNREGISTERED;
6090 * Prevent userspace races by waiting until the network
6091 * device is fully setup before sending notifications.
6093 if (!dev->rtnl_link_ops ||
6094 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6095 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6097 out:
6098 return ret;
6100 err_uninit:
6101 if (dev->netdev_ops->ndo_uninit)
6102 dev->netdev_ops->ndo_uninit(dev);
6103 goto out;
6105 EXPORT_SYMBOL(register_netdevice);
6108 * init_dummy_netdev - init a dummy network device for NAPI
6109 * @dev: device to init
6111 * This takes a network device structure and initialize the minimum
6112 * amount of fields so it can be used to schedule NAPI polls without
6113 * registering a full blown interface. This is to be used by drivers
6114 * that need to tie several hardware interfaces to a single NAPI
6115 * poll scheduler due to HW limitations.
6117 int init_dummy_netdev(struct net_device *dev)
6119 /* Clear everything. Note we don't initialize spinlocks
6120 * are they aren't supposed to be taken by any of the
6121 * NAPI code and this dummy netdev is supposed to be
6122 * only ever used for NAPI polls
6124 memset(dev, 0, sizeof(struct net_device));
6126 /* make sure we BUG if trying to hit standard
6127 * register/unregister code path
6129 dev->reg_state = NETREG_DUMMY;
6131 /* NAPI wants this */
6132 INIT_LIST_HEAD(&dev->napi_list);
6134 /* a dummy interface is started by default */
6135 set_bit(__LINK_STATE_PRESENT, &dev->state);
6136 set_bit(__LINK_STATE_START, &dev->state);
6138 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6139 * because users of this 'device' dont need to change
6140 * its refcount.
6143 return 0;
6145 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6149 * register_netdev - register a network device
6150 * @dev: device to register
6152 * Take a completed network device structure and add it to the kernel
6153 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6154 * chain. 0 is returned on success. A negative errno code is returned
6155 * on a failure to set up the device, or if the name is a duplicate.
6157 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6158 * and expands the device name if you passed a format string to
6159 * alloc_netdev.
6161 int register_netdev(struct net_device *dev)
6163 int err;
6165 rtnl_lock();
6166 err = register_netdevice(dev);
6167 rtnl_unlock();
6168 return err;
6170 EXPORT_SYMBOL(register_netdev);
6172 int netdev_refcnt_read(const struct net_device *dev)
6174 int i, refcnt = 0;
6176 for_each_possible_cpu(i)
6177 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6178 return refcnt;
6180 EXPORT_SYMBOL(netdev_refcnt_read);
6183 * netdev_wait_allrefs - wait until all references are gone.
6184 * @dev: target net_device
6186 * This is called when unregistering network devices.
6188 * Any protocol or device that holds a reference should register
6189 * for netdevice notification, and cleanup and put back the
6190 * reference if they receive an UNREGISTER event.
6191 * We can get stuck here if buggy protocols don't correctly
6192 * call dev_put.
6194 static void netdev_wait_allrefs(struct net_device *dev)
6196 unsigned long rebroadcast_time, warning_time;
6197 int refcnt;
6199 linkwatch_forget_dev(dev);
6201 rebroadcast_time = warning_time = jiffies;
6202 refcnt = netdev_refcnt_read(dev);
6204 while (refcnt != 0) {
6205 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6206 rtnl_lock();
6208 /* Rebroadcast unregister notification */
6209 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6211 __rtnl_unlock();
6212 rcu_barrier();
6213 rtnl_lock();
6215 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6216 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6217 &dev->state)) {
6218 /* We must not have linkwatch events
6219 * pending on unregister. If this
6220 * happens, we simply run the queue
6221 * unscheduled, resulting in a noop
6222 * for this device.
6224 linkwatch_run_queue();
6227 __rtnl_unlock();
6229 rebroadcast_time = jiffies;
6232 msleep(250);
6234 refcnt = netdev_refcnt_read(dev);
6236 if (time_after(jiffies, warning_time + 10 * HZ)) {
6237 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6238 dev->name, refcnt);
6239 warning_time = jiffies;
6244 /* The sequence is:
6246 * rtnl_lock();
6247 * ...
6248 * register_netdevice(x1);
6249 * register_netdevice(x2);
6250 * ...
6251 * unregister_netdevice(y1);
6252 * unregister_netdevice(y2);
6253 * ...
