net: dsa: lan9303: calculate offload_fwd_mark from tag
[linux-2.6/btrfs-unstable.git] / fs / btrfs / volumes.c
blobb39737568c223c208d92b2f4ab73ac0263ad3ff4
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/iocontext.h>
24 #include <linux/capability.h>
25 #include <linux/ratelimit.h>
26 #include <linux/kthread.h>
27 #include <linux/raid/pq.h>
28 #include <linux/semaphore.h>
29 #include <linux/uuid.h>
30 #include <asm/div64.h>
31 #include "ctree.h"
32 #include "extent_map.h"
33 #include "disk-io.h"
34 #include "transaction.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "raid56.h"
38 #include "async-thread.h"
39 #include "check-integrity.h"
40 #include "rcu-string.h"
41 #include "math.h"
42 #include "dev-replace.h"
43 #include "sysfs.h"
45 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
46 [BTRFS_RAID_RAID10] = {
47 .sub_stripes = 2,
48 .dev_stripes = 1,
49 .devs_max = 0, /* 0 == as many as possible */
50 .devs_min = 4,
51 .tolerated_failures = 1,
52 .devs_increment = 2,
53 .ncopies = 2,
55 [BTRFS_RAID_RAID1] = {
56 .sub_stripes = 1,
57 .dev_stripes = 1,
58 .devs_max = 2,
59 .devs_min = 2,
60 .tolerated_failures = 1,
61 .devs_increment = 2,
62 .ncopies = 2,
64 [BTRFS_RAID_DUP] = {
65 .sub_stripes = 1,
66 .dev_stripes = 2,
67 .devs_max = 1,
68 .devs_min = 1,
69 .tolerated_failures = 0,
70 .devs_increment = 1,
71 .ncopies = 2,
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
82 [BTRFS_RAID_SINGLE] = {
83 .sub_stripes = 1,
84 .dev_stripes = 1,
85 .devs_max = 1,
86 .devs_min = 1,
87 .tolerated_failures = 0,
88 .devs_increment = 1,
89 .ncopies = 1,
91 [BTRFS_RAID_RAID5] = {
92 .sub_stripes = 1,
93 .dev_stripes = 1,
94 .devs_max = 0,
95 .devs_min = 2,
96 .tolerated_failures = 1,
97 .devs_increment = 1,
98 .ncopies = 2,
100 [BTRFS_RAID_RAID6] = {
101 .sub_stripes = 1,
102 .dev_stripes = 1,
103 .devs_max = 0,
104 .devs_min = 3,
105 .tolerated_failures = 2,
106 .devs_increment = 1,
107 .ncopies = 3,
111 const u64 btrfs_raid_group[BTRFS_NR_RAID_TYPES] = {
112 [BTRFS_RAID_RAID10] = BTRFS_BLOCK_GROUP_RAID10,
113 [BTRFS_RAID_RAID1] = BTRFS_BLOCK_GROUP_RAID1,
114 [BTRFS_RAID_DUP] = BTRFS_BLOCK_GROUP_DUP,
115 [BTRFS_RAID_RAID0] = BTRFS_BLOCK_GROUP_RAID0,
116 [BTRFS_RAID_SINGLE] = 0,
117 [BTRFS_RAID_RAID5] = BTRFS_BLOCK_GROUP_RAID5,
118 [BTRFS_RAID_RAID6] = BTRFS_BLOCK_GROUP_RAID6,
122 * Table to convert BTRFS_RAID_* to the error code if minimum number of devices
123 * condition is not met. Zero means there's no corresponding
124 * BTRFS_ERROR_DEV_*_NOT_MET value.
126 const int btrfs_raid_mindev_error[BTRFS_NR_RAID_TYPES] = {
127 [BTRFS_RAID_RAID10] = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
128 [BTRFS_RAID_RAID1] = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
129 [BTRFS_RAID_DUP] = 0,
130 [BTRFS_RAID_RAID0] = 0,
131 [BTRFS_RAID_SINGLE] = 0,
132 [BTRFS_RAID_RAID5] = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
133 [BTRFS_RAID_RAID6] = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
136 static int init_first_rw_device(struct btrfs_trans_handle *trans,
137 struct btrfs_fs_info *fs_info);
138 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
139 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
140 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
141 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
142 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
143 enum btrfs_map_op op,
144 u64 logical, u64 *length,
145 struct btrfs_bio **bbio_ret,
146 int mirror_num, int need_raid_map);
148 DEFINE_MUTEX(uuid_mutex);
149 static LIST_HEAD(fs_uuids);
150 struct list_head *btrfs_get_fs_uuids(void)
152 return &fs_uuids;
156 * alloc_fs_devices - allocate struct btrfs_fs_devices
157 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
159 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
160 * The returned struct is not linked onto any lists and can be destroyed with
161 * kfree() right away.
163 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
165 struct btrfs_fs_devices *fs_devs;
167 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
168 if (!fs_devs)
169 return ERR_PTR(-ENOMEM);
171 mutex_init(&fs_devs->device_list_mutex);
173 INIT_LIST_HEAD(&fs_devs->devices);
174 INIT_LIST_HEAD(&fs_devs->resized_devices);
175 INIT_LIST_HEAD(&fs_devs->alloc_list);
176 INIT_LIST_HEAD(&fs_devs->list);
177 if (fsid)
178 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
180 return fs_devs;
183 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
185 struct btrfs_device *device;
186 WARN_ON(fs_devices->opened);
187 while (!list_empty(&fs_devices->devices)) {
188 device = list_entry(fs_devices->devices.next,
189 struct btrfs_device, dev_list);
190 list_del(&device->dev_list);
191 rcu_string_free(device->name);
192 kfree(device);
194 kfree(fs_devices);
197 static void btrfs_kobject_uevent(struct block_device *bdev,
198 enum kobject_action action)
200 int ret;
202 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
203 if (ret)
204 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
205 action,
206 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
207 &disk_to_dev(bdev->bd_disk)->kobj);
210 void btrfs_cleanup_fs_uuids(void)
212 struct btrfs_fs_devices *fs_devices;
214 while (!list_empty(&fs_uuids)) {
215 fs_devices = list_entry(fs_uuids.next,
216 struct btrfs_fs_devices, list);
217 list_del(&fs_devices->list);
218 free_fs_devices(fs_devices);
222 static struct btrfs_device *__alloc_device(void)
224 struct btrfs_device *dev;
226 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
227 if (!dev)
228 return ERR_PTR(-ENOMEM);
231 * Preallocate a bio that's always going to be used for flushing device
232 * barriers and matches the device lifespan
234 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
235 if (!dev->flush_bio) {
236 kfree(dev);
237 return ERR_PTR(-ENOMEM);
239 bio_get(dev->flush_bio);
241 INIT_LIST_HEAD(&dev->dev_list);
242 INIT_LIST_HEAD(&dev->dev_alloc_list);
243 INIT_LIST_HEAD(&dev->resized_list);
245 spin_lock_init(&dev->io_lock);
247 spin_lock_init(&dev->reada_lock);
248 atomic_set(&dev->reada_in_flight, 0);
249 atomic_set(&dev->dev_stats_ccnt, 0);
250 btrfs_device_data_ordered_init(dev);
251 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
252 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
254 return dev;
258 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
259 * return NULL.
261 * If devid and uuid are both specified, the match must be exact, otherwise
262 * only devid is used.
264 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
265 u64 devid, const u8 *uuid)
267 struct list_head *head = &fs_devices->devices;
268 struct btrfs_device *dev;
270 list_for_each_entry(dev, head, dev_list) {
271 if (dev->devid == devid &&
272 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
273 return dev;
276 return NULL;
279 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
281 struct btrfs_fs_devices *fs_devices;
283 list_for_each_entry(fs_devices, &fs_uuids, list) {
284 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
285 return fs_devices;
287 return NULL;
290 static int
291 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
292 int flush, struct block_device **bdev,
293 struct buffer_head **bh)
295 int ret;
297 *bdev = blkdev_get_by_path(device_path, flags, holder);
299 if (IS_ERR(*bdev)) {
300 ret = PTR_ERR(*bdev);
301 goto error;
304 if (flush)
305 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
306 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
307 if (ret) {
308 blkdev_put(*bdev, flags);
309 goto error;
311 invalidate_bdev(*bdev);
312 *bh = btrfs_read_dev_super(*bdev);
313 if (IS_ERR(*bh)) {
314 ret = PTR_ERR(*bh);
315 blkdev_put(*bdev, flags);
316 goto error;
319 return 0;
321 error:
322 *bdev = NULL;
323 *bh = NULL;
324 return ret;
327 static void requeue_list(struct btrfs_pending_bios *pending_bios,
328 struct bio *head, struct bio *tail)
331 struct bio *old_head;
333 old_head = pending_bios->head;
334 pending_bios->head = head;
335 if (pending_bios->tail)
336 tail->bi_next = old_head;
337 else
338 pending_bios->tail = tail;
342 * we try to collect pending bios for a device so we don't get a large
343 * number of procs sending bios down to the same device. This greatly
344 * improves the schedulers ability to collect and merge the bios.
346 * But, it also turns into a long list of bios to process and that is sure
347 * to eventually make the worker thread block. The solution here is to
348 * make some progress and then put this work struct back at the end of
349 * the list if the block device is congested. This way, multiple devices
350 * can make progress from a single worker thread.
352 static noinline void run_scheduled_bios(struct btrfs_device *device)
354 struct btrfs_fs_info *fs_info = device->fs_info;
355 struct bio *pending;
356 struct backing_dev_info *bdi;
357 struct btrfs_pending_bios *pending_bios;
358 struct bio *tail;
359 struct bio *cur;
360 int again = 0;
361 unsigned long num_run;
362 unsigned long batch_run = 0;
363 unsigned long limit;
364 unsigned long last_waited = 0;
365 int force_reg = 0;
366 int sync_pending = 0;
367 struct blk_plug plug;
370 * this function runs all the bios we've collected for
371 * a particular device. We don't want to wander off to
372 * another device without first sending all of these down.
373 * So, setup a plug here and finish it off before we return
375 blk_start_plug(&plug);
377 bdi = device->bdev->bd_bdi;
378 limit = btrfs_async_submit_limit(fs_info);
379 limit = limit * 2 / 3;
381 loop:
382 spin_lock(&device->io_lock);
384 loop_lock:
385 num_run = 0;
387 /* take all the bios off the list at once and process them
388 * later on (without the lock held). But, remember the
389 * tail and other pointers so the bios can be properly reinserted
390 * into the list if we hit congestion
392 if (!force_reg && device->pending_sync_bios.head) {
393 pending_bios = &device->pending_sync_bios;
394 force_reg = 1;
395 } else {
396 pending_bios = &device->pending_bios;
397 force_reg = 0;
400 pending = pending_bios->head;
401 tail = pending_bios->tail;
402 WARN_ON(pending && !tail);
405 * if pending was null this time around, no bios need processing
406 * at all and we can stop. Otherwise it'll loop back up again
407 * and do an additional check so no bios are missed.
409 * device->running_pending is used to synchronize with the
410 * schedule_bio code.
412 if (device->pending_sync_bios.head == NULL &&
413 device->pending_bios.head == NULL) {
414 again = 0;
415 device->running_pending = 0;
416 } else {
417 again = 1;
418 device->running_pending = 1;
421 pending_bios->head = NULL;
422 pending_bios->tail = NULL;
424 spin_unlock(&device->io_lock);
426 while (pending) {
428 rmb();
429 /* we want to work on both lists, but do more bios on the
430 * sync list than the regular list
432 if ((num_run > 32 &&
433 pending_bios != &device->pending_sync_bios &&
434 device->pending_sync_bios.head) ||
435 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
436 device->pending_bios.head)) {
437 spin_lock(&device->io_lock);
438 requeue_list(pending_bios, pending, tail);
439 goto loop_lock;
442 cur = pending;
443 pending = pending->bi_next;
444 cur->bi_next = NULL;
447 * atomic_dec_return implies a barrier for waitqueue_active
449 if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
450 waitqueue_active(&fs_info->async_submit_wait))
451 wake_up(&fs_info->async_submit_wait);
453 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
456 * if we're doing the sync list, record that our
457 * plug has some sync requests on it
459 * If we're doing the regular list and there are
460 * sync requests sitting around, unplug before
461 * we add more
463 if (pending_bios == &device->pending_sync_bios) {
464 sync_pending = 1;
465 } else if (sync_pending) {
466 blk_finish_plug(&plug);
467 blk_start_plug(&plug);
468 sync_pending = 0;
471 btrfsic_submit_bio(cur);
472 num_run++;
473 batch_run++;
475 cond_resched();
478 * we made progress, there is more work to do and the bdi
479 * is now congested. Back off and let other work structs
480 * run instead
482 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
483 fs_info->fs_devices->open_devices > 1) {
484 struct io_context *ioc;
486 ioc = current->io_context;
489 * the main goal here is that we don't want to
490 * block if we're going to be able to submit
491 * more requests without blocking.
493 * This code does two great things, it pokes into
494 * the elevator code from a filesystem _and_
495 * it makes assumptions about how batching works.
497 if (ioc && ioc->nr_batch_requests > 0 &&
498 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
499 (last_waited == 0 ||
500 ioc->last_waited == last_waited)) {
502 * we want to go through our batch of
503 * requests and stop. So, we copy out
504 * the ioc->last_waited time and test
505 * against it before looping
507 last_waited = ioc->last_waited;
508 cond_resched();
509 continue;
511 spin_lock(&device->io_lock);
512 requeue_list(pending_bios, pending, tail);
513 device->running_pending = 1;
515 spin_unlock(&device->io_lock);
516 btrfs_queue_work(fs_info->submit_workers,
517 &device->work);
518 goto done;
520 /* unplug every 64 requests just for good measure */
521 if (batch_run % 64 == 0) {
522 blk_finish_plug(&plug);
523 blk_start_plug(&plug);
524 sync_pending = 0;
528 cond_resched();
529 if (again)
530 goto loop;
532 spin_lock(&device->io_lock);
533 if (device->pending_bios.head || device->pending_sync_bios.head)
534 goto loop_lock;
535 spin_unlock(&device->io_lock);
537 done:
538 blk_finish_plug(&plug);
541 static void pending_bios_fn(struct btrfs_work *work)
543 struct btrfs_device *device;
545 device = container_of(work, struct btrfs_device, work);
546 run_scheduled_bios(device);
550 void btrfs_free_stale_device(struct btrfs_device *cur_dev)
552 struct btrfs_fs_devices *fs_devs;
553 struct btrfs_device *dev;
555 if (!cur_dev->name)
556 return;
558 list_for_each_entry(fs_devs, &fs_uuids, list) {
559 int del = 1;
561 if (fs_devs->opened)
562 continue;
563 if (fs_devs->seeding)
564 continue;
566 list_for_each_entry(dev, &fs_devs->devices, dev_list) {
568 if (dev == cur_dev)
569 continue;
570 if (!dev->name)
571 continue;
574 * Todo: This won't be enough. What if the same device
575 * comes back (with new uuid and) with its mapper path?
576 * But for now, this does help as mostly an admin will
577 * either use mapper or non mapper path throughout.
579 rcu_read_lock();
580 del = strcmp(rcu_str_deref(dev->name),
581 rcu_str_deref(cur_dev->name));
582 rcu_read_unlock();
583 if (!del)
584 break;
587 if (!del) {
588 /* delete the stale device */
589 if (fs_devs->num_devices == 1) {
590 btrfs_sysfs_remove_fsid(fs_devs);
591 list_del(&fs_devs->list);
592 free_fs_devices(fs_devs);
593 } else {
594 fs_devs->num_devices--;
595 list_del(&dev->dev_list);
596 rcu_string_free(dev->name);
597 kfree(dev);
599 break;
605 * Add new device to list of registered devices
607 * Returns:
608 * 1 - first time device is seen
609 * 0 - device already known
610 * < 0 - error
612 static noinline int device_list_add(const char *path,
613 struct btrfs_super_block *disk_super,
614 u64 devid, struct btrfs_fs_devices **fs_devices_ret)
616 struct btrfs_device *device;
617 struct btrfs_fs_devices *fs_devices;
618 struct rcu_string *name;
619 int ret = 0;
620 u64 found_transid = btrfs_super_generation(disk_super);
622 fs_devices = find_fsid(disk_super->fsid);
623 if (!fs_devices) {
624 fs_devices = alloc_fs_devices(disk_super->fsid);
625 if (IS_ERR(fs_devices))
626 return PTR_ERR(fs_devices);
628 list_add(&fs_devices->list, &fs_uuids);
630 device = NULL;
631 } else {
632 device = find_device(fs_devices, devid,
633 disk_super->dev_item.uuid);
636 if (!device) {
637 if (fs_devices->opened)
638 return -EBUSY;
640 device = btrfs_alloc_device(NULL, &devid,
641 disk_super->dev_item.uuid);
642 if (IS_ERR(device)) {
643 /* we can safely leave the fs_devices entry around */
644 return PTR_ERR(device);
647 name = rcu_string_strdup(path, GFP_NOFS);
648 if (!name) {
649 kfree(device);
650 return -ENOMEM;
652 rcu_assign_pointer(device->name, name);
654 mutex_lock(&fs_devices->device_list_mutex);
655 list_add_rcu(&device->dev_list, &fs_devices->devices);
656 fs_devices->num_devices++;
657 mutex_unlock(&fs_devices->device_list_mutex);
659 ret = 1;
660 device->fs_devices = fs_devices;
661 } else if (!device->name || strcmp(device->name->str, path)) {
663 * When FS is already mounted.
664 * 1. If you are here and if the device->name is NULL that
665 * means this device was missing at time of FS mount.
666 * 2. If you are here and if the device->name is different
667 * from 'path' that means either
668 * a. The same device disappeared and reappeared with
669 * different name. or
670 * b. The missing-disk-which-was-replaced, has
671 * reappeared now.
673 * We must allow 1 and 2a above. But 2b would be a spurious
674 * and unintentional.
676 * Further in case of 1 and 2a above, the disk at 'path'
677 * would have missed some transaction when it was away and
678 * in case of 2a the stale bdev has to be updated as well.
679 * 2b must not be allowed at all time.
683 * For now, we do allow update to btrfs_fs_device through the
684 * btrfs dev scan cli after FS has been mounted. We're still
685 * tracking a problem where systems fail mount by subvolume id
686 * when we reject replacement on a mounted FS.
688 if (!fs_devices->opened && found_transid < device->generation) {
690 * That is if the FS is _not_ mounted and if you
691 * are here, that means there is more than one
692 * disk with same uuid and devid.We keep the one
693 * with larger generation number or the last-in if
694 * generation are equal.
696 return -EEXIST;
699 name = rcu_string_strdup(path, GFP_NOFS);
700 if (!name)
701 return -ENOMEM;
702 rcu_string_free(device->name);
703 rcu_assign_pointer(device->name, name);
704 if (device->missing) {
705 fs_devices->missing_devices--;
706 device->missing = 0;
711 * Unmount does not free the btrfs_device struct but would zero
712 * generation along with most of the other members. So just update
713 * it back. We need it to pick the disk with largest generation
714 * (as above).
716 if (!fs_devices->opened)
717 device->generation = found_transid;
720 * if there is new btrfs on an already registered device,
721 * then remove the stale device entry.
723 if (ret > 0)
724 btrfs_free_stale_device(device);
726 *fs_devices_ret = fs_devices;
728 return ret;
731 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
733 struct btrfs_fs_devices *fs_devices;
734 struct btrfs_device *device;
735 struct btrfs_device *orig_dev;
737 fs_devices = alloc_fs_devices(orig->fsid);
738 if (IS_ERR(fs_devices))
739 return fs_devices;
741 mutex_lock(&orig->device_list_mutex);
742 fs_devices->total_devices = orig->total_devices;
744 /* We have held the volume lock, it is safe to get the devices. */
745 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
746 struct rcu_string *name;
748 device = btrfs_alloc_device(NULL, &orig_dev->devid,
749 orig_dev->uuid);
750 if (IS_ERR(device))
751 goto error;
754 * This is ok to do without rcu read locked because we hold the
755 * uuid mutex so nothing we touch in here is going to disappear.
757 if (orig_dev->name) {
758 name = rcu_string_strdup(orig_dev->name->str,
759 GFP_KERNEL);
760 if (!name) {
761 kfree(device);
762 goto error;
764 rcu_assign_pointer(device->name, name);
767 list_add(&device->dev_list, &fs_devices->devices);
768 device->fs_devices = fs_devices;
769 fs_devices->num_devices++;
771 mutex_unlock(&orig->device_list_mutex);
772 return fs_devices;
773 error:
774 mutex_unlock(&orig->device_list_mutex);
775 free_fs_devices(fs_devices);
776 return ERR_PTR(-ENOMEM);
779 void btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices, int step)
781 struct btrfs_device *device, *next;
782 struct btrfs_device *latest_dev = NULL;
784 mutex_lock(&uuid_mutex);
785 again:
786 /* This is the initialized path, it is safe to release the devices. */
787 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
788 if (device->in_fs_metadata) {
789 if (!device->is_tgtdev_for_dev_replace &&
790 (!latest_dev ||
791 device->generation > latest_dev->generation)) {
792 latest_dev = device;
794 continue;
797 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
799 * In the first step, keep the device which has
800 * the correct fsid and the devid that is used
801 * for the dev_replace procedure.
802 * In the second step, the dev_replace state is
803 * read from the device tree and it is known
804 * whether the procedure is really active or
805 * not, which means whether this device is
806 * used or whether it should be removed.
808 if (step == 0 || device->is_tgtdev_for_dev_replace) {
809 continue;
812 if (device->bdev) {
813 blkdev_put(device->bdev, device->mode);
814 device->bdev = NULL;
815 fs_devices->open_devices--;
817 if (device->writeable) {
818 list_del_init(&device->dev_alloc_list);
819 device->writeable = 0;
820 if (!device->is_tgtdev_for_dev_replace)
821 fs_devices->rw_devices--;
823 list_del_init(&device->dev_list);
824 fs_devices->num_devices--;
825 rcu_string_free(device->name);
826 kfree(device);
829 if (fs_devices->seed) {
830 fs_devices = fs_devices->seed;
831 goto again;
834 fs_devices->latest_bdev = latest_dev->bdev;
836 mutex_unlock(&uuid_mutex);
839 static void __free_device(struct work_struct *work)
841 struct btrfs_device *device;
843 device = container_of(work, struct btrfs_device, rcu_work);
844 rcu_string_free(device->name);
845 bio_put(device->flush_bio);
846 kfree(device);
849 static void free_device(struct rcu_head *head)
851 struct btrfs_device *device;
853 device = container_of(head, struct btrfs_device, rcu);
855 INIT_WORK(&device->rcu_work, __free_device);
856 schedule_work(&device->rcu_work);
859 static void btrfs_close_bdev(struct btrfs_device *device)
861 if (device->bdev && device->writeable) {
862 sync_blockdev(device->bdev);
863 invalidate_bdev(device->bdev);
866 if (device->bdev)
867 blkdev_put(device->bdev, device->mode);
870 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
872 struct btrfs_fs_devices *fs_devices = device->fs_devices;
873 struct btrfs_device *new_device;
874 struct rcu_string *name;
876 if (device->bdev)
877 fs_devices->open_devices--;
879 if (device->writeable &&
880 device->devid != BTRFS_DEV_REPLACE_DEVID) {
881 list_del_init(&device->dev_alloc_list);
882 fs_devices->rw_devices--;
885 if (device->missing)
886 fs_devices->missing_devices--;
888 new_device = btrfs_alloc_device(NULL, &device->devid,
889 device->uuid);
890 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
892 /* Safe because we are under uuid_mutex */
893 if (device->name) {
894 name = rcu_string_strdup(device->name->str, GFP_NOFS);
895 BUG_ON(!name); /* -ENOMEM */
896 rcu_assign_pointer(new_device->name, name);
899 list_replace_rcu(&device->dev_list, &new_device->dev_list);
900 new_device->fs_devices = device->fs_devices;
903 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
905 struct btrfs_device *device, *tmp;
906 struct list_head pending_put;
908 INIT_LIST_HEAD(&pending_put);
910 if (--fs_devices->opened > 0)
911 return 0;
913 mutex_lock(&fs_devices->device_list_mutex);
914 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
915 btrfs_prepare_close_one_device(device);
916 list_add(&device->dev_list, &pending_put);
918 mutex_unlock(&fs_devices->device_list_mutex);
921 * btrfs_show_devname() is using the device_list_mutex,
922 * sometimes call to blkdev_put() leads vfs calling
923 * into this func. So do put outside of device_list_mutex,
924 * as of now.
