ipv6: Use rt6i_idev index for echo replies to a local address
[linux-2.6/btrfs-unstable.git] / drivers / base / property.c
blobedf02c1b5845968bb94844f51057c6f414b83d64
1 /*
2 * property.c - Unified device property interface.
4 * Copyright (C) 2014, Intel Corporation
5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
6 * Mika Westerberg <mika.westerberg@linux.intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/acpi.h>
14 #include <linux/export.h>
15 #include <linux/kernel.h>
16 #include <linux/of.h>
17 #include <linux/of_address.h>
18 #include <linux/of_graph.h>
19 #include <linux/property.h>
20 #include <linux/etherdevice.h>
21 #include <linux/phy.h>
23 struct property_set {
24 struct fwnode_handle fwnode;
25 const struct property_entry *properties;
28 static inline bool is_pset_node(struct fwnode_handle *fwnode)
30 return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
33 static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
35 return is_pset_node(fwnode) ?
36 container_of(fwnode, struct property_set, fwnode) : NULL;
39 static const struct property_entry *pset_prop_get(struct property_set *pset,
40 const char *name)
42 const struct property_entry *prop;
44 if (!pset || !pset->properties)
45 return NULL;
47 for (prop = pset->properties; prop->name; prop++)
48 if (!strcmp(name, prop->name))
49 return prop;
51 return NULL;
54 static const void *pset_prop_find(struct property_set *pset,
55 const char *propname, size_t length)
57 const struct property_entry *prop;
58 const void *pointer;
60 prop = pset_prop_get(pset, propname);
61 if (!prop)
62 return ERR_PTR(-EINVAL);
63 if (prop->is_array)
64 pointer = prop->pointer.raw_data;
65 else
66 pointer = &prop->value.raw_data;
67 if (!pointer)
68 return ERR_PTR(-ENODATA);
69 if (length > prop->length)
70 return ERR_PTR(-EOVERFLOW);
71 return pointer;
74 static int pset_prop_read_u8_array(struct property_set *pset,
75 const char *propname,
76 u8 *values, size_t nval)
78 const void *pointer;
79 size_t length = nval * sizeof(*values);
81 pointer = pset_prop_find(pset, propname, length);
82 if (IS_ERR(pointer))
83 return PTR_ERR(pointer);
85 memcpy(values, pointer, length);
86 return 0;
89 static int pset_prop_read_u16_array(struct property_set *pset,
90 const char *propname,
91 u16 *values, size_t nval)
93 const void *pointer;
94 size_t length = nval * sizeof(*values);
96 pointer = pset_prop_find(pset, propname, length);
97 if (IS_ERR(pointer))
98 return PTR_ERR(pointer);
100 memcpy(values, pointer, length);
101 return 0;
104 static int pset_prop_read_u32_array(struct property_set *pset,
105 const char *propname,
106 u32 *values, size_t nval)
108 const void *pointer;
109 size_t length = nval * sizeof(*values);
111 pointer = pset_prop_find(pset, propname, length);
112 if (IS_ERR(pointer))
113 return PTR_ERR(pointer);
115 memcpy(values, pointer, length);
116 return 0;
119 static int pset_prop_read_u64_array(struct property_set *pset,
120 const char *propname,
121 u64 *values, size_t nval)
123 const void *pointer;
124 size_t length = nval * sizeof(*values);
126 pointer = pset_prop_find(pset, propname, length);
127 if (IS_ERR(pointer))
128 return PTR_ERR(pointer);
130 memcpy(values, pointer, length);
131 return 0;
134 static int pset_prop_count_elems_of_size(struct property_set *pset,
135 const char *propname, size_t length)
137 const struct property_entry *prop;
139 prop = pset_prop_get(pset, propname);
140 if (!prop)
141 return -EINVAL;
143 return prop->length / length;
146 static int pset_prop_read_string_array(struct property_set *pset,
147 const char *propname,
148 const char **strings, size_t nval)
150 const struct property_entry *prop;
151 const void *pointer;
152 size_t array_len, length;
154 /* Find out the array length. */
155 prop = pset_prop_get(pset, propname);
156 if (!prop)
157 return -EINVAL;
159 if (!prop->is_array)
160 /* The array length for a non-array string property is 1. */
161 array_len = 1;
162 else
163 /* Find the length of an array. */
164 array_len = pset_prop_count_elems_of_size(pset, propname,
165 sizeof(const char *));
167 /* Return how many there are if strings is NULL. */
168 if (!strings)
169 return array_len;
171 array_len = min(nval, array_len);
172 length = array_len * sizeof(*strings);
174 pointer = pset_prop_find(pset, propname, length);
175 if (IS_ERR(pointer))
176 return PTR_ERR(pointer);
178 memcpy(strings, pointer, length);
180 return array_len;
183 struct fwnode_handle *dev_fwnode(struct device *dev)
185 return IS_ENABLED(CONFIG_OF) && dev->of_node ?