6254 * rtnl_unlock();
6255 * free_netdev(y1);
6256 * free_netdev(y2);
6258 * We are invoked by rtnl_unlock().
6259 * This allows us to deal with problems:
6260 * 1) We can delete sysfs objects which invoke hotplug
6261 * without deadlocking with linkwatch via keventd.
6262 * 2) Since we run with the RTNL semaphore not held, we can sleep
6263 * safely in order to wait for the netdev refcnt to drop to zero.
6265 * We must not return until all unregister events added during
6266 * the interval the lock was held have been completed.
6268 void netdev_run_todo(void)
6270 struct list_head list;
6272 /* Snapshot list, allow later requests */
6273 list_replace_init(&net_todo_list, &list);
6275 __rtnl_unlock();
6278 /* Wait for rcu callbacks to finish before next phase */
6279 if (!list_empty(&list))
6280 rcu_barrier();
6282 while (!list_empty(&list)) {
6283 struct net_device *dev
6284 = list_first_entry(&list, struct net_device, todo_list);
6285 list_del(&dev->todo_list);
6287 rtnl_lock();
6288 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6289 __rtnl_unlock();
6291 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6292 pr_err("network todo '%s' but state %d\n",
6293 dev->name, dev->reg_state);
6294 dump_stack();
6295 continue;
6298 dev->reg_state = NETREG_UNREGISTERED;
6300 on_each_cpu(flush_backlog, dev, 1);
6302 netdev_wait_allrefs(dev);
6304 /* paranoia */
6305 BUG_ON(netdev_refcnt_read(dev));
6306 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6307 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6308 WARN_ON(dev->dn_ptr);
6310 if (dev->destructor)
6311 dev->destructor(dev);
6313 /* Report a network device has been unregistered */
6314 rtnl_lock();
6315 dev_net(dev)->dev_unreg_count--;
6316 __rtnl_unlock();
6317 wake_up(&netdev_unregistering_wq);
6319 /* Free network device */
6320 kobject_put(&dev->dev.kobj);
6324 /* Convert net_device_stats to rtnl_link_stats64. They have the same
6325 * fields in the same order, with only the type differing.
6327 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6328 const struct net_device_stats *netdev_stats)
6330 #if BITS_PER_LONG == 64
6331 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6332 memcpy(stats64, netdev_stats, sizeof(*stats64));
6333 #else
6334 size_t i, n = sizeof(*stats64) / sizeof(u64);
6335 const unsigned long *src = (const unsigned long *)netdev_stats;
6336 u64 *dst = (u64 *)stats64;
6338 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6339 sizeof(*stats64) / sizeof(u64));
6340 for (i = 0; i < n; i++)
6341 dst[i] = src[i];
6342 #endif
6344 EXPORT_SYMBOL(netdev_stats_to_stats64);
6347 * dev_get_stats - get network device statistics
6348 * @dev: device to get statistics from
6349 * @storage: place to store stats
6351 * Get network statistics from device. Return @storage.
6352 * The device driver may provide its own method by setting
6353 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6354 * otherwise the internal statistics structure is used.
6356 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6357 struct rtnl_link_stats64 *storage)
6359 const struct net_device_ops *ops = dev->netdev_ops;
6361 if (ops->ndo_get_stats64) {
6362 memset(storage, 0, sizeof(*storage));
6363 ops->ndo_get_stats64(dev, storage);
6364 } else if (ops->ndo_get_stats) {
6365 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6366 } else {
6367 netdev_stats_to_stats64(storage, &dev->stats);
6369 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6370 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6371 return storage;
6373 EXPORT_SYMBOL(dev_get_stats);
6375 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6377 struct netdev_queue *queue = dev_ingress_queue(dev);
6379 #ifdef CONFIG_NET_CLS_ACT
6380 if (queue)
6381 return queue;
6382 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6383 if (!queue)
6384 return NULL;
6385 netdev_init_one_queue(dev, queue, NULL);
6386 queue->qdisc = &noop_qdisc;
6387 queue->qdisc_sleeping = &noop_qdisc;
6388 rcu_assign_pointer(dev->ingress_queue, queue);
6389 #endif
6390 return queue;
6393 static const struct ethtool_ops default_ethtool_ops;
6395 void netdev_set_default_ethtool_ops(struct net_device *dev,
6396 const struct ethtool_ops *ops)
6398 if (dev->ethtool_ops == &default_ethtool_ops)
6399 dev->ethtool_ops = ops;
6401 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6403 void netdev_freemem(struct net_device *dev)
6405 char *addr = (char *)dev - dev->padded;
6407 if (is_vmalloc_addr(addr))
6408 vfree(addr);
6409 else
6410 kfree(addr);
6414 * alloc_netdev_mqs - allocate network device
6415 * @sizeof_priv: size of private data to allocate space for
6416 * @name: device name format string
6417 * @setup: callback to initialize device
6418 * @txqs: the number of TX subqueues to allocate
6419 * @rxqs: the number of RX subqueues to allocate
6421 * Allocates a struct net_device with private data area for driver use
6422 * and performs basic initialization. Also allocates subqueue structs
6423 * for each queue on the device.
