net: Add inet_addr lookup by table
[linux-2.6/btrfs-unstable.git] / include / linux / netdevice.h
blobf7a6ef2fae3a46a82aba6088b25ed15afd0f6952
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the Interfaces handler.
8 * Version: @(#)dev.h 1.0.10 08/12/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
23 * Moved to /usr/include/linux for NET3
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
40 #include <linux/dynamic_queue_limits.h>
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 #include <uapi/linux/if_bonding.h>
55 struct netpoll_info;
56 struct device;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* 802.15.4 specific */
61 struct wpan_dev;
62 struct mpls_dev;
64 void netdev_set_default_ethtool_ops(struct net_device *dev,
65 const struct ethtool_ops *ops);
67 /* Backlog congestion levels */
68 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
69 #define NET_RX_DROP 1 /* packet dropped */
72 * Transmit return codes: transmit return codes originate from three different
73 * namespaces:
75 * - qdisc return codes
76 * - driver transmit return codes
77 * - errno values
79 * Drivers are allowed to return any one of those in their hard_start_xmit()
80 * function. Real network devices commonly used with qdiscs should only return
81 * the driver transmit return codes though - when qdiscs are used, the actual
82 * transmission happens asynchronously, so the value is not propagated to
83 * higher layers. Virtual network devices transmit synchronously, in this case
84 * the driver transmit return codes are consumed by dev_queue_xmit(), all
85 * others are propagated to higher layers.
88 /* qdisc ->enqueue() return codes. */
89 #define NET_XMIT_SUCCESS 0x00
90 #define NET_XMIT_DROP 0x01 /* skb dropped */
91 #define NET_XMIT_CN 0x02 /* congestion notification */
92 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
93 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
96 * indicates that the device will soon be dropping packets, or already drops
97 * some packets of the same priority; prompting us to send less aggressively. */
98 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
99 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 /* Driver transmit return codes */
102 #define NETDEV_TX_MASK 0xf0
104 enum netdev_tx {
105 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
106 NETDEV_TX_OK = 0x00, /* driver took care of packet */
107 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
108 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 typedef enum netdev_tx netdev_tx_t;
113 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
114 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116 static inline bool dev_xmit_complete(int rc)
119 * Positive cases with an skb consumed by a driver:
120 * - successful transmission (rc == NETDEV_TX_OK)
121 * - error while transmitting (rc < 0)
122 * - error while queueing to a different device (rc & NET_XMIT_MASK)
124 if (likely(rc < NET_XMIT_MASK))
125 return true;
127 return false;
131 * Compute the worst case header length according to the protocols
132 * used.
135 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
136 # if defined(CONFIG_MAC80211_MESH)
137 # define LL_MAX_HEADER 128
138 # else
139 # define LL_MAX_HEADER 96
140 # endif
141 #else
142 # define LL_MAX_HEADER 32
143 #endif
145 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
146 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
147 #define MAX_HEADER LL_MAX_HEADER
148 #else
149 #define MAX_HEADER (LL_MAX_HEADER + 48)
150 #endif
153 * Old network device statistics. Fields are native words
154 * (unsigned long) so they can be read and written atomically.
157 struct net_device_stats {
158 unsigned long rx_packets;
159 unsigned long tx_packets;
160 unsigned long rx_bytes;
161 unsigned long tx_bytes;
162 unsigned long rx_errors;
163 unsigned long tx_errors;
164 unsigned long rx_dropped;
165 unsigned long tx_dropped;
166 unsigned long multicast;
167 unsigned long collisions;
168 unsigned long rx_length_errors;
169 unsigned long rx_over_errors;
170 unsigned long rx_crc_errors;
171 unsigned long rx_frame_errors;
172 unsigned long rx_fifo_errors;
173 unsigned long rx_missed_errors;
174 unsigned long tx_aborted_errors;
175 unsigned long tx_carrier_errors;
176 unsigned long tx_fifo_errors;
177 unsigned long tx_heartbeat_errors;
178 unsigned long tx_window_errors;
179 unsigned long rx_compressed;
180 unsigned long tx_compressed;
184 #include <linux/cache.h>
185 #include <linux/skbuff.h>
187 #ifdef CONFIG_RPS
188 #include <linux/static_key.h>
189 extern struct static_key rps_needed;
190 #endif
192 struct neighbour;
193 struct neigh_parms;
194 struct sk_buff;
196 struct netdev_hw_addr {
197 struct list_head list;
198 unsigned char addr[MAX_ADDR_LEN];
199 unsigned char type;
200 #define NETDEV_HW_ADDR_T_LAN 1
201 #define NETDEV_HW_ADDR_T_SAN 2
202 #define NETDEV_HW_ADDR_T_SLAVE 3
203 #define NETDEV_HW_ADDR_T_UNICAST 4
204 #define NETDEV_HW_ADDR_T_MULTICAST 5
205 bool global_use;
206 int sync_cnt;
207 int refcount;
208 int synced;
209 struct rcu_head rcu_head;
212 struct netdev_hw_addr_list {
213 struct list_head list;
214 int count;
217 #define netdev_hw_addr_list_count(l) ((l)->count)
218 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
219 #define netdev_hw_addr_list_for_each(ha, l) \
220 list_for_each_entry(ha, &(l)->list, list)
222 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
223 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
224 #define netdev_for_each_uc_addr(ha, dev) \
225 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
227 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
228 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
229 #define netdev_for_each_mc_addr(ha, dev) \
230 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
232 struct hh_cache {
233 u16 hh_len;
234 u16 __pad;
235 seqlock_t hh_lock;
237 /* cached hardware header; allow for machine alignment needs. */
238 #define HH_DATA_MOD 16
239 #define HH_DATA_OFF(__len) \
240 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
241 #define HH_DATA_ALIGN(__len) \
242 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
243 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
247 * Alternative is:
248 * dev->hard_header_len ? (dev->hard_header_len +
249 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
251 * We could use other alignment values, but we must maintain the
252 * relationship HH alignment <= LL alignment.
254 #define LL_RESERVED_SPACE(dev) \
255 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
256 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
257 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
259 struct header_ops {
260 int (*create) (struct sk_buff *skb, struct net_device *dev,
261 unsigned short type, const void *daddr,
262 const void *saddr, unsigned int len);
263 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
264 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
265 void (*cache_update)(struct hh_cache *hh,
266 const struct net_device *dev,
267 const unsigned char *haddr);
270 /* These flag bits are private to the generic network queueing
271 * layer, they may not be explicitly referenced by any other
272 * code.
275 enum netdev_state_t {
276 __LINK_STATE_START,
277 __LINK_STATE_PRESENT,
278 __LINK_STATE_NOCARRIER,
279 __LINK_STATE_LINKWATCH_PENDING,
280 __LINK_STATE_DORMANT,
285 * This structure holds at boot time configured netdevice settings. They
286 * are then used in the device probing.
288 struct netdev_boot_setup {
289 char name[IFNAMSIZ];
290 struct ifmap map;
292 #define NETDEV_BOOT_SETUP_MAX 8
294 int __init netdev_boot_setup(char *str);
297 * Structure for NAPI scheduling similar to tasklet but with weighting
299 struct napi_struct {
300 /* The poll_list must only be managed by the entity which
301 * changes the state of the NAPI_STATE_SCHED bit. This means
302 * whoever atomically sets that bit can add this napi_struct
303 * to the per-cpu poll_list, and whoever clears that bit
304 * can remove from the list right before clearing the bit.
306 struct list_head poll_list;
308 unsigned long state;
309 int weight;
310 unsigned int gro_count;
311 int (*poll)(struct napi_struct *, int);
312 #ifdef CONFIG_NETPOLL
313 spinlock_t poll_lock;
314 int poll_owner;
315 #endif
316 struct net_device *dev;
317 struct sk_buff *gro_list;
318 struct sk_buff *skb;
319 struct hrtimer timer;
320 struct list_head dev_list;
321 struct hlist_node napi_hash_node;
322 unsigned int napi_id;
325 enum {
326 NAPI_STATE_SCHED, /* Poll is scheduled */
327 NAPI_STATE_DISABLE, /* Disable pending */
328 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 NAPI_STATE_HASHED, /* In NAPI hash */
332 enum gro_result {
333 GRO_MERGED,
334 GRO_MERGED_FREE,
335 GRO_HELD,
336 GRO_NORMAL,
337 GRO_DROP,
339 typedef enum gro_result gro_result_t;
342 * enum rx_handler_result - Possible return values for rx_handlers.
343 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
344 * further.
345 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
346 * case skb->dev was changed by rx_handler.
347 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
348 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
350 * rx_handlers are functions called from inside __netif_receive_skb(), to do
351 * special processing of the skb, prior to delivery to protocol handlers.
353 * Currently, a net_device can only have a single rx_handler registered. Trying
354 * to register a second rx_handler will return -EBUSY.
356 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
357 * To unregister a rx_handler on a net_device, use
358 * netdev_rx_handler_unregister().
360 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
361 * do with the skb.
363 * If the rx_handler consumed to skb in some way, it should return
364 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
365 * the skb to be delivered in some other ways.
367 * If the rx_handler changed skb->dev, to divert the skb to another
368 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
369 * new device will be called if it exists.
371 * If the rx_handler consider the skb should be ignored, it should return
372 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
373 * are registered on exact device (ptype->dev == skb->dev).
375 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
376 * delivered, it should return RX_HANDLER_PASS.
378 * A device without a registered rx_handler will behave as if rx_handler
379 * returned RX_HANDLER_PASS.
382 enum rx_handler_result {
383 RX_HANDLER_CONSUMED,
384 RX_HANDLER_ANOTHER,
385 RX_HANDLER_EXACT,
386 RX_HANDLER_PASS,
388 typedef enum rx_handler_result rx_handler_result_t;
389 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
391 void __napi_schedule(struct napi_struct *n);
392 void __napi_schedule_irqoff(struct napi_struct *n);
394 static inline bool napi_disable_pending(struct napi_struct *n)
396 return test_bit(NAPI_STATE_DISABLE, &n->state);
400 * napi_schedule_prep - check if napi can be scheduled
401 * @n: napi context
403 * Test if NAPI routine is already running, and if not mark
404 * it as running. This is used as a condition variable
405 * insure only one NAPI poll instance runs. We also make
406 * sure there is no pending NAPI disable.
408 static inline bool napi_schedule_prep(struct napi_struct *n)
410 return !napi_disable_pending(n) &&
411 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
415 * napi_schedule - schedule NAPI poll
416 * @n: napi context
418 * Schedule NAPI poll routine to be called if it is not already
419 * running.
421 static inline void napi_schedule(struct napi_struct *n)
423 if (napi_schedule_prep(n))
424 __napi_schedule(n);
428 * napi_schedule_irqoff - schedule NAPI poll
429 * @n: napi context
431 * Variant of napi_schedule(), assuming hard irqs are masked.
433 static inline void napi_schedule_irqoff(struct napi_struct *n)
435 if (napi_schedule_prep(n))
436 __napi_schedule_irqoff(n);
439 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
440 static inline bool napi_reschedule(struct napi_struct *napi)
442 if (napi_schedule_prep(napi)) {
443 __napi_schedule(napi);
444 return true;
446 return false;
449 void __napi_complete(struct napi_struct *n);
450 void napi_complete_done(struct napi_struct *n, int work_done);
452 * napi_complete - NAPI processing complete
453 * @n: napi context
455 * Mark NAPI processing as complete.
456 * Consider using napi_complete_done() instead.
458 static inline void napi_complete(struct napi_struct *n)
460 return napi_complete_done(n, 0);
464 * napi_by_id - lookup a NAPI by napi_id
465 * @napi_id: hashed napi_id
467 * lookup @napi_id in napi_hash table
468 * must be called under rcu_read_lock()
470 struct napi_struct *napi_by_id(unsigned int napi_id);
473 * napi_hash_add - add a NAPI to global hashtable
474 * @napi: napi context
476 * generate a new napi_id and store a @napi under it in napi_hash
478 void napi_hash_add(struct napi_struct *napi);
481 * napi_hash_del - remove a NAPI from global table
482 * @napi: napi context
484 * Warning: caller must observe rcu grace period
485 * before freeing memory containing @napi
487 void napi_hash_del(struct napi_struct *napi);
490 * napi_disable - prevent NAPI from scheduling
491 * @n: napi context
493 * Stop NAPI from being scheduled on this context.
494 * Waits till any outstanding processing completes.
496 void napi_disable(struct napi_struct *n);
499 * napi_enable - enable NAPI scheduling
500 * @n: napi context
502 * Resume NAPI from being scheduled on this context.
503 * Must be paired with napi_disable.
505 static inline void napi_enable(struct napi_struct *n)
507 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
508 smp_mb__before_atomic();
509 clear_bit(NAPI_STATE_SCHED, &n->state);
512 #ifdef CONFIG_SMP
514 * napi_synchronize - wait until NAPI is not running
515 * @n: napi context
517 * Wait until NAPI is done being scheduled on this context.
518 * Waits till any outstanding processing completes but
519 * does not disable future activations.
521 static inline void napi_synchronize(const struct napi_struct *n)
523 while (test_bit(NAPI_STATE_SCHED, &n->state))
524 msleep(1);
526 #else
527 # define napi_synchronize(n) barrier()
528 #endif
530 enum netdev_queue_state_t {
531 __QUEUE_STATE_DRV_XOFF,
532 __QUEUE_STATE_STACK_XOFF,
533 __QUEUE_STATE_FROZEN,
536 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
537 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
538 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
540 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
541 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
542 QUEUE_STATE_FROZEN)
543 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
544 QUEUE_STATE_FROZEN)
547 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
548 * netif_tx_* functions below are used to manipulate this flag. The
549 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
550 * queue independently. The netif_xmit_*stopped functions below are called
551 * to check if the queue has been stopped by the driver or stack (either
552 * of the XOFF bits are set in the state). Drivers should not need to call
553 * netif_xmit*stopped functions, they should only be using netif_tx_*.
556 struct netdev_queue {
558 * read mostly part
560 struct net_device *dev;
561 struct Qdisc __rcu *qdisc;
562 struct Qdisc *qdisc_sleeping;
563 #ifdef CONFIG_SYSFS
564 struct kobject kobj;
565 #endif
566 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
567 int numa_node;
568 #endif
570 * write mostly part
572 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
573 int xmit_lock_owner;
575 * please use this field instead of dev->trans_start
577 unsigned long trans_start;
580 * Number of TX timeouts for this queue
581 * (/sys/class/net/DEV/Q/trans_timeout)
583 unsigned long trans_timeout;
585 unsigned long state;
587 #ifdef CONFIG_BQL
588 struct dql dql;
589 #endif
590 unsigned long tx_maxrate;
591 } ____cacheline_aligned_in_smp;
593 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
595 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
596 return q->numa_node;
597 #else
598 return NUMA_NO_NODE;
599 #endif
602 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
604 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
605 q->numa_node = node;
606 #endif
609 #ifdef CONFIG_RPS
611 * This structure holds an RPS map which can be of variable length. The
612 * map is an array of CPUs.