926 while (!list_empty(&pending_put)) {
927 device = list_first_entry(&pending_put,
928 struct btrfs_device, dev_list);
929 list_del(&device->dev_list);
930 btrfs_close_bdev(device);
931 call_rcu(&device->rcu, free_device);
934 WARN_ON(fs_devices->open_devices);
935 WARN_ON(fs_devices->rw_devices);
936 fs_devices->opened = 0;
937 fs_devices->seeding = 0;
939 return 0;
942 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
944 struct btrfs_fs_devices *seed_devices = NULL;
945 int ret;
947 mutex_lock(&uuid_mutex);
948 ret = __btrfs_close_devices(fs_devices);
949 if (!fs_devices->opened) {
950 seed_devices = fs_devices->seed;
951 fs_devices->seed = NULL;
953 mutex_unlock(&uuid_mutex);
955 while (seed_devices) {
956 fs_devices = seed_devices;
957 seed_devices = fs_devices->seed;
958 __btrfs_close_devices(fs_devices);
959 free_fs_devices(fs_devices);
962 * Wait for rcu kworkers under __btrfs_close_devices
963 * to finish all blkdev_puts so device is really
964 * free when umount is done.
966 rcu_barrier();
967 return ret;
970 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
971 fmode_t flags, void *holder)
973 struct request_queue *q;
974 struct block_device *bdev;
975 struct list_head *head = &fs_devices->devices;
976 struct btrfs_device *device;
977 struct btrfs_device *latest_dev = NULL;
978 struct buffer_head *bh;
979 struct btrfs_super_block *disk_super;
980 u64 devid;
981 int seeding = 1;
982 int ret = 0;
984 flags |= FMODE_EXCL;
986 list_for_each_entry(device, head, dev_list) {
987 if (device->bdev)
988 continue;
989 if (!device->name)
990 continue;
992 /* Just open everything we can; ignore failures here */
993 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
994 &bdev, &bh))
995 continue;
997 disk_super = (struct btrfs_super_block *)bh->b_data;
998 devid = btrfs_stack_device_id(&disk_super->dev_item);
999 if (devid != device->devid)
1000 goto error_brelse;
1002 if (memcmp(device->uuid, disk_super->dev_item.uuid,
1003 BTRFS_UUID_SIZE))
1004 goto error_brelse;
1006 device->generation = btrfs_super_generation(disk_super);
1007 if (!latest_dev ||
1008 device->generation > latest_dev->generation)
1009 latest_dev = device;
1011 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
1012 device->writeable = 0;
1013 } else {
1014 device->writeable = !bdev_read_only(bdev);
1015 seeding = 0;
1018 q = bdev_get_queue(bdev);
1019 if (blk_queue_discard(q))
1020 device->can_discard = 1;
1021 if (!blk_queue_nonrot(q))
1022 fs_devices->rotating = 1;
1024 device->bdev = bdev;
1025 device->in_fs_metadata = 0;
1026 device->mode = flags;
1028 fs_devices->open_devices++;
1029 if (device->writeable &&
1030 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1031 fs_devices->rw_devices++;
1032 list_add(&device->dev_alloc_list,
1033 &fs_devices->alloc_list);
1035 brelse(bh);
1036 continue;
1038 error_brelse:
1039 brelse(bh);
1040 blkdev_put(bdev, flags);
1041 continue;
1043 if (fs_devices->open_devices == 0) {
1044 ret = -EINVAL;
1045 goto out;
1047 fs_devices->seeding = seeding;
1048 fs_devices->opened = 1;
1049 fs_devices->latest_bdev = latest_dev->bdev;
1050 fs_devices->total_rw_bytes = 0;
1051 out:
1052 return ret;
1055 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1056 fmode_t flags, void *holder)
1058 int ret;
1060 mutex_lock(&uuid_mutex);
1061 if (fs_devices->opened) {
1062 fs_devices->opened++;
1063 ret = 0;
1064 } else {
1065 ret = __btrfs_open_devices(fs_devices, flags, holder);
1067 mutex_unlock(&uuid_mutex);
1068 return ret;
1071 void btrfs_release_disk_super(struct page *page)
1073 kunmap(page);
1074 put_page(page);
1077 int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1078 struct page **page, struct btrfs_super_block **disk_super)
1080 void *p;
1081 pgoff_t index;
1083 /* make sure our super fits in the device */
1084 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1085 return 1;
1087 /* make sure our super fits in the page */
1088 if (sizeof(**disk_super) > PAGE_SIZE)
1089 return 1;
1091 /* make sure our super doesn't straddle pages on disk */
1092 index = bytenr >> PAGE_SHIFT;
1093 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1094 return 1;
1096 /* pull in the page with our super */
1097 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1098 index, GFP_KERNEL);
1100 if (IS_ERR_OR_NULL(*page))
1101 return 1;
1103 p = kmap(*page);
1105 /* align our pointer to the offset of the super block */
1106 *disk_super = p + (bytenr & ~PAGE_MASK);
1108 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1109 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1110 btrfs_release_disk_super(*page);
1111 return 1;
1114 if ((*disk_super)->label[0] &&
1115 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1116 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1118 return 0;
1122 * Look for a btrfs signature on a device. This may be called out of the mount path
1123 * and we are not allowed to call set_blocksize during the scan. The superblock
1124 * is read via pagecache
1126 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1127 struct btrfs_fs_devices **fs_devices_ret)
1129 struct btrfs_super_block *disk_super;
1130 struct block_device *bdev;
1131 struct page *page;
1132 int ret = -EINVAL;
1133 u64 devid;
1134 u64 transid;
1135 u64 total_devices;
1136 u64 bytenr;
1139 * we would like to check all the supers, but that would make
1140 * a btrfs mount succeed after a mkfs from a different FS.
1141 * So, we need to add a special mount option to scan for
1142 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1144 bytenr = btrfs_sb_offset(0);
1145 flags |= FMODE_EXCL;
1146 mutex_lock(&uuid_mutex);
1148 bdev = blkdev_get_by_path(path, flags, holder);
1149 if (IS_ERR(bdev)) {
1150 ret = PTR_ERR(bdev);
1151 goto error;
1154 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super))
1155 goto error_bdev_put;
1157 devid = btrfs_stack_device_id(&disk_super->dev_item);
1158 transid = btrfs_super_generation(disk_super);
1159 total_devices = btrfs_super_num_devices(disk_super);
1161 ret = device_list_add(path, disk_super, devid, fs_devices_ret);
1162 if (ret > 0) {
1163 if (disk_super->label[0]) {
1164 pr_info("BTRFS: device label %s ", disk_super->label);
1165 } else {
1166 pr_info("BTRFS: device fsid %pU ", disk_super->fsid);
1169 pr_cont("devid %llu transid %llu %s\n", devid, transid, path);
1170 ret = 0;
1172 if (!ret && fs_devices_ret)
1173 (*fs_devices_ret)->total_devices = total_devices;
1175 btrfs_release_disk_super(page);
1177 error_bdev_put:
1178 blkdev_put(bdev, flags);
1179 error:
1180 mutex_unlock(&uuid_mutex);
1181 return ret;
1184 /* helper to account the used device space in the range */
1185 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1186 u64 end, u64 *length)
1188 struct btrfs_key key;
1189 struct btrfs_root *root = device->fs_info->dev_root;
1190 struct btrfs_dev_extent *dev_extent;
1191 struct btrfs_path *path;
1192 u64 extent_end;
1193 int ret;
1194 int slot;
1195 struct extent_buffer *l;
1197 *length = 0;
1199 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
1200 return 0;
1202 path = btrfs_alloc_path();
1203 if (!path)
1204 return -ENOMEM;
1205 path->reada = READA_FORWARD;
1207 key.objectid = device->devid;
1208 key.offset = start;
1209 key.type = BTRFS_DEV_EXTENT_KEY;
1211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1212 if (ret < 0)
1213 goto out;
1214 if (ret > 0) {
1215 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1216 if (ret < 0)
1217 goto out;
1220 while (1) {
1221 l = path->nodes[0];
1222 slot = path->slots[0];
1223 if (slot >= btrfs_header_nritems(l)) {
1224 ret = btrfs_next_leaf(root, path);
1225 if (ret == 0)
1226 continue;
1227 if (ret < 0)
1228 goto out;
1230 break;
1232 btrfs_item_key_to_cpu(l, &key, slot);
1234 if (key.objectid < device->devid)
1235 goto next;
1237 if (key.objectid > device->devid)
1238 break;
1240 if (key.type != BTRFS_DEV_EXTENT_KEY)
1241 goto next;
1243 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1244 extent_end = key.offset + btrfs_dev_extent_length(l,
1245 dev_extent);
1246 if (key.offset <= start && extent_end > end) {
1247 *length = end - start + 1;
1248 break;
1249 } else if (key.offset <= start && extent_end > start)
1250 *length += extent_end - start;
1251 else if (key.offset > start && extent_end <= end)
1252 *length += extent_end - key.offset;
1253 else if (key.offset > start && key.offset <= end) {
1254 *length += end - key.offset + 1;
1255 break;
1256 } else if (key.offset > end)
1257 break;
1259 next:
1260 path->slots[0]++;
1262 ret = 0;
1263 out:
1264 btrfs_free_path(path);
1265 return ret;
1268 static int contains_pending_extent(struct btrfs_transaction *transaction,
1269 struct btrfs_device *device,
1270 u64 *start, u64 len)
1272 struct btrfs_fs_info *fs_info = device->fs_info;
1273 struct extent_map *em;
1274 struct list_head *search_list = &fs_info->pinned_chunks;
1275 int ret = 0;
1276 u64 physical_start = *start;
1278 if (transaction)
1279 search_list = &transaction->pending_chunks;
1280 again:
1281 list_for_each_entry(em, search_list, list) {
1282 struct map_lookup *map;
1283 int i;
1285 map = em->map_lookup;
1286 for (i = 0; i < map->num_stripes; i++) {
1287 u64 end;
1289 if (map->stripes[i].dev != device)
1290 continue;
1291 if (map->stripes[i].physical >= physical_start + len ||
1292 map->stripes[i].physical + em->orig_block_len <=
1293 physical_start)
1294 continue;
1296 * Make sure that while processing the pinned list we do
1297 * not override our *start with a lower value, because
1298 * we can have pinned chunks that fall within this
1299 * device hole and that have lower physical addresses
1300 * than the pending chunks we processed before. If we
1301 * do not take this special care we can end up getting
1302 * 2 pending chunks that start at the same physical
1303 * device offsets because the end offset of a pinned
1304 * chunk can be equal to the start offset of some
1305 * pending chunk.
1307 end = map->stripes[i].physical + em->orig_block_len;
1308 if (end > *start) {
1309 *start = end;
1310 ret = 1;
1314 if (search_list != &fs_info->pinned_chunks) {
1315 search_list = &fs_info->pinned_chunks;
1316 goto again;
1319 return ret;
1324 * find_free_dev_extent_start - find free space in the specified device
1325 * @device: the device which we search the free space in
1326 * @num_bytes: the size of the free space that we need
1327 * @search_start: the position from which to begin the search
1328 * @start: store the start of the free space.
1329 * @len: the size of the free space. that we find, or the size
1330 * of the max free space if we don't find suitable free space
1332 * this uses a pretty simple search, the expectation is that it is
1333 * called very infrequently and that a given device has a small number
1334 * of extents
1336 * @start is used to store the start of the free space if we find. But if we
1337 * don't find suitable free space, it will be used to store the start position
1338 * of the max free space.
1340 * @len is used to store the size of the free space that we find.
1341 * But if we don't find suitable free space, it is used to store the size of
1342 * the max free space.
1344 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1345 struct btrfs_device *device, u64 num_bytes,
1346 u64 search_start, u64 *start, u64 *len)
1348 struct btrfs_fs_info *fs_info = device->fs_info;
1349 struct btrfs_root *root = fs_info->dev_root;
1350 struct btrfs_key key;
1351 struct btrfs_dev_extent *dev_extent;
1352 struct btrfs_path *path;
1353 u64 hole_size;
1354 u64 max_hole_start;
1355 u64 max_hole_size;
1356 u64 extent_end;
1357 u64 search_end = device->total_bytes;
1358 int ret;
1359 int slot;
1360 struct extent_buffer *l;
1363 * We don't want to overwrite the superblock on the drive nor any area
1364 * used by the boot loader (grub for example), so we make sure to start
1365 * at an offset of at least 1MB.
1367 search_start = max_t(u64, search_start, SZ_1M);
1369 path = btrfs_alloc_path();
1370 if (!path)
1371 return -ENOMEM;
1373 max_hole_start = search_start;
1374 max_hole_size = 0;
1376 again:
1377 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1378 ret = -ENOSPC;
1379 goto out;
1382 path->reada = READA_FORWARD;
1383 path->search_commit_root = 1;
1384 path->skip_locking = 1;
1386 key.objectid = device->devid;
1387 key.offset = search_start;
1388 key.type = BTRFS_DEV_EXTENT_KEY;
1390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1391 if (ret < 0)
1392 goto out;
1393 if (ret > 0) {
1394 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1395 if (ret < 0)
1396 goto out;
1399 while (1) {
1400 l = path->nodes[0];
1401 slot = path->slots[0];
1402 if (slot >= btrfs_header_nritems(l)) {
1403 ret = btrfs_next_leaf(root, path);
1404 if (ret == 0)
1405 continue;
1406 if (ret < 0)
1407 goto out;
1409 break;
1411 btrfs_item_key_to_cpu(l, &key, slot);
1413 if (key.objectid < device->devid)
1414 goto next;
1416 if (key.objectid > device->devid)
1417 break;
1419 if (key.type != BTRFS_DEV_EXTENT_KEY)
1420 goto next;
1422 if (key.offset > search_start) {
1423 hole_size = key.offset - search_start;
1426 * Have to check before we set max_hole_start, otherwise
1427 * we could end up sending back this offset anyway.
1429 if (contains_pending_extent(transaction, device,
1430 &search_start,
1431 hole_size)) {
1432 if (key.offset >= search_start) {
1433 hole_size = key.offset - search_start;
1434 } else {
1435 WARN_ON_ONCE(1);
1436 hole_size = 0;
1440 if (hole_size > max_hole_size) {
1441 max_hole_start = search_start;
1442 max_hole_size = hole_size;
1446 * If this free space is greater than which we need,
1447 * it must be the max free space that we have found
1448 * until now, so max_hole_start must point to the start
1449 * of this free space and the length of this free space
1450 * is stored in max_hole_size. Thus, we return
1451 * max_hole_start and max_hole_size and go back to the
1452 * caller.
1454 if (hole_size >= num_bytes) {
1455 ret = 0;
1456 goto out;
1460 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1461 extent_end = key.offset + btrfs_dev_extent_length(l,
1462 dev_extent);
1463 if (extent_end > search_start)
1464 search_start = extent_end;
1465 next:
1466 path->slots[0]++;
1467 cond_resched();
1471 * At this point, search_start should be the end of
1472 * allocated dev extents, and when shrinking the device,
1473 * search_end may be smaller than search_start.
1475 if (search_end > search_start) {
1476 hole_size = search_end - search_start;
1478 if (contains_pending_extent(transaction, device, &search_start,
1479 hole_size)) {
1480 btrfs_release_path(path);
1481 goto again;
1484 if (hole_size > max_hole_size) {
1485 max_hole_start = search_start;
1486 max_hole_size = hole_size;
1490 /* See above. */
1491 if (max_hole_size < num_bytes)
1492 ret = -ENOSPC;
1493 else
1494 ret = 0;
1496 out:
1497 btrfs_free_path(path);
1498 *start = max_hole_start;
1499 if (len)
1500 *len = max_hole_size;
1501 return ret;
1504 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1505 struct btrfs_device *device, u64 num_bytes,
1506 u64 *start, u64 *len)
1508 /* FIXME use last free of some kind */
1509 return find_free_dev_extent_start(trans->transaction, device,
1510 num_bytes, 0, start, len);
1513 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1514 struct btrfs_device *device,
1515 u64 start, u64 *dev_extent_len)
1517 struct btrfs_fs_info *fs_info = device->fs_info;
1518 struct btrfs_root *root = fs_info->dev_root;
1519 int ret;
1520 struct btrfs_path *path;
1521 struct btrfs_key key;
1522 struct btrfs_key found_key;
1523 struct extent_buffer *leaf = NULL;
1524 struct btrfs_dev_extent *extent = NULL;
1526 path = btrfs_alloc_path();
1527 if (!path)
1528 return -ENOMEM;
1530 key.objectid = device->devid;
1531 key.offset = start;
1532 key.type = BTRFS_DEV_EXTENT_KEY;
1533 again:
1534 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1535 if (ret > 0) {
1536 ret = btrfs_previous_item(root, path, key.objectid,
1537 BTRFS_DEV_EXTENT_KEY);
1538 if (ret)
1539 goto out;
1540 leaf = path->nodes[0];
1541 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1542 extent = btrfs_item_ptr(leaf, path->slots[0],
1543 struct btrfs_dev_extent);
1544 BUG_ON(found_key.offset > start || found_key.offset +
1545 btrfs_dev_extent_length(leaf, extent) < start);
1546 key = found_key;
1547 btrfs_release_path(path);
1548 goto again;
1549 } else if (ret == 0) {
1550 leaf = path->nodes[0];
1551 extent = btrfs_item_ptr(leaf, path->slots[0],
1552 struct btrfs_dev_extent);
1553 } else {
1554 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1555 goto out;
1558 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1560 ret = btrfs_del_item(trans, root, path);
1561 if (ret) {
1562 btrfs_handle_fs_error(fs_info, ret,
1563 "Failed to remove dev extent item");
1564 } else {
1565 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1567 out:
1568 btrfs_free_path(path);
1569 return ret;
1572 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1573 struct btrfs_device *device,
1574 u64 chunk_offset, u64 start, u64 num_bytes)
1576 int ret;
1577 struct btrfs_path *path;
1578 struct btrfs_fs_info *fs_info = device->fs_info;
1579 struct btrfs_root *root = fs_info->dev_root;
1580 struct btrfs_dev_extent *extent;
1581 struct extent_buffer *leaf;
1582 struct btrfs_key key;
1584 WARN_ON(!device->in_fs_metadata);
1585 WARN_ON(device->is_tgtdev_for_dev_replace);
1586 path = btrfs_alloc_path();
1587 if (!path)
1588 return -ENOMEM;
1590 key.objectid = device->devid;
1591 key.offset = start;
1592 key.type = BTRFS_DEV_EXTENT_KEY;
1593 ret = btrfs_insert_empty_item(trans, root, path, &key,
1594 sizeof(*extent));
1595 if (ret)
1596 goto out;
1598 leaf = path->nodes[0];
1599 extent = btrfs_item_ptr(leaf, path->slots[0],
1600 struct btrfs_dev_extent);
1601 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1602 BTRFS_CHUNK_TREE_OBJECTID);
1603 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1604 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1605 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1607 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1608 btrfs_mark_buffer_dirty(leaf);
1609 out:
1610 btrfs_free_path(path);
1611 return ret;
1614 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1616 struct extent_map_tree *em_tree;
1617 struct extent_map *em;
1618 struct rb_node *n;
1619 u64 ret = 0;
1621 em_tree = &fs_info->mapping_tree.map_tree;
1622 read_lock(&em_tree->lock);
1623 n = rb_last(&em_tree->map);
1624 if (n) {
1625 em = rb_entry(n, struct extent_map, rb_node);
1626 ret = em->start + em->len;
1628 read_unlock(&em_tree->lock);
1630 return ret;
1633 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1634 u64 *devid_ret)
1636 int ret;
1637 struct btrfs_key key;
1638 struct btrfs_key found_key;
1639 struct btrfs_path *path;
1641 path = btrfs_alloc_path();
1642 if (!path)
1643 return -ENOMEM;
1645 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1646 key.type = BTRFS_DEV_ITEM_KEY;
1647 key.offset = (u64)-1;
1649 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1650 if (ret < 0)
1651 goto error;
1653 BUG_ON(ret == 0); /* Corruption */
1655 ret = btrfs_previous_item(fs_info->chunk_root, path,
1656 BTRFS_DEV_ITEMS_OBJECTID,
1657 BTRFS_DEV_ITEM_KEY);
1658 if (ret) {
1659 *devid_ret = 1;
1660 } else {
1661 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1662 path->slots[0]);
1663 *devid_ret = found_key.offset + 1;
1665 ret = 0;
1666 error:
1667 btrfs_free_path(path);
1668 return ret;
1672 * the device information is stored in the chunk root
1673 * the btrfs_device struct should be fully filled in
1675 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1676 struct btrfs_fs_info *fs_info,
1677 struct btrfs_device *device)
1679 struct btrfs_root *root = fs_info->chunk_root;
1680 int ret;
1681 struct btrfs_path *path;
1682 struct btrfs_dev_item *dev_item;
1683 struct extent_buffer *leaf;
1684 struct btrfs_key key;
1685 unsigned long ptr;
1687 path = btrfs_alloc_path();
1688 if (!path)
1689 return -ENOMEM;
1691 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1692 key.type = BTRFS_DEV_ITEM_KEY;
1693 key.offset = device->devid;
1695 ret = btrfs_insert_empty_item(trans, root, path, &key,
1696 sizeof(*dev_item));
1697 if (ret)
1698 goto out;
1700 leaf = path->nodes[0];
1701 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1703 btrfs_set_device_id(leaf, dev_item, device->devid);
1704 btrfs_set_device_generation(leaf, dev_item, 0);
1705 btrfs_set_device_type(leaf, dev_item, device->type);
1706 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1707 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1708 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1709 btrfs_set_device_total_bytes(leaf, dev_item,
1710 btrfs_device_get_disk_total_bytes(device));
1711 btrfs_set_device_bytes_used(leaf, dev_item,
1712 btrfs_device_get_bytes_used(device));
1713 btrfs_set_device_group(leaf, dev_item, 0);
1714 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1715 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1716 btrfs_set_device_start_offset(leaf, dev_item, 0);
1718 ptr = btrfs_device_uuid(dev_item);
1719 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1720 ptr = btrfs_device_fsid(dev_item);
1721 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1722 btrfs_mark_buffer_dirty(leaf);
1724 ret = 0;
1725 out:
1726 btrfs_free_path(path);
1727 return ret;
1731 * Function to update ctime/mtime for a given device path.
1732 * Mainly used for ctime/mtime based probe like libblkid.
1734 static void update_dev_time(const char *path_name)
1736 struct file *filp;
1738 filp = filp_open(path_name, O_RDWR, 0);
1739 if (IS_ERR(filp))
1740 return;
1741 file_update_time(filp);
1742 filp_close(filp, NULL);
1745 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1746 struct btrfs_device *device)
1748 struct btrfs_root *root = fs_info->chunk_root;
1749 int ret;
1750 struct btrfs_path *path;
1751 struct btrfs_key key;
1752 struct btrfs_trans_handle *trans;
1754 path = btrfs_alloc_path();
1755 if (!path)
1756 return -ENOMEM;
1758 trans = btrfs_start_transaction(root, 0);
1759 if (IS_ERR(trans)) {
1760 btrfs_free_path(path);
1761 return PTR_ERR(trans);
1763 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1764 key.type = BTRFS_DEV_ITEM_KEY;
1765 key.offset = device->devid;
1767 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1768 if (ret < 0)
1769 goto out;
1771 if (ret > 0) {
1772 ret = -ENOENT;
1773 goto out;
1776 ret = btrfs_del_item(trans, root, path);
1777 if (ret)
1778 goto out;
1779 out:
1780 btrfs_free_path(path);
1781 btrfs_commit_transaction(trans);
1782 return ret;
1786 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1787 * filesystem. It's up to the caller to adjust that number regarding eg. device
1788 * replace.
1790 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1791 u64 num_devices)
1793 u64 all_avail;
1794 unsigned seq;
1795 int i;
1797 do {
1798 seq = read_seqbegin(&fs_info->profiles_lock);
1800 all_avail = fs_info->avail_data_alloc_bits |
1801 fs_info->avail_system_alloc_bits |
1802 fs_info->avail_metadata_alloc_bits;
1803 } while (read_seqretry(&fs_info->profiles_lock, seq));
1805 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1806 if (!(all_avail & btrfs_raid_group[i]))
1807 continue;
1809 if (num_devices < btrfs_raid_array[i].devs_min) {
1810 int ret = btrfs_raid_mindev_error[i];
1812 if (ret)
1813 return ret;
1817 return 0;
1820 struct btrfs_device *btrfs_find_next_active_device(struct btrfs_fs_devices *fs_devs,
1821 struct btrfs_device *device)
1823 struct btrfs_device *next_device;
1825 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1826 if (next_device != device &&
1827 !next_device->missing && next_device->bdev)
1828 return next_device;
1831 return NULL;
1835 * Helper function to check if the given device is part of s_bdev / latest_bdev
1836 * and replace it with the provided or the next active device, in the context
1837 * where this function called, there should be always be another device (or
1838 * this_dev) which is active.
