4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr
;
90 EXPORT_SYMBOL(max_mapnr
);
93 EXPORT_SYMBOL(mem_map
);
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104 EXPORT_SYMBOL(high_memory
);
107 * Randomize the address space (stacks, mmaps, brk, etc.).
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
112 int randomize_va_space __read_mostly
=
113 #ifdef CONFIG_COMPAT_BRK
119 static int __init
disable_randmaps(char *s
)
121 randomize_va_space
= 0;
124 __setup("norandmaps", disable_randmaps
);
126 unsigned long zero_pfn __read_mostly
;
127 EXPORT_SYMBOL(zero_pfn
);
129 unsigned long highest_memmap_pfn __read_mostly
;
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134 static int __init
init_zero_pfn(void)
136 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
139 core_initcall(init_zero_pfn
);
142 #if defined(SPLIT_RSS_COUNTING)
144 void sync_mm_rss(struct mm_struct
*mm
)
148 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
149 if (current
->rss_stat
.count
[i
]) {
150 add_mm_counter(mm
, i
, current
->rss_stat
.count
[i
]);
151 current
->rss_stat
.count
[i
] = 0;
154 current
->rss_stat
.events
= 0;
157 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
159 struct task_struct
*task
= current
;
161 if (likely(task
->mm
== mm
))
162 task
->rss_stat
.count
[member
] += val
;
164 add_mm_counter(mm
, member
, val
);
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH (64)
171 static void check_sync_rss_stat(struct task_struct
*task
)
173 if (unlikely(task
!= current
))
175 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
176 sync_mm_rss(task
->mm
);
178 #else /* SPLIT_RSS_COUNTING */
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 static void check_sync_rss_stat(struct task_struct
*task
)
187 #endif /* SPLIT_RSS_COUNTING */
189 #ifdef HAVE_GENERIC_MMU_GATHER
191 static bool tlb_next_batch(struct mmu_gather
*tlb
)
193 struct mmu_gather_batch
*batch
;
197 tlb
->active
= batch
->next
;
201 if (tlb
->batch_count
== MAX_GATHER_BATCH_COUNT
)
204 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
211 batch
->max
= MAX_GATHER_BATCH
;
213 tlb
->active
->next
= batch
;
219 void arch_tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
220 unsigned long start
, unsigned long end
)
224 /* Is it from 0 to ~0? */
225 tlb
->fullmm
= !(start
| (end
+1));
226 tlb
->need_flush_all
= 0;
227 tlb
->local
.next
= NULL
;
229 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
230 tlb
->active
= &tlb
->local
;
231 tlb
->batch_count
= 0;
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
238 __tlb_reset_range(tlb
);
241 static void tlb_flush_mmu_free(struct mmu_gather
*tlb
)
243 struct mmu_gather_batch
*batch
;
245 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
246 tlb_table_flush(tlb
);
248 for (batch
= &tlb
->local
; batch
&& batch
->nr
; batch
= batch
->next
) {
249 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
252 tlb
->active
= &tlb
->local
;
255 void tlb_flush_mmu(struct mmu_gather
*tlb
)
257 tlb_flush_mmu_tlbonly(tlb
);
258 tlb_flush_mmu_free(tlb
);
262 * Called at the end of the shootdown operation to free up any resources
263 * that were required.
265 void arch_tlb_finish_mmu(struct mmu_gather
*tlb
,
266 unsigned long start
, unsigned long end
, bool force
)
268 struct mmu_gather_batch
*batch
, *next
;
271 __tlb_adjust_range(tlb
, start
, end
- start
);
275 /* keep the page table cache within bounds */
278 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
280 free_pages((unsigned long)batch
, 0);
282 tlb
->local
.next
= NULL
;
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 *returns true if the caller should flush.
292 bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
, int page_size
)
294 struct mmu_gather_batch
*batch
;
296 VM_BUG_ON(!tlb
->end
);
297 VM_WARN_ON(tlb
->page_size
!= page_size
);
301 * Add the page and check if we are full. If so
304 batch
->pages
[batch
->nr
++] = page
;
305 if (batch
->nr
== batch
->max
) {
306 if (!tlb_next_batch(tlb
))
310 VM_BUG_ON_PAGE(batch
->nr
> batch
->max
, page
);
315 #endif /* HAVE_GENERIC_MMU_GATHER */
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
320 * See the comment near struct mmu_table_batch.
324 * If we want tlb_remove_table() to imply TLB invalidates.
326 static inline void tlb_table_invalidate(struct mmu_gather
*tlb
)
328 #ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
330 * Invalidate page-table caches used by hardware walkers. Then we still
331 * need to RCU-sched wait while freeing the pages because software
332 * walkers can still be in-flight.
334 tlb_flush_mmu_tlbonly(tlb
);
338 static void tlb_remove_table_smp_sync(void *arg
)
340 /* Simply deliver the interrupt */
343 static void tlb_remove_table_one(void *table
)
346 * This isn't an RCU grace period and hence the page-tables cannot be
347 * assumed to be actually RCU-freed.
349 * It is however sufficient for software page-table walkers that rely on
350 * IRQ disabling. See the comment near struct mmu_table_batch.
352 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
353 __tlb_remove_table(table
);
356 static void tlb_remove_table_rcu(struct rcu_head
*head
)
358 struct mmu_table_batch
*batch
;
361 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
363 for (i
= 0; i
< batch
->nr
; i
++)
364 __tlb_remove_table(batch
->tables
[i
]);
366 free_page((unsigned long)batch
);
369 void tlb_table_flush(struct mmu_gather
*tlb
)
371 struct mmu_table_batch
**batch
= &tlb
->batch
;
374 tlb_table_invalidate(tlb
);
375 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
380 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
382 struct mmu_table_batch
**batch
= &tlb
->batch
;
384 if (*batch
== NULL
) {
385 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
386 if (*batch
== NULL
) {
387 tlb_table_invalidate(tlb
);
388 tlb_remove_table_one(table
);
394 (*batch
)->tables
[(*batch
)->nr
++] = table
;
395 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
396 tlb_table_flush(tlb
);
399 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
403 * @tlb: the mmu_gather structure to initialize
404 * @mm: the mm_struct of the target address space
405 * @start: start of the region that will be removed from the page-table
406 * @end: end of the region that will be removed from the page-table
408 * Called to initialize an (on-stack) mmu_gather structure for page-table
409 * tear-down from @mm. The @start and @end are set to 0 and -1
410 * respectively when @mm is without users and we're going to destroy
411 * the full address space (exit/execve).
413 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
,
414 unsigned long start
, unsigned long end
)
416 arch_tlb_gather_mmu(tlb
, mm
, start
, end
);
417 inc_tlb_flush_pending(tlb
->mm
);
420 void tlb_finish_mmu(struct mmu_gather
*tlb
,
421 unsigned long start
, unsigned long end
)
424 * If there are parallel threads are doing PTE changes on same range
425 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
426 * flush by batching, a thread has stable TLB entry can fail to flush
427 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
428 * forcefully if we detect parallel PTE batching threads.
430 bool force
= mm_tlb_flush_nested(tlb
->mm
);
432 arch_tlb_finish_mmu(tlb
, start
, end
, force
);
433 dec_tlb_flush_pending(tlb
->mm
);
437 * Note: this doesn't free the actual pages themselves. That
438 * has been handled earlier when unmapping all the memory regions.
440 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
443 pgtable_t token
= pmd_pgtable(*pmd
);
445 pte_free_tlb(tlb
, token
, addr
);
446 mm_dec_nr_ptes(tlb
->mm
);
449 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
450 unsigned long addr
, unsigned long end
,
451 unsigned long floor
, unsigned long ceiling
)
458 pmd
= pmd_offset(pud
, addr
);
460 next
= pmd_addr_end(addr
, end
);
461 if (pmd_none_or_clear_bad(pmd
))
463 free_pte_range(tlb
, pmd
, addr
);
464 } while (pmd
++, addr
= next
, addr
!= end
);
474 if (end
- 1 > ceiling
- 1)
477 pmd
= pmd_offset(pud
, start
);
479 pmd_free_tlb(tlb
, pmd
, start
);
480 mm_dec_nr_pmds(tlb
->mm
);
483 static inline void free_pud_range(struct mmu_gather
*tlb
, p4d_t
*p4d
,
484 unsigned long addr
, unsigned long end
,
485 unsigned long floor
, unsigned long ceiling
)
492 pud
= pud_offset(p4d
, addr
);
494 next
= pud_addr_end(addr
, end
);
495 if (pud_none_or_clear_bad(pud
))
497 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
498 } while (pud
++, addr
= next
, addr
!= end
);
508 if (end
- 1 > ceiling
- 1)
511 pud
= pud_offset(p4d
, start
);
513 pud_free_tlb(tlb
, pud
, start
);
514 mm_dec_nr_puds(tlb
->mm
);
517 static inline void free_p4d_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
518 unsigned long addr
, unsigned long end
,
519 unsigned long floor
, unsigned long ceiling
)
526 p4d
= p4d_offset(pgd
, addr
);
528 next
= p4d_addr_end(addr
, end
);
529 if (p4d_none_or_clear_bad(p4d
))
531 free_pud_range(tlb
, p4d
, addr
, next
, floor
, ceiling
);
532 } while (p4d
++, addr
= next
, addr
!= end
);
538 ceiling
&= PGDIR_MASK
;
542 if (end
- 1 > ceiling
- 1)
545 p4d
= p4d_offset(pgd
, start
);
547 p4d_free_tlb(tlb
, p4d
, start
);
551 * This function frees user-level page tables of a process.
553 void free_pgd_range(struct mmu_gather
*tlb
,
554 unsigned long addr
, unsigned long end
,
555 unsigned long floor
, unsigned long ceiling
)
561 * The next few lines have given us lots of grief...
563 * Why are we testing PMD* at this top level? Because often
564 * there will be no work to do at all, and we'd prefer not to
565 * go all the way down to the bottom just to discover that.
567 * Why all these "- 1"s? Because 0 represents both the bottom
568 * of the address space and the top of it (using -1 for the
569 * top wouldn't help much: the masks would do the wrong thing).
570 * The rule is that addr 0 and floor 0 refer to the bottom of
571 * the address space, but end 0 and ceiling 0 refer to the top
572 * Comparisons need to use "end - 1" and "ceiling - 1" (though
573 * that end 0 case should be mythical).
575 * Wherever addr is brought up or ceiling brought down, we must
576 * be careful to reject "the opposite 0" before it confuses the
577 * subsequent tests. But what about where end is brought down
578 * by PMD_SIZE below? no, end can't go down to 0 there.
580 * Whereas we round start (addr) and ceiling down, by different
581 * masks at different levels, in order to test whether a table
582 * now has no other vmas using it, so can be freed, we don't
583 * bother to round floor or end up - the tests don't need that.
597 if (end
- 1 > ceiling
- 1)
602 * We add page table cache pages with PAGE_SIZE,
603 * (see pte_free_tlb()), flush the tlb if we need
605 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
606 pgd
= pgd_offset(tlb
->mm
, addr
);
608 next
= pgd_addr_end(addr
, end
);
609 if (pgd_none_or_clear_bad(pgd
))
611 free_p4d_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
612 } while (pgd
++, addr
= next
, addr
!= end
);
615 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
616 unsigned long floor
, unsigned long ceiling
)
619 struct vm_area_struct
*next
= vma
->vm_next
;
620 unsigned long addr
= vma
->vm_start
;
623 * Hide vma from rmap and truncate_pagecache before freeing
626 unlink_anon_vmas(vma
);
627 unlink_file_vma(vma
);
629 if (is_vm_hugetlb_page(vma
)) {
630 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
631 floor
, next
? next
->vm_start
: ceiling
);
634 * Optimization: gather nearby vmas into one call down
636 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
637 && !is_vm_hugetlb_page(next
)) {
640 unlink_anon_vmas(vma
);
641 unlink_file_vma(vma
);
643 free_pgd_range(tlb
, addr
, vma
->vm_end
,
644 floor
, next
? next
->vm_start
: ceiling
);
650 int __pte_alloc(struct mm_struct
*mm
, pmd_t
*pmd
, unsigned long address
)
653 pgtable_t
new = pte_alloc_one(mm
, address
);
658 * Ensure all pte setup (eg. pte page lock and page clearing) are
659 * visible before the pte is made visible to other CPUs by being
660 * put into page tables.
662 * The other side of the story is the pointer chasing in the page
663 * table walking code (when walking the page table without locking;
664 * ie. most of the time). Fortunately, these data accesses consist
665 * of a chain of data-dependent loads, meaning most CPUs (alpha
666 * being the notable exception) will already guarantee loads are
667 * seen in-order. See the alpha page table accessors for the
668 * smp_read_barrier_depends() barriers in page table walking code.
670 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
672 ptl
= pmd_lock(mm
, pmd
);
673 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
675 pmd_populate(mm
, pmd
, new);
684 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
686 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
690 smp_wmb(); /* See comment in __pte_alloc */
692 spin_lock(&init_mm
.page_table_lock
);
693 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
694 pmd_populate_kernel(&init_mm
, pmd
, new);
697 spin_unlock(&init_mm
.page_table_lock
);
699 pte_free_kernel(&init_mm
, new);
703 static inline void init_rss_vec(int *rss
)
705 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
708 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
712 if (current
->mm
== mm
)
714 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
716 add_mm_counter(mm
, i
, rss
[i
]);
720 * This function is called to print an error when a bad pte
721 * is found. For example, we might have a PFN-mapped pte in
722 * a region that doesn't allow it.
724 * The calling function must still handle the error.
726 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
727 pte_t pte
, struct page
*page
)
729 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
730 p4d_t
*p4d
= p4d_offset(pgd
, addr
);
731 pud_t
*pud
= pud_offset(p4d
, addr
);
732 pmd_t
*pmd
= pmd_offset(pud
, addr
);
733 struct address_space
*mapping
;
735 static unsigned long resume
;
736 static unsigned long nr_shown
;
737 static unsigned long nr_unshown
;
740 * Allow a burst of 60 reports, then keep quiet for that minute;
741 * or allow a steady drip of one report per second.
743 if (nr_shown
== 60) {
744 if (time_before(jiffies
, resume
)) {
749 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
756 resume
= jiffies
+ 60 * HZ
;
758 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
759 index
= linear_page_index(vma
, addr
);
761 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
763 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
765 dump_page(page
, "bad pte");
766 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
767 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
768 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
770 vma
->vm_ops
? vma
->vm_ops
->fault
: NULL
,
771 vma
->vm_file
? vma
->vm_file
->f_op
->mmap
: NULL
,
772 mapping
? mapping
->a_ops
->readpage
: NULL
);
774 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
778 * vm_normal_page -- This function gets the "struct page" associated with a pte.
780 * "Special" mappings do not wish to be associated with a "struct page" (either
781 * it doesn't exist, or it exists but they don't want to touch it). In this
782 * case, NULL is returned here. "Normal" mappings do have a struct page.
784 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
785 * pte bit, in which case this function is trivial. Secondly, an architecture
786 * may not have a spare pte bit, which requires a more complicated scheme,
789 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
790 * special mapping (even if there are underlying and valid "struct pages").
791 * COWed pages of a VM_PFNMAP are always normal.
793 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
794 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
795 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
796 * mapping will always honor the rule
798 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
800 * And for normal mappings this is false.
802 * This restricts such mappings to be a linear translation from virtual address
803 * to pfn. To get around this restriction, we allow arbitrary mappings so long
804 * as the vma is not a COW mapping; in that case, we know that all ptes are
805 * special (because none can have been COWed).
