Merge tag 'berlin-dt-3.19-2' of git://git.infradead.org/users/hesselba/linux-berlin...
[linux-2.6/btrfs-unstable.git] / fs / nfs / direct.c
blob20cffc830468d993b7222a05eba469a6637d09fa
1 /*
2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
58 #include "internal.h"
59 #include "iostat.h"
60 #include "pnfs.h"
62 #define NFSDBG_FACILITY NFSDBG_VFS
64 static struct kmem_cache *nfs_direct_cachep;
67 * This represents a set of asynchronous requests that we're waiting on
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
72 /* I/O parameters */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
86 /* commit state */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
90 int flags;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
101 static inline void get_dreq(struct nfs_direct_req *dreq)
103 atomic_inc(&dreq->io_count);
106 static inline int put_dreq(struct nfs_direct_req *dreq)
108 return atomic_dec_and_test(&dreq->io_count);
112 * nfs_direct_select_verf - select the right verifier
113 * @dreq - direct request possibly spanning multiple servers
114 * @ds_clp - nfs_client of data server or NULL if MDS / non-pnfs
115 * @ds_idx - index of data server in data server list, only valid if ds_clp set
117 * returns the correct verifier to use given the role of the server
119 static struct nfs_writeverf *
120 nfs_direct_select_verf(struct nfs_direct_req *dreq,
121 struct nfs_client *ds_clp,
122 int ds_idx)
124 struct nfs_writeverf *verfp = &dreq->verf;
126 #ifdef CONFIG_NFS_V4_1
127 if (ds_clp) {
128 /* pNFS is in use, use the DS verf */
129 if (ds_idx >= 0 && ds_idx < dreq->ds_cinfo.nbuckets)
130 verfp = &dreq->ds_cinfo.buckets[ds_idx].direct_verf;
131 else
132 WARN_ON_ONCE(1);
134 #endif
135 return verfp;
140 * nfs_direct_set_hdr_verf - set the write/commit verifier
141 * @dreq - direct request possibly spanning multiple servers
142 * @hdr - pageio header to validate against previously seen verfs
144 * Set the server's (MDS or DS) "seen" verifier
146 static void nfs_direct_set_hdr_verf(struct nfs_direct_req *dreq,
147 struct nfs_pgio_header *hdr)
149 struct nfs_writeverf *verfp;
151 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
152 hdr->ds_idx);
153 WARN_ON_ONCE(verfp->committed >= 0);
154 memcpy(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
155 WARN_ON_ONCE(verfp->committed < 0);
159 * nfs_direct_cmp_hdr_verf - compare verifier for pgio header
160 * @dreq - direct request possibly spanning multiple servers
161 * @hdr - pageio header to validate against previously seen verf
163 * set the server's "seen" verf if not initialized.
164 * returns result of comparison between @hdr->verf and the "seen"
165 * verf of the server used by @hdr (DS or MDS)
167 static int nfs_direct_set_or_cmp_hdr_verf(struct nfs_direct_req *dreq,
168 struct nfs_pgio_header *hdr)
170 struct nfs_writeverf *verfp;
172 verfp = nfs_direct_select_verf(dreq, hdr->ds_clp,
173 hdr->ds_idx);
174 if (verfp->committed < 0) {
175 nfs_direct_set_hdr_verf(dreq, hdr);
176 return 0;
178 return memcmp(verfp, &hdr->verf, sizeof(struct nfs_writeverf));
182 * nfs_direct_cmp_commit_data_verf - compare verifier for commit data
183 * @dreq - direct request possibly spanning multiple servers
184 * @data - commit data to validate against previously seen verf
186 * returns result of comparison between @data->verf and the verf of
187 * the server used by @data (DS or MDS)
189 static int nfs_direct_cmp_commit_data_verf(struct nfs_direct_req *dreq,
190 struct nfs_commit_data *data)
192 struct nfs_writeverf *verfp;
194 verfp = nfs_direct_select_verf(dreq, data->ds_clp,
195 data->ds_commit_index);
196 WARN_ON_ONCE(verfp->committed < 0);
197 return memcmp(verfp, &data->verf, sizeof(struct nfs_writeverf));
201 * nfs_direct_IO - NFS address space operation for direct I/O
202 * @rw: direction (read or write)
203 * @iocb: target I/O control block
204 * @iov: array of vectors that define I/O buffer
205 * @pos: offset in file to begin the operation
206 * @nr_segs: size of iovec array
208 * The presence of this routine in the address space ops vector means
209 * the NFS client supports direct I/O. However, for most direct IO, we
210 * shunt off direct read and write requests before the VFS gets them,
211 * so this method is only ever called for swap.