1840 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1841 struct btrfs_device *device, struct btrfs_device *this_dev)
1843 struct btrfs_device *next_device;
1845 if (this_dev)
1846 next_device = this_dev;
1847 else
1848 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1849 device);
1850 ASSERT(next_device);
1852 if (fs_info->sb->s_bdev &&
1853 (fs_info->sb->s_bdev == device->bdev))
1854 fs_info->sb->s_bdev = next_device->bdev;
1856 if (fs_info->fs_devices->latest_bdev == device->bdev)
1857 fs_info->fs_devices->latest_bdev = next_device->bdev;
1860 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1861 u64 devid)
1863 struct btrfs_device *device;
1864 struct btrfs_fs_devices *cur_devices;
1865 u64 num_devices;
1866 int ret = 0;
1868 mutex_lock(&uuid_mutex);
1870 num_devices = fs_info->fs_devices->num_devices;
1871 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
1872 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1873 WARN_ON(num_devices < 1);
1874 num_devices--;
1876 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
1878 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1879 if (ret)
1880 goto out;
1882 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1883 &device);
1884 if (ret)
1885 goto out;
1887 if (device->is_tgtdev_for_dev_replace) {
1888 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1889 goto out;
1892 if (device->writeable && fs_info->fs_devices->rw_devices == 1) {
1893 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1894 goto out;
1897 if (device->writeable) {
1898 mutex_lock(&fs_info->chunk_mutex);
1899 list_del_init(&device->dev_alloc_list);
1900 device->fs_devices->rw_devices--;
1901 mutex_unlock(&fs_info->chunk_mutex);
1904 mutex_unlock(&uuid_mutex);
1905 ret = btrfs_shrink_device(device, 0);
1906 mutex_lock(&uuid_mutex);
1907 if (ret)
1908 goto error_undo;
1911 * TODO: the superblock still includes this device in its num_devices
1912 * counter although write_all_supers() is not locked out. This
1913 * could give a filesystem state which requires a degraded mount.
1915 ret = btrfs_rm_dev_item(fs_info, device);
1916 if (ret)
1917 goto error_undo;
1919 device->in_fs_metadata = 0;
1920 btrfs_scrub_cancel_dev(fs_info, device);
1923 * the device list mutex makes sure that we don't change
1924 * the device list while someone else is writing out all
1925 * the device supers. Whoever is writing all supers, should
1926 * lock the device list mutex before getting the number of
1927 * devices in the super block (super_copy). Conversely,
1928 * whoever updates the number of devices in the super block
1929 * (super_copy) should hold the device list mutex.
1932 cur_devices = device->fs_devices;
1933 mutex_lock(&fs_info->fs_devices->device_list_mutex);
1934 list_del_rcu(&device->dev_list);
1936 device->fs_devices->num_devices--;
1937 device->fs_devices->total_devices--;
1939 if (device->missing)
1940 device->fs_devices->missing_devices--;
1942 btrfs_assign_next_active_device(fs_info, device, NULL);
1944 if (device->bdev) {
1945 device->fs_devices->open_devices--;
1946 /* remove sysfs entry */
1947 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
1950 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
1951 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
1952 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1955 * at this point, the device is zero sized and detached from
1956 * the devices list. All that's left is to zero out the old
1957 * supers and free the device.
1959 if (device->writeable)
1960 btrfs_scratch_superblocks(device->bdev, device->name->str);
1962 btrfs_close_bdev(device);
1963 call_rcu(&device->rcu, free_device);
1965 if (cur_devices->open_devices == 0) {
1966 struct btrfs_fs_devices *fs_devices;
1967 fs_devices = fs_info->fs_devices;
1968 while (fs_devices) {
1969 if (fs_devices->seed == cur_devices) {
1970 fs_devices->seed = cur_devices->seed;
1971 break;
1973 fs_devices = fs_devices->seed;
1975 cur_devices->seed = NULL;
1976 __btrfs_close_devices(cur_devices);
1977 free_fs_devices(cur_devices);
1980 out:
1981 mutex_unlock(&uuid_mutex);
1982 return ret;
1984 error_undo:
1985 if (device->writeable) {
1986 mutex_lock(&fs_info->chunk_mutex);
1987 list_add(&device->dev_alloc_list,
1988 &fs_info->fs_devices->alloc_list);
1989 device->fs_devices->rw_devices++;
1990 mutex_unlock(&fs_info->chunk_mutex);
1992 goto out;
1995 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
1996 struct btrfs_device *srcdev)
1998 struct btrfs_fs_devices *fs_devices;
2000 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
2003 * in case of fs with no seed, srcdev->fs_devices will point
2004 * to fs_devices of fs_info. However when the dev being replaced is
2005 * a seed dev it will point to the seed's local fs_devices. In short
2006 * srcdev will have its correct fs_devices in both the cases.
2008 fs_devices = srcdev->fs_devices;
2010 list_del_rcu(&srcdev->dev_list);
2011 list_del_rcu(&srcdev->dev_alloc_list);
2012 fs_devices->num_devices--;
2013 if (srcdev->missing)
2014 fs_devices->missing_devices--;
2016 if (srcdev->writeable)
2017 fs_devices->rw_devices--;
2019 if (srcdev->bdev)
2020 fs_devices->open_devices--;
2023 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2024 struct btrfs_device *srcdev)
2026 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2028 if (srcdev->writeable) {
2029 /* zero out the old super if it is writable */
2030 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2033 btrfs_close_bdev(srcdev);
2035 call_rcu(&srcdev->rcu, free_device);
2038 * unless fs_devices is seed fs, num_devices shouldn't go
2039 * zero
2041 BUG_ON(!fs_devices->num_devices && !fs_devices->seeding);
2043 /* if this is no devs we rather delete the fs_devices */
2044 if (!fs_devices->num_devices) {
2045 struct btrfs_fs_devices *tmp_fs_devices;
2047 tmp_fs_devices = fs_info->fs_devices;
2048 while (tmp_fs_devices) {
2049 if (tmp_fs_devices->seed == fs_devices) {
2050 tmp_fs_devices->seed = fs_devices->seed;
2051 break;
2053 tmp_fs_devices = tmp_fs_devices->seed;
2055 fs_devices->seed = NULL;
2056 __btrfs_close_devices(fs_devices);
2057 free_fs_devices(fs_devices);
2061 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2062 struct btrfs_device *tgtdev)
2064 mutex_lock(&uuid_mutex);
2065 WARN_ON(!tgtdev);
2066 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2068 btrfs_sysfs_rm_device_link(fs_info->fs_devices, tgtdev);
2070 if (tgtdev->bdev)
2071 fs_info->fs_devices->open_devices--;
2073 fs_info->fs_devices->num_devices--;
2075 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2077 list_del_rcu(&tgtdev->dev_list);
2079 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2080 mutex_unlock(&uuid_mutex);
2083 * The update_dev_time() with in btrfs_scratch_superblocks()
2084 * may lead to a call to btrfs_show_devname() which will try
2085 * to hold device_list_mutex. And here this device
2086 * is already out of device list, so we don't have to hold
2087 * the device_list_mutex lock.
2089 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2091 btrfs_close_bdev(tgtdev);
2092 call_rcu(&tgtdev->rcu, free_device);
2095 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2096 const char *device_path,
2097 struct btrfs_device **device)
2099 int ret = 0;
2100 struct btrfs_super_block *disk_super;
2101 u64 devid;
2102 u8 *dev_uuid;
2103 struct block_device *bdev;
2104 struct buffer_head *bh;
2106 *device = NULL;
2107 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2108 fs_info->bdev_holder, 0, &bdev, &bh);
2109 if (ret)
2110 return ret;
2111 disk_super = (struct btrfs_super_block *)bh->b_data;
2112 devid = btrfs_stack_device_id(&disk_super->dev_item);
2113 dev_uuid = disk_super->dev_item.uuid;
2114 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2115 brelse(bh);
2116 if (!*device)
2117 ret = -ENOENT;
2118 blkdev_put(bdev, FMODE_READ);
2119 return ret;
2122 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2123 const char *device_path,
2124 struct btrfs_device **device)
2126 *device = NULL;
2127 if (strcmp(device_path, "missing") == 0) {
2128 struct list_head *devices;
2129 struct btrfs_device *tmp;
2131 devices = &fs_info->fs_devices->devices;
2133 * It is safe to read the devices since the volume_mutex
2134 * is held by the caller.
2136 list_for_each_entry(tmp, devices, dev_list) {
2137 if (tmp->in_fs_metadata && !tmp->bdev) {
2138 *device = tmp;
2139 break;
2143 if (!*device)
2144 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2146 return 0;
2147 } else {
2148 return btrfs_find_device_by_path(fs_info, device_path, device);
2153 * Lookup a device given by device id, or the path if the id is 0.
2155 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2156 const char *devpath,
2157 struct btrfs_device **device)
2159 int ret;
2161 if (devid) {
2162 ret = 0;
2163 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2164 if (!*device)
2165 ret = -ENOENT;
2166 } else {
2167 if (!devpath || !devpath[0])
2168 return -EINVAL;
2170 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2171 device);
2173 return ret;
2177 * does all the dirty work required for changing file system's UUID.
2179 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2181 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2182 struct btrfs_fs_devices *old_devices;
2183 struct btrfs_fs_devices *seed_devices;
2184 struct btrfs_super_block *disk_super = fs_info->super_copy;
2185 struct btrfs_device *device;
2186 u64 super_flags;
2188 BUG_ON(!mutex_is_locked(&uuid_mutex));
2189 if (!fs_devices->seeding)
2190 return -EINVAL;
2192 seed_devices = alloc_fs_devices(NULL);
2193 if (IS_ERR(seed_devices))
2194 return PTR_ERR(seed_devices);
2196 old_devices = clone_fs_devices(fs_devices);
2197 if (IS_ERR(old_devices)) {
2198 kfree(seed_devices);
2199 return PTR_ERR(old_devices);
2202 list_add(&old_devices->list, &fs_uuids);
2204 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2205 seed_devices->opened = 1;
2206 INIT_LIST_HEAD(&seed_devices->devices);
2207 INIT_LIST_HEAD(&seed_devices->alloc_list);
2208 mutex_init(&seed_devices->device_list_mutex);
2210 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2211 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2212 synchronize_rcu);
2213 list_for_each_entry(device, &seed_devices->devices, dev_list)
2214 device->fs_devices = seed_devices;
2216 mutex_lock(&fs_info->chunk_mutex);
2217 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2218 mutex_unlock(&fs_info->chunk_mutex);
2220 fs_devices->seeding = 0;
2221 fs_devices->num_devices = 0;
2222 fs_devices->open_devices = 0;
2223 fs_devices->missing_devices = 0;
2224 fs_devices->rotating = 0;
2225 fs_devices->seed = seed_devices;
2227 generate_random_uuid(fs_devices->fsid);
2228 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2229 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2230 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2232 super_flags = btrfs_super_flags(disk_super) &
2233 ~BTRFS_SUPER_FLAG_SEEDING;
2234 btrfs_set_super_flags(disk_super, super_flags);
2236 return 0;
2240 * Store the expected generation for seed devices in device items.
2242 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2243 struct btrfs_fs_info *fs_info)
2245 struct btrfs_root *root = fs_info->chunk_root;
2246 struct btrfs_path *path;
2247 struct extent_buffer *leaf;
2248 struct btrfs_dev_item *dev_item;
2249 struct btrfs_device *device;
2250 struct btrfs_key key;
2251 u8 fs_uuid[BTRFS_FSID_SIZE];
2252 u8 dev_uuid[BTRFS_UUID_SIZE];
2253 u64 devid;
2254 int ret;
2256 path = btrfs_alloc_path();
2257 if (!path)
2258 return -ENOMEM;
2260 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2261 key.offset = 0;
2262 key.type = BTRFS_DEV_ITEM_KEY;
2264 while (1) {
2265 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2266 if (ret < 0)
2267 goto error;
2269 leaf = path->nodes[0];
2270 next_slot:
2271 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2272 ret = btrfs_next_leaf(root, path);
2273 if (ret > 0)
2274 break;
2275 if (ret < 0)
2276 goto error;
2277 leaf = path->nodes[0];
2278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2279 btrfs_release_path(path);
2280 continue;
2283 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2284 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2285 key.type != BTRFS_DEV_ITEM_KEY)
2286 break;
2288 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2289 struct btrfs_dev_item);
2290 devid = btrfs_device_id(leaf, dev_item);
2291 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2292 BTRFS_UUID_SIZE);
2293 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2294 BTRFS_FSID_SIZE);
2295 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2296 BUG_ON(!device); /* Logic error */
2298 if (device->fs_devices->seeding) {
2299 btrfs_set_device_generation(leaf, dev_item,
2300 device->generation);
2301 btrfs_mark_buffer_dirty(leaf);
2304 path->slots[0]++;
2305 goto next_slot;
2307 ret = 0;
2308 error:
2309 btrfs_free_path(path);
2310 return ret;
2313 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2315 struct btrfs_root *root = fs_info->dev_root;
2316 struct request_queue *q;
2317 struct btrfs_trans_handle *trans;
2318 struct btrfs_device *device;
2319 struct block_device *bdev;
2320 struct list_head *devices;
2321 struct super_block *sb = fs_info->sb;
2322 struct rcu_string *name;
2323 u64 tmp;
2324 int seeding_dev = 0;
2325 int ret = 0;
2327 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2328 return -EROFS;
2330 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2331 fs_info->bdev_holder);
2332 if (IS_ERR(bdev))
2333 return PTR_ERR(bdev);
2335 if (fs_info->fs_devices->seeding) {
2336 seeding_dev = 1;
2337 down_write(&sb->s_umount);
2338 mutex_lock(&uuid_mutex);
2341 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2343 devices = &fs_info->fs_devices->devices;
2345 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2346 list_for_each_entry(device, devices, dev_list) {
2347 if (device->bdev == bdev) {
2348 ret = -EEXIST;
2349 mutex_unlock(
2350 &fs_info->fs_devices->device_list_mutex);
2351 goto error;
2354 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2356 device = btrfs_alloc_device(fs_info, NULL, NULL);
2357 if (IS_ERR(device)) {
2358 /* we can safely leave the fs_devices entry around */
2359 ret = PTR_ERR(device);
2360 goto error;
2363 name = rcu_string_strdup(device_path, GFP_KERNEL);
2364 if (!name) {
2365 kfree(device);
2366 ret = -ENOMEM;
2367 goto error;
2369 rcu_assign_pointer(device->name, name);
2371 trans = btrfs_start_transaction(root, 0);
2372 if (IS_ERR(trans)) {
2373 rcu_string_free(device->name);
2374 kfree(device);
2375 ret = PTR_ERR(trans);
2376 goto error;
2379 q = bdev_get_queue(bdev);
2380 if (blk_queue_discard(q))
2381 device->can_discard = 1;
2382 device->writeable = 1;
2383 device->generation = trans->transid;
2384 device->io_width = fs_info->sectorsize;
2385 device->io_align = fs_info->sectorsize;
2386 device->sector_size = fs_info->sectorsize;
2387 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2388 fs_info->sectorsize);
2389 device->disk_total_bytes = device->total_bytes;
2390 device->commit_total_bytes = device->total_bytes;
2391 device->fs_info = fs_info;
2392 device->bdev = bdev;
2393 device->in_fs_metadata = 1;
2394 device->is_tgtdev_for_dev_replace = 0;
2395 device->mode = FMODE_EXCL;
2396 device->dev_stats_valid = 1;
2397 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2399 if (seeding_dev) {
2400 sb->s_flags &= ~MS_RDONLY;
2401 ret = btrfs_prepare_sprout(fs_info);
2402 BUG_ON(ret); /* -ENOMEM */
2405 device->fs_devices = fs_info->fs_devices;
2407 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2408 mutex_lock(&fs_info->chunk_mutex);
2409 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2410 list_add(&device->dev_alloc_list,
2411 &fs_info->fs_devices->alloc_list);
2412 fs_info->fs_devices->num_devices++;
2413 fs_info->fs_devices->open_devices++;
2414 fs_info->fs_devices->rw_devices++;
2415 fs_info->fs_devices->total_devices++;
2416 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2418 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2420 if (!blk_queue_nonrot(q))
2421 fs_info->fs_devices->rotating = 1;
2423 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2424 btrfs_set_super_total_bytes(fs_info->super_copy,
2425 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2427 tmp = btrfs_super_num_devices(fs_info->super_copy);
2428 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2430 /* add sysfs device entry */
2431 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2434 * we've got more storage, clear any full flags on the space
2435 * infos
2437 btrfs_clear_space_info_full(fs_info);
2439 mutex_unlock(&fs_info->chunk_mutex);
2440 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2442 if (seeding_dev) {
2443 mutex_lock(&fs_info->chunk_mutex);
2444 ret = init_first_rw_device(trans, fs_info);
2445 mutex_unlock(&fs_info->chunk_mutex);
2446 if (ret) {
2447 btrfs_abort_transaction(trans, ret);
2448 goto error_trans;
2452 ret = btrfs_add_device(trans, fs_info, device);
2453 if (ret) {
2454 btrfs_abort_transaction(trans, ret);
2455 goto error_trans;
2458 if (seeding_dev) {
2459 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2461 ret = btrfs_finish_sprout(trans, fs_info);
2462 if (ret) {
2463 btrfs_abort_transaction(trans, ret);
2464 goto error_trans;
2467 /* Sprouting would change fsid of the mounted root,
2468 * so rename the fsid on the sysfs
2470 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2471 fs_info->fsid);
2472 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2473 btrfs_warn(fs_info,
2474 "sysfs: failed to create fsid for sprout");
2477 ret = btrfs_commit_transaction(trans);
2479 if (seeding_dev) {
2480 mutex_unlock(&uuid_mutex);
2481 up_write(&sb->s_umount);
2483 if (ret) /* transaction commit */
2484 return ret;
2486 ret = btrfs_relocate_sys_chunks(fs_info);
2487 if (ret < 0)
2488 btrfs_handle_fs_error(fs_info, ret,
2489 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2490 trans = btrfs_attach_transaction(root);
2491 if (IS_ERR(trans)) {
2492 if (PTR_ERR(trans) == -ENOENT)
2493 return 0;
2494 return PTR_ERR(trans);
2496 ret = btrfs_commit_transaction(trans);
2499 /* Update ctime/mtime for libblkid */
2500 update_dev_time(device_path);
2501 return ret;
2503 error_trans:
2504 btrfs_end_transaction(trans);
2505 rcu_string_free(device->name);
2506 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2507 kfree(device);
2508 error:
2509 blkdev_put(bdev, FMODE_EXCL);
2510 if (seeding_dev) {
2511 mutex_unlock(&uuid_mutex);
2512 up_write(&sb->s_umount);
2514 return ret;
2517 int btrfs_init_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2518 const char *device_path,
2519 struct btrfs_device *srcdev,
2520 struct btrfs_device **device_out)
2522 struct request_queue *q;
2523 struct btrfs_device *device;
2524 struct block_device *bdev;
2525 struct list_head *devices;
2526 struct rcu_string *name;
2527 u64 devid = BTRFS_DEV_REPLACE_DEVID;
2528 int ret = 0;
2530 *device_out = NULL;
2531 if (fs_info->fs_devices->seeding) {
2532 btrfs_err(fs_info, "the filesystem is a seed filesystem!");
2533 return -EINVAL;
2536 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2537 fs_info->bdev_holder);
2538 if (IS_ERR(bdev)) {
2539 btrfs_err(fs_info, "target device %s is invalid!", device_path);
2540 return PTR_ERR(bdev);
2543 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2545 devices = &fs_info->fs_devices->devices;
2546 list_for_each_entry(device, devices, dev_list) {
2547 if (device->bdev == bdev) {
2548 btrfs_err(fs_info,
2549 "target device is in the filesystem!");
2550 ret = -EEXIST;
2551 goto error;
2556 if (i_size_read(bdev->bd_inode) <
2557 btrfs_device_get_total_bytes(srcdev)) {
2558 btrfs_err(fs_info,
2559 "target device is smaller than source device!");
2560 ret = -EINVAL;
2561 goto error;
2565 device = btrfs_alloc_device(NULL, &devid, NULL);
2566 if (IS_ERR(device)) {
2567 ret = PTR_ERR(device);
2568 goto error;
2571 name = rcu_string_strdup(device_path, GFP_KERNEL);
2572 if (!name) {
2573 kfree(device);
2574 ret = -ENOMEM;
2575 goto error;
2577 rcu_assign_pointer(device->name, name);
2579 q = bdev_get_queue(bdev);
2580 if (blk_queue_discard(q))
2581 device->can_discard = 1;
2582 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2583 device->writeable = 1;
2584 device->generation = 0;
2585 device->io_width = fs_info->sectorsize;
2586 device->io_align = fs_info->sectorsize;
2587 device->sector_size = fs_info->sectorsize;
2588 device->total_bytes = btrfs_device_get_total_bytes(srcdev);
2589 device->disk_total_bytes = btrfs_device_get_disk_total_bytes(srcdev);
2590 device->bytes_used = btrfs_device_get_bytes_used(srcdev);
2591 ASSERT(list_empty(&srcdev->resized_list));
2592 device->commit_total_bytes = srcdev->commit_total_bytes;
2593 device->commit_bytes_used = device->bytes_used;
2594 device->fs_info = fs_info;
2595 device->bdev = bdev;
2596 device->in_fs_metadata = 1;
2597 device->is_tgtdev_for_dev_replace = 1;
2598 device->mode = FMODE_EXCL;
2599 device->dev_stats_valid = 1;
2600 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2601 device->fs_devices = fs_info->fs_devices;
2602 list_add(&device->dev_list, &fs_info->fs_devices->devices);
2603 fs_info->fs_devices->num_devices++;
2604 fs_info->fs_devices->open_devices++;
2605 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2607 *device_out = device;
2608 return ret;
2610 error:
2611 blkdev_put(bdev, FMODE_EXCL);
2612 return ret;
2615 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2616 struct btrfs_device *tgtdev)
2618 u32 sectorsize = fs_info->sectorsize;
2620 WARN_ON(fs_info->fs_devices->rw_devices == 0);
2621 tgtdev->io_width = sectorsize;
2622 tgtdev->io_align = sectorsize;
2623 tgtdev->sector_size = sectorsize;
2624 tgtdev->fs_info = fs_info;
2625 tgtdev->in_fs_metadata = 1;
2628 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2629 struct btrfs_device *device)
2631 int ret;
2632 struct btrfs_path *path;
2633 struct btrfs_root *root = device->fs_info->chunk_root;
2634 struct btrfs_dev_item *dev_item;
2635 struct extent_buffer *leaf;
2636 struct btrfs_key key;
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return -ENOMEM;
2642 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2643 key.type = BTRFS_DEV_ITEM_KEY;
2644 key.offset = device->devid;
2646 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2647 if (ret < 0)
2648 goto out;
2650 if (ret > 0) {
2651 ret = -ENOENT;
2652 goto out;
2655 leaf = path->nodes[0];
2656 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2658 btrfs_set_device_id(leaf, dev_item, device->devid);
2659 btrfs_set_device_type(leaf, dev_item, device->type);
2660 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2661 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2662 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2663 btrfs_set_device_total_bytes(leaf, dev_item,
2664 btrfs_device_get_disk_total_bytes(device));
2665 btrfs_set_device_bytes_used(leaf, dev_item,
2666 btrfs_device_get_bytes_used(device));
2667 btrfs_mark_buffer_dirty(leaf);
2669 out:
2670 btrfs_free_path(path);
2671 return ret;
2674 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2675 struct btrfs_device *device, u64 new_size)
2677 struct btrfs_fs_info *fs_info = device->fs_info;
2678 struct btrfs_super_block *super_copy = fs_info->super_copy;
2679 struct btrfs_fs_devices *fs_devices;
2680 u64 old_total;
2681 u64 diff;
2683 if (!device->writeable)
2684 return -EACCES;
2686 new_size = round_down(new_size, fs_info->sectorsize);
2688 mutex_lock(&fs_info->chunk_mutex);
2689 old_total = btrfs_super_total_bytes(super_copy);
2690 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2692 if (new_size <= device->total_bytes ||
2693 device->is_tgtdev_for_dev_replace) {
2694 mutex_unlock(&fs_info->chunk_mutex);
2695 return -EINVAL;
2698 fs_devices = fs_info->fs_devices;
2700 btrfs_set_super_total_bytes(super_copy,
2701 round_down(old_total + diff, fs_info->sectorsize));
2702 device->fs_devices->total_rw_bytes += diff;
2704 btrfs_device_set_total_bytes(device, new_size);
2705 btrfs_device_set_disk_total_bytes(device, new_size);
2706 btrfs_clear_space_info_full(device->fs_info);
2707 if (list_empty(&device->resized_list))
2708 list_add_tail(&device->resized_list,
2709 &fs_devices->resized_devices);
2710 mutex_unlock(&fs_info->chunk_mutex);
2712 return btrfs_update_device(trans, device);
2715 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2716 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2718 struct btrfs_root *root = fs_info->chunk_root;
2719 int ret;
2720 struct btrfs_path *path;
2721 struct btrfs_key key;
2723 path = btrfs_alloc_path();
2724 if (!path)
2725 return -ENOMEM;
2727 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2728 key.offset = chunk_offset;
2729 key.type = BTRFS_CHUNK_ITEM_KEY;
2731 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2732 if (ret < 0)
2733 goto out;
2734 else if (ret > 0) { /* Logic error or corruption */
2735 btrfs_handle_fs_error(fs_info, -ENOENT,
2736 "Failed lookup while freeing chunk.");
2737 ret = -ENOENT;
2738 goto out;
2741 ret = btrfs_del_item(trans, root, path);
2742 if (ret < 0)
2743 btrfs_handle_fs_error(fs_info, ret,
2744 "Failed to delete chunk item.");
2745 out:
2746 btrfs_free_path(path);
2747 return ret;
2750 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2752 struct btrfs_super_block *super_copy = fs_info->super_copy;
2753 struct btrfs_disk_key *disk_key;
2754 struct btrfs_chunk *chunk;
2755 u8 *ptr;
2756 int ret = 0;
2757 u32 num_stripes;
2758 u32 array_size;
2759 u32 len = 0;
2760 u32 cur;
2761 struct btrfs_key key;
2763 mutex_lock(&fs_info->chunk_mutex);
2764 array_size = btrfs_super_sys_array_size(super_copy);
2766 ptr = super_copy->sys_chunk_array;
2767 cur = 0;
2769 while (cur < array_size) {
2770 disk_key = (struct btrfs_disk_key *)ptr;
2771 btrfs_disk_key_to_cpu(&key, disk_key);
2773 len = sizeof(*disk_key);
2775 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2776 chunk = (struct btrfs_chunk *)(ptr + len);
2777 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2778 len += btrfs_chunk_item_size(num_stripes);
2779 } else {
2780 ret = -EIO;
2781 break;
2783 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2784 key.offset == chunk_offset) {
2785 memmove(ptr, ptr + len, array_size - (cur + len));
2786 array_size -= len;
2787 btrfs_set_super_sys_array_size(super_copy, array_size);
2788 } else {
2789 ptr += len;
2790 cur += len;
2793 mutex_unlock(&fs_info->chunk_mutex);
2794 return ret;
2797 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2798 u64 logical, u64 length)
2800 struct extent_map_tree *em_tree;
2801 struct extent_map *em;
2803 em_tree = &fs_info->mapping_tree.map_tree;
2804 read_lock(&em_tree->lock);
2805 em = lookup_extent_mapping(em_tree, logical, length);
2806 read_unlock(&em_tree->lock);
2808 if (!em) {
2809 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2810 logical, length);
2811 return ERR_PTR(-EINVAL);
2814 if (em->start > logical || em->start + em->len < logical) {
2815 btrfs_crit(fs_info,
2816 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2817 logical, length, em->start, em->start + em->len);
2818 free_extent_map(em);
2819 return ERR_PTR(-EINVAL);
2822 /* callers are responsible for dropping em's ref. */
2823 return em;
2826 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2827 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2829 struct extent_map *em;
2830 struct map_lookup *map;
2831 u64 dev_extent_len = 0;
2832 int i, ret = 0;
2833 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2835 em = get_chunk_map(fs_info, chunk_offset, 1);
2836 if (IS_ERR(em)) {
2838 * This is a logic error, but we don't want to just rely on the
2839 * user having built with ASSERT enabled, so if ASSERT doesn't
2840 * do anything we still error out.
