target: make the se_task task_state_active a normal bool
[linux-2.6/btrfs-unstable.git] / drivers / target / target_core_transport.c
blob511836eb2953dca2cbc2aa264267340154c77083
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <linux/module.h>
40 #include <asm/unaligned.h>
41 #include <net/sock.h>
42 #include <net/tcp.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_backend.h>
49 #include <target/target_core_fabric.h>
50 #include <target/target_core_configfs.h>
52 #include "target_core_internal.h"
53 #include "target_core_alua.h"
54 #include "target_core_pr.h"
55 #include "target_core_ua.h"
57 static int sub_api_initialized;
59 static struct workqueue_struct *target_completion_wq;
60 static struct kmem_cache *se_sess_cache;
61 struct kmem_cache *se_tmr_req_cache;
62 struct kmem_cache *se_ua_cache;
63 struct kmem_cache *t10_pr_reg_cache;
64 struct kmem_cache *t10_alua_lu_gp_cache;
65 struct kmem_cache *t10_alua_lu_gp_mem_cache;
66 struct kmem_cache *t10_alua_tg_pt_gp_cache;
67 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
69 static int transport_generic_write_pending(struct se_cmd *);
70 static int transport_processing_thread(void *param);
71 static int __transport_execute_tasks(struct se_device *dev);
72 static void transport_complete_task_attr(struct se_cmd *cmd);
73 static void transport_handle_queue_full(struct se_cmd *cmd,
74 struct se_device *dev);
75 static void transport_free_dev_tasks(struct se_cmd *cmd);
76 static int transport_generic_get_mem(struct se_cmd *cmd);
77 static void transport_put_cmd(struct se_cmd *cmd);
78 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
79 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
80 static void transport_generic_request_failure(struct se_cmd *);
81 static void target_complete_ok_work(struct work_struct *work);
83 int init_se_kmem_caches(void)
85 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
86 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
87 0, NULL);
88 if (!se_tmr_req_cache) {
89 pr_err("kmem_cache_create() for struct se_tmr_req"
90 " failed\n");
91 goto out;
93 se_sess_cache = kmem_cache_create("se_sess_cache",
94 sizeof(struct se_session), __alignof__(struct se_session),
95 0, NULL);
96 if (!se_sess_cache) {
97 pr_err("kmem_cache_create() for struct se_session"
98 " failed\n");
99 goto out_free_tmr_req_cache;
101 se_ua_cache = kmem_cache_create("se_ua_cache",
102 sizeof(struct se_ua), __alignof__(struct se_ua),
103 0, NULL);
104 if (!se_ua_cache) {
105 pr_err("kmem_cache_create() for struct se_ua failed\n");
106 goto out_free_sess_cache;
108 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
109 sizeof(struct t10_pr_registration),
110 __alignof__(struct t10_pr_registration), 0, NULL);
111 if (!t10_pr_reg_cache) {
112 pr_err("kmem_cache_create() for struct t10_pr_registration"
113 " failed\n");
114 goto out_free_ua_cache;
116 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
117 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
118 0, NULL);
119 if (!t10_alua_lu_gp_cache) {
120 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
121 " failed\n");
122 goto out_free_pr_reg_cache;
124 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
125 sizeof(struct t10_alua_lu_gp_member),
126 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
127 if (!t10_alua_lu_gp_mem_cache) {
128 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
129 "cache failed\n");
130 goto out_free_lu_gp_cache;
132 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
133 sizeof(struct t10_alua_tg_pt_gp),
134 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
135 if (!t10_alua_tg_pt_gp_cache) {
136 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
137 "cache failed\n");
138 goto out_free_lu_gp_mem_cache;
140 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
141 "t10_alua_tg_pt_gp_mem_cache",
142 sizeof(struct t10_alua_tg_pt_gp_member),
143 __alignof__(struct t10_alua_tg_pt_gp_member),
144 0, NULL);
145 if (!t10_alua_tg_pt_gp_mem_cache) {
146 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
147 "mem_t failed\n");
148 goto out_free_tg_pt_gp_cache;
151 target_completion_wq = alloc_workqueue("target_completion",
152 WQ_MEM_RECLAIM, 0);
153 if (!target_completion_wq)
154 goto out_free_tg_pt_gp_mem_cache;
156 return 0;
158 out_free_tg_pt_gp_mem_cache:
159 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
160 out_free_tg_pt_gp_cache:
161 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
162 out_free_lu_gp_mem_cache:
163 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
164 out_free_lu_gp_cache:
165 kmem_cache_destroy(t10_alua_lu_gp_cache);
166 out_free_pr_reg_cache:
167 kmem_cache_destroy(t10_pr_reg_cache);
168 out_free_ua_cache:
169 kmem_cache_destroy(se_ua_cache);
170 out_free_sess_cache:
171 kmem_cache_destroy(se_sess_cache);
172 out_free_tmr_req_cache:
173 kmem_cache_destroy(se_tmr_req_cache);
174 out:
175 return -ENOMEM;
178 void release_se_kmem_caches(void)
180 destroy_workqueue(target_completion_wq);
181 kmem_cache_destroy(se_tmr_req_cache);
182 kmem_cache_destroy(se_sess_cache);
183 kmem_cache_destroy(se_ua_cache);
184 kmem_cache_destroy(t10_pr_reg_cache);
185 kmem_cache_destroy(t10_alua_lu_gp_cache);
186 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
187 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
188 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 /* This code ensures unique mib indexes are handed out. */
192 static DEFINE_SPINLOCK(scsi_mib_index_lock);
193 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
196 * Allocate a new row index for the entry type specified
198 u32 scsi_get_new_index(scsi_index_t type)
200 u32 new_index;
202 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
204 spin_lock(&scsi_mib_index_lock);
205 new_index = ++scsi_mib_index[type];
206 spin_unlock(&scsi_mib_index_lock);
208 return new_index;
211 static void transport_init_queue_obj(struct se_queue_obj *qobj)
213 atomic_set(&qobj->queue_cnt, 0);
214 INIT_LIST_HEAD(&qobj->qobj_list);
215 init_waitqueue_head(&qobj->thread_wq);
216 spin_lock_init(&qobj->cmd_queue_lock);
219 void transport_subsystem_check_init(void)
221 int ret;
223 if (sub_api_initialized)
224 return;
226 ret = request_module("target_core_iblock");
227 if (ret != 0)
228 pr_err("Unable to load target_core_iblock\n");
230 ret = request_module("target_core_file");
231 if (ret != 0)
232 pr_err("Unable to load target_core_file\n");
234 ret = request_module("target_core_pscsi");
235 if (ret != 0)
236 pr_err("Unable to load target_core_pscsi\n");
238 ret = request_module("target_core_stgt");
239 if (ret != 0)
240 pr_err("Unable to load target_core_stgt\n");
242 sub_api_initialized = 1;
243 return;
246 struct se_session *transport_init_session(void)
248 struct se_session *se_sess;
250 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
251 if (!se_sess) {
252 pr_err("Unable to allocate struct se_session from"
253 " se_sess_cache\n");
254 return ERR_PTR(-ENOMEM);
256 INIT_LIST_HEAD(&se_sess->sess_list);
257 INIT_LIST_HEAD(&se_sess->sess_acl_list);
258 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
259 INIT_LIST_HEAD(&se_sess->sess_wait_list);
260 spin_lock_init(&se_sess->sess_cmd_lock);
262 return se_sess;
264 EXPORT_SYMBOL(transport_init_session);
267 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
269 void __transport_register_session(
270 struct se_portal_group *se_tpg,
271 struct se_node_acl *se_nacl,
272 struct se_session *se_sess,
273 void *fabric_sess_ptr)
275 unsigned char buf[PR_REG_ISID_LEN];
277 se_sess->se_tpg = se_tpg;
278 se_sess->fabric_sess_ptr = fabric_sess_ptr;
280 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
282 * Only set for struct se_session's that will actually be moving I/O.
283 * eg: *NOT* discovery sessions.
285 if (se_nacl) {
287 * If the fabric module supports an ISID based TransportID,
288 * save this value in binary from the fabric I_T Nexus now.
290 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
291 memset(&buf[0], 0, PR_REG_ISID_LEN);
292 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
293 &buf[0], PR_REG_ISID_LEN);
294 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
296 spin_lock_irq(&se_nacl->nacl_sess_lock);
298 * The se_nacl->nacl_sess pointer will be set to the
299 * last active I_T Nexus for each struct se_node_acl.
301 se_nacl->nacl_sess = se_sess;
303 list_add_tail(&se_sess->sess_acl_list,
304 &se_nacl->acl_sess_list);
305 spin_unlock_irq(&se_nacl->nacl_sess_lock);
307 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
309 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
310 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
312 EXPORT_SYMBOL(__transport_register_session);
314 void transport_register_session(
315 struct se_portal_group *se_tpg,
316 struct se_node_acl *se_nacl,
317 struct se_session *se_sess,
318 void *fabric_sess_ptr)
320 spin_lock_bh(&se_tpg->session_lock);
321 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
322 spin_unlock_bh(&se_tpg->session_lock);
324 EXPORT_SYMBOL(transport_register_session);
326 void transport_deregister_session_configfs(struct se_session *se_sess)
328 struct se_node_acl *se_nacl;
329 unsigned long flags;
331 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
333 se_nacl = se_sess->se_node_acl;
334 if (se_nacl) {
335 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
336 list_del(&se_sess->sess_acl_list);
338 * If the session list is empty, then clear the pointer.
339 * Otherwise, set the struct se_session pointer from the tail
340 * element of the per struct se_node_acl active session list.
342 if (list_empty(&se_nacl->acl_sess_list))
343 se_nacl->nacl_sess = NULL;
344 else {
345 se_nacl->nacl_sess = container_of(
346 se_nacl->acl_sess_list.prev,
347 struct se_session, sess_acl_list);
349 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
352 EXPORT_SYMBOL(transport_deregister_session_configfs);
354 void transport_free_session(struct se_session *se_sess)
356 kmem_cache_free(se_sess_cache, se_sess);
358 EXPORT_SYMBOL(transport_free_session);
360 void transport_deregister_session(struct se_session *se_sess)
362 struct se_portal_group *se_tpg = se_sess->se_tpg;
363 struct se_node_acl *se_nacl;
364 unsigned long flags;
366 if (!se_tpg) {
367 transport_free_session(se_sess);
368 return;
371 spin_lock_irqsave(&se_tpg->session_lock, flags);
372 list_del(&se_sess->sess_list);
373 se_sess->se_tpg = NULL;
374 se_sess->fabric_sess_ptr = NULL;
375 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
378 * Determine if we need to do extra work for this initiator node's
379 * struct se_node_acl if it had been previously dynamically generated.
381 se_nacl = se_sess->se_node_acl;
382 if (se_nacl) {
383 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
384 if (se_nacl->dynamic_node_acl) {
385 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
386 se_tpg)) {
387 list_del(&se_nacl->acl_list);
388 se_tpg->num_node_acls--;
389 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
391 core_tpg_wait_for_nacl_pr_ref(se_nacl);
392 core_free_device_list_for_node(se_nacl, se_tpg);
393 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
394 se_nacl);
395 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
398 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
401 transport_free_session(se_sess);
403 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
404 se_tpg->se_tpg_tfo->get_fabric_name());
406 EXPORT_SYMBOL(transport_deregister_session);
409 * Called with cmd->t_state_lock held.
411 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
413 struct se_device *dev = cmd->se_dev;
414 struct se_task *task;
415 unsigned long flags;
417 if (!dev)
418 return;
420 list_for_each_entry(task, &cmd->t_task_list, t_list) {
421 if (task->task_flags & TF_ACTIVE)
422 continue;
424 spin_lock_irqsave(&dev->execute_task_lock, flags);
425 if (task->t_state_active) {
426 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
427 cmd->se_tfo->get_task_tag(cmd), dev, task);
429 list_del(&task->t_state_list);
430 atomic_dec(&cmd->t_task_cdbs_ex_left);
431 task->t_state_active = false;
433 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
438 /* transport_cmd_check_stop():
440 * 'transport_off = 1' determines if t_transport_active should be cleared.
441 * 'transport_off = 2' determines if task_dev_state should be removed.
443 * A non-zero u8 t_state sets cmd->t_state.
444 * Returns 1 when command is stopped, else 0.
446 static int transport_cmd_check_stop(
447 struct se_cmd *cmd,
448 int transport_off,
449 u8 t_state)
451 unsigned long flags;
453 spin_lock_irqsave(&cmd->t_state_lock, flags);
455 * Determine if IOCTL context caller in requesting the stopping of this
456 * command for LUN shutdown purposes.
458 if (atomic_read(&cmd->transport_lun_stop)) {
459 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
460 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
461 cmd->se_tfo->get_task_tag(cmd));
463 atomic_set(&cmd->t_transport_active, 0);
464 if (transport_off == 2)
465 transport_all_task_dev_remove_state(cmd);
466 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
468 complete(&cmd->transport_lun_stop_comp);
469 return 1;
472 * Determine if frontend context caller is requesting the stopping of
473 * this command for frontend exceptions.
475 if (atomic_read(&cmd->t_transport_stop)) {
476 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
477 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
478 cmd->se_tfo->get_task_tag(cmd));
480 if (transport_off == 2)
481 transport_all_task_dev_remove_state(cmd);
484 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
485 * to FE.
487 if (transport_off == 2)
488 cmd->se_lun = NULL;
489 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
491 complete(&cmd->t_transport_stop_comp);
492 return 1;
494 if (transport_off) {
495 atomic_set(&cmd->t_transport_active, 0);
496 if (transport_off == 2) {
497 transport_all_task_dev_remove_state(cmd);
499 * Clear struct se_cmd->se_lun before the transport_off == 2
500 * handoff to fabric module.
502 cmd->se_lun = NULL;
504 * Some fabric modules like tcm_loop can release
505 * their internally allocated I/O reference now and
506 * struct se_cmd now.
508 * Fabric modules are expected to return '1' here if the
509 * se_cmd being passed is released at this point,
510 * or zero if not being released.