614 struct rps_map {
615 unsigned int len;
616 struct rcu_head rcu;
617 u16 cpus[0];
619 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
622 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
623 * tail pointer for that CPU's input queue at the time of last enqueue, and
624 * a hardware filter index.
626 struct rps_dev_flow {
627 u16 cpu;
628 u16 filter;
629 unsigned int last_qtail;
631 #define RPS_NO_FILTER 0xffff
634 * The rps_dev_flow_table structure contains a table of flow mappings.
636 struct rps_dev_flow_table {
637 unsigned int mask;
638 struct rcu_head rcu;
639 struct rps_dev_flow flows[0];
641 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
642 ((_num) * sizeof(struct rps_dev_flow)))
645 * The rps_sock_flow_table contains mappings of flows to the last CPU
646 * on which they were processed by the application (set in recvmsg).
647 * Each entry is a 32bit value. Upper part is the high order bits
648 * of flow hash, lower part is cpu number.
649 * rps_cpu_mask is used to partition the space, depending on number of
650 * possible cpus : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
651 * For example, if 64 cpus are possible, rps_cpu_mask = 0x3f,
652 * meaning we use 32-6=26 bits for the hash.
654 struct rps_sock_flow_table {
655 u32 mask;
657 u32 ents[0] ____cacheline_aligned_in_smp;
659 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
661 #define RPS_NO_CPU 0xffff
663 extern u32 rps_cpu_mask;
664 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
666 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
667 u32 hash)
669 if (table && hash) {
670 unsigned int index = hash & table->mask;
671 u32 val = hash & ~rps_cpu_mask;
673 /* We only give a hint, preemption can change cpu under us */
674 val |= raw_smp_processor_id();
676 if (table->ents[index] != val)
677 table->ents[index] = val;
681 #ifdef CONFIG_RFS_ACCEL
682 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
683 u16 filter_id);
684 #endif
685 #endif /* CONFIG_RPS */
687 /* This structure contains an instance of an RX queue. */
688 struct netdev_rx_queue {
689 #ifdef CONFIG_RPS
690 struct rps_map __rcu *rps_map;
691 struct rps_dev_flow_table __rcu *rps_flow_table;
692 #endif
693 struct kobject kobj;
694 struct net_device *dev;
695 } ____cacheline_aligned_in_smp;
698 * RX queue sysfs structures and functions.
700 struct rx_queue_attribute {
701 struct attribute attr;
702 ssize_t (*show)(struct netdev_rx_queue *queue,
703 struct rx_queue_attribute *attr, char *buf);
704 ssize_t (*store)(struct netdev_rx_queue *queue,
705 struct rx_queue_attribute *attr, const char *buf, size_t len);
708 #ifdef CONFIG_XPS
710 * This structure holds an XPS map which can be of variable length. The
711 * map is an array of queues.
713 struct xps_map {
714 unsigned int len;
715 unsigned int alloc_len;
716 struct rcu_head rcu;
717 u16 queues[0];
719 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
720 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
721 / sizeof(u16))
724 * This structure holds all XPS maps for device. Maps are indexed by CPU.
726 struct xps_dev_maps {
727 struct rcu_head rcu;
728 struct xps_map __rcu *cpu_map[0];
730 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
731 (nr_cpu_ids * sizeof(struct xps_map *)))
732 #endif /* CONFIG_XPS */
734 #define TC_MAX_QUEUE 16
735 #define TC_BITMASK 15
736 /* HW offloaded queuing disciplines txq count and offset maps */
737 struct netdev_tc_txq {
738 u16 count;
739 u16 offset;
742 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
744 * This structure is to hold information about the device
745 * configured to run FCoE protocol stack.
747 struct netdev_fcoe_hbainfo {
748 char manufacturer[64];
749 char serial_number[64];
750 char hardware_version[64];
751 char driver_version[64];
752 char optionrom_version[64];
753 char firmware_version[64];
754 char model[256];
755 char model_description[256];
757 #endif
759 #define MAX_PHYS_ITEM_ID_LEN 32
761 /* This structure holds a unique identifier to identify some
762 * physical item (port for example) used by a netdevice.
764 struct netdev_phys_item_id {
765 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
766 unsigned char id_len;
769 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
770 struct netdev_phys_item_id *b)
772 return a->id_len == b->id_len &&
773 memcmp(a->id, b->id, a->id_len) == 0;
776 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
777 struct sk_buff *skb);
780 * This structure defines the management hooks for network devices.
781 * The following hooks can be defined; unless noted otherwise, they are
782 * optional and can be filled with a null pointer.
784 * int (*ndo_init)(struct net_device *dev);
785 * This function is called once when network device is registered.
786 * The network device can use this to any late stage initializaton
787 * or semantic validattion. It can fail with an error code which will
788 * be propogated back to register_netdev
790 * void (*ndo_uninit)(struct net_device *dev);
791 * This function is called when device is unregistered or when registration
792 * fails. It is not called if init fails.
794 * int (*ndo_open)(struct net_device *dev);
795 * This function is called when network device transistions to the up
796 * state.
798 * int (*ndo_stop)(struct net_device *dev);
799 * This function is called when network device transistions to the down
800 * state.
802 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
803 * struct net_device *dev);
804 * Called when a packet needs to be transmitted.
805 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
806 * the queue before that can happen; it's for obsolete devices and weird
807 * corner cases, but the stack really does a non-trivial amount
808 * of useless work if you return NETDEV_TX_BUSY.
809 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
810 * Required can not be NULL.
812 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
813 * void *accel_priv, select_queue_fallback_t fallback);
814 * Called to decide which queue to when device supports multiple
815 * transmit queues.
817 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
818 * This function is called to allow device receiver to make
819 * changes to configuration when multicast or promiscious is enabled.
821 * void (*ndo_set_rx_mode)(struct net_device *dev);
822 * This function is called device changes address list filtering.
823 * If driver handles unicast address filtering, it should set
824 * IFF_UNICAST_FLT to its priv_flags.
826 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
827 * This function is called when the Media Access Control address
828 * needs to be changed. If this interface is not defined, the
829 * mac address can not be changed.
831 * int (*ndo_validate_addr)(struct net_device *dev);
832 * Test if Media Access Control address is valid for the device.
834 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
835 * Called when a user request an ioctl which can't be handled by
836 * the generic interface code. If not defined ioctl's return
837 * not supported error code.
839 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
840 * Used to set network devices bus interface parameters. This interface
841 * is retained for legacy reason, new devices should use the bus
842 * interface (PCI) for low level management.
844 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
845 * Called when a user wants to change the Maximum Transfer Unit
846 * of a device. If not defined, any request to change MTU will
847 * will return an error.
849 * void (*ndo_tx_timeout)(struct net_device *dev);
850 * Callback uses when the transmitter has not made any progress
851 * for dev->watchdog ticks.
853 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
854 * struct rtnl_link_stats64 *storage);
855 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
856 * Called when a user wants to get the network device usage
857 * statistics. Drivers must do one of the following:
858 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
859 * rtnl_link_stats64 structure passed by the caller.
860 * 2. Define @ndo_get_stats to update a net_device_stats structure
861 * (which should normally be dev->stats) and return a pointer to
862 * it. The structure may be changed asynchronously only if each
863 * field is written atomically.
864 * 3. Update dev->stats asynchronously and atomically, and define
865 * neither operation.
867 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
868 * If device support VLAN filtering this function is called when a
869 * VLAN id is registered.
871 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
872 * If device support VLAN filtering this function is called when a
873 * VLAN id is unregistered.
875 * void (*ndo_poll_controller)(struct net_device *dev);
877 * SR-IOV management functions.
878 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
879 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
880 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
881 * int max_tx_rate);
882 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
883 * int (*ndo_get_vf_config)(struct net_device *dev,
884 * int vf, struct ifla_vf_info *ivf);
885 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
886 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
887 * struct nlattr *port[]);
889 * Enable or disable the VF ability to query its RSS Redirection Table and
890 * Hash Key. This is needed since on some devices VF share this information
891 * with PF and querying it may adduce a theoretical security risk.
892 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
893 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
894 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
895 * Called to setup 'tc' number of traffic classes in the net device. This
896 * is always called from the stack with the rtnl lock held and netif tx
897 * queues stopped. This allows the netdevice to perform queue management
898 * safely.
900 * Fiber Channel over Ethernet (FCoE) offload functions.
901 * int (*ndo_fcoe_enable)(struct net_device *dev);
902 * Called when the FCoE protocol stack wants to start using LLD for FCoE
903 * so the underlying device can perform whatever needed configuration or
904 * initialization to support acceleration of FCoE traffic.
906 * int (*ndo_fcoe_disable)(struct net_device *dev);
907 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
908 * so the underlying device can perform whatever needed clean-ups to
909 * stop supporting acceleration of FCoE traffic.
911 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
912 * struct scatterlist *sgl, unsigned int sgc);
913 * Called when the FCoE Initiator wants to initialize an I/O that
914 * is a possible candidate for Direct Data Placement (DDP). The LLD can
915 * perform necessary setup and returns 1 to indicate the device is set up
916 * successfully to perform DDP on this I/O, otherwise this returns 0.
918 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
919 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
920 * indicated by the FC exchange id 'xid', so the underlying device can
921 * clean up and reuse resources for later DDP requests.
923 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
924 * struct scatterlist *sgl, unsigned int sgc);
925 * Called when the FCoE Target wants to initialize an I/O that
926 * is a possible candidate for Direct Data Placement (DDP). The LLD can
927 * perform necessary setup and returns 1 to indicate the device is set up
928 * successfully to perform DDP on this I/O, otherwise this returns 0.
930 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
931 * struct netdev_fcoe_hbainfo *hbainfo);
932 * Called when the FCoE Protocol stack wants information on the underlying
933 * device. This information is utilized by the FCoE protocol stack to
934 * register attributes with Fiber Channel management service as per the
935 * FC-GS Fabric Device Management Information(FDMI) specification.
937 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
938 * Called when the underlying device wants to override default World Wide
939 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
940 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
941 * protocol stack to use.
943 * RFS acceleration.
944 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
945 * u16 rxq_index, u32 flow_id);
946 * Set hardware filter for RFS. rxq_index is the target queue index;
947 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
948 * Return the filter ID on success, or a negative error code.
950 * Slave management functions (for bridge, bonding, etc).
951 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
952 * Called to make another netdev an underling.
954 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
955 * Called to release previously enslaved netdev.
957 * Feature/offload setting functions.
958 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
959 * netdev_features_t features);
960 * Adjusts the requested feature flags according to device-specific
961 * constraints, and returns the resulting flags. Must not modify
962 * the device state.
964 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
965 * Called to update device configuration to new features. Passed
966 * feature set might be less than what was returned by ndo_fix_features()).
967 * Must return >0 or -errno if it changed dev->features itself.
969 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
970 * struct net_device *dev,
971 * const unsigned char *addr, u16 vid, u16 flags)
972 * Adds an FDB entry to dev for addr.
973 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
974 * struct net_device *dev,
975 * const unsigned char *addr, u16 vid)
976 * Deletes the FDB entry from dev coresponding to addr.
977 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
978 * struct net_device *dev, struct net_device *filter_dev,
979 * int idx)
980 * Used to add FDB entries to dump requests. Implementers should add
981 * entries to skb and update idx with the number of entries.
983 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
984 * u16 flags)
985 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
986 * struct net_device *dev, u32 filter_mask,
987 * int nlflags)
988 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
989 * u16 flags);
991 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
992 * Called to change device carrier. Soft-devices (like dummy, team, etc)
993 * which do not represent real hardware may define this to allow their
994 * userspace components to manage their virtual carrier state. Devices
995 * that determine carrier state from physical hardware properties (eg
996 * network cables) or protocol-dependent mechanisms (eg
997 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
999 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1000 * struct netdev_phys_item_id *ppid);
1001 * Called to get ID of physical port of this device. If driver does
1002 * not implement this, it is assumed that the hw is not able to have
1003 * multiple net devices on single physical port.
1005 * void (*ndo_add_vxlan_port)(struct net_device *dev,
1006 * sa_family_t sa_family, __be16 port);
1007 * Called by vxlan to notiy a driver about the UDP port and socket
1008 * address family that vxlan is listnening to. It is called only when
1009 * a new port starts listening. The operation is protected by the
1010 * vxlan_net->sock_lock.
1012 * void (*ndo_del_vxlan_port)(struct net_device *dev,
1013 * sa_family_t sa_family, __be16 port);
1014 * Called by vxlan to notify the driver about a UDP port and socket
1015 * address family that vxlan is not listening to anymore. The operation
1016 * is protected by the vxlan_net->sock_lock.
1018 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1019 * struct net_device *dev)
1020 * Called by upper layer devices to accelerate switching or other
1021 * station functionality into hardware. 'pdev is the lowerdev
1022 * to use for the offload and 'dev' is the net device that will
1023 * back the offload. Returns a pointer to the private structure
1024 * the upper layer will maintain.
1025 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1026 * Called by upper layer device to delete the station created
1027 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1028 * the station and priv is the structure returned by the add
1029 * operation.
1030 * netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff *skb,
1031 * struct net_device *dev,
1032 * void *priv);
1033 * Callback to use for xmit over the accelerated station. This
1034 * is used in place of ndo_start_xmit on accelerated net
1035 * devices.
1036 * netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1037 * struct net_device *dev
1038 * netdev_features_t features);
1039 * Called by core transmit path to determine if device is capable of
1040 * performing offload operations on a given packet. This is to give
1041 * the device an opportunity to implement any restrictions that cannot
1042 * be otherwise expressed by feature flags. The check is called with
1043 * the set of features that the stack has calculated and it returns
1044 * those the driver believes to be appropriate.
1045 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1046 * int queue_index, u32 maxrate);
1047 * Called when a user wants to set a max-rate limitation of specific
1048 * TX queue.
1049 * int (*ndo_get_iflink)(const struct net_device *dev);
1050 * Called to get the iflink value of this device.
1051 * void (*ndo_change_proto_down)(struct net_device *dev,
1052 * bool proto_down);
1053 * This function is used to pass protocol port error state information
1054 * to the switch driver. The switch driver can react to the proto_down
1055 * by doing a phys down on the associated switch port.