2842 ASSERT(0);
2843 return PTR_ERR(em);
2845 map = em->map_lookup;
2846 mutex_lock(&fs_info->chunk_mutex);
2847 check_system_chunk(trans, fs_info, map->type);
2848 mutex_unlock(&fs_info->chunk_mutex);
2851 * Take the device list mutex to prevent races with the final phase of
2852 * a device replace operation that replaces the device object associated
2853 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2855 mutex_lock(&fs_devices->device_list_mutex);
2856 for (i = 0; i < map->num_stripes; i++) {
2857 struct btrfs_device *device = map->stripes[i].dev;
2858 ret = btrfs_free_dev_extent(trans, device,
2859 map->stripes[i].physical,
2860 &dev_extent_len);
2861 if (ret) {
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 btrfs_abort_transaction(trans, ret);
2864 goto out;
2867 if (device->bytes_used > 0) {
2868 mutex_lock(&fs_info->chunk_mutex);
2869 btrfs_device_set_bytes_used(device,
2870 device->bytes_used - dev_extent_len);
2871 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2872 btrfs_clear_space_info_full(fs_info);
2873 mutex_unlock(&fs_info->chunk_mutex);
2876 if (map->stripes[i].dev) {
2877 ret = btrfs_update_device(trans, map->stripes[i].dev);
2878 if (ret) {
2879 mutex_unlock(&fs_devices->device_list_mutex);
2880 btrfs_abort_transaction(trans, ret);
2881 goto out;
2885 mutex_unlock(&fs_devices->device_list_mutex);
2887 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2888 if (ret) {
2889 btrfs_abort_transaction(trans, ret);
2890 goto out;
2893 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2895 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2897 if (ret) {
2898 btrfs_abort_transaction(trans, ret);
2899 goto out;
2903 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2904 if (ret) {
2905 btrfs_abort_transaction(trans, ret);
2906 goto out;
2909 out:
2910 /* once for us */
2911 free_extent_map(em);
2912 return ret;
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2917 struct btrfs_root *root = fs_info->chunk_root;
2918 struct btrfs_trans_handle *trans;
2919 int ret;
2922 * Prevent races with automatic removal of unused block groups.
2923 * After we relocate and before we remove the chunk with offset
2924 * chunk_offset, automatic removal of the block group can kick in,
2925 * resulting in a failure when calling btrfs_remove_chunk() below.
2927 * Make sure to acquire this mutex before doing a tree search (dev
2928 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2929 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2930 * we release the path used to search the chunk/dev tree and before
2931 * the current task acquires this mutex and calls us.
2933 ASSERT(mutex_is_locked(&fs_info->delete_unused_bgs_mutex));
2935 ret = btrfs_can_relocate(fs_info, chunk_offset);
2936 if (ret)
2937 return -ENOSPC;
2939 /* step one, relocate all the extents inside this chunk */
2940 btrfs_scrub_pause(fs_info);
2941 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2942 btrfs_scrub_continue(fs_info);
2943 if (ret)
2944 return ret;
2946 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2947 chunk_offset);
2948 if (IS_ERR(trans)) {
2949 ret = PTR_ERR(trans);
2950 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2951 return ret;
2955 * step two, delete the device extents and the
2956 * chunk tree entries
2958 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2959 btrfs_end_transaction(trans);
2960 return ret;
2963 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2965 struct btrfs_root *chunk_root = fs_info->chunk_root;
2966 struct btrfs_path *path;
2967 struct extent_buffer *leaf;
2968 struct btrfs_chunk *chunk;
2969 struct btrfs_key key;
2970 struct btrfs_key found_key;
2971 u64 chunk_type;
2972 bool retried = false;
2973 int failed = 0;
2974 int ret;
2976 path = btrfs_alloc_path();
2977 if (!path)
2978 return -ENOMEM;
2980 again:
2981 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2982 key.offset = (u64)-1;
2983 key.type = BTRFS_CHUNK_ITEM_KEY;
2985 while (1) {
2986 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2987 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2988 if (ret < 0) {
2989 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2990 goto error;
2992 BUG_ON(ret == 0); /* Corruption */
2994 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2995 key.type);
2996 if (ret)
2997 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2998 if (ret < 0)
2999 goto error;
3000 if (ret > 0)
3001 break;
3003 leaf = path->nodes[0];
3004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3006 chunk = btrfs_item_ptr(leaf, path->slots[0],
3007 struct btrfs_chunk);
3008 chunk_type = btrfs_chunk_type(leaf, chunk);
3009 btrfs_release_path(path);
3011 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3012 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3013 if (ret == -ENOSPC)
3014 failed++;
3015 else
3016 BUG_ON(ret);
3018 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3020 if (found_key.offset == 0)
3021 break;
3022 key.offset = found_key.offset - 1;
3024 ret = 0;
3025 if (failed && !retried) {
3026 failed = 0;
3027 retried = true;
3028 goto again;
3029 } else if (WARN_ON(failed && retried)) {
3030 ret = -ENOSPC;
3032 error:
3033 btrfs_free_path(path);
3034 return ret;
3037 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3038 struct btrfs_balance_control *bctl)
3040 struct btrfs_root *root = fs_info->tree_root;
3041 struct btrfs_trans_handle *trans;
3042 struct btrfs_balance_item *item;
3043 struct btrfs_disk_balance_args disk_bargs;
3044 struct btrfs_path *path;
3045 struct extent_buffer *leaf;
3046 struct btrfs_key key;
3047 int ret, err;
3049 path = btrfs_alloc_path();
3050 if (!path)
3051 return -ENOMEM;
3053 trans = btrfs_start_transaction(root, 0);
3054 if (IS_ERR(trans)) {
3055 btrfs_free_path(path);
3056 return PTR_ERR(trans);
3059 key.objectid = BTRFS_BALANCE_OBJECTID;
3060 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3061 key.offset = 0;
3063 ret = btrfs_insert_empty_item(trans, root, path, &key,
3064 sizeof(*item));
3065 if (ret)
3066 goto out;
3068 leaf = path->nodes[0];
3069 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3071 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3073 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3074 btrfs_set_balance_data(leaf, item, &disk_bargs);
3075 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3076 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3077 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3078 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3080 btrfs_set_balance_flags(leaf, item, bctl->flags);
3082 btrfs_mark_buffer_dirty(leaf);
3083 out:
3084 btrfs_free_path(path);
3085 err = btrfs_commit_transaction(trans);
3086 if (err && !ret)
3087 ret = err;
3088 return ret;
3091 static int del_balance_item(struct btrfs_fs_info *fs_info)
3093 struct btrfs_root *root = fs_info->tree_root;
3094 struct btrfs_trans_handle *trans;
3095 struct btrfs_path *path;
3096 struct btrfs_key key;
3097 int ret, err;
3099 path = btrfs_alloc_path();
3100 if (!path)
3101 return -ENOMEM;
3103 trans = btrfs_start_transaction(root, 0);
3104 if (IS_ERR(trans)) {
3105 btrfs_free_path(path);
3106 return PTR_ERR(trans);
3109 key.objectid = BTRFS_BALANCE_OBJECTID;
3110 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3111 key.offset = 0;
3113 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3114 if (ret < 0)
3115 goto out;
3116 if (ret > 0) {
3117 ret = -ENOENT;
3118 goto out;
3121 ret = btrfs_del_item(trans, root, path);
3122 out:
3123 btrfs_free_path(path);
3124 err = btrfs_commit_transaction(trans);
3125 if (err && !ret)
3126 ret = err;
3127 return ret;
3131 * This is a heuristic used to reduce the number of chunks balanced on
3132 * resume after balance was interrupted.
3134 static void update_balance_args(struct btrfs_balance_control *bctl)
3137 * Turn on soft mode for chunk types that were being converted.
3139 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3140 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3141 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3142 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3143 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3144 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3147 * Turn on usage filter if is not already used. The idea is
3148 * that chunks that we have already balanced should be
3149 * reasonably full. Don't do it for chunks that are being
3150 * converted - that will keep us from relocating unconverted
3151 * (albeit full) chunks.
3153 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3154 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3155 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3156 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3157 bctl->data.usage = 90;
3159 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3160 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3161 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3162 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3163 bctl->sys.usage = 90;
3165 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3166 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3167 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3168 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3169 bctl->meta.usage = 90;
3174 * Should be called with both balance and volume mutexes held to
3175 * serialize other volume operations (add_dev/rm_dev/resize) with
3176 * restriper. Same goes for unset_balance_control.
3178 static void set_balance_control(struct btrfs_balance_control *bctl)
3180 struct btrfs_fs_info *fs_info = bctl->fs_info;
3182 BUG_ON(fs_info->balance_ctl);
3184 spin_lock(&fs_info->balance_lock);
3185 fs_info->balance_ctl = bctl;
3186 spin_unlock(&fs_info->balance_lock);
3189 static void unset_balance_control(struct btrfs_fs_info *fs_info)
3191 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3193 BUG_ON(!fs_info->balance_ctl);
3195 spin_lock(&fs_info->balance_lock);
3196 fs_info->balance_ctl = NULL;
3197 spin_unlock(&fs_info->balance_lock);
3199 kfree(bctl);
3203 * Balance filters. Return 1 if chunk should be filtered out
3204 * (should not be balanced).
3206 static int chunk_profiles_filter(u64 chunk_type,
3207 struct btrfs_balance_args *bargs)
3209 chunk_type = chunk_to_extended(chunk_type) &
3210 BTRFS_EXTENDED_PROFILE_MASK;
3212 if (bargs->profiles & chunk_type)
3213 return 0;
3215 return 1;
3218 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3219 struct btrfs_balance_args *bargs)
3221 struct btrfs_block_group_cache *cache;
3222 u64 chunk_used;
3223 u64 user_thresh_min;
3224 u64 user_thresh_max;
3225 int ret = 1;
3227 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3228 chunk_used = btrfs_block_group_used(&cache->item);
3230 if (bargs->usage_min == 0)
3231 user_thresh_min = 0;
3232 else
3233 user_thresh_min = div_factor_fine(cache->key.offset,
3234 bargs->usage_min);
3236 if (bargs->usage_max == 0)
3237 user_thresh_max = 1;
3238 else if (bargs->usage_max > 100)
3239 user_thresh_max = cache->key.offset;
3240 else
3241 user_thresh_max = div_factor_fine(cache->key.offset,
3242 bargs->usage_max);
3244 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3245 ret = 0;
3247 btrfs_put_block_group(cache);
3248 return ret;
3251 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3252 u64 chunk_offset, struct btrfs_balance_args *bargs)
3254 struct btrfs_block_group_cache *cache;
3255 u64 chunk_used, user_thresh;
3256 int ret = 1;
3258 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3259 chunk_used = btrfs_block_group_used(&cache->item);
3261 if (bargs->usage_min == 0)
3262 user_thresh = 1;
3263 else if (bargs->usage > 100)
3264 user_thresh = cache->key.offset;
3265 else
3266 user_thresh = div_factor_fine(cache->key.offset,
3267 bargs->usage);
3269 if (chunk_used < user_thresh)
3270 ret = 0;
3272 btrfs_put_block_group(cache);
3273 return ret;
3276 static int chunk_devid_filter(struct extent_buffer *leaf,
3277 struct btrfs_chunk *chunk,
3278 struct btrfs_balance_args *bargs)
3280 struct btrfs_stripe *stripe;
3281 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3282 int i;
3284 for (i = 0; i < num_stripes; i++) {
3285 stripe = btrfs_stripe_nr(chunk, i);
3286 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3287 return 0;
3290 return 1;
3293 /* [pstart, pend) */
3294 static int chunk_drange_filter(struct extent_buffer *leaf,
3295 struct btrfs_chunk *chunk,
3296 struct btrfs_balance_args *bargs)
3298 struct btrfs_stripe *stripe;
3299 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3300 u64 stripe_offset;
3301 u64 stripe_length;
3302 int factor;
3303 int i;
3305 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3306 return 0;
3308 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3309 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3310 factor = num_stripes / 2;
3311 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3312 factor = num_stripes - 1;
3313 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3314 factor = num_stripes - 2;
3315 } else {
3316 factor = num_stripes;
3319 for (i = 0; i < num_stripes; i++) {
3320 stripe = btrfs_stripe_nr(chunk, i);
3321 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3322 continue;
3324 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3325 stripe_length = btrfs_chunk_length(leaf, chunk);
3326 stripe_length = div_u64(stripe_length, factor);
3328 if (stripe_offset < bargs->pend &&
3329 stripe_offset + stripe_length > bargs->pstart)
3330 return 0;
3333 return 1;
3336 /* [vstart, vend) */
3337 static int chunk_vrange_filter(struct extent_buffer *leaf,
3338 struct btrfs_chunk *chunk,
3339 u64 chunk_offset,
3340 struct btrfs_balance_args *bargs)
3342 if (chunk_offset < bargs->vend &&
3343 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3344 /* at least part of the chunk is inside this vrange */
3345 return 0;
3347 return 1;
3350 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3351 struct btrfs_chunk *chunk,
3352 struct btrfs_balance_args *bargs)
3354 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3356 if (bargs->stripes_min <= num_stripes
3357 && num_stripes <= bargs->stripes_max)
3358 return 0;
3360 return 1;
3363 static int chunk_soft_convert_filter(u64 chunk_type,
3364 struct btrfs_balance_args *bargs)
3366 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3367 return 0;
3369 chunk_type = chunk_to_extended(chunk_type) &
3370 BTRFS_EXTENDED_PROFILE_MASK;
3372 if (bargs->target == chunk_type)
3373 return 1;
3375 return 0;
3378 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3379 struct extent_buffer *leaf,
3380 struct btrfs_chunk *chunk, u64 chunk_offset)
3382 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3383 struct btrfs_balance_args *bargs = NULL;
3384 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3386 /* type filter */
3387 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3388 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3389 return 0;
3392 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3393 bargs = &bctl->data;
3394 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3395 bargs = &bctl->sys;
3396 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3397 bargs = &bctl->meta;
3399 /* profiles filter */
3400 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3401 chunk_profiles_filter(chunk_type, bargs)) {
3402 return 0;
3405 /* usage filter */
3406 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3407 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3408 return 0;
3409 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3410 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3411 return 0;
3414 /* devid filter */
3415 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3416 chunk_devid_filter(leaf, chunk, bargs)) {
3417 return 0;
3420 /* drange filter, makes sense only with devid filter */
3421 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3422 chunk_drange_filter(leaf, chunk, bargs)) {
3423 return 0;
3426 /* vrange filter */
3427 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3428 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3429 return 0;
3432 /* stripes filter */
3433 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3434 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3435 return 0;
3438 /* soft profile changing mode */
3439 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3440 chunk_soft_convert_filter(chunk_type, bargs)) {
3441 return 0;
3445 * limited by count, must be the last filter
3447 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3448 if (bargs->limit == 0)
3449 return 0;
3450 else
3451 bargs->limit--;
3452 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3454 * Same logic as the 'limit' filter; the minimum cannot be
3455 * determined here because we do not have the global information
3456 * about the count of all chunks that satisfy the filters.
3458 if (bargs->limit_max == 0)
3459 return 0;
3460 else
3461 bargs->limit_max--;
3464 return 1;
3467 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3469 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3470 struct btrfs_root *chunk_root = fs_info->chunk_root;
3471 struct btrfs_root *dev_root = fs_info->dev_root;
3472 struct list_head *devices;
3473 struct btrfs_device *device;
3474 u64 old_size;
3475 u64 size_to_free;
3476 u64 chunk_type;
3477 struct btrfs_chunk *chunk;
3478 struct btrfs_path *path = NULL;
3479 struct btrfs_key key;
3480 struct btrfs_key found_key;
3481 struct btrfs_trans_handle *trans;
3482 struct extent_buffer *leaf;
3483 int slot;
3484 int ret;
3485 int enospc_errors = 0;
3486 bool counting = true;
3487 /* The single value limit and min/max limits use the same bytes in the */
3488 u64 limit_data = bctl->data.limit;
3489 u64 limit_meta = bctl->meta.limit;
3490 u64 limit_sys = bctl->sys.limit;
3491 u32 count_data = 0;
3492 u32 count_meta = 0;
3493 u32 count_sys = 0;
3494 int chunk_reserved = 0;
3495 u64 bytes_used = 0;
3497 /* step one make some room on all the devices */
3498 devices = &fs_info->fs_devices->devices;
3499 list_for_each_entry(device, devices, dev_list) {
3500 old_size = btrfs_device_get_total_bytes(device);
3501 size_to_free = div_factor(old_size, 1);
3502 size_to_free = min_t(u64, size_to_free, SZ_1M);
3503 if (!device->writeable ||
3504 btrfs_device_get_total_bytes(device) -
3505 btrfs_device_get_bytes_used(device) > size_to_free ||
3506 device->is_tgtdev_for_dev_replace)
3507 continue;
3509 ret = btrfs_shrink_device(device, old_size - size_to_free);
3510 if (ret == -ENOSPC)
3511 break;
3512 if (ret) {
3513 /* btrfs_shrink_device never returns ret > 0 */
3514 WARN_ON(ret > 0);
3515 goto error;
3518 trans = btrfs_start_transaction(dev_root, 0);
3519 if (IS_ERR(trans)) {
3520 ret = PTR_ERR(trans);
3521 btrfs_info_in_rcu(fs_info,
3522 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3523 rcu_str_deref(device->name), ret,
3524 old_size, old_size - size_to_free);
3525 goto error;
3528 ret = btrfs_grow_device(trans, device, old_size);
3529 if (ret) {
3530 btrfs_end_transaction(trans);
3531 /* btrfs_grow_device never returns ret > 0 */
3532 WARN_ON(ret > 0);
3533 btrfs_info_in_rcu(fs_info,
3534 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3535 rcu_str_deref(device->name), ret,
3536 old_size, old_size - size_to_free);
3537 goto error;
3540 btrfs_end_transaction(trans);
3543 /* step two, relocate all the chunks */
3544 path = btrfs_alloc_path();
3545 if (!path) {
3546 ret = -ENOMEM;
3547 goto error;
3550 /* zero out stat counters */
3551 spin_lock(&fs_info->balance_lock);
3552 memset(&bctl->stat, 0, sizeof(bctl->stat));
3553 spin_unlock(&fs_info->balance_lock);
3554 again:
3555 if (!counting) {
3557 * The single value limit and min/max limits use the same bytes
3558 * in the
3560 bctl->data.limit = limit_data;
3561 bctl->meta.limit = limit_meta;
3562 bctl->sys.limit = limit_sys;
3564 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3565 key.offset = (u64)-1;
3566 key.type = BTRFS_CHUNK_ITEM_KEY;
3568 while (1) {
3569 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3570 atomic_read(&fs_info->balance_cancel_req)) {
3571 ret = -ECANCELED;
3572 goto error;
3575 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3576 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3577 if (ret < 0) {
3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 goto error;
3583 * this shouldn't happen, it means the last relocate
3584 * failed
3586 if (ret == 0)
3587 BUG(); /* FIXME break ? */
3589 ret = btrfs_previous_item(chunk_root, path, 0,
3590 BTRFS_CHUNK_ITEM_KEY);
3591 if (ret) {
3592 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3593 ret = 0;
3594 break;
3597 leaf = path->nodes[0];
3598 slot = path->slots[0];
3599 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3601 if (found_key.objectid != key.objectid) {
3602 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3603 break;
3606 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3607 chunk_type = btrfs_chunk_type(leaf, chunk);
3609 if (!counting) {
3610 spin_lock(&fs_info->balance_lock);
3611 bctl->stat.considered++;
3612 spin_unlock(&fs_info->balance_lock);
3615 ret = should_balance_chunk(fs_info, leaf, chunk,
3616 found_key.offset);
3618 btrfs_release_path(path);
3619 if (!ret) {
3620 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3621 goto loop;
3624 if (counting) {
3625 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3626 spin_lock(&fs_info->balance_lock);
3627 bctl->stat.expected++;
3628 spin_unlock(&fs_info->balance_lock);
3630 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3631 count_data++;
3632 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3633 count_sys++;
3634 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3635 count_meta++;
3637 goto loop;
3641 * Apply limit_min filter, no need to check if the LIMITS
3642 * filter is used, limit_min is 0 by default
3644 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3645 count_data < bctl->data.limit_min)
3646 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3647 count_meta < bctl->meta.limit_min)
3648 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3649 count_sys < bctl->sys.limit_min)) {
3650 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3651 goto loop;
3654 ASSERT(fs_info->data_sinfo);
3655 spin_lock(&fs_info->data_sinfo->lock);
3656 bytes_used = fs_info->data_sinfo->bytes_used;
3657 spin_unlock(&fs_info->data_sinfo->lock);
3659 if ((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3660 !chunk_reserved && !bytes_used) {
3661 trans = btrfs_start_transaction(chunk_root, 0);
3662 if (IS_ERR(trans)) {
3663 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3664 ret = PTR_ERR(trans);
3665 goto error;
3668 ret = btrfs_force_chunk_alloc(trans, fs_info,
3669 BTRFS_BLOCK_GROUP_DATA);
3670 btrfs_end_transaction(trans);
3671 if (ret < 0) {
3672 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3673 goto error;
3675 chunk_reserved = 1;
3678 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3679 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3680 if (ret && ret != -ENOSPC)
3681 goto error;
3682 if (ret == -ENOSPC) {
3683 enospc_errors++;
3684 } else {
3685 spin_lock(&fs_info->balance_lock);
3686 bctl->stat.completed++;
3687 spin_unlock(&fs_info->balance_lock);
3689 loop:
3690 if (found_key.offset == 0)
3691 break;
3692 key.offset = found_key.offset - 1;
3695 if (counting) {
3696 btrfs_release_path(path);
3697 counting = false;
3698 goto again;
3700 error:
3701 btrfs_free_path(path);
3702 if (enospc_errors) {
3703 btrfs_info(fs_info, "%d enospc errors during balance",
3704 enospc_errors);
3705 if (!ret)
3706 ret = -ENOSPC;
3709 return ret;
3713 * alloc_profile_is_valid - see if a given profile is valid and reduced
3714 * @flags: profile to validate
3715 * @extended: if true @flags is treated as an extended profile
3717 static int alloc_profile_is_valid(u64 flags, int extended)
3719 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3720 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3722 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3724 /* 1) check that all other bits are zeroed */
3725 if (flags & ~mask)
3726 return 0;
3728 /* 2) see if profile is reduced */
3729 if (flags == 0)
3730 return !extended; /* "0" is valid for usual profiles */
3732 /* true if exactly one bit set */
3733 return (flags & (flags - 1)) == 0;
3736 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3738 /* cancel requested || normal exit path */
3739 return atomic_read(&fs_info->balance_cancel_req) ||
3740 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3741 atomic_read(&fs_info->balance_cancel_req) == 0);
3744 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3746 int ret;
3748 unset_balance_control(fs_info);
3749 ret = del_balance_item(fs_info);
3750 if (ret)
3751 btrfs_handle_fs_error(fs_info, ret, NULL);
3753 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3756 /* Non-zero return value signifies invalidity */
3757 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3758 u64 allowed)
3760 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3761 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3762 (bctl_arg->target & ~allowed)));
3766 * Should be called with both balance and volume mutexes held
3768 int btrfs_balance(struct btrfs_balance_control *bctl,
3769 struct btrfs_ioctl_balance_args *bargs)
3771 struct btrfs_fs_info *fs_info = bctl->fs_info;
3772 u64 meta_target, data_target;
3773 u64 allowed;
3774 int mixed = 0;
3775 int ret;
3776 u64 num_devices;
3777 unsigned seq;
3779 if (btrfs_fs_closing(fs_info) ||
3780 atomic_read(&fs_info->balance_pause_req) ||
3781 atomic_read(&fs_info->balance_cancel_req)) {
3782 ret = -EINVAL;
3783 goto out;
3786 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3787 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3788 mixed = 1;
3791 * In case of mixed groups both data and meta should be picked,
3792 * and identical options should be given for both of them.