213 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, loff_t pos)
215 #ifndef CONFIG_NFS_SWAP
216 dprintk("NFS: nfs_direct_IO (%pD) off/no(%Ld/%lu) EINVAL\n",
217 iocb->ki_filp, (long long) pos, iter->nr_segs);
219 return -EINVAL;
220 #else
221 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
223 if (rw == READ)
224 return nfs_file_direct_read(iocb, iter, pos);
225 return nfs_file_direct_write(iocb, iter, pos);
226 #endif /* CONFIG_NFS_SWAP */
229 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
231 unsigned int i;
232 for (i = 0; i < npages; i++)
233 page_cache_release(pages[i]);
236 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
237 struct nfs_direct_req *dreq)
239 cinfo->lock = &dreq->lock;
240 cinfo->mds = &dreq->mds_cinfo;
241 cinfo->ds = &dreq->ds_cinfo;
242 cinfo->dreq = dreq;
243 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
246 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
248 struct nfs_direct_req *dreq;
250 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
251 if (!dreq)
252 return NULL;
254 kref_init(&dreq->kref);
255 kref_get(&dreq->kref);
256 init_completion(&dreq->completion);
257 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
258 dreq->verf.committed = NFS_INVALID_STABLE_HOW; /* not set yet */
259 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
260 spin_lock_init(&dreq->lock);
262 return dreq;
265 static void nfs_direct_req_free(struct kref *kref)
267 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
269 if (dreq->l_ctx != NULL)
270 nfs_put_lock_context(dreq->l_ctx);
271 if (dreq->ctx != NULL)
272 put_nfs_open_context(dreq->ctx);
273 kmem_cache_free(nfs_direct_cachep, dreq);
276 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
278 kref_put(&dreq->kref, nfs_direct_req_free);
281 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
283 return dreq->bytes_left;
285 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
288 * Collects and returns the final error value/byte-count.
290 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
292 ssize_t result = -EIOCBQUEUED;
294 /* Async requests don't wait here */
295 if (dreq->iocb)
296 goto out;
298 result = wait_for_completion_killable(&dreq->completion);
300 if (!result)
301 result = dreq->error;
302 if (!result)
303 result = dreq->count;
305 out:
306 return (ssize_t) result;
310 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
311 * the iocb is still valid here if this is a synchronous request.
313 static void nfs_direct_complete(struct nfs_direct_req *dreq, bool write)
315 struct inode *inode = dreq->inode;
317 if (dreq->iocb && write) {
318 loff_t pos = dreq->iocb->ki_pos + dreq->count;
320 spin_lock(&inode->i_lock);
321 if (i_size_read(inode) < pos)
322 i_size_write(inode, pos);
323 spin_unlock(&inode->i_lock);
326 if (write)
327 nfs_zap_mapping(inode, inode->i_mapping);
329 inode_dio_done(inode);
331 if (dreq->iocb) {
332 long res = (long) dreq->error;
333 if (!res)
334 res = (long) dreq->count;
335 aio_complete(dreq->iocb, res, 0);
338 complete_all(&dreq->completion);
340 nfs_direct_req_release(dreq);
343 static void nfs_direct_readpage_release(struct nfs_page *req)
345 dprintk("NFS: direct read done (%s/%llu %d@%lld)\n",
346 req->wb_context->dentry->d_inode->i_sb->s_id,
347 (unsigned long long)NFS_FILEID(req->wb_context->dentry->d_inode),
348 req->wb_bytes,
349 (long long)req_offset(req));
350 nfs_release_request(req);
353 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
355 unsigned long bytes = 0;
356 struct nfs_direct_req *dreq = hdr->dreq;
358 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
359 goto out_put;
361 spin_lock(&dreq->lock);
362 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
363 dreq->error = hdr->error;
364 else
365 dreq->count += hdr->good_bytes;
366 spin_unlock(&dreq->lock);
368 while (!list_empty(&hdr->pages)) {
369 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
370 struct page *page = req->wb_page;
372 if (!PageCompound(page) && bytes < hdr->good_bytes)
373 set_page_dirty(page);
374 bytes += req->wb_bytes;
375 nfs_list_remove_request(req);
376 nfs_direct_readpage_release(req);
378 out_put:
379 if (put_dreq(dreq))
380 nfs_direct_complete(dreq, false);
381 hdr->release(hdr);
384 static void nfs_read_sync_pgio_error(struct list_head *head)
386 struct nfs_page *req;
388 while (!list_empty(head)) {
389 req = nfs_list_entry(head->next);
390 nfs_list_remove_request(req);
391 nfs_release_request(req);
395 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
397 get_dreq(hdr->dreq);
400 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
401 .error_cleanup = nfs_read_sync_pgio_error,
402 .init_hdr = nfs_direct_pgio_init,
403 .completion = nfs_direct_read_completion,
407 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
408 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
409 * bail and stop sending more reads. Read length accounting is
410 * handled automatically by nfs_direct_read_result(). Otherwise, if
411 * no requests have been sent, just return an error.
