1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_alloc.h"
22 #include "xfs_rtalloc.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_fsops.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_refcount_btree.h"
35 #include "xfs_reflink.h"
36 #include "xfs_extent_busy.h"
39 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
40 static int xfs_uuid_table_size
;
41 static uuid_t
*xfs_uuid_table
;
44 xfs_uuid_table_free(void)
46 if (xfs_uuid_table_size
== 0)
48 kmem_free(xfs_uuid_table
);
49 xfs_uuid_table
= NULL
;
50 xfs_uuid_table_size
= 0;
54 * See if the UUID is unique among mounted XFS filesystems.
55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
61 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
64 /* Publish UUID in struct super_block */
65 uuid_copy(&mp
->m_super
->s_uuid
, uuid
);
67 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
70 if (uuid_is_null(uuid
)) {
71 xfs_warn(mp
, "Filesystem has null UUID - can't mount");
75 mutex_lock(&xfs_uuid_table_mutex
);
76 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
77 if (uuid_is_null(&xfs_uuid_table
[i
])) {
81 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
86 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
87 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
89 hole
= xfs_uuid_table_size
++;
91 xfs_uuid_table
[hole
] = *uuid
;
92 mutex_unlock(&xfs_uuid_table_mutex
);
97 mutex_unlock(&xfs_uuid_table_mutex
);
98 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
104 struct xfs_mount
*mp
)
106 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
109 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
112 mutex_lock(&xfs_uuid_table_mutex
);
113 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
114 if (uuid_is_null(&xfs_uuid_table
[i
]))
116 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
118 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
121 ASSERT(i
< xfs_uuid_table_size
);
122 mutex_unlock(&xfs_uuid_table_mutex
);
128 struct rcu_head
*head
)
130 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
132 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
137 * Free up the per-ag resources associated with the mount structure.
144 struct xfs_perag
*pag
;
146 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
147 spin_lock(&mp
->m_perag_lock
);
148 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
149 spin_unlock(&mp
->m_perag_lock
);
151 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
152 xfs_buf_hash_destroy(pag
);
153 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
154 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
159 * Check size of device based on the (data/realtime) block count.
160 * Note: this check is used by the growfs code as well as mount.
163 xfs_sb_validate_fsb_count(
167 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
168 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
170 /* Limited by ULONG_MAX of page cache index */
171 if (nblocks
>> (PAGE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
177 xfs_initialize_perag(
179 xfs_agnumber_t agcount
,
180 xfs_agnumber_t
*maxagi
)
182 xfs_agnumber_t index
;
183 xfs_agnumber_t first_initialised
= NULLAGNUMBER
;
188 * Walk the current per-ag tree so we don't try to initialise AGs
189 * that already exist (growfs case). Allocate and insert all the
190 * AGs we don't find ready for initialisation.
192 for (index
= 0; index
< agcount
; index
++) {
193 pag
= xfs_perag_get(mp
, index
);
199 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
201 goto out_unwind_new_pags
;
202 pag
->pag_agno
= index
;
204 spin_lock_init(&pag
->pag_ici_lock
);
205 mutex_init(&pag
->pag_ici_reclaim_lock
);
206 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
207 if (xfs_buf_hash_init(pag
))
209 init_waitqueue_head(&pag
->pagb_wait
);
210 spin_lock_init(&pag
->pagb_lock
);
212 pag
->pagb_tree
= RB_ROOT
;
214 if (radix_tree_preload(GFP_NOFS
))
215 goto out_hash_destroy
;
217 spin_lock(&mp
->m_perag_lock
);
218 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
220 spin_unlock(&mp
->m_perag_lock
);
221 radix_tree_preload_end();
223 goto out_hash_destroy
;
225 spin_unlock(&mp
->m_perag_lock
);
226 radix_tree_preload_end();
227 /* first new pag is fully initialized */
228 if (first_initialised
== NULLAGNUMBER
)
229 first_initialised
= index
;
232 index
= xfs_set_inode_alloc(mp
, agcount
);
237 mp
->m_ag_prealloc_blocks
= xfs_prealloc_blocks(mp
);
241 xfs_buf_hash_destroy(pag
);
243 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
246 /* unwind any prior newly initialized pags */
247 for (index
= first_initialised
; index
< agcount
; index
++) {
248 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
251 xfs_buf_hash_destroy(pag
);
252 mutex_destroy(&pag
->pag_ici_reclaim_lock
);
261 * Does the initial read of the superblock.