3794 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3795 if (mixed && (bctl->flags & allowed)) {
3796 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3797 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3798 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3799 btrfs_err(fs_info,
3800 "with mixed groups data and metadata balance options must be the same");
3801 ret = -EINVAL;
3802 goto out;
3806 num_devices = fs_info->fs_devices->num_devices;
3807 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
3808 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3809 BUG_ON(num_devices < 1);
3810 num_devices--;
3812 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3813 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3814 if (num_devices > 1)
3815 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3816 if (num_devices > 2)
3817 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3818 if (num_devices > 3)
3819 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3820 BTRFS_BLOCK_GROUP_RAID6);
3821 if (validate_convert_profile(&bctl->data, allowed)) {
3822 btrfs_err(fs_info,
3823 "unable to start balance with target data profile %llu",
3824 bctl->data.target);
3825 ret = -EINVAL;
3826 goto out;
3828 if (validate_convert_profile(&bctl->meta, allowed)) {
3829 btrfs_err(fs_info,
3830 "unable to start balance with target metadata profile %llu",
3831 bctl->meta.target);
3832 ret = -EINVAL;
3833 goto out;
3835 if (validate_convert_profile(&bctl->sys, allowed)) {
3836 btrfs_err(fs_info,
3837 "unable to start balance with target system profile %llu",
3838 bctl->sys.target);
3839 ret = -EINVAL;
3840 goto out;
3843 /* allow to reduce meta or sys integrity only if force set */
3844 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3845 BTRFS_BLOCK_GROUP_RAID10 |
3846 BTRFS_BLOCK_GROUP_RAID5 |
3847 BTRFS_BLOCK_GROUP_RAID6;
3848 do {
3849 seq = read_seqbegin(&fs_info->profiles_lock);
3851 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3852 (fs_info->avail_system_alloc_bits & allowed) &&
3853 !(bctl->sys.target & allowed)) ||
3854 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3855 (fs_info->avail_metadata_alloc_bits & allowed) &&
3856 !(bctl->meta.target & allowed))) {
3857 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3858 btrfs_info(fs_info,
3859 "force reducing metadata integrity");
3860 } else {
3861 btrfs_err(fs_info,
3862 "balance will reduce metadata integrity, use force if you want this");
3863 ret = -EINVAL;
3864 goto out;
3867 } while (read_seqretry(&fs_info->profiles_lock, seq));
3869 /* if we're not converting, the target field is uninitialized */
3870 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3871 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3872 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3873 bctl->data.target : fs_info->avail_data_alloc_bits;
3874 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3875 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3876 btrfs_warn(fs_info,
3877 "metadata profile 0x%llx has lower redundancy than data profile 0x%llx",
3878 meta_target, data_target);
3881 ret = insert_balance_item(fs_info, bctl);
3882 if (ret && ret != -EEXIST)
3883 goto out;
3885 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3886 BUG_ON(ret == -EEXIST);
3887 set_balance_control(bctl);
3888 } else {
3889 BUG_ON(ret != -EEXIST);
3890 spin_lock(&fs_info->balance_lock);
3891 update_balance_args(bctl);
3892 spin_unlock(&fs_info->balance_lock);
3895 atomic_inc(&fs_info->balance_running);
3896 mutex_unlock(&fs_info->balance_mutex);
3898 ret = __btrfs_balance(fs_info);
3900 mutex_lock(&fs_info->balance_mutex);
3901 atomic_dec(&fs_info->balance_running);
3903 if (bargs) {
3904 memset(bargs, 0, sizeof(*bargs));
3905 update_ioctl_balance_args(fs_info, 0, bargs);
3908 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3909 balance_need_close(fs_info)) {
3910 __cancel_balance(fs_info);
3913 wake_up(&fs_info->balance_wait_q);
3915 return ret;
3916 out:
3917 if (bctl->flags & BTRFS_BALANCE_RESUME)
3918 __cancel_balance(fs_info);
3919 else {
3920 kfree(bctl);
3921 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3923 return ret;
3926 static int balance_kthread(void *data)
3928 struct btrfs_fs_info *fs_info = data;
3929 int ret = 0;
3931 mutex_lock(&fs_info->volume_mutex);
3932 mutex_lock(&fs_info->balance_mutex);
3934 if (fs_info->balance_ctl) {
3935 btrfs_info(fs_info, "continuing balance");
3936 ret = btrfs_balance(fs_info->balance_ctl, NULL);
3939 mutex_unlock(&fs_info->balance_mutex);
3940 mutex_unlock(&fs_info->volume_mutex);
3942 return ret;
3945 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3947 struct task_struct *tsk;
3949 spin_lock(&fs_info->balance_lock);
3950 if (!fs_info->balance_ctl) {
3951 spin_unlock(&fs_info->balance_lock);
3952 return 0;
3954 spin_unlock(&fs_info->balance_lock);
3956 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3957 btrfs_info(fs_info, "force skipping balance");
3958 return 0;
3961 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3962 return PTR_ERR_OR_ZERO(tsk);
3965 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3967 struct btrfs_balance_control *bctl;
3968 struct btrfs_balance_item *item;
3969 struct btrfs_disk_balance_args disk_bargs;
3970 struct btrfs_path *path;
3971 struct extent_buffer *leaf;
3972 struct btrfs_key key;
3973 int ret;
3975 path = btrfs_alloc_path();
3976 if (!path)
3977 return -ENOMEM;
3979 key.objectid = BTRFS_BALANCE_OBJECTID;
3980 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3981 key.offset = 0;
3983 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3984 if (ret < 0)
3985 goto out;
3986 if (ret > 0) { /* ret = -ENOENT; */
3987 ret = 0;
3988 goto out;
3991 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3992 if (!bctl) {
3993 ret = -ENOMEM;
3994 goto out;
3997 leaf = path->nodes[0];
3998 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4000 bctl->fs_info = fs_info;
4001 bctl->flags = btrfs_balance_flags(leaf, item);
4002 bctl->flags |= BTRFS_BALANCE_RESUME;
4004 btrfs_balance_data(leaf, item, &disk_bargs);
4005 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4006 btrfs_balance_meta(leaf, item, &disk_bargs);
4007 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4008 btrfs_balance_sys(leaf, item, &disk_bargs);
4009 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4011 WARN_ON(test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4013 mutex_lock(&fs_info->volume_mutex);
4014 mutex_lock(&fs_info->balance_mutex);
4016 set_balance_control(bctl);
4018 mutex_unlock(&fs_info->balance_mutex);
4019 mutex_unlock(&fs_info->volume_mutex);
4020 out:
4021 btrfs_free_path(path);
4022 return ret;
4025 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4027 int ret = 0;
4029 mutex_lock(&fs_info->balance_mutex);
4030 if (!fs_info->balance_ctl) {
4031 mutex_unlock(&fs_info->balance_mutex);
4032 return -ENOTCONN;
4035 if (atomic_read(&fs_info->balance_running)) {
4036 atomic_inc(&fs_info->balance_pause_req);
4037 mutex_unlock(&fs_info->balance_mutex);
4039 wait_event(fs_info->balance_wait_q,
4040 atomic_read(&fs_info->balance_running) == 0);
4042 mutex_lock(&fs_info->balance_mutex);
4043 /* we are good with balance_ctl ripped off from under us */
4044 BUG_ON(atomic_read(&fs_info->balance_running));
4045 atomic_dec(&fs_info->balance_pause_req);
4046 } else {
4047 ret = -ENOTCONN;
4050 mutex_unlock(&fs_info->balance_mutex);
4051 return ret;
4054 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4056 if (sb_rdonly(fs_info->sb))
4057 return -EROFS;
4059 mutex_lock(&fs_info->balance_mutex);
4060 if (!fs_info->balance_ctl) {
4061 mutex_unlock(&fs_info->balance_mutex);
4062 return -ENOTCONN;
4065 atomic_inc(&fs_info->balance_cancel_req);
4067 * if we are running just wait and return, balance item is
4068 * deleted in btrfs_balance in this case
4070 if (atomic_read(&fs_info->balance_running)) {
4071 mutex_unlock(&fs_info->balance_mutex);
4072 wait_event(fs_info->balance_wait_q,
4073 atomic_read(&fs_info->balance_running) == 0);
4074 mutex_lock(&fs_info->balance_mutex);
4075 } else {
4076 /* __cancel_balance needs volume_mutex */
4077 mutex_unlock(&fs_info->balance_mutex);
4078 mutex_lock(&fs_info->volume_mutex);
4079 mutex_lock(&fs_info->balance_mutex);
4081 if (fs_info->balance_ctl)
4082 __cancel_balance(fs_info);
4084 mutex_unlock(&fs_info->volume_mutex);
4087 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
4088 atomic_dec(&fs_info->balance_cancel_req);
4089 mutex_unlock(&fs_info->balance_mutex);
4090 return 0;
4093 static int btrfs_uuid_scan_kthread(void *data)
4095 struct btrfs_fs_info *fs_info = data;
4096 struct btrfs_root *root = fs_info->tree_root;
4097 struct btrfs_key key;
4098 struct btrfs_path *path = NULL;
4099 int ret = 0;
4100 struct extent_buffer *eb;
4101 int slot;
4102 struct btrfs_root_item root_item;
4103 u32 item_size;
4104 struct btrfs_trans_handle *trans = NULL;
4106 path = btrfs_alloc_path();
4107 if (!path) {
4108 ret = -ENOMEM;
4109 goto out;
4112 key.objectid = 0;
4113 key.type = BTRFS_ROOT_ITEM_KEY;
4114 key.offset = 0;
4116 while (1) {
4117 ret = btrfs_search_forward(root, &key, path, 0);
4118 if (ret) {
4119 if (ret > 0)
4120 ret = 0;
4121 break;
4124 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4125 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4126 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4127 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4128 goto skip;
4130 eb = path->nodes[0];
4131 slot = path->slots[0];
4132 item_size = btrfs_item_size_nr(eb, slot);
4133 if (item_size < sizeof(root_item))
4134 goto skip;
4136 read_extent_buffer(eb, &root_item,
4137 btrfs_item_ptr_offset(eb, slot),
4138 (int)sizeof(root_item));
4139 if (btrfs_root_refs(&root_item) == 0)
4140 goto skip;
4142 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4143 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4144 if (trans)
4145 goto update_tree;
4147 btrfs_release_path(path);
4149 * 1 - subvol uuid item
4150 * 1 - received_subvol uuid item
4152 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4153 if (IS_ERR(trans)) {
4154 ret = PTR_ERR(trans);
4155 break;
4157 continue;
4158 } else {
4159 goto skip;
4161 update_tree:
4162 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4163 ret = btrfs_uuid_tree_add(trans, fs_info,
4164 root_item.uuid,
4165 BTRFS_UUID_KEY_SUBVOL,
4166 key.objectid);
4167 if (ret < 0) {
4168 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4169 ret);
4170 break;
4174 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4175 ret = btrfs_uuid_tree_add(trans, fs_info,
4176 root_item.received_uuid,
4177 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4178 key.objectid);
4179 if (ret < 0) {
4180 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4181 ret);
4182 break;
4186 skip:
4187 if (trans) {
4188 ret = btrfs_end_transaction(trans);
4189 trans = NULL;
4190 if (ret)
4191 break;
4194 btrfs_release_path(path);
4195 if (key.offset < (u64)-1) {
4196 key.offset++;
4197 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4198 key.offset = 0;
4199 key.type = BTRFS_ROOT_ITEM_KEY;
4200 } else if (key.objectid < (u64)-1) {
4201 key.offset = 0;
4202 key.type = BTRFS_ROOT_ITEM_KEY;
4203 key.objectid++;
4204 } else {
4205 break;
4207 cond_resched();
4210 out:
4211 btrfs_free_path(path);
4212 if (trans && !IS_ERR(trans))
4213 btrfs_end_transaction(trans);
4214 if (ret)
4215 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4216 else
4217 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4218 up(&fs_info->uuid_tree_rescan_sem);
4219 return 0;
4223 * Callback for btrfs_uuid_tree_iterate().
4224 * returns:
4225 * 0 check succeeded, the entry is not outdated.
4226 * < 0 if an error occurred.
4227 * > 0 if the check failed, which means the caller shall remove the entry.
4229 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4230 u8 *uuid, u8 type, u64 subid)
4232 struct btrfs_key key;
4233 int ret = 0;
4234 struct btrfs_root *subvol_root;
4236 if (type != BTRFS_UUID_KEY_SUBVOL &&
4237 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4238 goto out;
4240 key.objectid = subid;
4241 key.type = BTRFS_ROOT_ITEM_KEY;
4242 key.offset = (u64)-1;
4243 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4244 if (IS_ERR(subvol_root)) {
4245 ret = PTR_ERR(subvol_root);
4246 if (ret == -ENOENT)
4247 ret = 1;
4248 goto out;
4251 switch (type) {
4252 case BTRFS_UUID_KEY_SUBVOL:
4253 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4254 ret = 1;
4255 break;
4256 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4257 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4258 BTRFS_UUID_SIZE))
4259 ret = 1;
4260 break;
4263 out:
4264 return ret;
4267 static int btrfs_uuid_rescan_kthread(void *data)
4269 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4270 int ret;
4273 * 1st step is to iterate through the existing UUID tree and
4274 * to delete all entries that contain outdated data.
4275 * 2nd step is to add all missing entries to the UUID tree.
4277 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4278 if (ret < 0) {
4279 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4280 up(&fs_info->uuid_tree_rescan_sem);
4281 return ret;
4283 return btrfs_uuid_scan_kthread(data);
4286 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4288 struct btrfs_trans_handle *trans;
4289 struct btrfs_root *tree_root = fs_info->tree_root;
4290 struct btrfs_root *uuid_root;
4291 struct task_struct *task;
4292 int ret;
4295 * 1 - root node
4296 * 1 - root item
4298 trans = btrfs_start_transaction(tree_root, 2);
4299 if (IS_ERR(trans))
4300 return PTR_ERR(trans);
4302 uuid_root = btrfs_create_tree(trans, fs_info,
4303 BTRFS_UUID_TREE_OBJECTID);
4304 if (IS_ERR(uuid_root)) {
4305 ret = PTR_ERR(uuid_root);
4306 btrfs_abort_transaction(trans, ret);
4307 btrfs_end_transaction(trans);
4308 return ret;
4311 fs_info->uuid_root = uuid_root;
4313 ret = btrfs_commit_transaction(trans);
4314 if (ret)
4315 return ret;
4317 down(&fs_info->uuid_tree_rescan_sem);
4318 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4319 if (IS_ERR(task)) {
4320 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4321 btrfs_warn(fs_info, "failed to start uuid_scan task");
4322 up(&fs_info->uuid_tree_rescan_sem);
4323 return PTR_ERR(task);
4326 return 0;
4329 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4331 struct task_struct *task;
4333 down(&fs_info->uuid_tree_rescan_sem);
4334 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4335 if (IS_ERR(task)) {
4336 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4337 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4338 up(&fs_info->uuid_tree_rescan_sem);
4339 return PTR_ERR(task);
4342 return 0;
4346 * shrinking a device means finding all of the device extents past
4347 * the new size, and then following the back refs to the chunks.
4348 * The chunk relocation code actually frees the device extent
4350 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4352 struct btrfs_fs_info *fs_info = device->fs_info;
4353 struct btrfs_root *root = fs_info->dev_root;
4354 struct btrfs_trans_handle *trans;
4355 struct btrfs_dev_extent *dev_extent = NULL;
4356 struct btrfs_path *path;
4357 u64 length;
4358 u64 chunk_offset;
4359 int ret;
4360 int slot;
4361 int failed = 0;
4362 bool retried = false;
4363 bool checked_pending_chunks = false;
4364 struct extent_buffer *l;
4365 struct btrfs_key key;
4366 struct btrfs_super_block *super_copy = fs_info->super_copy;
4367 u64 old_total = btrfs_super_total_bytes(super_copy);
4368 u64 old_size = btrfs_device_get_total_bytes(device);
4369 u64 diff;
4371 new_size = round_down(new_size, fs_info->sectorsize);
4372 diff = round_down(old_size - new_size, fs_info->sectorsize);
4374 if (device->is_tgtdev_for_dev_replace)
4375 return -EINVAL;
4377 path = btrfs_alloc_path();
4378 if (!path)
4379 return -ENOMEM;
4381 path->reada = READA_FORWARD;
4383 mutex_lock(&fs_info->chunk_mutex);
4385 btrfs_device_set_total_bytes(device, new_size);
4386 if (device->writeable) {
4387 device->fs_devices->total_rw_bytes -= diff;
4388 atomic64_sub(diff, &fs_info->free_chunk_space);
4390 mutex_unlock(&fs_info->chunk_mutex);
4392 again:
4393 key.objectid = device->devid;
4394 key.offset = (u64)-1;
4395 key.type = BTRFS_DEV_EXTENT_KEY;
4397 do {
4398 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4400 if (ret < 0) {
4401 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4402 goto done;
4405 ret = btrfs_previous_item(root, path, 0, key.type);
4406 if (ret)
4407 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4408 if (ret < 0)
4409 goto done;
4410 if (ret) {
4411 ret = 0;
4412 btrfs_release_path(path);
4413 break;
4416 l = path->nodes[0];
4417 slot = path->slots[0];
4418 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4420 if (key.objectid != device->devid) {
4421 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4422 btrfs_release_path(path);
4423 break;
4426 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4427 length = btrfs_dev_extent_length(l, dev_extent);
4429 if (key.offset + length <= new_size) {
4430 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4431 btrfs_release_path(path);
4432 break;
4435 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4436 btrfs_release_path(path);
4438 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4439 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4440 if (ret && ret != -ENOSPC)
4441 goto done;
4442 if (ret == -ENOSPC)
4443 failed++;
4444 } while (key.offset-- > 0);
4446 if (failed && !retried) {
4447 failed = 0;
4448 retried = true;
4449 goto again;
4450 } else if (failed && retried) {
4451 ret = -ENOSPC;
4452 goto done;
4455 /* Shrinking succeeded, else we would be at "done". */
4456 trans = btrfs_start_transaction(root, 0);
4457 if (IS_ERR(trans)) {
4458 ret = PTR_ERR(trans);
4459 goto done;
4462 mutex_lock(&fs_info->chunk_mutex);
4465 * We checked in the above loop all device extents that were already in
4466 * the device tree. However before we have updated the device's
4467 * total_bytes to the new size, we might have had chunk allocations that
4468 * have not complete yet (new block groups attached to transaction
4469 * handles), and therefore their device extents were not yet in the
4470 * device tree and we missed them in the loop above. So if we have any
4471 * pending chunk using a device extent that overlaps the device range
4472 * that we can not use anymore, commit the current transaction and
4473 * repeat the search on the device tree - this way we guarantee we will
4474 * not have chunks using device extents that end beyond 'new_size'.
4476 if (!checked_pending_chunks) {
4477 u64 start = new_size;
4478 u64 len = old_size - new_size;
4480 if (contains_pending_extent(trans->transaction, device,
4481 &start, len)) {
4482 mutex_unlock(&fs_info->chunk_mutex);
4483 checked_pending_chunks = true;
4484 failed = 0;
4485 retried = false;
4486 ret = btrfs_commit_transaction(trans);
4487 if (ret)
4488 goto done;
4489 goto again;
4493 btrfs_device_set_disk_total_bytes(device, new_size);
4494 if (list_empty(&device->resized_list))
4495 list_add_tail(&device->resized_list,
4496 &fs_info->fs_devices->resized_devices);
4498 WARN_ON(diff > old_total);
4499 btrfs_set_super_total_bytes(super_copy,
4500 round_down(old_total - diff, fs_info->sectorsize));
4501 mutex_unlock(&fs_info->chunk_mutex);
4503 /* Now btrfs_update_device() will change the on-disk size. */
4504 ret = btrfs_update_device(trans, device);
4505 btrfs_end_transaction(trans);
4506 done:
4507 btrfs_free_path(path);
4508 if (ret) {
4509 mutex_lock(&fs_info->chunk_mutex);
4510 btrfs_device_set_total_bytes(device, old_size);
4511 if (device->writeable)
4512 device->fs_devices->total_rw_bytes += diff;
4513 atomic64_add(diff, &fs_info->free_chunk_space);
4514 mutex_unlock(&fs_info->chunk_mutex);
4516 return ret;
4519 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4520 struct btrfs_key *key,
4521 struct btrfs_chunk *chunk, int item_size)
4523 struct btrfs_super_block *super_copy = fs_info->super_copy;
4524 struct btrfs_disk_key disk_key;
4525 u32 array_size;
4526 u8 *ptr;
4528 mutex_lock(&fs_info->chunk_mutex);
4529 array_size = btrfs_super_sys_array_size(super_copy);
4530 if (array_size + item_size + sizeof(disk_key)
4531 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4532 mutex_unlock(&fs_info->chunk_mutex);
4533 return -EFBIG;
4536 ptr = super_copy->sys_chunk_array + array_size;
4537 btrfs_cpu_key_to_disk(&disk_key, key);
4538 memcpy(ptr, &disk_key, sizeof(disk_key));
4539 ptr += sizeof(disk_key);
4540 memcpy(ptr, chunk, item_size);
4541 item_size += sizeof(disk_key);
4542 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4543 mutex_unlock(&fs_info->chunk_mutex);
4545 return 0;
4549 * sort the devices in descending order by max_avail, total_avail
4551 static int btrfs_cmp_device_info(const void *a, const void *b)
4553 const struct btrfs_device_info *di_a = a;
4554 const struct btrfs_device_info *di_b = b;
4556 if (di_a->max_avail > di_b->max_avail)
4557 return -1;
4558 if (di_a->max_avail < di_b->max_avail)
4559 return 1;
4560 if (di_a->total_avail > di_b->total_avail)
4561 return -1;
4562 if (di_a->total_avail < di_b->total_avail)
4563 return 1;
4564 return 0;
4567 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4569 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4570 return;
4572 btrfs_set_fs_incompat(info, RAID56);
4575 #define BTRFS_MAX_DEVS(r) ((BTRFS_MAX_ITEM_SIZE(r->fs_info) \
4576 - sizeof(struct btrfs_chunk)) \
4577 / sizeof(struct btrfs_stripe) + 1)
4579 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4580 - 2 * sizeof(struct btrfs_disk_key) \
4581 - 2 * sizeof(struct btrfs_chunk)) \
4582 / sizeof(struct btrfs_stripe) + 1)
4584 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4585 u64 start, u64 type)
4587 struct btrfs_fs_info *info = trans->fs_info;
4588 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4589 struct btrfs_device *device;
4590 struct map_lookup *map = NULL;
4591 struct extent_map_tree *em_tree;
4592 struct extent_map *em;
4593 struct btrfs_device_info *devices_info = NULL;
4594 u64 total_avail;
4595 int num_stripes; /* total number of stripes to allocate */
4596 int data_stripes; /* number of stripes that count for
4597 block group size */
4598 int sub_stripes; /* sub_stripes info for map */
4599 int dev_stripes; /* stripes per dev */
4600 int devs_max; /* max devs to use */
4601 int devs_min; /* min devs needed */
4602 int devs_increment; /* ndevs has to be a multiple of this */
4603 int ncopies; /* how many copies to data has */
4604 int ret;
4605 u64 max_stripe_size;
4606 u64 max_chunk_size;
4607 u64 stripe_size;
4608 u64 num_bytes;
4609 int ndevs;
4610 int i;
4611 int j;
4612 int index;
4614 BUG_ON(!alloc_profile_is_valid(type, 0));
4616 if (list_empty(&fs_devices->alloc_list))
4617 return -ENOSPC;
4619 index = __get_raid_index(type);
4621 sub_stripes = btrfs_raid_array[index].sub_stripes;
4622 dev_stripes = btrfs_raid_array[index].dev_stripes;
4623 devs_max = btrfs_raid_array[index].devs_max;
4624 devs_min = btrfs_raid_array[index].devs_min;
4625 devs_increment = btrfs_raid_array[index].devs_increment;
4626 ncopies = btrfs_raid_array[index].ncopies;
4628 if (type & BTRFS_BLOCK_GROUP_DATA) {
4629 max_stripe_size = SZ_1G;
4630 max_chunk_size = 10 * max_stripe_size;
4631 if (!devs_max)
4632 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4633 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4634 /* for larger filesystems, use larger metadata chunks */
4635 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4636 max_stripe_size = SZ_1G;
4637 else
4638 max_stripe_size = SZ_256M;
4639 max_chunk_size = max_stripe_size;
4640 if (!devs_max)
4641 devs_max = BTRFS_MAX_DEVS(info->chunk_root);
4642 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4643 max_stripe_size = SZ_32M;
4644 max_chunk_size = 2 * max_stripe_size;
4645 if (!devs_max)
4646 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4647 } else {
4648 btrfs_err(info, "invalid chunk type 0x%llx requested",
4649 type);
4650 BUG_ON(1);
4653 /* we don't want a chunk larger than 10% of writeable space */
4654 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4655 max_chunk_size);
4657 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4658 GFP_NOFS);
4659 if (!devices_info)
4660 return -ENOMEM;
4663 * in the first pass through the devices list, we gather information
4664 * about the available holes on each device.