808 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
810 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
811 * page" backing, however the difference is that _all_ pages with a struct
812 * page (that is, those where pfn_valid is true) are refcounted and considered
813 * normal pages by the VM. The disadvantage is that pages are refcounted
814 * (which can be slower and simply not an option for some PFNMAP users). The
815 * advantage is that we don't have to follow the strict linearity rule of
816 * PFNMAP mappings in order to support COWable mappings.
819 struct page
*_vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
820 pte_t pte
, bool with_public_device
)
822 unsigned long pfn
= pte_pfn(pte
);
824 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
)) {
825 if (likely(!pte_special(pte
)))
827 if (vma
->vm_ops
&& vma
->vm_ops
->find_special_page
)
828 return vma
->vm_ops
->find_special_page(vma
, addr
);
829 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
831 if (is_zero_pfn(pfn
))
835 * Device public pages are special pages (they are ZONE_DEVICE
836 * pages but different from persistent memory). They behave
837 * allmost like normal pages. The difference is that they are
838 * not on the lru and thus should never be involve with any-
839 * thing that involve lru manipulation (mlock, numa balancing,
842 * This is why we still want to return NULL for such page from
843 * vm_normal_page() so that we do not have to special case all
844 * call site of vm_normal_page().
846 if (likely(pfn
<= highest_memmap_pfn
)) {
847 struct page
*page
= pfn_to_page(pfn
);
849 if (is_device_public_page(page
)) {
850 if (with_public_device
)
859 print_bad_pte(vma
, addr
, pte
, NULL
);
863 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
865 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
866 if (vma
->vm_flags
& VM_MIXEDMAP
) {
872 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
873 if (pfn
== vma
->vm_pgoff
+ off
)
875 if (!is_cow_mapping(vma
->vm_flags
))
880 if (is_zero_pfn(pfn
))
884 if (unlikely(pfn
> highest_memmap_pfn
)) {
885 print_bad_pte(vma
, addr
, pte
, NULL
);
890 * NOTE! We still have PageReserved() pages in the page tables.
891 * eg. VDSO mappings can cause them to exist.
894 return pfn_to_page(pfn
);
897 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
898 struct page
*vm_normal_page_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
901 unsigned long pfn
= pmd_pfn(pmd
);
904 * There is no pmd_special() but there may be special pmds, e.g.
905 * in a direct-access (dax) mapping, so let's just replicate the
906 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
908 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
909 if (vma
->vm_flags
& VM_MIXEDMAP
) {
915 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
916 if (pfn
== vma
->vm_pgoff
+ off
)
918 if (!is_cow_mapping(vma
->vm_flags
))
925 if (is_zero_pfn(pfn
))
927 if (unlikely(pfn
> highest_memmap_pfn
))
931 * NOTE! We still have PageReserved() pages in the page tables.
932 * eg. VDSO mappings can cause them to exist.
935 return pfn_to_page(pfn
);
940 * copy one vm_area from one task to the other. Assumes the page tables
941 * already present in the new task to be cleared in the whole range
942 * covered by this vma.
945 static inline unsigned long
946 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
947 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
948 unsigned long addr
, int *rss
)
950 unsigned long vm_flags
= vma
->vm_flags
;
951 pte_t pte
= *src_pte
;
954 /* pte contains position in swap or file, so copy. */
955 if (unlikely(!pte_present(pte
))) {
956 swp_entry_t entry
= pte_to_swp_entry(pte
);
958 if (likely(!non_swap_entry(entry
))) {
959 if (swap_duplicate(entry
) < 0)
962 /* make sure dst_mm is on swapoff's mmlist. */
963 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
964 spin_lock(&mmlist_lock
);
965 if (list_empty(&dst_mm
->mmlist
))
966 list_add(&dst_mm
->mmlist
,
968 spin_unlock(&mmlist_lock
);
971 } else if (is_migration_entry(entry
)) {
972 page
= migration_entry_to_page(entry
);
974 rss
[mm_counter(page
)]++;
976 if (is_write_migration_entry(entry
) &&
977 is_cow_mapping(vm_flags
)) {
979 * COW mappings require pages in both
980 * parent and child to be set to read.
982 make_migration_entry_read(&entry
);
983 pte
= swp_entry_to_pte(entry
);
984 if (pte_swp_soft_dirty(*src_pte
))
985 pte
= pte_swp_mksoft_dirty(pte
);
986 set_pte_at(src_mm
, addr
, src_pte
, pte
);
988 } else if (is_device_private_entry(entry
)) {
989 page
= device_private_entry_to_page(entry
);
992 * Update rss count even for unaddressable pages, as
993 * they should treated just like normal pages in this
996 * We will likely want to have some new rss counters
997 * for unaddressable pages, at some point. But for now
998 * keep things as they are.
1001 rss
[mm_counter(page
)]++;
1002 page_dup_rmap(page
, false);
1005 * We do not preserve soft-dirty information, because so
1006 * far, checkpoint/restore is the only feature that
1007 * requires that. And checkpoint/restore does not work
1008 * when a device driver is involved (you cannot easily
1009 * save and restore device driver state).
1011 if (is_write_device_private_entry(entry
) &&
1012 is_cow_mapping(vm_flags
)) {
1013 make_device_private_entry_read(&entry
);
1014 pte
= swp_entry_to_pte(entry
);
1015 set_pte_at(src_mm
, addr
, src_pte
, pte
);
1022 * If it's a COW mapping, write protect it both
1023 * in the parent and the child
1025 if (is_cow_mapping(vm_flags
) && pte_write(pte
)) {
1026 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
1027 pte
= pte_wrprotect(pte
);
1031 * If it's a shared mapping, mark it clean in
1034 if (vm_flags
& VM_SHARED
)
1035 pte
= pte_mkclean(pte
);
1036 pte
= pte_mkold(pte
);
1038 page
= vm_normal_page(vma
, addr
, pte
);
1041 page_dup_rmap(page
, false);
1042 rss
[mm_counter(page
)]++;
1043 } else if (pte_devmap(pte
)) {
1044 page
= pte_page(pte
);
1047 * Cache coherent device memory behave like regular page and
1048 * not like persistent memory page. For more informations see
1049 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1051 if (is_device_public_page(page
)) {
1053 page_dup_rmap(page
, false);
1054 rss
[mm_counter(page
)]++;
1059 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
1063 static int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1064 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
1065 unsigned long addr
, unsigned long end
)
1067 pte_t
*orig_src_pte
, *orig_dst_pte
;
1068 pte_t
*src_pte
, *dst_pte
;
1069 spinlock_t
*src_ptl
, *dst_ptl
;
1071 int rss
[NR_MM_COUNTERS
];
1072 swp_entry_t entry
= (swp_entry_t
){0};
1077 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
1080 src_pte
= pte_offset_map(src_pmd
, addr
);
1081 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
1082 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
1083 orig_src_pte
= src_pte
;
1084 orig_dst_pte
= dst_pte
;
1085 arch_enter_lazy_mmu_mode();
1089 * We are holding two locks at this point - either of them
1090 * could generate latencies in another task on another CPU.
1092 if (progress
>= 32) {
1094 if (need_resched() ||
1095 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
1098 if (pte_none(*src_pte
)) {
1102 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
1107 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1109 arch_leave_lazy_mmu_mode();
1110 spin_unlock(src_ptl
);
1111 pte_unmap(orig_src_pte
);
1112 add_mm_rss_vec(dst_mm
, rss
);
1113 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
1117 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
1126 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1127 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1128 unsigned long addr
, unsigned long end
)
1130 pmd_t
*src_pmd
, *dst_pmd
;
1133 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1136 src_pmd
= pmd_offset(src_pud
, addr
);
1138 next
= pmd_addr_end(addr
, end
);
1139 if (is_swap_pmd(*src_pmd
) || pmd_trans_huge(*src_pmd
)
1140 || pmd_devmap(*src_pmd
)) {
1142 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PMD_SIZE
, vma
);
1143 err
= copy_huge_pmd(dst_mm
, src_mm
,
1144 dst_pmd
, src_pmd
, addr
, vma
);
1151 if (pmd_none_or_clear_bad(src_pmd
))
1153 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1156 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1160 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1161 p4d_t
*dst_p4d
, p4d_t
*src_p4d
, struct vm_area_struct
*vma
,
1162 unsigned long addr
, unsigned long end
)
1164 pud_t
*src_pud
, *dst_pud
;
1167 dst_pud
= pud_alloc(dst_mm
, dst_p4d
, addr
);
1170 src_pud
= pud_offset(src_p4d
, addr
);
1172 next
= pud_addr_end(addr
, end
);
1173 if (pud_trans_huge(*src_pud
) || pud_devmap(*src_pud
)) {
1176 VM_BUG_ON_VMA(next
-addr
!= HPAGE_PUD_SIZE
, vma
);
1177 err
= copy_huge_pud(dst_mm
, src_mm
,
1178 dst_pud
, src_pud
, addr
, vma
);
1185 if (pud_none_or_clear_bad(src_pud
))
1187 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1190 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1194 static inline int copy_p4d_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1195 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1196 unsigned long addr
, unsigned long end
)
1198 p4d_t
*src_p4d
, *dst_p4d
;
1201 dst_p4d
= p4d_alloc(dst_mm
, dst_pgd
, addr
);
1204 src_p4d
= p4d_offset(src_pgd
, addr
);
1206 next
= p4d_addr_end(addr
, end
);
1207 if (p4d_none_or_clear_bad(src_p4d
))
1209 if (copy_pud_range(dst_mm
, src_mm
, dst_p4d
, src_p4d
,
1212 } while (dst_p4d
++, src_p4d
++, addr
= next
, addr
!= end
);
1216 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1217 struct vm_area_struct
*vma
)
1219 pgd_t
*src_pgd
, *dst_pgd
;
1221 unsigned long addr
= vma
->vm_start
;
1222 unsigned long end
= vma
->vm_end
;
1223 unsigned long mmun_start
; /* For mmu_notifiers */
1224 unsigned long mmun_end
; /* For mmu_notifiers */
1229 * Don't copy ptes where a page fault will fill them correctly.
1230 * Fork becomes much lighter when there are big shared or private
1231 * readonly mappings. The tradeoff is that copy_page_range is more
1232 * efficient than faulting.
1234 if (!(vma
->vm_flags
& (VM_HUGETLB
| VM_PFNMAP
| VM_MIXEDMAP
)) &&
1238 if (is_vm_hugetlb_page(vma
))
1239 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1241 if (unlikely(vma
->vm_flags
& VM_PFNMAP
)) {
1243 * We do not free on error cases below as remove_vma
1244 * gets called on error from higher level routine
1246 ret
= track_pfn_copy(vma
);
1252 * We need to invalidate the secondary MMU mappings only when
1253 * there could be a permission downgrade on the ptes of the
1254 * parent mm. And a permission downgrade will only happen if
1255 * is_cow_mapping() returns true.
1257 is_cow
= is_cow_mapping(vma
->vm_flags
);
1261 mmu_notifier_invalidate_range_start(src_mm
, mmun_start
,
1265 dst_pgd
= pgd_offset(dst_mm
, addr
);
1266 src_pgd
= pgd_offset(src_mm
, addr
);
1268 next
= pgd_addr_end(addr
, end
);
1269 if (pgd_none_or_clear_bad(src_pgd
))
1271 if (unlikely(copy_p4d_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1272 vma
, addr
, next
))) {
1276 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1279 mmu_notifier_invalidate_range_end(src_mm
, mmun_start
, mmun_end
);
1283 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1284 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1285 unsigned long addr
, unsigned long end
,
1286 struct zap_details
*details
)
1288 struct mm_struct
*mm
= tlb
->mm
;
1289 int force_flush
= 0;
1290 int rss
[NR_MM_COUNTERS
];
1296 tlb_remove_check_page_size_change(tlb
, PAGE_SIZE
);
1299 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1301 flush_tlb_batched_pending(mm
);
1302 arch_enter_lazy_mmu_mode();
1305 if (pte_none(ptent
))
1308 if (pte_present(ptent
)) {
1311 page
= _vm_normal_page(vma
, addr
, ptent
, true);
1312 if (unlikely(details
) && page
) {
1314 * unmap_shared_mapping_pages() wants to
1315 * invalidate cache without truncating:
1316 * unmap shared but keep private pages.
1318 if (details
->check_mapping
&&
1319 details
->check_mapping
!= page_rmapping(page
))
1322 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1324 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1325 if (unlikely(!page
))
1328 if (!PageAnon(page
)) {
1329 if (pte_dirty(ptent
)) {
1331 set_page_dirty(page
);
1333 if (pte_young(ptent
) &&
1334 likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
1335 mark_page_accessed(page
);
1337 rss
[mm_counter(page
)]--;
1338 page_remove_rmap(page
, false);
1339 if (unlikely(page_mapcount(page
) < 0))
1340 print_bad_pte(vma
, addr
, ptent
, page
);
1341 if (unlikely(__tlb_remove_page(tlb
, page
))) {
1349 entry
= pte_to_swp_entry(ptent
);
1350 if (non_swap_entry(entry
) && is_device_private_entry(entry
)) {
1351 struct page
*page
= device_private_entry_to_page(entry
);
1353 if (unlikely(details
&& details
->check_mapping
)) {
1355 * unmap_shared_mapping_pages() wants to
1356 * invalidate cache without truncating:
1357 * unmap shared but keep private pages.
1359 if (details
->check_mapping
!=
1360 page_rmapping(page
))
1364 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1365 rss
[mm_counter(page
)]--;
1366 page_remove_rmap(page
, false);
1371 /* If details->check_mapping, we leave swap entries. */
1372 if (unlikely(details
))
1375 entry
= pte_to_swp_entry(ptent
);
1376 if (!non_swap_entry(entry
))
1378 else if (is_migration_entry(entry
)) {
1381 page
= migration_entry_to_page(entry
);
1382 rss
[mm_counter(page
)]--;
1384 if (unlikely(!free_swap_and_cache(entry
)))
1385 print_bad_pte(vma
, addr
, ptent
, NULL
);
1386 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1387 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1389 add_mm_rss_vec(mm
, rss
);
1390 arch_leave_lazy_mmu_mode();
1392 /* Do the actual TLB flush before dropping ptl */
1394 tlb_flush_mmu_tlbonly(tlb
);
1395 pte_unmap_unlock(start_pte
, ptl
);
1398 * If we forced a TLB flush (either due to running out of
1399 * batch buffers or because we needed to flush dirty TLB
1400 * entries before releasing the ptl), free the batched
1401 * memory too. Restart if we didn't do everything.