265 struct xfs_mount
*mp
,
268 unsigned int sector_size
;
270 struct xfs_sb
*sbp
= &mp
->m_sb
;
272 int loud
= !(flags
& XFS_MFSI_QUIET
);
273 const struct xfs_buf_ops
*buf_ops
;
275 ASSERT(mp
->m_sb_bp
== NULL
);
276 ASSERT(mp
->m_ddev_targp
!= NULL
);
279 * For the initial read, we must guess at the sector
280 * size based on the block device. It's enough to
281 * get the sb_sectsize out of the superblock and
282 * then reread with the proper length.
283 * We don't verify it yet, because it may not be complete.
285 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
289 * Allocate a (locked) buffer to hold the superblock. This will be kept
290 * around at all times to optimize access to the superblock. Therefore,
291 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
296 BTOBB(sector_size
), XBF_NO_IOACCT
, &bp
,
300 xfs_warn(mp
, "SB validate failed with error %d.", error
);
301 /* bad CRC means corrupted metadata */
302 if (error
== -EFSBADCRC
)
303 error
= -EFSCORRUPTED
;
308 * Initialize the mount structure from the superblock.
310 xfs_sb_from_disk(sbp
, XFS_BUF_TO_SBP(bp
));
313 * If we haven't validated the superblock, do so now before we try
314 * to check the sector size and reread the superblock appropriately.
316 if (sbp
->sb_magicnum
!= XFS_SB_MAGIC
) {
318 xfs_warn(mp
, "Invalid superblock magic number");
324 * We must be able to do sector-sized and sector-aligned IO.
326 if (sector_size
> sbp
->sb_sectsize
) {
328 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
329 sector_size
, sbp
->sb_sectsize
);
334 if (buf_ops
== NULL
) {
336 * Re-read the superblock so the buffer is correctly sized,
337 * and properly verified.
340 sector_size
= sbp
->sb_sectsize
;
341 buf_ops
= loud
? &xfs_sb_buf_ops
: &xfs_sb_quiet_buf_ops
;
345 xfs_reinit_percpu_counters(mp
);
347 /* no need to be quiet anymore, so reset the buf ops */
348 bp
->b_ops
= &xfs_sb_buf_ops
;
360 * Update alignment values based on mount options and sb values
363 xfs_update_alignment(xfs_mount_t
*mp
)
365 xfs_sb_t
*sbp
= &(mp
->m_sb
);
369 * If stripe unit and stripe width are not multiples
370 * of the fs blocksize turn off alignment.
372 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
373 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
375 "alignment check failed: sunit/swidth vs. blocksize(%d)",
380 * Convert the stripe unit and width to FSBs.
382 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
383 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
385 "alignment check failed: sunit/swidth vs. agsize(%d)",
388 } else if (mp
->m_dalign
) {
389 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
392 "alignment check failed: sunit(%d) less than bsize(%d)",
393 mp
->m_dalign
, sbp
->sb_blocksize
);
399 * Update superblock with new values
402 if (xfs_sb_version_hasdalign(sbp
)) {
403 if (sbp
->sb_unit
!= mp
->m_dalign
) {
404 sbp
->sb_unit
= mp
->m_dalign
;
405 mp
->m_update_sb
= true;
407 if (sbp
->sb_width
!= mp
->m_swidth
) {
408 sbp
->sb_width
= mp
->m_swidth
;
409 mp
->m_update_sb
= true;
413 "cannot change alignment: superblock does not support data alignment");
416 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
417 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
418 mp
->m_dalign
= sbp
->sb_unit
;
419 mp
->m_swidth
= sbp
->sb_width
;
426 * Set the maximum inode count for this filesystem
429 xfs_set_maxicount(xfs_mount_t
*mp
)
431 xfs_sb_t
*sbp
= &(mp
->m_sb
);
434 if (sbp
->sb_imax_pct
) {
436 * Make sure the maximum inode count is a multiple
437 * of the units we allocate inodes in.
439 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
441 do_div(icount
, mp
->m_ialloc_blks
);
442 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
450 * Set the default minimum read and write sizes unless
451 * already specified in a mount option.
452 * We use smaller I/O sizes when the file system
453 * is being used for NFS service (wsync mount option).