512 if (cmd->se_tfo->check_stop_free != NULL) {
513 spin_unlock_irqrestore(
514 &cmd->t_state_lock, flags);
516 return cmd->se_tfo->check_stop_free(cmd);
519 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
521 return 0;
522 } else if (t_state)
523 cmd->t_state = t_state;
524 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
526 return 0;
529 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
531 return transport_cmd_check_stop(cmd, 2, 0);
534 static void transport_lun_remove_cmd(struct se_cmd *cmd)
536 struct se_lun *lun = cmd->se_lun;
537 unsigned long flags;
539 if (!lun)
540 return;
542 spin_lock_irqsave(&cmd->t_state_lock, flags);
543 if (!atomic_read(&cmd->transport_dev_active)) {
544 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
545 goto check_lun;
547 atomic_set(&cmd->transport_dev_active, 0);
548 transport_all_task_dev_remove_state(cmd);
549 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552 check_lun:
553 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
554 if (atomic_read(&cmd->transport_lun_active)) {
555 list_del(&cmd->se_lun_node);
556 atomic_set(&cmd->transport_lun_active, 0);
557 #if 0
558 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
559 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
560 #endif
562 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
565 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
567 if (!cmd->se_tmr_req)
568 transport_lun_remove_cmd(cmd);
570 if (transport_cmd_check_stop_to_fabric(cmd))
571 return;
572 if (remove) {
573 transport_remove_cmd_from_queue(cmd);
574 transport_put_cmd(cmd);
578 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
579 bool at_head)
581 struct se_device *dev = cmd->se_dev;
582 struct se_queue_obj *qobj = &dev->dev_queue_obj;
583 unsigned long flags;
585 if (t_state) {
586 spin_lock_irqsave(&cmd->t_state_lock, flags);
587 cmd->t_state = t_state;
588 atomic_set(&cmd->t_transport_active, 1);
589 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
592 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
594 /* If the cmd is already on the list, remove it before we add it */
595 if (!list_empty(&cmd->se_queue_node))
596 list_del(&cmd->se_queue_node);
597 else
598 atomic_inc(&qobj->queue_cnt);
600 if (at_head)
601 list_add(&cmd->se_queue_node, &qobj->qobj_list);
602 else
603 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
604 atomic_set(&cmd->t_transport_queue_active, 1);
605 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
607 wake_up_interruptible(&qobj->thread_wq);
610 static struct se_cmd *
611 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
613 struct se_cmd *cmd;
614 unsigned long flags;
616 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
617 if (list_empty(&qobj->qobj_list)) {
618 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
619 return NULL;
621 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
623 atomic_set(&cmd->t_transport_queue_active, 0);
625 list_del_init(&cmd->se_queue_node);
626 atomic_dec(&qobj->queue_cnt);
627 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
629 return cmd;
632 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
634 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
635 unsigned long flags;
637 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
638 if (!atomic_read(&cmd->t_transport_queue_active)) {
639 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
640 return;
642 atomic_set(&cmd->t_transport_queue_active, 0);
643 atomic_dec(&qobj->queue_cnt);
644 list_del_init(&cmd->se_queue_node);
645 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
647 if (atomic_read(&cmd->t_transport_queue_active)) {
648 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
649 cmd->se_tfo->get_task_tag(cmd),
650 atomic_read(&cmd->t_transport_queue_active));
655 * Completion function used by TCM subsystem plugins (such as FILEIO)
656 * for queueing up response from struct se_subsystem_api->do_task()
658 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
660 struct se_task *task = list_entry(cmd->t_task_list.next,
661 struct se_task, t_list);
663 if (good) {
664 cmd->scsi_status = SAM_STAT_GOOD;
665 task->task_scsi_status = GOOD;
666 } else {
667 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
668 task->task_se_cmd->scsi_sense_reason =
669 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
673 transport_complete_task(task, good);
675 EXPORT_SYMBOL(transport_complete_sync_cache);
677 static void target_complete_failure_work(struct work_struct *work)
679 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
681 transport_generic_request_failure(cmd);
684 /* transport_complete_task():
686 * Called from interrupt and non interrupt context depending
687 * on the transport plugin.
689 void transport_complete_task(struct se_task *task, int success)
691 struct se_cmd *cmd = task->task_se_cmd;
692 struct se_device *dev = cmd->se_dev;
693 unsigned long flags;
694 #if 0
695 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
696 cmd->t_task_cdb[0], dev);
697 #endif
698 if (dev)
699 atomic_inc(&dev->depth_left);
701 spin_lock_irqsave(&cmd->t_state_lock, flags);
702 task->task_flags &= ~TF_ACTIVE;
705 * See if any sense data exists, if so set the TASK_SENSE flag.
706 * Also check for any other post completion work that needs to be
707 * done by the plugins.
709 if (dev && dev->transport->transport_complete) {
710 if (dev->transport->transport_complete(task) != 0) {
711 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
712 task->task_flags |= TF_HAS_SENSE;
713 success = 1;
718 * See if we are waiting for outstanding struct se_task
719 * to complete for an exception condition
721 if (task->task_flags & TF_REQUEST_STOP) {
722 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 complete(&task->task_stop_comp);
724 return;
727 if (!success)
728 cmd->t_tasks_failed = 1;
731 * Decrement the outstanding t_task_cdbs_left count. The last
732 * struct se_task from struct se_cmd will complete itself into the
733 * device queue depending upon int success.
735 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
736 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
737 return;
740 if (cmd->t_tasks_failed) {
741 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
742 INIT_WORK(&cmd->work, target_complete_failure_work);
743 } else {
744 atomic_set(&cmd->t_transport_complete, 1);
745 INIT_WORK(&cmd->work, target_complete_ok_work);
748 cmd->t_state = TRANSPORT_COMPLETE;
749 atomic_set(&cmd->t_transport_active, 1);
750 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752 queue_work(target_completion_wq, &cmd->work);
754 EXPORT_SYMBOL(transport_complete_task);
757 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
758 * struct se_task list are ready to be added to the active execution list
759 * struct se_device
761 * Called with se_dev_t->execute_task_lock called.
763 static inline int transport_add_task_check_sam_attr(
764 struct se_task *task,
765 struct se_task *task_prev,
766 struct se_device *dev)
769 * No SAM Task attribute emulation enabled, add to tail of
770 * execution queue
772 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
773 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
774 return 0;
777 * HEAD_OF_QUEUE attribute for received CDB, which means
778 * the first task that is associated with a struct se_cmd goes to
779 * head of the struct se_device->execute_task_list, and task_prev
780 * after that for each subsequent task
782 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
783 list_add(&task->t_execute_list,
784 (task_prev != NULL) ?
785 &task_prev->t_execute_list :
786 &dev->execute_task_list);
788 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
789 " in execution queue\n",
790 task->task_se_cmd->t_task_cdb[0]);
791 return 1;
794 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
795 * transitioned from Dermant -> Active state, and are added to the end
796 * of the struct se_device->execute_task_list
798 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
799 return 0;
802 /* __transport_add_task_to_execute_queue():
804 * Called with se_dev_t->execute_task_lock called.
806 static void __transport_add_task_to_execute_queue(
807 struct se_task *task,
808 struct se_task *task_prev,
809 struct se_device *dev)
811 int head_of_queue;
813 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
814 atomic_inc(&dev->execute_tasks);
816 if (task->t_state_active)
817 return;
819 * Determine if this task needs to go to HEAD_OF_QUEUE for the
820 * state list as well. Running with SAM Task Attribute emulation
821 * will always return head_of_queue == 0 here
823 if (head_of_queue)
824 list_add(&task->t_state_list, (task_prev) ?
825 &task_prev->t_state_list :
826 &dev->state_task_list);
827 else
828 list_add_tail(&task->t_state_list, &dev->state_task_list);
830 task->t_state_active = true;
832 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
833 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
834 task, dev);
837 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
839 struct se_device *dev = cmd->se_dev;
840 struct se_task *task;
841 unsigned long flags;
843 spin_lock_irqsave(&cmd->t_state_lock, flags);
844 list_for_each_entry(task, &cmd->t_task_list, t_list) {
845 spin_lock(&dev->execute_task_lock);
846 if (!task->t_state_active) {
847 list_add_tail(&task->t_state_list,
848 &dev->state_task_list);
849 task->t_state_active = true;
851 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
852 task->task_se_cmd->se_tfo->get_task_tag(
853 task->task_se_cmd), task, dev);
855 spin_unlock(&dev->execute_task_lock);
857 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
860 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
862 struct se_device *dev = cmd->se_dev;
863 struct se_task *task, *task_prev = NULL;
864 unsigned long flags;
866 spin_lock_irqsave(&dev->execute_task_lock, flags);
867 list_for_each_entry(task, &cmd->t_task_list, t_list) {
868 if (!list_empty(&task->t_execute_list))
869 continue;
871 * __transport_add_task_to_execute_queue() handles the
872 * SAM Task Attribute emulation if enabled
874 __transport_add_task_to_execute_queue(task, task_prev, dev);
875 task_prev = task;
877 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
880 void __transport_remove_task_from_execute_queue(struct se_task *task,
881 struct se_device *dev)
883 list_del_init(&task->t_execute_list);
884 atomic_dec(&dev->execute_tasks);
887 static void transport_remove_task_from_execute_queue(
888 struct se_task *task,
889 struct se_device *dev)
891 unsigned long flags;
893 if (WARN_ON(list_empty(&task->t_execute_list)))
894 return;
896 spin_lock_irqsave(&dev->execute_task_lock, flags);
897 __transport_remove_task_from_execute_queue(task, dev);
898 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
902 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
905 static void target_qf_do_work(struct work_struct *work)
907 struct se_device *dev = container_of(work, struct se_device,
908 qf_work_queue);
909 LIST_HEAD(qf_cmd_list);
910 struct se_cmd *cmd, *cmd_tmp;
912 spin_lock_irq(&dev->qf_cmd_lock);
913 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
914 spin_unlock_irq(&dev->qf_cmd_lock);
916 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
917 list_del(&cmd->se_qf_node);
918 atomic_dec(&dev->dev_qf_count);
919 smp_mb__after_atomic_dec();
921 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
922 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
923 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
924 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
925 : "UNKNOWN");
927 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
931 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
933 switch (cmd->data_direction) {
934 case DMA_NONE:
935 return "NONE";
936 case DMA_FROM_DEVICE:
937 return "READ";
938 case DMA_TO_DEVICE:
939 return "WRITE";
940 case DMA_BIDIRECTIONAL:
941 return "BIDI";
942 default:
943 break;
946 return "UNKNOWN";
949 void transport_dump_dev_state(
950 struct se_device *dev,
951 char *b,
952 int *bl)
954 *bl += sprintf(b + *bl, "Status: ");
955 switch (dev->dev_status) {
956 case TRANSPORT_DEVICE_ACTIVATED:
957 *bl += sprintf(b + *bl, "ACTIVATED");
958 break;
959 case TRANSPORT_DEVICE_DEACTIVATED:
960 *bl += sprintf(b + *bl, "DEACTIVATED");
961 break;
962 case TRANSPORT_DEVICE_SHUTDOWN:
963 *bl += sprintf(b + *bl, "SHUTDOWN");
964 break;
965 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
966 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
967 *bl += sprintf(b + *bl, "OFFLINE");
968 break;
969 default:
970 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
971 break;
974 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
975 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
976 dev->queue_depth);
977 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
978 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
979 *bl += sprintf(b + *bl, " ");
982 void transport_dump_vpd_proto_id(
983 struct t10_vpd *vpd,
984 unsigned char *p_buf,
985 int p_buf_len)
987 unsigned char buf[VPD_TMP_BUF_SIZE];
988 int len;
990 memset(buf, 0, VPD_TMP_BUF_SIZE);
991 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
993 switch (vpd->protocol_identifier) {
994 case 0x00:
995 sprintf(buf+len, "Fibre Channel\n");
996 break;
997 case 0x10:
998 sprintf(buf+len, "Parallel SCSI\n");
999 break;
1000 case 0x20:
1001 sprintf(buf+len, "SSA\n");
1002 break;
1003 case 0x30:
1004 sprintf(buf+len, "IEEE 1394\n");
1005 break;
1006 case 0x40:
1007 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1008 " Protocol\n");
1009 break;
1010 case 0x50:
1011 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1012 break;
1013 case 0x60:
1014 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1015 break;
1016 case 0x70:
1017 sprintf(buf+len, "Automation/Drive Interface Transport"
1018 " Protocol\n");
1019 break;
1020 case 0x80:
1021 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1022 break;
1023 default:
1024 sprintf(buf+len, "Unknown 0x%02x\n",
1025 vpd->protocol_identifier);
1026 break;
1029 if (p_buf)
1030 strncpy(p_buf, buf, p_buf_len);
1031 else
1032 pr_debug("%s", buf);
1035 void
1036 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1039 * Check if the Protocol Identifier Valid (PIV) bit is set..
1041 * from spc3r23.pdf section 7.5.1
1043 if (page_83[1] & 0x80) {
1044 vpd->protocol_identifier = (page_83[0] & 0xf0);
1045 vpd->protocol_identifier_set = 1;
1046 transport_dump_vpd_proto_id(vpd, NULL, 0);
1049 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1051 int transport_dump_vpd_assoc(
1052 struct t10_vpd *vpd,
1053 unsigned char *p_buf,
1054 int p_buf_len)
1056 unsigned char buf[VPD_TMP_BUF_SIZE];
1057 int ret = 0;
1058 int len;
1060 memset(buf, 0, VPD_TMP_BUF_SIZE);
1061 len = sprintf(buf, "T10 VPD Identifier Association: ");
1063 switch (vpd->association) {
1064 case 0x00:
1065 sprintf(buf+len, "addressed logical unit\n");
1066 break;
1067 case 0x10:
1068 sprintf(buf+len, "target port\n");
1069 break;
1070 case 0x20:
1071 sprintf(buf+len, "SCSI target device\n");
1072 break;
1073 default:
1074 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1075 ret = -EINVAL;
1076 break;
1079 if (p_buf)
1080 strncpy(p_buf, buf, p_buf_len);
1081 else
1082 pr_debug("%s", buf);
1084 return ret;
1087 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1090 * The VPD identification association..
1092 * from spc3r23.pdf Section 7.6.3.1 Table 297
1094 vpd->association = (page_83[1] & 0x30);
1095 return transport_dump_vpd_assoc(vpd, NULL, 0);
1097 EXPORT_SYMBOL(transport_set_vpd_assoc);
1099 int transport_dump_vpd_ident_type(
1100 struct t10_vpd *vpd,
1101 unsigned char *p_buf,
1102 int p_buf_len)
1104 unsigned char buf[VPD_TMP_BUF_SIZE];
1105 int ret = 0;
1106 int len;
1108 memset(buf, 0, VPD_TMP_BUF_SIZE);
1109 len = sprintf(buf, "T10 VPD Identifier Type: ");
1111 switch (vpd->device_identifier_type) {
1112 case 0x00:
1113 sprintf(buf+len, "Vendor specific\n");
1114 break;
1115 case 0x01:
1116 sprintf(buf+len, "T10 Vendor ID based\n");
1117 break;
1118 case 0x02:
1119 sprintf(buf+len, "EUI-64 based\n");
1120 break;
1121 case 0x03:
1122 sprintf(buf+len, "NAA\n");
1123 break;
1124 case 0x04:
1125 sprintf(buf+len, "Relative target port identifier\n");
1126 break;
1127 case 0x08:
1128 sprintf(buf+len, "SCSI name string\n");
1129 break;
1130 default:
1131 sprintf(buf+len, "Unsupported: 0x%02x\n",
1132 vpd->device_identifier_type);
1133 ret = -EINVAL;
1134 break;
1137 if (p_buf) {
1138 if (p_buf_len < strlen(buf)+1)
1139 return -EINVAL;
1140 strncpy(p_buf, buf, p_buf_len);
1141 } else {
1142 pr_debug("%s", buf);
1145 return ret;
1148 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1151 * The VPD identifier type..
1153 * from spc3r23.pdf Section 7.6.3.1 Table 298
1155 vpd->device_identifier_type = (page_83[1] & 0x0f);
1156 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1158 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1160 int transport_dump_vpd_ident(
1161 struct t10_vpd *vpd,
1162 unsigned char *p_buf,
1163 int p_buf_len)
1165 unsigned char buf[VPD_TMP_BUF_SIZE];
1166 int ret = 0;
1168 memset(buf, 0, VPD_TMP_BUF_SIZE);
1170 switch (vpd->device_identifier_code_set) {
1171 case 0x01: /* Binary */
1172 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1173 &vpd->device_identifier[0]);
1174 break;
1175 case 0x02: /* ASCII */
1176 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1177 &vpd->device_identifier[0]);
1178 break;
1179 case 0x03: /* UTF-8 */
1180 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1181 &vpd->device_identifier[0]);
1182 break;
1183 default:
1184 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1185 " 0x%02x", vpd->device_identifier_code_set);
1186 ret = -EINVAL;
1187 break;
1190 if (p_buf)
1191 strncpy(p_buf, buf, p_buf_len);
1192 else
1193 pr_debug("%s", buf);
1195 return ret;
1199 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1201 static const char hex_str[] = "0123456789abcdef";
1202 int j = 0, i = 4; /* offset to start of the identifer */
1205 * The VPD Code Set (encoding)
1207 * from spc3r23.pdf Section 7.6.3.1 Table 296
1209 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1210 switch (vpd->device_identifier_code_set) {
1211 case 0x01: /* Binary */
1212 vpd->device_identifier[j++] =
1213 hex_str[vpd->device_identifier_type];
1214 while (i < (4 + page_83[3])) {
1215 vpd->device_identifier[j++] =
1216 hex_str[(page_83[i] & 0xf0) >> 4];
1217 vpd->device_identifier[j++] =
1218 hex_str[page_83[i] & 0x0f];
1219 i++;
1221 break;
1222 case 0x02: /* ASCII */
1223 case 0x03: /* UTF-8 */
1224 while (i < (4 + page_83[3]))
1225 vpd->device_identifier[j++] = page_83[i++];
1226 break;
1227 default:
1228 break;
1231 return transport_dump_vpd_ident(vpd, NULL, 0);
1233 EXPORT_SYMBOL(transport_set_vpd_ident);
1235 static void core_setup_task_attr_emulation(struct se_device *dev)
1238 * If this device is from Target_Core_Mod/pSCSI, disable the
1239 * SAM Task Attribute emulation.