1405 tlb_flush_mmu_free(tlb
);
1413 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1414 struct vm_area_struct
*vma
, pud_t
*pud
,
1415 unsigned long addr
, unsigned long end
,
1416 struct zap_details
*details
)
1421 pmd
= pmd_offset(pud
, addr
);
1423 next
= pmd_addr_end(addr
, end
);
1424 if (is_swap_pmd(*pmd
) || pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)) {
1425 if (next
- addr
!= HPAGE_PMD_SIZE
)
1426 __split_huge_pmd(vma
, pmd
, addr
, false, NULL
);
1427 else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1432 * Here there can be other concurrent MADV_DONTNEED or
1433 * trans huge page faults running, and if the pmd is
1434 * none or trans huge it can change under us. This is
1435 * because MADV_DONTNEED holds the mmap_sem in read
1438 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1440 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1443 } while (pmd
++, addr
= next
, addr
!= end
);
1448 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1449 struct vm_area_struct
*vma
, p4d_t
*p4d
,
1450 unsigned long addr
, unsigned long end
,
1451 struct zap_details
*details
)
1456 pud
= pud_offset(p4d
, addr
);
1458 next
= pud_addr_end(addr
, end
);
1459 if (pud_trans_huge(*pud
) || pud_devmap(*pud
)) {
1460 if (next
- addr
!= HPAGE_PUD_SIZE
) {
1461 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb
->mm
->mmap_sem
), vma
);
1462 split_huge_pud(vma
, pud
, addr
);
1463 } else if (zap_huge_pud(tlb
, vma
, pud
, addr
))
1467 if (pud_none_or_clear_bad(pud
))
1469 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1472 } while (pud
++, addr
= next
, addr
!= end
);
1477 static inline unsigned long zap_p4d_range(struct mmu_gather
*tlb
,
1478 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1479 unsigned long addr
, unsigned long end
,
1480 struct zap_details
*details
)
1485 p4d
= p4d_offset(pgd
, addr
);
1487 next
= p4d_addr_end(addr
, end
);
1488 if (p4d_none_or_clear_bad(p4d
))
1490 next
= zap_pud_range(tlb
, vma
, p4d
, addr
, next
, details
);
1491 } while (p4d
++, addr
= next
, addr
!= end
);
1496 void unmap_page_range(struct mmu_gather
*tlb
,
1497 struct vm_area_struct
*vma
,
1498 unsigned long addr
, unsigned long end
,
1499 struct zap_details
*details
)
1504 BUG_ON(addr
>= end
);
1505 tlb_start_vma(tlb
, vma
);
1506 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1508 next
= pgd_addr_end(addr
, end
);
1509 if (pgd_none_or_clear_bad(pgd
))
1511 next
= zap_p4d_range(tlb
, vma
, pgd
, addr
, next
, details
);
1512 } while (pgd
++, addr
= next
, addr
!= end
);
1513 tlb_end_vma(tlb
, vma
);
1517 static void unmap_single_vma(struct mmu_gather
*tlb
,
1518 struct vm_area_struct
*vma
, unsigned long start_addr
,
1519 unsigned long end_addr
,
1520 struct zap_details
*details
)
1522 unsigned long start
= max(vma
->vm_start
, start_addr
);
1525 if (start
>= vma
->vm_end
)
1527 end
= min(vma
->vm_end
, end_addr
);
1528 if (end
<= vma
->vm_start
)
1532 uprobe_munmap(vma
, start
, end
);
1534 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
1535 untrack_pfn(vma
, 0, 0);
1538 if (unlikely(is_vm_hugetlb_page(vma
))) {
1540 * It is undesirable to test vma->vm_file as it
1541 * should be non-null for valid hugetlb area.
1542 * However, vm_file will be NULL in the error
1543 * cleanup path of mmap_region. When
1544 * hugetlbfs ->mmap method fails,
1545 * mmap_region() nullifies vma->vm_file
1546 * before calling this function to clean up.
1547 * Since no pte has actually been setup, it is
1548 * safe to do nothing in this case.
1551 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
1552 __unmap_hugepage_range_final(tlb
, vma
, start
, end
, NULL
);
1553 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
1556 unmap_page_range(tlb
, vma
, start
, end
, details
);
1561 * unmap_vmas - unmap a range of memory covered by a list of vma's
1562 * @tlb: address of the caller's struct mmu_gather
1563 * @vma: the starting vma
1564 * @start_addr: virtual address at which to start unmapping
1565 * @end_addr: virtual address at which to end unmapping
1567 * Unmap all pages in the vma list.
1569 * Only addresses between `start' and `end' will be unmapped.
1571 * The VMA list must be sorted in ascending virtual address order.
1573 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1574 * range after unmap_vmas() returns. So the only responsibility here is to
1575 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1576 * drops the lock and schedules.
1578 void unmap_vmas(struct mmu_gather
*tlb
,
1579 struct vm_area_struct
*vma
, unsigned long start_addr
,
1580 unsigned long end_addr
)
1582 struct mm_struct
*mm
= vma
->vm_mm
;
1584 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1585 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
)
1586 unmap_single_vma(tlb
, vma
, start_addr
, end_addr
, NULL
);
1587 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1591 * zap_page_range - remove user pages in a given range
1592 * @vma: vm_area_struct holding the applicable pages
1593 * @start: starting address of pages to zap
1594 * @size: number of bytes to zap
1596 * Caller must protect the VMA list
1598 void zap_page_range(struct vm_area_struct
*vma
, unsigned long start
,
1601 struct mm_struct
*mm
= vma
->vm_mm
;
1602 struct mmu_gather tlb
;
1603 unsigned long end
= start
+ size
;
1606 tlb_gather_mmu(&tlb
, mm
, start
, end
);
1607 update_hiwater_rss(mm
);
1608 mmu_notifier_invalidate_range_start(mm
, start
, end
);
1609 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
)
1610 unmap_single_vma(&tlb
, vma
, start
, end
, NULL
);
1611 mmu_notifier_invalidate_range_end(mm
, start
, end
);
1612 tlb_finish_mmu(&tlb
, start
, end
);
1616 * zap_page_range_single - remove user pages in a given range
1617 * @vma: vm_area_struct holding the applicable pages
1618 * @address: starting address of pages to zap
1619 * @size: number of bytes to zap
1620 * @details: details of shared cache invalidation
1622 * The range must fit into one VMA.
1624 static void zap_page_range_single(struct vm_area_struct
*vma
, unsigned long address
,
1625 unsigned long size
, struct zap_details
*details
)
1627 struct mm_struct
*mm
= vma
->vm_mm
;
1628 struct mmu_gather tlb
;
1629 unsigned long end
= address
+ size
;
1632 tlb_gather_mmu(&tlb
, mm
, address
, end
);
1633 update_hiwater_rss(mm
);
1634 mmu_notifier_invalidate_range_start(mm
, address
, end
);
1635 unmap_single_vma(&tlb
, vma
, address
, end
, details
);
1636 mmu_notifier_invalidate_range_end(mm
, address
, end
);
1637 tlb_finish_mmu(&tlb
, address
, end
);
1641 * zap_vma_ptes - remove ptes mapping the vma
1642 * @vma: vm_area_struct holding ptes to be zapped
1643 * @address: starting address of pages to zap
1644 * @size: number of bytes to zap
1646 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1648 * The entire address range must be fully contained within the vma.
1651 void zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1654 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1655 !(vma
->vm_flags
& VM_PFNMAP
))
1658 zap_page_range_single(vma
, address
, size
, NULL
);
1660 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1662 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1670 pgd
= pgd_offset(mm
, addr
);
1671 p4d
= p4d_alloc(mm
, pgd
, addr
);
1674 pud
= pud_alloc(mm
, p4d
, addr
);
1677 pmd
= pmd_alloc(mm
, pud
, addr
);
1681 VM_BUG_ON(pmd_trans_huge(*pmd
));
1682 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
1686 * This is the old fallback for page remapping.
1688 * For historical reasons, it only allows reserved pages. Only
1689 * old drivers should use this, and they needed to mark their
1690 * pages reserved for the old functions anyway.
1692 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1693 struct page
*page
, pgprot_t prot
)
1695 struct mm_struct
*mm
= vma
->vm_mm
;
1704 flush_dcache_page(page
);
1705 pte
= get_locked_pte(mm
, addr
, &ptl
);
1709 if (!pte_none(*pte
))
1712 /* Ok, finally just insert the thing.. */
1714 inc_mm_counter_fast(mm
, mm_counter_file(page
));
1715 page_add_file_rmap(page
, false);
1716 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
1719 pte_unmap_unlock(pte
, ptl
);
1722 pte_unmap_unlock(pte
, ptl
);
1728 * vm_insert_page - insert single page into user vma
1729 * @vma: user vma to map to
1730 * @addr: target user address of this page
1731 * @page: source kernel page
1733 * This allows drivers to insert individual pages they've allocated
1736 * The page has to be a nice clean _individual_ kernel allocation.
1737 * If you allocate a compound page, you need to have marked it as
1738 * such (__GFP_COMP), or manually just split the page up yourself
1739 * (see split_page()).
1741 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1742 * took an arbitrary page protection parameter. This doesn't allow
1743 * that. Your vma protection will have to be set up correctly, which
1744 * means that if you want a shared writable mapping, you'd better
1745 * ask for a shared writable mapping!
1747 * The page does not need to be reserved.
1749 * Usually this function is called from f_op->mmap() handler
1750 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1751 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1752 * function from other places, for example from page-fault handler.
1754 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
1757 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1759 if (!page_count(page
))
1761 if (!(vma
->vm_flags
& VM_MIXEDMAP
)) {
1762 BUG_ON(down_read_trylock(&vma
->vm_mm
->mmap_sem
));
1763 BUG_ON(vma
->vm_flags
& VM_PFNMAP
);
1764 vma
->vm_flags
|= VM_MIXEDMAP
;
1766 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
1768 EXPORT_SYMBOL(vm_insert_page
);
1770 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1771 pfn_t pfn
, pgprot_t prot
, bool mkwrite
)
1773 struct mm_struct
*mm
= vma
->vm_mm
;
1779 pte
= get_locked_pte(mm
, addr
, &ptl
);
1783 if (!pte_none(*pte
)) {
1786 * For read faults on private mappings the PFN passed
1787 * in may not match the PFN we have mapped if the
1788 * mapped PFN is a writeable COW page. In the mkwrite
1789 * case we are creating a writable PTE for a shared
1790 * mapping and we expect the PFNs to match.
1792 if (WARN_ON_ONCE(pte_pfn(*pte
) != pfn_t_to_pfn(pfn
)))
1800 /* Ok, finally just insert the thing.. */
1801 if (pfn_t_devmap(pfn
))
1802 entry
= pte_mkdevmap(pfn_t_pte(pfn
, prot
));
1804 entry
= pte_mkspecial(pfn_t_pte(pfn
, prot
));
1808 entry
= pte_mkyoung(entry
);
1809 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
1812 set_pte_at(mm
, addr
, pte
, entry
);
1813 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
1817 pte_unmap_unlock(pte
, ptl
);
1823 * vm_insert_pfn - insert single pfn into user vma
1824 * @vma: user vma to map to
1825 * @addr: target user address of this page
1826 * @pfn: source kernel pfn
1828 * Similar to vm_insert_page, this allows drivers to insert individual pages
1829 * they've allocated into a user vma. Same comments apply.
1831 * This function should only be called from a vm_ops->fault handler, and
1832 * in that case the handler should return NULL.
1834 * vma cannot be a COW mapping.
1836 * As this is called only for pages that do not currently exist, we
1837 * do not need to flush old virtual caches or the TLB.
1839 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
1842 return vm_insert_pfn_prot(vma
, addr
, pfn
, vma
->vm_page_prot
);
1844 EXPORT_SYMBOL(vm_insert_pfn
);
1847 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1848 * @vma: user vma to map to
1849 * @addr: target user address of this page
1850 * @pfn: source kernel pfn
1851 * @pgprot: pgprot flags for the inserted page
1853 * This is exactly like vm_insert_pfn, except that it allows drivers to
1854 * to override pgprot on a per-page basis.
1856 * This only makes sense for IO mappings, and it makes no sense for
1857 * cow mappings. In general, using multiple vmas is preferable;
1858 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1861 int vm_insert_pfn_prot(struct vm_area_struct
*vma
, unsigned long addr
,
1862 unsigned long pfn
, pgprot_t pgprot
)
1866 * Technically, architectures with pte_special can avoid all these
1867 * restrictions (same for remap_pfn_range). However we would like
1868 * consistency in testing and feature parity among all, so we should
1869 * try to keep these invariants in place for everybody.
1871 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
1872 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
1873 (VM_PFNMAP
|VM_MIXEDMAP
));
1874 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
1875 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
1877 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1880 if (!pfn_modify_allowed(pfn
, pgprot
))
1883 track_pfn_insert(vma
, &pgprot
, __pfn_to_pfn_t(pfn
, PFN_DEV
));
1885 ret
= insert_pfn(vma
, addr
, __pfn_to_pfn_t(pfn
, PFN_DEV
), pgprot
,
1890 EXPORT_SYMBOL(vm_insert_pfn_prot
);
1892 static bool vm_mixed_ok(struct vm_area_struct
*vma
, pfn_t pfn
)
1894 /* these checks mirror the abort conditions in vm_normal_page */
1895 if (vma
->vm_flags
& VM_MIXEDMAP
)
1897 if (pfn_t_devmap(pfn
))
1899 if (pfn_t_special(pfn
))
1901 if (is_zero_pfn(pfn_t_to_pfn(pfn
)))
1906 static int __vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1907 pfn_t pfn
, bool mkwrite
)
1909 pgprot_t pgprot
= vma
->vm_page_prot
;
1911 BUG_ON(!vm_mixed_ok(vma
, pfn
));
1913 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
1916 track_pfn_insert(vma
, &pgprot
, pfn
);
1918 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn
), pgprot
))
1922 * If we don't have pte special, then we have to use the pfn_valid()
1923 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1924 * refcount the page if pfn_valid is true (hence insert_page rather
1925 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1926 * without pte special, it would there be refcounted as a normal page.
1928 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL
) &&
1929 !pfn_t_devmap(pfn
) && pfn_t_valid(pfn
)) {
1933 * At this point we are committed to insert_page()
1934 * regardless of whether the caller specified flags that
1935 * result in pfn_t_has_page() == false.
1937 page
= pfn_to_page(pfn_t_to_pfn(pfn
));
1938 return insert_page(vma
, addr
, page
, pgprot
);
1940 return insert_pfn(vma
, addr
, pfn
, pgprot
, mkwrite
);
1943 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
1946 return __vm_insert_mixed(vma
, addr
, pfn
, false);
1949 EXPORT_SYMBOL(vm_insert_mixed
);
1952 * If the insertion of PTE failed because someone else already added a
1953 * different entry in the mean time, we treat that as success as we assume
1954 * the same entry was actually inserted.
1957 vm_fault_t
vmf_insert_mixed_mkwrite(struct vm_area_struct
*vma
,
1958 unsigned long addr
, pfn_t pfn
)
1962 err
= __vm_insert_mixed(vma
, addr
, pfn
, true);
1964 return VM_FAULT_OOM
;
1965 if (err
< 0 && err
!= -EBUSY
)
1966 return VM_FAULT_SIGBUS
;
1967 return VM_FAULT_NOPAGE
;
1969 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite
);
1972 * maps a range of physical memory into the requested pages. the old
1973 * mappings are removed. any references to nonexistent pages results
1974 * in null mappings (currently treated as "copy-on-access")
1976 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
1977 unsigned long addr
, unsigned long end
,
1978 unsigned long pfn
, pgprot_t prot
)
1984 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
1987 arch_enter_lazy_mmu_mode();
1989 BUG_ON(!pte_none(*pte
));
1990 if (!pfn_modify_allowed(pfn
, prot
)) {
1994 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
1996 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1997 arch_leave_lazy_mmu_mode();
1998 pte_unmap_unlock(pte
- 1, ptl
);
2002 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2003 unsigned long addr
, unsigned long end
,
2004 unsigned long pfn
, pgprot_t prot
)
2010 pfn
-= addr
>> PAGE_SHIFT
;
2011 pmd
= pmd_alloc(mm
, pud
, addr
);
2014 VM_BUG_ON(pmd_trans_huge(*pmd
));
2016 next
= pmd_addr_end(addr
, end
);
2017 err
= remap_pte_range(mm
, pmd
, addr
, next
,
2018 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2021 } while (pmd
++, addr
= next
, addr
!= end
);
2025 static inline int remap_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2026 unsigned long addr
, unsigned long end
,
2027 unsigned long pfn
, pgprot_t prot
)
2033 pfn
-= addr
>> PAGE_SHIFT
;
2034 pud
= pud_alloc(mm
, p4d
, addr
);
2038 next
= pud_addr_end(addr
, end
);
2039 err
= remap_pmd_range(mm
, pud
, addr
, next
,
2040 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2043 } while (pud
++, addr
= next
, addr
!= end
);
2047 static inline int remap_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2048 unsigned long addr
, unsigned long end
,
2049 unsigned long pfn
, pgprot_t prot
)
2055 pfn
-= addr
>> PAGE_SHIFT
;
2056 p4d
= p4d_alloc(mm
, pgd
, addr
);
2060 next
= p4d_addr_end(addr
, end
);
2061 err
= remap_pud_range(mm
, p4d
, addr
, next
,
2062 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2065 } while (p4d
++, addr
= next
, addr
!= end
);
2070 * remap_pfn_range - remap kernel memory to userspace
2071 * @vma: user vma to map to
2072 * @addr: target user address to start at
2073 * @pfn: physical address of kernel memory
2074 * @size: size of map area
2075 * @prot: page protection flags for this mapping
2077 * Note: this is only safe if the mm semaphore is held when called.