6425 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6426 void (*setup)(struct net_device *),
6427 unsigned int txqs, unsigned int rxqs)
6429 struct net_device *dev;
6430 size_t alloc_size;
6431 struct net_device *p;
6433 BUG_ON(strlen(name) >= sizeof(dev->name));
6435 if (txqs < 1) {
6436 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6437 return NULL;
6440 #ifdef CONFIG_SYSFS
6441 if (rxqs < 1) {
6442 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6443 return NULL;
6445 #endif
6447 alloc_size = sizeof(struct net_device);
6448 if (sizeof_priv) {
6449 /* ensure 32-byte alignment of private area */
6450 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6451 alloc_size += sizeof_priv;
6453 /* ensure 32-byte alignment of whole construct */
6454 alloc_size += NETDEV_ALIGN - 1;
6456 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6457 if (!p)
6458 p = vzalloc(alloc_size);
6459 if (!p)
6460 return NULL;
6462 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6463 dev->padded = (char *)dev - (char *)p;
6465 dev->pcpu_refcnt = alloc_percpu(int);
6466 if (!dev->pcpu_refcnt)
6467 goto free_dev;
6469 if (dev_addr_init(dev))
6470 goto free_pcpu;
6472 dev_mc_init(dev);
6473 dev_uc_init(dev);
6475 dev_net_set(dev, &init_net);
6477 dev->gso_max_size = GSO_MAX_SIZE;
6478 dev->gso_max_segs = GSO_MAX_SEGS;
6480 INIT_LIST_HEAD(&dev->napi_list);
6481 INIT_LIST_HEAD(&dev->unreg_list);
6482 INIT_LIST_HEAD(&dev->close_list);
6483 INIT_LIST_HEAD(&dev->link_watch_list);
6484 INIT_LIST_HEAD(&dev->adj_list.upper);
6485 INIT_LIST_HEAD(&dev->adj_list.lower);
6486 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6487 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6488 dev->priv_flags = IFF_XMIT_DST_RELEASE;
6489 setup(dev);
6491 dev->num_tx_queues = txqs;
6492 dev->real_num_tx_queues = txqs;
6493 if (netif_alloc_netdev_queues(dev))
6494 goto free_all;
6496 #ifdef CONFIG_SYSFS
6497 dev->num_rx_queues = rxqs;
6498 dev->real_num_rx_queues = rxqs;
6499 if (netif_alloc_rx_queues(dev))
6500 goto free_all;
6501 #endif
6503 strcpy(dev->name, name);
6504 dev->group = INIT_NETDEV_GROUP;
6505 if (!dev->ethtool_ops)
6506 dev->ethtool_ops = &default_ethtool_ops;
6507 return dev;
6509 free_all:
6510 free_netdev(dev);
6511 return NULL;
6513 free_pcpu:
6514 free_percpu(dev->pcpu_refcnt);
6515 netif_free_tx_queues(dev);
6516 #ifdef CONFIG_SYSFS
6517 kfree(dev->_rx);
6518 #endif
6520 free_dev:
6521 netdev_freemem(dev);
6522 return NULL;
6524 EXPORT_SYMBOL(alloc_netdev_mqs);
6527 * free_netdev - free network device
6528 * @dev: device
6530 * This function does the last stage of destroying an allocated device
6531 * interface. The reference to the device object is released.
6532 * If this is the last reference then it will be freed.
