block: introduce struct rq_map_data to use reserved pages
[linux-2.6/btrfs-unstable.git] / fs / bio.c
bloba2f072647cdf9d4c7ec7bf8b6c8c76ab1b0f2527
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <scsi/sg.h> /* for struct sg_iovec */
31 static struct kmem_cache *bio_slab __read_mostly;
33 mempool_t *bio_split_pool __read_mostly;
36 * if you change this list, also change bvec_alloc or things will
37 * break badly! cannot be bigger than what you can fit into an
38 * unsigned short
41 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
42 static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
43 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
45 #undef BV
48 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
49 * IO code that does not need private memory pools.
51 struct bio_set *fs_bio_set;
53 unsigned int bvec_nr_vecs(unsigned short idx)
55 return bvec_slabs[idx].nr_vecs;
58 struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
60 struct bio_vec *bvl;
63 * see comment near bvec_array define!
65 switch (nr) {
66 case 1 : *idx = 0; break;
67 case 2 ... 4: *idx = 1; break;
68 case 5 ... 16: *idx = 2; break;
69 case 17 ... 64: *idx = 3; break;
70 case 65 ... 128: *idx = 4; break;
71 case 129 ... BIO_MAX_PAGES: *idx = 5; break;
72 default:
73 return NULL;
76 * idx now points to the pool we want to allocate from
79 bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
80 if (bvl)
81 memset(bvl, 0, bvec_nr_vecs(*idx) * sizeof(struct bio_vec));
83 return bvl;
86 void bio_free(struct bio *bio, struct bio_set *bio_set)
88 if (bio->bi_io_vec) {
89 const int pool_idx = BIO_POOL_IDX(bio);
91 BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
93 mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
96 if (bio_integrity(bio))
97 bio_integrity_free(bio, bio_set);
99 mempool_free(bio, bio_set->bio_pool);
103 * default destructor for a bio allocated with bio_alloc_bioset()
105 static void bio_fs_destructor(struct bio *bio)
107 bio_free(bio, fs_bio_set);
110 void bio_init(struct bio *bio)
112 memset(bio, 0, sizeof(*bio));
113 bio->bi_flags = 1 << BIO_UPTODATE;
114 bio->bi_comp_cpu = -1;
115 atomic_set(&bio->bi_cnt, 1);
119 * bio_alloc_bioset - allocate a bio for I/O
120 * @gfp_mask: the GFP_ mask given to the slab allocator
121 * @nr_iovecs: number of iovecs to pre-allocate
122 * @bs: the bio_set to allocate from
124 * Description:
125 * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
126 * If %__GFP_WAIT is set then we will block on the internal pool waiting
127 * for a &struct bio to become free.
129 * allocate bio and iovecs from the memory pools specified by the
130 * bio_set structure.
132 struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs)
134 struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
136 if (likely(bio)) {
137 struct bio_vec *bvl = NULL;
139 bio_init(bio);
140 if (likely(nr_iovecs)) {
141 unsigned long uninitialized_var(idx);
143 bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
144 if (unlikely(!bvl)) {
145 mempool_free(bio, bs->bio_pool);
146 bio = NULL;
147 goto out;
149 bio->bi_flags |= idx << BIO_POOL_OFFSET;
150 bio->bi_max_vecs = bvec_nr_vecs(idx);
152 bio->bi_io_vec = bvl;
154 out:
155 return bio;
158 struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs)
160 struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
162 if (bio)
163 bio->bi_destructor = bio_fs_destructor;
165 return bio;
168 void zero_fill_bio(struct bio *bio)
170 unsigned long flags;
171 struct bio_vec *bv;
172 int i;
174 bio_for_each_segment(bv, bio, i) {
175 char *data = bvec_kmap_irq(bv, &flags);
176 memset(data, 0, bv->bv_len);
177 flush_dcache_page(bv->bv_page);
178 bvec_kunmap_irq(data, &flags);
181 EXPORT_SYMBOL(zero_fill_bio);
184 * bio_put - release a reference to a bio
185 * @bio: bio to release reference to
187 * Description:
188 * Put a reference to a &struct bio, either one you have gotten with
189 * bio_alloc or bio_get. The last put of a bio will free it.