1058 struct net_device_ops {
1059 int (*ndo_init)(struct net_device *dev);
1060 void (*ndo_uninit)(struct net_device *dev);
1061 int (*ndo_open)(struct net_device *dev);
1062 int (*ndo_stop)(struct net_device *dev);
1063 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
1064 struct net_device *dev);
1065 u16 (*ndo_select_queue)(struct net_device *dev,
1066 struct sk_buff *skb,
1067 void *accel_priv,
1068 select_queue_fallback_t fallback);
1069 void (*ndo_change_rx_flags)(struct net_device *dev,
1070 int flags);
1071 void (*ndo_set_rx_mode)(struct net_device *dev);
1072 int (*ndo_set_mac_address)(struct net_device *dev,
1073 void *addr);
1074 int (*ndo_validate_addr)(struct net_device *dev);
1075 int (*ndo_do_ioctl)(struct net_device *dev,
1076 struct ifreq *ifr, int cmd);
1077 int (*ndo_set_config)(struct net_device *dev,
1078 struct ifmap *map);
1079 int (*ndo_change_mtu)(struct net_device *dev,
1080 int new_mtu);
1081 int (*ndo_neigh_setup)(struct net_device *dev,
1082 struct neigh_parms *);
1083 void (*ndo_tx_timeout) (struct net_device *dev);
1085 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
1086 struct rtnl_link_stats64 *storage);
1087 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1089 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1090 __be16 proto, u16 vid);
1091 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1092 __be16 proto, u16 vid);
1093 #ifdef CONFIG_NET_POLL_CONTROLLER
1094 void (*ndo_poll_controller)(struct net_device *dev);
1095 int (*ndo_netpoll_setup)(struct net_device *dev,
1096 struct netpoll_info *info);
1097 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1098 #endif
1099 #ifdef CONFIG_NET_RX_BUSY_POLL
1100 int (*ndo_busy_poll)(struct napi_struct *dev);
1101 #endif
1102 int (*ndo_set_vf_mac)(struct net_device *dev,
1103 int queue, u8 *mac);
1104 int (*ndo_set_vf_vlan)(struct net_device *dev,
1105 int queue, u16 vlan, u8 qos);
1106 int (*ndo_set_vf_rate)(struct net_device *dev,
1107 int vf, int min_tx_rate,
1108 int max_tx_rate);
1109 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1110 int vf, bool setting);
1111 int (*ndo_get_vf_config)(struct net_device *dev,
1112 int vf,
1113 struct ifla_vf_info *ivf);
1114 int (*ndo_set_vf_link_state)(struct net_device *dev,
1115 int vf, int link_state);
1116 int (*ndo_get_vf_stats)(struct net_device *dev,
1117 int vf,
1118 struct ifla_vf_stats
1119 *vf_stats);
1120 int (*ndo_set_vf_port)(struct net_device *dev,
1121 int vf,
1122 struct nlattr *port[]);
1123 int (*ndo_get_vf_port)(struct net_device *dev,
1124 int vf, struct sk_buff *skb);
1125 int (*ndo_set_vf_rss_query_en)(
1126 struct net_device *dev,
1127 int vf, bool setting);
1128 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
1129 #if IS_ENABLED(CONFIG_FCOE)
1130 int (*ndo_fcoe_enable)(struct net_device *dev);
1131 int (*ndo_fcoe_disable)(struct net_device *dev);
1132 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1133 u16 xid,
1134 struct scatterlist *sgl,
1135 unsigned int sgc);
1136 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1137 u16 xid);
1138 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1139 u16 xid,
1140 struct scatterlist *sgl,
1141 unsigned int sgc);
1142 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1143 struct netdev_fcoe_hbainfo *hbainfo);
1144 #endif
1146 #if IS_ENABLED(CONFIG_LIBFCOE)
1147 #define NETDEV_FCOE_WWNN 0
1148 #define NETDEV_FCOE_WWPN 1
1149 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1150 u64 *wwn, int type);
1151 #endif
1153 #ifdef CONFIG_RFS_ACCEL
1154 int (*ndo_rx_flow_steer)(struct net_device *dev,
1155 const struct sk_buff *skb,
1156 u16 rxq_index,
1157 u32 flow_id);
1158 #endif
1159 int (*ndo_add_slave)(struct net_device *dev,
1160 struct net_device *slave_dev);
1161 int (*ndo_del_slave)(struct net_device *dev,
1162 struct net_device *slave_dev);
1163 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1164 netdev_features_t features);
1165 int (*ndo_set_features)(struct net_device *dev,
1166 netdev_features_t features);
1167 int (*ndo_neigh_construct)(struct neighbour *n);
1168 void (*ndo_neigh_destroy)(struct neighbour *n);
1170 int (*ndo_fdb_add)(struct ndmsg *ndm,
1171 struct nlattr *tb[],
1172 struct net_device *dev,
1173 const unsigned char *addr,
1174 u16 vid,
1175 u16 flags);
1176 int (*ndo_fdb_del)(struct ndmsg *ndm,
1177 struct nlattr *tb[],
1178 struct net_device *dev,
1179 const unsigned char *addr,
1180 u16 vid);
1181 int (*ndo_fdb_dump)(struct sk_buff *skb,
1182 struct netlink_callback *cb,
1183 struct net_device *dev,
1184 struct net_device *filter_dev,
1185 int idx);
1187 int (*ndo_bridge_setlink)(struct net_device *dev,
1188 struct nlmsghdr *nlh,
1189 u16 flags);
1190 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1191 u32 pid, u32 seq,
1192 struct net_device *dev,
1193 u32 filter_mask,
1194 int nlflags);
1195 int (*ndo_bridge_dellink)(struct net_device *dev,
1196 struct nlmsghdr *nlh,
1197 u16 flags);
1198 int (*ndo_change_carrier)(struct net_device *dev,
1199 bool new_carrier);
1200 int (*ndo_get_phys_port_id)(struct net_device *dev,
1201 struct netdev_phys_item_id *ppid);
1202 int (*ndo_get_phys_port_name)(struct net_device *dev,
1203 char *name, size_t len);
1204 void (*ndo_add_vxlan_port)(struct net_device *dev,
1205 sa_family_t sa_family,
1206 __be16 port);
1207 void (*ndo_del_vxlan_port)(struct net_device *dev,
1208 sa_family_t sa_family,
1209 __be16 port);
1211 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1212 struct net_device *dev);
1213 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1214 void *priv);
1216 netdev_tx_t (*ndo_dfwd_start_xmit) (struct sk_buff *skb,
1217 struct net_device *dev,
1218 void *priv);
1219 int (*ndo_get_lock_subclass)(struct net_device *dev);
1220 netdev_features_t (*ndo_features_check) (struct sk_buff *skb,
1221 struct net_device *dev,
1222 netdev_features_t features);
1223 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1224 int queue_index,
1225 u32 maxrate);
1226 int (*ndo_get_iflink)(const struct net_device *dev);
1227 int (*ndo_change_proto_down)(struct net_device *dev,
1228 bool proto_down);
1232 * enum net_device_priv_flags - &struct net_device priv_flags
1234 * These are the &struct net_device, they are only set internally
1235 * by drivers and used in the kernel. These flags are invisible to
1236 * userspace, this means that the order of these flags can change
1237 * during any kernel release.
1239 * You should have a pretty good reason to be extending these flags.
1241 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1242 * @IFF_EBRIDGE: Ethernet bridging device
1243 * @IFF_SLAVE_INACTIVE: bonding slave not the curr. active
1244 * @IFF_MASTER_8023AD: bonding master, 802.3ad
1245 * @IFF_MASTER_ALB: bonding master, balance-alb
1246 * @IFF_BONDING: bonding master or slave
1247 * @IFF_SLAVE_NEEDARP: need ARPs for validation
1248 * @IFF_ISATAP: ISATAP interface (RFC4214)
1249 * @IFF_MASTER_ARPMON: bonding master, ARP mon in use
1250 * @IFF_WAN_HDLC: WAN HDLC device
1251 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1252 * release skb->dst
1253 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1254 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1255 * @IFF_MACVLAN_PORT: device used as macvlan port
1256 * @IFF_BRIDGE_PORT: device used as bridge port
1257 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1258 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1259 * @IFF_UNICAST_FLT: Supports unicast filtering
1260 * @IFF_TEAM_PORT: device used as team port
1261 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1262 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1263 * change when it's running
1264 * @IFF_MACVLAN: Macvlan device
1266 enum netdev_priv_flags {
1267 IFF_802_1Q_VLAN = 1<<0,
1268 IFF_EBRIDGE = 1<<1,
1269 IFF_SLAVE_INACTIVE = 1<<2,
1270 IFF_MASTER_8023AD = 1<<3,
1271 IFF_MASTER_ALB = 1<<4,
1272 IFF_BONDING = 1<<5,
1273 IFF_SLAVE_NEEDARP = 1<<6,
1274 IFF_ISATAP = 1<<7,
1275 IFF_MASTER_ARPMON = 1<<8,
1276 IFF_WAN_HDLC = 1<<9,
1277 IFF_XMIT_DST_RELEASE = 1<<10,
1278 IFF_DONT_BRIDGE = 1<<11,
1279 IFF_DISABLE_NETPOLL = 1<<12,
1280 IFF_MACVLAN_PORT = 1<<13,
1281 IFF_BRIDGE_PORT = 1<<14,
1282 IFF_OVS_DATAPATH = 1<<15,
1283 IFF_TX_SKB_SHARING = 1<<16,
1284 IFF_UNICAST_FLT = 1<<17,
1285 IFF_TEAM_PORT = 1<<18,
1286 IFF_SUPP_NOFCS = 1<<19,
1287 IFF_LIVE_ADDR_CHANGE = 1<<20,
1288 IFF_MACVLAN = 1<<21,
1289 IFF_XMIT_DST_RELEASE_PERM = 1<<22,
1290 IFF_IPVLAN_MASTER = 1<<23,
1291 IFF_IPVLAN_SLAVE = 1<<24,
1292 IFF_VRF_MASTER = 1<<25,
1295 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1296 #define IFF_EBRIDGE IFF_EBRIDGE
1297 #define IFF_SLAVE_INACTIVE IFF_SLAVE_INACTIVE
1298 #define IFF_MASTER_8023AD IFF_MASTER_8023AD
1299 #define IFF_MASTER_ALB IFF_MASTER_ALB
1300 #define IFF_BONDING IFF_BONDING
1301 #define IFF_SLAVE_NEEDARP IFF_SLAVE_NEEDARP
1302 #define IFF_ISATAP IFF_ISATAP
1303 #define IFF_MASTER_ARPMON IFF_MASTER_ARPMON
1304 #define IFF_WAN_HDLC IFF_WAN_HDLC
1305 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1306 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1307 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1308 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1309 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1310 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1311 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1312 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1313 #define IFF_TEAM_PORT IFF_TEAM_PORT
1314 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1315 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1316 #define IFF_MACVLAN IFF_MACVLAN
1317 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1318 #define IFF_IPVLAN_MASTER IFF_IPVLAN_MASTER
1319 #define IFF_IPVLAN_SLAVE IFF_IPVLAN_SLAVE
1320 #define IFF_VRF_MASTER IFF_VRF_MASTER
1323 * struct net_device - The DEVICE structure.
1324 * Actually, this whole structure is a big mistake. It mixes I/O
1325 * data with strictly "high-level" data, and it has to know about
1326 * almost every data structure used in the INET module.
1328 * @name: This is the first field of the "visible" part of this structure
1329 * (i.e. as seen by users in the "Space.c" file). It is the name
1330 * of the interface.
1332 * @name_hlist: Device name hash chain, please keep it close to name[]
1333 * @ifalias: SNMP alias
1334 * @mem_end: Shared memory end
1335 * @mem_start: Shared memory start
1336 * @base_addr: Device I/O address
1337 * @irq: Device IRQ number
1339 * @carrier_changes: Stats to monitor carrier on<->off transitions
1341 * @state: Generic network queuing layer state, see netdev_state_t
1342 * @dev_list: The global list of network devices
1343 * @napi_list: List entry, that is used for polling napi devices
1344 * @unreg_list: List entry, that is used, when we are unregistering the
1345 * device, see the function unregister_netdev
1346 * @close_list: List entry, that is used, when we are closing the device
1348 * @adj_list: Directly linked devices, like slaves for bonding
1349 * @all_adj_list: All linked devices, *including* neighbours
1350 * @features: Currently active device features
1351 * @hw_features: User-changeable features
1353 * @wanted_features: User-requested features
1354 * @vlan_features: Mask of features inheritable by VLAN devices
1356 * @hw_enc_features: Mask of features inherited by encapsulating devices
1357 * This field indicates what encapsulation
1358 * offloads the hardware is capable of doing,
1359 * and drivers will need to set them appropriately.
1361 * @mpls_features: Mask of features inheritable by MPLS
1363 * @ifindex: interface index
1364 * @group: The group, that the device belongs to
1366 * @stats: Statistics struct, which was left as a legacy, use
1367 * rtnl_link_stats64 instead
1369 * @rx_dropped: Dropped packets by core network,
1370 * do not use this in drivers
1371 * @tx_dropped: Dropped packets by core network,
1372 * do not use this in drivers
1374 * @wireless_handlers: List of functions to handle Wireless Extensions,
1375 * instead of ioctl,
1376 * see <net/iw_handler.h> for details.
1377 * @wireless_data: Instance data managed by the core of wireless extensions
1379 * @netdev_ops: Includes several pointers to callbacks,
1380 * if one wants to override the ndo_*() functions
1381 * @ethtool_ops: Management operations
1382 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1383 * of Layer 2 headers.
1385 * @flags: Interface flags (a la BSD)
1386 * @priv_flags: Like 'flags' but invisible to userspace,
1387 * see if.h for the definitions
1388 * @gflags: Global flags ( kept as legacy )
1389 * @padded: How much padding added by alloc_netdev()
1390 * @operstate: RFC2863 operstate
1391 * @link_mode: Mapping policy to operstate
1392 * @if_port: Selectable AUI, TP, ...