6534 void free_netdev(struct net_device *dev)
6536 struct napi_struct *p, *n;
6538 release_net(dev_net(dev));
6540 netif_free_tx_queues(dev);
6541 #ifdef CONFIG_SYSFS
6542 kfree(dev->_rx);
6543 #endif
6545 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6547 /* Flush device addresses */
6548 dev_addr_flush(dev);
6550 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6551 netif_napi_del(p);
6553 free_percpu(dev->pcpu_refcnt);
6554 dev->pcpu_refcnt = NULL;
6556 /* Compatibility with error handling in drivers */
6557 if (dev->reg_state == NETREG_UNINITIALIZED) {
6558 netdev_freemem(dev);
6559 return;
6562 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6563 dev->reg_state = NETREG_RELEASED;
6565 /* will free via device release */
6566 put_device(&dev->dev);
6568 EXPORT_SYMBOL(free_netdev);
6571 * synchronize_net - Synchronize with packet receive processing
6573 * Wait for packets currently being received to be done.
6574 * Does not block later packets from starting.
6576 void synchronize_net(void)
6578 might_sleep();
6579 if (rtnl_is_locked())
6580 synchronize_rcu_expedited();
6581 else
6582 synchronize_rcu();
6584 EXPORT_SYMBOL(synchronize_net);
6587 * unregister_netdevice_queue - remove device from the kernel
6588 * @dev: device
6589 * @head: list
6591 * This function shuts down a device interface and removes it
6592 * from the kernel tables.
6593 * If head not NULL, device is queued to be unregistered later.
6595 * Callers must hold the rtnl semaphore. You may want
6596 * unregister_netdev() instead of this.
6599 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6601 ASSERT_RTNL();
6603 if (head) {
6604 list_move_tail(&dev->unreg_list, head);
6605 } else {
6606 rollback_registered(dev);
6607 /* Finish processing unregister after unlock */
6608 net_set_todo(dev);
6611 EXPORT_SYMBOL(unregister_netdevice_queue);
6614 * unregister_netdevice_many - unregister many devices
6615 * @head: list of devices
6617 void unregister_netdevice_many(struct list_head *head)
6619 struct net_device *dev;
6621 if (!list_empty(head)) {
6622 rollback_registered_many(head);
6623 list_for_each_entry(dev, head, unreg_list)
6624 net_set_todo(dev);
6627 EXPORT_SYMBOL(unregister_netdevice_many);
6630 * unregister_netdev - remove device from the kernel
6631 * @dev: device
6633 * This function shuts down a device interface and removes it
6634 * from the kernel tables.
6636 * This is just a wrapper for unregister_netdevice that takes
6637 * the rtnl semaphore. In general you want to use this and not
6638 * unregister_netdevice.
6640 void unregister_netdev(struct net_device *dev)
6642 rtnl_lock();
6643 unregister_netdevice(dev);
6644 rtnl_unlock();
6646 EXPORT_SYMBOL(unregister_netdev);
6649 * dev_change_net_namespace - move device to different nethost namespace
6650 * @dev: device
6651 * @net: network namespace
6652 * @pat: If not NULL name pattern to try if the current device name
6653 * is already taken in the destination network namespace.
6655 * This function shuts down a device interface and moves it
6656 * to a new network namespace. On success 0 is returned, on
6657 * a failure a netagive errno code is returned.
6659 * Callers must hold the rtnl semaphore.
6662 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6664 int err;
6666 ASSERT_RTNL();
6668 /* Don't allow namespace local devices to be moved. */
6669 err = -EINVAL;
6670 if (dev->features & NETIF_F_NETNS_LOCAL)
6671 goto out;
6673 /* Ensure the device has been registrered */
6674 if (dev->reg_state != NETREG_REGISTERED)
6675 goto out;
6677 /* Get out if there is nothing todo */
6678 err = 0;
6679 if (net_eq(dev_net(dev), net))
6680 goto out;
6682 /* Pick the destination device name, and ensure
6683 * we can use it in the destination network namespace.
6685 err = -EEXIST;
6686 if (__dev_get_by_name(net, dev->name)) {
6687 /* We get here if we can't use the current device name */
6688 if (!pat)
6689 goto out;
6690 if (dev_get_valid_name(net, dev, pat) < 0)
6691 goto out;
6695 * And now a mini version of register_netdevice unregister_netdevice.