191 void bio_put(struct bio *bio)
193 BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
196 * last put frees it
198 if (atomic_dec_and_test(&bio->bi_cnt)) {
199 bio->bi_next = NULL;
200 bio->bi_destructor(bio);
204 inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
206 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
207 blk_recount_segments(q, bio);
209 return bio->bi_phys_segments;
213 * __bio_clone - clone a bio
214 * @bio: destination bio
215 * @bio_src: bio to clone
217 * Clone a &bio. Caller will own the returned bio, but not
218 * the actual data it points to. Reference count of returned
219 * bio will be one.
221 void __bio_clone(struct bio *bio, struct bio *bio_src)
223 memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
224 bio_src->bi_max_vecs * sizeof(struct bio_vec));
227 * most users will be overriding ->bi_bdev with a new target,
228 * so we don't set nor calculate new physical/hw segment counts here
230 bio->bi_sector = bio_src->bi_sector;
231 bio->bi_bdev = bio_src->bi_bdev;
232 bio->bi_flags |= 1 << BIO_CLONED;
233 bio->bi_rw = bio_src->bi_rw;
234 bio->bi_vcnt = bio_src->bi_vcnt;
235 bio->bi_size = bio_src->bi_size;
236 bio->bi_idx = bio_src->bi_idx;
240 * bio_clone - clone a bio
241 * @bio: bio to clone
242 * @gfp_mask: allocation priority
244 * Like __bio_clone, only also allocates the returned bio
246 struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask)
248 struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
250 if (!b)
251 return NULL;
253 b->bi_destructor = bio_fs_destructor;
254 __bio_clone(b, bio);
256 if (bio_integrity(bio)) {
257 int ret;
259 ret = bio_integrity_clone(b, bio, fs_bio_set);
261 if (ret < 0)
262 return NULL;
265 return b;
269 * bio_get_nr_vecs - return approx number of vecs
270 * @bdev: I/O target
272 * Return the approximate number of pages we can send to this target.
273 * There's no guarantee that you will be able to fit this number of pages
274 * into a bio, it does not account for dynamic restrictions that vary
275 * on offset.
277 int bio_get_nr_vecs(struct block_device *bdev)
279 struct request_queue *q = bdev_get_queue(bdev);
280 int nr_pages;
282 nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
283 if (nr_pages > q->max_phys_segments)
284 nr_pages = q->max_phys_segments;
285 if (nr_pages > q->max_hw_segments)
286 nr_pages = q->max_hw_segments;
288 return nr_pages;
291 static int __bio_add_page(struct request_queue *q, struct bio *bio, struct page
292 *page, unsigned int len, unsigned int offset,
293 unsigned short max_sectors)
295 int retried_segments = 0;
296 struct bio_vec *bvec;
299 * cloned bio must not modify vec list
301 if (unlikely(bio_flagged(bio, BIO_CLONED)))
302 return 0;
304 if (((bio->bi_size + len) >> 9) > max_sectors)
305 return 0;
308 * For filesystems with a blocksize smaller than the pagesize
309 * we will often be called with the same page as last time and
310 * a consecutive offset. Optimize this special case.
312 if (bio->bi_vcnt > 0) {
313 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
315 if (page == prev->bv_page &&
316 offset == prev->bv_offset + prev->bv_len) {
317 prev->bv_len += len;
319 if (q->merge_bvec_fn) {
320 struct bvec_merge_data bvm = {
321 .bi_bdev = bio->bi_bdev,
322 .bi_sector = bio->bi_sector,
323 .bi_size = bio->bi_size,
324 .bi_rw = bio->bi_rw,
327 if (q->merge_bvec_fn(q, &bvm, prev) < len) {
328 prev->bv_len -= len;
329 return 0;
333 goto done;
337 if (bio->bi_vcnt >= bio->bi_max_vecs)
338 return 0;
341 * we might lose a segment or two here, but rather that than
342 * make this too complex.