4666 ndevs = 0;
4667 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4668 u64 max_avail;
4669 u64 dev_offset;
4671 if (!device->writeable) {
4672 WARN(1, KERN_ERR
4673 "BTRFS: read-only device in alloc_list\n");
4674 continue;
4677 if (!device->in_fs_metadata ||
4678 device->is_tgtdev_for_dev_replace)
4679 continue;
4681 if (device->total_bytes > device->bytes_used)
4682 total_avail = device->total_bytes - device->bytes_used;
4683 else
4684 total_avail = 0;
4686 /* If there is no space on this device, skip it. */
4687 if (total_avail == 0)
4688 continue;
4690 ret = find_free_dev_extent(trans, device,
4691 max_stripe_size * dev_stripes,
4692 &dev_offset, &max_avail);
4693 if (ret && ret != -ENOSPC)
4694 goto error;
4696 if (ret == 0)
4697 max_avail = max_stripe_size * dev_stripes;
4699 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4700 continue;
4702 if (ndevs == fs_devices->rw_devices) {
4703 WARN(1, "%s: found more than %llu devices\n",
4704 __func__, fs_devices->rw_devices);
4705 break;
4707 devices_info[ndevs].dev_offset = dev_offset;
4708 devices_info[ndevs].max_avail = max_avail;
4709 devices_info[ndevs].total_avail = total_avail;
4710 devices_info[ndevs].dev = device;
4711 ++ndevs;
4715 * now sort the devices by hole size / available space
4717 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4718 btrfs_cmp_device_info, NULL);
4720 /* round down to number of usable stripes */
4721 ndevs = round_down(ndevs, devs_increment);
4723 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4724 ret = -ENOSPC;
4725 goto error;
4728 ndevs = min(ndevs, devs_max);
4731 * the primary goal is to maximize the number of stripes, so use as many
4732 * devices as possible, even if the stripes are not maximum sized.
4734 stripe_size = devices_info[ndevs-1].max_avail;
4735 num_stripes = ndevs * dev_stripes;
4738 * this will have to be fixed for RAID1 and RAID10 over
4739 * more drives
4741 data_stripes = num_stripes / ncopies;
4743 if (type & BTRFS_BLOCK_GROUP_RAID5)
4744 data_stripes = num_stripes - 1;
4746 if (type & BTRFS_BLOCK_GROUP_RAID6)
4747 data_stripes = num_stripes - 2;
4750 * Use the number of data stripes to figure out how big this chunk
4751 * is really going to be in terms of logical address space,
4752 * and compare that answer with the max chunk size
4754 if (stripe_size * data_stripes > max_chunk_size) {
4755 u64 mask = (1ULL << 24) - 1;
4757 stripe_size = div_u64(max_chunk_size, data_stripes);
4759 /* bump the answer up to a 16MB boundary */
4760 stripe_size = (stripe_size + mask) & ~mask;
4762 /* but don't go higher than the limits we found
4763 * while searching for free extents
4765 if (stripe_size > devices_info[ndevs-1].max_avail)
4766 stripe_size = devices_info[ndevs-1].max_avail;
4769 stripe_size = div_u64(stripe_size, dev_stripes);
4771 /* align to BTRFS_STRIPE_LEN */
4772 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4774 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4775 if (!map) {
4776 ret = -ENOMEM;
4777 goto error;
4779 map->num_stripes = num_stripes;
4781 for (i = 0; i < ndevs; ++i) {
4782 for (j = 0; j < dev_stripes; ++j) {
4783 int s = i * dev_stripes + j;
4784 map->stripes[s].dev = devices_info[i].dev;
4785 map->stripes[s].physical = devices_info[i].dev_offset +
4786 j * stripe_size;
4789 map->stripe_len = BTRFS_STRIPE_LEN;
4790 map->io_align = BTRFS_STRIPE_LEN;
4791 map->io_width = BTRFS_STRIPE_LEN;
4792 map->type = type;
4793 map->sub_stripes = sub_stripes;
4795 num_bytes = stripe_size * data_stripes;
4797 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4799 em = alloc_extent_map();
4800 if (!em) {
4801 kfree(map);
4802 ret = -ENOMEM;
4803 goto error;
4805 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4806 em->map_lookup = map;
4807 em->start = start;
4808 em->len = num_bytes;
4809 em->block_start = 0;
4810 em->block_len = em->len;
4811 em->orig_block_len = stripe_size;
4813 em_tree = &info->mapping_tree.map_tree;
4814 write_lock(&em_tree->lock);
4815 ret = add_extent_mapping(em_tree, em, 0);
4816 if (!ret) {
4817 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4818 refcount_inc(&em->refs);
4820 write_unlock(&em_tree->lock);
4821 if (ret) {
4822 free_extent_map(em);
4823 goto error;
4826 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4827 if (ret)
4828 goto error_del_extent;
4830 for (i = 0; i < map->num_stripes; i++) {
4831 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4832 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4835 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4837 free_extent_map(em);
4838 check_raid56_incompat_flag(info, type);
4840 kfree(devices_info);
4841 return 0;
4843 error_del_extent:
4844 write_lock(&em_tree->lock);
4845 remove_extent_mapping(em_tree, em);
4846 write_unlock(&em_tree->lock);
4848 /* One for our allocation */
4849 free_extent_map(em);
4850 /* One for the tree reference */
4851 free_extent_map(em);
4852 /* One for the pending_chunks list reference */
4853 free_extent_map(em);
4854 error:
4855 kfree(devices_info);
4856 return ret;
4859 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4860 struct btrfs_fs_info *fs_info,
4861 u64 chunk_offset, u64 chunk_size)
4863 struct btrfs_root *extent_root = fs_info->extent_root;
4864 struct btrfs_root *chunk_root = fs_info->chunk_root;
4865 struct btrfs_key key;
4866 struct btrfs_device *device;
4867 struct btrfs_chunk *chunk;
4868 struct btrfs_stripe *stripe;
4869 struct extent_map *em;
4870 struct map_lookup *map;
4871 size_t item_size;
4872 u64 dev_offset;
4873 u64 stripe_size;
4874 int i = 0;
4875 int ret = 0;
4877 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4878 if (IS_ERR(em))
4879 return PTR_ERR(em);
4881 map = em->map_lookup;
4882 item_size = btrfs_chunk_item_size(map->num_stripes);
4883 stripe_size = em->orig_block_len;
4885 chunk = kzalloc(item_size, GFP_NOFS);
4886 if (!chunk) {
4887 ret = -ENOMEM;
4888 goto out;
4892 * Take the device list mutex to prevent races with the final phase of
4893 * a device replace operation that replaces the device object associated
4894 * with the map's stripes, because the device object's id can change
4895 * at any time during that final phase of the device replace operation
4896 * (dev-replace.c:btrfs_dev_replace_finishing()).
4898 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4899 for (i = 0; i < map->num_stripes; i++) {
4900 device = map->stripes[i].dev;
4901 dev_offset = map->stripes[i].physical;
4903 ret = btrfs_update_device(trans, device);
4904 if (ret)
4905 break;
4906 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4907 dev_offset, stripe_size);
4908 if (ret)
4909 break;
4911 if (ret) {
4912 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4913 goto out;
4916 stripe = &chunk->stripe;
4917 for (i = 0; i < map->num_stripes; i++) {
4918 device = map->stripes[i].dev;
4919 dev_offset = map->stripes[i].physical;
4921 btrfs_set_stack_stripe_devid(stripe, device->devid);
4922 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4923 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4924 stripe++;
4926 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4928 btrfs_set_stack_chunk_length(chunk, chunk_size);
4929 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4930 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4931 btrfs_set_stack_chunk_type(chunk, map->type);
4932 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4933 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4934 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4935 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
4936 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4938 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4939 key.type = BTRFS_CHUNK_ITEM_KEY;
4940 key.offset = chunk_offset;
4942 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4943 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4945 * TODO: Cleanup of inserted chunk root in case of
4946 * failure.
4948 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
4951 out:
4952 kfree(chunk);
4953 free_extent_map(em);
4954 return ret;
4958 * Chunk allocation falls into two parts. The first part does works
4959 * that make the new allocated chunk useable, but not do any operation
4960 * that modifies the chunk tree. The second part does the works that
4961 * require modifying the chunk tree. This division is important for the
4962 * bootstrap process of adding storage to a seed btrfs.
4964 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4965 struct btrfs_fs_info *fs_info, u64 type)
4967 u64 chunk_offset;
4969 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4970 chunk_offset = find_next_chunk(fs_info);
4971 return __btrfs_alloc_chunk(trans, chunk_offset, type);
4974 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4975 struct btrfs_fs_info *fs_info)
4977 u64 chunk_offset;
4978 u64 sys_chunk_offset;
4979 u64 alloc_profile;
4980 int ret;
4982 chunk_offset = find_next_chunk(fs_info);
4983 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
4984 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
4985 if (ret)
4986 return ret;
4988 sys_chunk_offset = find_next_chunk(fs_info);
4989 alloc_profile = btrfs_system_alloc_profile(fs_info);
4990 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
4991 return ret;
4994 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
4996 int max_errors;
4998 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
4999 BTRFS_BLOCK_GROUP_RAID10 |
5000 BTRFS_BLOCK_GROUP_RAID5 |
5001 BTRFS_BLOCK_GROUP_DUP)) {
5002 max_errors = 1;
5003 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5004 max_errors = 2;
5005 } else {
5006 max_errors = 0;
5009 return max_errors;
5012 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5014 struct extent_map *em;
5015 struct map_lookup *map;
5016 int readonly = 0;
5017 int miss_ndevs = 0;
5018 int i;
5020 em = get_chunk_map(fs_info, chunk_offset, 1);
5021 if (IS_ERR(em))
5022 return 1;
5024 map = em->map_lookup;
5025 for (i = 0; i < map->num_stripes; i++) {
5026 if (map->stripes[i].dev->missing) {
5027 miss_ndevs++;
5028 continue;
5031 if (!map->stripes[i].dev->writeable) {
5032 readonly = 1;
5033 goto end;
5038 * If the number of missing devices is larger than max errors,
5039 * we can not write the data into that chunk successfully, so
5040 * set it readonly.
5042 if (miss_ndevs > btrfs_chunk_max_errors(map))
5043 readonly = 1;
5044 end:
5045 free_extent_map(em);
5046 return readonly;
5049 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5051 extent_map_tree_init(&tree->map_tree);
5054 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5056 struct extent_map *em;
5058 while (1) {
5059 write_lock(&tree->map_tree.lock);
5060 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5061 if (em)
5062 remove_extent_mapping(&tree->map_tree, em);
5063 write_unlock(&tree->map_tree.lock);
5064 if (!em)
5065 break;
5066 /* once for us */
5067 free_extent_map(em);
5068 /* once for the tree */
5069 free_extent_map(em);
5073 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5075 struct extent_map *em;
5076 struct map_lookup *map;
5077 int ret;
5079 em = get_chunk_map(fs_info, logical, len);
5080 if (IS_ERR(em))
5082 * We could return errors for these cases, but that could get
5083 * ugly and we'd probably do the same thing which is just not do
5084 * anything else and exit, so return 1 so the callers don't try
5085 * to use other copies.
5087 return 1;
5089 map = em->map_lookup;
5090 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5091 ret = map->num_stripes;
5092 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5093 ret = map->sub_stripes;
5094 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5095 ret = 2;
5096 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5097 ret = 3;
5098 else
5099 ret = 1;
5100 free_extent_map(em);
5102 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
5103 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5104 fs_info->dev_replace.tgtdev)
5105 ret++;
5106 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
5108 return ret;
5111 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5112 u64 logical)
5114 struct extent_map *em;
5115 struct map_lookup *map;
5116 unsigned long len = fs_info->sectorsize;
5118 em = get_chunk_map(fs_info, logical, len);
5120 if (!WARN_ON(IS_ERR(em))) {
5121 map = em->map_lookup;
5122 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5123 len = map->stripe_len * nr_data_stripes(map);
5124 free_extent_map(em);
5126 return len;
5129 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5131 struct extent_map *em;
5132 struct map_lookup *map;
5133 int ret = 0;
5135 em = get_chunk_map(fs_info, logical, len);
5137 if(!WARN_ON(IS_ERR(em))) {
5138 map = em->map_lookup;
5139 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5140 ret = 1;
5141 free_extent_map(em);
5143 return ret;
5146 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5147 struct map_lookup *map, int first, int num,
5148 int optimal, int dev_replace_is_ongoing)
5150 int i;
5151 int tolerance;
5152 struct btrfs_device *srcdev;
5154 if (dev_replace_is_ongoing &&
5155 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5156 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5157 srcdev = fs_info->dev_replace.srcdev;
5158 else
5159 srcdev = NULL;
5162 * try to avoid the drive that is the source drive for a
5163 * dev-replace procedure, only choose it if no other non-missing
5164 * mirror is available
5166 for (tolerance = 0; tolerance < 2; tolerance++) {
5167 if (map->stripes[optimal].dev->bdev &&
5168 (tolerance || map->stripes[optimal].dev != srcdev))
5169 return optimal;
5170 for (i = first; i < first + num; i++) {
5171 if (map->stripes[i].dev->bdev &&
5172 (tolerance || map->stripes[i].dev != srcdev))
5173 return i;
5177 /* we couldn't find one that doesn't fail. Just return something
5178 * and the io error handling code will clean up eventually
5180 return optimal;
5183 static inline int parity_smaller(u64 a, u64 b)
5185 return a > b;
5188 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5189 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5191 struct btrfs_bio_stripe s;
5192 int i;
5193 u64 l;
5194 int again = 1;
5196 while (again) {
5197 again = 0;
5198 for (i = 0; i < num_stripes - 1; i++) {
5199 if (parity_smaller(bbio->raid_map[i],
5200 bbio->raid_map[i+1])) {
5201 s = bbio->stripes[i];
5202 l = bbio->raid_map[i];
5203 bbio->stripes[i] = bbio->stripes[i+1];
5204 bbio->raid_map[i] = bbio->raid_map[i+1];
5205 bbio->stripes[i+1] = s;
5206 bbio->raid_map[i+1] = l;
5208 again = 1;
5214 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5216 struct btrfs_bio *bbio = kzalloc(
5217 /* the size of the btrfs_bio */
5218 sizeof(struct btrfs_bio) +
5219 /* plus the variable array for the stripes */
5220 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5221 /* plus the variable array for the tgt dev */
5222 sizeof(int) * (real_stripes) +
5224 * plus the raid_map, which includes both the tgt dev
5225 * and the stripes
5227 sizeof(u64) * (total_stripes),
5228 GFP_NOFS|__GFP_NOFAIL);
5230 atomic_set(&bbio->error, 0);
5231 refcount_set(&bbio->refs, 1);
5233 return bbio;
5236 void btrfs_get_bbio(struct btrfs_bio *bbio)
5238 WARN_ON(!refcount_read(&bbio->refs));
5239 refcount_inc(&bbio->refs);
5242 void btrfs_put_bbio(struct btrfs_bio *bbio)
5244 if (!bbio)
5245 return;
5246 if (refcount_dec_and_test(&bbio->refs))
5247 kfree(bbio);
5250 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5252 * Please note that, discard won't be sent to target device of device
5253 * replace.
5255 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5256 u64 logical, u64 length,
5257 struct btrfs_bio **bbio_ret)
5259 struct extent_map *em;
5260 struct map_lookup *map;
5261 struct btrfs_bio *bbio;
5262 u64 offset;
5263 u64 stripe_nr;
5264 u64 stripe_nr_end;
5265 u64 stripe_end_offset;
5266 u64 stripe_cnt;
5267 u64 stripe_len;
5268 u64 stripe_offset;
5269 u64 num_stripes;
5270 u32 stripe_index;
5271 u32 factor = 0;
5272 u32 sub_stripes = 0;
5273 u64 stripes_per_dev = 0;
5274 u32 remaining_stripes = 0;
5275 u32 last_stripe = 0;
5276 int ret = 0;
5277 int i;
5279 /* discard always return a bbio */
5280 ASSERT(bbio_ret);
5282 em = get_chunk_map(fs_info, logical, length);
5283 if (IS_ERR(em))
5284 return PTR_ERR(em);
5286 map = em->map_lookup;
5287 /* we don't discard raid56 yet */
5288 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5289 ret = -EOPNOTSUPP;
5290 goto out;
5293 offset = logical - em->start;
5294 length = min_t(u64, em->len - offset, length);
5296 stripe_len = map->stripe_len;
5298 * stripe_nr counts the total number of stripes we have to stride
5299 * to get to this block
5301 stripe_nr = div64_u64(offset, stripe_len);
5303 /* stripe_offset is the offset of this block in its stripe */
5304 stripe_offset = offset - stripe_nr * stripe_len;
5306 stripe_nr_end = round_up(offset + length, map->stripe_len);
5307 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5308 stripe_cnt = stripe_nr_end - stripe_nr;
5309 stripe_end_offset = stripe_nr_end * map->stripe_len -
5310 (offset + length);
5312 * after this, stripe_nr is the number of stripes on this
5313 * device we have to walk to find the data, and stripe_index is
5314 * the number of our device in the stripe array
5316 num_stripes = 1;
5317 stripe_index = 0;
5318 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5319 BTRFS_BLOCK_GROUP_RAID10)) {
5320 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5321 sub_stripes = 1;
5322 else
5323 sub_stripes = map->sub_stripes;
5325 factor = map->num_stripes / sub_stripes;
5326 num_stripes = min_t(u64, map->num_stripes,
5327 sub_stripes * stripe_cnt);
5328 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5329 stripe_index *= sub_stripes;
5330 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5331 &remaining_stripes);
5332 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5333 last_stripe *= sub_stripes;
5334 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5335 BTRFS_BLOCK_GROUP_DUP)) {
5336 num_stripes = map->num_stripes;
5337 } else {
5338 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5339 &stripe_index);
5342 bbio = alloc_btrfs_bio(num_stripes, 0);
5343 if (!bbio) {
5344 ret = -ENOMEM;
5345 goto out;
5348 for (i = 0; i < num_stripes; i++) {
5349 bbio->stripes[i].physical =
5350 map->stripes[stripe_index].physical +
5351 stripe_offset + stripe_nr * map->stripe_len;
5352 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5354 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5355 BTRFS_BLOCK_GROUP_RAID10)) {
5356 bbio->stripes[i].length = stripes_per_dev *
5357 map->stripe_len;
5359 if (i / sub_stripes < remaining_stripes)
5360 bbio->stripes[i].length +=
5361 map->stripe_len;
5364 * Special for the first stripe and
5365 * the last stripe:
5367 * |-------|...|-------|
5368 * |----------|
5369 * off end_off
5371 if (i < sub_stripes)
5372 bbio->stripes[i].length -=
5373 stripe_offset;
5375 if (stripe_index >= last_stripe &&
5376 stripe_index <= (last_stripe +
5377 sub_stripes - 1))
5378 bbio->stripes[i].length -=
5379 stripe_end_offset;
5381 if (i == sub_stripes - 1)
5382 stripe_offset = 0;
5383 } else {
5384 bbio->stripes[i].length = length;
5387 stripe_index++;
5388 if (stripe_index == map->num_stripes) {
5389 stripe_index = 0;
5390 stripe_nr++;
5394 *bbio_ret = bbio;
5395 bbio->map_type = map->type;
5396 bbio->num_stripes = num_stripes;
5397 out:
5398 free_extent_map(em);
5399 return ret;
5403 * In dev-replace case, for repair case (that's the only case where the mirror
5404 * is selected explicitly when calling btrfs_map_block), blocks left of the
5405 * left cursor can also be read from the target drive.
5407 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5408 * array of stripes.
5409 * For READ, it also needs to be supported using the same mirror number.
5411 * If the requested block is not left of the left cursor, EIO is returned. This
5412 * can happen because btrfs_num_copies() returns one more in the dev-replace
5413 * case.
5415 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5416 u64 logical, u64 length,
5417 u64 srcdev_devid, int *mirror_num,
5418 u64 *physical)
5420 struct btrfs_bio *bbio = NULL;
5421 int num_stripes;
5422 int index_srcdev = 0;
5423 int found = 0;
5424 u64 physical_of_found = 0;
5425 int i;
5426 int ret = 0;
5428 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5429 logical, &length, &bbio, 0, 0);
5430 if (ret) {
5431 ASSERT(bbio == NULL);
5432 return ret;
5435 num_stripes = bbio->num_stripes;
5436 if (*mirror_num > num_stripes) {
5438 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5439 * that means that the requested area is not left of the left
5440 * cursor
5442 btrfs_put_bbio(bbio);
5443 return -EIO;
5447 * process the rest of the function using the mirror_num of the source
5448 * drive. Therefore look it up first. At the end, patch the device
5449 * pointer to the one of the target drive.
5451 for (i = 0; i < num_stripes; i++) {
5452 if (bbio->stripes[i].dev->devid != srcdev_devid)
5453 continue;
5456 * In case of DUP, in order to keep it simple, only add the
5457 * mirror with the lowest physical address
5459 if (found &&
5460 physical_of_found <= bbio->stripes[i].physical)
5461 continue;
5463 index_srcdev = i;
5464 found = 1;
5465 physical_of_found = bbio->stripes[i].physical;
5468 btrfs_put_bbio(bbio);
5470 ASSERT(found);
5471 if (!found)
5472 return -EIO;
5474 *mirror_num = index_srcdev + 1;
5475 *physical = physical_of_found;
5476 return ret;
5479 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5480 struct btrfs_bio **bbio_ret,
5481 struct btrfs_dev_replace *dev_replace,
5482 int *num_stripes_ret, int *max_errors_ret)
5484 struct btrfs_bio *bbio = *bbio_ret;
5485 u64 srcdev_devid = dev_replace->srcdev->devid;
5486 int tgtdev_indexes = 0;
5487 int num_stripes = *num_stripes_ret;
5488 int max_errors = *max_errors_ret;
5489 int i;
5491 if (op == BTRFS_MAP_WRITE) {
5492 int index_where_to_add;
5495 * duplicate the write operations while the dev replace
5496 * procedure is running. Since the copying of the old disk to
5497 * the new disk takes place at run time while the filesystem is
5498 * mounted writable, the regular write operations to the old
5499 * disk have to be duplicated to go to the new disk as well.