6698 /* If device is running close it first. */
6699 dev_close(dev);
6701 /* And unlink it from device chain */
6702 err = -ENODEV;
6703 unlist_netdevice(dev);
6705 synchronize_net();
6707 /* Shutdown queueing discipline. */
6708 dev_shutdown(dev);
6710 /* Notify protocols, that we are about to destroy
6711 this device. They should clean all the things.
6713 Note that dev->reg_state stays at NETREG_REGISTERED.
6714 This is wanted because this way 8021q and macvlan know
6715 the device is just moving and can keep their slaves up.
6717 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6718 rcu_barrier();
6719 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6720 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6723 * Flush the unicast and multicast chains
6725 dev_uc_flush(dev);
6726 dev_mc_flush(dev);
6728 /* Send a netdev-removed uevent to the old namespace */
6729 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6731 /* Actually switch the network namespace */
6732 dev_net_set(dev, net);
6734 /* If there is an ifindex conflict assign a new one */
6735 if (__dev_get_by_index(net, dev->ifindex)) {
6736 int iflink = (dev->iflink == dev->ifindex);
6737 dev->ifindex = dev_new_index(net);
6738 if (iflink)
6739 dev->iflink = dev->ifindex;
6742 /* Send a netdev-add uevent to the new namespace */
6743 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6745 /* Fixup kobjects */
6746 err = device_rename(&dev->dev, dev->name);
6747 WARN_ON(err);
6749 /* Add the device back in the hashes */
6750 list_netdevice(dev);
6752 /* Notify protocols, that a new device appeared. */
6753 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6756 * Prevent userspace races by waiting until the network
6757 * device is fully setup before sending notifications.
6759 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6761 synchronize_net();
6762 err = 0;
6763 out:
6764 return err;
6766 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6768 static int dev_cpu_callback(struct notifier_block *nfb,
6769 unsigned long action,
6770 void *ocpu)
6772 struct sk_buff **list_skb;
6773 struct sk_buff *skb;
6774 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6775 struct softnet_data *sd, *oldsd;
6777 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6778 return NOTIFY_OK;
6780 local_irq_disable();
6781 cpu = smp_processor_id();
6782 sd = &per_cpu(softnet_data, cpu);
6783 oldsd = &per_cpu(softnet_data, oldcpu);
6785 /* Find end of our completion_queue. */
6786 list_skb = &sd->completion_queue;
6787 while (*list_skb)
6788 list_skb = &(*list_skb)->next;
6789 /* Append completion queue from offline CPU. */
6790 *list_skb = oldsd->completion_queue;
6791 oldsd->completion_queue = NULL;
6793 /* Append output queue from offline CPU. */
6794 if (oldsd->output_queue) {
6795 *sd->output_queue_tailp = oldsd->output_queue;
6796 sd->output_queue_tailp = oldsd->output_queue_tailp;
6797 oldsd->output_queue = NULL;
6798 oldsd->output_queue_tailp = &oldsd->output_queue;
6800 /* Append NAPI poll list from offline CPU. */
6801 if (!list_empty(&oldsd->poll_list)) {
6802 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6803 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6806 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6807 local_irq_enable();
6809 /* Process offline CPU's input_pkt_queue */
6810 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6811 netif_rx_internal(skb);
6812 input_queue_head_incr(oldsd);
6814 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6815 netif_rx_internal(skb);
6816 input_queue_head_incr(oldsd);
6819 return NOTIFY_OK;
6824 * netdev_increment_features - increment feature set by one
6825 * @all: current feature set
6826 * @one: new feature set
6827 * @mask: mask feature set
6829 * Computes a new feature set after adding a device with feature set
6830 * @one to the master device with current feature set @all. Will not
6831 * enable anything that is off in @mask. Returns the new feature set.