345 while (bio->bi_phys_segments >= q->max_phys_segments
346 || bio->bi_phys_segments >= q->max_hw_segments) {
348 if (retried_segments)
349 return 0;
351 retried_segments = 1;
352 blk_recount_segments(q, bio);
356 * setup the new entry, we might clear it again later if we
357 * cannot add the page
359 bvec = &bio->bi_io_vec[bio->bi_vcnt];
360 bvec->bv_page = page;
361 bvec->bv_len = len;
362 bvec->bv_offset = offset;
365 * if queue has other restrictions (eg varying max sector size
366 * depending on offset), it can specify a merge_bvec_fn in the
367 * queue to get further control
369 if (q->merge_bvec_fn) {
370 struct bvec_merge_data bvm = {
371 .bi_bdev = bio->bi_bdev,
372 .bi_sector = bio->bi_sector,
373 .bi_size = bio->bi_size,
374 .bi_rw = bio->bi_rw,
378 * merge_bvec_fn() returns number of bytes it can accept
379 * at this offset
381 if (q->merge_bvec_fn(q, &bvm, bvec) < len) {
382 bvec->bv_page = NULL;
383 bvec->bv_len = 0;
384 bvec->bv_offset = 0;
385 return 0;
389 /* If we may be able to merge these biovecs, force a recount */
390 if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
391 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
393 bio->bi_vcnt++;
394 bio->bi_phys_segments++;
395 done:
396 bio->bi_size += len;
397 return len;
401 * bio_add_pc_page - attempt to add page to bio
402 * @q: the target queue
403 * @bio: destination bio
404 * @page: page to add
405 * @len: vec entry length
406 * @offset: vec entry offset
408 * Attempt to add a page to the bio_vec maplist. This can fail for a
409 * number of reasons, such as the bio being full or target block
410 * device limitations. The target block device must allow bio's
411 * smaller than PAGE_SIZE, so it is always possible to add a single
412 * page to an empty bio. This should only be used by REQ_PC bios.
414 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page,
415 unsigned int len, unsigned int offset)
417 return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors);
421 * bio_add_page - attempt to add page to bio
422 * @bio: destination bio
423 * @page: page to add
424 * @len: vec entry length
425 * @offset: vec entry offset
427 * Attempt to add a page to the bio_vec maplist. This can fail for a
428 * number of reasons, such as the bio being full or target block
429 * device limitations. The target block device must allow bio's
430 * smaller than PAGE_SIZE, so it is always possible to add a single
431 * page to an empty bio.
433 int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
434 unsigned int offset)
436 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
437 return __bio_add_page(q, bio, page, len, offset, q->max_sectors);
440 struct bio_map_data {
441 struct bio_vec *iovecs;
442 struct sg_iovec *sgvecs;
443 int nr_sgvecs;
444 int is_our_pages;
447 static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio,
448 struct sg_iovec *iov, int iov_count,
449 int is_our_pages)
451 memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
452 memcpy(bmd->sgvecs, iov, sizeof(struct sg_iovec) * iov_count);
453 bmd->nr_sgvecs = iov_count;
454 bmd->is_our_pages = is_our_pages;
455 bio->bi_private = bmd;
458 static void bio_free_map_data(struct bio_map_data *bmd)
460 kfree(bmd->iovecs);
461 kfree(bmd->sgvecs);
462 kfree(bmd);
465 static struct bio_map_data *bio_alloc_map_data(int nr_segs, int iov_count,
466 gfp_t gfp_mask)