1393 * @dma: DMA channel
1394 * @mtu: Interface MTU value
1395 * @type: Interface hardware type
1396 * @hard_header_len: Hardware header length
1398 * @needed_headroom: Extra headroom the hardware may need, but not in all
1399 * cases can this be guaranteed
1400 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1401 * cases can this be guaranteed. Some cases also use
1402 * LL_MAX_HEADER instead to allocate the skb
1404 * interface address info:
1406 * @perm_addr: Permanent hw address
1407 * @addr_assign_type: Hw address assignment type
1408 * @addr_len: Hardware address length
1409 * @neigh_priv_len; Used in neigh_alloc(),
1410 * initialized only in atm/clip.c
1411 * @dev_id: Used to differentiate devices that share
1412 * the same link layer address
1413 * @dev_port: Used to differentiate devices that share
1414 * the same function
1415 * @addr_list_lock: XXX: need comments on this one
1416 * @uc_promisc: Counter, that indicates, that promiscuous mode
1417 * has been enabled due to the need to listen to
1418 * additional unicast addresses in a device that
1419 * does not implement ndo_set_rx_mode()
1420 * @uc: unicast mac addresses
1421 * @mc: multicast mac addresses
1422 * @dev_addrs: list of device hw addresses
1423 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1424 * @promiscuity: Number of times, the NIC is told to work in
1425 * Promiscuous mode, if it becomes 0 the NIC will
1426 * exit from working in Promiscuous mode
1427 * @allmulti: Counter, enables or disables allmulticast mode
1429 * @vlan_info: VLAN info
1430 * @dsa_ptr: dsa specific data
1431 * @tipc_ptr: TIPC specific data
1432 * @atalk_ptr: AppleTalk link
1433 * @ip_ptr: IPv4 specific data
1434 * @dn_ptr: DECnet specific data
1435 * @ip6_ptr: IPv6 specific data
1436 * @ax25_ptr: AX.25 specific data
1437 * @vrf_ptr: VRF specific data
1438 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1440 * @last_rx: Time of last Rx
1441 * @dev_addr: Hw address (before bcast,
1442 * because most packets are unicast)
1444 * @_rx: Array of RX queues
1445 * @num_rx_queues: Number of RX queues
1446 * allocated at register_netdev() time
1447 * @real_num_rx_queues: Number of RX queues currently active in device
1449 * @rx_handler: handler for received packets
1450 * @rx_handler_data: XXX: need comments on this one
1451 * @ingress_queue: XXX: need comments on this one
1452 * @broadcast: hw bcast address
1454 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1455 * indexed by RX queue number. Assigned by driver.
1456 * This must only be set if the ndo_rx_flow_steer
1457 * operation is defined
1458 * @index_hlist: Device index hash chain
1460 * @_tx: Array of TX queues
1461 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1462 * @real_num_tx_queues: Number of TX queues currently active in device
1463 * @qdisc: Root qdisc from userspace point of view
1464 * @tx_queue_len: Max frames per queue allowed
1465 * @tx_global_lock: XXX: need comments on this one
1467 * @xps_maps: XXX: need comments on this one
1469 * @offload_fwd_mark: Offload device fwding mark
1471 * @trans_start: Time (in jiffies) of last Tx
1472 * @watchdog_timeo: Represents the timeout that is used by
1473 * the watchdog ( see dev_watchdog() )
1474 * @watchdog_timer: List of timers
1476 * @pcpu_refcnt: Number of references to this device
1477 * @todo_list: Delayed register/unregister
1478 * @link_watch_list: XXX: need comments on this one
1480 * @reg_state: Register/unregister state machine
1481 * @dismantle: Device is going to be freed
1482 * @rtnl_link_state: This enum represents the phases of creating
1483 * a new link
1485 * @destructor: Called from unregister,
1486 * can be used to call free_netdev
1487 * @npinfo: XXX: need comments on this one
1488 * @nd_net: Network namespace this network device is inside
1490 * @ml_priv: Mid-layer private
1491 * @lstats: Loopback statistics
1492 * @tstats: Tunnel statistics
1493 * @dstats: Dummy statistics
1494 * @vstats: Virtual ethernet statistics
1496 * @garp_port: GARP
1497 * @mrp_port: MRP
1499 * @dev: Class/net/name entry
1500 * @sysfs_groups: Space for optional device, statistics and wireless
1501 * sysfs groups
1503 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1504 * @rtnl_link_ops: Rtnl_link_ops
1506 * @gso_max_size: Maximum size of generic segmentation offload
1507 * @gso_max_segs: Maximum number of segments that can be passed to the
1508 * NIC for GSO
1509 * @gso_min_segs: Minimum number of segments that can be passed to the
1510 * NIC for GSO
1512 * @dcbnl_ops: Data Center Bridging netlink ops
1513 * @num_tc: Number of traffic classes in the net device
1514 * @tc_to_txq: XXX: need comments on this one
1515 * @prio_tc_map XXX: need comments on this one
1517 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1519 * @priomap: XXX: need comments on this one
1520 * @phydev: Physical device may attach itself
1521 * for hardware timestamping
1523 * @qdisc_tx_busylock: XXX: need comments on this one
1525 * @proto_down: protocol port state information can be sent to the
1526 * switch driver and used to set the phys state of the
1527 * switch port.
1529 * FIXME: cleanup struct net_device such that network protocol info
1530 * moves out.
1533 struct net_device {
1534 char name[IFNAMSIZ];
1535 struct hlist_node name_hlist;
1536 char *ifalias;
1538 * I/O specific fields
1539 * FIXME: Merge these and struct ifmap into one
1541 unsigned long mem_end;
1542 unsigned long mem_start;
1543 unsigned long base_addr;
1544 int irq;
1546 atomic_t carrier_changes;
1549 * Some hardware also needs these fields (state,dev_list,
1550 * napi_list,unreg_list,close_list) but they are not
1551 * part of the usual set specified in Space.c.
1554 unsigned long state;
1556 struct list_head dev_list;
1557 struct list_head napi_list;
1558 struct list_head unreg_list;
1559 struct list_head close_list;
1560 struct list_head ptype_all;
1561 struct list_head ptype_specific;
1563 struct {
1564 struct list_head upper;
1565 struct list_head lower;
1566 } adj_list;
1568 struct {
1569 struct list_head upper;
1570 struct list_head lower;
1571 } all_adj_list;
1573 netdev_features_t features;
1574 netdev_features_t hw_features;
1575 netdev_features_t wanted_features;
1576 netdev_features_t vlan_features;
1577 netdev_features_t hw_enc_features;
1578 netdev_features_t mpls_features;
1580 int ifindex;
1581 int group;
1583 struct net_device_stats stats;
1585 atomic_long_t rx_dropped;
1586 atomic_long_t tx_dropped;
1588 #ifdef CONFIG_WIRELESS_EXT
1589 const struct iw_handler_def * wireless_handlers;
1590 struct iw_public_data * wireless_data;
1591 #endif
1592 const struct net_device_ops *netdev_ops;
1593 const struct ethtool_ops *ethtool_ops;
1594 #ifdef CONFIG_NET_SWITCHDEV
1595 const struct switchdev_ops *switchdev_ops;
1596 #endif
1598 const struct header_ops *header_ops;
1600 unsigned int flags;
1601 unsigned int priv_flags;
1603 unsigned short gflags;
1604 unsigned short padded;
1606 unsigned char operstate;
1607 unsigned char link_mode;
1609 unsigned char if_port;
1610 unsigned char dma;
1612 unsigned int mtu;
1613 unsigned short type;
1614 unsigned short hard_header_len;
1616 unsigned short needed_headroom;
1617 unsigned short needed_tailroom;
1619 /* Interface address info. */
1620 unsigned char perm_addr[MAX_ADDR_LEN];
1621 unsigned char addr_assign_type;
1622 unsigned char addr_len;
1623 unsigned short neigh_priv_len;
1624 unsigned short dev_id;
1625 unsigned short dev_port;
1626 spinlock_t addr_list_lock;
1627 unsigned char name_assign_type;
1628 bool uc_promisc;
1629 struct netdev_hw_addr_list uc;
1630 struct netdev_hw_addr_list mc;
1631 struct netdev_hw_addr_list dev_addrs;
1633 #ifdef CONFIG_SYSFS
1634 struct kset *queues_kset;
1635 #endif
1636 unsigned int promiscuity;
1637 unsigned int allmulti;
1640 /* Protocol specific pointers */
1642 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1643 struct vlan_info __rcu *vlan_info;
1644 #endif
1645 #if IS_ENABLED(CONFIG_NET_DSA)
1646 struct dsa_switch_tree *dsa_ptr;
1647 #endif
1648 #if IS_ENABLED(CONFIG_TIPC)
1649 struct tipc_bearer __rcu *tipc_ptr;
1650 #endif
1651 void *atalk_ptr;
1652 struct in_device __rcu *ip_ptr;
1653 struct dn_dev __rcu *dn_ptr;
1654 struct inet6_dev __rcu *ip6_ptr;
1655 void *ax25_ptr;
1656 struct net_vrf_dev __rcu *vrf_ptr;
1657 struct wireless_dev *ieee80211_ptr;
1658 struct wpan_dev *ieee802154_ptr;
1659 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1660 struct mpls_dev __rcu *mpls_ptr;
1661 #endif
1664 * Cache lines mostly used on receive path (including eth_type_trans())
1666 unsigned long last_rx;
1668 /* Interface address info used in eth_type_trans() */
1669 unsigned char *dev_addr;
1672 #ifdef CONFIG_SYSFS
1673 struct netdev_rx_queue *_rx;
1675 unsigned int num_rx_queues;
1676 unsigned int real_num_rx_queues;
1678 #endif
1680 unsigned long gro_flush_timeout;
1681 rx_handler_func_t __rcu *rx_handler;
1682 void __rcu *rx_handler_data;
1684 #ifdef CONFIG_NET_CLS_ACT
1685 struct tcf_proto __rcu *ingress_cl_list;
1686 #endif
1687 struct netdev_queue __rcu *ingress_queue;
1688 #ifdef CONFIG_NETFILTER_INGRESS
1689 struct list_head nf_hooks_ingress;
1690 #endif
1692 unsigned char broadcast[MAX_ADDR_LEN];
1693 #ifdef CONFIG_RFS_ACCEL
1694 struct cpu_rmap *rx_cpu_rmap;
1695 #endif
1696 struct hlist_node index_hlist;
1699 * Cache lines mostly used on transmit path
1701 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1702 unsigned int num_tx_queues;
1703 unsigned int real_num_tx_queues;
1704 struct Qdisc *qdisc;
1705 unsigned long tx_queue_len;
1706 spinlock_t tx_global_lock;
1707 int watchdog_timeo;
1709 #ifdef CONFIG_XPS
1710 struct xps_dev_maps __rcu *xps_maps;
1711 #endif
1713 #ifdef CONFIG_NET_SWITCHDEV
1714 u32 offload_fwd_mark;
1715 #endif
1717 /* These may be needed for future network-power-down code. */
1720 * trans_start here is expensive for high speed devices on SMP,
1721 * please use netdev_queue->trans_start instead.
1723 unsigned long trans_start;
1725 struct timer_list watchdog_timer;
1727 int __percpu *pcpu_refcnt;
1728 struct list_head todo_list;
1730 struct list_head link_watch_list;
1732 enum { NETREG_UNINITIALIZED=0,
1733 NETREG_REGISTERED, /* completed register_netdevice */
1734 NETREG_UNREGISTERING, /* called unregister_netdevice */
1735 NETREG_UNREGISTERED, /* completed unregister todo */
1736 NETREG_RELEASED, /* called free_netdev */
1737 NETREG_DUMMY, /* dummy device for NAPI poll */
1738 } reg_state:8;
1740 bool dismantle;
1742 enum {
1743 RTNL_LINK_INITIALIZED,
1744 RTNL_LINK_INITIALIZING,
1745 } rtnl_link_state:16;
1747 void (*destructor)(struct net_device *dev);
1749 #ifdef CONFIG_NETPOLL
1750 struct netpoll_info __rcu *npinfo;
1751 #endif
1753 possible_net_t nd_net;
1755 /* mid-layer private */
1756 union {
1757 void *ml_priv;
1758 struct pcpu_lstats __percpu *lstats;
1759 struct pcpu_sw_netstats __percpu *tstats;
1760 struct pcpu_dstats __percpu *dstats;
1761 struct pcpu_vstats __percpu *vstats;
1764 struct garp_port __rcu *garp_port;
1765 struct mrp_port __rcu *mrp_port;
1767 struct device dev;
1768 const struct attribute_group *sysfs_groups[4];
1769 const struct attribute_group *sysfs_rx_queue_group;
1771 const struct rtnl_link_ops *rtnl_link_ops;
1773 /* for setting kernel sock attribute on TCP connection setup */
1774 #define GSO_MAX_SIZE 65536
1775 unsigned int gso_max_size;
1776 #define GSO_MAX_SEGS 65535
1777 u16 gso_max_segs;
1778 u16 gso_min_segs;
1779 #ifdef CONFIG_DCB
1780 const struct dcbnl_rtnl_ops *dcbnl_ops;
1781 #endif
1782 u8 num_tc;
1783 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1784 u8 prio_tc_map[TC_BITMASK + 1];
1786 #if IS_ENABLED(CONFIG_FCOE)
1787 unsigned int fcoe_ddp_xid;
1788 #endif
1789 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1790 struct netprio_map __rcu *priomap;
1791 #endif
1792 struct phy_device *phydev;
1793 struct lock_class_key *qdisc_tx_busylock;
1794 bool proto_down;
1796 #define to_net_dev(d) container_of(d, struct net_device, dev)
1798 #define NETDEV_ALIGN 32
1800 static inline
1801 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1803 return dev->prio_tc_map[prio & TC_BITMASK];
1806 static inline
1807 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1809 if (tc >= dev->num_tc)
1810 return -EINVAL;
1812 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1813 return 0;
1816 static inline
1817 void netdev_reset_tc(struct net_device *dev)
1819 dev->num_tc = 0;
1820 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1821 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1824 static inline
1825 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1827 if (tc >= dev->num_tc)
1828 return -EINVAL;
1830 dev->tc_to_txq[tc].count = count;
1831 dev->tc_to_txq[tc].offset = offset;
1832 return 0;
1835 static inline
1836 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1838 if (num_tc > TC_MAX_QUEUE)
1839 return -EINVAL;
1841 dev->num_tc = num_tc;
1842 return 0;
1845 static inline
1846 int netdev_get_num_tc(struct net_device *dev)
1848 return dev->num_tc;
1851 static inline
1852 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1853 unsigned int index)
1855 return &dev->_tx[index];
1858 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
1859 const struct sk_buff *skb)
1861 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
1864 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1865 void (*f)(struct net_device *,
1866 struct netdev_queue *,
1867 void *),
1868 void *arg)
1870 unsigned int i;
1872 for (i = 0; i < dev->num_tx_queues; i++)
1873 f(dev, &dev->_tx[i], arg);
1876 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1877 struct sk_buff *skb,
1878 void *accel_priv);
1881 * Net namespace inlines
1883 static inline
1884 struct net *dev_net(const struct net_device *dev)
1886 return read_pnet(&dev->nd_net);
1889 static inline
1890 void dev_net_set(struct net_device *dev, struct net *net)
1892 write_pnet(&dev->nd_net, net);
1895 static inline bool netdev_uses_dsa(struct net_device *dev)
1897 #if IS_ENABLED(CONFIG_NET_DSA)
1898 if (dev->dsa_ptr != NULL)
1899 return dsa_uses_tagged_protocol(dev->dsa_ptr);
1900 #endif
1901 return false;
1905 * netdev_priv - access network device private data
1906 * @dev: network device
1908 * Get network device private data
1910 static inline void *netdev_priv(const struct net_device *dev)
1912 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1915 /* Set the sysfs physical device reference for the network logical device
1916 * if set prior to registration will cause a symlink during initialization.