186 &dev->of_node->fwnode : dev->fwnode;
188 EXPORT_SYMBOL_GPL(dev_fwnode);
190 static bool pset_fwnode_property_present(struct fwnode_handle *fwnode,
191 const char *propname)
193 return !!pset_prop_get(to_pset_node(fwnode), propname);
196 static int pset_fwnode_read_int_array(struct fwnode_handle *fwnode,
197 const char *propname,
198 unsigned int elem_size, void *val,
199 size_t nval)
201 struct property_set *node = to_pset_node(fwnode);
203 if (!val)
204 return pset_prop_count_elems_of_size(node, propname, elem_size);
206 switch (elem_size) {
207 case sizeof(u8):
208 return pset_prop_read_u8_array(node, propname, val, nval);
209 case sizeof(u16):
210 return pset_prop_read_u16_array(node, propname, val, nval);
211 case sizeof(u32):
212 return pset_prop_read_u32_array(node, propname, val, nval);
213 case sizeof(u64):
214 return pset_prop_read_u64_array(node, propname, val, nval);
217 return -ENXIO;
220 static int pset_fwnode_property_read_string_array(struct fwnode_handle *fwnode,
221 const char *propname,
222 const char **val, size_t nval)
224 return pset_prop_read_string_array(to_pset_node(fwnode), propname,
225 val, nval);
228 static const struct fwnode_operations pset_fwnode_ops = {
229 .property_present = pset_fwnode_property_present,
230 .property_read_int_array = pset_fwnode_read_int_array,
231 .property_read_string_array = pset_fwnode_property_read_string_array,
235 * device_property_present - check if a property of a device is present
236 * @dev: Device whose property is being checked
237 * @propname: Name of the property
239 * Check if property @propname is present in the device firmware description.
241 bool device_property_present(struct device *dev, const char *propname)
243 return fwnode_property_present(dev_fwnode(dev), propname);
245 EXPORT_SYMBOL_GPL(device_property_present);
248 * fwnode_property_present - check if a property of a firmware node is present
249 * @fwnode: Firmware node whose property to check
250 * @propname: Name of the property
252 bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
254 bool ret;
256 ret = fwnode_call_bool_op(fwnode, property_present, propname);
257 if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
258 !IS_ERR_OR_NULL(fwnode->secondary))
259 ret = fwnode_call_bool_op(fwnode->secondary, property_present,
260 propname);
261 return ret;
263 EXPORT_SYMBOL_GPL(fwnode_property_present);
266 * device_property_read_u8_array - return a u8 array property of a device
267 * @dev: Device to get the property of
268 * @propname: Name of the property
269 * @val: The values are stored here or %NULL to return the number of values
270 * @nval: Size of the @val array
272 * Function reads an array of u8 properties with @propname from the device
273 * firmware description and stores them to @val if found.
275 * Return: number of values if @val was %NULL,
276 * %0 if the property was found (success),
277 * %-EINVAL if given arguments are not valid,
278 * %-ENODATA if the property does not have a value,
279 * %-EPROTO if the property is not an array of numbers,
280 * %-EOVERFLOW if the size of the property is not as expected.
281 * %-ENXIO if no suitable firmware interface is present.
283 int device_property_read_u8_array(struct device *dev, const char *propname,
284 u8 *val, size_t nval)
286 return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
288 EXPORT_SYMBOL_GPL(device_property_read_u8_array);
291 * device_property_read_u16_array - return a u16 array property of a device
292 * @dev: Device to get the property of
293 * @propname: Name of the property
294 * @val: The values are stored here or %NULL to return the number of values
295 * @nval: Size of the @val array
297 * Function reads an array of u16 properties with @propname from the device
298 * firmware description and stores them to @val if found.
300 * Return: number of values if @val was %NULL,
301 * %0 if the property was found (success),
302 * %-EINVAL if given arguments are not valid,
303 * %-ENODATA if the property does not have a value,
304 * %-EPROTO if the property is not an array of numbers,
305 * %-EOVERFLOW if the size of the property is not as expected.
306 * %-ENXIO if no suitable firmware interface is present.
308 int device_property_read_u16_array(struct device *dev, const char *propname,
309 u16 *val, size_t nval)
311 return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
313 EXPORT_SYMBOL_GPL(device_property_read_u16_array);
316 * device_property_read_u32_array - return a u32 array property of a device
317 * @dev: Device to get the property of
318 * @propname: Name of the property
319 * @val: The values are stored here or %NULL to return the number of values
320 * @nval: Size of the @val array
322 * Function reads an array of u32 properties with @propname from the device
323 * firmware description and stores them to @val if found.