468 struct bio_map_data *bmd = kmalloc(sizeof(*bmd), gfp_mask);
470 if (!bmd)
471 return NULL;
473 bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, gfp_mask);
474 if (!bmd->iovecs) {
475 kfree(bmd);
476 return NULL;
479 bmd->sgvecs = kmalloc(sizeof(struct sg_iovec) * iov_count, gfp_mask);
480 if (bmd->sgvecs)
481 return bmd;
483 kfree(bmd->iovecs);
484 kfree(bmd);
485 return NULL;
488 static int __bio_copy_iov(struct bio *bio, struct bio_vec *iovecs,
489 struct sg_iovec *iov, int iov_count, int uncopy,
490 int do_free_page)
492 int ret = 0, i;
493 struct bio_vec *bvec;
494 int iov_idx = 0;
495 unsigned int iov_off = 0;
496 int read = bio_data_dir(bio) == READ;
498 __bio_for_each_segment(bvec, bio, i, 0) {
499 char *bv_addr = page_address(bvec->bv_page);
500 unsigned int bv_len = iovecs[i].bv_len;
502 while (bv_len && iov_idx < iov_count) {
503 unsigned int bytes;
504 char *iov_addr;
506 bytes = min_t(unsigned int,
507 iov[iov_idx].iov_len - iov_off, bv_len);
508 iov_addr = iov[iov_idx].iov_base + iov_off;
510 if (!ret) {
511 if (!read && !uncopy)
512 ret = copy_from_user(bv_addr, iov_addr,
513 bytes);
514 if (read && uncopy)
515 ret = copy_to_user(iov_addr, bv_addr,
516 bytes);
518 if (ret)
519 ret = -EFAULT;
522 bv_len -= bytes;
523 bv_addr += bytes;
524 iov_addr += bytes;
525 iov_off += bytes;
527 if (iov[iov_idx].iov_len == iov_off) {
528 iov_idx++;
529 iov_off = 0;
533 if (do_free_page)
534 __free_page(bvec->bv_page);
537 return ret;
541 * bio_uncopy_user - finish previously mapped bio
542 * @bio: bio being terminated
544 * Free pages allocated from bio_copy_user() and write back data
545 * to user space in case of a read.
547 int bio_uncopy_user(struct bio *bio)
549 struct bio_map_data *bmd = bio->bi_private;
550 int ret;
552 ret = __bio_copy_iov(bio, bmd->iovecs, bmd->sgvecs, bmd->nr_sgvecs, 1,
553 bmd->is_our_pages);
555 bio_free_map_data(bmd);
556 bio_put(bio);
557 return ret;
561 * bio_copy_user_iov - copy user data to bio
562 * @q: destination block queue
563 * @map_data: pointer to the rq_map_data holding pages (if necessary)
564 * @iov: the iovec.
565 * @iov_count: number of elements in the iovec
566 * @write_to_vm: bool indicating writing to pages or not
567 * @gfp_mask: memory allocation flags
569 * Prepares and returns a bio for indirect user io, bouncing data
570 * to/from kernel pages as necessary. Must be paired with
571 * call bio_uncopy_user() on io completion.
573 struct bio *bio_copy_user_iov(struct request_queue *q,
574 struct rq_map_data *map_data,
575 struct sg_iovec *iov, int iov_count,
576 int write_to_vm, gfp_t gfp_mask)
578 struct bio_map_data *bmd;
579 struct bio_vec *bvec;
580 struct page *page;
581 struct bio *bio;
582 int i, ret;
583 int nr_pages = 0;
584 unsigned int len = 0;
586 for (i = 0; i < iov_count; i++) {
587 unsigned long uaddr;
588 unsigned long end;
589 unsigned long start;
591 uaddr = (unsigned long)iov[i].iov_base;
592 end = (uaddr + iov[i].iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
593 start = uaddr >> PAGE_SHIFT;
595 nr_pages += end - start;
596 len += iov[i].iov_len;
599 bmd = bio_alloc_map_data(nr_pages, iov_count, gfp_mask);
600 if (!bmd)
601 return ERR_PTR(-ENOMEM);
603 ret = -ENOMEM;
604 bio = bio_alloc(gfp_mask, nr_pages);
605 if (!bio)
606 goto out_bmd;
608 bio->bi_rw |= (!write_to_vm << BIO_RW);
610 ret = 0;
611 i = 0;
612 while (len) {
613 unsigned int bytes;