2079 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2080 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2084 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2085 struct mm_struct
*mm
= vma
->vm_mm
;
2086 unsigned long remap_pfn
= pfn
;
2090 * Physically remapped pages are special. Tell the
2091 * rest of the world about it:
2092 * VM_IO tells people not to look at these pages
2093 * (accesses can have side effects).
2094 * VM_PFNMAP tells the core MM that the base pages are just
2095 * raw PFN mappings, and do not have a "struct page" associated
2098 * Disable vma merging and expanding with mremap().
2100 * Omit vma from core dump, even when VM_IO turned off.
2102 * There's a horrible special case to handle copy-on-write
2103 * behaviour that some programs depend on. We mark the "original"
2104 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2105 * See vm_normal_page() for details.
2107 if (is_cow_mapping(vma
->vm_flags
)) {
2108 if (addr
!= vma
->vm_start
|| end
!= vma
->vm_end
)
2110 vma
->vm_pgoff
= pfn
;
2113 err
= track_pfn_remap(vma
, &prot
, remap_pfn
, addr
, PAGE_ALIGN(size
));
2117 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
2119 BUG_ON(addr
>= end
);
2120 pfn
-= addr
>> PAGE_SHIFT
;
2121 pgd
= pgd_offset(mm
, addr
);
2122 flush_cache_range(vma
, addr
, end
);
2124 next
= pgd_addr_end(addr
, end
);
2125 err
= remap_p4d_range(mm
, pgd
, addr
, next
,
2126 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2129 } while (pgd
++, addr
= next
, addr
!= end
);
2132 untrack_pfn(vma
, remap_pfn
, PAGE_ALIGN(size
));
2136 EXPORT_SYMBOL(remap_pfn_range
);
2139 * vm_iomap_memory - remap memory to userspace
2140 * @vma: user vma to map to
2141 * @start: start of area
2142 * @len: size of area
2144 * This is a simplified io_remap_pfn_range() for common driver use. The
2145 * driver just needs to give us the physical memory range to be mapped,
2146 * we'll figure out the rest from the vma information.
2148 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2149 * whatever write-combining details or similar.
2151 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
2153 unsigned long vm_len
, pfn
, pages
;
2155 /* Check that the physical memory area passed in looks valid */
2156 if (start
+ len
< start
)
2159 * You *really* shouldn't map things that aren't page-aligned,
2160 * but we've historically allowed it because IO memory might
2161 * just have smaller alignment.
2163 len
+= start
& ~PAGE_MASK
;
2164 pfn
= start
>> PAGE_SHIFT
;
2165 pages
= (len
+ ~PAGE_MASK
) >> PAGE_SHIFT
;
2166 if (pfn
+ pages
< pfn
)
2169 /* We start the mapping 'vm_pgoff' pages into the area */
2170 if (vma
->vm_pgoff
> pages
)
2172 pfn
+= vma
->vm_pgoff
;
2173 pages
-= vma
->vm_pgoff
;
2175 /* Can we fit all of the mapping? */
2176 vm_len
= vma
->vm_end
- vma
->vm_start
;
2177 if (vm_len
>> PAGE_SHIFT
> pages
)
2180 /* Ok, let it rip */
2181 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
2183 EXPORT_SYMBOL(vm_iomap_memory
);
2185 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2186 unsigned long addr
, unsigned long end
,
2187 pte_fn_t fn
, void *data
)
2192 spinlock_t
*uninitialized_var(ptl
);
2194 pte
= (mm
== &init_mm
) ?
2195 pte_alloc_kernel(pmd
, addr
) :
2196 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2200 BUG_ON(pmd_huge(*pmd
));
2202 arch_enter_lazy_mmu_mode();
2204 token
= pmd_pgtable(*pmd
);
2207 err
= fn(pte
++, token
, addr
, data
);
2210 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2212 arch_leave_lazy_mmu_mode();
2215 pte_unmap_unlock(pte
-1, ptl
);
2219 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2220 unsigned long addr
, unsigned long end
,
2221 pte_fn_t fn
, void *data
)
2227 BUG_ON(pud_huge(*pud
));
2229 pmd
= pmd_alloc(mm
, pud
, addr
);
2233 next
= pmd_addr_end(addr
, end
);
2234 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2237 } while (pmd
++, addr
= next
, addr
!= end
);
2241 static int apply_to_pud_range(struct mm_struct
*mm
, p4d_t
*p4d
,
2242 unsigned long addr
, unsigned long end
,
2243 pte_fn_t fn
, void *data
)
2249 pud
= pud_alloc(mm
, p4d
, addr
);
2253 next
= pud_addr_end(addr
, end
);
2254 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2257 } while (pud
++, addr
= next
, addr
!= end
);
2261 static int apply_to_p4d_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2262 unsigned long addr
, unsigned long end
,
2263 pte_fn_t fn
, void *data
)
2269 p4d
= p4d_alloc(mm
, pgd
, addr
);
2273 next
= p4d_addr_end(addr
, end
);
2274 err
= apply_to_pud_range(mm
, p4d
, addr
, next
, fn
, data
);
2277 } while (p4d
++, addr
= next
, addr
!= end
);
2282 * Scan a region of virtual memory, filling in page tables as necessary
2283 * and calling a provided function on each leaf page table.
2285 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2286 unsigned long size
, pte_fn_t fn
, void *data
)
2290 unsigned long end
= addr
+ size
;
2293 if (WARN_ON(addr
>= end
))
2296 pgd
= pgd_offset(mm
, addr
);
2298 next
= pgd_addr_end(addr
, end
);
2299 err
= apply_to_p4d_range(mm
, pgd
, addr
, next
, fn
, data
);
2302 } while (pgd
++, addr
= next
, addr
!= end
);
2306 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2309 * handle_pte_fault chooses page fault handler according to an entry which was
2310 * read non-atomically. Before making any commitment, on those architectures
2311 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2312 * parts, do_swap_page must check under lock before unmapping the pte and
2313 * proceeding (but do_wp_page is only called after already making such a check;
2314 * and do_anonymous_page can safely check later on).
2316 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2317 pte_t
*page_table
, pte_t orig_pte
)
2320 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2321 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2322 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2324 same
= pte_same(*page_table
, orig_pte
);
2328 pte_unmap(page_table
);
2332 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2334 debug_dma_assert_idle(src
);
2337 * If the source page was a PFN mapping, we don't have
2338 * a "struct page" for it. We do a best-effort copy by
2339 * just copying from the original user address. If that
2340 * fails, we just zero-fill it. Live with it.
2342 if (unlikely(!src
)) {
2343 void *kaddr
= kmap_atomic(dst
);
2344 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2347 * This really shouldn't fail, because the page is there
2348 * in the page tables. But it might just be unreadable,
2349 * in which case we just give up and fill the result with
2352 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2354 kunmap_atomic(kaddr
);
2355 flush_dcache_page(dst
);
2357 copy_user_highpage(dst
, src
, va
, vma
);
2360 static gfp_t
__get_fault_gfp_mask(struct vm_area_struct
*vma
)
2362 struct file
*vm_file
= vma
->vm_file
;
2365 return mapping_gfp_mask(vm_file
->f_mapping
) | __GFP_FS
| __GFP_IO
;
2368 * Special mappings (e.g. VDSO) do not have any file so fake
2369 * a default GFP_KERNEL for them.
2375 * Notify the address space that the page is about to become writable so that
2376 * it can prohibit this or wait for the page to get into an appropriate state.
2378 * We do this without the lock held, so that it can sleep if it needs to.
2380 static vm_fault_t
do_page_mkwrite(struct vm_fault
*vmf
)
2383 struct page
*page
= vmf
->page
;
2384 unsigned int old_flags
= vmf
->flags
;
2386 vmf
->flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2388 ret
= vmf
->vma
->vm_ops
->page_mkwrite(vmf
);
2389 /* Restore original flags so that caller is not surprised */
2390 vmf
->flags
= old_flags
;
2391 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))
2393 if (unlikely(!(ret
& VM_FAULT_LOCKED
))) {
2395 if (!page
->mapping
) {
2397 return 0; /* retry */
2399 ret
|= VM_FAULT_LOCKED
;
2401 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2406 * Handle dirtying of a page in shared file mapping on a write fault.
2408 * The function expects the page to be locked and unlocks it.
2410 static void fault_dirty_shared_page(struct vm_area_struct
*vma
,
2413 struct address_space
*mapping
;
2415 bool page_mkwrite
= vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
;
2417 dirtied
= set_page_dirty(page
);
2418 VM_BUG_ON_PAGE(PageAnon(page
), page
);
2420 * Take a local copy of the address_space - page.mapping may be zeroed
2421 * by truncate after unlock_page(). The address_space itself remains
2422 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2423 * release semantics to prevent the compiler from undoing this copying.
2425 mapping
= page_rmapping(page
);
2428 if ((dirtied
|| page_mkwrite
) && mapping
) {
2430 * Some device drivers do not set page.mapping
2431 * but still dirty their pages
2433 balance_dirty_pages_ratelimited(mapping
);
2437 file_update_time(vma
->vm_file
);
2441 * Handle write page faults for pages that can be reused in the current vma
2443 * This can happen either due to the mapping being with the VM_SHARED flag,
2444 * or due to us being the last reference standing to the page. In either
2445 * case, all we need to do here is to mark the page as writable and update
2446 * any related book-keeping.
2448 static inline void wp_page_reuse(struct vm_fault
*vmf
)
2449 __releases(vmf
->ptl
)
2451 struct vm_area_struct
*vma
= vmf
->vma
;
2452 struct page
*page
= vmf
->page
;
2455 * Clear the pages cpupid information as the existing
2456 * information potentially belongs to a now completely
2457 * unrelated process.
2460 page_cpupid_xchg_last(page
, (1 << LAST_CPUPID_SHIFT
) - 1);
2462 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2463 entry
= pte_mkyoung(vmf
->orig_pte
);
2464 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2465 if (ptep_set_access_flags(vma
, vmf
->address
, vmf
->pte
, entry
, 1))
2466 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2467 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2471 * Handle the case of a page which we actually need to copy to a new page.
2473 * Called with mmap_sem locked and the old page referenced, but
2474 * without the ptl held.
2476 * High level logic flow:
2478 * - Allocate a page, copy the content of the old page to the new one.
2479 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2480 * - Take the PTL. If the pte changed, bail out and release the allocated page
2481 * - If the pte is still the way we remember it, update the page table and all
2482 * relevant references. This includes dropping the reference the page-table
2483 * held to the old page, as well as updating the rmap.
2484 * - In any case, unlock the PTL and drop the reference we took to the old page.
2486 static vm_fault_t
wp_page_copy(struct vm_fault
*vmf
)
2488 struct vm_area_struct
*vma
= vmf
->vma
;
2489 struct mm_struct
*mm
= vma
->vm_mm
;
2490 struct page
*old_page
= vmf
->page
;
2491 struct page
*new_page
= NULL
;
2493 int page_copied
= 0;
2494 const unsigned long mmun_start
= vmf
->address
& PAGE_MASK
;
2495 const unsigned long mmun_end
= mmun_start
+ PAGE_SIZE
;
2496 struct mem_cgroup
*memcg
;
2498 if (unlikely(anon_vma_prepare(vma
)))
2501 if (is_zero_pfn(pte_pfn(vmf
->orig_pte
))) {
2502 new_page
= alloc_zeroed_user_highpage_movable(vma
,
2507 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2511 cow_user_page(new_page
, old_page
, vmf
->address
, vma
);
2514 if (mem_cgroup_try_charge_delay(new_page
, mm
, GFP_KERNEL
, &memcg
, false))
2517 __SetPageUptodate(new_page
);
2519 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
2522 * Re-check the pte - we dropped the lock
2524 vmf
->pte
= pte_offset_map_lock(mm
, vmf
->pmd
, vmf
->address
, &vmf
->ptl
);
2525 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
2527 if (!PageAnon(old_page
)) {
2528 dec_mm_counter_fast(mm
,
2529 mm_counter_file(old_page
));
2530 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2533 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2535 flush_cache_page(vma
, vmf
->address
, pte_pfn(vmf
->orig_pte
));
2536 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2537 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2539 * Clear the pte entry and flush it first, before updating the
2540 * pte with the new entry. This will avoid a race condition
2541 * seen in the presence of one thread doing SMC and another
2544 ptep_clear_flush_notify(vma
, vmf
->address
, vmf
->pte
);
2545 page_add_new_anon_rmap(new_page
, vma
, vmf
->address
, false);
2546 mem_cgroup_commit_charge(new_page
, memcg
, false, false);
2547 lru_cache_add_active_or_unevictable(new_page
, vma
);
2549 * We call the notify macro here because, when using secondary
2550 * mmu page tables (such as kvm shadow page tables), we want the
2551 * new page to be mapped directly into the secondary page table.
2553 set_pte_at_notify(mm
, vmf
->address
, vmf
->pte
, entry
);
2554 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
2557 * Only after switching the pte to the new page may
2558 * we remove the mapcount here. Otherwise another
2559 * process may come and find the rmap count decremented
2560 * before the pte is switched to the new page, and
2561 * "reuse" the old page writing into it while our pte
2562 * here still points into it and can be read by other
2565 * The critical issue is to order this
2566 * page_remove_rmap with the ptp_clear_flush above.
2567 * Those stores are ordered by (if nothing else,)
2568 * the barrier present in the atomic_add_negative
2569 * in page_remove_rmap.
2571 * Then the TLB flush in ptep_clear_flush ensures that
2572 * no process can access the old page before the
2573 * decremented mapcount is visible. And the old page
2574 * cannot be reused until after the decremented
2575 * mapcount is visible. So transitively, TLBs to
2576 * old page will be flushed before it can be reused.
2578 page_remove_rmap(old_page
, false);
2581 /* Free the old page.. */
2582 new_page
= old_page
;
2585 mem_cgroup_cancel_charge(new_page
, memcg
, false);
2591 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2593 * No need to double call mmu_notifier->invalidate_range() callback as
2594 * the above ptep_clear_flush_notify() did already call it.