325 * Return: number of values if @val was %NULL,
326 * %0 if the property was found (success),
327 * %-EINVAL if given arguments are not valid,
328 * %-ENODATA if the property does not have a value,
329 * %-EPROTO if the property is not an array of numbers,
330 * %-EOVERFLOW if the size of the property is not as expected.
331 * %-ENXIO if no suitable firmware interface is present.
333 int device_property_read_u32_array(struct device *dev, const char *propname,
334 u32 *val, size_t nval)
336 return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
338 EXPORT_SYMBOL_GPL(device_property_read_u32_array);
341 * device_property_read_u64_array - return a u64 array property of a device
342 * @dev: Device to get the property of
343 * @propname: Name of the property
344 * @val: The values are stored here or %NULL to return the number of values
345 * @nval: Size of the @val array
347 * Function reads an array of u64 properties with @propname from the device
348 * firmware description and stores them to @val if found.
350 * Return: number of values if @val was %NULL,
351 * %0 if the property was found (success),
352 * %-EINVAL if given arguments are not valid,
353 * %-ENODATA if the property does not have a value,
354 * %-EPROTO if the property is not an array of numbers,
355 * %-EOVERFLOW if the size of the property is not as expected.
356 * %-ENXIO if no suitable firmware interface is present.
358 int device_property_read_u64_array(struct device *dev, const char *propname,
359 u64 *val, size_t nval)
361 return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
363 EXPORT_SYMBOL_GPL(device_property_read_u64_array);
366 * device_property_read_string_array - return a string array property of device
367 * @dev: Device to get the property of
368 * @propname: Name of the property
369 * @val: The values are stored here or %NULL to return the number of values
370 * @nval: Size of the @val array
372 * Function reads an array of string properties with @propname from the device
373 * firmware description and stores them to @val if found.
375 * Return: number of values read on success if @val is non-NULL,
376 * number of values available on success if @val is NULL,
377 * %-EINVAL if given arguments are not valid,
378 * %-ENODATA if the property does not have a value,
379 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
380 * %-EOVERFLOW if the size of the property is not as expected.
381 * %-ENXIO if no suitable firmware interface is present.
383 int device_property_read_string_array(struct device *dev, const char *propname,
384 const char **val, size_t nval)
386 return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
388 EXPORT_SYMBOL_GPL(device_property_read_string_array);
391 * device_property_read_string - return a string property of a device
392 * @dev: Device to get the property of
393 * @propname: Name of the property
394 * @val: The value is stored here
396 * Function reads property @propname from the device firmware description and
397 * stores the value into @val if found. The value is checked to be a string.
399 * Return: %0 if the property was found (success),
400 * %-EINVAL if given arguments are not valid,
401 * %-ENODATA if the property does not have a value,
402 * %-EPROTO or %-EILSEQ if the property type is not a string.
403 * %-ENXIO if no suitable firmware interface is present.
405 int device_property_read_string(struct device *dev, const char *propname,
406 const char **val)
408 return fwnode_property_read_string(dev_fwnode(dev), propname, val);
410 EXPORT_SYMBOL_GPL(device_property_read_string);
413 * device_property_match_string - find a string in an array and return index
414 * @dev: Device to get the property of
415 * @propname: Name of the property holding the array
416 * @string: String to look for
418 * Find a given string in a string array and if it is found return the
419 * index back.
421 * Return: %0 if the property was found (success),
422 * %-EINVAL if given arguments are not valid,
423 * %-ENODATA if the property does not have a value,
424 * %-EPROTO if the property is not an array of strings,
425 * %-ENXIO if no suitable firmware interface is present.
427 int device_property_match_string(struct device *dev, const char *propname,
428 const char *string)
430 return fwnode_property_match_string(dev_fwnode(dev), propname, string);
432 EXPORT_SYMBOL_GPL(device_property_match_string);
434 static int fwnode_property_read_int_array(struct fwnode_handle *fwnode,
435 const char *propname,
436 unsigned int elem_size, void *val,
437 size_t nval)
439 int ret;
441 ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
442 elem_size, val, nval);
443 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
444 !IS_ERR_OR_NULL(fwnode->secondary))
445 ret = fwnode_call_int_op(
446 fwnode->secondary, property_read_int_array, propname,
447 elem_size, val, nval);
449 return ret;
453 * fwnode_property_read_u8_array - return a u8 array property of firmware node
454 * @fwnode: Firmware node to get the property of
455 * @propname: Name of the property
456 * @val: The values are stored here or %NULL to return the number of values
457 * @nval: Size of the @val array
459 * Read an array of u8 properties with @propname from @fwnode and stores them to
460 * @val if found.