615 if (map_data)
616 bytes = 1U << (PAGE_SHIFT + map_data->page_order);
617 else
618 bytes = PAGE_SIZE;
620 if (bytes > len)
621 bytes = len;
623 if (map_data) {
624 if (i == map_data->nr_entries) {
625 ret = -ENOMEM;
626 break;
628 page = map_data->pages[i++];
629 } else
630 page = alloc_page(q->bounce_gfp | gfp_mask);
631 if (!page) {
632 ret = -ENOMEM;
633 break;
636 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
637 break;
639 len -= bytes;
642 if (ret)
643 goto cleanup;
646 * success
648 if (!write_to_vm) {
649 ret = __bio_copy_iov(bio, bio->bi_io_vec, iov, iov_count, 0, 0);
650 if (ret)
651 goto cleanup;
654 bio_set_map_data(bmd, bio, iov, iov_count, map_data ? 0 : 1);
655 return bio;
656 cleanup:
657 if (!map_data)
658 bio_for_each_segment(bvec, bio, i)
659 __free_page(bvec->bv_page);
661 bio_put(bio);
662 out_bmd:
663 bio_free_map_data(bmd);
664 return ERR_PTR(ret);
668 * bio_copy_user - copy user data to bio
669 * @q: destination block queue
670 * @map_data: pointer to the rq_map_data holding pages (if necessary)
671 * @uaddr: start of user address
672 * @len: length in bytes
673 * @write_to_vm: bool indicating writing to pages or not
674 * @gfp_mask: memory allocation flags
676 * Prepares and returns a bio for indirect user io, bouncing data
677 * to/from kernel pages as necessary. Must be paired with
678 * call bio_uncopy_user() on io completion.
680 struct bio *bio_copy_user(struct request_queue *q, struct rq_map_data *map_data,
681 unsigned long uaddr, unsigned int len,
682 int write_to_vm, gfp_t gfp_mask)
684 struct sg_iovec iov;
686 iov.iov_base = (void __user *)uaddr;
687 iov.iov_len = len;
689 return bio_copy_user_iov(q, map_data, &iov, 1, write_to_vm, gfp_mask);
692 static struct bio *__bio_map_user_iov(struct request_queue *q,
693 struct block_device *bdev,
694 struct sg_iovec *iov, int iov_count,
695 int write_to_vm, gfp_t gfp_mask)
697 int i, j;
698 int nr_pages = 0;
699 struct page **pages;
700 struct bio *bio;
701 int cur_page = 0;
702 int ret, offset;
704 for (i = 0; i < iov_count; i++) {
705 unsigned long uaddr = (unsigned long)iov[i].iov_base;
706 unsigned long len = iov[i].iov_len;
707 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
708 unsigned long start = uaddr >> PAGE_SHIFT;
710 nr_pages += end - start;
712 * buffer must be aligned to at least hardsector size for now
714 if (uaddr & queue_dma_alignment(q))
715 return ERR_PTR(-EINVAL);
718 if (!nr_pages)
719 return ERR_PTR(-EINVAL);
721 bio = bio_alloc(gfp_mask, nr_pages);
722 if (!bio)
723 return ERR_PTR(-ENOMEM);
725 ret = -ENOMEM;
726 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
727 if (!pages)
728 goto out;
730 for (i = 0; i < iov_count; i++) {
731 unsigned long uaddr = (unsigned long)iov[i].iov_base;
732 unsigned long len = iov[i].iov_len;
733 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
734 unsigned long start = uaddr >> PAGE_SHIFT;
735 const int local_nr_pages = end - start;
736 const int page_limit = cur_page + local_nr_pages;
738 ret = get_user_pages_fast(uaddr, local_nr_pages,
739 write_to_vm, &pages[cur_page]);
740 if (ret < local_nr_pages) {
741 ret = -EFAULT;
742 goto out_unmap;
745 offset = uaddr & ~PAGE_MASK;
746 for (j = cur_page; j < page_limit; j++) {
747 unsigned int bytes = PAGE_SIZE - offset;
749 if (len <= 0)
750 break;
752 if (bytes > len)
753 bytes = len;
756 * sorry...