2596 mmu_notifier_invalidate_range_only_end(mm
, mmun_start
, mmun_end
);
2599 * Don't let another task, with possibly unlocked vma,
2600 * keep the mlocked page.
2602 if (page_copied
&& (vma
->vm_flags
& VM_LOCKED
)) {
2603 lock_page(old_page
); /* LRU manipulation */
2604 if (PageMlocked(old_page
))
2605 munlock_vma_page(old_page
);
2606 unlock_page(old_page
);
2610 return page_copied
? VM_FAULT_WRITE
: 0;
2616 return VM_FAULT_OOM
;
2620 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2621 * writeable once the page is prepared
2623 * @vmf: structure describing the fault
2625 * This function handles all that is needed to finish a write page fault in a
2626 * shared mapping due to PTE being read-only once the mapped page is prepared.
2627 * It handles locking of PTE and modifying it. The function returns
2628 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2631 * The function expects the page to be locked or other protection against
2632 * concurrent faults / writeback (such as DAX radix tree locks).
2634 vm_fault_t
finish_mkwrite_fault(struct vm_fault
*vmf
)
2636 WARN_ON_ONCE(!(vmf
->vma
->vm_flags
& VM_SHARED
));
2637 vmf
->pte
= pte_offset_map_lock(vmf
->vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
2640 * We might have raced with another page fault while we released the
2641 * pte_offset_map_lock.
2643 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2644 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2645 return VM_FAULT_NOPAGE
;
2652 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2655 static vm_fault_t
wp_pfn_shared(struct vm_fault
*vmf
)
2657 struct vm_area_struct
*vma
= vmf
->vma
;
2659 if (vma
->vm_ops
&& vma
->vm_ops
->pfn_mkwrite
) {
2662 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2663 vmf
->flags
|= FAULT_FLAG_MKWRITE
;
2664 ret
= vma
->vm_ops
->pfn_mkwrite(vmf
);
2665 if (ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))
2667 return finish_mkwrite_fault(vmf
);
2670 return VM_FAULT_WRITE
;
2673 static vm_fault_t
wp_page_shared(struct vm_fault
*vmf
)
2674 __releases(vmf
->ptl
)
2676 struct vm_area_struct
*vma
= vmf
->vma
;
2678 get_page(vmf
->page
);
2680 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2683 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2684 tmp
= do_page_mkwrite(vmf
);
2685 if (unlikely(!tmp
|| (tmp
&
2686 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
2687 put_page(vmf
->page
);
2690 tmp
= finish_mkwrite_fault(vmf
);
2691 if (unlikely(tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2692 unlock_page(vmf
->page
);
2693 put_page(vmf
->page
);
2698 lock_page(vmf
->page
);
2700 fault_dirty_shared_page(vma
, vmf
->page
);
2701 put_page(vmf
->page
);
2703 return VM_FAULT_WRITE
;
2707 * This routine handles present pages, when users try to write
2708 * to a shared page. It is done by copying the page to a new address
2709 * and decrementing the shared-page counter for the old page.
2711 * Note that this routine assumes that the protection checks have been
2712 * done by the caller (the low-level page fault routine in most cases).
2713 * Thus we can safely just mark it writable once we've done any necessary
2716 * We also mark the page dirty at this point even though the page will
2717 * change only once the write actually happens. This avoids a few races,
2718 * and potentially makes it more efficient.
2720 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2721 * but allow concurrent faults), with pte both mapped and locked.
2722 * We return with mmap_sem still held, but pte unmapped and unlocked.
2724 static vm_fault_t
do_wp_page(struct vm_fault
*vmf
)
2725 __releases(vmf
->ptl
)
2727 struct vm_area_struct
*vma
= vmf
->vma
;
2729 vmf
->page
= vm_normal_page(vma
, vmf
->address
, vmf
->orig_pte
);
2732 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2735 * We should not cow pages in a shared writeable mapping.
2736 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2738 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2739 (VM_WRITE
|VM_SHARED
))
2740 return wp_pfn_shared(vmf
);
2742 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2743 return wp_page_copy(vmf
);
2747 * Take out anonymous pages first, anonymous shared vmas are
2748 * not dirty accountable.
2750 if (PageAnon(vmf
->page
) && !PageKsm(vmf
->page
)) {
2751 int total_map_swapcount
;
2752 if (!trylock_page(vmf
->page
)) {
2753 get_page(vmf
->page
);
2754 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2755 lock_page(vmf
->page
);
2756 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2757 vmf
->address
, &vmf
->ptl
);
2758 if (!pte_same(*vmf
->pte
, vmf
->orig_pte
)) {
2759 unlock_page(vmf
->page
);
2760 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2761 put_page(vmf
->page
);
2764 put_page(vmf
->page
);
2766 if (reuse_swap_page(vmf
->page
, &total_map_swapcount
)) {
2767 if (total_map_swapcount
== 1) {
2769 * The page is all ours. Move it to
2770 * our anon_vma so the rmap code will
2771 * not search our parent or siblings.
2772 * Protected against the rmap code by
2775 page_move_anon_rmap(vmf
->page
, vma
);
2777 unlock_page(vmf
->page
);
2779 return VM_FAULT_WRITE
;
2781 unlock_page(vmf
->page
);
2782 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2783 (VM_WRITE
|VM_SHARED
))) {
2784 return wp_page_shared(vmf
);
2788 * Ok, we need to copy. Oh, well..
2790 get_page(vmf
->page
);
2792 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
2793 return wp_page_copy(vmf
);
2796 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2797 unsigned long start_addr
, unsigned long end_addr
,
2798 struct zap_details
*details
)
2800 zap_page_range_single(vma
, start_addr
, end_addr
- start_addr
, details
);
2803 static inline void unmap_mapping_range_tree(struct rb_root_cached
*root
,
2804 struct zap_details
*details
)
2806 struct vm_area_struct
*vma
;
2807 pgoff_t vba
, vea
, zba
, zea
;
2809 vma_interval_tree_foreach(vma
, root
,
2810 details
->first_index
, details
->last_index
) {
2812 vba
= vma
->vm_pgoff
;
2813 vea
= vba
+ vma_pages(vma
) - 1;
2814 zba
= details
->first_index
;
2817 zea
= details
->last_index
;
2821 unmap_mapping_range_vma(vma
,
2822 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2823 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2829 * unmap_mapping_pages() - Unmap pages from processes.
2830 * @mapping: The address space containing pages to be unmapped.
2831 * @start: Index of first page to be unmapped.
2832 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2833 * @even_cows: Whether to unmap even private COWed pages.
2835 * Unmap the pages in this address space from any userspace process which
2836 * has them mmaped. Generally, you want to remove COWed pages as well when
2837 * a file is being truncated, but not when invalidating pages from the page
2840 void unmap_mapping_pages(struct address_space
*mapping
, pgoff_t start
,
2841 pgoff_t nr
, bool even_cows
)
2843 struct zap_details details
= { };
2845 details
.check_mapping
= even_cows
? NULL
: mapping
;
2846 details
.first_index
= start
;
2847 details
.last_index
= start
+ nr
- 1;
2848 if (details
.last_index
< details
.first_index
)
2849 details
.last_index
= ULONG_MAX
;
2851 i_mmap_lock_write(mapping
);
2852 if (unlikely(!RB_EMPTY_ROOT(&mapping
->i_mmap
.rb_root
)))
2853 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2854 i_mmap_unlock_write(mapping
);
2858 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2859 * address_space corresponding to the specified byte range in the underlying
2862 * @mapping: the address space containing mmaps to be unmapped.
2863 * @holebegin: byte in first page to unmap, relative to the start of
2864 * the underlying file. This will be rounded down to a PAGE_SIZE
2865 * boundary. Note that this is different from truncate_pagecache(), which
2866 * must keep the partial page. In contrast, we must get rid of
2868 * @holelen: size of prospective hole in bytes. This will be rounded
2869 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2871 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2872 * but 0 when invalidating pagecache, don't throw away private data.
2874 void unmap_mapping_range(struct address_space
*mapping
,
2875 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2877 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2878 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2880 /* Check for overflow. */
2881 if (sizeof(holelen
) > sizeof(hlen
)) {
2883 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2884 if (holeend
& ~(long long)ULONG_MAX
)
2885 hlen
= ULONG_MAX
- hba
+ 1;
2888 unmap_mapping_pages(mapping
, hba
, hlen
, even_cows
);
2890 EXPORT_SYMBOL(unmap_mapping_range
);
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with pte unmapped and unlocked.
2897 * We return with the mmap_sem locked or unlocked in the same cases
2898 * as does filemap_fault().
2900 vm_fault_t
do_swap_page(struct vm_fault
*vmf
)
2902 struct vm_area_struct
*vma
= vmf
->vma
;
2903 struct page
*page
= NULL
, *swapcache
;
2904 struct mem_cgroup
*memcg
;
2911 if (!pte_unmap_same(vma
->vm_mm
, vmf
->pmd
, vmf
->pte
, vmf
->orig_pte
))
2914 entry
= pte_to_swp_entry(vmf
->orig_pte
);
2915 if (unlikely(non_swap_entry(entry
))) {
2916 if (is_migration_entry(entry
)) {
2917 migration_entry_wait(vma
->vm_mm
, vmf
->pmd
,
2919 } else if (is_device_private_entry(entry
)) {
2921 * For un-addressable device memory we call the pgmap
2922 * fault handler callback. The callback must migrate
2923 * the page back to some CPU accessible page.
2925 ret
= device_private_entry_fault(vma
, vmf
->address
, entry
,
2926 vmf
->flags
, vmf
->pmd
);
2927 } else if (is_hwpoison_entry(entry
)) {
2928 ret
= VM_FAULT_HWPOISON
;
2930 print_bad_pte(vma
, vmf
->address
, vmf
->orig_pte
, NULL
);
2931 ret
= VM_FAULT_SIGBUS
;
2937 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2938 page
= lookup_swap_cache(entry
, vma
, vmf
->address
);
2942 struct swap_info_struct
*si
= swp_swap_info(entry
);
2944 if (si
->flags
& SWP_SYNCHRONOUS_IO
&&
2945 __swap_count(si
, entry
) == 1) {
2946 /* skip swapcache */
2947 page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
,
2950 __SetPageLocked(page
);
2951 __SetPageSwapBacked(page
);
2952 set_page_private(page
, entry
.val
);
2953 lru_cache_add_anon(page
);
2954 swap_readpage(page
, true);
2957 page
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2964 * Back out if somebody else faulted in this pte
2965 * while we released the pte lock.
2967 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
2968 vmf
->address
, &vmf
->ptl
);
2969 if (likely(pte_same(*vmf
->pte
, vmf
->orig_pte
)))
2971 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2975 /* Had to read the page from swap area: Major fault */
2976 ret
= VM_FAULT_MAJOR
;
2977 count_vm_event(PGMAJFAULT
);
2978 count_memcg_event_mm(vma
->vm_mm
, PGMAJFAULT
);
2979 } else if (PageHWPoison(page
)) {
2981 * hwpoisoned dirty swapcache pages are kept for killing
2982 * owner processes (which may be unknown at hwpoison time)
2984 ret
= VM_FAULT_HWPOISON
;
2985 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2989 locked
= lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
);
2991 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2993 ret
|= VM_FAULT_RETRY
;
2998 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999 * release the swapcache from under us. The page pin, and pte_same
3000 * test below, are not enough to exclude that. Even if it is still
3001 * swapcache, we need to check that the page's swap has not changed.
3003 if (unlikely((!PageSwapCache(page
) ||
3004 page_private(page
) != entry
.val
)) && swapcache
)
3007 page
= ksm_might_need_to_copy(page
, vma
, vmf
->address
);
3008 if (unlikely(!page
)) {
3014 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
,
3021 * Back out if somebody else already faulted in this pte.
3023 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3025 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
)))
3028 if (unlikely(!PageUptodate(page
))) {
3029 ret
= VM_FAULT_SIGBUS
;
3034 * The page isn't present yet, go ahead with the fault.
3036 * Be careful about the sequence of operations here.
3037 * To get its accounting right, reuse_swap_page() must be called
3038 * while the page is counted on swap but not yet in mapcount i.e.
3039 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3040 * must be called after the swap_free(), or it will never succeed.
3043 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3044 dec_mm_counter_fast(vma
->vm_mm
, MM_SWAPENTS
);
3045 pte
= mk_pte(page
, vma
->vm_page_prot
);
3046 if ((vmf
->flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
, NULL
)) {
3047 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3048 vmf
->flags
&= ~FAULT_FLAG_WRITE
;
3049 ret
|= VM_FAULT_WRITE
;
3050 exclusive
= RMAP_EXCLUSIVE
;
3052 flush_icache_page(vma
, page
);
3053 if (pte_swp_soft_dirty(vmf
->orig_pte
))
3054 pte
= pte_mksoft_dirty(pte
);
3055 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3056 arch_do_swap_page(vma
->vm_mm
, vma
, vmf
->address
, pte
, vmf
->orig_pte
);
3057 vmf
->orig_pte
= pte
;
3059 /* ksm created a completely new copy */
3060 if (unlikely(page
!= swapcache
&& swapcache
)) {
3061 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3062 mem_cgroup_commit_charge(page
, memcg
, false, false);
3063 lru_cache_add_active_or_unevictable(page
, vma
);
3065 do_page_add_anon_rmap(page
, vma
, vmf
->address
, exclusive
);
3066 mem_cgroup_commit_charge(page
, memcg
, true, false);
3067 activate_page(page
);
3071 if (mem_cgroup_swap_full(page
) ||
3072 (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3073 try_to_free_swap(page
);
3075 if (page
!= swapcache
&& swapcache
) {
3077 * Hold the lock to avoid the swap entry to be reused
3078 * until we take the PT lock for the pte_same() check
3079 * (to avoid false positives from pte_same). For
3080 * further safety release the lock after the swap_free
3081 * so that the swap count won't change under a
3082 * parallel locked swapcache.
3084 unlock_page(swapcache
);
3085 put_page(swapcache
);
3088 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3089 ret
|= do_wp_page(vmf
);
3090 if (ret
& VM_FAULT_ERROR
)
3091 ret
&= VM_FAULT_ERROR
;
3095 /* No need to invalidate - it was non-present before */
3096 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3098 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3102 mem_cgroup_cancel_charge(page
, memcg
, false);
3103 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3108 if (page
!= swapcache
&& swapcache
) {
3109 unlock_page(swapcache
);
3110 put_page(swapcache
);
3116 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117 * but allow concurrent faults), and pte mapped but not yet locked.
3118 * We return with mmap_sem still held, but pte unmapped and unlocked.
3120 static vm_fault_t
do_anonymous_page(struct vm_fault
*vmf
)
3122 struct vm_area_struct
*vma
= vmf
->vma
;
3123 struct mem_cgroup
*memcg
;
3128 /* File mapping without ->vm_ops ? */
3129 if (vma
->vm_flags
& VM_SHARED
)
3130 return VM_FAULT_SIGBUS
;
3133 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3134 * pte_offset_map() on pmds where a huge pmd might be created
3135 * from a different thread.
3137 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3138 * parallel threads are excluded by other means.
3140 * Here we only have down_read(mmap_sem).