462 * Return: number of values if @val was %NULL,
463 * %0 if the property was found (success),
464 * %-EINVAL if given arguments are not valid,
465 * %-ENODATA if the property does not have a value,
466 * %-EPROTO if the property is not an array of numbers,
467 * %-EOVERFLOW if the size of the property is not as expected,
468 * %-ENXIO if no suitable firmware interface is present.
470 int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
471 const char *propname, u8 *val, size_t nval)
473 return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
474 val, nval);
476 EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
479 * fwnode_property_read_u16_array - return a u16 array property of firmware node
480 * @fwnode: Firmware node to get the property of
481 * @propname: Name of the property
482 * @val: The values are stored here or %NULL to return the number of values
483 * @nval: Size of the @val array
485 * Read an array of u16 properties with @propname from @fwnode and store them to
486 * @val if found.
488 * Return: number of values if @val was %NULL,
489 * %0 if the property was found (success),
490 * %-EINVAL if given arguments are not valid,
491 * %-ENODATA if the property does not have a value,
492 * %-EPROTO if the property is not an array of numbers,
493 * %-EOVERFLOW if the size of the property is not as expected,
494 * %-ENXIO if no suitable firmware interface is present.
496 int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
497 const char *propname, u16 *val, size_t nval)
499 return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
500 val, nval);
502 EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
505 * fwnode_property_read_u32_array - return a u32 array property of firmware node
506 * @fwnode: Firmware node to get the property of
507 * @propname: Name of the property
508 * @val: The values are stored here or %NULL to return the number of values
509 * @nval: Size of the @val array
511 * Read an array of u32 properties with @propname from @fwnode store them to
512 * @val if found.
514 * Return: number of values if @val was %NULL,
515 * %0 if the property was found (success),
516 * %-EINVAL if given arguments are not valid,
517 * %-ENODATA if the property does not have a value,
518 * %-EPROTO if the property is not an array of numbers,
519 * %-EOVERFLOW if the size of the property is not as expected,
520 * %-ENXIO if no suitable firmware interface is present.
522 int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
523 const char *propname, u32 *val, size_t nval)
525 return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
526 val, nval);
528 EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
531 * fwnode_property_read_u64_array - return a u64 array property firmware node
532 * @fwnode: Firmware node to get the property of
533 * @propname: Name of the property
534 * @val: The values are stored here or %NULL to return the number of values
535 * @nval: Size of the @val array
537 * Read an array of u64 properties with @propname from @fwnode and store them to
538 * @val if found.
540 * Return: number of values if @val was %NULL,
541 * %0 if the property was found (success),
542 * %-EINVAL if given arguments are not valid,
543 * %-ENODATA if the property does not have a value,
544 * %-EPROTO if the property is not an array of numbers,
545 * %-EOVERFLOW if the size of the property is not as expected,
546 * %-ENXIO if no suitable firmware interface is present.
548 int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
549 const char *propname, u64 *val, size_t nval)
551 return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
552 val, nval);
554 EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
557 * fwnode_property_read_string_array - return string array property of a node
558 * @fwnode: Firmware node to get the property of
559 * @propname: Name of the property
560 * @val: The values are stored here or %NULL to return the number of values
561 * @nval: Size of the @val array
563 * Read an string list property @propname from the given firmware node and store
564 * them to @val if found.
566 * Return: number of values read on success if @val is non-NULL,
567 * number of values available on success if @val is NULL,
568 * %-EINVAL if given arguments are not valid,
569 * %-ENODATA if the property does not have a value,
570 * %-EPROTO or %-EILSEQ if the property is not an array of strings,
571 * %-EOVERFLOW if the size of the property is not as expected,
572 * %-ENXIO if no suitable firmware interface is present.
574 int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
575 const char *propname, const char **val,
576 size_t nval)
578 int ret;
580 ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
581 val, nval);
582 if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
583 !IS_ERR_OR_NULL(fwnode->secondary))
584 ret = fwnode_call_int_op(fwnode->secondary,
585 property_read_string_array, propname,
586 val, nval);
587 return ret;
589 EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
592 * fwnode_property_read_string - return a string property of a firmware node
593 * @fwnode: Firmware node to get the property of
594 * @propname: Name of the property
595 * @val: The value is stored here
597 * Read property @propname from the given firmware node and store the value into
598 * @val if found. The value is checked to be a string.
600 * Return: %0 if the property was found (success),
601 * %-EINVAL if given arguments are not valid,
602 * %-ENODATA if the property does not have a value,
603 * %-EPROTO or %-EILSEQ if the property is not a string,
604 * %-ENXIO if no suitable firmware interface is present.
606 int fwnode_property_read_string(struct fwnode_handle *fwnode,
607 const char *propname, const char **val)
609 int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
611 return ret < 0 ? ret : 0;
613 EXPORT_SYMBOL_GPL(fwnode_property_read_string);
616 * fwnode_property_match_string - find a string in an array and return index
617 * @fwnode: Firmware node to get the property of
618 * @propname: Name of the property holding the array
619 * @string: String to look for
621 * Find a given string in a string array and if it is found return the
622 * index back.