1241 * This is currently not available in upsream Linux/SCSI Target
1242 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1244 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1245 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1246 return;
1249 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1250 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1251 " device\n", dev->transport->name,
1252 dev->transport->get_device_rev(dev));
1255 static void scsi_dump_inquiry(struct se_device *dev)
1257 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1258 int i, device_type;
1260 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1262 pr_debug(" Vendor: ");
1263 for (i = 0; i < 8; i++)
1264 if (wwn->vendor[i] >= 0x20)
1265 pr_debug("%c", wwn->vendor[i]);
1266 else
1267 pr_debug(" ");
1269 pr_debug(" Model: ");
1270 for (i = 0; i < 16; i++)
1271 if (wwn->model[i] >= 0x20)
1272 pr_debug("%c", wwn->model[i]);
1273 else
1274 pr_debug(" ");
1276 pr_debug(" Revision: ");
1277 for (i = 0; i < 4; i++)
1278 if (wwn->revision[i] >= 0x20)
1279 pr_debug("%c", wwn->revision[i]);
1280 else
1281 pr_debug(" ");
1283 pr_debug("\n");
1285 device_type = dev->transport->get_device_type(dev);
1286 pr_debug(" Type: %s ", scsi_device_type(device_type));
1287 pr_debug(" ANSI SCSI revision: %02x\n",
1288 dev->transport->get_device_rev(dev));
1291 struct se_device *transport_add_device_to_core_hba(
1292 struct se_hba *hba,
1293 struct se_subsystem_api *transport,
1294 struct se_subsystem_dev *se_dev,
1295 u32 device_flags,
1296 void *transport_dev,
1297 struct se_dev_limits *dev_limits,
1298 const char *inquiry_prod,
1299 const char *inquiry_rev)
1301 int force_pt;
1302 struct se_device *dev;
1304 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1305 if (!dev) {
1306 pr_err("Unable to allocate memory for se_dev_t\n");
1307 return NULL;
1310 transport_init_queue_obj(&dev->dev_queue_obj);
1311 dev->dev_flags = device_flags;
1312 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1313 dev->dev_ptr = transport_dev;
1314 dev->se_hba = hba;
1315 dev->se_sub_dev = se_dev;
1316 dev->transport = transport;
1317 INIT_LIST_HEAD(&dev->dev_list);
1318 INIT_LIST_HEAD(&dev->dev_sep_list);
1319 INIT_LIST_HEAD(&dev->dev_tmr_list);
1320 INIT_LIST_HEAD(&dev->execute_task_list);
1321 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1322 INIT_LIST_HEAD(&dev->state_task_list);
1323 INIT_LIST_HEAD(&dev->qf_cmd_list);
1324 spin_lock_init(&dev->execute_task_lock);
1325 spin_lock_init(&dev->delayed_cmd_lock);
1326 spin_lock_init(&dev->dev_reservation_lock);
1327 spin_lock_init(&dev->dev_status_lock);
1328 spin_lock_init(&dev->se_port_lock);
1329 spin_lock_init(&dev->se_tmr_lock);
1330 spin_lock_init(&dev->qf_cmd_lock);
1332 dev->queue_depth = dev_limits->queue_depth;
1333 atomic_set(&dev->depth_left, dev->queue_depth);
1334 atomic_set(&dev->dev_ordered_id, 0);
1336 se_dev_set_default_attribs(dev, dev_limits);
1338 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1339 dev->creation_time = get_jiffies_64();
1340 spin_lock_init(&dev->stats_lock);
1342 spin_lock(&hba->device_lock);
1343 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1344 hba->dev_count++;
1345 spin_unlock(&hba->device_lock);
1347 * Setup the SAM Task Attribute emulation for struct se_device
1349 core_setup_task_attr_emulation(dev);
1351 * Force PR and ALUA passthrough emulation with internal object use.
1353 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1355 * Setup the Reservations infrastructure for struct se_device
1357 core_setup_reservations(dev, force_pt);
1359 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1361 if (core_setup_alua(dev, force_pt) < 0)
1362 goto out;
1365 * Startup the struct se_device processing thread
1367 dev->process_thread = kthread_run(transport_processing_thread, dev,
1368 "LIO_%s", dev->transport->name);
1369 if (IS_ERR(dev->process_thread)) {
1370 pr_err("Unable to create kthread: LIO_%s\n",
1371 dev->transport->name);
1372 goto out;
1375 * Setup work_queue for QUEUE_FULL
1377 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1379 * Preload the initial INQUIRY const values if we are doing
1380 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1381 * passthrough because this is being provided by the backend LLD.
1382 * This is required so that transport_get_inquiry() copies these
1383 * originals once back into DEV_T10_WWN(dev) for the virtual device
1384 * setup.
1386 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1387 if (!inquiry_prod || !inquiry_rev) {
1388 pr_err("All non TCM/pSCSI plugins require"
1389 " INQUIRY consts\n");
1390 goto out;
1393 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1394 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1395 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1397 scsi_dump_inquiry(dev);
1399 return dev;
1400 out:
1401 kthread_stop(dev->process_thread);
1403 spin_lock(&hba->device_lock);
1404 list_del(&dev->dev_list);
1405 hba->dev_count--;
1406 spin_unlock(&hba->device_lock);
1408 se_release_vpd_for_dev(dev);
1410 kfree(dev);
1412 return NULL;
1414 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1416 /* transport_generic_prepare_cdb():
1418 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1419 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1420 * The point of this is since we are mapping iSCSI LUNs to
1421 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1422 * devices and HBAs for a loop.
1424 static inline void transport_generic_prepare_cdb(
1425 unsigned char *cdb)
1427 switch (cdb[0]) {
1428 case READ_10: /* SBC - RDProtect */
1429 case READ_12: /* SBC - RDProtect */
1430 case READ_16: /* SBC - RDProtect */
1431 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1432 case VERIFY: /* SBC - VRProtect */
1433 case VERIFY_16: /* SBC - VRProtect */
1434 case WRITE_VERIFY: /* SBC - VRProtect */
1435 case WRITE_VERIFY_12: /* SBC - VRProtect */
1436 break;
1437 default:
1438 cdb[1] &= 0x1f; /* clear logical unit number */
1439 break;
1443 static struct se_task *
1444 transport_generic_get_task(struct se_cmd *cmd,
1445 enum dma_data_direction data_direction)
1447 struct se_task *task;
1448 struct se_device *dev = cmd->se_dev;
1450 task = dev->transport->alloc_task(cmd->t_task_cdb);
1451 if (!task) {
1452 pr_err("Unable to allocate struct se_task\n");
1453 return NULL;
1456 INIT_LIST_HEAD(&task->t_list);
1457 INIT_LIST_HEAD(&task->t_execute_list);
1458 INIT_LIST_HEAD(&task->t_state_list);
1459 init_completion(&task->task_stop_comp);
1460 task->task_se_cmd = cmd;
1461 task->task_data_direction = data_direction;
1463 return task;
1466 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1469 * Used by fabric modules containing a local struct se_cmd within their
1470 * fabric dependent per I/O descriptor.
1472 void transport_init_se_cmd(
1473 struct se_cmd *cmd,
1474 struct target_core_fabric_ops *tfo,
1475 struct se_session *se_sess,
1476 u32 data_length,
1477 int data_direction,
1478 int task_attr,
1479 unsigned char *sense_buffer)
1481 INIT_LIST_HEAD(&cmd->se_lun_node);
1482 INIT_LIST_HEAD(&cmd->se_delayed_node);
1483 INIT_LIST_HEAD(&cmd->se_qf_node);
1484 INIT_LIST_HEAD(&cmd->se_queue_node);
1485 INIT_LIST_HEAD(&cmd->se_cmd_list);
1486 INIT_LIST_HEAD(&cmd->t_task_list);
1487 init_completion(&cmd->transport_lun_fe_stop_comp);
1488 init_completion(&cmd->transport_lun_stop_comp);
1489 init_completion(&cmd->t_transport_stop_comp);
1490 init_completion(&cmd->cmd_wait_comp);
1491 spin_lock_init(&cmd->t_state_lock);
1492 atomic_set(&cmd->transport_dev_active, 1);
1494 cmd->se_tfo = tfo;
1495 cmd->se_sess = se_sess;
1496 cmd->data_length = data_length;
1497 cmd->data_direction = data_direction;
1498 cmd->sam_task_attr = task_attr;
1499 cmd->sense_buffer = sense_buffer;
1501 EXPORT_SYMBOL(transport_init_se_cmd);
1503 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1506 * Check if SAM Task Attribute emulation is enabled for this
1507 * struct se_device storage object
1509 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1510 return 0;
1512 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1513 pr_debug("SAM Task Attribute ACA"
1514 " emulation is not supported\n");
1515 return -EINVAL;
1518 * Used to determine when ORDERED commands should go from
1519 * Dormant to Active status.
1521 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1522 smp_mb__after_atomic_inc();
1523 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1524 cmd->se_ordered_id, cmd->sam_task_attr,
1525 cmd->se_dev->transport->name);
1526 return 0;
1529 /* transport_generic_allocate_tasks():
1531 * Called from fabric RX Thread.
1533 int transport_generic_allocate_tasks(
1534 struct se_cmd *cmd,
1535 unsigned char *cdb)
1537 int ret;
1539 transport_generic_prepare_cdb(cdb);
1541 * Ensure that the received CDB is less than the max (252 + 8) bytes
1542 * for VARIABLE_LENGTH_CMD
1544 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1545 pr_err("Received SCSI CDB with command_size: %d that"
1546 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1547 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1548 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1549 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1550 return -EINVAL;
1553 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1554 * allocate the additional extended CDB buffer now.. Otherwise
1555 * setup the pointer from __t_task_cdb to t_task_cdb.
1557 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1558 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1559 GFP_KERNEL);
1560 if (!cmd->t_task_cdb) {
1561 pr_err("Unable to allocate cmd->t_task_cdb"
1562 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1563 scsi_command_size(cdb),
1564 (unsigned long)sizeof(cmd->__t_task_cdb));
1565 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1566 cmd->scsi_sense_reason =
1567 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1568 return -ENOMEM;
1570 } else
1571 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1573 * Copy the original CDB into cmd->
1575 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1577 * Setup the received CDB based on SCSI defined opcodes and
1578 * perform unit attention, persistent reservations and ALUA
1579 * checks for virtual device backends. The cmd->t_task_cdb
1580 * pointer is expected to be setup before we reach this point.
1582 ret = transport_generic_cmd_sequencer(cmd, cdb);
1583 if (ret < 0)
1584 return ret;
1586 * Check for SAM Task Attribute Emulation
1588 if (transport_check_alloc_task_attr(cmd) < 0) {
1589 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1590 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1591 return -EINVAL;
1593 spin_lock(&cmd->se_lun->lun_sep_lock);
1594 if (cmd->se_lun->lun_sep)
1595 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1596 spin_unlock(&cmd->se_lun->lun_sep_lock);
1597 return 0;
1599 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1602 * Used by fabric module frontends to queue tasks directly.
1603 * Many only be used from process context only
1605 int transport_handle_cdb_direct(
1606 struct se_cmd *cmd)
1608 int ret;
1610 if (!cmd->se_lun) {
1611 dump_stack();
1612 pr_err("cmd->se_lun is NULL\n");
1613 return -EINVAL;
1615 if (in_interrupt()) {
1616 dump_stack();
1617 pr_err("transport_generic_handle_cdb cannot be called"
1618 " from interrupt context\n");
1619 return -EINVAL;
1622 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1623 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1624 * in existing usage to ensure that outstanding descriptors are handled
1625 * correctly during shutdown via transport_wait_for_tasks()
1627 * Also, we don't take cmd->t_state_lock here as we only expect
1628 * this to be called for initial descriptor submission.
1630 cmd->t_state = TRANSPORT_NEW_CMD;
1631 atomic_set(&cmd->t_transport_active, 1);
1633 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1634 * so follow TRANSPORT_NEW_CMD processing thread context usage
1635 * and call transport_generic_request_failure() if necessary..
1637 ret = transport_generic_new_cmd(cmd);
1638 if (ret < 0)
1639 transport_generic_request_failure(cmd);
1641 return 0;
1643 EXPORT_SYMBOL(transport_handle_cdb_direct);
1646 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1647 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1648 * complete setup in TCM process context w/ TFO->new_cmd_map().
1650 int transport_generic_handle_cdb_map(
1651 struct se_cmd *cmd)
1653 if (!cmd->se_lun) {
1654 dump_stack();
1655 pr_err("cmd->se_lun is NULL\n");
1656 return -EINVAL;
1659 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1660 return 0;
1662 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1664 /* transport_generic_handle_data():
1668 int transport_generic_handle_data(
1669 struct se_cmd *cmd)
1672 * For the software fabric case, then we assume the nexus is being
1673 * failed/shutdown when signals are pending from the kthread context
1674 * caller, so we return a failure. For the HW target mode case running
1675 * in interrupt code, the signal_pending() check is skipped.
1677 if (!in_interrupt() && signal_pending(current))
1678 return -EPERM;
1680 * If the received CDB has aleady been ABORTED by the generic
1681 * target engine, we now call transport_check_aborted_status()
1682 * to queue any delated TASK_ABORTED status for the received CDB to the
1683 * fabric module as we are expecting no further incoming DATA OUT
1684 * sequences at this point.
1686 if (transport_check_aborted_status(cmd, 1) != 0)
1687 return 0;
1689 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1690 return 0;
1692 EXPORT_SYMBOL(transport_generic_handle_data);
1694 /* transport_generic_handle_tmr():
1698 int transport_generic_handle_tmr(
1699 struct se_cmd *cmd)
1701 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1702 return 0;
1704 EXPORT_SYMBOL(transport_generic_handle_tmr);
1707 * If the task is active, request it to be stopped and sleep until it
1708 * has completed.
1710 bool target_stop_task(struct se_task *task, unsigned long *flags)
1712 struct se_cmd *cmd = task->task_se_cmd;
1713 bool was_active = false;
1715 if (task->task_flags & TF_ACTIVE) {
1716 task->task_flags |= TF_REQUEST_STOP;
1717 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1719 pr_debug("Task %p waiting to complete\n", task);
1720 wait_for_completion(&task->task_stop_comp);
1721 pr_debug("Task %p stopped successfully\n", task);
1723 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1724 atomic_dec(&cmd->t_task_cdbs_left);
1725 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1726 was_active = true;
1729 return was_active;
1732 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1734 struct se_task *task, *task_tmp;
1735 unsigned long flags;
1736 int ret = 0;
1738 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1739 cmd->se_tfo->get_task_tag(cmd));
1742 * No tasks remain in the execution queue
1744 spin_lock_irqsave(&cmd->t_state_lock, flags);
1745 list_for_each_entry_safe(task, task_tmp,
1746 &cmd->t_task_list, t_list) {
1747 pr_debug("Processing task %p\n", task);
1749 * If the struct se_task has not been sent and is not active,
1750 * remove the struct se_task from the execution queue.
1752 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1753 spin_unlock_irqrestore(&cmd->t_state_lock,
1754 flags);
1755 transport_remove_task_from_execute_queue(task,
1756 cmd->se_dev);
1758 pr_debug("Task %p removed from execute queue\n", task);
1759 spin_lock_irqsave(&cmd->t_state_lock, flags);
1760 continue;
1763 if (!target_stop_task(task, &flags)) {
1764 pr_debug("Task %p - did nothing\n", task);
1765 ret++;
1768 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1770 return ret;
1774 * Handle SAM-esque emulation for generic transport request failures.