6833 netdev_features_t netdev_increment_features(netdev_features_t all,
6834 netdev_features_t one, netdev_features_t mask)
6836 if (mask & NETIF_F_GEN_CSUM)
6837 mask |= NETIF_F_ALL_CSUM;
6838 mask |= NETIF_F_VLAN_CHALLENGED;
6840 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
6841 all &= one | ~NETIF_F_ALL_FOR_ALL;
6843 /* If one device supports hw checksumming, set for all. */
6844 if (all & NETIF_F_GEN_CSUM)
6845 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
6847 return all;
6849 EXPORT_SYMBOL(netdev_increment_features);
6851 static struct hlist_head * __net_init netdev_create_hash(void)
6853 int i;
6854 struct hlist_head *hash;
6856 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6857 if (hash != NULL)
6858 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6859 INIT_HLIST_HEAD(&hash[i]);
6861 return hash;
6864 /* Initialize per network namespace state */
6865 static int __net_init netdev_init(struct net *net)
6867 if (net != &init_net)
6868 INIT_LIST_HEAD(&net->dev_base_head);
6870 net->dev_name_head = netdev_create_hash();
6871 if (net->dev_name_head == NULL)
6872 goto err_name;
6874 net->dev_index_head = netdev_create_hash();
6875 if (net->dev_index_head == NULL)
6876 goto err_idx;
6878 return 0;
6880 err_idx:
6881 kfree(net->dev_name_head);
6882 err_name:
6883 return -ENOMEM;
6887 * netdev_drivername - network driver for the device
6888 * @dev: network device
6890 * Determine network driver for device.
6892 const char *netdev_drivername(const struct net_device *dev)
6894 const struct device_driver *driver;
6895 const struct device *parent;
6896 const char *empty = "";
6898 parent = dev->dev.parent;
6899 if (!parent)
6900 return empty;
6902 driver = parent->driver;
6903 if (driver && driver->name)
6904 return driver->name;
6905 return empty;
6908 static int __netdev_printk(const char *level, const struct net_device *dev,
6909 struct va_format *vaf)
6911 int r;
6913 if (dev && dev->dev.parent) {
6914 r = dev_printk_emit(level[1] - '0',
6915 dev->dev.parent,
6916 "%s %s %s: %pV",
6917 dev_driver_string(dev->dev.parent),
6918 dev_name(dev->dev.parent),
6919 netdev_name(dev), vaf);
6920 } else if (dev) {
6921 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6922 } else {
6923 r = printk("%s(NULL net_device): %pV", level, vaf);
6926 return r;
6929 int netdev_printk(const char *level, const struct net_device *dev,
6930 const char *format, ...)
6932 struct va_format vaf;
6933 va_list args;
6934 int r;
6936 va_start(args, format);
6938 vaf.fmt = format;
6939 vaf.va = &args;
6941 r = __netdev_printk(level, dev, &vaf);
6943 va_end(args);
6945 return r;
6947 EXPORT_SYMBOL(netdev_printk);
6949 #define define_netdev_printk_level(func, level) \
6950 int func(const struct net_device *dev, const char *fmt, ...) \
6952 int r; \
6953 struct va_format vaf; \
6954 va_list args; \
6956 va_start(args, fmt); \
6958 vaf.fmt = fmt; \
6959 vaf.va = &args; \
6961 r = __netdev_printk(level, dev, &vaf); \
6963 va_end(args); \
6965 return r; \
6967 EXPORT_SYMBOL(func);
6969 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6970 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6971 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6972 define_netdev_printk_level(netdev_err, KERN_ERR);
6973 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6974 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6975 define_netdev_printk_level(netdev_info, KERN_INFO);
6977 static void __net_exit netdev_exit(struct net *net)
6979 kfree(net->dev_name_head);
6980 kfree(net->dev_index_head);
6983 static struct pernet_operations __net_initdata netdev_net_ops = {
6984 .init = netdev_init,
6985 .exit = netdev_exit,
6988 static void __net_exit default_device_exit(struct net *net)
6990 struct net_device *dev, *aux;
6992 * Push all migratable network devices back to the
6993 * initial network namespace
6995 rtnl_lock();
6996 for_each_netdev_safe(net, dev, aux) {
6997 int err;
6998 char fb_name[IFNAMSIZ];
7000 /* Ignore unmoveable devices (i.e. loopback) */
7001 if (dev->features & NETIF_F_NETNS_LOCAL)
7002 continue;
7004 /* Leave virtual devices for the generic cleanup */
7005 if (dev->rtnl_link_ops)
7006 continue;
7008 /* Push remaining network devices to init_net */
7009 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7010 err = dev_change_net_namespace(dev, &init_net, fb_name);
7011 if (err) {
7012 pr_emerg("%s: failed to move %s to init_net: %d\n",
7013 __func__, dev->name, err);
7014 BUG();
7017 rtnl_unlock();
7020 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7022 /* Return with the rtnl_lock held when there are no network
7023 * devices unregistering in any network namespace in net_list.