758 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
759 bytes)
760 break;
762 len -= bytes;
763 offset = 0;
766 cur_page = j;
768 * release the pages we didn't map into the bio, if any
770 while (j < page_limit)
771 page_cache_release(pages[j++]);
774 kfree(pages);
777 * set data direction, and check if mapped pages need bouncing
779 if (!write_to_vm)
780 bio->bi_rw |= (1 << BIO_RW);
782 bio->bi_bdev = bdev;
783 bio->bi_flags |= (1 << BIO_USER_MAPPED);
784 return bio;
786 out_unmap:
787 for (i = 0; i < nr_pages; i++) {
788 if(!pages[i])
789 break;
790 page_cache_release(pages[i]);
792 out:
793 kfree(pages);
794 bio_put(bio);
795 return ERR_PTR(ret);
799 * bio_map_user - map user address into bio
800 * @q: the struct request_queue for the bio
801 * @bdev: destination block device
802 * @uaddr: start of user address
803 * @len: length in bytes
804 * @write_to_vm: bool indicating writing to pages or not
805 * @gfp_mask: memory allocation flags
807 * Map the user space address into a bio suitable for io to a block
808 * device. Returns an error pointer in case of error.
810 struct bio *bio_map_user(struct request_queue *q, struct block_device *bdev,
811 unsigned long uaddr, unsigned int len, int write_to_vm,
812 gfp_t gfp_mask)
814 struct sg_iovec iov;
816 iov.iov_base = (void __user *)uaddr;
817 iov.iov_len = len;
819 return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm, gfp_mask);
823 * bio_map_user_iov - map user sg_iovec table into bio
824 * @q: the struct request_queue for the bio
825 * @bdev: destination block device
826 * @iov: the iovec.
827 * @iov_count: number of elements in the iovec
828 * @write_to_vm: bool indicating writing to pages or not
829 * @gfp_mask: memory allocation flags
831 * Map the user space address into a bio suitable for io to a block
832 * device. Returns an error pointer in case of error.
834 struct bio *bio_map_user_iov(struct request_queue *q, struct block_device *bdev,
835 struct sg_iovec *iov, int iov_count,
836 int write_to_vm, gfp_t gfp_mask)
838 struct bio *bio;
840 bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm,
841 gfp_mask);
842 if (IS_ERR(bio))
843 return bio;
846 * subtle -- if __bio_map_user() ended up bouncing a bio,
847 * it would normally disappear when its bi_end_io is run.
848 * however, we need it for the unmap, so grab an extra
849 * reference to it
851 bio_get(bio);
853 return bio;
856 static void __bio_unmap_user(struct bio *bio)
858 struct bio_vec *bvec;
859 int i;
862 * make sure we dirty pages we wrote to
864 __bio_for_each_segment(bvec, bio, i, 0) {
865 if (bio_data_dir(bio) == READ)
866 set_page_dirty_lock(bvec->bv_page);
868 page_cache_release(bvec->bv_page);
871 bio_put(bio);
875 * bio_unmap_user - unmap a bio
876 * @bio: the bio being unmapped
878 * Unmap a bio previously mapped by bio_map_user(). Must be called with
879 * a process context.
881 * bio_unmap_user() may sleep.
883 void bio_unmap_user(struct bio *bio)
885 __bio_unmap_user(bio);
886 bio_put(bio);
889 static void bio_map_kern_endio(struct bio *bio, int err)
891 bio_put(bio);
895 static struct bio *__bio_map_kern(struct request_queue *q, void *data,
896 unsigned int len, gfp_t gfp_mask)
898 unsigned long kaddr = (unsigned long)data;
899 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
900 unsigned long start = kaddr >> PAGE_SHIFT;
901 const int nr_pages = end - start;
902 int offset, i;
903 struct bio *bio;
905 bio = bio_alloc(gfp_mask, nr_pages);
906 if (!bio)
907 return ERR_PTR(-ENOMEM);
909 offset = offset_in_page(kaddr);
910 for (i = 0; i < nr_pages; i++) {
911 unsigned int bytes = PAGE_SIZE - offset;
913 if (len <= 0)
914 break;
916 if (bytes > len)
917 bytes = len;
919 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
920 offset) < bytes)
921 break;
923 data += bytes;
924 len -= bytes;
925 offset = 0;
928 bio->bi_end_io = bio_map_kern_endio;
929 return bio;
933 * bio_map_kern - map kernel address into bio
934 * @q: the struct request_queue for the bio
935 * @data: pointer to buffer to map
936 * @len: length in bytes
937 * @gfp_mask: allocation flags for bio allocation
939 * Map the kernel address into a bio suitable for io to a block
940 * device. Returns an error pointer in case of error.