1776 static void transport_generic_request_failure(struct se_cmd *cmd)
1778 int ret = 0;
1780 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1781 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1782 cmd->t_task_cdb[0]);
1783 pr_debug("-----[ i_state: %d t_state: %d scsi_sense_reason: %d\n",
1784 cmd->se_tfo->get_cmd_state(cmd),
1785 cmd->t_state, cmd->scsi_sense_reason);
1786 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1787 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1788 " t_transport_active: %d t_transport_stop: %d"
1789 " t_transport_sent: %d\n", cmd->t_task_list_num,
1790 atomic_read(&cmd->t_task_cdbs_left),
1791 atomic_read(&cmd->t_task_cdbs_sent),
1792 atomic_read(&cmd->t_task_cdbs_ex_left),
1793 atomic_read(&cmd->t_transport_active),
1794 atomic_read(&cmd->t_transport_stop),
1795 atomic_read(&cmd->t_transport_sent));
1798 * For SAM Task Attribute emulation for failed struct se_cmd
1800 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1801 transport_complete_task_attr(cmd);
1803 switch (cmd->scsi_sense_reason) {
1804 case TCM_NON_EXISTENT_LUN:
1805 case TCM_UNSUPPORTED_SCSI_OPCODE:
1806 case TCM_INVALID_CDB_FIELD:
1807 case TCM_INVALID_PARAMETER_LIST:
1808 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1809 case TCM_UNKNOWN_MODE_PAGE:
1810 case TCM_WRITE_PROTECTED:
1811 case TCM_CHECK_CONDITION_ABORT_CMD:
1812 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1813 case TCM_CHECK_CONDITION_NOT_READY:
1814 break;
1815 case TCM_RESERVATION_CONFLICT:
1817 * No SENSE Data payload for this case, set SCSI Status
1818 * and queue the response to $FABRIC_MOD.
1820 * Uses linux/include/scsi/scsi.h SAM status codes defs
1822 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1824 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1825 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1826 * CONFLICT STATUS.
1828 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1830 if (cmd->se_sess &&
1831 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1832 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1833 cmd->orig_fe_lun, 0x2C,
1834 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1836 ret = cmd->se_tfo->queue_status(cmd);
1837 if (ret == -EAGAIN || ret == -ENOMEM)
1838 goto queue_full;
1839 goto check_stop;
1840 default:
1841 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1842 cmd->t_task_cdb[0], cmd->scsi_sense_reason);
1843 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1844 break;
1847 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1848 * make the call to transport_send_check_condition_and_sense()
1849 * directly. Otherwise expect the fabric to make the call to
1850 * transport_send_check_condition_and_sense() after handling
1851 * possible unsoliticied write data payloads.
1853 ret = transport_send_check_condition_and_sense(cmd,
1854 cmd->scsi_sense_reason, 0);
1855 if (ret == -EAGAIN || ret == -ENOMEM)
1856 goto queue_full;
1858 check_stop:
1859 transport_lun_remove_cmd(cmd);
1860 if (!transport_cmd_check_stop_to_fabric(cmd))
1862 return;
1864 queue_full:
1865 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1866 transport_handle_queue_full(cmd, cmd->se_dev);
1869 static inline u32 transport_lba_21(unsigned char *cdb)
1871 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1874 static inline u32 transport_lba_32(unsigned char *cdb)
1876 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1879 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1881 unsigned int __v1, __v2;
1883 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1884 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1886 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1890 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1892 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1894 unsigned int __v1, __v2;
1896 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1897 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1899 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1902 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1904 unsigned long flags;
1906 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1907 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1908 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1911 static inline int transport_tcq_window_closed(struct se_device *dev)
1913 if (dev->dev_tcq_window_closed++ <
1914 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1915 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1916 } else
1917 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1919 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1920 return 0;
1924 * Called from Fabric Module context from transport_execute_tasks()
1926 * The return of this function determins if the tasks from struct se_cmd
1927 * get added to the execution queue in transport_execute_tasks(),
1928 * or are added to the delayed or ordered lists here.
1930 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1932 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1933 return 1;
1935 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1936 * to allow the passed struct se_cmd list of tasks to the front of the list.
1938 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1939 pr_debug("Added HEAD_OF_QUEUE for CDB:"
1940 " 0x%02x, se_ordered_id: %u\n",
1941 cmd->t_task_cdb[0],
1942 cmd->se_ordered_id);
1943 return 1;
1944 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1945 atomic_inc(&cmd->se_dev->dev_ordered_sync);
1946 smp_mb__after_atomic_inc();
1948 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
1949 " list, se_ordered_id: %u\n",
1950 cmd->t_task_cdb[0],
1951 cmd->se_ordered_id);
1953 * Add ORDERED command to tail of execution queue if
1954 * no other older commands exist that need to be
1955 * completed first.
1957 if (!atomic_read(&cmd->se_dev->simple_cmds))
1958 return 1;
1959 } else {
1961 * For SIMPLE and UNTAGGED Task Attribute commands
1963 atomic_inc(&cmd->se_dev->simple_cmds);
1964 smp_mb__after_atomic_inc();
1967 * Otherwise if one or more outstanding ORDERED task attribute exist,
1968 * add the dormant task(s) built for the passed struct se_cmd to the
1969 * execution queue and become in Active state for this struct se_device.
1971 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
1973 * Otherwise, add cmd w/ tasks to delayed cmd queue that
1974 * will be drained upon completion of HEAD_OF_QUEUE task.
1976 spin_lock(&cmd->se_dev->delayed_cmd_lock);
1977 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
1978 list_add_tail(&cmd->se_delayed_node,
1979 &cmd->se_dev->delayed_cmd_list);
1980 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
1982 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1983 " delayed CMD list, se_ordered_id: %u\n",
1984 cmd->t_task_cdb[0], cmd->sam_task_attr,
1985 cmd->se_ordered_id);
1987 * Return zero to let transport_execute_tasks() know
1988 * not to add the delayed tasks to the execution list.
1990 return 0;
1993 * Otherwise, no ORDERED task attributes exist..
1995 return 1;
1999 * Called from fabric module context in transport_generic_new_cmd() and
2000 * transport_generic_process_write()
2002 static int transport_execute_tasks(struct se_cmd *cmd)
2004 int add_tasks;
2006 if (se_dev_check_online(cmd->se_dev) != 0) {
2007 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2008 transport_generic_request_failure(cmd);
2009 return 0;
2013 * Call transport_cmd_check_stop() to see if a fabric exception
2014 * has occurred that prevents execution.
2016 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2018 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2019 * attribute for the tasks of the received struct se_cmd CDB
2021 add_tasks = transport_execute_task_attr(cmd);
2022 if (!add_tasks)
2023 goto execute_tasks;
2025 * This calls transport_add_tasks_from_cmd() to handle
2026 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2027 * (if enabled) in __transport_add_task_to_execute_queue() and
2028 * transport_add_task_check_sam_attr().
2030 transport_add_tasks_from_cmd(cmd);
2033 * Kick the execution queue for the cmd associated struct se_device
2034 * storage object.
2036 execute_tasks:
2037 __transport_execute_tasks(cmd->se_dev);
2038 return 0;
2042 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2043 * from struct se_device->execute_task_list and
2045 * Called from transport_processing_thread()
2047 static int __transport_execute_tasks(struct se_device *dev)
2049 int error;
2050 struct se_cmd *cmd = NULL;
2051 struct se_task *task = NULL;
2052 unsigned long flags;
2055 * Check if there is enough room in the device and HBA queue to send
2056 * struct se_tasks to the selected transport.
2058 check_depth:
2059 if (!atomic_read(&dev->depth_left))
2060 return transport_tcq_window_closed(dev);
2062 dev->dev_tcq_window_closed = 0;
2064 spin_lock_irq(&dev->execute_task_lock);
2065 if (list_empty(&dev->execute_task_list)) {
2066 spin_unlock_irq(&dev->execute_task_lock);
2067 return 0;
2069 task = list_first_entry(&dev->execute_task_list,
2070 struct se_task, t_execute_list);
2071 __transport_remove_task_from_execute_queue(task, dev);
2072 spin_unlock_irq(&dev->execute_task_lock);
2074 atomic_dec(&dev->depth_left);
2076 cmd = task->task_se_cmd;
2078 spin_lock_irqsave(&cmd->t_state_lock, flags);
2079 task->task_flags |= (TF_ACTIVE | TF_SENT);
2080 atomic_inc(&cmd->t_task_cdbs_sent);
2082 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2083 cmd->t_task_list_num)
2084 atomic_set(&cmd->t_transport_sent, 1);
2086 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2088 if (cmd->execute_task)
2089 error = cmd->execute_task(task);
2090 else
2091 error = dev->transport->do_task(task);
2092 if (error != 0) {
2093 spin_lock_irqsave(&cmd->t_state_lock, flags);
2094 task->task_flags &= ~TF_ACTIVE;
2095 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2096 atomic_set(&cmd->t_transport_sent, 0);
2097 transport_stop_tasks_for_cmd(cmd);
2098 atomic_inc(&dev->depth_left);
2099 transport_generic_request_failure(cmd);
2102 goto check_depth;
2104 return 0;
2107 static inline u32 transport_get_sectors_6(
2108 unsigned char *cdb,
2109 struct se_cmd *cmd,
2110 int *ret)
2112 struct se_device *dev = cmd->se_dev;
2115 * Assume TYPE_DISK for non struct se_device objects.
2116 * Use 8-bit sector value.
2118 if (!dev)
2119 goto type_disk;
2122 * Use 24-bit allocation length for TYPE_TAPE.
2124 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2125 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2128 * Everything else assume TYPE_DISK Sector CDB location.
2129 * Use 8-bit sector value. SBC-3 says:
2131 * A TRANSFER LENGTH field set to zero specifies that 256
2132 * logical blocks shall be written. Any other value
2133 * specifies the number of logical blocks that shall be
2134 * written.
2136 type_disk:
2137 return cdb[4] ? : 256;
2140 static inline u32 transport_get_sectors_10(
2141 unsigned char *cdb,
2142 struct se_cmd *cmd,
2143 int *ret)
2145 struct se_device *dev = cmd->se_dev;
2148 * Assume TYPE_DISK for non struct se_device objects.
2149 * Use 16-bit sector value.
2151 if (!dev)
2152 goto type_disk;
2155 * XXX_10 is not defined in SSC, throw an exception
2157 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2158 *ret = -EINVAL;
2159 return 0;
2163 * Everything else assume TYPE_DISK Sector CDB location.
2164 * Use 16-bit sector value.
2166 type_disk:
2167 return (u32)(cdb[7] << 8) + cdb[8];
2170 static inline u32 transport_get_sectors_12(
2171 unsigned char *cdb,
2172 struct se_cmd *cmd,
2173 int *ret)
2175 struct se_device *dev = cmd->se_dev;
2178 * Assume TYPE_DISK for non struct se_device objects.
2179 * Use 32-bit sector value.
2181 if (!dev)
2182 goto type_disk;
2185 * XXX_12 is not defined in SSC, throw an exception
2187 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2188 *ret = -EINVAL;
2189 return 0;
2193 * Everything else assume TYPE_DISK Sector CDB location.
2194 * Use 32-bit sector value.
2196 type_disk:
2197 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2200 static inline u32 transport_get_sectors_16(
2201 unsigned char *cdb,
2202 struct se_cmd *cmd,
2203 int *ret)
2205 struct se_device *dev = cmd->se_dev;
2208 * Assume TYPE_DISK for non struct se_device objects.
2209 * Use 32-bit sector value.
2211 if (!dev)
2212 goto type_disk;
2215 * Use 24-bit allocation length for TYPE_TAPE.
2217 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2218 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2220 type_disk:
2221 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2222 (cdb[12] << 8) + cdb[13];
2226 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2228 static inline u32 transport_get_sectors_32(
2229 unsigned char *cdb,
2230 struct se_cmd *cmd,
2231 int *ret)
2234 * Assume TYPE_DISK for non struct se_device objects.
2235 * Use 32-bit sector value.
2237 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2238 (cdb[30] << 8) + cdb[31];
2242 static inline u32 transport_get_size(
2243 u32 sectors,
2244 unsigned char *cdb,
2245 struct se_cmd *cmd)
2247 struct se_device *dev = cmd->se_dev;
2249 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2250 if (cdb[1] & 1) { /* sectors */
2251 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2252 } else /* bytes */
2253 return sectors;
2255 #if 0
2256 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2257 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2258 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2259 dev->transport->name);
2260 #endif
2261 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2264 static void transport_xor_callback(struct se_cmd *cmd)
2266 unsigned char *buf, *addr;
2267 struct scatterlist *sg;
2268 unsigned int offset;
2269 int i;
2270 int count;
2272 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2274 * 1) read the specified logical block(s);
2275 * 2) transfer logical blocks from the data-out buffer;
2276 * 3) XOR the logical blocks transferred from the data-out buffer with
2277 * the logical blocks read, storing the resulting XOR data in a buffer;
2278 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2279 * blocks transferred from the data-out buffer; and
2280 * 5) transfer the resulting XOR data to the data-in buffer.
2282 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2283 if (!buf) {
2284 pr_err("Unable to allocate xor_callback buf\n");
2285 return;
2288 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2289 * into the locally allocated *buf
2291 sg_copy_to_buffer(cmd->t_data_sg,
2292 cmd->t_data_nents,
2293 buf,
2294 cmd->data_length);
2297 * Now perform the XOR against the BIDI read memory located at
2298 * cmd->t_mem_bidi_list
2301 offset = 0;
2302 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2303 addr = kmap_atomic(sg_page(sg), KM_USER0);
2304 if (!addr)
2305 goto out;
2307 for (i = 0; i < sg->length; i++)
2308 *(addr + sg->offset + i) ^= *(buf + offset + i);
2310 offset += sg->length;
2311 kunmap_atomic(addr, KM_USER0);
2314 out:
2315 kfree(buf);
2319 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2321 static int transport_get_sense_data(struct se_cmd *cmd)
2323 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2324 struct se_device *dev = cmd->se_dev;
2325 struct se_task *task = NULL, *task_tmp;
2326 unsigned long flags;
2327 u32 offset = 0;
2329 WARN_ON(!cmd->se_lun);
2331 if (!dev)
2332 return 0;
2334 spin_lock_irqsave(&cmd->t_state_lock, flags);
2335 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2336 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2337 return 0;
2340 list_for_each_entry_safe(task, task_tmp,
2341 &cmd->t_task_list, t_list) {
2342 if (!(task->task_flags & TF_HAS_SENSE))
2343 continue;
2345 if (!dev->transport->get_sense_buffer) {
2346 pr_err("dev->transport->get_sense_buffer"
2347 " is NULL\n");
2348 continue;
2351 sense_buffer = dev->transport->get_sense_buffer(task);
2352 if (!sense_buffer) {
2353 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2354 " sense buffer for task with sense\n",
2355 cmd->se_tfo->get_task_tag(cmd), task);
2356 continue;
2358 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2360 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2361 TRANSPORT_SENSE_BUFFER);
2363 memcpy(&buffer[offset], sense_buffer,
2364 TRANSPORT_SENSE_BUFFER);
2365 cmd->scsi_status = task->task_scsi_status;
2366 /* Automatically padded */
2367 cmd->scsi_sense_length =
2368 (TRANSPORT_SENSE_BUFFER + offset);
2370 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2371 " and sense\n",
2372 dev->se_hba->hba_id, dev->transport->name,
2373 cmd->scsi_status);
2374 return 0;
2376 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2378 return -1;
2381 static inline long long transport_dev_end_lba(struct se_device *dev)
2383 return dev->transport->get_blocks(dev) + 1;
2386 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2388 struct se_device *dev = cmd->se_dev;
2389 u32 sectors;
2391 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2392 return 0;
2394 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2396 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2397 pr_err("LBA: %llu Sectors: %u exceeds"
2398 " transport_dev_end_lba(): %llu\n",
2399 cmd->t_task_lba, sectors,
2400 transport_dev_end_lba(dev));
2401 return -EINVAL;
2404 return 0;
2407 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2410 * Determine if the received WRITE_SAME is used to for direct
2411 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2412 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2413 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2415 int passthrough = (dev->transport->transport_type ==
2416 TRANSPORT_PLUGIN_PHBA_PDEV);
2418 if (!passthrough) {
2419 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2420 pr_err("WRITE_SAME PBDATA and LBDATA"
2421 " bits not supported for Block Discard"
2422 " Emulation\n");
2423 return -ENOSYS;
2426 * Currently for the emulated case we only accept
2427 * tpws with the UNMAP=1 bit set.