414 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
415 struct iov_iter *iter,
416 loff_t pos)
418 struct nfs_pageio_descriptor desc;
419 struct inode *inode = dreq->inode;
420 ssize_t result = -EINVAL;
421 size_t requested_bytes = 0;
422 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
424 nfs_pageio_init_read(&desc, dreq->inode, false,
425 &nfs_direct_read_completion_ops);
426 get_dreq(dreq);
427 desc.pg_dreq = dreq;
428 atomic_inc(&inode->i_dio_count);
430 while (iov_iter_count(iter)) {
431 struct page **pagevec;
432 size_t bytes;
433 size_t pgbase;
434 unsigned npages, i;
436 result = iov_iter_get_pages_alloc(iter, &pagevec,
437 rsize, &pgbase);
438 if (result < 0)
439 break;
441 bytes = result;
442 iov_iter_advance(iter, bytes);
443 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
444 for (i = 0; i < npages; i++) {
445 struct nfs_page *req;
446 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
447 /* XXX do we need to do the eof zeroing found in async_filler? */
448 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
449 pgbase, req_len);
450 if (IS_ERR(req)) {
451 result = PTR_ERR(req);
452 break;
454 req->wb_index = pos >> PAGE_SHIFT;
455 req->wb_offset = pos & ~PAGE_MASK;
456 if (!nfs_pageio_add_request(&desc, req)) {
457 result = desc.pg_error;
458 nfs_release_request(req);
459 break;
461 pgbase = 0;
462 bytes -= req_len;
463 requested_bytes += req_len;
464 pos += req_len;
465 dreq->bytes_left -= req_len;
467 nfs_direct_release_pages(pagevec, npages);
468 kvfree(pagevec);
469 if (result < 0)
470 break;
473 nfs_pageio_complete(&desc);
476 * If no bytes were started, return the error, and let the
477 * generic layer handle the completion.
479 if (requested_bytes == 0) {
480 inode_dio_done(inode);
481 nfs_direct_req_release(dreq);
482 return result < 0 ? result : -EIO;
485 if (put_dreq(dreq))
486 nfs_direct_complete(dreq, false);
487 return 0;
491 * nfs_file_direct_read - file direct read operation for NFS files
492 * @iocb: target I/O control block
493 * @iter: vector of user buffers into which to read data
494 * @pos: byte offset in file where reading starts
496 * We use this function for direct reads instead of calling
497 * generic_file_aio_read() in order to avoid gfar's check to see if
498 * the request starts before the end of the file. For that check
499 * to work, we must generate a GETATTR before each direct read, and
500 * even then there is a window between the GETATTR and the subsequent
501 * READ where the file size could change. Our preference is simply
502 * to do all reads the application wants, and the server will take
503 * care of managing the end of file boundary.
505 * This function also eliminates unnecessarily updating the file's
506 * atime locally, as the NFS server sets the file's atime, and this
507 * client must read the updated atime from the server back into its
508 * cache.