624 * Return: %0 if the property was found (success),
625 * %-EINVAL if given arguments are not valid,
626 * %-ENODATA if the property does not have a value,
627 * %-EPROTO if the property is not an array of strings,
628 * %-ENXIO if no suitable firmware interface is present.
630 int fwnode_property_match_string(struct fwnode_handle *fwnode,
631 const char *propname, const char *string)
633 const char **values;
634 int nval, ret;
636 nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
637 if (nval < 0)
638 return nval;
640 if (nval == 0)
641 return -ENODATA;
643 values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
644 if (!values)
645 return -ENOMEM;
647 ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
648 if (ret < 0)
649 goto out;
651 ret = match_string(values, nval, string);
652 if (ret < 0)
653 ret = -ENODATA;
654 out:
655 kfree(values);
656 return ret;
658 EXPORT_SYMBOL_GPL(fwnode_property_match_string);
660 static int property_copy_string_array(struct property_entry *dst,
661 const struct property_entry *src)
663 char **d;
664 size_t nval = src->length / sizeof(*d);
665 int i;
667 d = kcalloc(nval, sizeof(*d), GFP_KERNEL);
668 if (!d)
669 return -ENOMEM;
671 for (i = 0; i < nval; i++) {
672 d[i] = kstrdup(src->pointer.str[i], GFP_KERNEL);
673 if (!d[i] && src->pointer.str[i]) {
674 while (--i >= 0)
675 kfree(d[i]);
676 kfree(d);
677 return -ENOMEM;
681 dst->pointer.raw_data = d;
682 return 0;
685 static int property_entry_copy_data(struct property_entry *dst,
686 const struct property_entry *src)
688 int error;
690 dst->name = kstrdup(src->name, GFP_KERNEL);
691 if (!dst->name)
692 return -ENOMEM;
694 if (src->is_array) {
695 if (!src->length) {
696 error = -ENODATA;
697 goto out_free_name;
700 if (src->is_string) {
701 error = property_copy_string_array(dst, src);
702 if (error)
703 goto out_free_name;
704 } else {
705 dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
706 src->length, GFP_KERNEL);
707 if (!dst->pointer.raw_data) {
708 error = -ENOMEM;
709 goto out_free_name;
712 } else if (src->is_string) {
713 dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
714 if (!dst->value.str && src->value.str) {
715 error = -ENOMEM;
716 goto out_free_name;
718 } else {
719 dst->value.raw_data = src->value.raw_data;
722 dst->length = src->length;
723 dst->is_array = src->is_array;
724 dst->is_string = src->is_string;
726 return 0;
728 out_free_name:
729 kfree(dst->name);
730 return error;
733 static void property_entry_free_data(const struct property_entry *p)
735 size_t i, nval;
737 if (p->is_array) {
738 if (p->is_string && p->pointer.str) {
739 nval = p->length / sizeof(const char *);
740 for (i = 0; i < nval; i++)
741 kfree(p->pointer.str[i]);
743 kfree(p->pointer.raw_data);
744 } else if (p->is_string) {
745 kfree(p->value.str);
747 kfree(p->name);
751 * property_entries_dup - duplicate array of properties
752 * @properties: array of properties to copy
754 * This function creates a deep copy of the given NULL-terminated array
755 * of property entries.
757 struct property_entry *
758 property_entries_dup(const struct property_entry *properties)
760 struct property_entry *p;
761 int i, n = 0;
763 while (properties[n].name)
764 n++;
766 p = kcalloc(n + 1, sizeof(*p), GFP_KERNEL);
767 if (!p)
768 return ERR_PTR(-ENOMEM);
770 for (i = 0; i < n; i++) {
771 int ret = property_entry_copy_data(&p[i], &properties[i]);
772 if (ret) {
773 while (--i >= 0)
774 property_entry_free_data(&p[i]);
775 kfree(p);
776 return ERR_PTR(ret);
780 return p;
782 EXPORT_SYMBOL_GPL(property_entries_dup);
785 * property_entries_free - free previously allocated array of properties
786 * @properties: array of properties to destroy
788 * This function frees given NULL-terminated array of property entries,
789 * along with their data.
791 void property_entries_free(const struct property_entry *properties)
793 const struct property_entry *p;
795 for (p = properties; p->name; p++)
796 property_entry_free_data(p);
798 kfree(properties);
800 EXPORT_SYMBOL_GPL(property_entries_free);
803 * pset_free_set - releases memory allocated for copied property set
804 * @pset: Property set to release
806 * Function takes previously copied property set and releases all the
807 * memory allocated to it.