2429 if (!(flags[0] & 0x08)) {
2430 pr_err("WRITE_SAME w/o UNMAP bit not"
2431 " supported for Block Discard Emulation\n");
2432 return -ENOSYS;
2436 return 0;
2439 /* transport_generic_cmd_sequencer():
2441 * Generic Command Sequencer that should work for most DAS transport
2442 * drivers.
2444 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2445 * RX Thread.
2447 * FIXME: Need to support other SCSI OPCODES where as well.
2449 static int transport_generic_cmd_sequencer(
2450 struct se_cmd *cmd,
2451 unsigned char *cdb)
2453 struct se_device *dev = cmd->se_dev;
2454 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2455 int ret = 0, sector_ret = 0, passthrough;
2456 u32 sectors = 0, size = 0, pr_reg_type = 0;
2457 u16 service_action;
2458 u8 alua_ascq = 0;
2460 * Check for an existing UNIT ATTENTION condition
2462 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2463 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2464 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2465 return -EINVAL;
2468 * Check status of Asymmetric Logical Unit Assignment port
2470 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2471 if (ret != 0) {
2473 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2474 * The ALUA additional sense code qualifier (ASCQ) is determined
2475 * by the ALUA primary or secondary access state..
2477 if (ret > 0) {
2478 #if 0
2479 pr_debug("[%s]: ALUA TG Port not available,"
2480 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2481 cmd->se_tfo->get_fabric_name(), alua_ascq);
2482 #endif
2483 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2484 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2485 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2486 return -EINVAL;
2488 goto out_invalid_cdb_field;
2491 * Check status for SPC-3 Persistent Reservations
2493 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2494 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2495 cmd, cdb, pr_reg_type) != 0) {
2496 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2497 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2498 cmd->scsi_sense_reason = TCM_RESERVATION_CONFLICT;
2499 return -EBUSY;
2502 * This means the CDB is allowed for the SCSI Initiator port
2503 * when said port is *NOT* holding the legacy SPC-2 or
2504 * SPC-3 Persistent Reservation.
2509 * If we operate in passthrough mode we skip most CDB emulation and
2510 * instead hand the commands down to the physical SCSI device.
2512 passthrough =
2513 (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV);
2515 switch (cdb[0]) {
2516 case READ_6:
2517 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2518 if (sector_ret)
2519 goto out_unsupported_cdb;
2520 size = transport_get_size(sectors, cdb, cmd);
2521 cmd->t_task_lba = transport_lba_21(cdb);
2522 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2523 break;
2524 case READ_10:
2525 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2526 if (sector_ret)
2527 goto out_unsupported_cdb;
2528 size = transport_get_size(sectors, cdb, cmd);
2529 cmd->t_task_lba = transport_lba_32(cdb);
2530 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2531 break;
2532 case READ_12:
2533 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2534 if (sector_ret)
2535 goto out_unsupported_cdb;
2536 size = transport_get_size(sectors, cdb, cmd);
2537 cmd->t_task_lba = transport_lba_32(cdb);
2538 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2539 break;
2540 case READ_16:
2541 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2542 if (sector_ret)
2543 goto out_unsupported_cdb;
2544 size = transport_get_size(sectors, cdb, cmd);
2545 cmd->t_task_lba = transport_lba_64(cdb);
2546 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2547 break;
2548 case WRITE_6:
2549 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2550 if (sector_ret)
2551 goto out_unsupported_cdb;
2552 size = transport_get_size(sectors, cdb, cmd);
2553 cmd->t_task_lba = transport_lba_21(cdb);
2554 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2555 break;
2556 case WRITE_10:
2557 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2558 if (sector_ret)
2559 goto out_unsupported_cdb;
2560 size = transport_get_size(sectors, cdb, cmd);
2561 cmd->t_task_lba = transport_lba_32(cdb);
2562 if (cdb[1] & 0x8)
2563 cmd->se_cmd_flags |= SCF_FUA;
2564 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2565 break;
2566 case WRITE_12:
2567 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2568 if (sector_ret)
2569 goto out_unsupported_cdb;
2570 size = transport_get_size(sectors, cdb, cmd);
2571 cmd->t_task_lba = transport_lba_32(cdb);
2572 if (cdb[1] & 0x8)
2573 cmd->se_cmd_flags |= SCF_FUA;
2574 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2575 break;
2576 case WRITE_16:
2577 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2578 if (sector_ret)
2579 goto out_unsupported_cdb;
2580 size = transport_get_size(sectors, cdb, cmd);
2581 cmd->t_task_lba = transport_lba_64(cdb);
2582 if (cdb[1] & 0x8)
2583 cmd->se_cmd_flags |= SCF_FUA;
2584 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2585 break;
2586 case XDWRITEREAD_10:
2587 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2588 !(cmd->se_cmd_flags & SCF_BIDI))
2589 goto out_invalid_cdb_field;
2590 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2591 if (sector_ret)
2592 goto out_unsupported_cdb;
2593 size = transport_get_size(sectors, cdb, cmd);
2594 cmd->t_task_lba = transport_lba_32(cdb);
2595 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2598 * Do now allow BIDI commands for passthrough mode.
2600 if (passthrough)
2601 goto out_unsupported_cdb;
2604 * Setup BIDI XOR callback to be run after I/O completion.
2606 cmd->transport_complete_callback = &transport_xor_callback;
2607 if (cdb[1] & 0x8)
2608 cmd->se_cmd_flags |= SCF_FUA;
2609 break;
2610 case VARIABLE_LENGTH_CMD:
2611 service_action = get_unaligned_be16(&cdb[8]);
2612 switch (service_action) {
2613 case XDWRITEREAD_32:
2614 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2615 if (sector_ret)
2616 goto out_unsupported_cdb;
2617 size = transport_get_size(sectors, cdb, cmd);
2619 * Use WRITE_32 and READ_32 opcodes for the emulated
2620 * XDWRITE_READ_32 logic.
2622 cmd->t_task_lba = transport_lba_64_ext(cdb);
2623 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2626 * Do now allow BIDI commands for passthrough mode.
2628 if (passthrough)
2629 goto out_unsupported_cdb;
2632 * Setup BIDI XOR callback to be run during after I/O
2633 * completion.
2635 cmd->transport_complete_callback = &transport_xor_callback;
2636 if (cdb[1] & 0x8)
2637 cmd->se_cmd_flags |= SCF_FUA;
2638 break;
2639 case WRITE_SAME_32:
2640 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2641 if (sector_ret)
2642 goto out_unsupported_cdb;
2644 if (sectors)
2645 size = transport_get_size(1, cdb, cmd);
2646 else {
2647 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2648 " supported\n");
2649 goto out_invalid_cdb_field;
2652 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2653 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2655 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2656 goto out_invalid_cdb_field;
2657 if (!passthrough)
2658 cmd->execute_task = target_emulate_write_same;
2659 break;
2660 default:
2661 pr_err("VARIABLE_LENGTH_CMD service action"
2662 " 0x%04x not supported\n", service_action);
2663 goto out_unsupported_cdb;
2665 break;
2666 case MAINTENANCE_IN:
2667 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2668 /* MAINTENANCE_IN from SCC-2 */
2670 * Check for emulated MI_REPORT_TARGET_PGS.
2672 if (cdb[1] == MI_REPORT_TARGET_PGS &&
2673 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2674 cmd->execute_task =
2675 target_emulate_report_target_port_groups;
2677 size = (cdb[6] << 24) | (cdb[7] << 16) |
2678 (cdb[8] << 8) | cdb[9];
2679 } else {
2680 /* GPCMD_SEND_KEY from multi media commands */
2681 size = (cdb[8] << 8) + cdb[9];
2683 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2684 break;
2685 case MODE_SELECT:
2686 size = cdb[4];
2687 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2688 break;
2689 case MODE_SELECT_10:
2690 size = (cdb[7] << 8) + cdb[8];
2691 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2692 break;
2693 case MODE_SENSE:
2694 size = cdb[4];
2695 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2696 if (!passthrough)
2697 cmd->execute_task = target_emulate_modesense;
2698 break;
2699 case MODE_SENSE_10:
2700 size = (cdb[7] << 8) + cdb[8];
2701 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2702 if (!passthrough)
2703 cmd->execute_task = target_emulate_modesense;
2704 break;
2705 case GPCMD_READ_BUFFER_CAPACITY:
2706 case GPCMD_SEND_OPC:
2707 case LOG_SELECT:
2708 case LOG_SENSE:
2709 size = (cdb[7] << 8) + cdb[8];
2710 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2711 break;
2712 case READ_BLOCK_LIMITS:
2713 size = READ_BLOCK_LEN;
2714 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2715 break;
2716 case GPCMD_GET_CONFIGURATION:
2717 case GPCMD_READ_FORMAT_CAPACITIES:
2718 case GPCMD_READ_DISC_INFO:
2719 case GPCMD_READ_TRACK_RZONE_INFO:
2720 size = (cdb[7] << 8) + cdb[8];
2721 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2722 break;
2723 case PERSISTENT_RESERVE_IN:
2724 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2725 cmd->execute_task = target_scsi3_emulate_pr_in;
2726 size = (cdb[7] << 8) + cdb[8];
2727 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2728 break;
2729 case PERSISTENT_RESERVE_OUT:
2730 if (su_dev->t10_pr.res_type == SPC3_PERSISTENT_RESERVATIONS)
2731 cmd->execute_task = target_scsi3_emulate_pr_out;
2732 size = (cdb[7] << 8) + cdb[8];
2733 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2734 break;
2735 case GPCMD_MECHANISM_STATUS:
2736 case GPCMD_READ_DVD_STRUCTURE:
2737 size = (cdb[8] << 8) + cdb[9];
2738 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2739 break;
2740 case READ_POSITION:
2741 size = READ_POSITION_LEN;
2742 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2743 break;
2744 case MAINTENANCE_OUT:
2745 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2746 /* MAINTENANCE_OUT from SCC-2
2748 * Check for emulated MO_SET_TARGET_PGS.
2750 if (cdb[1] == MO_SET_TARGET_PGS &&
2751 su_dev->t10_alua.alua_type == SPC3_ALUA_EMULATED) {
2752 cmd->execute_task =
2753 target_emulate_set_target_port_groups;
2756 size = (cdb[6] << 24) | (cdb[7] << 16) |
2757 (cdb[8] << 8) | cdb[9];
2758 } else {
2759 /* GPCMD_REPORT_KEY from multi media commands */
2760 size = (cdb[8] << 8) + cdb[9];
2762 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2763 break;
2764 case INQUIRY:
2765 size = (cdb[3] << 8) + cdb[4];
2767 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2768 * See spc4r17 section 5.3
2770 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2771 cmd->sam_task_attr = MSG_HEAD_TAG;
2772 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2773 if (!passthrough)
2774 cmd->execute_task = target_emulate_inquiry;
2775 break;
2776 case READ_BUFFER:
2777 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2778 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2779 break;
2780 case READ_CAPACITY:
2781 size = READ_CAP_LEN;
2782 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2783 if (!passthrough)
2784 cmd->execute_task = target_emulate_readcapacity;
2785 break;
2786 case READ_MEDIA_SERIAL_NUMBER:
2787 case SECURITY_PROTOCOL_IN:
2788 case SECURITY_PROTOCOL_OUT:
2789 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2790 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2791 break;
2792 case SERVICE_ACTION_IN:
2793 switch (cmd->t_task_cdb[1] & 0x1f) {
2794 case SAI_READ_CAPACITY_16:
2795 if (!passthrough)
2796 cmd->execute_task =
2797 target_emulate_readcapacity_16;
2798 break;
2799 default:
2800 if (passthrough)
2801 break;
2803 pr_err("Unsupported SA: 0x%02x\n",
2804 cmd->t_task_cdb[1] & 0x1f);
2805 goto out_unsupported_cdb;
2807 /*FALLTHROUGH*/
2808 case ACCESS_CONTROL_IN:
2809 case ACCESS_CONTROL_OUT:
2810 case EXTENDED_COPY:
2811 case READ_ATTRIBUTE:
2812 case RECEIVE_COPY_RESULTS:
2813 case WRITE_ATTRIBUTE:
2814 size = (cdb[10] << 24) | (cdb[11] << 16) |
2815 (cdb[12] << 8) | cdb[13];
2816 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2817 break;
2818 case RECEIVE_DIAGNOSTIC:
2819 case SEND_DIAGNOSTIC:
2820 size = (cdb[3] << 8) | cdb[4];
2821 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2822 break;
2823 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2824 #if 0
2825 case GPCMD_READ_CD:
2826 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2827 size = (2336 * sectors);
2828 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2829 break;
2830 #endif
2831 case READ_TOC:
2832 size = cdb[8];
2833 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2834 break;
2835 case REQUEST_SENSE:
2836 size = cdb[4];
2837 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2838 if (!passthrough)
2839 cmd->execute_task = target_emulate_request_sense;
2840 break;
2841 case READ_ELEMENT_STATUS:
2842 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2843 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2844 break;
2845 case WRITE_BUFFER:
2846 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2847 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2848 break;
2849 case RESERVE:
2850 case RESERVE_10:
2852 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2853 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2855 if (cdb[0] == RESERVE_10)
2856 size = (cdb[7] << 8) | cdb[8];
2857 else
2858 size = cmd->data_length;
2861 * Setup the legacy emulated handler for SPC-2 and
2862 * >= SPC-3 compatible reservation handling (CRH=1)
2863 * Otherwise, we assume the underlying SCSI logic is
2864 * is running in SPC_PASSTHROUGH, and wants reservations
2865 * emulation disabled.