1918 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1920 /* Set the sysfs device type for the network logical device to allow
1921 * fine-grained identification of different network device types. For
1922 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1924 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1926 /* Default NAPI poll() weight
1927 * Device drivers are strongly advised to not use bigger value
1929 #define NAPI_POLL_WEIGHT 64
1932 * netif_napi_add - initialize a napi context
1933 * @dev: network device
1934 * @napi: napi context
1935 * @poll: polling function
1936 * @weight: default weight
1938 * netif_napi_add() must be used to initialize a napi context prior to calling
1939 * *any* of the other napi related functions.
1941 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1942 int (*poll)(struct napi_struct *, int), int weight);
1945 * netif_napi_del - remove a napi context
1946 * @napi: napi context
1948 * netif_napi_del() removes a napi context from the network device napi list
1950 void netif_napi_del(struct napi_struct *napi);
1952 struct napi_gro_cb {
1953 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1954 void *frag0;
1956 /* Length of frag0. */
1957 unsigned int frag0_len;
1959 /* This indicates where we are processing relative to skb->data. */
1960 int data_offset;
1962 /* This is non-zero if the packet cannot be merged with the new skb. */
1963 u16 flush;
1965 /* Save the IP ID here and check when we get to the transport layer */
1966 u16 flush_id;
1968 /* Number of segments aggregated. */
1969 u16 count;
1971 /* Start offset for remote checksum offload */
1972 u16 gro_remcsum_start;
1974 /* jiffies when first packet was created/queued */
1975 unsigned long age;
1977 /* Used in ipv6_gro_receive() and foo-over-udp */
1978 u16 proto;
1980 /* This is non-zero if the packet may be of the same flow. */
1981 u8 same_flow:1;
1983 /* Used in udp_gro_receive */
1984 u8 udp_mark:1;
1986 /* GRO checksum is valid */
1987 u8 csum_valid:1;
1989 /* Number of checksums via CHECKSUM_UNNECESSARY */
1990 u8 csum_cnt:3;
1992 /* Free the skb? */
1993 u8 free:2;
1994 #define NAPI_GRO_FREE 1
1995 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1997 /* Used in foo-over-udp, set in udp[46]_gro_receive */
1998 u8 is_ipv6:1;
2000 /* 7 bit hole */
2002 /* used to support CHECKSUM_COMPLETE for tunneling protocols */
2003 __wsum csum;
2005 /* used in skb_gro_receive() slow path */
2006 struct sk_buff *last;
2009 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2011 struct packet_type {
2012 __be16 type; /* This is really htons(ether_type). */
2013 struct net_device *dev; /* NULL is wildcarded here */
2014 int (*func) (struct sk_buff *,
2015 struct net_device *,
2016 struct packet_type *,
2017 struct net_device *);
2018 bool (*id_match)(struct packet_type *ptype,
2019 struct sock *sk);
2020 void *af_packet_priv;
2021 struct list_head list;
2024 struct offload_callbacks {
2025 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2026 netdev_features_t features);
2027 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2028 struct sk_buff *skb);
2029 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2032 struct packet_offload {
2033 __be16 type; /* This is really htons(ether_type). */
2034 u16 priority;
2035 struct offload_callbacks callbacks;
2036 struct list_head list;
2039 struct udp_offload;
2041 struct udp_offload_callbacks {
2042 struct sk_buff **(*gro_receive)(struct sk_buff **head,
2043 struct sk_buff *skb,
2044 struct udp_offload *uoff);
2045 int (*gro_complete)(struct sk_buff *skb,
2046 int nhoff,
2047 struct udp_offload *uoff);
2050 struct udp_offload {
2051 __be16 port;
2052 u8 ipproto;
2053 struct udp_offload_callbacks callbacks;
2056 /* often modified stats are per cpu, other are shared (netdev->stats) */
2057 struct pcpu_sw_netstats {
2058 u64 rx_packets;
2059 u64 rx_bytes;
2060 u64 tx_packets;
2061 u64 tx_bytes;
2062 struct u64_stats_sync syncp;
2065 #define netdev_alloc_pcpu_stats(type) \
2066 ({ \
2067 typeof(type) __percpu *pcpu_stats = alloc_percpu(type); \
2068 if (pcpu_stats) { \
2069 int __cpu; \
2070 for_each_possible_cpu(__cpu) { \
2071 typeof(type) *stat; \
2072 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2073 u64_stats_init(&stat->syncp); \
2076 pcpu_stats; \
2079 #include <linux/notifier.h>
2081 /* netdevice notifier chain. Please remember to update the rtnetlink
2082 * notification exclusion list in rtnetlink_event() when adding new
2083 * types.
2085 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
2086 #define NETDEV_DOWN 0x0002
2087 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
2088 detected a hardware crash and restarted
2089 - we can use this eg to kick tcp sessions
2090 once done */
2091 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
2092 #define NETDEV_REGISTER 0x0005
2093 #define NETDEV_UNREGISTER 0x0006
2094 #define NETDEV_CHANGEMTU 0x0007 /* notify after mtu change happened */
2095 #define NETDEV_CHANGEADDR 0x0008
2096 #define NETDEV_GOING_DOWN 0x0009
2097 #define NETDEV_CHANGENAME 0x000A
2098 #define NETDEV_FEAT_CHANGE 0x000B
2099 #define NETDEV_BONDING_FAILOVER 0x000C
2100 #define NETDEV_PRE_UP 0x000D
2101 #define NETDEV_PRE_TYPE_CHANGE 0x000E
2102 #define NETDEV_POST_TYPE_CHANGE 0x000F
2103 #define NETDEV_POST_INIT 0x0010
2104 #define NETDEV_UNREGISTER_FINAL 0x0011
2105 #define NETDEV_RELEASE 0x0012
2106 #define NETDEV_NOTIFY_PEERS 0x0013
2107 #define NETDEV_JOIN 0x0014
2108 #define NETDEV_CHANGEUPPER 0x0015
2109 #define NETDEV_RESEND_IGMP 0x0016
2110 #define NETDEV_PRECHANGEMTU 0x0017 /* notify before mtu change happened */
2111 #define NETDEV_CHANGEINFODATA 0x0018
2112 #define NETDEV_BONDING_INFO 0x0019
2114 int register_netdevice_notifier(struct notifier_block *nb);
2115 int unregister_netdevice_notifier(struct notifier_block *nb);
2117 struct netdev_notifier_info {
2118 struct net_device *dev;
2121 struct netdev_notifier_change_info {
2122 struct netdev_notifier_info info; /* must be first */
2123 unsigned int flags_changed;
2126 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2127 struct net_device *dev)
2129 info->dev = dev;
2132 static inline struct net_device *
2133 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2135 return info->dev;
2138 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2141 extern rwlock_t dev_base_lock; /* Device list lock */
2143 #define for_each_netdev(net, d) \
2144 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2145 #define for_each_netdev_reverse(net, d) \
2146 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2147 #define for_each_netdev_rcu(net, d) \
2148 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2149 #define for_each_netdev_safe(net, d, n) \
2150 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2151 #define for_each_netdev_continue(net, d) \
2152 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2153 #define for_each_netdev_continue_rcu(net, d) \
2154 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2155 #define for_each_netdev_in_bond_rcu(bond, slave) \
2156 for_each_netdev_rcu(&init_net, slave) \
2157 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2158 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2160 static inline struct net_device *next_net_device(struct net_device *dev)
2162 struct list_head *lh;
2163 struct net *net;
2165 net = dev_net(dev);
2166 lh = dev->dev_list.next;
2167 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2170 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2172 struct list_head *lh;
2173 struct net *net;
2175 net = dev_net(dev);
2176 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2177 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2180 static inline struct net_device *first_net_device(struct net *net)
2182 return list_empty(&net->dev_base_head) ? NULL :
2183 net_device_entry(net->dev_base_head.next);
2186 static inline struct net_device *first_net_device_rcu(struct net *net)
2188 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2190 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2193 int netdev_boot_setup_check(struct net_device *dev);
2194 unsigned long netdev_boot_base(const char *prefix, int unit);
2195 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2196 const char *hwaddr);
2197 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2198 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2199 void dev_add_pack(struct packet_type *pt);
2200 void dev_remove_pack(struct packet_type *pt);
2201 void __dev_remove_pack(struct packet_type *pt);
2202 void dev_add_offload(struct packet_offload *po);
2203 void dev_remove_offload(struct packet_offload *po);
2205 int dev_get_iflink(const struct net_device *dev);
2206 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2207 unsigned short mask);
2208 struct net_device *dev_get_by_name(struct net *net, const char *name);
2209 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2210 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2211 int dev_alloc_name(struct net_device *dev, const char *name);
2212 int dev_open(struct net_device *dev);
2213 int dev_close(struct net_device *dev);
2214 int dev_close_many(struct list_head *head, bool unlink);
2215 void dev_disable_lro(struct net_device *dev);
2216 int dev_loopback_xmit(struct sock *sk, struct sk_buff *newskb);
2217 int dev_queue_xmit_sk(struct sock *sk, struct sk_buff *skb);
2218 static inline int dev_queue_xmit(struct sk_buff *skb)
2220 return dev_queue_xmit_sk(skb->sk, skb);
2222 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv);
2223 int register_netdevice(struct net_device *dev);
2224 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2225 void unregister_netdevice_many(struct list_head *head);
2226 static inline void unregister_netdevice(struct net_device *dev)
2228 unregister_netdevice_queue(dev, NULL);
2231 int netdev_refcnt_read(const struct net_device *dev);
2232 void free_netdev(struct net_device *dev);
2233 void netdev_freemem(struct net_device *dev);
2234 void synchronize_net(void);
2235 int init_dummy_netdev(struct net_device *dev);
2237 DECLARE_PER_CPU(int, xmit_recursion);
2238 static inline int dev_recursion_level(void)
2240 return this_cpu_read(xmit_recursion);
2243 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2244 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2245 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2246 int netdev_get_name(struct net *net, char *name, int ifindex);
2247 int dev_restart(struct net_device *dev);
2248 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb);
2250 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2252 return NAPI_GRO_CB(skb)->data_offset;
2255 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2257 return skb->len - NAPI_GRO_CB(skb)->data_offset;
2260 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2262 NAPI_GRO_CB(skb)->data_offset += len;
2265 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2266 unsigned int offset)
2268 return NAPI_GRO_CB(skb)->frag0 + offset;
2271 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2273 return NAPI_GRO_CB(skb)->frag0_len < hlen;
2276 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2277 unsigned int offset)
2279 if (!pskb_may_pull(skb, hlen))
2280 return NULL;
2282 NAPI_GRO_CB(skb)->frag0 = NULL;
2283 NAPI_GRO_CB(skb)->frag0_len = 0;
2284 return skb->data + offset;
2287 static inline void *skb_gro_network_header(struct sk_buff *skb)
2289 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2290 skb_network_offset(skb);
2293 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2294 const void *start, unsigned int len)
2296 if (NAPI_GRO_CB(skb)->csum_valid)
2297 NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2298 csum_partial(start, len, 0));
2301 /* GRO checksum functions. These are logical equivalents of the normal
2302 * checksum functions (in skbuff.h) except that they operate on the GRO
2303 * offsets and fields in sk_buff.
2306 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2308 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2310 return (NAPI_GRO_CB(skb)->gro_remcsum_start - skb_headroom(skb) ==
2311 skb_gro_offset(skb));
2314 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2315 bool zero_okay,
2316 __sum16 check)
2318 return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2319 skb_checksum_start_offset(skb) <
2320 skb_gro_offset(skb)) &&
2321 !skb_at_gro_remcsum_start(skb) &&
2322 NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2323 (!zero_okay || check));
2326 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2327 __wsum psum)
2329 if (NAPI_GRO_CB(skb)->csum_valid &&
2330 !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2331 return 0;
2333 NAPI_GRO_CB(skb)->csum = psum;
2335 return __skb_gro_checksum_complete(skb);
2338 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2340 if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2341 /* Consume a checksum from CHECKSUM_UNNECESSARY */
2342 NAPI_GRO_CB(skb)->csum_cnt--;
2343 } else {
2344 /* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2345 * verified a new top level checksum or an encapsulated one
2346 * during GRO. This saves work if we fallback to normal path.