456 xfs_set_rw_sizes(xfs_mount_t
*mp
)
458 xfs_sb_t
*sbp
= &(mp
->m_sb
);
459 int readio_log
, writeio_log
;
461 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
462 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
463 readio_log
= XFS_WSYNC_READIO_LOG
;
464 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
466 readio_log
= XFS_READIO_LOG_LARGE
;
467 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
470 readio_log
= mp
->m_readio_log
;
471 writeio_log
= mp
->m_writeio_log
;
474 if (sbp
->sb_blocklog
> readio_log
) {
475 mp
->m_readio_log
= sbp
->sb_blocklog
;
477 mp
->m_readio_log
= readio_log
;
479 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
480 if (sbp
->sb_blocklog
> writeio_log
) {
481 mp
->m_writeio_log
= sbp
->sb_blocklog
;
483 mp
->m_writeio_log
= writeio_log
;
485 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
489 * precalculate the low space thresholds for dynamic speculative preallocation.
492 xfs_set_low_space_thresholds(
493 struct xfs_mount
*mp
)
497 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
498 uint64_t space
= mp
->m_sb
.sb_dblocks
;
501 mp
->m_low_space
[i
] = space
* (i
+ 1);
507 * Set whether we're using inode alignment.
510 xfs_set_inoalignment(xfs_mount_t
*mp
)
512 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
513 mp
->m_sb
.sb_inoalignmt
>= xfs_icluster_size_fsb(mp
))
514 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
516 mp
->m_inoalign_mask
= 0;
518 * If we are using stripe alignment, check whether
519 * the stripe unit is a multiple of the inode alignment
521 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
522 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
523 mp
->m_sinoalign
= mp
->m_dalign
;
529 * Check that the data (and log if separate) is an ok size.
533 struct xfs_mount
*mp
)
539 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
540 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
541 xfs_warn(mp
, "filesystem size mismatch detected");
544 error
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
545 d
- XFS_FSS_TO_BB(mp
, 1),
546 XFS_FSS_TO_BB(mp
, 1), 0, &bp
, NULL
);
548 xfs_warn(mp
, "last sector read failed");
553 if (mp
->m_logdev_targp
== mp
->m_ddev_targp
)
556 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
557 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
558 xfs_warn(mp
, "log size mismatch detected");
561 error
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
562 d
- XFS_FSB_TO_BB(mp
, 1),
563 XFS_FSB_TO_BB(mp
, 1), 0, &bp
, NULL
);
565 xfs_warn(mp
, "log device read failed");
573 * Clear the quotaflags in memory and in the superblock.
576 xfs_mount_reset_sbqflags(
577 struct xfs_mount
*mp
)
581 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
582 if (mp
->m_sb
.sb_qflags
== 0)
584 spin_lock(&mp
->m_sb_lock
);
585 mp
->m_sb
.sb_qflags
= 0;
586 spin_unlock(&mp
->m_sb_lock
);
588 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
591 return xfs_sync_sb(mp
, false);
595 xfs_default_resblks(xfs_mount_t
*mp
)
600 * We default to 5% or 8192 fsbs of space reserved, whichever is
601 * smaller. This is intended to cover concurrent allocation
602 * transactions when we initially hit enospc. These each require a 4
603 * block reservation. Hence by default we cover roughly 2000 concurrent
604 * allocation reservations.
606 resblks
= mp
->m_sb
.sb_dblocks
;
608 resblks
= min_t(uint64_t, resblks
, 8192);
612 /* Ensure the summary counts are correct. */
614 xfs_check_summary_counts(
615 struct xfs_mount
*mp
)
618 * The AG0 superblock verifier rejects in-progress filesystems,
619 * so we should never see the flag set this far into mounting.
621 if (mp
->m_sb
.sb_inprogress
) {
622 xfs_err(mp
, "sb_inprogress set after log recovery??");
624 return -EFSCORRUPTED
;
628 * Now the log is mounted, we know if it was an unclean shutdown or
629 * not. If it was, with the first phase of recovery has completed, we
630 * have consistent AG blocks on disk. We have not recovered EFIs yet,
631 * but they are recovered transactionally in the second recovery phase
634 * If the log was clean when we mounted, we can check the summary
635 * counters. If any of them are obviously incorrect, we can recompute
636 * them from the AGF headers in the next step.