2867 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2868 cmd->execute_task = target_scsi2_reservation_reserve;
2869 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2870 break;
2871 case RELEASE:
2872 case RELEASE_10:
2874 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2875 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2877 if (cdb[0] == RELEASE_10)
2878 size = (cdb[7] << 8) | cdb[8];
2879 else
2880 size = cmd->data_length;
2882 if (su_dev->t10_pr.res_type != SPC_PASSTHROUGH)
2883 cmd->execute_task = target_scsi2_reservation_release;
2884 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2885 break;
2886 case SYNCHRONIZE_CACHE:
2887 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2889 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2891 if (cdb[0] == SYNCHRONIZE_CACHE) {
2892 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2893 cmd->t_task_lba = transport_lba_32(cdb);
2894 } else {
2895 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2896 cmd->t_task_lba = transport_lba_64(cdb);
2898 if (sector_ret)
2899 goto out_unsupported_cdb;
2901 size = transport_get_size(sectors, cdb, cmd);
2902 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2904 if (passthrough)
2905 break;
2908 * Check to ensure that LBA + Range does not exceed past end of
2909 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
2911 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
2912 if (transport_cmd_get_valid_sectors(cmd) < 0)
2913 goto out_invalid_cdb_field;
2915 cmd->execute_task = target_emulate_synchronize_cache;
2916 break;
2917 case UNMAP:
2918 size = get_unaligned_be16(&cdb[7]);
2919 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2920 if (!passthrough)
2921 cmd->execute_task = target_emulate_unmap;
2922 break;
2923 case WRITE_SAME_16:
2924 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2925 if (sector_ret)
2926 goto out_unsupported_cdb;
2928 if (sectors)
2929 size = transport_get_size(1, cdb, cmd);
2930 else {
2931 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2932 goto out_invalid_cdb_field;
2935 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
2936 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2938 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2939 goto out_invalid_cdb_field;
2940 if (!passthrough)
2941 cmd->execute_task = target_emulate_write_same;
2942 break;
2943 case WRITE_SAME:
2944 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2945 if (sector_ret)
2946 goto out_unsupported_cdb;
2948 if (sectors)
2949 size = transport_get_size(1, cdb, cmd);
2950 else {
2951 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
2952 goto out_invalid_cdb_field;
2955 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
2956 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2958 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
2959 * of byte 1 bit 3 UNMAP instead of original reserved field
2961 if (target_check_write_same_discard(&cdb[1], dev) < 0)
2962 goto out_invalid_cdb_field;
2963 if (!passthrough)
2964 cmd->execute_task = target_emulate_write_same;
2965 break;
2966 case ALLOW_MEDIUM_REMOVAL:
2967 case ERASE:
2968 case REZERO_UNIT:
2969 case SEEK_10:
2970 case SPACE:
2971 case START_STOP:
2972 case TEST_UNIT_READY:
2973 case VERIFY:
2974 case WRITE_FILEMARKS:
2975 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2976 if (!passthrough)
2977 cmd->execute_task = target_emulate_noop;
2978 break;
2979 case GPCMD_CLOSE_TRACK:
2980 case INITIALIZE_ELEMENT_STATUS:
2981 case GPCMD_LOAD_UNLOAD:
2982 case GPCMD_SET_SPEED:
2983 case MOVE_MEDIUM:
2984 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2985 break;
2986 case REPORT_LUNS:
2987 cmd->execute_task = target_report_luns;
2988 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2990 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
2991 * See spc4r17 section 5.3
2993 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2994 cmd->sam_task_attr = MSG_HEAD_TAG;
2995 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2996 break;
2997 default:
2998 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
2999 " 0x%02x, sending CHECK_CONDITION.\n",
3000 cmd->se_tfo->get_fabric_name(), cdb[0]);
3001 goto out_unsupported_cdb;
3004 if (size != cmd->data_length) {
3005 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3006 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3007 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3008 cmd->data_length, size, cdb[0]);
3010 cmd->cmd_spdtl = size;
3012 if (cmd->data_direction == DMA_TO_DEVICE) {
3013 pr_err("Rejecting underflow/overflow"
3014 " WRITE data\n");
3015 goto out_invalid_cdb_field;
3018 * Reject READ_* or WRITE_* with overflow/underflow for
3019 * type SCF_SCSI_DATA_SG_IO_CDB.
3021 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3022 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3023 " CDB on non 512-byte sector setup subsystem"
3024 " plugin: %s\n", dev->transport->name);
3025 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3026 goto out_invalid_cdb_field;
3029 if (size > cmd->data_length) {
3030 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3031 cmd->residual_count = (size - cmd->data_length);
3032 } else {
3033 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3034 cmd->residual_count = (cmd->data_length - size);
3036 cmd->data_length = size;
3039 /* reject any command that we don't have a handler for */
3040 if (!(passthrough || cmd->execute_task ||
3041 (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
3042 goto out_unsupported_cdb;
3044 /* Let's limit control cdbs to a page, for simplicity's sake. */
3045 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3046 size > PAGE_SIZE)
3047 goto out_invalid_cdb_field;
3049 transport_set_supported_SAM_opcode(cmd);
3050 return ret;
3052 out_unsupported_cdb:
3053 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3054 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3055 return -EINVAL;
3056 out_invalid_cdb_field:
3057 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3058 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3059 return -EINVAL;
3063 * Called from I/O completion to determine which dormant/delayed
3064 * and ordered cmds need to have their tasks added to the execution queue.
3066 static void transport_complete_task_attr(struct se_cmd *cmd)
3068 struct se_device *dev = cmd->se_dev;
3069 struct se_cmd *cmd_p, *cmd_tmp;
3070 int new_active_tasks = 0;
3072 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3073 atomic_dec(&dev->simple_cmds);
3074 smp_mb__after_atomic_dec();
3075 dev->dev_cur_ordered_id++;
3076 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3077 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3078 cmd->se_ordered_id);
3079 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3080 dev->dev_cur_ordered_id++;
3081 pr_debug("Incremented dev_cur_ordered_id: %u for"
3082 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3083 cmd->se_ordered_id);
3084 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3085 atomic_dec(&dev->dev_ordered_sync);
3086 smp_mb__after_atomic_dec();
3088 dev->dev_cur_ordered_id++;
3089 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3090 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3093 * Process all commands up to the last received
3094 * ORDERED task attribute which requires another blocking
3095 * boundary
3097 spin_lock(&dev->delayed_cmd_lock);
3098 list_for_each_entry_safe(cmd_p, cmd_tmp,
3099 &dev->delayed_cmd_list, se_delayed_node) {
3101 list_del(&cmd_p->se_delayed_node);
3102 spin_unlock(&dev->delayed_cmd_lock);
3104 pr_debug("Calling add_tasks() for"
3105 " cmd_p: 0x%02x Task Attr: 0x%02x"
3106 " Dormant -> Active, se_ordered_id: %u\n",
3107 cmd_p->t_task_cdb[0],
3108 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3110 transport_add_tasks_from_cmd(cmd_p);
3111 new_active_tasks++;
3113 spin_lock(&dev->delayed_cmd_lock);
3114 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3115 break;
3117 spin_unlock(&dev->delayed_cmd_lock);
3119 * If new tasks have become active, wake up the transport thread
3120 * to do the processing of the Active tasks.
3122 if (new_active_tasks != 0)
3123 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3126 static void transport_complete_qf(struct se_cmd *cmd)
3128 int ret = 0;
3130 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3131 transport_complete_task_attr(cmd);
3133 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3134 ret = cmd->se_tfo->queue_status(cmd);
3135 if (ret)
3136 goto out;
3139 switch (cmd->data_direction) {
3140 case DMA_FROM_DEVICE:
3141 ret = cmd->se_tfo->queue_data_in(cmd);
3142 break;
3143 case DMA_TO_DEVICE:
3144 if (cmd->t_bidi_data_sg) {
3145 ret = cmd->se_tfo->queue_data_in(cmd);
3146 if (ret < 0)
3147 break;
3149 /* Fall through for DMA_TO_DEVICE */
3150 case DMA_NONE:
3151 ret = cmd->se_tfo->queue_status(cmd);
3152 break;
3153 default:
3154 break;
3157 out:
3158 if (ret < 0) {
3159 transport_handle_queue_full(cmd, cmd->se_dev);
3160 return;
3162 transport_lun_remove_cmd(cmd);
3163 transport_cmd_check_stop_to_fabric(cmd);
3166 static void transport_handle_queue_full(
3167 struct se_cmd *cmd,
3168 struct se_device *dev)
3170 spin_lock_irq(&dev->qf_cmd_lock);
3171 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3172 atomic_inc(&dev->dev_qf_count);
3173 smp_mb__after_atomic_inc();
3174 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3176 schedule_work(&cmd->se_dev->qf_work_queue);
3179 static void target_complete_ok_work(struct work_struct *work)
3181 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3182 int reason = 0, ret;
3185 * Check if we need to move delayed/dormant tasks from cmds on the
3186 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3187 * Attribute.
3189 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3190 transport_complete_task_attr(cmd);
3192 * Check to schedule QUEUE_FULL work, or execute an existing
3193 * cmd->transport_qf_callback()
3195 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3196 schedule_work(&cmd->se_dev->qf_work_queue);
3199 * Check if we need to retrieve a sense buffer from
3200 * the struct se_cmd in question.
3202 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3203 if (transport_get_sense_data(cmd) < 0)
3204 reason = TCM_NON_EXISTENT_LUN;
3207 * Only set when an struct se_task->task_scsi_status returned
3208 * a non GOOD status.
3210 if (cmd->scsi_status) {
3211 ret = transport_send_check_condition_and_sense(
3212 cmd, reason, 1);
3213 if (ret == -EAGAIN || ret == -ENOMEM)
3214 goto queue_full;
3216 transport_lun_remove_cmd(cmd);
3217 transport_cmd_check_stop_to_fabric(cmd);
3218 return;
3222 * Check for a callback, used by amongst other things
3223 * XDWRITE_READ_10 emulation.
3225 if (cmd->transport_complete_callback)
3226 cmd->transport_complete_callback(cmd);
3228 switch (cmd->data_direction) {
3229 case DMA_FROM_DEVICE:
3230 spin_lock(&cmd->se_lun->lun_sep_lock);
3231 if (cmd->se_lun->lun_sep) {
3232 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3233 cmd->data_length;
3235 spin_unlock(&cmd->se_lun->lun_sep_lock);
3237 ret = cmd->se_tfo->queue_data_in(cmd);
3238 if (ret == -EAGAIN || ret == -ENOMEM)
3239 goto queue_full;
3240 break;
3241 case DMA_TO_DEVICE:
3242 spin_lock(&cmd->se_lun->lun_sep_lock);
3243 if (cmd->se_lun->lun_sep) {
3244 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3245 cmd->data_length;
3247 spin_unlock(&cmd->se_lun->lun_sep_lock);
3249 * Check if we need to send READ payload for BIDI-COMMAND
3251 if (cmd->t_bidi_data_sg) {
3252 spin_lock(&cmd->se_lun->lun_sep_lock);
3253 if (cmd->se_lun->lun_sep) {
3254 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3255 cmd->data_length;
3257 spin_unlock(&cmd->se_lun->lun_sep_lock);
3258 ret = cmd->se_tfo->queue_data_in(cmd);
3259 if (ret == -EAGAIN || ret == -ENOMEM)
3260 goto queue_full;
3261 break;
3263 /* Fall through for DMA_TO_DEVICE */
3264 case DMA_NONE:
3265 ret = cmd->se_tfo->queue_status(cmd);
3266 if (ret == -EAGAIN || ret == -ENOMEM)
3267 goto queue_full;
3268 break;
3269 default:
3270 break;
3273 transport_lun_remove_cmd(cmd);
3274 transport_cmd_check_stop_to_fabric(cmd);
3275 return;
3277 queue_full:
3278 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3279 " data_direction: %d\n", cmd, cmd->data_direction);
3280 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3281 transport_handle_queue_full(cmd, cmd->se_dev);
3284 static void transport_free_dev_tasks(struct se_cmd *cmd)
3286 struct se_task *task, *task_tmp;
3287 unsigned long flags;
3288 LIST_HEAD(dispose_list);
3290 spin_lock_irqsave(&cmd->t_state_lock, flags);
3291 list_for_each_entry_safe(task, task_tmp,
3292 &cmd->t_task_list, t_list) {
3293 if (!(task->task_flags & TF_ACTIVE))
3294 list_move_tail(&task->t_list, &dispose_list);
3296 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3298 while (!list_empty(&dispose_list)) {
3299 task = list_first_entry(&dispose_list, struct se_task, t_list);
3301 if (task->task_sg != cmd->t_data_sg &&
3302 task->task_sg != cmd->t_bidi_data_sg)
3303 kfree(task->task_sg);
3305 list_del(&task->t_list);
3307 cmd->se_dev->transport->free_task(task);
3311 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3313 struct scatterlist *sg;
3314 int count;
3316 for_each_sg(sgl, sg, nents, count)
3317 __free_page(sg_page(sg));
3319 kfree(sgl);
3322 static inline void transport_free_pages(struct se_cmd *cmd)
3324 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3325 return;
3327 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3328 cmd->t_data_sg = NULL;
3329 cmd->t_data_nents = 0;
3331 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3332 cmd->t_bidi_data_sg = NULL;
3333 cmd->t_bidi_data_nents = 0;
3337 * transport_release_cmd - free a command
3338 * @cmd: command to free
3340 * This routine unconditionally frees a command, and reference counting
3341 * or list removal must be done in the caller.
3343 static void transport_release_cmd(struct se_cmd *cmd)
3345 BUG_ON(!cmd->se_tfo);
3347 if (cmd->se_tmr_req)
3348 core_tmr_release_req(cmd->se_tmr_req);
3349 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3350 kfree(cmd->t_task_cdb);
3352 * Check if target_wait_for_sess_cmds() is expecting to
3353 * release se_cmd directly here..
3355 if (cmd->check_release != 0 && cmd->se_tfo->check_release_cmd)
3356 if (cmd->se_tfo->check_release_cmd(cmd) != 0)
3357 return;
3359 cmd->se_tfo->release_cmd(cmd);
3363 * transport_put_cmd - release a reference to a command
3364 * @cmd: command to release
3366 * This routine releases our reference to the command and frees it if possible.
3368 static void transport_put_cmd(struct se_cmd *cmd)
3370 unsigned long flags;
3371 int free_tasks = 0;
3373 spin_lock_irqsave(&cmd->t_state_lock, flags);
3374 if (atomic_read(&cmd->t_fe_count)) {
3375 if (!atomic_dec_and_test(&cmd->t_fe_count))
3376 goto out_busy;
3379 if (atomic_read(&cmd->t_se_count)) {
3380 if (!atomic_dec_and_test(&cmd->t_se_count))
3381 goto out_busy;
3384 if (atomic_read(&cmd->transport_dev_active)) {
3385 atomic_set(&cmd->transport_dev_active, 0);
3386 transport_all_task_dev_remove_state(cmd);
3387 free_tasks = 1;
3389 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3391 if (free_tasks != 0)
3392 transport_free_dev_tasks(cmd);
3394 transport_free_pages(cmd);
3395 transport_release_cmd(cmd);
3396 return;
3397 out_busy:
3398 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3402 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3403 * allocating in the core.
3404 * @cmd: Associated se_cmd descriptor
3405 * @mem: SGL style memory for TCM WRITE / READ
3406 * @sg_mem_num: Number of SGL elements
3407 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3408 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3410 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3411 * of parameters.
3413 int transport_generic_map_mem_to_cmd(
3414 struct se_cmd *cmd,
3415 struct scatterlist *sgl,
3416 u32 sgl_count,
3417 struct scatterlist *sgl_bidi,
3418 u32 sgl_bidi_count)
3420 if (!sgl || !sgl_count)
3421 return 0;
3423 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3424 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3426 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
3427 * scatterlists already have been set to follow what the fabric
3428 * passes for the original expected data transfer length.
3430 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
3431 pr_warn("Rejecting SCSI DATA overflow for fabric using"
3432 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
3433 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3434 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3435 return -EINVAL;
3438 cmd->t_data_sg = sgl;
3439 cmd->t_data_nents = sgl_count;
3441 if (sgl_bidi && sgl_bidi_count) {
3442 cmd->t_bidi_data_sg = sgl_bidi;
3443 cmd->t_bidi_data_nents = sgl_bidi_count;
3445 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3448 return 0;
3450 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3452 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3454 struct scatterlist *sg = cmd->t_data_sg;
3456 BUG_ON(!sg);
3458 * We need to take into account a possible offset here for fabrics like
3459 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3460 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3462 return kmap(sg_page(sg)) + sg->offset;
3464 EXPORT_SYMBOL(transport_kmap_first_data_page);
3466 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3468 kunmap(sg_page(cmd->t_data_sg));
3470 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3472 static int
3473 transport_generic_get_mem(struct se_cmd *cmd)
3475 u32 length = cmd->data_length;
3476 unsigned int nents;
3477 struct page *page;
3478 int i = 0;
3480 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3481 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3482 if (!cmd->t_data_sg)
3483 return -ENOMEM;
3485 cmd->t_data_nents = nents;
3486 sg_init_table(cmd->t_data_sg, nents);
3488 while (length) {
3489 u32 page_len = min_t(u32, length, PAGE_SIZE);
3490 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3491 if (!page)
3492 goto out;
3494 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3495 length -= page_len;
3496 i++;
3498 return 0;
3500 out:
3501 while (i >= 0) {
3502 __free_page(sg_page(&cmd->t_data_sg[i]));
3503 i--;
3505 kfree(cmd->t_data_sg);
3506 cmd->t_data_sg = NULL;
3507 return -ENOMEM;
3510 /* Reduce sectors if they are too long for the device */
3511 static inline sector_t transport_limit_task_sectors(
3512 struct se_device *dev,
3513 unsigned long long lba,
3514 sector_t sectors)
3516 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3518 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3519 if ((lba + sectors) > transport_dev_end_lba(dev))
3520 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3522 return sectors;
3527 * This function can be used by HW target mode drivers to create a linked
3528 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3529 * This is intended to be called during the completion path by TCM Core
3530 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3532 void transport_do_task_sg_chain(struct se_cmd *cmd)
3534 struct scatterlist *sg_first = NULL;
3535 struct scatterlist *sg_prev = NULL;
3536 int sg_prev_nents = 0;
3537 struct scatterlist *sg;
3538 struct se_task *task;
3539 u32 chained_nents = 0;
3540 int i;
3542 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3545 * Walk the struct se_task list and setup scatterlist chains
3546 * for each contiguously allocated struct se_task->task_sg[].