5501 * Note that device->missing is handled by the caller, and that
5502 * the write to the old disk is already set up in the stripes
5503 * array.
5505 index_where_to_add = num_stripes;
5506 for (i = 0; i < num_stripes; i++) {
5507 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5508 /* write to new disk, too */
5509 struct btrfs_bio_stripe *new =
5510 bbio->stripes + index_where_to_add;
5511 struct btrfs_bio_stripe *old =
5512 bbio->stripes + i;
5514 new->physical = old->physical;
5515 new->length = old->length;
5516 new->dev = dev_replace->tgtdev;
5517 bbio->tgtdev_map[i] = index_where_to_add;
5518 index_where_to_add++;
5519 max_errors++;
5520 tgtdev_indexes++;
5523 num_stripes = index_where_to_add;
5524 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5525 int index_srcdev = 0;
5526 int found = 0;
5527 u64 physical_of_found = 0;
5530 * During the dev-replace procedure, the target drive can also
5531 * be used to read data in case it is needed to repair a corrupt
5532 * block elsewhere. This is possible if the requested area is
5533 * left of the left cursor. In this area, the target drive is a
5534 * full copy of the source drive.
5536 for (i = 0; i < num_stripes; i++) {
5537 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5539 * In case of DUP, in order to keep it simple,
5540 * only add the mirror with the lowest physical
5541 * address
5543 if (found &&
5544 physical_of_found <=
5545 bbio->stripes[i].physical)
5546 continue;
5547 index_srcdev = i;
5548 found = 1;
5549 physical_of_found = bbio->stripes[i].physical;
5552 if (found) {
5553 struct btrfs_bio_stripe *tgtdev_stripe =
5554 bbio->stripes + num_stripes;
5556 tgtdev_stripe->physical = physical_of_found;
5557 tgtdev_stripe->length =
5558 bbio->stripes[index_srcdev].length;
5559 tgtdev_stripe->dev = dev_replace->tgtdev;
5560 bbio->tgtdev_map[index_srcdev] = num_stripes;
5562 tgtdev_indexes++;
5563 num_stripes++;
5567 *num_stripes_ret = num_stripes;
5568 *max_errors_ret = max_errors;
5569 bbio->num_tgtdevs = tgtdev_indexes;
5570 *bbio_ret = bbio;
5573 static bool need_full_stripe(enum btrfs_map_op op)
5575 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5578 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5579 enum btrfs_map_op op,
5580 u64 logical, u64 *length,
5581 struct btrfs_bio **bbio_ret,
5582 int mirror_num, int need_raid_map)
5584 struct extent_map *em;
5585 struct map_lookup *map;
5586 u64 offset;
5587 u64 stripe_offset;
5588 u64 stripe_nr;
5589 u64 stripe_len;
5590 u32 stripe_index;
5591 int i;
5592 int ret = 0;
5593 int num_stripes;
5594 int max_errors = 0;
5595 int tgtdev_indexes = 0;
5596 struct btrfs_bio *bbio = NULL;
5597 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5598 int dev_replace_is_ongoing = 0;
5599 int num_alloc_stripes;
5600 int patch_the_first_stripe_for_dev_replace = 0;
5601 u64 physical_to_patch_in_first_stripe = 0;
5602 u64 raid56_full_stripe_start = (u64)-1;
5604 if (op == BTRFS_MAP_DISCARD)
5605 return __btrfs_map_block_for_discard(fs_info, logical,
5606 *length, bbio_ret);
5608 em = get_chunk_map(fs_info, logical, *length);
5609 if (IS_ERR(em))
5610 return PTR_ERR(em);
5612 map = em->map_lookup;
5613 offset = logical - em->start;
5615 stripe_len = map->stripe_len;
5616 stripe_nr = offset;
5618 * stripe_nr counts the total number of stripes we have to stride
5619 * to get to this block
5621 stripe_nr = div64_u64(stripe_nr, stripe_len);
5623 stripe_offset = stripe_nr * stripe_len;
5624 if (offset < stripe_offset) {
5625 btrfs_crit(fs_info,
5626 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5627 stripe_offset, offset, em->start, logical,
5628 stripe_len);
5629 free_extent_map(em);
5630 return -EINVAL;
5633 /* stripe_offset is the offset of this block in its stripe*/
5634 stripe_offset = offset - stripe_offset;
5636 /* if we're here for raid56, we need to know the stripe aligned start */
5637 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5638 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5639 raid56_full_stripe_start = offset;
5641 /* allow a write of a full stripe, but make sure we don't
5642 * allow straddling of stripes
5644 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5645 full_stripe_len);
5646 raid56_full_stripe_start *= full_stripe_len;
5649 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5650 u64 max_len;
5651 /* For writes to RAID[56], allow a full stripeset across all disks.
5652 For other RAID types and for RAID[56] reads, just allow a single
5653 stripe (on a single disk). */
5654 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5655 (op == BTRFS_MAP_WRITE)) {
5656 max_len = stripe_len * nr_data_stripes(map) -
5657 (offset - raid56_full_stripe_start);
5658 } else {
5659 /* we limit the length of each bio to what fits in a stripe */
5660 max_len = stripe_len - stripe_offset;
5662 *length = min_t(u64, em->len - offset, max_len);
5663 } else {
5664 *length = em->len - offset;
5667 /* This is for when we're called from btrfs_merge_bio_hook() and all
5668 it cares about is the length */
5669 if (!bbio_ret)
5670 goto out;
5672 btrfs_dev_replace_lock(dev_replace, 0);
5673 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5674 if (!dev_replace_is_ongoing)
5675 btrfs_dev_replace_unlock(dev_replace, 0);
5676 else
5677 btrfs_dev_replace_set_lock_blocking(dev_replace);
5679 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5680 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5681 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5682 dev_replace->srcdev->devid,
5683 &mirror_num,
5684 &physical_to_patch_in_first_stripe);
5685 if (ret)
5686 goto out;
5687 else
5688 patch_the_first_stripe_for_dev_replace = 1;
5689 } else if (mirror_num > map->num_stripes) {
5690 mirror_num = 0;
5693 num_stripes = 1;
5694 stripe_index = 0;
5695 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5696 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5697 &stripe_index);
5698 if (op != BTRFS_MAP_WRITE && op != BTRFS_MAP_GET_READ_MIRRORS)
5699 mirror_num = 1;
5700 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5701 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5702 num_stripes = map->num_stripes;
5703 else if (mirror_num)
5704 stripe_index = mirror_num - 1;
5705 else {
5706 stripe_index = find_live_mirror(fs_info, map, 0,
5707 map->num_stripes,
5708 current->pid % map->num_stripes,
5709 dev_replace_is_ongoing);
5710 mirror_num = stripe_index + 1;
5713 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5714 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS) {
5715 num_stripes = map->num_stripes;
5716 } else if (mirror_num) {
5717 stripe_index = mirror_num - 1;
5718 } else {
5719 mirror_num = 1;
5722 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5723 u32 factor = map->num_stripes / map->sub_stripes;
5725 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5726 stripe_index *= map->sub_stripes;
5728 if (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS)
5729 num_stripes = map->sub_stripes;
5730 else if (mirror_num)
5731 stripe_index += mirror_num - 1;
5732 else {
5733 int old_stripe_index = stripe_index;
5734 stripe_index = find_live_mirror(fs_info, map,
5735 stripe_index,
5736 map->sub_stripes, stripe_index +
5737 current->pid % map->sub_stripes,
5738 dev_replace_is_ongoing);
5739 mirror_num = stripe_index - old_stripe_index + 1;
5742 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5743 if (need_raid_map &&
5744 (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS ||
5745 mirror_num > 1)) {
5746 /* push stripe_nr back to the start of the full stripe */
5747 stripe_nr = div64_u64(raid56_full_stripe_start,
5748 stripe_len * nr_data_stripes(map));
5750 /* RAID[56] write or recovery. Return all stripes */
5751 num_stripes = map->num_stripes;
5752 max_errors = nr_parity_stripes(map);
5754 *length = map->stripe_len;
5755 stripe_index = 0;
5756 stripe_offset = 0;
5757 } else {
5759 * Mirror #0 or #1 means the original data block.
5760 * Mirror #2 is RAID5 parity block.
5761 * Mirror #3 is RAID6 Q block.
5763 stripe_nr = div_u64_rem(stripe_nr,
5764 nr_data_stripes(map), &stripe_index);
5765 if (mirror_num > 1)
5766 stripe_index = nr_data_stripes(map) +
5767 mirror_num - 2;
5769 /* We distribute the parity blocks across stripes */
5770 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5771 &stripe_index);
5772 if ((op != BTRFS_MAP_WRITE &&
5773 op != BTRFS_MAP_GET_READ_MIRRORS) &&
5774 mirror_num <= 1)
5775 mirror_num = 1;
5777 } else {
5779 * after this, stripe_nr is the number of stripes on this
5780 * device we have to walk to find the data, and stripe_index is
5781 * the number of our device in the stripe array
5783 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5784 &stripe_index);
5785 mirror_num = stripe_index + 1;
5787 if (stripe_index >= map->num_stripes) {
5788 btrfs_crit(fs_info,
5789 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5790 stripe_index, map->num_stripes);
5791 ret = -EINVAL;
5792 goto out;
5795 num_alloc_stripes = num_stripes;
5796 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5797 if (op == BTRFS_MAP_WRITE)
5798 num_alloc_stripes <<= 1;
5799 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5800 num_alloc_stripes++;
5801 tgtdev_indexes = num_stripes;
5804 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5805 if (!bbio) {
5806 ret = -ENOMEM;
5807 goto out;
5809 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5810 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5812 /* build raid_map */
5813 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5814 (need_full_stripe(op) || mirror_num > 1)) {
5815 u64 tmp;
5816 unsigned rot;
5818 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5819 sizeof(struct btrfs_bio_stripe) *
5820 num_alloc_stripes +
5821 sizeof(int) * tgtdev_indexes);
5823 /* Work out the disk rotation on this stripe-set */
5824 div_u64_rem(stripe_nr, num_stripes, &rot);
5826 /* Fill in the logical address of each stripe */
5827 tmp = stripe_nr * nr_data_stripes(map);
5828 for (i = 0; i < nr_data_stripes(map); i++)
5829 bbio->raid_map[(i+rot) % num_stripes] =
5830 em->start + (tmp + i) * map->stripe_len;
5832 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5833 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5834 bbio->raid_map[(i+rot+1) % num_stripes] =
5835 RAID6_Q_STRIPE;
5839 for (i = 0; i < num_stripes; i++) {
5840 bbio->stripes[i].physical =
5841 map->stripes[stripe_index].physical +
5842 stripe_offset +
5843 stripe_nr * map->stripe_len;
5844 bbio->stripes[i].dev =
5845 map->stripes[stripe_index].dev;
5846 stripe_index++;
5849 if (need_full_stripe(op))
5850 max_errors = btrfs_chunk_max_errors(map);
5852 if (bbio->raid_map)
5853 sort_parity_stripes(bbio, num_stripes);
5855 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5856 need_full_stripe(op)) {
5857 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5858 &max_errors);
5861 *bbio_ret = bbio;
5862 bbio->map_type = map->type;
5863 bbio->num_stripes = num_stripes;
5864 bbio->max_errors = max_errors;
5865 bbio->mirror_num = mirror_num;
5868 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5869 * mirror_num == num_stripes + 1 && dev_replace target drive is
5870 * available as a mirror
5872 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5873 WARN_ON(num_stripes > 1);
5874 bbio->stripes[0].dev = dev_replace->tgtdev;
5875 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5876 bbio->mirror_num = map->num_stripes + 1;
5878 out:
5879 if (dev_replace_is_ongoing) {
5880 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5881 btrfs_dev_replace_unlock(dev_replace, 0);
5883 free_extent_map(em);
5884 return ret;
5887 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5888 u64 logical, u64 *length,
5889 struct btrfs_bio **bbio_ret, int mirror_num)
5891 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5892 mirror_num, 0);
5895 /* For Scrub/replace */
5896 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5897 u64 logical, u64 *length,
5898 struct btrfs_bio **bbio_ret)
5900 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5903 int btrfs_rmap_block(struct btrfs_fs_info *fs_info,
5904 u64 chunk_start, u64 physical, u64 devid,
5905 u64 **logical, int *naddrs, int *stripe_len)
5907 struct extent_map *em;
5908 struct map_lookup *map;
5909 u64 *buf;
5910 u64 bytenr;
5911 u64 length;
5912 u64 stripe_nr;
5913 u64 rmap_len;
5914 int i, j, nr = 0;
5916 em = get_chunk_map(fs_info, chunk_start, 1);
5917 if (IS_ERR(em))
5918 return -EIO;
5920 map = em->map_lookup;
5921 length = em->len;
5922 rmap_len = map->stripe_len;
5924 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5925 length = div_u64(length, map->num_stripes / map->sub_stripes);
5926 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5927 length = div_u64(length, map->num_stripes);
5928 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5929 length = div_u64(length, nr_data_stripes(map));
5930 rmap_len = map->stripe_len * nr_data_stripes(map);
5933 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
5934 BUG_ON(!buf); /* -ENOMEM */
5936 for (i = 0; i < map->num_stripes; i++) {
5937 if (devid && map->stripes[i].dev->devid != devid)
5938 continue;
5939 if (map->stripes[i].physical > physical ||
5940 map->stripes[i].physical + length <= physical)
5941 continue;
5943 stripe_nr = physical - map->stripes[i].physical;
5944 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
5946 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5947 stripe_nr = stripe_nr * map->num_stripes + i;
5948 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
5949 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5950 stripe_nr = stripe_nr * map->num_stripes + i;
5951 } /* else if RAID[56], multiply by nr_data_stripes().
5952 * Alternatively, just use rmap_len below instead of
5953 * map->stripe_len */
5955 bytenr = chunk_start + stripe_nr * rmap_len;
5956 WARN_ON(nr >= map->num_stripes);
5957 for (j = 0; j < nr; j++) {
5958 if (buf[j] == bytenr)
5959 break;
5961 if (j == nr) {
5962 WARN_ON(nr >= map->num_stripes);
5963 buf[nr++] = bytenr;
5967 *logical = buf;
5968 *naddrs = nr;
5969 *stripe_len = rmap_len;
5971 free_extent_map(em);
5972 return 0;
5975 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
5977 bio->bi_private = bbio->private;
5978 bio->bi_end_io = bbio->end_io;
5979 bio_endio(bio);
5981 btrfs_put_bbio(bbio);
5984 static void btrfs_end_bio(struct bio *bio)
5986 struct btrfs_bio *bbio = bio->bi_private;
5987 int is_orig_bio = 0;
5989 if (bio->bi_status) {
5990 atomic_inc(&bbio->error);
5991 if (bio->bi_status == BLK_STS_IOERR ||
5992 bio->bi_status == BLK_STS_TARGET) {
5993 unsigned int stripe_index =
5994 btrfs_io_bio(bio)->stripe_index;
5995 struct btrfs_device *dev;
5997 BUG_ON(stripe_index >= bbio->num_stripes);
5998 dev = bbio->stripes[stripe_index].dev;
5999 if (dev->bdev) {
6000 if (bio_op(bio) == REQ_OP_WRITE)
6001 btrfs_dev_stat_inc(dev,
6002 BTRFS_DEV_STAT_WRITE_ERRS);
6003 else
6004 btrfs_dev_stat_inc(dev,
6005 BTRFS_DEV_STAT_READ_ERRS);
6006 if (bio->bi_opf & REQ_PREFLUSH)
6007 btrfs_dev_stat_inc(dev,
6008 BTRFS_DEV_STAT_FLUSH_ERRS);
6009 btrfs_dev_stat_print_on_error(dev);
6014 if (bio == bbio->orig_bio)
6015 is_orig_bio = 1;
6017 btrfs_bio_counter_dec(bbio->fs_info);
6019 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6020 if (!is_orig_bio) {
6021 bio_put(bio);
6022 bio = bbio->orig_bio;
6025 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6026 /* only send an error to the higher layers if it is
6027 * beyond the tolerance of the btrfs bio
6029 if (atomic_read(&bbio->error) > bbio->max_errors) {
6030 bio->bi_status = BLK_STS_IOERR;
6031 } else {
6033 * this bio is actually up to date, we didn't
6034 * go over the max number of errors
6036 bio->bi_status = 0;
6039 btrfs_end_bbio(bbio, bio);
6040 } else if (!is_orig_bio) {
6041 bio_put(bio);
6046 * see run_scheduled_bios for a description of why bios are collected for
6047 * async submit.
6049 * This will add one bio to the pending list for a device and make sure
6050 * the work struct is scheduled.
6052 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6053 struct bio *bio)
6055 struct btrfs_fs_info *fs_info = device->fs_info;
6056 int should_queue = 1;
6057 struct btrfs_pending_bios *pending_bios;
6059 if (device->missing || !device->bdev) {
6060 bio_io_error(bio);
6061 return;
6064 /* don't bother with additional async steps for reads, right now */
6065 if (bio_op(bio) == REQ_OP_READ) {
6066 bio_get(bio);
6067 btrfsic_submit_bio(bio);
6068 bio_put(bio);
6069 return;
6073 * nr_async_bios allows us to reliably return congestion to the
6074 * higher layers. Otherwise, the async bio makes it appear we have
6075 * made progress against dirty pages when we've really just put it
6076 * on a queue for later
6078 atomic_inc(&fs_info->nr_async_bios);
6079 WARN_ON(bio->bi_next);
6080 bio->bi_next = NULL;
6082 spin_lock(&device->io_lock);
6083 if (op_is_sync(bio->bi_opf))
6084 pending_bios = &device->pending_sync_bios;
6085 else
6086 pending_bios = &device->pending_bios;
6088 if (pending_bios->tail)
6089 pending_bios->tail->bi_next = bio;
6091 pending_bios->tail = bio;
6092 if (!pending_bios->head)
6093 pending_bios->head = bio;
6094 if (device->running_pending)
6095 should_queue = 0;
6097 spin_unlock(&device->io_lock);
6099 if (should_queue)
6100 btrfs_queue_work(fs_info->submit_workers, &device->work);
6103 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6104 u64 physical, int dev_nr, int async)
6106 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6107 struct btrfs_fs_info *fs_info = bbio->fs_info;
6109 bio->bi_private = bbio;
6110 btrfs_io_bio(bio)->stripe_index = dev_nr;
6111 bio->bi_end_io = btrfs_end_bio;
6112 bio->bi_iter.bi_sector = physical >> 9;
6113 #ifdef DEBUG
6115 struct rcu_string *name;
6117 rcu_read_lock();
6118 name = rcu_dereference(dev->name);
6119 btrfs_debug(fs_info,
6120 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6121 bio_op(bio), bio->bi_opf,
6122 (u64)bio->bi_iter.bi_sector,
6123 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6124 bio->bi_iter.bi_size);
6125 rcu_read_unlock();
6127 #endif
6128 bio_set_dev(bio, dev->bdev);
6130 btrfs_bio_counter_inc_noblocked(fs_info);
6132 if (async)
6133 btrfs_schedule_bio(dev, bio);
6134 else
6135 btrfsic_submit_bio(bio);
6138 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6140 atomic_inc(&bbio->error);
6141 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6142 /* Should be the original bio. */
6143 WARN_ON(bio != bbio->orig_bio);
6145 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6146 bio->bi_iter.bi_sector = logical >> 9;
6147 bio->bi_status = BLK_STS_IOERR;
6148 btrfs_end_bbio(bbio, bio);
6152 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6153 int mirror_num, int async_submit)
6155 struct btrfs_device *dev;
6156 struct bio *first_bio = bio;
6157 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6158 u64 length = 0;
6159 u64 map_length;
6160 int ret;
6161 int dev_nr;
6162 int total_devs;
6163 struct btrfs_bio *bbio = NULL;
6165 length = bio->bi_iter.bi_size;
6166 map_length = length;
6168 btrfs_bio_counter_inc_blocked(fs_info);
6169 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6170 &map_length, &bbio, mirror_num, 1);
6171 if (ret) {
6172 btrfs_bio_counter_dec(fs_info);
6173 return errno_to_blk_status(ret);
6176 total_devs = bbio->num_stripes;
6177 bbio->orig_bio = first_bio;
6178 bbio->private = first_bio->bi_private;
6179 bbio->end_io = first_bio->bi_end_io;
6180 bbio->fs_info = fs_info;
6181 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6183 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6184 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6185 /* In this case, map_length has been set to the length of
6186 a single stripe; not the whole write */
6187 if (bio_op(bio) == REQ_OP_WRITE) {
6188 ret = raid56_parity_write(fs_info, bio, bbio,
6189 map_length);
6190 } else {
6191 ret = raid56_parity_recover(fs_info, bio, bbio,
6192 map_length, mirror_num, 1);
6195 btrfs_bio_counter_dec(fs_info);
6196 return errno_to_blk_status(ret);
6199 if (map_length < length) {
6200 btrfs_crit(fs_info,
6201 "mapping failed logical %llu bio len %llu len %llu",
6202 logical, length, map_length);
6203 BUG();
6206 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6207 dev = bbio->stripes[dev_nr].dev;
6208 if (!dev || !dev->bdev ||
6209 (bio_op(first_bio) == REQ_OP_WRITE && !dev->writeable)) {
6210 bbio_error(bbio, first_bio, logical);
6211 continue;
6214 if (dev_nr < total_devs - 1)
6215 bio = btrfs_bio_clone(first_bio);
6216 else
6217 bio = first_bio;
6219 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6220 dev_nr, async_submit);
6222 btrfs_bio_counter_dec(fs_info);
6223 return BLK_STS_OK;
6226 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6227 u8 *uuid, u8 *fsid)
6229 struct btrfs_device *device;
6230 struct btrfs_fs_devices *cur_devices;
6232 cur_devices = fs_info->fs_devices;
6233 while (cur_devices) {
6234 if (!fsid ||
6235 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6236 device = find_device(cur_devices, devid, uuid);
6237 if (device)
6238 return device;
6240 cur_devices = cur_devices->seed;
6242 return NULL;
6245 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6246 u64 devid, u8 *dev_uuid)
6248 struct btrfs_device *device;
6250 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6251 if (IS_ERR(device))
6252 return NULL;
6254 list_add(&device->dev_list, &fs_devices->devices);
6255 device->fs_devices = fs_devices;
6256 fs_devices->num_devices++;
6258 device->missing = 1;
6259 fs_devices->missing_devices++;
6261 return device;
6265 * btrfs_alloc_device - allocate struct btrfs_device
6266 * @fs_info: used only for generating a new devid, can be NULL if
6267 * devid is provided (i.e. @devid != NULL).
6268 * @devid: a pointer to devid for this device. If NULL a new devid
6269 * is generated.
6270 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6271 * is generated.
6273 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6274 * on error. Returned struct is not linked onto any lists and can be
6275 * destroyed with kfree() right away.