510 ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
511 loff_t pos)
513 struct file *file = iocb->ki_filp;
514 struct address_space *mapping = file->f_mapping;
515 struct inode *inode = mapping->host;
516 struct nfs_direct_req *dreq;
517 struct nfs_lock_context *l_ctx;
518 ssize_t result = -EINVAL;
519 size_t count = iov_iter_count(iter);
520 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
522 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
523 file, count, (long long) pos);
525 result = 0;
526 if (!count)
527 goto out;
529 mutex_lock(&inode->i_mutex);
530 result = nfs_sync_mapping(mapping);
531 if (result)
532 goto out_unlock;
534 task_io_account_read(count);
536 result = -ENOMEM;
537 dreq = nfs_direct_req_alloc();
538 if (dreq == NULL)
539 goto out_unlock;
541 dreq->inode = inode;
542 dreq->bytes_left = count;
543 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
544 l_ctx = nfs_get_lock_context(dreq->ctx);
545 if (IS_ERR(l_ctx)) {
546 result = PTR_ERR(l_ctx);
547 goto out_release;
549 dreq->l_ctx = l_ctx;
550 if (!is_sync_kiocb(iocb))
551 dreq->iocb = iocb;
553 NFS_I(inode)->read_io += count;
554 result = nfs_direct_read_schedule_iovec(dreq, iter, pos);
556 mutex_unlock(&inode->i_mutex);
558 if (!result) {
559 result = nfs_direct_wait(dreq);
560 if (result > 0)
561 iocb->ki_pos = pos + result;
564 nfs_direct_req_release(dreq);
565 return result;
567 out_release:
568 nfs_direct_req_release(dreq);
569 out_unlock:
570 mutex_unlock(&inode->i_mutex);
571 out:
572 return result;
575 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
577 struct nfs_pageio_descriptor desc;
578 struct nfs_page *req, *tmp;
579 LIST_HEAD(reqs);
580 struct nfs_commit_info cinfo;
581 LIST_HEAD(failed);
583 nfs_init_cinfo_from_dreq(&cinfo, dreq);
584 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
585 spin_lock(cinfo.lock);
586 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
587 spin_unlock(cinfo.lock);
589 dreq->count = 0;
590 get_dreq(dreq);
592 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
593 &nfs_direct_write_completion_ops);
594 desc.pg_dreq = dreq;
596 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
597 if (!nfs_pageio_add_request(&desc, req)) {
598 nfs_list_remove_request(req);
599 nfs_list_add_request(req, &failed);
600 spin_lock(cinfo.lock);
601 dreq->flags = 0;
602 dreq->error = -EIO;
603 spin_unlock(cinfo.lock);
605 nfs_release_request(req);
607 nfs_pageio_complete(&desc);
609 while (!list_empty(&failed)) {
610 req = nfs_list_entry(failed.next);
611 nfs_list_remove_request(req);
612 nfs_unlock_and_release_request(req);
615 if (put_dreq(dreq))
616 nfs_direct_write_complete(dreq, dreq->inode);
619 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
621 struct nfs_direct_req *dreq = data->dreq;
622 struct nfs_commit_info cinfo;
623 struct nfs_page *req;
624 int status = data->task.tk_status;
626 nfs_init_cinfo_from_dreq(&cinfo, dreq);
627 if (status < 0) {
628 dprintk("NFS: %5u commit failed with error %d.\n",
629 data->task.tk_pid, status);
630 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
631 } else if (nfs_direct_cmp_commit_data_verf(dreq, data)) {
632 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
633 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
636 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
637 while (!list_empty(&data->pages)) {
638 req = nfs_list_entry(data->pages.next);
639 nfs_list_remove_request(req);
640 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
641 /* Note the rewrite will go through mds */
642 nfs_mark_request_commit(req, NULL, &cinfo);
643 } else
644 nfs_release_request(req);
645 nfs_unlock_and_release_request(req);
648 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
649 nfs_direct_write_complete(dreq, data->inode);
652 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
654 /* There is no lock to clear */
657 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
658 .completion = nfs_direct_commit_complete,
659 .error_cleanup = nfs_direct_error_cleanup,
662 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
664 int res;
665 struct nfs_commit_info cinfo;
666 LIST_HEAD(mds_list);
668 nfs_init_cinfo_from_dreq(&cinfo, dreq);
669 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
670 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
671 if (res < 0) /* res == -ENOMEM */
672 nfs_direct_write_reschedule(dreq);
675 static void nfs_direct_write_schedule_work(struct work_struct *work)