3548 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3549 if (!task->task_sg)
3550 continue;
3552 if (!sg_first) {
3553 sg_first = task->task_sg;
3554 chained_nents = task->task_sg_nents;
3555 } else {
3556 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3557 chained_nents += task->task_sg_nents;
3560 * For the padded tasks, use the extra SGL vector allocated
3561 * in transport_allocate_data_tasks() for the sg_prev_nents
3562 * offset into sg_chain() above.
3564 * We do not need the padding for the last task (or a single
3565 * task), but in that case we will never use the sg_prev_nents
3566 * value below which would be incorrect.
3568 sg_prev_nents = (task->task_sg_nents + 1);
3569 sg_prev = task->task_sg;
3572 * Setup the starting pointer and total t_tasks_sg_linked_no including
3573 * padding SGs for linking and to mark the end.
3575 cmd->t_tasks_sg_chained = sg_first;
3576 cmd->t_tasks_sg_chained_no = chained_nents;
3578 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3579 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3580 cmd->t_tasks_sg_chained_no);
3582 for_each_sg(cmd->t_tasks_sg_chained, sg,
3583 cmd->t_tasks_sg_chained_no, i) {
3585 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3586 i, sg, sg_page(sg), sg->length, sg->offset);
3587 if (sg_is_chain(sg))
3588 pr_debug("SG: %p sg_is_chain=1\n", sg);
3589 if (sg_is_last(sg))
3590 pr_debug("SG: %p sg_is_last=1\n", sg);
3593 EXPORT_SYMBOL(transport_do_task_sg_chain);
3596 * Break up cmd into chunks transport can handle
3598 static int
3599 transport_allocate_data_tasks(struct se_cmd *cmd,
3600 enum dma_data_direction data_direction,
3601 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3603 struct se_device *dev = cmd->se_dev;
3604 int task_count, i;
3605 unsigned long long lba;
3606 sector_t sectors, dev_max_sectors;
3607 u32 sector_size;
3609 if (transport_cmd_get_valid_sectors(cmd) < 0)
3610 return -EINVAL;
3612 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3613 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3615 WARN_ON(cmd->data_length % sector_size);
3617 lba = cmd->t_task_lba;
3618 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3619 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3622 * If we need just a single task reuse the SG list in the command
3623 * and avoid a lot of work.
3625 if (task_count == 1) {
3626 struct se_task *task;
3627 unsigned long flags;
3629 task = transport_generic_get_task(cmd, data_direction);
3630 if (!task)
3631 return -ENOMEM;
3633 task->task_sg = cmd_sg;
3634 task->task_sg_nents = sgl_nents;
3636 task->task_lba = lba;
3637 task->task_sectors = sectors;
3638 task->task_size = task->task_sectors * sector_size;
3640 spin_lock_irqsave(&cmd->t_state_lock, flags);
3641 list_add_tail(&task->t_list, &cmd->t_task_list);
3642 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3644 return task_count;
3647 for (i = 0; i < task_count; i++) {
3648 struct se_task *task;
3649 unsigned int task_size, task_sg_nents_padded;
3650 struct scatterlist *sg;
3651 unsigned long flags;
3652 int count;
3654 task = transport_generic_get_task(cmd, data_direction);
3655 if (!task)
3656 return -ENOMEM;
3658 task->task_lba = lba;
3659 task->task_sectors = min(sectors, dev_max_sectors);
3660 task->task_size = task->task_sectors * sector_size;
3663 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3664 * in order to calculate the number per task SGL entries
3666 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3668 * Check if the fabric module driver is requesting that all
3669 * struct se_task->task_sg[] be chained together.. If so,
3670 * then allocate an extra padding SG entry for linking and
3671 * marking the end of the chained SGL for every task except
3672 * the last one for (task_count > 1) operation, or skipping
3673 * the extra padding for the (task_count == 1) case.
3675 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3676 task_sg_nents_padded = (task->task_sg_nents + 1);
3677 } else
3678 task_sg_nents_padded = task->task_sg_nents;
3680 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3681 task_sg_nents_padded, GFP_KERNEL);
3682 if (!task->task_sg) {
3683 cmd->se_dev->transport->free_task(task);
3684 return -ENOMEM;
3687 sg_init_table(task->task_sg, task_sg_nents_padded);
3689 task_size = task->task_size;
3691 /* Build new sgl, only up to task_size */
3692 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3693 if (cmd_sg->length > task_size)
3694 break;
3696 *sg = *cmd_sg;
3697 task_size -= cmd_sg->length;
3698 cmd_sg = sg_next(cmd_sg);
3701 lba += task->task_sectors;
3702 sectors -= task->task_sectors;
3704 spin_lock_irqsave(&cmd->t_state_lock, flags);
3705 list_add_tail(&task->t_list, &cmd->t_task_list);
3706 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3709 return task_count;
3712 static int
3713 transport_allocate_control_task(struct se_cmd *cmd)
3715 struct se_task *task;
3716 unsigned long flags;
3718 task = transport_generic_get_task(cmd, cmd->data_direction);
3719 if (!task)
3720 return -ENOMEM;
3722 task->task_sg = cmd->t_data_sg;
3723 task->task_size = cmd->data_length;
3724 task->task_sg_nents = cmd->t_data_nents;
3726 spin_lock_irqsave(&cmd->t_state_lock, flags);
3727 list_add_tail(&task->t_list, &cmd->t_task_list);
3728 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3730 /* Success! Return number of tasks allocated */
3731 return 1;
3735 * Allocate any required ressources to execute the command, and either place
3736 * it on the execution queue if possible. For writes we might not have the
3737 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3739 int transport_generic_new_cmd(struct se_cmd *cmd)
3741 struct se_device *dev = cmd->se_dev;
3742 int task_cdbs, task_cdbs_bidi = 0;
3743 int set_counts = 1;
3744 int ret = 0;
3747 * Determine is the TCM fabric module has already allocated physical
3748 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3749 * beforehand.
3751 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3752 cmd->data_length) {
3753 ret = transport_generic_get_mem(cmd);
3754 if (ret < 0)
3755 goto out_fail;
3759 * For BIDI command set up the read tasks first.
3761 if (cmd->t_bidi_data_sg &&
3762 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3763 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3765 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3766 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3767 cmd->t_bidi_data_nents);
3768 if (task_cdbs_bidi <= 0)
3769 goto out_fail;
3771 atomic_inc(&cmd->t_fe_count);
3772 atomic_inc(&cmd->t_se_count);
3773 set_counts = 0;
3776 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3777 task_cdbs = transport_allocate_data_tasks(cmd,
3778 cmd->data_direction, cmd->t_data_sg,
3779 cmd->t_data_nents);
3780 } else {
3781 task_cdbs = transport_allocate_control_task(cmd);
3784 if (task_cdbs < 0)
3785 goto out_fail;
3786 else if (!task_cdbs && (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)) {
3787 cmd->t_state = TRANSPORT_COMPLETE;
3788 atomic_set(&cmd->t_transport_active, 1);
3789 INIT_WORK(&cmd->work, target_complete_ok_work);
3790 queue_work(target_completion_wq, &cmd->work);
3791 return 0;
3794 if (set_counts) {
3795 atomic_inc(&cmd->t_fe_count);
3796 atomic_inc(&cmd->t_se_count);
3799 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3800 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3801 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3804 * For WRITEs, let the fabric know its buffer is ready..
3805 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3806 * will be added to the struct se_device execution queue after its WRITE
3807 * data has arrived. (ie: It gets handled by the transport processing
3808 * thread a second time)
3810 if (cmd->data_direction == DMA_TO_DEVICE) {
3811 transport_add_tasks_to_state_queue(cmd);
3812 return transport_generic_write_pending(cmd);
3815 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3816 * to the execution queue.
3818 transport_execute_tasks(cmd);
3819 return 0;
3821 out_fail:
3822 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3823 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3824 return -EINVAL;
3826 EXPORT_SYMBOL(transport_generic_new_cmd);
3828 /* transport_generic_process_write():
3832 void transport_generic_process_write(struct se_cmd *cmd)
3834 transport_execute_tasks(cmd);
3836 EXPORT_SYMBOL(transport_generic_process_write);
3838 static void transport_write_pending_qf(struct se_cmd *cmd)
3840 int ret;
3842 ret = cmd->se_tfo->write_pending(cmd);
3843 if (ret == -EAGAIN || ret == -ENOMEM) {
3844 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3845 cmd);
3846 transport_handle_queue_full(cmd, cmd->se_dev);
3850 static int transport_generic_write_pending(struct se_cmd *cmd)
3852 unsigned long flags;
3853 int ret;
3855 spin_lock_irqsave(&cmd->t_state_lock, flags);
3856 cmd->t_state = TRANSPORT_WRITE_PENDING;
3857 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3860 * Clear the se_cmd for WRITE_PENDING status in order to set
3861 * cmd->t_transport_active=0 so that transport_generic_handle_data
3862 * can be called from HW target mode interrupt code. This is safe
3863 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3864 * because the se_cmd->se_lun pointer is not being cleared.
3866 transport_cmd_check_stop(cmd, 1, 0);
3869 * Call the fabric write_pending function here to let the
3870 * frontend know that WRITE buffers are ready.
3872 ret = cmd->se_tfo->write_pending(cmd);
3873 if (ret == -EAGAIN || ret == -ENOMEM)
3874 goto queue_full;
3875 else if (ret < 0)
3876 return ret;
3878 return 1;
3880 queue_full:
3881 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3882 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3883 transport_handle_queue_full(cmd, cmd->se_dev);
3884 return 0;
3887 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3889 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3890 if (wait_for_tasks && cmd->se_tmr_req)
3891 transport_wait_for_tasks(cmd);
3893 transport_release_cmd(cmd);
3894 } else {
3895 if (wait_for_tasks)
3896 transport_wait_for_tasks(cmd);
3898 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3900 if (cmd->se_lun)
3901 transport_lun_remove_cmd(cmd);
3903 transport_free_dev_tasks(cmd);
3905 transport_put_cmd(cmd);
3908 EXPORT_SYMBOL(transport_generic_free_cmd);
3910 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
3911 * @se_sess: session to reference
3912 * @se_cmd: command descriptor to add
3914 void target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3916 unsigned long flags;
3918 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3919 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
3920 se_cmd->check_release = 1;
3921 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3923 EXPORT_SYMBOL(target_get_sess_cmd);
3925 /* target_put_sess_cmd - Check for active I/O shutdown or list delete
3926 * @se_sess: session to reference
3927 * @se_cmd: command descriptor to drop
3929 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
3931 unsigned long flags;
3933 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3934 if (list_empty(&se_cmd->se_cmd_list)) {
3935 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3936 WARN_ON(1);
3937 return 0;
3940 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
3941 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3942 complete(&se_cmd->cmd_wait_comp);
3943 return 1;
3945 list_del(&se_cmd->se_cmd_list);
3946 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3948 return 0;
3950 EXPORT_SYMBOL(target_put_sess_cmd);
3952 /* target_splice_sess_cmd_list - Split active cmds into sess_wait_list
3953 * @se_sess: session to split
3955 void target_splice_sess_cmd_list(struct se_session *se_sess)
3957 struct se_cmd *se_cmd;
3958 unsigned long flags;
3960 WARN_ON(!list_empty(&se_sess->sess_wait_list));
3961 INIT_LIST_HEAD(&se_sess->sess_wait_list);
3963 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
3964 se_sess->sess_tearing_down = 1;
3966 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
3968 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
3969 se_cmd->cmd_wait_set = 1;
3971 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
3973 EXPORT_SYMBOL(target_splice_sess_cmd_list);
3975 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
3976 * @se_sess: session to wait for active I/O
3977 * @wait_for_tasks: Make extra transport_wait_for_tasks call
3979 void target_wait_for_sess_cmds(
3980 struct se_session *se_sess,
3981 int wait_for_tasks)
3983 struct se_cmd *se_cmd, *tmp_cmd;
3984 bool rc = false;
3986 list_for_each_entry_safe(se_cmd, tmp_cmd,
3987 &se_sess->sess_wait_list, se_cmd_list) {
3988 list_del(&se_cmd->se_cmd_list);
3990 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
3991 " %d\n", se_cmd, se_cmd->t_state,
3992 se_cmd->se_tfo->get_cmd_state(se_cmd));
3994 if (wait_for_tasks) {
3995 pr_debug("Calling transport_wait_for_tasks se_cmd: %p t_state: %d,"
3996 " fabric state: %d\n", se_cmd, se_cmd->t_state,
3997 se_cmd->se_tfo->get_cmd_state(se_cmd));
3999 rc = transport_wait_for_tasks(se_cmd);
4001 pr_debug("After transport_wait_for_tasks se_cmd: %p t_state: %d,"
4002 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4003 se_cmd->se_tfo->get_cmd_state(se_cmd));
4006 if (!rc) {
4007 wait_for_completion(&se_cmd->cmd_wait_comp);
4008 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
4009 " fabric state: %d\n", se_cmd, se_cmd->t_state,
4010 se_cmd->se_tfo->get_cmd_state(se_cmd));
4013 se_cmd->se_tfo->release_cmd(se_cmd);
4016 EXPORT_SYMBOL(target_wait_for_sess_cmds);
4018 /* transport_lun_wait_for_tasks():
4020 * Called from ConfigFS context to stop the passed struct se_cmd to allow
4021 * an struct se_lun to be successfully shutdown.
4023 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
4025 unsigned long flags;
4026 int ret;
4028 * If the frontend has already requested this struct se_cmd to
4029 * be stopped, we can safely ignore this struct se_cmd.
4031 spin_lock_irqsave(&cmd->t_state_lock, flags);
4032 if (atomic_read(&cmd->t_transport_stop)) {
4033 atomic_set(&cmd->transport_lun_stop, 0);
4034 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
4035 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
4036 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4037 transport_cmd_check_stop(cmd, 1, 0);
4038 return -EPERM;
4040 atomic_set(&cmd->transport_lun_fe_stop, 1);
4041 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4043 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4045 ret = transport_stop_tasks_for_cmd(cmd);
4047 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4048 " %d\n", cmd, cmd->t_task_list_num, ret);
4049 if (!ret) {
4050 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4051 cmd->se_tfo->get_task_tag(cmd));
4052 wait_for_completion(&cmd->transport_lun_stop_comp);
4053 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4054 cmd->se_tfo->get_task_tag(cmd));
4056 transport_remove_cmd_from_queue(cmd);
4058 return 0;
4061 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4063 struct se_cmd *cmd = NULL;
4064 unsigned long lun_flags, cmd_flags;
4066 * Do exception processing and return CHECK_CONDITION status to the
4067 * Initiator Port.
4069 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4070 while (!list_empty(&lun->lun_cmd_list)) {
4071 cmd = list_first_entry(&lun->lun_cmd_list,
4072 struct se_cmd, se_lun_node);
4073 list_del(&cmd->se_lun_node);
4075 atomic_set(&cmd->transport_lun_active, 0);
4077 * This will notify iscsi_target_transport.c:
4078 * transport_cmd_check_stop() that a LUN shutdown is in
4079 * progress for the iscsi_cmd_t.