2348 __skb_incr_checksum_unnecessary(skb);
2352 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check, \
2353 compute_pseudo) \
2354 ({ \
2355 __sum16 __ret = 0; \
2356 if (__skb_gro_checksum_validate_needed(skb, zero_okay, check)) \
2357 __ret = __skb_gro_checksum_validate_complete(skb, \
2358 compute_pseudo(skb, proto)); \
2359 if (__ret) \
2360 __skb_mark_checksum_bad(skb); \
2361 else \
2362 skb_gro_incr_csum_unnecessary(skb); \
2363 __ret; \
2366 #define skb_gro_checksum_validate(skb, proto, compute_pseudo) \
2367 __skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2369 #define skb_gro_checksum_validate_zero_check(skb, proto, check, \
2370 compute_pseudo) \
2371 __skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2373 #define skb_gro_checksum_simple_validate(skb) \
2374 __skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2376 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2378 return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2379 !NAPI_GRO_CB(skb)->csum_valid);
2382 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2383 __sum16 check, __wsum pseudo)
2385 NAPI_GRO_CB(skb)->csum = ~pseudo;
2386 NAPI_GRO_CB(skb)->csum_valid = 1;
2389 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo) \
2390 do { \
2391 if (__skb_gro_checksum_convert_check(skb)) \
2392 __skb_gro_checksum_convert(skb, check, \
2393 compute_pseudo(skb, proto)); \
2394 } while (0)
2396 struct gro_remcsum {
2397 int offset;
2398 __wsum delta;
2401 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2403 grc->offset = 0;
2404 grc->delta = 0;
2407 static inline void skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2408 int start, int offset,
2409 struct gro_remcsum *grc,
2410 bool nopartial)
2412 __wsum delta;
2414 BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2416 if (!nopartial) {
2417 NAPI_GRO_CB(skb)->gro_remcsum_start =
2418 ((unsigned char *)ptr + start) - skb->head;
2419 return;
2422 delta = remcsum_adjust(ptr, NAPI_GRO_CB(skb)->csum, start, offset);
2424 /* Adjust skb->csum since we changed the packet */
2425 NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2427 grc->offset = (ptr + offset) - (void *)skb->head;
2428 grc->delta = delta;
2431 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2432 struct gro_remcsum *grc)
2434 if (!grc->delta)
2435 return;
2437 remcsum_unadjust((__sum16 *)(skb->head + grc->offset), grc->delta);
2440 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2441 unsigned short type,
2442 const void *daddr, const void *saddr,
2443 unsigned int len)
2445 if (!dev->header_ops || !dev->header_ops->create)
2446 return 0;
2448 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2451 static inline int dev_parse_header(const struct sk_buff *skb,
2452 unsigned char *haddr)
2454 const struct net_device *dev = skb->dev;
2456 if (!dev->header_ops || !dev->header_ops->parse)
2457 return 0;
2458 return dev->header_ops->parse(skb, haddr);
2461 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
2462 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
2463 static inline int unregister_gifconf(unsigned int family)
2465 return register_gifconf(family, NULL);
2468 #ifdef CONFIG_NET_FLOW_LIMIT
2469 #define FLOW_LIMIT_HISTORY (1 << 7) /* must be ^2 and !overflow buckets */
2470 struct sd_flow_limit {
2471 u64 count;
2472 unsigned int num_buckets;
2473 unsigned int history_head;
2474 u16 history[FLOW_LIMIT_HISTORY];
2475 u8 buckets[];
2478 extern int netdev_flow_limit_table_len;
2479 #endif /* CONFIG_NET_FLOW_LIMIT */
2482 * Incoming packets are placed on per-cpu queues
2484 struct softnet_data {
2485 struct list_head poll_list;
2486 struct sk_buff_head process_queue;
2488 /* stats */
2489 unsigned int processed;
2490 unsigned int time_squeeze;
2491 unsigned int cpu_collision;
2492 unsigned int received_rps;
2493 #ifdef CONFIG_RPS
2494 struct softnet_data *rps_ipi_list;
2495 #endif
2496 #ifdef CONFIG_NET_FLOW_LIMIT
2497 struct sd_flow_limit __rcu *flow_limit;
2498 #endif
2499 struct Qdisc *output_queue;
2500 struct Qdisc **output_queue_tailp;
2501 struct sk_buff *completion_queue;
2503 #ifdef CONFIG_RPS
2504 /* Elements below can be accessed between CPUs for RPS */
2505 struct call_single_data csd ____cacheline_aligned_in_smp;
2506 struct softnet_data *rps_ipi_next;
2507 unsigned int cpu;
2508 unsigned int input_queue_head;
2509 unsigned int input_queue_tail;
2510 #endif
2511 unsigned int dropped;
2512 struct sk_buff_head input_pkt_queue;
2513 struct napi_struct backlog;
2517 static inline void input_queue_head_incr(struct softnet_data *sd)
2519 #ifdef CONFIG_RPS
2520 sd->input_queue_head++;
2521 #endif
2524 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
2525 unsigned int *qtail)
2527 #ifdef CONFIG_RPS
2528 *qtail = ++sd->input_queue_tail;
2529 #endif
2532 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
2534 void __netif_schedule(struct Qdisc *q);
2535 void netif_schedule_queue(struct netdev_queue *txq);
2537 static inline void netif_tx_schedule_all(struct net_device *dev)
2539 unsigned int i;
2541 for (i = 0; i < dev->num_tx_queues; i++)
2542 netif_schedule_queue(netdev_get_tx_queue(dev, i));
2545 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
2547 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2551 * netif_start_queue - allow transmit
2552 * @dev: network device
2554 * Allow upper layers to call the device hard_start_xmit routine.
2556 static inline void netif_start_queue(struct net_device *dev)
2558 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
2561 static inline void netif_tx_start_all_queues(struct net_device *dev)
2563 unsigned int i;
2565 for (i = 0; i < dev->num_tx_queues; i++) {
2566 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2567 netif_tx_start_queue(txq);
2571 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
2574 * netif_wake_queue - restart transmit
2575 * @dev: network device
2577 * Allow upper layers to call the device hard_start_xmit routine.
2578 * Used for flow control when transmit resources are available.
2580 static inline void netif_wake_queue(struct net_device *dev)
2582 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
2585 static inline void netif_tx_wake_all_queues(struct net_device *dev)
2587 unsigned int i;
2589 for (i = 0; i < dev->num_tx_queues; i++) {
2590 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2591 netif_tx_wake_queue(txq);
2595 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
2597 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2601 * netif_stop_queue - stop transmitted packets
2602 * @dev: network device
2604 * Stop upper layers calling the device hard_start_xmit routine.
2605 * Used for flow control when transmit resources are unavailable.
2607 static inline void netif_stop_queue(struct net_device *dev)
2609 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
2612 void netif_tx_stop_all_queues(struct net_device *dev);
2614 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
2616 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
2620 * netif_queue_stopped - test if transmit queue is flowblocked
2621 * @dev: network device
2623 * Test if transmit queue on device is currently unable to send.
2625 static inline bool netif_queue_stopped(const struct net_device *dev)
2627 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
2630 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
2632 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
2635 static inline bool
2636 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
2638 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
2641 static inline bool
2642 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
2644 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
2648 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
2649 * @dev_queue: pointer to transmit queue
2651 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
2652 * to give appropriate hint to the cpu.
2654 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
2656 #ifdef CONFIG_BQL
2657 prefetchw(&dev_queue->dql.num_queued);
2658 #endif
2662 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
2663 * @dev_queue: pointer to transmit queue
2665 * BQL enabled drivers might use this helper in their TX completion path,
2666 * to give appropriate hint to the cpu.
2668 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
2670 #ifdef CONFIG_BQL
2671 prefetchw(&dev_queue->dql.limit);
2672 #endif
2675 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
2676 unsigned int bytes)
2678 #ifdef CONFIG_BQL
2679 dql_queued(&dev_queue->dql, bytes);
2681 if (likely(dql_avail(&dev_queue->dql) >= 0))
2682 return;
2684 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2687 * The XOFF flag must be set before checking the dql_avail below,
2688 * because in netdev_tx_completed_queue we update the dql_completed
2689 * before checking the XOFF flag.
2691 smp_mb();
2693 /* check again in case another CPU has just made room avail */
2694 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
2695 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
2696 #endif
2700 * netdev_sent_queue - report the number of bytes queued to hardware
2701 * @dev: network device
2702 * @bytes: number of bytes queued to the hardware device queue
2704 * Report the number of bytes queued for sending/completion to the network
2705 * device hardware queue. @bytes should be a good approximation and should
2706 * exactly match netdev_completed_queue() @bytes
2708 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
2710 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
2713 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
2714 unsigned int pkts, unsigned int bytes)
2716 #ifdef CONFIG_BQL
2717 if (unlikely(!bytes))
2718 return;
2720 dql_completed(&dev_queue->dql, bytes);
2723 * Without the memory barrier there is a small possiblity that
2724 * netdev_tx_sent_queue will miss the update and cause the queue to
2725 * be stopped forever
2727 smp_mb();
2729 if (dql_avail(&dev_queue->dql) < 0)
2730 return;
2732 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
2733 netif_schedule_queue(dev_queue);
2734 #endif
2738 * netdev_completed_queue - report bytes and packets completed by device
2739 * @dev: network device
2740 * @pkts: actual number of packets sent over the medium
2741 * @bytes: actual number of bytes sent over the medium
2743 * Report the number of bytes and packets transmitted by the network device
2744 * hardware queue over the physical medium, @bytes must exactly match the
2745 * @bytes amount passed to netdev_sent_queue()
2747 static inline void netdev_completed_queue(struct net_device *dev,
2748 unsigned int pkts, unsigned int bytes)
2750 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
2753 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
2755 #ifdef CONFIG_BQL
2756 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
2757 dql_reset(&q->dql);
2758 #endif
2762 * netdev_reset_queue - reset the packets and bytes count of a network device
2763 * @dev_queue: network device
2765 * Reset the bytes and packet count of a network device and clear the
2766 * software flow control OFF bit for this network device
2768 static inline void netdev_reset_queue(struct net_device *dev_queue)
2770 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
2774 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
2775 * @dev: network device
2776 * @queue_index: given tx queue index
2778 * Returns 0 if given tx queue index >= number of device tx queues,
2779 * otherwise returns the originally passed tx queue index.
2781 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
2783 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2784 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
2785 dev->name, queue_index,
2786 dev->real_num_tx_queues);
2787 return 0;
2790 return queue_index;
2794 * netif_running - test if up
2795 * @dev: network device
2797 * Test if the device has been brought up.
2799 static inline bool netif_running(const struct net_device *dev)
2801 return test_bit(__LINK_STATE_START, &dev->state);
2805 * Routines to manage the subqueues on a device. We only need start
2806 * stop, and a check if it's stopped. All other device management is
2807 * done at the overall netdevice level.
2808 * Also test the device if we're multiqueue.
2812 * netif_start_subqueue - allow sending packets on subqueue
2813 * @dev: network device
2814 * @queue_index: sub queue index
2816 * Start individual transmit queue of a device with multiple transmit queues.
2818 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2820 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2822 netif_tx_start_queue(txq);
2826 * netif_stop_subqueue - stop sending packets on subqueue
2827 * @dev: network device
2828 * @queue_index: sub queue index
2830 * Stop individual transmit queue of a device with multiple transmit queues.
2832 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2834 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2835 netif_tx_stop_queue(txq);
2839 * netif_subqueue_stopped - test status of subqueue
2840 * @dev: network device
2841 * @queue_index: sub queue index
2843 * Check individual transmit queue of a device with multiple transmit queues.
2845 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2846 u16 queue_index)
2848 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2850 return netif_tx_queue_stopped(txq);
2853 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2854 struct sk_buff *skb)
2856 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2859 void netif_wake_subqueue(struct net_device *dev, u16 queue_index);
2861 #ifdef CONFIG_XPS
2862 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2863 u16 index);
2864 #else
2865 static inline int netif_set_xps_queue(struct net_device *dev,
2866 const struct cpumask *mask,
2867 u16 index)
2869 return 0;
2871 #endif
2873 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2874 unsigned int num_tx_queues);
2877 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2878 * as a distribution range limit for the returned value.
2880 static inline u16 skb_tx_hash(const struct net_device *dev,
2881 struct sk_buff *skb)
2883 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2887 * netif_is_multiqueue - test if device has multiple transmit queues
2888 * @dev: network device
2890 * Check if device has multiple transmit queues
2892 static inline bool netif_is_multiqueue(const struct net_device *dev)
2894 return dev->num_tx_queues > 1;
2897 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
2899 #ifdef CONFIG_SYSFS
2900 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
2901 #else
2902 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2903 unsigned int rxq)
2905 return 0;
2907 #endif
2909 #ifdef CONFIG_SYSFS
2910 static inline unsigned int get_netdev_rx_queue_index(
2911 struct netdev_rx_queue *queue)
2913 struct net_device *dev = queue->dev;
2914 int index = queue - dev->_rx;
2916 BUG_ON(index >= dev->num_rx_queues);
2917 return index;
2919 #endif
2921 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2922 int netif_get_num_default_rss_queues(void);
2924 enum skb_free_reason {
2925 SKB_REASON_CONSUMED,
2926 SKB_REASON_DROPPED,
2929 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
2930 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
2933 * It is not allowed to call kfree_skb() or consume_skb() from hardware
2934 * interrupt context or with hardware interrupts being disabled.
2935 * (in_irq() || irqs_disabled())
2937 * We provide four helpers that can be used in following contexts :
2939 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
2940 * replacing kfree_skb(skb)
2942 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
2943 * Typically used in place of consume_skb(skb) in TX completion path
2945 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
2946 * replacing kfree_skb(skb)
2948 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
2949 * and consumed a packet. Used in place of consume_skb(skb)
2951 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
2953 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
2956 static inline void dev_consume_skb_irq(struct sk_buff *skb)
2958 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
2961 static inline void dev_kfree_skb_any(struct sk_buff *skb)
2963 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
2966 static inline void dev_consume_skb_any(struct sk_buff *skb)
2968 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
2971 int netif_rx(struct sk_buff *skb);
2972 int netif_rx_ni(struct sk_buff *skb);
2973 int netif_receive_skb_sk(struct sock *sk, struct sk_buff *skb);
2974 static inline int netif_receive_skb(struct sk_buff *skb)
2976 return netif_receive_skb_sk(skb->sk, skb);
2978 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
2979 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2980 struct sk_buff *napi_get_frags(struct napi_struct *napi);
2981 gro_result_t napi_gro_frags(struct napi_struct *napi);
2982 struct packet_offload *gro_find_receive_by_type(__be16 type);
2983 struct packet_offload *gro_find_complete_by_type(__be16 type);
2985 static inline void napi_free_frags(struct napi_struct *napi)
2987 kfree_skb(napi->skb);
2988 napi->skb = NULL;
2991 int netdev_rx_handler_register(struct net_device *dev,
2992 rx_handler_func_t *rx_handler,
2993 void *rx_handler_data);
2994 void netdev_rx_handler_unregister(struct net_device *dev);
2996 bool dev_valid_name(const char *name);
2997 int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2998 int dev_ethtool(struct net *net, struct ifreq *);
2999 unsigned int dev_get_flags(const struct net_device *);
3000 int __dev_change_flags(struct net_device *, unsigned int flags);
3001 int dev_change_flags(struct net_device *, unsigned int);
3002 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3003 unsigned int gchanges);
3004 int dev_change_name(struct net_device *, const char *);
3005 int dev_set_alias(struct net_device *, const char *, size_t);
3006 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3007 int dev_set_mtu(struct net_device *, int);
3008 void dev_set_group(struct net_device *, int);
3009 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3010 int dev_change_carrier(struct net_device *, bool new_carrier);
3011 int dev_get_phys_port_id(struct net_device *dev,
3012 struct netdev_phys_item_id *ppid);
3013 int dev_get_phys_port_name(struct net_device *dev,
3014 char *name, size_t len);
3015 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3016 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev);
3017 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3018 struct netdev_queue *txq, int *ret);
3019 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3020 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3021 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb);
3023 extern int netdev_budget;
3025 /* Called by rtnetlink.c:rtnl_unlock() */
3026 void netdev_run_todo(void);
3029 * dev_put - release reference to device
3030 * @dev: network device
3032 * Release reference to device to allow it to be freed.