6277 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6278 const u64 *devid,
6279 const u8 *uuid)
6281 struct btrfs_device *dev;
6282 u64 tmp;
6284 if (WARN_ON(!devid && !fs_info))
6285 return ERR_PTR(-EINVAL);
6287 dev = __alloc_device();
6288 if (IS_ERR(dev))
6289 return dev;
6291 if (devid)
6292 tmp = *devid;
6293 else {
6294 int ret;
6296 ret = find_next_devid(fs_info, &tmp);
6297 if (ret) {
6298 kfree(dev);
6299 return ERR_PTR(ret);
6302 dev->devid = tmp;
6304 if (uuid)
6305 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6306 else
6307 generate_random_uuid(dev->uuid);
6309 btrfs_init_work(&dev->work, btrfs_submit_helper,
6310 pending_bios_fn, NULL, NULL);
6312 return dev;
6315 /* Return -EIO if any error, otherwise return 0. */
6316 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6317 struct extent_buffer *leaf,
6318 struct btrfs_chunk *chunk, u64 logical)
6320 u64 length;
6321 u64 stripe_len;
6322 u16 num_stripes;
6323 u16 sub_stripes;
6324 u64 type;
6326 length = btrfs_chunk_length(leaf, chunk);
6327 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6328 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6329 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6330 type = btrfs_chunk_type(leaf, chunk);
6332 if (!num_stripes) {
6333 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6334 num_stripes);
6335 return -EIO;
6337 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6338 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6339 return -EIO;
6341 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6342 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6343 btrfs_chunk_sector_size(leaf, chunk));
6344 return -EIO;
6346 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6347 btrfs_err(fs_info, "invalid chunk length %llu", length);
6348 return -EIO;
6350 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6351 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6352 stripe_len);
6353 return -EIO;
6355 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6356 type) {
6357 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6358 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6359 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6360 btrfs_chunk_type(leaf, chunk));
6361 return -EIO;
6363 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6364 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6365 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6366 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6367 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6368 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6369 num_stripes != 1)) {
6370 btrfs_err(fs_info,
6371 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6372 num_stripes, sub_stripes,
6373 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6374 return -EIO;
6377 return 0;
6380 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6381 struct extent_buffer *leaf,
6382 struct btrfs_chunk *chunk)
6384 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6385 struct map_lookup *map;
6386 struct extent_map *em;
6387 u64 logical;
6388 u64 length;
6389 u64 devid;
6390 u8 uuid[BTRFS_UUID_SIZE];
6391 int num_stripes;
6392 int ret;
6393 int i;
6395 logical = key->offset;
6396 length = btrfs_chunk_length(leaf, chunk);
6397 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6399 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6400 if (ret)
6401 return ret;
6403 read_lock(&map_tree->map_tree.lock);
6404 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6405 read_unlock(&map_tree->map_tree.lock);
6407 /* already mapped? */
6408 if (em && em->start <= logical && em->start + em->len > logical) {
6409 free_extent_map(em);
6410 return 0;
6411 } else if (em) {
6412 free_extent_map(em);
6415 em = alloc_extent_map();
6416 if (!em)
6417 return -ENOMEM;
6418 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6419 if (!map) {
6420 free_extent_map(em);
6421 return -ENOMEM;
6424 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6425 em->map_lookup = map;
6426 em->start = logical;
6427 em->len = length;
6428 em->orig_start = 0;
6429 em->block_start = 0;
6430 em->block_len = em->len;
6432 map->num_stripes = num_stripes;
6433 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6434 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6435 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6436 map->type = btrfs_chunk_type(leaf, chunk);
6437 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6438 for (i = 0; i < num_stripes; i++) {
6439 map->stripes[i].physical =
6440 btrfs_stripe_offset_nr(leaf, chunk, i);
6441 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6442 read_extent_buffer(leaf, uuid, (unsigned long)
6443 btrfs_stripe_dev_uuid_nr(chunk, i),
6444 BTRFS_UUID_SIZE);
6445 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6446 uuid, NULL);
6447 if (!map->stripes[i].dev &&
6448 !btrfs_test_opt(fs_info, DEGRADED)) {
6449 free_extent_map(em);
6450 btrfs_report_missing_device(fs_info, devid, uuid);
6451 return -EIO;
6453 if (!map->stripes[i].dev) {
6454 map->stripes[i].dev =
6455 add_missing_dev(fs_info->fs_devices, devid,
6456 uuid);
6457 if (!map->stripes[i].dev) {
6458 free_extent_map(em);
6459 return -EIO;
6461 btrfs_report_missing_device(fs_info, devid, uuid);
6463 map->stripes[i].dev->in_fs_metadata = 1;
6466 write_lock(&map_tree->map_tree.lock);
6467 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6468 write_unlock(&map_tree->map_tree.lock);
6469 BUG_ON(ret); /* Tree corruption */
6470 free_extent_map(em);
6472 return 0;
6475 static void fill_device_from_item(struct extent_buffer *leaf,
6476 struct btrfs_dev_item *dev_item,
6477 struct btrfs_device *device)
6479 unsigned long ptr;
6481 device->devid = btrfs_device_id(leaf, dev_item);
6482 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6483 device->total_bytes = device->disk_total_bytes;
6484 device->commit_total_bytes = device->disk_total_bytes;
6485 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6486 device->commit_bytes_used = device->bytes_used;
6487 device->type = btrfs_device_type(leaf, dev_item);
6488 device->io_align = btrfs_device_io_align(leaf, dev_item);
6489 device->io_width = btrfs_device_io_width(leaf, dev_item);
6490 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6491 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6492 device->is_tgtdev_for_dev_replace = 0;
6494 ptr = btrfs_device_uuid(dev_item);
6495 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6498 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6499 u8 *fsid)
6501 struct btrfs_fs_devices *fs_devices;
6502 int ret;
6504 BUG_ON(!mutex_is_locked(&uuid_mutex));
6505 ASSERT(fsid);
6507 fs_devices = fs_info->fs_devices->seed;
6508 while (fs_devices) {
6509 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6510 return fs_devices;
6512 fs_devices = fs_devices->seed;
6515 fs_devices = find_fsid(fsid);
6516 if (!fs_devices) {
6517 if (!btrfs_test_opt(fs_info, DEGRADED))
6518 return ERR_PTR(-ENOENT);
6520 fs_devices = alloc_fs_devices(fsid);
6521 if (IS_ERR(fs_devices))
6522 return fs_devices;
6524 fs_devices->seeding = 1;
6525 fs_devices->opened = 1;
6526 return fs_devices;
6529 fs_devices = clone_fs_devices(fs_devices);
6530 if (IS_ERR(fs_devices))
6531 return fs_devices;
6533 ret = __btrfs_open_devices(fs_devices, FMODE_READ,
6534 fs_info->bdev_holder);
6535 if (ret) {
6536 free_fs_devices(fs_devices);
6537 fs_devices = ERR_PTR(ret);
6538 goto out;
6541 if (!fs_devices->seeding) {
6542 __btrfs_close_devices(fs_devices);
6543 free_fs_devices(fs_devices);
6544 fs_devices = ERR_PTR(-EINVAL);
6545 goto out;
6548 fs_devices->seed = fs_info->fs_devices->seed;
6549 fs_info->fs_devices->seed = fs_devices;
6550 out:
6551 return fs_devices;
6554 static int read_one_dev(struct btrfs_fs_info *fs_info,
6555 struct extent_buffer *leaf,
6556 struct btrfs_dev_item *dev_item)
6558 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6559 struct btrfs_device *device;
6560 u64 devid;
6561 int ret;
6562 u8 fs_uuid[BTRFS_FSID_SIZE];
6563 u8 dev_uuid[BTRFS_UUID_SIZE];
6565 devid = btrfs_device_id(leaf, dev_item);
6566 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6567 BTRFS_UUID_SIZE);
6568 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6569 BTRFS_FSID_SIZE);
6571 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6572 fs_devices = open_seed_devices(fs_info, fs_uuid);
6573 if (IS_ERR(fs_devices))
6574 return PTR_ERR(fs_devices);
6577 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6578 if (!device) {
6579 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6580 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6581 return -EIO;
6584 device = add_missing_dev(fs_devices, devid, dev_uuid);
6585 if (!device)
6586 return -ENOMEM;
6587 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6588 } else {
6589 if (!device->bdev) {
6590 btrfs_report_missing_device(fs_info, devid, dev_uuid);
6591 if (!btrfs_test_opt(fs_info, DEGRADED))
6592 return -EIO;
6595 if(!device->bdev && !device->missing) {
6597 * this happens when a device that was properly setup
6598 * in the device info lists suddenly goes bad.
6599 * device->bdev is NULL, and so we have to set
6600 * device->missing to one here
6602 device->fs_devices->missing_devices++;
6603 device->missing = 1;
6606 /* Move the device to its own fs_devices */
6607 if (device->fs_devices != fs_devices) {
6608 ASSERT(device->missing);
6610 list_move(&device->dev_list, &fs_devices->devices);
6611 device->fs_devices->num_devices--;
6612 fs_devices->num_devices++;
6614 device->fs_devices->missing_devices--;
6615 fs_devices->missing_devices++;
6617 device->fs_devices = fs_devices;
6621 if (device->fs_devices != fs_info->fs_devices) {
6622 BUG_ON(device->writeable);
6623 if (device->generation !=
6624 btrfs_device_generation(leaf, dev_item))
6625 return -EINVAL;
6628 fill_device_from_item(leaf, dev_item, device);
6629 device->in_fs_metadata = 1;
6630 if (device->writeable && !device->is_tgtdev_for_dev_replace) {
6631 device->fs_devices->total_rw_bytes += device->total_bytes;
6632 atomic64_add(device->total_bytes - device->bytes_used,
6633 &fs_info->free_chunk_space);
6635 ret = 0;
6636 return ret;
6639 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6641 struct btrfs_root *root = fs_info->tree_root;
6642 struct btrfs_super_block *super_copy = fs_info->super_copy;
6643 struct extent_buffer *sb;
6644 struct btrfs_disk_key *disk_key;
6645 struct btrfs_chunk *chunk;
6646 u8 *array_ptr;
6647 unsigned long sb_array_offset;
6648 int ret = 0;
6649 u32 num_stripes;
6650 u32 array_size;
6651 u32 len = 0;
6652 u32 cur_offset;
6653 u64 type;
6654 struct btrfs_key key;
6656 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6658 * This will create extent buffer of nodesize, superblock size is
6659 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6660 * overallocate but we can keep it as-is, only the first page is used.
6662 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6663 if (IS_ERR(sb))
6664 return PTR_ERR(sb);
6665 set_extent_buffer_uptodate(sb);
6666 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6668 * The sb extent buffer is artificial and just used to read the system array.
6669 * set_extent_buffer_uptodate() call does not properly mark all it's
6670 * pages up-to-date when the page is larger: extent does not cover the
6671 * whole page and consequently check_page_uptodate does not find all
6672 * the page's extents up-to-date (the hole beyond sb),
6673 * write_extent_buffer then triggers a WARN_ON.
6675 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6676 * but sb spans only this function. Add an explicit SetPageUptodate call
6677 * to silence the warning eg. on PowerPC 64.
6679 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6680 SetPageUptodate(sb->pages[0]);
6682 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6683 array_size = btrfs_super_sys_array_size(super_copy);
6685 array_ptr = super_copy->sys_chunk_array;
6686 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6687 cur_offset = 0;
6689 while (cur_offset < array_size) {
6690 disk_key = (struct btrfs_disk_key *)array_ptr;
6691 len = sizeof(*disk_key);
6692 if (cur_offset + len > array_size)
6693 goto out_short_read;
6695 btrfs_disk_key_to_cpu(&key, disk_key);
6697 array_ptr += len;
6698 sb_array_offset += len;
6699 cur_offset += len;
6701 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6702 chunk = (struct btrfs_chunk *)sb_array_offset;
6704 * At least one btrfs_chunk with one stripe must be
6705 * present, exact stripe count check comes afterwards
6707 len = btrfs_chunk_item_size(1);
6708 if (cur_offset + len > array_size)
6709 goto out_short_read;
6711 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6712 if (!num_stripes) {
6713 btrfs_err(fs_info,
6714 "invalid number of stripes %u in sys_array at offset %u",
6715 num_stripes, cur_offset);
6716 ret = -EIO;
6717 break;
6720 type = btrfs_chunk_type(sb, chunk);
6721 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6722 btrfs_err(fs_info,
6723 "invalid chunk type %llu in sys_array at offset %u",
6724 type, cur_offset);
6725 ret = -EIO;
6726 break;
6729 len = btrfs_chunk_item_size(num_stripes);
6730 if (cur_offset + len > array_size)
6731 goto out_short_read;
6733 ret = read_one_chunk(fs_info, &key, sb, chunk);
6734 if (ret)
6735 break;
6736 } else {
6737 btrfs_err(fs_info,
6738 "unexpected item type %u in sys_array at offset %u",
6739 (u32)key.type, cur_offset);
6740 ret = -EIO;
6741 break;
6743 array_ptr += len;
6744 sb_array_offset += len;
6745 cur_offset += len;
6747 clear_extent_buffer_uptodate(sb);
6748 free_extent_buffer_stale(sb);
6749 return ret;
6751 out_short_read:
6752 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6753 len, cur_offset);
6754 clear_extent_buffer_uptodate(sb);
6755 free_extent_buffer_stale(sb);
6756 return -EIO;
6759 void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, u64 devid,
6760 u8 *uuid)
6762 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", devid, uuid);
6766 * Check if all chunks in the fs are OK for read-write degraded mount
6768 * Return true if all chunks meet the minimal RW mount requirements.
6769 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6771 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info)
6773 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6774 struct extent_map *em;
6775 u64 next_start = 0;
6776 bool ret = true;
6778 read_lock(&map_tree->map_tree.lock);
6779 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6780 read_unlock(&map_tree->map_tree.lock);
6781 /* No chunk at all? Return false anyway */
6782 if (!em) {
6783 ret = false;
6784 goto out;
6786 while (em) {
6787 struct map_lookup *map;
6788 int missing = 0;
6789 int max_tolerated;
6790 int i;
6792 map = em->map_lookup;
6793 max_tolerated =
6794 btrfs_get_num_tolerated_disk_barrier_failures(
6795 map->type);
6796 for (i = 0; i < map->num_stripes; i++) {
6797 struct btrfs_device *dev = map->stripes[i].dev;
6799 if (!dev || !dev->bdev || dev->missing ||
6800 dev->last_flush_error)
6801 missing++;
6803 if (missing > max_tolerated) {
6804 btrfs_warn(fs_info,
6805 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6806 em->start, missing, max_tolerated);
6807 free_extent_map(em);
6808 ret = false;
6809 goto out;
6811 next_start = extent_map_end(em);
6812 free_extent_map(em);
6814 read_lock(&map_tree->map_tree.lock);
6815 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6816 (u64)(-1) - next_start);
6817 read_unlock(&map_tree->map_tree.lock);
6819 out:
6820 return ret;
6823 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6825 struct btrfs_root *root = fs_info->chunk_root;
6826 struct btrfs_path *path;
6827 struct extent_buffer *leaf;
6828 struct btrfs_key key;
6829 struct btrfs_key found_key;
6830 int ret;
6831 int slot;
6832 u64 total_dev = 0;
6834 path = btrfs_alloc_path();
6835 if (!path)
6836 return -ENOMEM;
6838 mutex_lock(&uuid_mutex);
6839 mutex_lock(&fs_info->chunk_mutex);
6842 * Read all device items, and then all the chunk items. All
6843 * device items are found before any chunk item (their object id
6844 * is smaller than the lowest possible object id for a chunk
6845 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6847 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6848 key.offset = 0;
6849 key.type = 0;
6850 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6851 if (ret < 0)
6852 goto error;
6853 while (1) {
6854 leaf = path->nodes[0];
6855 slot = path->slots[0];
6856 if (slot >= btrfs_header_nritems(leaf)) {
6857 ret = btrfs_next_leaf(root, path);
6858 if (ret == 0)
6859 continue;
6860 if (ret < 0)
6861 goto error;
6862 break;
6864 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6865 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6866 struct btrfs_dev_item *dev_item;
6867 dev_item = btrfs_item_ptr(leaf, slot,
6868 struct btrfs_dev_item);
6869 ret = read_one_dev(fs_info, leaf, dev_item);
6870 if (ret)
6871 goto error;
6872 total_dev++;
6873 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6874 struct btrfs_chunk *chunk;
6875 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6876 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6877 if (ret)
6878 goto error;
6880 path->slots[0]++;
6884 * After loading chunk tree, we've got all device information,
6885 * do another round of validation checks.
6887 if (total_dev != fs_info->fs_devices->total_devices) {
6888 btrfs_err(fs_info,
6889 "super_num_devices %llu mismatch with num_devices %llu found here",
6890 btrfs_super_num_devices(fs_info->super_copy),
6891 total_dev);
6892 ret = -EINVAL;
6893 goto error;
6895 if (btrfs_super_total_bytes(fs_info->super_copy) <
6896 fs_info->fs_devices->total_rw_bytes) {
6897 btrfs_err(fs_info,
6898 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
6899 btrfs_super_total_bytes(fs_info->super_copy),
6900 fs_info->fs_devices->total_rw_bytes);
6901 ret = -EINVAL;
6902 goto error;
6904 ret = 0;
6905 error:
6906 mutex_unlock(&fs_info->chunk_mutex);
6907 mutex_unlock(&uuid_mutex);
6909 btrfs_free_path(path);
6910 return ret;
6913 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6915 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6916 struct btrfs_device *device;
6918 while (fs_devices) {
6919 mutex_lock(&fs_devices->device_list_mutex);
6920 list_for_each_entry(device, &fs_devices->devices, dev_list)
6921 device->fs_info = fs_info;
6922 mutex_unlock(&fs_devices->device_list_mutex);
6924 fs_devices = fs_devices->seed;
6928 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6930 int i;
6932 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6933 btrfs_dev_stat_reset(dev, i);
6936 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6938 struct btrfs_key key;
6939 struct btrfs_key found_key;
6940 struct btrfs_root *dev_root = fs_info->dev_root;
6941 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6942 struct extent_buffer *eb;
6943 int slot;
6944 int ret = 0;
6945 struct btrfs_device *device;
6946 struct btrfs_path *path = NULL;
6947 int i;
6949 path = btrfs_alloc_path();
6950 if (!path) {
6951 ret = -ENOMEM;
6952 goto out;
6955 mutex_lock(&fs_devices->device_list_mutex);
6956 list_for_each_entry(device, &fs_devices->devices, dev_list) {
6957 int item_size;
6958 struct btrfs_dev_stats_item *ptr;
6960 key.objectid = BTRFS_DEV_STATS_OBJECTID;
6961 key.type = BTRFS_PERSISTENT_ITEM_KEY;
6962 key.offset = device->devid;
6963 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6964 if (ret) {
6965 __btrfs_reset_dev_stats(device);
6966 device->dev_stats_valid = 1;
6967 btrfs_release_path(path);
6968 continue;
6970 slot = path->slots[0];
6971 eb = path->nodes[0];
6972 btrfs_item_key_to_cpu(eb, &found_key, slot);
6973 item_size = btrfs_item_size_nr(eb, slot);
6975 ptr = btrfs_item_ptr(eb, slot,
6976 struct btrfs_dev_stats_item);
6978 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6979 if (item_size >= (1 + i) * sizeof(__le64))
6980 btrfs_dev_stat_set(device, i,
6981 btrfs_dev_stats_value(eb, ptr, i));
6982 else
6983 btrfs_dev_stat_reset(device, i);
6986 device->dev_stats_valid = 1;
6987 btrfs_dev_stat_print_on_load(device);
6988 btrfs_release_path(path);
6990 mutex_unlock(&fs_devices->device_list_mutex);
6992 out:
6993 btrfs_free_path(path);
6994 return ret < 0 ? ret : 0;
6997 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6998 struct btrfs_fs_info *fs_info,
6999 struct btrfs_device *device)
7001 struct btrfs_root *dev_root = fs_info->dev_root;
7002 struct btrfs_path *path;
7003 struct btrfs_key key;
7004 struct extent_buffer *eb;
7005 struct btrfs_dev_stats_item *ptr;
7006 int ret;
7007 int i;
7009 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7010 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7011 key.offset = device->devid;
7013 path = btrfs_alloc_path();
7014 if (!path)
7015 return -ENOMEM;
7016 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7017 if (ret < 0) {
7018 btrfs_warn_in_rcu(fs_info,
7019 "error %d while searching for dev_stats item for device %s",
7020 ret, rcu_str_deref(device->name));
7021 goto out;
7024 if (ret == 0 &&
7025 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7026 /* need to delete old one and insert a new one */
7027 ret = btrfs_del_item(trans, dev_root, path);
7028 if (ret != 0) {
7029 btrfs_warn_in_rcu(fs_info,
7030 "delete too small dev_stats item for device %s failed %d",
7031 rcu_str_deref(device->name), ret);
7032 goto out;
7034 ret = 1;
7037 if (ret == 1) {
7038 /* need to insert a new item */
7039 btrfs_release_path(path);
7040 ret = btrfs_insert_empty_item(trans, dev_root, path,
7041 &key, sizeof(*ptr));
7042 if (ret < 0) {
7043 btrfs_warn_in_rcu(fs_info,
7044 "insert dev_stats item for device %s failed %d",
7045 rcu_str_deref(device->name), ret);
7046 goto out;
7050 eb = path->nodes[0];
7051 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7052 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7053 btrfs_set_dev_stats_value(eb, ptr, i,
7054 btrfs_dev_stat_read(device, i));
7055 btrfs_mark_buffer_dirty(eb);
7057 out:
7058 btrfs_free_path(path);
7059 return ret;
7063 * called from commit_transaction. Writes all changed device stats to disk.
7065 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7066 struct btrfs_fs_info *fs_info)
7068 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7069 struct btrfs_device *device;
7070 int stats_cnt;
7071 int ret = 0;
7073 mutex_lock(&fs_devices->device_list_mutex);
7074 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7075 if (!device->dev_stats_valid || !btrfs_dev_stats_dirty(device))
7076 continue;
7078 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7079 ret = update_dev_stat_item(trans, fs_info, device);
7080 if (!ret)
7081 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7083 mutex_unlock(&fs_devices->device_list_mutex);
7085 return ret;
7088 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7090 btrfs_dev_stat_inc(dev, index);
7091 btrfs_dev_stat_print_on_error(dev);
7094 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7096 if (!dev->dev_stats_valid)
7097 return;
7098 btrfs_err_rl_in_rcu(dev->fs_info,
7099 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7100 rcu_str_deref(dev->name),
7101 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7102 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7103 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7104 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7105 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7108 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7110 int i;
7112 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7113 if (btrfs_dev_stat_read(dev, i) != 0)
7114 break;
7115 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7116 return; /* all values == 0, suppress message */
7118 btrfs_info_in_rcu(dev->fs_info,
7119 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7120 rcu_str_deref(dev->name),
7121 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7122 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7123 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7124 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7125 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7128 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7129 struct btrfs_ioctl_get_dev_stats *stats)
7131 struct btrfs_device *dev;
7132 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7133 int i;
7135 mutex_lock(&fs_devices->device_list_mutex);
7136 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7137 mutex_unlock(&fs_devices->device_list_mutex);
7139 if (!dev) {
7140 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7141 return -ENODEV;
7142 } else if (!dev->dev_stats_valid) {
7143 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7144 return -ENODEV;
7145 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7146 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7147 if (stats->nr_items > i)
7148 stats->values[i] =
7149 btrfs_dev_stat_read_and_reset(dev, i);
7150 else
7151 btrfs_dev_stat_reset(dev, i);
7153 } else {
7154 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7155 if (stats->nr_items > i)
7156 stats->values[i] = btrfs_dev_stat_read(dev, i);
7158 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7159 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7160 return 0;
7163 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7165 struct buffer_head *bh;
7166 struct btrfs_super_block *disk_super;
7167 int copy_num;
7169 if (!bdev)
7170 return;
7172 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7173 copy_num++) {
7175 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7176 continue;
7178 disk_super = (struct btrfs_super_block *)bh->b_data;
7180 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7181 set_buffer_dirty(bh);
7182 sync_dirty_buffer(bh);
7183 brelse(bh);
7186 /* Notify udev that device has changed */
7187 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7189 /* Update ctime/mtime for device path for libblkid */
7190 update_dev_time(device_path);
7194 * Update the size of all devices, which is used for writing out the
7195 * super blocks.
7197 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7199 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7200 struct btrfs_device *curr, *next;
7202 if (list_empty(&fs_devices->resized_devices))
7203 return;
7205 mutex_lock(&fs_devices->device_list_mutex);
7206 mutex_lock(&fs_info->chunk_mutex);
7207 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7208 resized_list) {
7209 list_del_init(&curr->resized_list);
7210 curr->commit_total_bytes = curr->disk_total_bytes;
7212 mutex_unlock(&fs_info->chunk_mutex);
7213 mutex_unlock(&fs_devices->device_list_mutex);
7216 /* Must be invoked during the transaction commit */
7217 void btrfs_update_commit_device_bytes_used(struct btrfs_fs_info *fs_info,
7218 struct btrfs_transaction *transaction)
7220 struct extent_map *em;
7221 struct map_lookup *map;
7222 struct btrfs_device *dev;
7223 int i;
7225 if (list_empty(&transaction->pending_chunks))
7226 return;
7228 /* In order to kick the device replace finish process */
7229 mutex_lock(&fs_info->chunk_mutex);
7230 list_for_each_entry(em, &transaction->pending_chunks, list) {
7231 map = em->map_lookup;
7233 for (i = 0; i < map->num_stripes; i++) {
7234 dev = map->stripes[i].dev;
7235 dev->commit_bytes_used = dev->bytes_used;
7238 mutex_unlock(&fs_info->chunk_mutex);
7241 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7243 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7244 while (fs_devices) {
7245 fs_devices->fs_info = fs_info;
7246 fs_devices = fs_devices->seed;
7250 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7252 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7253 while (fs_devices) {
7254 fs_devices->fs_info = NULL;
7255 fs_devices = fs_devices->seed;