677 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
678 int flags = dreq->flags;
680 dreq->flags = 0;
681 switch (flags) {
682 case NFS_ODIRECT_DO_COMMIT:
683 nfs_direct_commit_schedule(dreq);
684 break;
685 case NFS_ODIRECT_RESCHED_WRITES:
686 nfs_direct_write_reschedule(dreq);
687 break;
688 default:
689 nfs_direct_complete(dreq, true);
693 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
695 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
698 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
700 struct nfs_direct_req *dreq = hdr->dreq;
701 struct nfs_commit_info cinfo;
702 bool request_commit = false;
703 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
705 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
706 goto out_put;
708 nfs_init_cinfo_from_dreq(&cinfo, dreq);
710 spin_lock(&dreq->lock);
712 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
713 dreq->flags = 0;
714 dreq->error = hdr->error;
716 if (dreq->error == 0) {
717 dreq->count += hdr->good_bytes;
718 if (nfs_write_need_commit(hdr)) {
719 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
720 request_commit = true;
721 else if (dreq->flags == 0) {
722 nfs_direct_set_hdr_verf(dreq, hdr);
723 request_commit = true;
724 dreq->flags = NFS_ODIRECT_DO_COMMIT;
725 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
726 request_commit = true;
727 if (nfs_direct_set_or_cmp_hdr_verf(dreq, hdr))
728 dreq->flags =
729 NFS_ODIRECT_RESCHED_WRITES;
733 spin_unlock(&dreq->lock);
735 while (!list_empty(&hdr->pages)) {
737 req = nfs_list_entry(hdr->pages.next);
738 nfs_list_remove_request(req);
739 if (request_commit) {
740 kref_get(&req->wb_kref);
741 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
743 nfs_unlock_and_release_request(req);
746 out_put:
747 if (put_dreq(dreq))
748 nfs_direct_write_complete(dreq, hdr->inode);
749 hdr->release(hdr);
752 static void nfs_write_sync_pgio_error(struct list_head *head)
754 struct nfs_page *req;
756 while (!list_empty(head)) {
757 req = nfs_list_entry(head->next);
758 nfs_list_remove_request(req);
759 nfs_unlock_and_release_request(req);
763 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
764 .error_cleanup = nfs_write_sync_pgio_error,
765 .init_hdr = nfs_direct_pgio_init,
766 .completion = nfs_direct_write_completion,
771 * NB: Return the value of the first error return code. Subsequent
772 * errors after the first one are ignored.
775 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
776 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
777 * bail and stop sending more writes. Write length accounting is
778 * handled automatically by nfs_direct_write_result(). Otherwise, if
779 * no requests have been sent, just return an error.
781 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
782 struct iov_iter *iter,
783 loff_t pos)
785 struct nfs_pageio_descriptor desc;
786 struct inode *inode = dreq->inode;
787 ssize_t result = 0;
788 size_t requested_bytes = 0;
789 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
791 nfs_pageio_init_write(&desc, inode, FLUSH_COND_STABLE, false,
792 &nfs_direct_write_completion_ops);
793 desc.pg_dreq = dreq;
794 get_dreq(dreq);
795 atomic_inc(&inode->i_dio_count);
797 NFS_I(inode)->write_io += iov_iter_count(iter);
798 while (iov_iter_count(iter)) {
799 struct page **pagevec;
800 size_t bytes;
801 size_t pgbase;
802 unsigned npages, i;
804 result = iov_iter_get_pages_alloc(iter, &pagevec,
805 wsize, &pgbase);
806 if (result < 0)
807 break;
809 bytes = result;
810 iov_iter_advance(iter, bytes);
811 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
812 for (i = 0; i < npages; i++) {
813 struct nfs_page *req;
814 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
816 req = nfs_create_request(dreq->ctx, pagevec[i], NULL,
817 pgbase, req_len);
818 if (IS_ERR(req)) {
819 result = PTR_ERR(req);
820 break;
822 nfs_lock_request(req);
823 req->wb_index = pos >> PAGE_SHIFT;
824 req->wb_offset = pos & ~PAGE_MASK;
825 if (!nfs_pageio_add_request(&desc, req)) {
826 result = desc.pg_error;
827 nfs_unlock_and_release_request(req);
828 break;
830 pgbase = 0;
831 bytes -= req_len;
832 requested_bytes += req_len;
833 pos += req_len;
834 dreq->bytes_left -= req_len;
836 nfs_direct_release_pages(pagevec, npages);
837 kvfree(pagevec);
838 if (result < 0)
839 break;
841 nfs_pageio_complete(&desc);
844 * If no bytes were started, return the error, and let the
845 * generic layer handle the completion.