3142 if (pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))
3143 return VM_FAULT_OOM
;
3145 /* See the comment in pte_alloc_one_map() */
3146 if (unlikely(pmd_trans_unstable(vmf
->pmd
)))
3149 /* Use the zero-page for reads */
3150 if (!(vmf
->flags
& FAULT_FLAG_WRITE
) &&
3151 !mm_forbids_zeropage(vma
->vm_mm
)) {
3152 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(vmf
->address
),
3153 vma
->vm_page_prot
));
3154 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
,
3155 vmf
->address
, &vmf
->ptl
);
3156 if (!pte_none(*vmf
->pte
))
3158 ret
= check_stable_address_space(vma
->vm_mm
);
3161 /* Deliver the page fault to userland, check inside PT lock */
3162 if (userfaultfd_missing(vma
)) {
3163 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3164 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3169 /* Allocate our own private page. */
3170 if (unlikely(anon_vma_prepare(vma
)))
3172 page
= alloc_zeroed_user_highpage_movable(vma
, vmf
->address
);
3176 if (mem_cgroup_try_charge_delay(page
, vma
->vm_mm
, GFP_KERNEL
, &memcg
,
3181 * The memory barrier inside __SetPageUptodate makes sure that
3182 * preceeding stores to the page contents become visible before
3183 * the set_pte_at() write.
3185 __SetPageUptodate(page
);
3187 entry
= mk_pte(page
, vma
->vm_page_prot
);
3188 if (vma
->vm_flags
& VM_WRITE
)
3189 entry
= pte_mkwrite(pte_mkdirty(entry
));
3191 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3193 if (!pte_none(*vmf
->pte
))
3196 ret
= check_stable_address_space(vma
->vm_mm
);
3200 /* Deliver the page fault to userland, check inside PT lock */
3201 if (userfaultfd_missing(vma
)) {
3202 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3203 mem_cgroup_cancel_charge(page
, memcg
, false);
3205 return handle_userfault(vmf
, VM_UFFD_MISSING
);
3208 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3209 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3210 mem_cgroup_commit_charge(page
, memcg
, false, false);
3211 lru_cache_add_active_or_unevictable(page
, vma
);
3213 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3215 /* No need to invalidate - it was non-present before */
3216 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3218 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3221 mem_cgroup_cancel_charge(page
, memcg
, false);
3227 return VM_FAULT_OOM
;
3231 * The mmap_sem must have been held on entry, and may have been
3232 * released depending on flags and vma->vm_ops->fault() return value.
3233 * See filemap_fault() and __lock_page_retry().
3235 static vm_fault_t
__do_fault(struct vm_fault
*vmf
)
3237 struct vm_area_struct
*vma
= vmf
->vma
;
3240 ret
= vma
->vm_ops
->fault(vmf
);
3241 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
|
3242 VM_FAULT_DONE_COW
)))
3245 if (unlikely(PageHWPoison(vmf
->page
))) {
3246 if (ret
& VM_FAULT_LOCKED
)
3247 unlock_page(vmf
->page
);
3248 put_page(vmf
->page
);
3250 return VM_FAULT_HWPOISON
;
3253 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3254 lock_page(vmf
->page
);
3256 VM_BUG_ON_PAGE(!PageLocked(vmf
->page
), vmf
->page
);
3262 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3267 static int pmd_devmap_trans_unstable(pmd_t
*pmd
)
3269 return pmd_devmap(*pmd
) || pmd_trans_unstable(pmd
);
3272 static vm_fault_t
pte_alloc_one_map(struct vm_fault
*vmf
)
3274 struct vm_area_struct
*vma
= vmf
->vma
;
3276 if (!pmd_none(*vmf
->pmd
))
3278 if (vmf
->prealloc_pte
) {
3279 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3280 if (unlikely(!pmd_none(*vmf
->pmd
))) {
3281 spin_unlock(vmf
->ptl
);
3285 mm_inc_nr_ptes(vma
->vm_mm
);
3286 pmd_populate(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3287 spin_unlock(vmf
->ptl
);
3288 vmf
->prealloc_pte
= NULL
;
3289 } else if (unlikely(pte_alloc(vma
->vm_mm
, vmf
->pmd
, vmf
->address
))) {
3290 return VM_FAULT_OOM
;
3294 * If a huge pmd materialized under us just retry later. Use
3295 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298 * running immediately after a huge pmd fault in a different thread of
3299 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300 * All we have to ensure is that it is a regular pmd that we can walk
3301 * with pte_offset_map() and we can do that through an atomic read in
3302 * C, which is what pmd_trans_unstable() provides.
3304 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3305 return VM_FAULT_NOPAGE
;
3308 * At this point we know that our vmf->pmd points to a page of ptes
3309 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3311 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312 * be valid and we will re-check to make sure the vmf->pte isn't
3313 * pte_none() under vmf->ptl protection when we return to
3316 vmf
->pte
= pte_offset_map_lock(vma
->vm_mm
, vmf
->pmd
, vmf
->address
,
3321 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3323 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3324 static inline bool transhuge_vma_suitable(struct vm_area_struct
*vma
,
3325 unsigned long haddr
)
3327 if (((vma
->vm_start
>> PAGE_SHIFT
) & HPAGE_CACHE_INDEX_MASK
) !=
3328 (vma
->vm_pgoff
& HPAGE_CACHE_INDEX_MASK
))
3330 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
3335 static void deposit_prealloc_pte(struct vm_fault
*vmf
)
3337 struct vm_area_struct
*vma
= vmf
->vma
;
3339 pgtable_trans_huge_deposit(vma
->vm_mm
, vmf
->pmd
, vmf
->prealloc_pte
);
3341 * We are going to consume the prealloc table,
3342 * count that as nr_ptes.
3344 mm_inc_nr_ptes(vma
->vm_mm
);
3345 vmf
->prealloc_pte
= NULL
;
3348 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3350 struct vm_area_struct
*vma
= vmf
->vma
;
3351 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3352 unsigned long haddr
= vmf
->address
& HPAGE_PMD_MASK
;
3357 if (!transhuge_vma_suitable(vma
, haddr
))
3358 return VM_FAULT_FALLBACK
;
3360 ret
= VM_FAULT_FALLBACK
;
3361 page
= compound_head(page
);
3364 * Archs like ppc64 need additonal space to store information
3365 * related to pte entry. Use the preallocated table for that.
3367 if (arch_needs_pgtable_deposit() && !vmf
->prealloc_pte
) {
3368 vmf
->prealloc_pte
= pte_alloc_one(vma
->vm_mm
, vmf
->address
);
3369 if (!vmf
->prealloc_pte
)
3370 return VM_FAULT_OOM
;
3371 smp_wmb(); /* See comment in __pte_alloc() */
3374 vmf
->ptl
= pmd_lock(vma
->vm_mm
, vmf
->pmd
);
3375 if (unlikely(!pmd_none(*vmf
->pmd
)))
3378 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
3379 flush_icache_page(vma
, page
+ i
);
3381 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
3383 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
3385 add_mm_counter(vma
->vm_mm
, mm_counter_file(page
), HPAGE_PMD_NR
);
3386 page_add_file_rmap(page
, true);
3388 * deposit and withdraw with pmd lock held
3390 if (arch_needs_pgtable_deposit())
3391 deposit_prealloc_pte(vmf
);
3393 set_pmd_at(vma
->vm_mm
, haddr
, vmf
->pmd
, entry
);
3395 update_mmu_cache_pmd(vma
, haddr
, vmf
->pmd
);
3397 /* fault is handled */
3399 count_vm_event(THP_FILE_MAPPED
);
3401 spin_unlock(vmf
->ptl
);
3405 static vm_fault_t
do_set_pmd(struct vm_fault
*vmf
, struct page
*page
)
3413 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3414 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3416 * @vmf: fault environment
3417 * @memcg: memcg to charge page (only for private mappings)
3418 * @page: page to map
3420 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3423 * Target users are page handler itself and implementations of
3424 * vm_ops->map_pages.
3426 vm_fault_t
alloc_set_pte(struct vm_fault
*vmf
, struct mem_cgroup
*memcg
,
3429 struct vm_area_struct
*vma
= vmf
->vma
;
3430 bool write
= vmf
->flags
& FAULT_FLAG_WRITE
;
3434 if (pmd_none(*vmf
->pmd
) && PageTransCompound(page
) &&
3435 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
3437 VM_BUG_ON_PAGE(memcg
, page
);
3439 ret
= do_set_pmd(vmf
, page
);
3440 if (ret
!= VM_FAULT_FALLBACK
)
3445 ret
= pte_alloc_one_map(vmf
);
3450 /* Re-check under ptl */
3451 if (unlikely(!pte_none(*vmf
->pte
)))
3452 return VM_FAULT_NOPAGE
;
3454 flush_icache_page(vma
, page
);
3455 entry
= mk_pte(page
, vma
->vm_page_prot
);
3457 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3458 /* copy-on-write page */
3459 if (write
&& !(vma
->vm_flags
& VM_SHARED
)) {
3460 inc_mm_counter_fast(vma
->vm_mm
, MM_ANONPAGES
);
3461 page_add_new_anon_rmap(page
, vma
, vmf
->address
, false);
3462 mem_cgroup_commit_charge(page
, memcg
, false, false);
3463 lru_cache_add_active_or_unevictable(page
, vma
);
3465 inc_mm_counter_fast(vma
->vm_mm
, mm_counter_file(page
));
3466 page_add_file_rmap(page
, false);
3468 set_pte_at(vma
->vm_mm
, vmf
->address
, vmf
->pte
, entry
);
3470 /* no need to invalidate: a not-present page won't be cached */
3471 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3478 * finish_fault - finish page fault once we have prepared the page to fault
3480 * @vmf: structure describing the fault
3482 * This function handles all that is needed to finish a page fault once the
3483 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3484 * given page, adds reverse page mapping, handles memcg charges and LRU
3485 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3488 * The function expects the page to be locked and on success it consumes a
3489 * reference of a page being mapped (for the PTE which maps it).
3491 vm_fault_t
finish_fault(struct vm_fault
*vmf
)
3496 /* Did we COW the page? */
3497 if ((vmf
->flags
& FAULT_FLAG_WRITE
) &&
3498 !(vmf
->vma
->vm_flags
& VM_SHARED
))
3499 page
= vmf
->cow_page
;
3504 * check even for read faults because we might have lost our CoWed
3507 if (!(vmf
->vma
->vm_flags
& VM_SHARED
))
3508 ret
= check_stable_address_space(vmf
->vma
->vm_mm
);
3510 ret
= alloc_set_pte(vmf
, vmf
->memcg
, page
);
3512 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3516 static unsigned long fault_around_bytes __read_mostly
=
3517 rounddown_pow_of_two(65536);
3519 #ifdef CONFIG_DEBUG_FS
3520 static int fault_around_bytes_get(void *data
, u64
*val
)
3522 *val
= fault_around_bytes
;
3527 * fault_around_bytes must be rounded down to the nearest page order as it's
3528 * what do_fault_around() expects to see.
3530 static int fault_around_bytes_set(void *data
, u64 val
)
3532 if (val
/ PAGE_SIZE
> PTRS_PER_PTE
)
3534 if (val
> PAGE_SIZE
)
3535 fault_around_bytes
= rounddown_pow_of_two(val
);
3537 fault_around_bytes
= PAGE_SIZE
; /* rounddown_pow_of_two(0) is undefined */
3540 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops
,
3541 fault_around_bytes_get
, fault_around_bytes_set
, "%llu\n");
3543 static int __init
fault_around_debugfs(void)
3547 ret
= debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL
, NULL
,
3548 &fault_around_bytes_fops
);
3550 pr_warn("Failed to create fault_around_bytes in debugfs");
3553 late_initcall(fault_around_debugfs
);
3557 * do_fault_around() tries to map few pages around the fault address. The hope
3558 * is that the pages will be needed soon and this will lower the number of
3561 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562 * not ready to be mapped: not up-to-date, locked, etc.
3564 * This function is called with the page table lock taken. In the split ptlock
3565 * case the page table lock only protects only those entries which belong to
3566 * the page table corresponding to the fault address.
3568 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3571 * fault_around_bytes defines how many bytes we'll try to map.
3572 * do_fault_around() expects it to be set to a power of two less than or equal
3575 * The virtual address of the area that we map is naturally aligned to
3576 * fault_around_bytes rounded down to the machine page size
3577 * (and therefore to page order). This way it's easier to guarantee
3578 * that we don't cross page table boundaries.
3580 static vm_fault_t
do_fault_around(struct vm_fault
*vmf
)
3582 unsigned long address
= vmf
->address
, nr_pages
, mask
;
3583 pgoff_t start_pgoff
= vmf
->pgoff
;
3588 nr_pages
= READ_ONCE(fault_around_bytes
) >> PAGE_SHIFT
;
3589 mask
= ~(nr_pages
* PAGE_SIZE
- 1) & PAGE_MASK
;
3591 vmf
->address
= max(address
& mask
, vmf
->vma
->vm_start
);
3592 off
= ((address
- vmf
->address
) >> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1);
3596 * end_pgoff is either the end of the page table, the end of
3597 * the vma or nr_pages from start_pgoff, depending what is nearest.
3599 end_pgoff
= start_pgoff
-
3600 ((vmf
->address
>> PAGE_SHIFT
) & (PTRS_PER_PTE
- 1)) +
3602 end_pgoff
= min3(end_pgoff
, vma_pages(vmf
->vma
) + vmf
->vma
->vm_pgoff
- 1,
3603 start_pgoff
+ nr_pages
- 1);
3605 if (pmd_none(*vmf
->pmd
)) {
3606 vmf
->prealloc_pte
= pte_alloc_one(vmf
->vma
->vm_mm
,
3608 if (!vmf
->prealloc_pte
)
3610 smp_wmb(); /* See comment in __pte_alloc() */
3613 vmf
->vma
->vm_ops
->map_pages(vmf
, start_pgoff
, end_pgoff
);
3615 /* Huge page is mapped? Page fault is solved */
3616 if (pmd_trans_huge(*vmf
->pmd
)) {
3617 ret
= VM_FAULT_NOPAGE
;
3621 /* ->map_pages() haven't done anything useful. Cold page cache? */
3625 /* check if the page fault is solved */
3626 vmf
->pte
-= (vmf
->address
>> PAGE_SHIFT
) - (address
>> PAGE_SHIFT
);
3627 if (!pte_none(*vmf
->pte
))
3628 ret
= VM_FAULT_NOPAGE
;
3629 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3631 vmf
->address
= address
;
3636 static vm_fault_t
do_read_fault(struct vm_fault
*vmf
)
3638 struct vm_area_struct
*vma
= vmf
->vma
;
3642 * Let's call ->map_pages() first and use ->fault() as fallback
3643 * if page by the offset is not ready to be mapped (cold cache or
3646 if (vma
->vm_ops
->map_pages
&& fault_around_bytes
>> PAGE_SHIFT
> 1) {
3647 ret
= do_fault_around(vmf
);
3652 ret
= __do_fault(vmf
);
3653 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3656 ret
|= finish_fault(vmf
);
3657 unlock_page(vmf
->page
);
3658 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3659 put_page(vmf
->page
);
3663 static vm_fault_t
do_cow_fault(struct vm_fault
*vmf
)
3665 struct vm_area_struct
*vma
= vmf
->vma
;
3668 if (unlikely(anon_vma_prepare(vma
)))
3669 return VM_FAULT_OOM
;
3671 vmf
->cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, vmf
->address
);
3673 return VM_FAULT_OOM
;
3675 if (mem_cgroup_try_charge_delay(vmf
->cow_page
, vma
->vm_mm
, GFP_KERNEL
,
3676 &vmf
->memcg
, false)) {
3677 put_page(vmf
->cow_page
);
3678 return VM_FAULT_OOM
;
3681 ret
= __do_fault(vmf
);
3682 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3684 if (ret
& VM_FAULT_DONE_COW
)
3687 copy_user_highpage(vmf
->cow_page
, vmf
->page
, vmf
->address
, vma
);
3688 __SetPageUptodate(vmf
->cow_page
);
3690 ret
|= finish_fault(vmf
);
3691 unlock_page(vmf
->page
);
3692 put_page(vmf
->page
);
3693 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3697 mem_cgroup_cancel_charge(vmf
->cow_page
, vmf
->memcg
, false);
3698 put_page(vmf
->cow_page
);
3702 static vm_fault_t
do_shared_fault(struct vm_fault
*vmf
)
3704 struct vm_area_struct
*vma
= vmf
->vma
;
3705 vm_fault_t ret
, tmp
;
3707 ret
= __do_fault(vmf
);
3708 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
| VM_FAULT_RETRY
)))
3712 * Check if the backing address space wants to know that the page is
3713 * about to become writable
3715 if (vma
->vm_ops
->page_mkwrite
) {
3716 unlock_page(vmf
->page
);
3717 tmp
= do_page_mkwrite(vmf
);
3718 if (unlikely(!tmp
||
3719 (tmp
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
)))) {
3720 put_page(vmf
->page
);
3725 ret
|= finish_fault(vmf
);
3726 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3728 unlock_page(vmf
->page
);
3729 put_page(vmf
->page
);
3733 fault_dirty_shared_page(vma
, vmf
->page
);
3738 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739 * but allow concurrent faults).