809 static void pset_free_set(struct property_set *pset)
811 if (!pset)
812 return;
814 property_entries_free(pset->properties);
815 kfree(pset);
819 * pset_copy_set - copies property set
820 * @pset: Property set to copy
822 * This function takes a deep copy of the given property set and returns
823 * pointer to the copy. Call device_free_property_set() to free resources
824 * allocated in this function.
826 * Return: Pointer to the new property set or error pointer.
828 static struct property_set *pset_copy_set(const struct property_set *pset)
830 struct property_entry *properties;
831 struct property_set *p;
833 p = kzalloc(sizeof(*p), GFP_KERNEL);
834 if (!p)
835 return ERR_PTR(-ENOMEM);
837 properties = property_entries_dup(pset->properties);
838 if (IS_ERR(properties)) {
839 kfree(p);
840 return ERR_CAST(properties);
843 p->properties = properties;
844 return p;
848 * device_remove_properties - Remove properties from a device object.
849 * @dev: Device whose properties to remove.
851 * The function removes properties previously associated to the device
852 * secondary firmware node with device_add_properties(). Memory allocated
853 * to the properties will also be released.
855 void device_remove_properties(struct device *dev)
857 struct fwnode_handle *fwnode;
859 fwnode = dev_fwnode(dev);
860 if (!fwnode)
861 return;
863 * Pick either primary or secondary node depending which one holds
864 * the pset. If there is no real firmware node (ACPI/DT) primary
865 * will hold the pset.
867 if (is_pset_node(fwnode)) {
868 set_primary_fwnode(dev, NULL);
869 pset_free_set(to_pset_node(fwnode));
870 } else {
871 fwnode = fwnode->secondary;
872 if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
873 set_secondary_fwnode(dev, NULL);
874 pset_free_set(to_pset_node(fwnode));
878 EXPORT_SYMBOL_GPL(device_remove_properties);
881 * device_add_properties - Add a collection of properties to a device object.
882 * @dev: Device to add properties to.
883 * @properties: Collection of properties to add.
885 * Associate a collection of device properties represented by @properties with
886 * @dev as its secondary firmware node. The function takes a copy of
887 * @properties.
889 int device_add_properties(struct device *dev,
890 const struct property_entry *properties)
892 struct property_set *p, pset;
894 if (!properties)
895 return -EINVAL;
897 pset.properties = properties;
899 p = pset_copy_set(&pset);
900 if (IS_ERR(p))
901 return PTR_ERR(p);
903 p->fwnode.type = FWNODE_PDATA;
904 p->fwnode.ops = &pset_fwnode_ops;
905 set_secondary_fwnode(dev, &p->fwnode);
906 return 0;
908 EXPORT_SYMBOL_GPL(device_add_properties);
911 * fwnode_get_next_parent - Iterate to the node's parent
912 * @fwnode: Firmware whose parent is retrieved
914 * This is like fwnode_get_parent() except that it drops the refcount
915 * on the passed node, making it suitable for iterating through a
916 * node's parents.
918 * Returns a node pointer with refcount incremented, use
919 * fwnode_handle_node() on it when done.
921 struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
923 struct fwnode_handle *parent = fwnode_get_parent(fwnode);
925 fwnode_handle_put(fwnode);
927 return parent;
929 EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
932 * fwnode_get_parent - Return parent firwmare node
933 * @fwnode: Firmware whose parent is retrieved
935 * Return parent firmware node of the given node if possible or %NULL if no
936 * parent was available.
938 struct fwnode_handle *fwnode_get_parent(struct fwnode_handle *fwnode)
940 return fwnode_call_ptr_op(fwnode, get_parent);
942 EXPORT_SYMBOL_GPL(fwnode_get_parent);
945 * fwnode_get_next_child_node - Return the next child node handle for a node
946 * @fwnode: Firmware node to find the next child node for.
947 * @child: Handle to one of the node's child nodes or a %NULL handle.
949 struct fwnode_handle *fwnode_get_next_child_node(struct fwnode_handle *fwnode,
950 struct fwnode_handle *child)
952 return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
954 EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
957 * device_get_next_child_node - Return the next child node handle for a device
958 * @dev: Device to find the next child node for.
959 * @child: Handle to one of the device's child nodes or a null handle.
961 struct fwnode_handle *device_get_next_child_node(struct device *dev,
962 struct fwnode_handle *child)
964 struct acpi_device *adev = ACPI_COMPANION(dev);
965 struct fwnode_handle *fwnode = NULL;
967 if (dev->of_node)
968 fwnode = &dev->of_node->fwnode;
969 else if (adev)
970 fwnode = acpi_fwnode_handle(adev);
972 return fwnode_get_next_child_node(fwnode, child);
974 EXPORT_SYMBOL_GPL(device_get_next_child_node);
977 * fwnode_get_named_child_node - Return first matching named child node handle
978 * @fwnode: Firmware node to find the named child node for.