638 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
639 (mp
->m_sb
.sb_fdblocks
> mp
->m_sb
.sb_dblocks
||
640 !xfs_verify_icount(mp
, mp
->m_sb
.sb_icount
) ||
641 mp
->m_sb
.sb_ifree
> mp
->m_sb
.sb_icount
))
642 mp
->m_flags
|= XFS_MOUNT_BAD_SUMMARY
;
645 * We can safely re-initialise incore superblock counters from the
646 * per-ag data. These may not be correct if the filesystem was not
647 * cleanly unmounted, so we waited for recovery to finish before doing
650 * If the filesystem was cleanly unmounted or the previous check did
651 * not flag anything weird, then we can trust the values in the
652 * superblock to be correct and we don't need to do anything here.
653 * Otherwise, recalculate the summary counters.
655 if ((!xfs_sb_version_haslazysbcount(&mp
->m_sb
) ||
656 XFS_LAST_UNMOUNT_WAS_CLEAN(mp
)) &&
657 !(mp
->m_flags
& XFS_MOUNT_BAD_SUMMARY
))
660 return xfs_initialize_perag_data(mp
, mp
->m_sb
.sb_agcount
);
664 * This function does the following on an initial mount of a file system:
665 * - reads the superblock from disk and init the mount struct
666 * - if we're a 32-bit kernel, do a size check on the superblock
667 * so we don't mount terabyte filesystems
668 * - init mount struct realtime fields
669 * - allocate inode hash table for fs
670 * - init directory manager
671 * - perform recovery and init the log manager
675 struct xfs_mount
*mp
)
677 struct xfs_sb
*sbp
= &(mp
->m_sb
);
678 struct xfs_inode
*rip
;
684 xfs_sb_mount_common(mp
, sbp
);
687 * Check for a mismatched features2 values. Older kernels read & wrote
688 * into the wrong sb offset for sb_features2 on some platforms due to
689 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
690 * which made older superblock reading/writing routines swap it as a
693 * For backwards compatibility, we make both slots equal.
695 * If we detect a mismatched field, we OR the set bits into the existing
696 * features2 field in case it has already been modified; we don't want
697 * to lose any features. We then update the bad location with the ORed
698 * value so that older kernels will see any features2 flags. The
699 * superblock writeback code ensures the new sb_features2 is copied to
700 * sb_bad_features2 before it is logged or written to disk.
702 if (xfs_sb_has_mismatched_features2(sbp
)) {
703 xfs_warn(mp
, "correcting sb_features alignment problem");
704 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
705 mp
->m_update_sb
= true;
708 * Re-check for ATTR2 in case it was found in bad_features2
711 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
712 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
713 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
716 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
717 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
718 xfs_sb_version_removeattr2(&mp
->m_sb
);
719 mp
->m_update_sb
= true;
721 /* update sb_versionnum for the clearing of the morebits */
722 if (!sbp
->sb_features2
)
723 mp
->m_update_sb
= true;
726 /* always use v2 inodes by default now */
727 if (!(mp
->m_sb
.sb_versionnum
& XFS_SB_VERSION_NLINKBIT
)) {
728 mp
->m_sb
.sb_versionnum
|= XFS_SB_VERSION_NLINKBIT
;
729 mp
->m_update_sb
= true;
733 * Check if sb_agblocks is aligned at stripe boundary
734 * If sb_agblocks is NOT aligned turn off m_dalign since
735 * allocator alignment is within an ag, therefore ag has
736 * to be aligned at stripe boundary.
738 error
= xfs_update_alignment(mp
);
742 xfs_alloc_compute_maxlevels(mp
);
743 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
744 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
745 xfs_ialloc_compute_maxlevels(mp
);
746 xfs_rmapbt_compute_maxlevels(mp
);
747 xfs_refcountbt_compute_maxlevels(mp
);
749 xfs_set_maxicount(mp
);
751 /* enable fail_at_unmount as default */
752 mp
->m_fail_unmount
= true;
754 error
= xfs_sysfs_init(&mp
->m_kobj
, &xfs_mp_ktype
, NULL
, mp
->m_fsname
);
758 error
= xfs_sysfs_init(&mp
->m_stats
.xs_kobj
, &xfs_stats_ktype
,
759 &mp
->m_kobj
, "stats");
761 goto out_remove_sysfs
;
763 error
= xfs_error_sysfs_init(mp
);
767 error
= xfs_errortag_init(mp
);
769 goto out_remove_error_sysfs
;
771 error
= xfs_uuid_mount(mp
);
773 goto out_remove_errortag
;
776 * Set the minimum read and write sizes
778 xfs_set_rw_sizes(mp
);
780 /* set the low space thresholds for dynamic preallocation */
781 xfs_set_low_space_thresholds(mp
);
784 * Set the inode cluster size.