3740 * The mmap_sem may have been released depending on flags and our
3741 * return value. See filemap_fault() and __lock_page_or_retry().
3743 static vm_fault_t
do_fault(struct vm_fault
*vmf
)
3745 struct vm_area_struct
*vma
= vmf
->vma
;
3748 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749 if (!vma
->vm_ops
->fault
)
3750 ret
= VM_FAULT_SIGBUS
;
3751 else if (!(vmf
->flags
& FAULT_FLAG_WRITE
))
3752 ret
= do_read_fault(vmf
);
3753 else if (!(vma
->vm_flags
& VM_SHARED
))
3754 ret
= do_cow_fault(vmf
);
3756 ret
= do_shared_fault(vmf
);
3758 /* preallocated pagetable is unused: free it */
3759 if (vmf
->prealloc_pte
) {
3760 pte_free(vma
->vm_mm
, vmf
->prealloc_pte
);
3761 vmf
->prealloc_pte
= NULL
;
3766 static int numa_migrate_prep(struct page
*page
, struct vm_area_struct
*vma
,
3767 unsigned long addr
, int page_nid
,
3772 count_vm_numa_event(NUMA_HINT_FAULTS
);
3773 if (page_nid
== numa_node_id()) {
3774 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
3775 *flags
|= TNF_FAULT_LOCAL
;
3778 return mpol_misplaced(page
, vma
, addr
);
3781 static vm_fault_t
do_numa_page(struct vm_fault
*vmf
)
3783 struct vm_area_struct
*vma
= vmf
->vma
;
3784 struct page
*page
= NULL
;
3788 bool migrated
= false;
3790 bool was_writable
= pte_savedwrite(vmf
->orig_pte
);
3794 * The "pte" at this point cannot be used safely without
3795 * validation through pte_unmap_same(). It's of NUMA type but
3796 * the pfn may be screwed if the read is non atomic.
3798 vmf
->ptl
= pte_lockptr(vma
->vm_mm
, vmf
->pmd
);
3799 spin_lock(vmf
->ptl
);
3800 if (unlikely(!pte_same(*vmf
->pte
, vmf
->orig_pte
))) {
3801 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3806 * Make it present again, Depending on how arch implementes non
3807 * accessible ptes, some can allow access by kernel mode.
3809 pte
= ptep_modify_prot_start(vma
->vm_mm
, vmf
->address
, vmf
->pte
);
3810 pte
= pte_modify(pte
, vma
->vm_page_prot
);
3811 pte
= pte_mkyoung(pte
);
3813 pte
= pte_mkwrite(pte
);
3814 ptep_modify_prot_commit(vma
->vm_mm
, vmf
->address
, vmf
->pte
, pte
);
3815 update_mmu_cache(vma
, vmf
->address
, vmf
->pte
);
3817 page
= vm_normal_page(vma
, vmf
->address
, pte
);
3819 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3823 /* TODO: handle PTE-mapped THP */
3824 if (PageCompound(page
)) {
3825 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3830 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831 * much anyway since they can be in shared cache state. This misses
3832 * the case where a mapping is writable but the process never writes
3833 * to it but pte_write gets cleared during protection updates and
3834 * pte_dirty has unpredictable behaviour between PTE scan updates,
3835 * background writeback, dirty balancing and application behaviour.
3837 if (!pte_write(pte
))
3838 flags
|= TNF_NO_GROUP
;
3841 * Flag if the page is shared between multiple address spaces. This
3842 * is later used when determining whether to group tasks together
3844 if (page_mapcount(page
) > 1 && (vma
->vm_flags
& VM_SHARED
))
3845 flags
|= TNF_SHARED
;
3847 last_cpupid
= page_cpupid_last(page
);
3848 page_nid
= page_to_nid(page
);
3849 target_nid
= numa_migrate_prep(page
, vma
, vmf
->address
, page_nid
,
3851 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
3852 if (target_nid
== -1) {
3857 /* Migrate to the requested node */
3858 migrated
= migrate_misplaced_page(page
, vma
, target_nid
);
3860 page_nid
= target_nid
;
3861 flags
|= TNF_MIGRATED
;
3863 flags
|= TNF_MIGRATE_FAIL
;
3867 task_numa_fault(last_cpupid
, page_nid
, 1, flags
);
3871 static inline vm_fault_t
create_huge_pmd(struct vm_fault
*vmf
)
3873 if (vma_is_anonymous(vmf
->vma
))
3874 return do_huge_pmd_anonymous_page(vmf
);
3875 if (vmf
->vma
->vm_ops
->huge_fault
)
3876 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3877 return VM_FAULT_FALLBACK
;
3880 /* `inline' is required to avoid gcc 4.1.2 build error */
3881 static inline vm_fault_t
wp_huge_pmd(struct vm_fault
*vmf
, pmd_t orig_pmd
)
3883 if (vma_is_anonymous(vmf
->vma
))
3884 return do_huge_pmd_wp_page(vmf
, orig_pmd
);
3885 if (vmf
->vma
->vm_ops
->huge_fault
)
3886 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PMD
);
3888 /* COW handled on pte level: split pmd */
3889 VM_BUG_ON_VMA(vmf
->vma
->vm_flags
& VM_SHARED
, vmf
->vma
);
3890 __split_huge_pmd(vmf
->vma
, vmf
->pmd
, vmf
->address
, false, NULL
);
3892 return VM_FAULT_FALLBACK
;
3895 static inline bool vma_is_accessible(struct vm_area_struct
*vma
)
3897 return vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
);
3900 static vm_fault_t
create_huge_pud(struct vm_fault
*vmf
)
3902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903 /* No support for anonymous transparent PUD pages yet */
3904 if (vma_is_anonymous(vmf
->vma
))
3905 return VM_FAULT_FALLBACK
;
3906 if (vmf
->vma
->vm_ops
->huge_fault
)
3907 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3908 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909 return VM_FAULT_FALLBACK
;
3912 static vm_fault_t
wp_huge_pud(struct vm_fault
*vmf
, pud_t orig_pud
)
3914 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915 /* No support for anonymous transparent PUD pages yet */
3916 if (vma_is_anonymous(vmf
->vma
))
3917 return VM_FAULT_FALLBACK
;
3918 if (vmf
->vma
->vm_ops
->huge_fault
)
3919 return vmf
->vma
->vm_ops
->huge_fault(vmf
, PE_SIZE_PUD
);
3920 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921 return VM_FAULT_FALLBACK
;
3925 * These routines also need to handle stuff like marking pages dirty
3926 * and/or accessed for architectures that don't do it in hardware (most
3927 * RISC architectures). The early dirtying is also good on the i386.
3929 * There is also a hook called "update_mmu_cache()" that architectures
3930 * with external mmu caches can use to update those (ie the Sparc or
3931 * PowerPC hashed page tables that act as extended TLBs).
3933 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934 * concurrent faults).
3936 * The mmap_sem may have been released depending on flags and our return value.
3937 * See filemap_fault() and __lock_page_or_retry().
3939 static vm_fault_t
handle_pte_fault(struct vm_fault
*vmf
)
3943 if (unlikely(pmd_none(*vmf
->pmd
))) {
3945 * Leave __pte_alloc() until later: because vm_ops->fault may
3946 * want to allocate huge page, and if we expose page table
3947 * for an instant, it will be difficult to retract from
3948 * concurrent faults and from rmap lookups.
3952 /* See comment in pte_alloc_one_map() */
3953 if (pmd_devmap_trans_unstable(vmf
->pmd
))
3956 * A regular pmd is established and it can't morph into a huge
3957 * pmd from under us anymore at this point because we hold the
3958 * mmap_sem read mode and khugepaged takes it in write mode.
3959 * So now it's safe to run pte_offset_map().
3961 vmf
->pte
= pte_offset_map(vmf
->pmd
, vmf
->address
);
3962 vmf
->orig_pte
= *vmf
->pte
;
3965 * some architectures can have larger ptes than wordsize,
3966 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968 * accesses. The code below just needs a consistent view
3969 * for the ifs and we later double check anyway with the
3970 * ptl lock held. So here a barrier will do.
3973 if (pte_none(vmf
->orig_pte
)) {
3974 pte_unmap(vmf
->pte
);
3980 if (vma_is_anonymous(vmf
->vma
))
3981 return do_anonymous_page(vmf
);
3983 return do_fault(vmf
);
3986 if (!pte_present(vmf
->orig_pte
))
3987 return do_swap_page(vmf
);
3989 if (pte_protnone(vmf
->orig_pte
) && vma_is_accessible(vmf
->vma
))
3990 return do_numa_page(vmf
);
3992 vmf
->ptl
= pte_lockptr(vmf
->vma
->vm_mm
, vmf
->pmd
);
3993 spin_lock(vmf
->ptl
);
3994 entry
= vmf
->orig_pte
;
3995 if (unlikely(!pte_same(*vmf
->pte
, entry
)))
3997 if (vmf
->flags
& FAULT_FLAG_WRITE
) {
3998 if (!pte_write(entry
))
3999 return do_wp_page(vmf
);
4000 entry
= pte_mkdirty(entry
);
4002 entry
= pte_mkyoung(entry
);
4003 if (ptep_set_access_flags(vmf
->vma
, vmf
->address
, vmf
->pte
, entry
,
4004 vmf
->flags
& FAULT_FLAG_WRITE
)) {
4005 update_mmu_cache(vmf
->vma
, vmf
->address
, vmf
->pte
);
4008 * This is needed only for protection faults but the arch code
4009 * is not yet telling us if this is a protection fault or not.
4010 * This still avoids useless tlb flushes for .text page faults
4013 if (vmf
->flags
& FAULT_FLAG_WRITE
)
4014 flush_tlb_fix_spurious_fault(vmf
->vma
, vmf
->address
);
4017 pte_unmap_unlock(vmf
->pte
, vmf
->ptl
);
4022 * By the time we get here, we already hold the mm semaphore
4024 * The mmap_sem may have been released depending on flags and our
4025 * return value. See filemap_fault() and __lock_page_or_retry().
4027 static vm_fault_t
__handle_mm_fault(struct vm_area_struct
*vma
,
4028 unsigned long address
, unsigned int flags
)
4030 struct vm_fault vmf
= {
4032 .address
= address
& PAGE_MASK
,
4034 .pgoff
= linear_page_index(vma
, address
),
4035 .gfp_mask
= __get_fault_gfp_mask(vma
),
4037 unsigned int dirty
= flags
& FAULT_FLAG_WRITE
;
4038 struct mm_struct
*mm
= vma
->vm_mm
;
4043 pgd
= pgd_offset(mm
, address
);
4044 p4d
= p4d_alloc(mm
, pgd
, address
);
4046 return VM_FAULT_OOM
;
4048 vmf
.pud
= pud_alloc(mm
, p4d
, address
);
4050 return VM_FAULT_OOM
;
4051 if (pud_none(*vmf
.pud
) && transparent_hugepage_enabled(vma
)) {
4052 ret
= create_huge_pud(&vmf
);
4053 if (!(ret
& VM_FAULT_FALLBACK
))
4056 pud_t orig_pud
= *vmf
.pud
;
4059 if (pud_trans_huge(orig_pud
) || pud_devmap(orig_pud
)) {
4061 /* NUMA case for anonymous PUDs would go here */
4063 if (dirty
&& !pud_write(orig_pud
)) {
4064 ret
= wp_huge_pud(&vmf
, orig_pud
);
4065 if (!(ret
& VM_FAULT_FALLBACK
))
4068 huge_pud_set_accessed(&vmf
, orig_pud
);
4074 vmf
.pmd
= pmd_alloc(mm
, vmf
.pud
, address
);
4076 return VM_FAULT_OOM
;
4077 if (pmd_none(*vmf
.pmd
) && transparent_hugepage_enabled(vma
)) {
4078 ret
= create_huge_pmd(&vmf
);
4079 if (!(ret
& VM_FAULT_FALLBACK
))
4082 pmd_t orig_pmd
= *vmf
.pmd
;
4085 if (unlikely(is_swap_pmd(orig_pmd
))) {
4086 VM_BUG_ON(thp_migration_supported() &&
4087 !is_pmd_migration_entry(orig_pmd
));
4088 if (is_pmd_migration_entry(orig_pmd
))
4089 pmd_migration_entry_wait(mm
, vmf
.pmd
);
4092 if (pmd_trans_huge(orig_pmd
) || pmd_devmap(orig_pmd
)) {
4093 if (pmd_protnone(orig_pmd
) && vma_is_accessible(vma
))
4094 return do_huge_pmd_numa_page(&vmf
, orig_pmd
);
4096 if (dirty
&& !pmd_write(orig_pmd
)) {
4097 ret
= wp_huge_pmd(&vmf
, orig_pmd
);
4098 if (!(ret
& VM_FAULT_FALLBACK
))
4101 huge_pmd_set_accessed(&vmf
, orig_pmd
);
4107 return handle_pte_fault(&vmf
);
4111 * By the time we get here, we already hold the mm semaphore
4113 * The mmap_sem may have been released depending on flags and our
4114 * return value. See filemap_fault() and __lock_page_or_retry().
4116 vm_fault_t
handle_mm_fault(struct vm_area_struct
*vma
, unsigned long address
,
4121 __set_current_state(TASK_RUNNING
);
4123 count_vm_event(PGFAULT
);
4124 count_memcg_event_mm(vma
->vm_mm
, PGFAULT
);
4126 /* do counter updates before entering really critical section. */
4127 check_sync_rss_stat(current
);
4129 if (!arch_vma_access_permitted(vma
, flags
& FAULT_FLAG_WRITE
,
4130 flags
& FAULT_FLAG_INSTRUCTION
,
4131 flags
& FAULT_FLAG_REMOTE
))
4132 return VM_FAULT_SIGSEGV
;
4135 * Enable the memcg OOM handling for faults triggered in user
4136 * space. Kernel faults are handled more gracefully.