4081 spin_lock(&cmd->t_state_lock);
4082 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4083 "_lun_stop for ITT: 0x%08x\n",
4084 cmd->se_lun->unpacked_lun,
4085 cmd->se_tfo->get_task_tag(cmd));
4086 atomic_set(&cmd->transport_lun_stop, 1);
4087 spin_unlock(&cmd->t_state_lock);
4089 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4091 if (!cmd->se_lun) {
4092 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4093 cmd->se_tfo->get_task_tag(cmd),
4094 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4095 BUG();
4098 * If the Storage engine still owns the iscsi_cmd_t, determine
4099 * and/or stop its context.
4101 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4102 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4103 cmd->se_tfo->get_task_tag(cmd));
4105 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4106 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4107 continue;
4110 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4111 "_wait_for_tasks(): SUCCESS\n",
4112 cmd->se_lun->unpacked_lun,
4113 cmd->se_tfo->get_task_tag(cmd));
4115 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4116 if (!atomic_read(&cmd->transport_dev_active)) {
4117 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4118 goto check_cond;
4120 atomic_set(&cmd->transport_dev_active, 0);
4121 transport_all_task_dev_remove_state(cmd);
4122 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4124 transport_free_dev_tasks(cmd);
4126 * The Storage engine stopped this struct se_cmd before it was
4127 * send to the fabric frontend for delivery back to the
4128 * Initiator Node. Return this SCSI CDB back with an
4129 * CHECK_CONDITION status.
4131 check_cond:
4132 transport_send_check_condition_and_sense(cmd,
4133 TCM_NON_EXISTENT_LUN, 0);
4135 * If the fabric frontend is waiting for this iscsi_cmd_t to
4136 * be released, notify the waiting thread now that LU has
4137 * finished accessing it.
4139 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4140 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4141 pr_debug("SE_LUN[%d] - Detected FE stop for"
4142 " struct se_cmd: %p ITT: 0x%08x\n",
4143 lun->unpacked_lun,
4144 cmd, cmd->se_tfo->get_task_tag(cmd));
4146 spin_unlock_irqrestore(&cmd->t_state_lock,
4147 cmd_flags);
4148 transport_cmd_check_stop(cmd, 1, 0);
4149 complete(&cmd->transport_lun_fe_stop_comp);
4150 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4151 continue;
4153 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4154 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4156 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4157 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4159 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4162 static int transport_clear_lun_thread(void *p)
4164 struct se_lun *lun = (struct se_lun *)p;
4166 __transport_clear_lun_from_sessions(lun);
4167 complete(&lun->lun_shutdown_comp);
4169 return 0;
4172 int transport_clear_lun_from_sessions(struct se_lun *lun)
4174 struct task_struct *kt;
4176 kt = kthread_run(transport_clear_lun_thread, lun,
4177 "tcm_cl_%u", lun->unpacked_lun);
4178 if (IS_ERR(kt)) {
4179 pr_err("Unable to start clear_lun thread\n");
4180 return PTR_ERR(kt);
4182 wait_for_completion(&lun->lun_shutdown_comp);
4184 return 0;
4188 * transport_wait_for_tasks - wait for completion to occur
4189 * @cmd: command to wait
4191 * Called from frontend fabric context to wait for storage engine
4192 * to pause and/or release frontend generated struct se_cmd.
4194 bool transport_wait_for_tasks(struct se_cmd *cmd)
4196 unsigned long flags;
4198 spin_lock_irqsave(&cmd->t_state_lock, flags);
4199 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4200 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4201 return false;
4204 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4205 * has been set in transport_set_supported_SAM_opcode().
4207 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4208 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4209 return false;
4212 * If we are already stopped due to an external event (ie: LUN shutdown)
4213 * sleep until the connection can have the passed struct se_cmd back.
4214 * The cmd->transport_lun_stopped_sem will be upped by
4215 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4216 * has completed its operation on the struct se_cmd.
4218 if (atomic_read(&cmd->transport_lun_stop)) {
4220 pr_debug("wait_for_tasks: Stopping"
4221 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4222 "_stop_comp); for ITT: 0x%08x\n",
4223 cmd->se_tfo->get_task_tag(cmd));
4225 * There is a special case for WRITES where a FE exception +
4226 * LUN shutdown means ConfigFS context is still sleeping on
4227 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4228 * We go ahead and up transport_lun_stop_comp just to be sure
4229 * here.
4231 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4232 complete(&cmd->transport_lun_stop_comp);
4233 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4234 spin_lock_irqsave(&cmd->t_state_lock, flags);
4236 transport_all_task_dev_remove_state(cmd);
4238 * At this point, the frontend who was the originator of this
4239 * struct se_cmd, now owns the structure and can be released through
4240 * normal means below.
4242 pr_debug("wait_for_tasks: Stopped"
4243 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4244 "stop_comp); for ITT: 0x%08x\n",
4245 cmd->se_tfo->get_task_tag(cmd));
4247 atomic_set(&cmd->transport_lun_stop, 0);
4249 if (!atomic_read(&cmd->t_transport_active) ||
4250 atomic_read(&cmd->t_transport_aborted)) {
4251 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4252 return false;
4255 atomic_set(&cmd->t_transport_stop, 1);
4257 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4258 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4259 cmd, cmd->se_tfo->get_task_tag(cmd),
4260 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4262 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4264 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4266 wait_for_completion(&cmd->t_transport_stop_comp);
4268 spin_lock_irqsave(&cmd->t_state_lock, flags);
4269 atomic_set(&cmd->t_transport_active, 0);
4270 atomic_set(&cmd->t_transport_stop, 0);
4272 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4273 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4274 cmd->se_tfo->get_task_tag(cmd));
4276 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4278 return true;
4280 EXPORT_SYMBOL(transport_wait_for_tasks);
4282 static int transport_get_sense_codes(
4283 struct se_cmd *cmd,
4284 u8 *asc,
4285 u8 *ascq)
4287 *asc = cmd->scsi_asc;
4288 *ascq = cmd->scsi_ascq;
4290 return 0;
4293 static int transport_set_sense_codes(
4294 struct se_cmd *cmd,
4295 u8 asc,
4296 u8 ascq)
4298 cmd->scsi_asc = asc;
4299 cmd->scsi_ascq = ascq;
4301 return 0;
4304 int transport_send_check_condition_and_sense(
4305 struct se_cmd *cmd,
4306 u8 reason,
4307 int from_transport)
4309 unsigned char *buffer = cmd->sense_buffer;
4310 unsigned long flags;
4311 int offset;
4312 u8 asc = 0, ascq = 0;
4314 spin_lock_irqsave(&cmd->t_state_lock, flags);
4315 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4316 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4317 return 0;
4319 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4320 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4322 if (!reason && from_transport)
4323 goto after_reason;
4325 if (!from_transport)
4326 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4328 * Data Segment and SenseLength of the fabric response PDU.
4330 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4331 * from include/scsi/scsi_cmnd.h
4333 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4334 TRANSPORT_SENSE_BUFFER);
4336 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4337 * SENSE KEY values from include/scsi/scsi.h
4339 switch (reason) {
4340 case TCM_NON_EXISTENT_LUN:
4341 /* CURRENT ERROR */
4342 buffer[offset] = 0x70;
4343 /* ILLEGAL REQUEST */
4344 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4345 /* LOGICAL UNIT NOT SUPPORTED */
4346 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4347 break;
4348 case TCM_UNSUPPORTED_SCSI_OPCODE:
4349 case TCM_SECTOR_COUNT_TOO_MANY:
4350 /* CURRENT ERROR */
4351 buffer[offset] = 0x70;
4352 /* ILLEGAL REQUEST */
4353 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4354 /* INVALID COMMAND OPERATION CODE */
4355 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4356 break;
4357 case TCM_UNKNOWN_MODE_PAGE:
4358 /* CURRENT ERROR */
4359 buffer[offset] = 0x70;
4360 /* ILLEGAL REQUEST */
4361 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4362 /* INVALID FIELD IN CDB */
4363 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4364 break;
4365 case TCM_CHECK_CONDITION_ABORT_CMD:
4366 /* CURRENT ERROR */
4367 buffer[offset] = 0x70;
4368 /* ABORTED COMMAND */
4369 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4370 /* BUS DEVICE RESET FUNCTION OCCURRED */
4371 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4372 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4373 break;
4374 case TCM_INCORRECT_AMOUNT_OF_DATA:
4375 /* CURRENT ERROR */
4376 buffer[offset] = 0x70;
4377 /* ABORTED COMMAND */
4378 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4379 /* WRITE ERROR */
4380 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4381 /* NOT ENOUGH UNSOLICITED DATA */
4382 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4383 break;
4384 case TCM_INVALID_CDB_FIELD:
4385 /* CURRENT ERROR */
4386 buffer[offset] = 0x70;
4387 /* ABORTED COMMAND */
4388 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4389 /* INVALID FIELD IN CDB */
4390 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4391 break;
4392 case TCM_INVALID_PARAMETER_LIST:
4393 /* CURRENT ERROR */
4394 buffer[offset] = 0x70;
4395 /* ABORTED COMMAND */
4396 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4397 /* INVALID FIELD IN PARAMETER LIST */
4398 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4399 break;
4400 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4401 /* CURRENT ERROR */
4402 buffer[offset] = 0x70;
4403 /* ABORTED COMMAND */
4404 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4405 /* WRITE ERROR */
4406 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4407 /* UNEXPECTED_UNSOLICITED_DATA */
4408 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4409 break;
4410 case TCM_SERVICE_CRC_ERROR:
4411 /* CURRENT ERROR */
4412 buffer[offset] = 0x70;
4413 /* ABORTED COMMAND */
4414 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4415 /* PROTOCOL SERVICE CRC ERROR */
4416 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4417 /* N/A */
4418 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4419 break;
4420 case TCM_SNACK_REJECTED:
4421 /* CURRENT ERROR */
4422 buffer[offset] = 0x70;
4423 /* ABORTED COMMAND */
4424 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4425 /* READ ERROR */
4426 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4427 /* FAILED RETRANSMISSION REQUEST */
4428 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4429 break;
4430 case TCM_WRITE_PROTECTED:
4431 /* CURRENT ERROR */
4432 buffer[offset] = 0x70;
4433 /* DATA PROTECT */
4434 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4435 /* WRITE PROTECTED */
4436 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4437 break;
4438 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4439 /* CURRENT ERROR */
4440 buffer[offset] = 0x70;
4441 /* UNIT ATTENTION */
4442 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4443 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4444 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4445 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4446 break;
4447 case TCM_CHECK_CONDITION_NOT_READY:
4448 /* CURRENT ERROR */
4449 buffer[offset] = 0x70;
4450 /* Not Ready */
4451 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4452 transport_get_sense_codes(cmd, &asc, &ascq);
4453 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4454 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4455 break;
4456 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4457 default:
4458 /* CURRENT ERROR */
4459 buffer[offset] = 0x70;
4460 /* ILLEGAL REQUEST */
4461 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4462 /* LOGICAL UNIT COMMUNICATION FAILURE */
4463 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4464 break;
4467 * This code uses linux/include/scsi/scsi.h SAM status codes!
4469 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4471 * Automatically padded, this value is encoded in the fabric's
4472 * data_length response PDU containing the SCSI defined sense data.
4474 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4476 after_reason:
4477 return cmd->se_tfo->queue_status(cmd);
4479 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4481 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4483 int ret = 0;
4485 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4486 if (!send_status ||
4487 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4488 return 1;
4489 #if 0
4490 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4491 " status for CDB: 0x%02x ITT: 0x%08x\n",
4492 cmd->t_task_cdb[0],
4493 cmd->se_tfo->get_task_tag(cmd));
4494 #endif
4495 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4496 cmd->se_tfo->queue_status(cmd);
4497 ret = 1;
4499 return ret;
4501 EXPORT_SYMBOL(transport_check_aborted_status);
4503 void transport_send_task_abort(struct se_cmd *cmd)
4505 unsigned long flags;
4507 spin_lock_irqsave(&cmd->t_state_lock, flags);
4508 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4509 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4510 return;
4512 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4515 * If there are still expected incoming fabric WRITEs, we wait
4516 * until until they have completed before sending a TASK_ABORTED
4517 * response. This response with TASK_ABORTED status will be
4518 * queued back to fabric module by transport_check_aborted_status().
4520 if (cmd->data_direction == DMA_TO_DEVICE) {
4521 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4522 atomic_inc(&cmd->t_transport_aborted);
4523 smp_mb__after_atomic_inc();
4526 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4527 #if 0
4528 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4529 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4530 cmd->se_tfo->get_task_tag(cmd));
4531 #endif
4532 cmd->se_tfo->queue_status(cmd);
4535 static int transport_generic_do_tmr(struct se_cmd *cmd)
4537 struct se_device *dev = cmd->se_dev;
4538 struct se_tmr_req *tmr = cmd->se_tmr_req;
4539 int ret;
4541 switch (tmr->function) {
4542 case TMR_ABORT_TASK:
4543 tmr->response = TMR_FUNCTION_REJECTED;
4544 break;
4545 case TMR_ABORT_TASK_SET:
4546 case TMR_CLEAR_ACA:
4547 case TMR_CLEAR_TASK_SET:
4548 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4549 break;
4550 case TMR_LUN_RESET:
4551 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4552 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4553 TMR_FUNCTION_REJECTED;
4554 break;
4555 case TMR_TARGET_WARM_RESET:
4556 tmr->response = TMR_FUNCTION_REJECTED;
4557 break;
4558 case TMR_TARGET_COLD_RESET:
4559 tmr->response = TMR_FUNCTION_REJECTED;
4560 break;
4561 default:
4562 pr_err("Uknown TMR function: 0x%02x.\n",
4563 tmr->function);
4564 tmr->response = TMR_FUNCTION_REJECTED;
4565 break;
4568 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4569 cmd->se_tfo->queue_tm_rsp(cmd);
4571 transport_cmd_check_stop_to_fabric(cmd);
4572 return 0;
4575 /* transport_processing_thread():
4579 static int transport_processing_thread(void *param)
4581 int ret;
4582 struct se_cmd *cmd;
4583 struct se_device *dev = (struct se_device *) param;
4585 while (!kthread_should_stop()) {
4586 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4587 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4588 kthread_should_stop());
4589 if (ret < 0)
4590 goto out;
4592 get_cmd:
4593 __transport_execute_tasks(dev);
4595 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4596 if (!cmd)
4597 continue;
4599 switch (cmd->t_state) {
4600 case TRANSPORT_NEW_CMD:
4601 BUG();
4602 break;
4603 case TRANSPORT_NEW_CMD_MAP:
4604 if (!cmd->se_tfo->new_cmd_map) {
4605 pr_err("cmd->se_tfo->new_cmd_map is"
4606 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4607 BUG();
4609 ret = cmd->se_tfo->new_cmd_map(cmd);
4610 if (ret < 0) {
4611 transport_generic_request_failure(cmd);
4612 break;
4614 ret = transport_generic_new_cmd(cmd);
4615 if (ret < 0) {
4616 transport_generic_request_failure(cmd);
4617 break;
4619 break;
4620 case TRANSPORT_PROCESS_WRITE:
4621 transport_generic_process_write(cmd);
4622 break;
4623 case TRANSPORT_PROCESS_TMR:
4624 transport_generic_do_tmr(cmd);
4625 break;
4626 case TRANSPORT_COMPLETE_QF_WP:
4627 transport_write_pending_qf(cmd);
4628 break;
4629 case TRANSPORT_COMPLETE_QF_OK:
4630 transport_complete_qf(cmd);
4631 break;
4632 default:
4633 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4634 "i_state: %d on SE LUN: %u\n",
4635 cmd->t_state,
4636 cmd->se_tfo->get_task_tag(cmd),
4637 cmd->se_tfo->get_cmd_state(cmd),
4638 cmd->se_lun->unpacked_lun);
4639 BUG();
4642 goto get_cmd;
4645 out:
4646 WARN_ON(!list_empty(&dev->state_task_list));
4647 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4648 dev->process_thread = NULL;
4649 return 0;