785 * This may still be overridden by the file system
786 * block size if it is larger than the chosen cluster size.
788 * For v5 filesystems, scale the cluster size with the inode size to
789 * keep a constant ratio of inode per cluster buffer, but only if mkfs
790 * has set the inode alignment value appropriately for larger cluster
793 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
794 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
795 int new_size
= mp
->m_inode_cluster_size
;
797 new_size
*= mp
->m_sb
.sb_inodesize
/ XFS_DINODE_MIN_SIZE
;
798 if (mp
->m_sb
.sb_inoalignmt
>= XFS_B_TO_FSBT(mp
, new_size
))
799 mp
->m_inode_cluster_size
= new_size
;
803 * If enabled, sparse inode chunk alignment is expected to match the
804 * cluster size. Full inode chunk alignment must match the chunk size,
805 * but that is checked on sb read verification...
807 if (xfs_sb_version_hassparseinodes(&mp
->m_sb
) &&
808 mp
->m_sb
.sb_spino_align
!=
809 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
)) {
811 "Sparse inode block alignment (%u) must match cluster size (%llu).",
812 mp
->m_sb
.sb_spino_align
,
813 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
));
815 goto out_remove_uuid
;
819 * Set inode alignment fields
821 xfs_set_inoalignment(mp
);
824 * Check that the data (and log if separate) is an ok size.
826 error
= xfs_check_sizes(mp
);
828 goto out_remove_uuid
;
831 * Initialize realtime fields in the mount structure
833 error
= xfs_rtmount_init(mp
);
835 xfs_warn(mp
, "RT mount failed");
836 goto out_remove_uuid
;
840 * Copies the low order bits of the timestamp and the randomly
841 * set "sequence" number out of a UUID.
844 (get_unaligned_be16(&sbp
->sb_uuid
.b
[8]) << 16) |
845 get_unaligned_be16(&sbp
->sb_uuid
.b
[4]);
846 mp
->m_fixedfsid
[1] = get_unaligned_be32(&sbp
->sb_uuid
.b
[0]);
848 error
= xfs_da_mount(mp
);
850 xfs_warn(mp
, "Failed dir/attr init: %d", error
);
851 goto out_remove_uuid
;
855 * Initialize the precomputed transaction reservations values.
860 * Allocate and initialize the per-ag data.
862 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
864 xfs_warn(mp
, "Failed per-ag init: %d", error
);
868 if (!sbp
->sb_logblocks
) {
869 xfs_warn(mp
, "no log defined");
870 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
871 error
= -EFSCORRUPTED
;
876 * Log's mount-time initialization. The first part of recovery can place
877 * some items on the AIL, to be handled when recovery is finished or
880 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
881 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
882 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
884 xfs_warn(mp
, "log mount failed");
888 /* Make sure the summary counts are ok. */
889 error
= xfs_check_summary_counts(mp
);
891 goto out_log_dealloc
;
894 * Get and sanity-check the root inode.
895 * Save the pointer to it in the mount structure.
897 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, XFS_IGET_UNTRUSTED
,
898 XFS_ILOCK_EXCL
, &rip
);
901 "Failed to read root inode 0x%llx, error %d",
902 sbp
->sb_rootino
, -error
);
903 goto out_log_dealloc
;
908 if (unlikely(!S_ISDIR(VFS_I(rip
)->i_mode
))) {
909 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
910 (unsigned long long)rip
->i_ino
);
911 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
912 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
914 error
= -EFSCORRUPTED
;
917 mp
->m_rootip
= rip
; /* save it */
919 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
922 * Initialize realtime inode pointers in the mount structure
924 error
= xfs_rtmount_inodes(mp
);
927 * Free up the root inode.
929 xfs_warn(mp
, "failed to read RT inodes");
934 * If this is a read-only mount defer the superblock updates until
935 * the next remount into writeable mode. Otherwise we would never
936 * perform the update e.g. for the root filesystem.