4138 if (flags
& FAULT_FLAG_USER
)
4139 mem_cgroup_enter_user_fault();
4141 if (unlikely(is_vm_hugetlb_page(vma
)))
4142 ret
= hugetlb_fault(vma
->vm_mm
, vma
, address
, flags
);
4144 ret
= __handle_mm_fault(vma
, address
, flags
);
4146 if (flags
& FAULT_FLAG_USER
) {
4147 mem_cgroup_exit_user_fault();
4149 * The task may have entered a memcg OOM situation but
4150 * if the allocation error was handled gracefully (no
4151 * VM_FAULT_OOM), there is no need to kill anything.
4152 * Just clean up the OOM state peacefully.
4154 if (task_in_memcg_oom(current
) && !(ret
& VM_FAULT_OOM
))
4155 mem_cgroup_oom_synchronize(false);
4160 EXPORT_SYMBOL_GPL(handle_mm_fault
);
4162 #ifndef __PAGETABLE_P4D_FOLDED
4164 * Allocate p4d page table.
4165 * We've already handled the fast-path in-line.
4167 int __p4d_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
4169 p4d_t
*new = p4d_alloc_one(mm
, address
);
4173 smp_wmb(); /* See comment in __pte_alloc */
4175 spin_lock(&mm
->page_table_lock
);
4176 if (pgd_present(*pgd
)) /* Another has populated it */
4179 pgd_populate(mm
, pgd
, new);
4180 spin_unlock(&mm
->page_table_lock
);
4183 #endif /* __PAGETABLE_P4D_FOLDED */
4185 #ifndef __PAGETABLE_PUD_FOLDED
4187 * Allocate page upper directory.
4188 * We've already handled the fast-path in-line.
4190 int __pud_alloc(struct mm_struct
*mm
, p4d_t
*p4d
, unsigned long address
)
4192 pud_t
*new = pud_alloc_one(mm
, address
);
4196 smp_wmb(); /* See comment in __pte_alloc */
4198 spin_lock(&mm
->page_table_lock
);
4199 #ifndef __ARCH_HAS_5LEVEL_HACK
4200 if (!p4d_present(*p4d
)) {
4202 p4d_populate(mm
, p4d
, new);
4203 } else /* Another has populated it */
4206 if (!pgd_present(*p4d
)) {
4208 pgd_populate(mm
, p4d
, new);
4209 } else /* Another has populated it */
4211 #endif /* __ARCH_HAS_5LEVEL_HACK */
4212 spin_unlock(&mm
->page_table_lock
);
4215 #endif /* __PAGETABLE_PUD_FOLDED */
4217 #ifndef __PAGETABLE_PMD_FOLDED
4219 * Allocate page middle directory.
4220 * We've already handled the fast-path in-line.
4222 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
4225 pmd_t
*new = pmd_alloc_one(mm
, address
);
4229 smp_wmb(); /* See comment in __pte_alloc */
4231 ptl
= pud_lock(mm
, pud
);
4232 #ifndef __ARCH_HAS_4LEVEL_HACK
4233 if (!pud_present(*pud
)) {
4235 pud_populate(mm
, pud
, new);
4236 } else /* Another has populated it */
4239 if (!pgd_present(*pud
)) {
4241 pgd_populate(mm
, pud
, new);
4242 } else /* Another has populated it */
4244 #endif /* __ARCH_HAS_4LEVEL_HACK */
4248 #endif /* __PAGETABLE_PMD_FOLDED */
4250 static int __follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4251 unsigned long *start
, unsigned long *end
,
4252 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4260 pgd
= pgd_offset(mm
, address
);
4261 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
4264 p4d
= p4d_offset(pgd
, address
);
4265 if (p4d_none(*p4d
) || unlikely(p4d_bad(*p4d
)))
4268 pud
= pud_offset(p4d
, address
);
4269 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
4272 pmd
= pmd_offset(pud
, address
);
4273 VM_BUG_ON(pmd_trans_huge(*pmd
));
4275 if (pmd_huge(*pmd
)) {
4280 *start
= address
& PMD_MASK
;
4281 *end
= *start
+ PMD_SIZE
;
4282 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4284 *ptlp
= pmd_lock(mm
, pmd
);
4285 if (pmd_huge(*pmd
)) {
4291 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4294 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
4298 *start
= address
& PAGE_MASK
;
4299 *end
= *start
+ PAGE_SIZE
;
4300 mmu_notifier_invalidate_range_start(mm
, *start
, *end
);
4302 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
4303 if (!pte_present(*ptep
))
4308 pte_unmap_unlock(ptep
, *ptlp
);
4310 mmu_notifier_invalidate_range_end(mm
, *start
, *end
);
4315 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
4316 pte_t
**ptepp
, spinlock_t
**ptlp
)
4320 /* (void) is needed to make gcc happy */
4321 (void) __cond_lock(*ptlp
,
4322 !(res
= __follow_pte_pmd(mm
, address
, NULL
, NULL
,
4323 ptepp
, NULL
, ptlp
)));
4327 int follow_pte_pmd(struct mm_struct
*mm
, unsigned long address
,
4328 unsigned long *start
, unsigned long *end
,
4329 pte_t
**ptepp
, pmd_t
**pmdpp
, spinlock_t
**ptlp
)
4333 /* (void) is needed to make gcc happy */
4334 (void) __cond_lock(*ptlp
,
4335 !(res
= __follow_pte_pmd(mm
, address
, start
, end
,
4336 ptepp
, pmdpp
, ptlp
)));
4339 EXPORT_SYMBOL(follow_pte_pmd
);
4342 * follow_pfn - look up PFN at a user virtual address
4343 * @vma: memory mapping
4344 * @address: user virtual address
4345 * @pfn: location to store found PFN
4347 * Only IO mappings and raw PFN mappings are allowed.
4349 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4351 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
4358 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4361 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
4364 *pfn
= pte_pfn(*ptep
);
4365 pte_unmap_unlock(ptep
, ptl
);
4368 EXPORT_SYMBOL(follow_pfn
);
4370 #ifdef CONFIG_HAVE_IOREMAP_PROT
4371 int follow_phys(struct vm_area_struct
*vma
,
4372 unsigned long address
, unsigned int flags
,
4373 unsigned long *prot
, resource_size_t
*phys
)
4379 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
4382 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
4386 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
4389 *prot
= pgprot_val(pte_pgprot(pte
));
4390 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
4394 pte_unmap_unlock(ptep
, ptl
);
4399 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
4400 void *buf
, int len
, int write
)
4402 resource_size_t phys_addr
;
4403 unsigned long prot
= 0;
4404 void __iomem
*maddr
;
4405 int offset
= addr
& (PAGE_SIZE
-1);
4407 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
4410 maddr
= ioremap_prot(phys_addr
, PAGE_ALIGN(len
+ offset
), prot
);
4415 memcpy_toio(maddr
+ offset
, buf
, len
);
4417 memcpy_fromio(buf
, maddr
+ offset
, len
);
4422 EXPORT_SYMBOL_GPL(generic_access_phys
);
4426 * Access another process' address space as given in mm. If non-NULL, use the
4427 * given task for page fault accounting.
4429 int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
4430 unsigned long addr
, void *buf
, int len
, unsigned int gup_flags
)
4432 struct vm_area_struct
*vma
;
4433 void *old_buf
= buf
;
4434 int write
= gup_flags
& FOLL_WRITE
;
4436 down_read(&mm
->mmap_sem
);
4437 /* ignore errors, just check how much was successfully transferred */
4439 int bytes
, ret
, offset
;
4441 struct page
*page
= NULL
;
4443 ret
= get_user_pages_remote(tsk
, mm
, addr
, 1,
4444 gup_flags
, &page
, &vma
, NULL
);
4446 #ifndef CONFIG_HAVE_IOREMAP_PROT
4450 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4451 * we can access using slightly different code.
4453 vma
= find_vma(mm
, addr
);
4454 if (!vma
|| vma
->vm_start
> addr
)
4456 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
4457 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
4465 offset
= addr
& (PAGE_SIZE
-1);
4466 if (bytes
> PAGE_SIZE
-offset
)
4467 bytes
= PAGE_SIZE
-offset
;
4471 copy_to_user_page(vma
, page
, addr
,
4472 maddr
+ offset
, buf
, bytes
);
4473 set_page_dirty_lock(page
);
4475 copy_from_user_page(vma
, page
, addr
,
4476 buf
, maddr
+ offset
, bytes
);
4485 up_read(&mm
->mmap_sem
);
4487 return buf
- old_buf
;
4491 * access_remote_vm - access another process' address space
4492 * @mm: the mm_struct of the target address space
4493 * @addr: start address to access
4494 * @buf: source or destination buffer
4495 * @len: number of bytes to transfer
4496 * @gup_flags: flags modifying lookup behaviour
4498 * The caller must hold a reference on @mm.
4500 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
4501 void *buf
, int len
, unsigned int gup_flags
)
4503 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, gup_flags
);
4507 * Access another process' address space.
4508 * Source/target buffer must be kernel space,
4509 * Do not walk the page table directly, use get_user_pages
4511 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
4512 void *buf
, int len
, unsigned int gup_flags
)
4514 struct mm_struct
*mm
;
4517 mm
= get_task_mm(tsk
);
4521 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, gup_flags
);
4527 EXPORT_SYMBOL_GPL(access_process_vm
);
4530 * Print the name of a VMA.
4532 void print_vma_addr(char *prefix
, unsigned long ip
)
4534 struct mm_struct
*mm
= current
->mm
;
4535 struct vm_area_struct
*vma
;
4538 * we might be running from an atomic context so we cannot sleep
4540 if (!down_read_trylock(&mm
->mmap_sem
))
4543 vma
= find_vma(mm
, ip
);
4544 if (vma
&& vma
->vm_file
) {
4545 struct file
*f
= vma
->vm_file
;
4546 char *buf
= (char *)__get_free_page(GFP_NOWAIT
);
4550 p
= file_path(f
, buf
, PAGE_SIZE
);
4553 printk("%s%s[%lx+%lx]", prefix
, kbasename(p
),
4555 vma
->vm_end
- vma
->vm_start
);
4556 free_page((unsigned long)buf
);
4559 up_read(&mm
->mmap_sem
);
4562 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563 void __might_fault(const char *file
, int line
)
4566 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4567 * holding the mmap_sem, this is safe because kernel memory doesn't
4568 * get paged out, therefore we'll never actually fault, and the
4569 * below annotations will generate false positives.
4571 if (uaccess_kernel())
4573 if (pagefault_disabled())
4575 __might_sleep(file
, line
, 0);
4576 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4578 might_lock_read(¤t
->mm
->mmap_sem
);
4581 EXPORT_SYMBOL(__might_fault
);
4584 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4586 * Process all subpages of the specified huge page with the specified
4587 * operation. The target subpage will be processed last to keep its
4590 static inline void process_huge_page(
4591 unsigned long addr_hint
, unsigned int pages_per_huge_page
,
4592 void (*process_subpage
)(unsigned long addr
, int idx
, void *arg
),
4596 unsigned long addr
= addr_hint
&
4597 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4599 /* Process target subpage last to keep its cache lines hot */
4601 n
= (addr_hint
- addr
) / PAGE_SIZE
;
4602 if (2 * n
<= pages_per_huge_page
) {
4603 /* If target subpage in first half of huge page */
4606 /* Process subpages at the end of huge page */
4607 for (i
= pages_per_huge_page
- 1; i
>= 2 * n
; i
--) {
4609 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4612 /* If target subpage in second half of huge page */
4613 base
= pages_per_huge_page
- 2 * (pages_per_huge_page
- n
);
4614 l
= pages_per_huge_page
- n
;
4615 /* Process subpages at the begin of huge page */
4616 for (i
= 0; i
< base
; i
++) {
4618 process_subpage(addr
+ i
* PAGE_SIZE
, i
, arg
);
4622 * Process remaining subpages in left-right-left-right pattern
4623 * towards the target subpage
4625 for (i
= 0; i
< l
; i
++) {
4626 int left_idx
= base
+ i
;
4627 int right_idx
= base
+ 2 * l
- 1 - i
;
4630 process_subpage(addr
+ left_idx
* PAGE_SIZE
, left_idx
, arg
);
4632 process_subpage(addr
+ right_idx
* PAGE_SIZE
, right_idx
, arg
);
4636 static void clear_gigantic_page(struct page
*page
,
4638 unsigned int pages_per_huge_page
)
4641 struct page
*p
= page
;
4644 for (i
= 0; i
< pages_per_huge_page
;
4645 i
++, p
= mem_map_next(p
, page
, i
)) {
4647 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
4651 static void clear_subpage(unsigned long addr
, int idx
, void *arg
)
4653 struct page
*page
= arg
;
4655 clear_user_highpage(page
+ idx
, addr
);
4658 void clear_huge_page(struct page
*page
,
4659 unsigned long addr_hint
, unsigned int pages_per_huge_page
)
4661 unsigned long addr
= addr_hint
&
4662 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4664 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4665 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
4669 process_huge_page(addr_hint
, pages_per_huge_page
, clear_subpage
, page
);
4672 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
4674 struct vm_area_struct
*vma
,
4675 unsigned int pages_per_huge_page
)
4678 struct page
*dst_base
= dst
;
4679 struct page
*src_base
= src
;
4681 for (i
= 0; i
< pages_per_huge_page
; ) {
4683 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
4686 dst
= mem_map_next(dst
, dst_base
, i
);
4687 src
= mem_map_next(src
, src_base
, i
);
4691 struct copy_subpage_arg
{
4694 struct vm_area_struct
*vma
;
4697 static void copy_subpage(unsigned long addr
, int idx
, void *arg
)
4699 struct copy_subpage_arg
*copy_arg
= arg
;
4701 copy_user_highpage(copy_arg
->dst
+ idx
, copy_arg
->src
+ idx
,
4702 addr
, copy_arg
->vma
);
4705 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
4706 unsigned long addr_hint
, struct vm_area_struct
*vma
,
4707 unsigned int pages_per_huge_page
)
4709 unsigned long addr
= addr_hint
&
4710 ~(((unsigned long)pages_per_huge_page
<< PAGE_SHIFT
) - 1);
4711 struct copy_subpage_arg arg
= {
4717 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4718 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4719 pages_per_huge_page
);
4723 process_huge_page(addr_hint
, pages_per_huge_page
, copy_subpage
, &arg
);
4726 long copy_huge_page_from_user(struct page
*dst_page
,
4727 const void __user
*usr_src
,
4728 unsigned int pages_per_huge_page
,
4729 bool allow_pagefault
)
4731 void *src
= (void *)usr_src
;
4733 unsigned long i
, rc
= 0;
4734 unsigned long ret_val
= pages_per_huge_page
* PAGE_SIZE
;
4736 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4737 if (allow_pagefault
)
4738 page_kaddr
= kmap(dst_page
+ i
);
4740 page_kaddr
= kmap_atomic(dst_page
+ i
);
4741 rc
= copy_from_user(page_kaddr
,
4742 (const void __user
*)(src
+ i
* PAGE_SIZE
),
4744 if (allow_pagefault
)
4745 kunmap(dst_page
+ i
);
4747 kunmap_atomic(page_kaddr
);
4749 ret_val
-= (PAGE_SIZE
- rc
);
4757 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4759 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4761 static struct kmem_cache
*page_ptl_cachep
;
4763 void __init
ptlock_cache_init(void)
4765 page_ptl_cachep
= kmem_cache_create("page->ptl", sizeof(spinlock_t
), 0,
4769 bool ptlock_alloc(struct page
*page
)
4773 ptl
= kmem_cache_alloc(page_ptl_cachep
, GFP_KERNEL
);
4780 void ptlock_free(struct page
*page
)
4782 kmem_cache_free(page_ptl_cachep
, page
->ptl
);