942 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
943 gfp_t gfp_mask)
945 struct bio *bio;
947 bio = __bio_map_kern(q, data, len, gfp_mask);
948 if (IS_ERR(bio))
949 return bio;
951 if (bio->bi_size == len)
952 return bio;
955 * Don't support partial mappings.
957 bio_put(bio);
958 return ERR_PTR(-EINVAL);
961 static void bio_copy_kern_endio(struct bio *bio, int err)
963 struct bio_vec *bvec;
964 const int read = bio_data_dir(bio) == READ;
965 struct bio_map_data *bmd = bio->bi_private;
966 int i;
967 char *p = bmd->sgvecs[0].iov_base;
969 __bio_for_each_segment(bvec, bio, i, 0) {
970 char *addr = page_address(bvec->bv_page);
971 int len = bmd->iovecs[i].bv_len;
973 if (read && !err)
974 memcpy(p, addr, len);
976 __free_page(bvec->bv_page);
977 p += len;
980 bio_free_map_data(bmd);
981 bio_put(bio);
985 * bio_copy_kern - copy kernel address into bio
986 * @q: the struct request_queue for the bio
987 * @data: pointer to buffer to copy
988 * @len: length in bytes
989 * @gfp_mask: allocation flags for bio and page allocation
990 * @reading: data direction is READ
992 * copy the kernel address into a bio suitable for io to a block
993 * device. Returns an error pointer in case of error.
995 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
996 gfp_t gfp_mask, int reading)
998 unsigned long kaddr = (unsigned long)data;
999 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1000 unsigned long start = kaddr >> PAGE_SHIFT;
1001 const int nr_pages = end - start;
1002 struct bio *bio;
1003 struct bio_vec *bvec;
1004 struct bio_map_data *bmd;
1005 int i, ret;
1006 struct sg_iovec iov;
1008 iov.iov_base = data;
1009 iov.iov_len = len;
1011 bmd = bio_alloc_map_data(nr_pages, 1, gfp_mask);
1012 if (!bmd)
1013 return ERR_PTR(-ENOMEM);
1015 ret = -ENOMEM;
1016 bio = bio_alloc(gfp_mask, nr_pages);
1017 if (!bio)
1018 goto out_bmd;
1020 while (len) {
1021 struct page *page;
1022 unsigned int bytes = PAGE_SIZE;
1024 if (bytes > len)
1025 bytes = len;
1027 page = alloc_page(q->bounce_gfp | gfp_mask);
1028 if (!page) {
1029 ret = -ENOMEM;
1030 goto cleanup;
1033 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) {
1034 ret = -EINVAL;
1035 goto cleanup;
1038 len -= bytes;
1041 if (!reading) {
1042 void *p = data;
1044 bio_for_each_segment(bvec, bio, i) {
1045 char *addr = page_address(bvec->bv_page);
1047 memcpy(addr, p, bvec->bv_len);
1048 p += bvec->bv_len;
1052 bio->bi_private = bmd;
1053 bio->bi_end_io = bio_copy_kern_endio;
1055 bio_set_map_data(bmd, bio, &iov, 1, 1);
1056 return bio;
1057 cleanup:
1058 bio_for_each_segment(bvec, bio, i)
1059 __free_page(bvec->bv_page);
1061 bio_put(bio);
1062 out_bmd:
1063 bio_free_map_data(bmd);
1065 return ERR_PTR(ret);
1069 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1070 * for performing direct-IO in BIOs.
1072 * The problem is that we cannot run set_page_dirty() from interrupt context
1073 * because the required locks are not interrupt-safe. So what we can do is to
1074 * mark the pages dirty _before_ performing IO. And in interrupt context,
1075 * check that the pages are still dirty. If so, fine. If not, redirty them
1076 * in process context.
1078 * We special-case compound pages here: normally this means reads into hugetlb
1079 * pages. The logic in here doesn't really work right for compound pages
1080 * because the VM does not uniformly chase down the head page in all cases.