847 if (requested_bytes == 0) {
848 inode_dio_done(inode);
849 nfs_direct_req_release(dreq);
850 return result < 0 ? result : -EIO;
853 if (put_dreq(dreq))
854 nfs_direct_write_complete(dreq, dreq->inode);
855 return 0;
859 * nfs_file_direct_write - file direct write operation for NFS files
860 * @iocb: target I/O control block
861 * @iter: vector of user buffers from which to write data
862 * @pos: byte offset in file where writing starts
864 * We use this function for direct writes instead of calling
865 * generic_file_aio_write() in order to avoid taking the inode
866 * semaphore and updating the i_size. The NFS server will set
867 * the new i_size and this client must read the updated size
868 * back into its cache. We let the server do generic write
869 * parameter checking and report problems.
871 * We eliminate local atime updates, see direct read above.
873 * We avoid unnecessary page cache invalidations for normal cached
874 * readers of this file.
876 * Note that O_APPEND is not supported for NFS direct writes, as there
877 * is no atomic O_APPEND write facility in the NFS protocol.
879 ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
880 loff_t pos)
882 ssize_t result = -EINVAL;
883 struct file *file = iocb->ki_filp;
884 struct address_space *mapping = file->f_mapping;
885 struct inode *inode = mapping->host;
886 struct nfs_direct_req *dreq;
887 struct nfs_lock_context *l_ctx;
888 loff_t end;
889 size_t count = iov_iter_count(iter);
890 end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
892 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
894 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
895 file, count, (long long) pos);
897 result = generic_write_checks(file, &pos, &count, 0);
898 if (result)
899 goto out;
901 result = -EINVAL;
902 if ((ssize_t) count < 0)
903 goto out;
904 result = 0;
905 if (!count)
906 goto out;
908 mutex_lock(&inode->i_mutex);
910 result = nfs_sync_mapping(mapping);
911 if (result)
912 goto out_unlock;
914 if (mapping->nrpages) {
915 result = invalidate_inode_pages2_range(mapping,
916 pos >> PAGE_CACHE_SHIFT, end);
917 if (result)
918 goto out_unlock;
921 task_io_account_write(count);
923 result = -ENOMEM;
924 dreq = nfs_direct_req_alloc();
925 if (!dreq)
926 goto out_unlock;
928 dreq->inode = inode;
929 dreq->bytes_left = count;
930 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
931 l_ctx = nfs_get_lock_context(dreq->ctx);
932 if (IS_ERR(l_ctx)) {
933 result = PTR_ERR(l_ctx);
934 goto out_release;
936 dreq->l_ctx = l_ctx;
937 if (!is_sync_kiocb(iocb))
938 dreq->iocb = iocb;
940 result = nfs_direct_write_schedule_iovec(dreq, iter, pos);
942 if (mapping->nrpages) {
943 invalidate_inode_pages2_range(mapping,
944 pos >> PAGE_CACHE_SHIFT, end);
947 mutex_unlock(&inode->i_mutex);
949 if (!result) {
950 result = nfs_direct_wait(dreq);
951 if (result > 0) {
952 struct inode *inode = mapping->host;
954 iocb->ki_pos = pos + result;
955 spin_lock(&inode->i_lock);
956 if (i_size_read(inode) < iocb->ki_pos)
957 i_size_write(inode, iocb->ki_pos);
958 spin_unlock(&inode->i_lock);
961 nfs_direct_req_release(dreq);
962 return result;
964 out_release:
965 nfs_direct_req_release(dreq);
966 out_unlock:
967 mutex_unlock(&inode->i_mutex);
968 out:
969 return result;
973 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
976 int __init nfs_init_directcache(void)
978 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
979 sizeof(struct nfs_direct_req),
980 0, (SLAB_RECLAIM_ACCOUNT|
981 SLAB_MEM_SPREAD),
982 NULL);
983 if (nfs_direct_cachep == NULL)
984 return -ENOMEM;
986 return 0;
990 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
993 void nfs_destroy_directcache(void)
995 kmem_cache_destroy(nfs_direct_cachep);