3034 static inline void dev_put(struct net_device *dev)
3036 this_cpu_dec(*dev->pcpu_refcnt);
3040 * dev_hold - get reference to device
3041 * @dev: network device
3043 * Hold reference to device to keep it from being freed.
3045 static inline void dev_hold(struct net_device *dev)
3047 this_cpu_inc(*dev->pcpu_refcnt);
3050 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3051 * and _off may be called from IRQ context, but it is caller
3052 * who is responsible for serialization of these calls.
3054 * The name carrier is inappropriate, these functions should really be
3055 * called netif_lowerlayer_*() because they represent the state of any
3056 * kind of lower layer not just hardware media.
3059 void linkwatch_init_dev(struct net_device *dev);
3060 void linkwatch_fire_event(struct net_device *dev);
3061 void linkwatch_forget_dev(struct net_device *dev);
3064 * netif_carrier_ok - test if carrier present
3065 * @dev: network device
3067 * Check if carrier is present on device
3069 static inline bool netif_carrier_ok(const struct net_device *dev)
3071 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3074 unsigned long dev_trans_start(struct net_device *dev);
3076 void __netdev_watchdog_up(struct net_device *dev);
3078 void netif_carrier_on(struct net_device *dev);
3080 void netif_carrier_off(struct net_device *dev);
3083 * netif_dormant_on - mark device as dormant.
3084 * @dev: network device
3086 * Mark device as dormant (as per RFC2863).
3088 * The dormant state indicates that the relevant interface is not
3089 * actually in a condition to pass packets (i.e., it is not 'up') but is
3090 * in a "pending" state, waiting for some external event. For "on-
3091 * demand" interfaces, this new state identifies the situation where the
3092 * interface is waiting for events to place it in the up state.
3095 static inline void netif_dormant_on(struct net_device *dev)
3097 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3098 linkwatch_fire_event(dev);
3102 * netif_dormant_off - set device as not dormant.
3103 * @dev: network device
3105 * Device is not in dormant state.
3107 static inline void netif_dormant_off(struct net_device *dev)
3109 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3110 linkwatch_fire_event(dev);
3114 * netif_dormant - test if carrier present
3115 * @dev: network device
3117 * Check if carrier is present on device
3119 static inline bool netif_dormant(const struct net_device *dev)
3121 return test_bit(__LINK_STATE_DORMANT, &dev->state);
3126 * netif_oper_up - test if device is operational
3127 * @dev: network device
3129 * Check if carrier is operational
3131 static inline bool netif_oper_up(const struct net_device *dev)
3133 return (dev->operstate == IF_OPER_UP ||
3134 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3138 * netif_device_present - is device available or removed
3139 * @dev: network device
3141 * Check if device has not been removed from system.
3143 static inline bool netif_device_present(struct net_device *dev)
3145 return test_bit(__LINK_STATE_PRESENT, &dev->state);
3148 void netif_device_detach(struct net_device *dev);
3150 void netif_device_attach(struct net_device *dev);
3153 * Network interface message level settings
3156 enum {
3157 NETIF_MSG_DRV = 0x0001,
3158 NETIF_MSG_PROBE = 0x0002,
3159 NETIF_MSG_LINK = 0x0004,
3160 NETIF_MSG_TIMER = 0x0008,
3161 NETIF_MSG_IFDOWN = 0x0010,
3162 NETIF_MSG_IFUP = 0x0020,
3163 NETIF_MSG_RX_ERR = 0x0040,
3164 NETIF_MSG_TX_ERR = 0x0080,
3165 NETIF_MSG_TX_QUEUED = 0x0100,
3166 NETIF_MSG_INTR = 0x0200,
3167 NETIF_MSG_TX_DONE = 0x0400,
3168 NETIF_MSG_RX_STATUS = 0x0800,
3169 NETIF_MSG_PKTDATA = 0x1000,
3170 NETIF_MSG_HW = 0x2000,
3171 NETIF_MSG_WOL = 0x4000,
3174 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
3175 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
3176 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
3177 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
3178 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
3179 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
3180 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
3181 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
3182 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3183 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
3184 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
3185 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
3186 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
3187 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
3188 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
3190 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3192 /* use default */
3193 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3194 return default_msg_enable_bits;
3195 if (debug_value == 0) /* no output */
3196 return 0;
3197 /* set low N bits */
3198 return (1 << debug_value) - 1;
3201 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3203 spin_lock(&txq->_xmit_lock);
3204 txq->xmit_lock_owner = cpu;
3207 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3209 spin_lock_bh(&txq->_xmit_lock);
3210 txq->xmit_lock_owner = smp_processor_id();
3213 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3215 bool ok = spin_trylock(&txq->_xmit_lock);
3216 if (likely(ok))
3217 txq->xmit_lock_owner = smp_processor_id();
3218 return ok;
3221 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3223 txq->xmit_lock_owner = -1;
3224 spin_unlock(&txq->_xmit_lock);
3227 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3229 txq->xmit_lock_owner = -1;
3230 spin_unlock_bh(&txq->_xmit_lock);
3233 static inline void txq_trans_update(struct netdev_queue *txq)
3235 if (txq->xmit_lock_owner != -1)
3236 txq->trans_start = jiffies;
3240 * netif_tx_lock - grab network device transmit lock
3241 * @dev: network device
3243 * Get network device transmit lock
3245 static inline void netif_tx_lock(struct net_device *dev)
3247 unsigned int i;
3248 int cpu;
3250 spin_lock(&dev->tx_global_lock);
3251 cpu = smp_processor_id();
3252 for (i = 0; i < dev->num_tx_queues; i++) {
3253 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3255 /* We are the only thread of execution doing a
3256 * freeze, but we have to grab the _xmit_lock in
3257 * order to synchronize with threads which are in
3258 * the ->hard_start_xmit() handler and already
3259 * checked the frozen bit.
3261 __netif_tx_lock(txq, cpu);
3262 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3263 __netif_tx_unlock(txq);
3267 static inline void netif_tx_lock_bh(struct net_device *dev)
3269 local_bh_disable();
3270 netif_tx_lock(dev);
3273 static inline void netif_tx_unlock(struct net_device *dev)
3275 unsigned int i;
3277 for (i = 0; i < dev->num_tx_queues; i++) {
3278 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3280 /* No need to grab the _xmit_lock here. If the
3281 * queue is not stopped for another reason, we
3282 * force a schedule.
3284 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3285 netif_schedule_queue(txq);
3287 spin_unlock(&dev->tx_global_lock);
3290 static inline void netif_tx_unlock_bh(struct net_device *dev)
3292 netif_tx_unlock(dev);
3293 local_bh_enable();
3296 #define HARD_TX_LOCK(dev, txq, cpu) { \
3297 if ((dev->features & NETIF_F_LLTX) == 0) { \
3298 __netif_tx_lock(txq, cpu); \
3302 #define HARD_TX_TRYLOCK(dev, txq) \
3303 (((dev->features & NETIF_F_LLTX) == 0) ? \
3304 __netif_tx_trylock(txq) : \
3305 true )
3307 #define HARD_TX_UNLOCK(dev, txq) { \
3308 if ((dev->features & NETIF_F_LLTX) == 0) { \
3309 __netif_tx_unlock(txq); \
3313 static inline void netif_tx_disable(struct net_device *dev)
3315 unsigned int i;
3316 int cpu;
3318 local_bh_disable();
3319 cpu = smp_processor_id();
3320 for (i = 0; i < dev->num_tx_queues; i++) {
3321 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3323 __netif_tx_lock(txq, cpu);
3324 netif_tx_stop_queue(txq);
3325 __netif_tx_unlock(txq);
3327 local_bh_enable();
3330 static inline void netif_addr_lock(struct net_device *dev)
3332 spin_lock(&dev->addr_list_lock);
3335 static inline void netif_addr_lock_nested(struct net_device *dev)
3337 int subclass = SINGLE_DEPTH_NESTING;
3339 if (dev->netdev_ops->ndo_get_lock_subclass)
3340 subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
3342 spin_lock_nested(&dev->addr_list_lock, subclass);
3345 static inline void netif_addr_lock_bh(struct net_device *dev)
3347 spin_lock_bh(&dev->addr_list_lock);
3350 static inline void netif_addr_unlock(struct net_device *dev)
3352 spin_unlock(&dev->addr_list_lock);
3355 static inline void netif_addr_unlock_bh(struct net_device *dev)
3357 spin_unlock_bh(&dev->addr_list_lock);
3361 * dev_addrs walker. Should be used only for read access. Call with
3362 * rcu_read_lock held.
3364 #define for_each_dev_addr(dev, ha) \
3365 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
3367 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
3369 void ether_setup(struct net_device *dev);
3371 /* Support for loadable net-drivers */
3372 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
3373 unsigned char name_assign_type,
3374 void (*setup)(struct net_device *),
3375 unsigned int txqs, unsigned int rxqs);
3376 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
3377 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
3379 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
3380 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
3381 count)
3383 int register_netdev(struct net_device *dev);
3384 void unregister_netdev(struct net_device *dev);
3386 /* General hardware address lists handling functions */
3387 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3388 struct netdev_hw_addr_list *from_list, int addr_len);
3389 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3390 struct netdev_hw_addr_list *from_list, int addr_len);
3391 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
3392 struct net_device *dev,
3393 int (*sync)(struct net_device *, const unsigned char *),
3394 int (*unsync)(struct net_device *,
3395 const unsigned char *));
3396 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
3397 struct net_device *dev,
3398 int (*unsync)(struct net_device *,
3399 const unsigned char *));
3400 void __hw_addr_init(struct netdev_hw_addr_list *list);
3402 /* Functions used for device addresses handling */
3403 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
3404 unsigned char addr_type);
3405 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
3406 unsigned char addr_type);
3407 void dev_addr_flush(struct net_device *dev);
3408 int dev_addr_init(struct net_device *dev);
3410 /* Functions used for unicast addresses handling */
3411 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
3412 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
3413 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
3414 int dev_uc_sync(struct net_device *to, struct net_device *from);
3415 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
3416 void dev_uc_unsync(struct net_device *to, struct net_device *from);
3417 void dev_uc_flush(struct net_device *dev);
3418 void dev_uc_init(struct net_device *dev);
3421 * __dev_uc_sync - Synchonize device's unicast list
3422 * @dev: device to sync
3423 * @sync: function to call if address should be added
3424 * @unsync: function to call if address should be removed
3426 * Add newly added addresses to the interface, and release
3427 * addresses that have been deleted.
3429 static inline int __dev_uc_sync(struct net_device *dev,
3430 int (*sync)(struct net_device *,
3431 const unsigned char *),
3432 int (*unsync)(struct net_device *,
3433 const unsigned char *))
3435 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
3439 * __dev_uc_unsync - Remove synchronized addresses from device
3440 * @dev: device to sync
3441 * @unsync: function to call if address should be removed
3443 * Remove all addresses that were added to the device by dev_uc_sync().
3445 static inline void __dev_uc_unsync(struct net_device *dev,
3446 int (*unsync)(struct net_device *,
3447 const unsigned char *))
3449 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
3452 /* Functions used for multicast addresses handling */
3453 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
3454 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
3455 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
3456 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
3457 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
3458 int dev_mc_sync(struct net_device *to, struct net_device *from);
3459 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
3460 void dev_mc_unsync(struct net_device *to, struct net_device *from);
3461 void dev_mc_flush(struct net_device *dev);
3462 void dev_mc_init(struct net_device *dev);
3465 * __dev_mc_sync - Synchonize device's multicast list
3466 * @dev: device to sync
3467 * @sync: function to call if address should be added
3468 * @unsync: function to call if address should be removed
3470 * Add newly added addresses to the interface, and release
3471 * addresses that have been deleted.
3473 static inline int __dev_mc_sync(struct net_device *dev,
3474 int (*sync)(struct net_device *,
3475 const unsigned char *),
3476 int (*unsync)(struct net_device *,
3477 const unsigned char *))
3479 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
3483 * __dev_mc_unsync - Remove synchronized addresses from device
3484 * @dev: device to sync
3485 * @unsync: function to call if address should be removed
3487 * Remove all addresses that were added to the device by dev_mc_sync().