979 * @childname: String to match child node name against.
981 struct fwnode_handle *fwnode_get_named_child_node(struct fwnode_handle *fwnode,
982 const char *childname)
984 return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
986 EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
989 * device_get_named_child_node - Return first matching named child node handle
990 * @dev: Device to find the named child node for.
991 * @childname: String to match child node name against.
993 struct fwnode_handle *device_get_named_child_node(struct device *dev,
994 const char *childname)
996 return fwnode_get_named_child_node(dev_fwnode(dev), childname);
998 EXPORT_SYMBOL_GPL(device_get_named_child_node);
1001 * fwnode_handle_get - Obtain a reference to a device node
1002 * @fwnode: Pointer to the device node to obtain the reference to.
1004 void fwnode_handle_get(struct fwnode_handle *fwnode)
1006 fwnode_call_void_op(fwnode, get);
1008 EXPORT_SYMBOL_GPL(fwnode_handle_get);
1011 * fwnode_handle_put - Drop reference to a device node
1012 * @fwnode: Pointer to the device node to drop the reference to.
1014 * This has to be used when terminating device_for_each_child_node() iteration
1015 * with break or return to prevent stale device node references from being left
1016 * behind.
1018 void fwnode_handle_put(struct fwnode_handle *fwnode)
1020 fwnode_call_void_op(fwnode, put);
1022 EXPORT_SYMBOL_GPL(fwnode_handle_put);
1025 * fwnode_device_is_available - check if a device is available for use
1026 * @fwnode: Pointer to the fwnode of the device.
1028 bool fwnode_device_is_available(struct fwnode_handle *fwnode)
1030 return fwnode_call_bool_op(fwnode, device_is_available);
1032 EXPORT_SYMBOL_GPL(fwnode_device_is_available);
1035 * device_get_child_node_count - return the number of child nodes for device
1036 * @dev: Device to cound the child nodes for
1038 unsigned int device_get_child_node_count(struct device *dev)
1040 struct fwnode_handle *child;
1041 unsigned int count = 0;
1043 device_for_each_child_node(dev, child)
1044 count++;
1046 return count;
1048 EXPORT_SYMBOL_GPL(device_get_child_node_count);
1050 bool device_dma_supported(struct device *dev)
1052 /* For DT, this is always supported.
1053 * For ACPI, this depends on CCA, which
1054 * is determined by the acpi_dma_supported().
1056 if (IS_ENABLED(CONFIG_OF) && dev->of_node)
1057 return true;
1059 return acpi_dma_supported(ACPI_COMPANION(dev));
1061 EXPORT_SYMBOL_GPL(device_dma_supported);
1063 enum dev_dma_attr device_get_dma_attr(struct device *dev)
1065 enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
1067 if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
1068 if (of_dma_is_coherent(dev->of_node))
1069 attr = DEV_DMA_COHERENT;
1070 else
1071 attr = DEV_DMA_NON_COHERENT;
1072 } else
1073 attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
1075 return attr;
1077 EXPORT_SYMBOL_GPL(device_get_dma_attr);
1080 * device_get_phy_mode - Get phy mode for given device
1081 * @dev: Pointer to the given device
1083 * The function gets phy interface string from property 'phy-mode' or
1084 * 'phy-connection-type', and return its index in phy_modes table, or errno in
1085 * error case.
1087 int device_get_phy_mode(struct device *dev)
1089 const char *pm;
1090 int err, i;
1092 err = device_property_read_string(dev, "phy-mode", &pm);
1093 if (err < 0)
1094 err = device_property_read_string(dev,
1095 "phy-connection-type", &pm);
1096 if (err < 0)
1097 return err;
1099 for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
1100 if (!strcasecmp(pm, phy_modes(i)))
1101 return i;
1103 return -ENODEV;
1105 EXPORT_SYMBOL_GPL(device_get_phy_mode);
1107 static void *device_get_mac_addr(struct device *dev,
1108 const char *name, char *addr,
1109 int alen)
1111 int ret = device_property_read_u8_array(dev, name, addr, alen);
1113 if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
1114 return addr;
1115 return NULL;
1119 * device_get_mac_address - Get the MAC for a given device
1120 * @dev: Pointer to the device
1121 * @addr: Address of buffer to store the MAC in
1122 * @alen: Length of the buffer pointed to by addr, should be ETH_ALEN
1124 * Search the firmware node for the best MAC address to use. 'mac-address' is
1125 * checked first, because that is supposed to contain to "most recent" MAC
1126 * address. If that isn't set, then 'local-mac-address' is checked next,
1127 * because that is the default address. If that isn't set, then the obsolete
1128 * 'address' is checked, just in case we're using an old device tree.