938 if (mp
->m_update_sb
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
939 error
= xfs_sync_sb(mp
, false);
941 xfs_warn(mp
, "failed to write sb changes");
947 * Initialise the XFS quota management subsystem for this mount
949 if (XFS_IS_QUOTA_RUNNING(mp
)) {
950 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
954 ASSERT(!XFS_IS_QUOTA_ON(mp
));
957 * If a file system had quotas running earlier, but decided to
958 * mount without -o uquota/pquota/gquota options, revoke the
959 * quotachecked license.
961 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
962 xfs_notice(mp
, "resetting quota flags");
963 error
= xfs_mount_reset_sbqflags(mp
);
970 * Finish recovering the file system. This part needed to be delayed
971 * until after the root and real-time bitmap inodes were consistently
974 error
= xfs_log_mount_finish(mp
);
976 xfs_warn(mp
, "log mount finish failed");
981 * Now the log is fully replayed, we can transition to full read-only
982 * mode for read-only mounts. This will sync all the metadata and clean
983 * the log so that the recovery we just performed does not have to be
984 * replayed again on the next mount.
986 * We use the same quiesce mechanism as the rw->ro remount, as they are
987 * semantically identical operations.
989 if ((mp
->m_flags
& (XFS_MOUNT_RDONLY
|XFS_MOUNT_NORECOVERY
)) ==
991 xfs_quiesce_attr(mp
);
995 * Complete the quota initialisation, post-log-replay component.
998 ASSERT(mp
->m_qflags
== 0);
999 mp
->m_qflags
= quotaflags
;
1001 xfs_qm_mount_quotas(mp
);
1005 * Now we are mounted, reserve a small amount of unused space for
1006 * privileged transactions. This is needed so that transaction
1007 * space required for critical operations can dip into this pool
1008 * when at ENOSPC. This is needed for operations like create with
1009 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1010 * are not allowed to use this reserved space.
1012 * This may drive us straight to ENOSPC on mount, but that implies
1013 * we were already there on the last unmount. Warn if this occurs.
1015 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
1016 resblks
= xfs_default_resblks(mp
);
1017 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1020 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1022 /* Recover any CoW blocks that never got remapped. */
1023 error
= xfs_reflink_recover_cow(mp
);
1026 "Error %d recovering leftover CoW allocations.", error
);
1027 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
1031 /* Reserve AG blocks for future btree expansion. */
1032 error
= xfs_fs_reserve_ag_blocks(mp
);
1033 if (error
&& error
!= -ENOSPC
)
1040 xfs_fs_unreserve_ag_blocks(mp
);
1042 xfs_qm_unmount_quotas(mp
);
1044 xfs_rtunmount_inodes(mp
);
1047 /* Clean out dquots that might be in memory after quotacheck. */
1050 * Cancel all delayed reclaim work and reclaim the inodes directly.
1051 * We have to do this /after/ rtunmount and qm_unmount because those
1052 * two will have scheduled delayed reclaim for the rt/quota inodes.
1054 * This is slightly different from the unmountfs call sequence
1055 * because we could be tearing down a partially set up mount. In
1056 * particular, if log_mount_finish fails we bail out without calling
1057 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1060 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1061 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1063 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1064 xfs_log_mount_cancel(mp
);
1066 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
1067 xfs_wait_buftarg(mp
->m_logdev_targp
);
1068 xfs_wait_buftarg(mp
->m_ddev_targp
);
1074 xfs_uuid_unmount(mp
);
1075 out_remove_errortag
:
1076 xfs_errortag_del(mp
);
1077 out_remove_error_sysfs
:
1078 xfs_error_sysfs_del(mp
);
1080 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1082 xfs_sysfs_del(&mp
->m_kobj
);
1088 * This flushes out the inodes,dquots and the superblock, unmounts the
1089 * log and makes sure that incore structures are freed.
1093 struct xfs_mount
*mp
)
1098 xfs_icache_disable_reclaim(mp
);
1099 xfs_fs_unreserve_ag_blocks(mp
);
1100 xfs_qm_unmount_quotas(mp
);
1101 xfs_rtunmount_inodes(mp
);
1102 xfs_irele(mp
->m_rootip
);
1105 * We can potentially deadlock here if we have an inode cluster
1106 * that has been freed has its buffer still pinned in memory because
1107 * the transaction is still sitting in a iclog. The stale inodes
1108 * on that buffer will have their flush locks held until the
1109 * transaction hits the disk and the callbacks run. the inode
1110 * flush takes the flush lock unconditionally and with nothing to
1111 * push out the iclog we will never get that unlocked. hence we
1112 * need to force the log first.