3489 static inline void __dev_mc_unsync(struct net_device *dev,
3490 int (*unsync)(struct net_device *,
3491 const unsigned char *))
3493 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
3496 /* Functions used for secondary unicast and multicast support */
3497 void dev_set_rx_mode(struct net_device *dev);
3498 void __dev_set_rx_mode(struct net_device *dev);
3499 int dev_set_promiscuity(struct net_device *dev, int inc);
3500 int dev_set_allmulti(struct net_device *dev, int inc);
3501 void netdev_state_change(struct net_device *dev);
3502 void netdev_notify_peers(struct net_device *dev);
3503 void netdev_features_change(struct net_device *dev);
3504 /* Load a device via the kmod */
3505 void dev_load(struct net *net, const char *name);
3506 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
3507 struct rtnl_link_stats64 *storage);
3508 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
3509 const struct net_device_stats *netdev_stats);
3511 extern int netdev_max_backlog;
3512 extern int netdev_tstamp_prequeue;
3513 extern int weight_p;
3514 extern int bpf_jit_enable;
3516 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
3517 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
3518 struct list_head **iter);
3519 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
3520 struct list_head **iter);
3522 /* iterate through upper list, must be called under RCU read lock */
3523 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
3524 for (iter = &(dev)->adj_list.upper, \
3525 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
3526 updev; \
3527 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
3529 /* iterate through upper list, must be called under RCU read lock */
3530 #define netdev_for_each_all_upper_dev_rcu(dev, updev, iter) \
3531 for (iter = &(dev)->all_adj_list.upper, \
3532 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)); \
3533 updev; \
3534 updev = netdev_all_upper_get_next_dev_rcu(dev, &(iter)))
3536 void *netdev_lower_get_next_private(struct net_device *dev,
3537 struct list_head **iter);
3538 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
3539 struct list_head **iter);
3541 #define netdev_for_each_lower_private(dev, priv, iter) \
3542 for (iter = (dev)->adj_list.lower.next, \
3543 priv = netdev_lower_get_next_private(dev, &(iter)); \
3544 priv; \
3545 priv = netdev_lower_get_next_private(dev, &(iter)))
3547 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
3548 for (iter = &(dev)->adj_list.lower, \
3549 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
3550 priv; \
3551 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
3553 void *netdev_lower_get_next(struct net_device *dev,
3554 struct list_head **iter);
3555 #define netdev_for_each_lower_dev(dev, ldev, iter) \
3556 for (iter = &(dev)->adj_list.lower, \
3557 ldev = netdev_lower_get_next(dev, &(iter)); \
3558 ldev; \
3559 ldev = netdev_lower_get_next(dev, &(iter)))
3561 void *netdev_adjacent_get_private(struct list_head *adj_list);
3562 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
3563 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
3564 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
3565 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev);
3566 int netdev_master_upper_dev_link(struct net_device *dev,
3567 struct net_device *upper_dev);
3568 int netdev_master_upper_dev_link_private(struct net_device *dev,
3569 struct net_device *upper_dev,
3570 void *private);
3571 void netdev_upper_dev_unlink(struct net_device *dev,
3572 struct net_device *upper_dev);
3573 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
3574 void *netdev_lower_dev_get_private(struct net_device *dev,
3575 struct net_device *lower_dev);
3577 /* RSS keys are 40 or 52 bytes long */
3578 #define NETDEV_RSS_KEY_LEN 52
3579 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN];
3580 void netdev_rss_key_fill(void *buffer, size_t len);
3582 int dev_get_nest_level(struct net_device *dev,
3583 bool (*type_check)(struct net_device *dev));
3584 int skb_checksum_help(struct sk_buff *skb);
3585 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3586 netdev_features_t features, bool tx_path);
3587 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3588 netdev_features_t features);
3590 struct netdev_bonding_info {
3591 ifslave slave;
3592 ifbond master;
3595 struct netdev_notifier_bonding_info {
3596 struct netdev_notifier_info info; /* must be first */
3597 struct netdev_bonding_info bonding_info;
3600 void netdev_bonding_info_change(struct net_device *dev,
3601 struct netdev_bonding_info *bonding_info);
3603 static inline
3604 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
3606 return __skb_gso_segment(skb, features, true);
3608 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
3610 static inline bool can_checksum_protocol(netdev_features_t features,
3611 __be16 protocol)
3613 return ((features & NETIF_F_GEN_CSUM) ||
3614 ((features & NETIF_F_V4_CSUM) &&
3615 protocol == htons(ETH_P_IP)) ||
3616 ((features & NETIF_F_V6_CSUM) &&
3617 protocol == htons(ETH_P_IPV6)) ||
3618 ((features & NETIF_F_FCOE_CRC) &&
3619 protocol == htons(ETH_P_FCOE)));
3622 #ifdef CONFIG_BUG
3623 void netdev_rx_csum_fault(struct net_device *dev);
3624 #else
3625 static inline void netdev_rx_csum_fault(struct net_device *dev)
3628 #endif
3629 /* rx skb timestamps */
3630 void net_enable_timestamp(void);
3631 void net_disable_timestamp(void);
3633 #ifdef CONFIG_PROC_FS
3634 int __init dev_proc_init(void);
3635 #else
3636 #define dev_proc_init() 0
3637 #endif
3639 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
3640 struct sk_buff *skb, struct net_device *dev,
3641 bool more)
3643 skb->xmit_more = more ? 1 : 0;
3644 return ops->ndo_start_xmit(skb, dev);
3647 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
3648 struct netdev_queue *txq, bool more)
3650 const struct net_device_ops *ops = dev->netdev_ops;
3651 int rc;
3653 rc = __netdev_start_xmit(ops, skb, dev, more);
3654 if (rc == NETDEV_TX_OK)
3655 txq_trans_update(txq);
3657 return rc;
3660 int netdev_class_create_file_ns(struct class_attribute *class_attr,
3661 const void *ns);
3662 void netdev_class_remove_file_ns(struct class_attribute *class_attr,
3663 const void *ns);
3665 static inline int netdev_class_create_file(struct class_attribute *class_attr)
3667 return netdev_class_create_file_ns(class_attr, NULL);
3670 static inline void netdev_class_remove_file(struct class_attribute *class_attr)
3672 netdev_class_remove_file_ns(class_attr, NULL);
3675 extern struct kobj_ns_type_operations net_ns_type_operations;
3677 const char *netdev_drivername(const struct net_device *dev);
3679 void linkwatch_run_queue(void);
3681 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
3682 netdev_features_t f2)
3684 if (f1 & NETIF_F_GEN_CSUM)
3685 f1 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3686 if (f2 & NETIF_F_GEN_CSUM)
3687 f2 |= (NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3688 f1 &= f2;
3689 if (f1 & NETIF_F_GEN_CSUM)
3690 f1 &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
3692 return f1;
3695 static inline netdev_features_t netdev_get_wanted_features(
3696 struct net_device *dev)
3698 return (dev->features & ~dev->hw_features) | dev->wanted_features;
3700 netdev_features_t netdev_increment_features(netdev_features_t all,
3701 netdev_features_t one, netdev_features_t mask);
3703 /* Allow TSO being used on stacked device :
3704 * Performing the GSO segmentation before last device
3705 * is a performance improvement.
3707 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
3708 netdev_features_t mask)
3710 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
3713 int __netdev_update_features(struct net_device *dev);
3714 void netdev_update_features(struct net_device *dev);
3715 void netdev_change_features(struct net_device *dev);
3717 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
3718 struct net_device *dev);
3720 netdev_features_t passthru_features_check(struct sk_buff *skb,
3721 struct net_device *dev,
3722 netdev_features_t features);
3723 netdev_features_t netif_skb_features(struct sk_buff *skb);
3725 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
3727 netdev_features_t feature = gso_type << NETIF_F_GSO_SHIFT;
3729 /* check flags correspondence */
3730 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
3731 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
3732 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
3733 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
3734 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
3735 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
3736 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
3737 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
3738 BUILD_BUG_ON(SKB_GSO_IPIP != (NETIF_F_GSO_IPIP >> NETIF_F_GSO_SHIFT));
3739 BUILD_BUG_ON(SKB_GSO_SIT != (NETIF_F_GSO_SIT >> NETIF_F_GSO_SHIFT));
3740 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
3741 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
3742 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
3744 return (features & feature) == feature;
3747 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
3749 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
3750 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
3753 static inline bool netif_needs_gso(struct sk_buff *skb,
3754 netdev_features_t features)
3756 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
3757 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
3758 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
3761 static inline void netif_set_gso_max_size(struct net_device *dev,
3762 unsigned int size)
3764 dev->gso_max_size = size;
3767 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
3768 int pulled_hlen, u16 mac_offset,
3769 int mac_len)
3771 skb->protocol = protocol;
3772 skb->encapsulation = 1;
3773 skb_push(skb, pulled_hlen);
3774 skb_reset_transport_header(skb);
3775 skb->mac_header = mac_offset;
3776 skb->network_header = skb->mac_header + mac_len;
3777 skb->mac_len = mac_len;
3780 static inline bool netif_is_macvlan(struct net_device *dev)
3782 return dev->priv_flags & IFF_MACVLAN;
3785 static inline bool netif_is_macvlan_port(struct net_device *dev)
3787 return dev->priv_flags & IFF_MACVLAN_PORT;
3790 static inline bool netif_is_ipvlan(struct net_device *dev)
3792 return dev->priv_flags & IFF_IPVLAN_SLAVE;
3795 static inline bool netif_is_ipvlan_port(struct net_device *dev)
3797 return dev->priv_flags & IFF_IPVLAN_MASTER;
3800 static inline bool netif_is_bond_master(struct net_device *dev)
3802 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
3805 static inline bool netif_is_bond_slave(struct net_device *dev)
3807 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
3810 static inline bool netif_supports_nofcs(struct net_device *dev)
3812 return dev->priv_flags & IFF_SUPP_NOFCS;
3815 static inline bool netif_is_vrf(const struct net_device *dev)
3817 return dev->priv_flags & IFF_VRF_MASTER;
3820 static inline bool netif_index_is_vrf(struct net *net, int ifindex)
3822 struct net_device *dev = dev_get_by_index_rcu(net, ifindex);
3823 bool rc = false;
3825 if (dev)
3826 rc = netif_is_vrf(dev);
3828 return rc;
3831 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
3832 static inline void netif_keep_dst(struct net_device *dev)
3834 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
3837 extern struct pernet_operations __net_initdata loopback_net_ops;
3839 /* Logging, debugging and troubleshooting/diagnostic helpers. */
3841 /* netdev_printk helpers, similar to dev_printk */
3843 static inline const char *netdev_name(const struct net_device *dev)
3845 if (!dev->name[0] || strchr(dev->name, '%'))
3846 return "(unnamed net_device)";
3847 return dev->name;
3850 static inline const char *netdev_reg_state(const struct net_device *dev)
3852 switch (dev->reg_state) {
3853 case NETREG_UNINITIALIZED: return " (uninitialized)";
3854 case NETREG_REGISTERED: return "";
3855 case NETREG_UNREGISTERING: return " (unregistering)";
3856 case NETREG_UNREGISTERED: return " (unregistered)";
3857 case NETREG_RELEASED: return " (released)";
3858 case NETREG_DUMMY: return " (dummy)";
3861 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
3862 return " (unknown)";
3865 __printf(3, 4)
3866 void netdev_printk(const char *level, const struct net_device *dev,
3867 const char *format, ...);
3868 __printf(2, 3)
3869 void netdev_emerg(const struct net_device *dev, const char *format, ...);
3870 __printf(2, 3)
3871 void netdev_alert(const struct net_device *dev, const char *format, ...);
3872 __printf(2, 3)
3873 void netdev_crit(const struct net_device *dev, const char *format, ...);
3874 __printf(2, 3)
3875 void netdev_err(const struct net_device *dev, const char *format, ...);
3876 __printf(2, 3)
3877 void netdev_warn(const struct net_device *dev, const char *format, ...);
3878 __printf(2, 3)
3879 void netdev_notice(const struct net_device *dev, const char *format, ...);
3880 __printf(2, 3)
3881 void netdev_info(const struct net_device *dev, const char *format, ...);
3883 #define MODULE_ALIAS_NETDEV(device) \
3884 MODULE_ALIAS("netdev-" device)
3886 #if defined(CONFIG_DYNAMIC_DEBUG)
3887 #define netdev_dbg(__dev, format, args...) \
3888 do { \
3889 dynamic_netdev_dbg(__dev, format, ##args); \
3890 } while (0)
3891 #elif defined(DEBUG)
3892 #define netdev_dbg(__dev, format, args...) \
3893 netdev_printk(KERN_DEBUG, __dev, format, ##args)
3894 #else
3895 #define netdev_dbg(__dev, format, args...) \
3896 ({ \
3897 if (0) \
3898 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
3900 #endif
3902 #if defined(VERBOSE_DEBUG)
3903 #define netdev_vdbg netdev_dbg
3904 #else
3906 #define netdev_vdbg(dev, format, args...) \
3907 ({ \
3908 if (0) \
3909 netdev_printk(KERN_DEBUG, dev, format, ##args); \
3910 0; \
3912 #endif
3915 * netdev_WARN() acts like dev_printk(), but with the key difference
3916 * of using a WARN/WARN_ON to get the message out, including the
3917 * file/line information and a backtrace.
3919 #define netdev_WARN(dev, format, args...) \
3920 WARN(1, "netdevice: %s%s\n" format, netdev_name(dev), \
3921 netdev_reg_state(dev), ##args)
3923 /* netif printk helpers, similar to netdev_printk */
3925 #define netif_printk(priv, type, level, dev, fmt, args...) \
3926 do { \
3927 if (netif_msg_##type(priv)) \
3928 netdev_printk(level, (dev), fmt, ##args); \
3929 } while (0)
3931 #define netif_level(level, priv, type, dev, fmt, args...) \
3932 do { \
3933 if (netif_msg_##type(priv)) \
3934 netdev_##level(dev, fmt, ##args); \
3935 } while (0)
3937 #define netif_emerg(priv, type, dev, fmt, args...) \
3938 netif_level(emerg, priv, type, dev, fmt, ##args)
3939 #define netif_alert(priv, type, dev, fmt, args...) \
3940 netif_level(alert, priv, type, dev, fmt, ##args)
3941 #define netif_crit(priv, type, dev, fmt, args...) \
3942 netif_level(crit, priv, type, dev, fmt, ##args)
3943 #define netif_err(priv, type, dev, fmt, args...) \
3944 netif_level(err, priv, type, dev, fmt, ##args)
3945 #define netif_warn(priv, type, dev, fmt, args...) \
3946 netif_level(warn, priv, type, dev, fmt, ##args)
3947 #define netif_notice(priv, type, dev, fmt, args...) \
3948 netif_level(notice, priv, type, dev, fmt, ##args)
3949 #define netif_info(priv, type, dev, fmt, args...) \
3950 netif_level(info, priv, type, dev, fmt, ##args)
3952 #if defined(CONFIG_DYNAMIC_DEBUG)
3953 #define netif_dbg(priv, type, netdev, format, args...) \
3954 do { \
3955 if (netif_msg_##type(priv)) \
3956 dynamic_netdev_dbg(netdev, format, ##args); \
3957 } while (0)
3958 #elif defined(DEBUG)
3959 #define netif_dbg(priv, type, dev, format, args...) \
3960 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
3961 #else
3962 #define netif_dbg(priv, type, dev, format, args...) \
3963 ({ \
3964 if (0) \
3965 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3966 0; \
3968 #endif
3970 #if defined(VERBOSE_DEBUG)
3971 #define netif_vdbg netif_dbg
3972 #else
3973 #define netif_vdbg(priv, type, dev, format, args...) \
3974 ({ \
3975 if (0) \
3976 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
3977 0; \
3979 #endif
3982 * The list of packet types we will receive (as opposed to discard)
3983 * and the routines to invoke.
3985 * Why 16. Because with 16 the only overlap we get on a hash of the
3986 * low nibble of the protocol value is RARP/SNAP/X.25.
3988 * NOTE: That is no longer true with the addition of VLAN tags. Not
3989 * sure which should go first, but I bet it won't make much
3990 * difference if we are running VLANs. The good news is that
3991 * this protocol won't be in the list unless compiled in, so
3992 * the average user (w/out VLANs) will not be adversely affected.
3993 * --BLG
3995 * 0800 IP
3996 * 8100 802.1Q VLAN
3997 * 0001 802.3
3998 * 0002 AX.25
3999 * 0004 802.2
4000 * 8035 RARP
4001 * 0005 SNAP
4002 * 0805 X.25
4003 * 0806 ARP
4004 * 8137 IPX
4005 * 0009 Localtalk
4006 * 86DD IPv6
4008 #define PTYPE_HASH_SIZE (16)
4009 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
4011 #endif /* _LINUX_NETDEVICE_H */