7025 struct net *net;
7026 bool unregistering;
7027 DEFINE_WAIT(wait);
7029 for (;;) {
7030 prepare_to_wait(&netdev_unregistering_wq, &wait,
7031 TASK_UNINTERRUPTIBLE);
7032 unregistering = false;
7033 rtnl_lock();
7034 list_for_each_entry(net, net_list, exit_list) {
7035 if (net->dev_unreg_count > 0) {
7036 unregistering = true;
7037 break;
7040 if (!unregistering)
7041 break;
7042 __rtnl_unlock();
7043 schedule();
7045 finish_wait(&netdev_unregistering_wq, &wait);
7048 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7050 /* At exit all network devices most be removed from a network
7051 * namespace. Do this in the reverse order of registration.
7052 * Do this across as many network namespaces as possible to
7053 * improve batching efficiency.
7055 struct net_device *dev;
7056 struct net *net;
7057 LIST_HEAD(dev_kill_list);
7059 /* To prevent network device cleanup code from dereferencing
7060 * loopback devices or network devices that have been freed
7061 * wait here for all pending unregistrations to complete,
7062 * before unregistring the loopback device and allowing the
7063 * network namespace be freed.
7065 * The netdev todo list containing all network devices
7066 * unregistrations that happen in default_device_exit_batch
7067 * will run in the rtnl_unlock() at the end of
7068 * default_device_exit_batch.
7070 rtnl_lock_unregistering(net_list);
7071 list_for_each_entry(net, net_list, exit_list) {
7072 for_each_netdev_reverse(net, dev) {
7073 if (dev->rtnl_link_ops)
7074 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7075 else
7076 unregister_netdevice_queue(dev, &dev_kill_list);
7079 unregister_netdevice_many(&dev_kill_list);
7080 list_del(&dev_kill_list);
7081 rtnl_unlock();
7084 static struct pernet_operations __net_initdata default_device_ops = {
7085 .exit = default_device_exit,
7086 .exit_batch = default_device_exit_batch,
7090 * Initialize the DEV module. At boot time this walks the device list and
7091 * unhooks any devices that fail to initialise (normally hardware not
7092 * present) and leaves us with a valid list of present and active devices.
7097 * This is called single threaded during boot, so no need
7098 * to take the rtnl semaphore.
7100 static int __init net_dev_init(void)
7102 int i, rc = -ENOMEM;
7104 BUG_ON(!dev_boot_phase);
7106 if (dev_proc_init())
7107 goto out;
7109 if (netdev_kobject_init())
7110 goto out;
7112 INIT_LIST_HEAD(&ptype_all);
7113 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7114 INIT_LIST_HEAD(&ptype_base[i]);
7116 INIT_LIST_HEAD(&offload_base);
7118 if (register_pernet_subsys(&netdev_net_ops))
7119 goto out;
7122 * Initialise the packet receive queues.
7125 for_each_possible_cpu(i) {
7126 struct softnet_data *sd = &per_cpu(softnet_data, i);
7128 skb_queue_head_init(&sd->input_pkt_queue);
7129 skb_queue_head_init(&sd->process_queue);
7130 INIT_LIST_HEAD(&sd->poll_list);
7131 sd->output_queue_tailp = &sd->output_queue;
7132 #ifdef CONFIG_RPS
7133 sd->csd.func = rps_trigger_softirq;
7134 sd->csd.info = sd;
7135 sd->cpu = i;
7136 #endif
7138 sd->backlog.poll = process_backlog;
7139 sd->backlog.weight = weight_p;
7142 dev_boot_phase = 0;
7144 /* The loopback device is special if any other network devices
7145 * is present in a network namespace the loopback device must
7146 * be present. Since we now dynamically allocate and free the
7147 * loopback device ensure this invariant is maintained by
7148 * keeping the loopback device as the first device on the
7149 * list of network devices. Ensuring the loopback devices
7150 * is the first device that appears and the last network device
7151 * that disappears.
7153 if (register_pernet_device(&loopback_net_ops))
7154 goto out;
7156 if (register_pernet_device(&default_device_ops))
7157 goto out;
7159 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7160 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7162 hotcpu_notifier(dev_cpu_callback, 0);
7163 dst_init();
7164 rc = 0;
7165 out:
7166 return rc;
7169 subsys_initcall(net_dev_init);