1114 xfs_log_force(mp
, XFS_LOG_SYNC
);
1117 * Wait for all busy extents to be freed, including completion of
1118 * any discard operation.
1120 xfs_extent_busy_wait_all(mp
);
1121 flush_workqueue(xfs_discard_wq
);
1124 * We now need to tell the world we are unmounting. This will allow
1125 * us to detect that the filesystem is going away and we should error
1126 * out anything that we have been retrying in the background. This will
1127 * prevent neverending retries in AIL pushing from hanging the unmount.
1129 mp
->m_flags
|= XFS_MOUNT_UNMOUNTING
;
1132 * Flush all pending changes from the AIL.
1134 xfs_ail_push_all_sync(mp
->m_ail
);
1137 * And reclaim all inodes. At this point there should be no dirty
1138 * inodes and none should be pinned or locked, but use synchronous
1139 * reclaim just to be sure. We can stop background inode reclaim
1140 * here as well if it is still running.
1142 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
1143 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1148 * Unreserve any blocks we have so that when we unmount we don't account
1149 * the reserved free space as used. This is really only necessary for
1150 * lazy superblock counting because it trusts the incore superblock
1151 * counters to be absolutely correct on clean unmount.
1153 * We don't bother correcting this elsewhere for lazy superblock
1154 * counting because on mount of an unclean filesystem we reconstruct the
1155 * correct counter value and this is irrelevant.
1157 * For non-lazy counter filesystems, this doesn't matter at all because
1158 * we only every apply deltas to the superblock and hence the incore
1159 * value does not matter....
1162 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1164 xfs_warn(mp
, "Unable to free reserved block pool. "
1165 "Freespace may not be correct on next mount.");
1167 error
= xfs_log_sbcount(mp
);
1169 xfs_warn(mp
, "Unable to update superblock counters. "
1170 "Freespace may not be correct on next mount.");
1173 xfs_log_unmount(mp
);
1175 xfs_uuid_unmount(mp
);
1178 xfs_errortag_clearall(mp
);
1182 xfs_errortag_del(mp
);
1183 xfs_error_sysfs_del(mp
);
1184 xfs_sysfs_del(&mp
->m_stats
.xs_kobj
);
1185 xfs_sysfs_del(&mp
->m_kobj
);
1189 * Determine whether modifications can proceed. The caller specifies the minimum
1190 * freeze level for which modifications should not be allowed. This allows
1191 * certain operations to proceed while the freeze sequence is in progress, if
1196 struct xfs_mount
*mp
,
1199 ASSERT(level
> SB_UNFROZEN
);
1200 if ((mp
->m_super
->s_writers
.frozen
>= level
) ||
1201 XFS_FORCED_SHUTDOWN(mp
) || (mp
->m_flags
& XFS_MOUNT_RDONLY
))
1210 * Sync the superblock counters to disk.
1212 * Note this code can be called during the process of freezing, so we use the
1213 * transaction allocator that does not block when the transaction subsystem is
1214 * in its frozen state.
1217 xfs_log_sbcount(xfs_mount_t
*mp
)
1219 /* allow this to proceed during the freeze sequence... */
1220 if (!xfs_fs_writable(mp
, SB_FREEZE_COMPLETE
))
1224 * we don't need to do this if we are updating the superblock
1225 * counters on every modification.
1227 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1230 return xfs_sync_sb(mp
, true);
1234 * Deltas for the inode count are +/-64, hence we use a large batch size
1235 * of 128 so we don't need to take the counter lock on every update.