1130 * Note that the 'address' property is supposed to contain a virtual address of
1131 * the register set, but some DTS files have redefined that property to be the
1132 * MAC address.
1134 * All-zero MAC addresses are rejected, because those could be properties that
1135 * exist in the firmware tables, but were not updated by the firmware. For
1136 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1137 * zero MAC addresses. Some older U-Boots only initialized 'local-mac-address'.
1138 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1139 * exists but is all zeros.
1141 void *device_get_mac_address(struct device *dev, char *addr, int alen)
1143 char *res;
1145 res = device_get_mac_addr(dev, "mac-address", addr, alen);
1146 if (res)
1147 return res;
1149 res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1150 if (res)
1151 return res;
1153 return device_get_mac_addr(dev, "address", addr, alen);
1155 EXPORT_SYMBOL(device_get_mac_address);
1158 * device_graph_get_next_endpoint - Get next endpoint firmware node
1159 * @fwnode: Pointer to the parent firmware node
1160 * @prev: Previous endpoint node or %NULL to get the first
1162 * Returns an endpoint firmware node pointer or %NULL if no more endpoints
1163 * are available.
1165 struct fwnode_handle *
1166 fwnode_graph_get_next_endpoint(struct fwnode_handle *fwnode,
1167 struct fwnode_handle *prev)
1169 return fwnode_call_ptr_op(fwnode, graph_get_next_endpoint, prev);
1171 EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1174 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1175 * @endpoint: Endpoint firmware node of the port
1177 * Return: the firmware node of the device the @endpoint belongs to.
1179 struct fwnode_handle *
1180 fwnode_graph_get_port_parent(struct fwnode_handle *endpoint)
1182 struct fwnode_handle *port, *parent;
1184 port = fwnode_get_parent(endpoint);
1185 parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1187 fwnode_handle_put(port);
1189 return parent;
1191 EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1194 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1195 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1197 * Extracts firmware node of a remote device the @fwnode points to.
1199 struct fwnode_handle *
1200 fwnode_graph_get_remote_port_parent(struct fwnode_handle *fwnode)
1202 struct fwnode_handle *endpoint, *parent;
1204 endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1205 parent = fwnode_graph_get_port_parent(endpoint);
1207 fwnode_handle_put(endpoint);
1209 return parent;
1211 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1214 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1215 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1217 * Extracts firmware node of a remote port the @fwnode points to.
1219 struct fwnode_handle *fwnode_graph_get_remote_port(struct fwnode_handle *fwnode)
1221 return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1223 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1226 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1227 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1229 * Extracts firmware node of a remote endpoint the @fwnode points to.
1231 struct fwnode_handle *
1232 fwnode_graph_get_remote_endpoint(struct fwnode_handle *fwnode)
1234 return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1236 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1239 * fwnode_graph_get_remote_node - get remote parent node for given port/endpoint
1240 * @fwnode: pointer to parent fwnode_handle containing graph port/endpoint
1241 * @port_id: identifier of the parent port node
1242 * @endpoint_id: identifier of the endpoint node
1244 * Return: Remote fwnode handle associated with remote endpoint node linked
1245 * to @node. Use fwnode_node_put() on it when done.
1247 struct fwnode_handle *fwnode_graph_get_remote_node(struct fwnode_handle *fwnode,
1248 u32 port_id, u32 endpoint_id)
1250 struct fwnode_handle *endpoint = NULL;
1252 while ((endpoint = fwnode_graph_get_next_endpoint(fwnode, endpoint))) {
1253 struct fwnode_endpoint fwnode_ep;
1254 struct fwnode_handle *remote;
1255 int ret;
1257 ret = fwnode_graph_parse_endpoint(endpoint, &fwnode_ep);
1258 if (ret < 0)
1259 continue;
1261 if (fwnode_ep.port != port_id || fwnode_ep.id != endpoint_id)
1262 continue;
1264 remote = fwnode_graph_get_remote_port_parent(endpoint);
1265 if (!remote)
1266 return NULL;
1268 return fwnode_device_is_available(remote) ? remote : NULL;
1271 return NULL;
1273 EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_node);
1276 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1277 * @fwnode: pointer to endpoint fwnode_handle
1278 * @endpoint: pointer to the fwnode endpoint data structure
1280 * Parse @fwnode representing a graph endpoint node and store the
1281 * information in @endpoint. The caller must hold a reference to
1282 * @fwnode.
1284 int fwnode_graph_parse_endpoint(struct fwnode_handle *fwnode,
1285 struct fwnode_endpoint *endpoint)
1287 memset(endpoint, 0, sizeof(*endpoint));
1289 return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1291 EXPORT_SYMBOL(fwnode_graph_parse_endpoint);