1237 #define XFS_ICOUNT_BATCH 128
1240 struct xfs_mount
*mp
,
1243 percpu_counter_add_batch(&mp
->m_icount
, delta
, XFS_ICOUNT_BATCH
);
1244 if (__percpu_counter_compare(&mp
->m_icount
, 0, XFS_ICOUNT_BATCH
) < 0) {
1246 percpu_counter_add(&mp
->m_icount
, -delta
);
1254 struct xfs_mount
*mp
,
1257 percpu_counter_add(&mp
->m_ifree
, delta
);
1258 if (percpu_counter_compare(&mp
->m_ifree
, 0) < 0) {
1260 percpu_counter_add(&mp
->m_ifree
, -delta
);
1267 * Deltas for the block count can vary from 1 to very large, but lock contention
1268 * only occurs on frequent small block count updates such as in the delayed
1269 * allocation path for buffered writes (page a time updates). Hence we set
1270 * a large batch count (1024) to minimise global counter updates except when
1271 * we get near to ENOSPC and we have to be very accurate with our updates.
1273 #define XFS_FDBLOCKS_BATCH 1024
1276 struct xfs_mount
*mp
,
1286 * If the reserve pool is depleted, put blocks back into it
1287 * first. Most of the time the pool is full.
1289 if (likely(mp
->m_resblks
== mp
->m_resblks_avail
)) {
1290 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1294 spin_lock(&mp
->m_sb_lock
);
1295 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1297 if (res_used
> delta
) {
1298 mp
->m_resblks_avail
+= delta
;
1301 mp
->m_resblks_avail
= mp
->m_resblks
;
1302 percpu_counter_add(&mp
->m_fdblocks
, delta
);
1304 spin_unlock(&mp
->m_sb_lock
);
1309 * Taking blocks away, need to be more accurate the closer we
1312 * If the counter has a value of less than 2 * max batch size,
1313 * then make everything serialise as we are real close to
1316 if (__percpu_counter_compare(&mp
->m_fdblocks
, 2 * XFS_FDBLOCKS_BATCH
,
1317 XFS_FDBLOCKS_BATCH
) < 0)
1320 batch
= XFS_FDBLOCKS_BATCH
;
1322 percpu_counter_add_batch(&mp
->m_fdblocks
, delta
, batch
);
1323 if (__percpu_counter_compare(&mp
->m_fdblocks
, mp
->m_alloc_set_aside
,
1324 XFS_FDBLOCKS_BATCH
) >= 0) {
1330 * lock up the sb for dipping into reserves before releasing the space
1331 * that took us to ENOSPC.
1333 spin_lock(&mp
->m_sb_lock
);
1334 percpu_counter_add(&mp
->m_fdblocks
, -delta
);
1336 goto fdblocks_enospc
;
1338 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1339 if (lcounter
>= 0) {
1340 mp
->m_resblks_avail
= lcounter
;
1341 spin_unlock(&mp
->m_sb_lock
);
1344 printk_once(KERN_WARNING
1345 "Filesystem \"%s\": reserve blocks depleted! "
1346 "Consider increasing reserve pool size.",
1349 spin_unlock(&mp
->m_sb_lock
);
1355 struct xfs_mount
*mp
,
1361 spin_lock(&mp
->m_sb_lock
);
1362 lcounter
= mp
->m_sb
.sb_frextents
+ delta
;
1366 mp
->m_sb
.sb_frextents
= lcounter
;
1367 spin_unlock(&mp
->m_sb_lock
);
1372 * xfs_getsb() is called to obtain the buffer for the superblock.
1373 * The buffer is returned locked and read in from disk.
1374 * The buffer should be released with a call to xfs_brelse().
1376 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1377 * the superblock buffer if it can be locked without sleeping.
1378 * If it can't then we'll return NULL.
1382 struct xfs_mount
*mp
,
1385 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1387 if (!xfs_buf_trylock(bp
)) {
1388 if (flags
& XBF_TRYLOCK
)
1394 ASSERT(bp
->b_flags
& XBF_DONE
);
1399 * Used to free the superblock along various error paths.
1403 struct xfs_mount
*mp
)
1405 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1413 * If the underlying (data/log/rt) device is readonly, there are some
1414 * operations that cannot proceed.
1417 xfs_dev_is_read_only(
1418 struct xfs_mount
*mp
,
1421 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1422 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1423 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1424 xfs_notice(mp
, "%s required on read-only device.", message
);
1425 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1431 /* Force the summary counters to be recalculated at next mount. */
1433 xfs_force_summary_recalc(
1434 struct xfs_mount
*mp
)
1436 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1439 spin_lock(&mp
->m_sb_lock
);
1440 mp
->m_flags
|= XFS_MOUNT_BAD_SUMMARY
;
1441 spin_unlock(&mp
->m_sb_lock
);