1081 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1082 * handle them at all. So we skip compound pages here at an early stage.
1084 * Note that this code is very hard to test under normal circumstances because
1085 * direct-io pins the pages with get_user_pages(). This makes
1086 * is_page_cache_freeable return false, and the VM will not clean the pages.
1087 * But other code (eg, pdflush) could clean the pages if they are mapped
1088 * pagecache.
1090 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1091 * deferred bio dirtying paths.
1095 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1097 void bio_set_pages_dirty(struct bio *bio)
1099 struct bio_vec *bvec = bio->bi_io_vec;
1100 int i;
1102 for (i = 0; i < bio->bi_vcnt; i++) {
1103 struct page *page = bvec[i].bv_page;
1105 if (page && !PageCompound(page))
1106 set_page_dirty_lock(page);
1110 static void bio_release_pages(struct bio *bio)
1112 struct bio_vec *bvec = bio->bi_io_vec;
1113 int i;
1115 for (i = 0; i < bio->bi_vcnt; i++) {
1116 struct page *page = bvec[i].bv_page;
1118 if (page)
1119 put_page(page);
1124 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1125 * If they are, then fine. If, however, some pages are clean then they must
1126 * have been written out during the direct-IO read. So we take another ref on
1127 * the BIO and the offending pages and re-dirty the pages in process context.
1129 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1130 * here on. It will run one page_cache_release() against each page and will
1131 * run one bio_put() against the BIO.
1134 static void bio_dirty_fn(struct work_struct *work);
1136 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1137 static DEFINE_SPINLOCK(bio_dirty_lock);
1138 static struct bio *bio_dirty_list;
1141 * This runs in process context
1143 static void bio_dirty_fn(struct work_struct *work)
1145 unsigned long flags;
1146 struct bio *bio;
1148 spin_lock_irqsave(&bio_dirty_lock, flags);
1149 bio = bio_dirty_list;
1150 bio_dirty_list = NULL;
1151 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1153 while (bio) {
1154 struct bio *next = bio->bi_private;
1156 bio_set_pages_dirty(bio);
1157 bio_release_pages(bio);
1158 bio_put(bio);
1159 bio = next;
1163 void bio_check_pages_dirty(struct bio *bio)
1165 struct bio_vec *bvec = bio->bi_io_vec;
1166 int nr_clean_pages = 0;
1167 int i;
1169 for (i = 0; i < bio->bi_vcnt; i++) {
1170 struct page *page = bvec[i].bv_page;
1172 if (PageDirty(page) || PageCompound(page)) {
1173 page_cache_release(page);
1174 bvec[i].bv_page = NULL;
1175 } else {
1176 nr_clean_pages++;
1180 if (nr_clean_pages) {
1181 unsigned long flags;
1183 spin_lock_irqsave(&bio_dirty_lock, flags);
1184 bio->bi_private = bio_dirty_list;
1185 bio_dirty_list = bio;
1186 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1187 schedule_work(&bio_dirty_work);
1188 } else {
1189 bio_put(bio);
1194 * bio_endio - end I/O on a bio
1195 * @bio: bio
1196 * @error: error, if any
1198 * Description:
1199 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1200 * preferred way to end I/O on a bio, it takes care of clearing
1201 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1202 * established -Exxxx (-EIO, for instance) error values in case
1203 * something went wrong. Noone should call bi_end_io() directly on a
1204 * bio unless they own it and thus know that it has an end_io
1205 * function.
1207 void bio_endio(struct bio *bio, int error)
1209 if (error)
1210 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1211 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1212 error = -EIO;
1214 if (bio->bi_end_io)
1215 bio->bi_end_io(bio, error);
1218 void bio_pair_release(struct bio_pair *bp)
1220 if (atomic_dec_and_test(&bp->cnt)) {
1221 struct bio *master = bp->bio1.bi_private;
1223 bio_endio(master, bp->error);
1224 mempool_free(bp, bp->bio2.bi_private);
1228 static void bio_pair_end_1(struct bio *bi, int err)
1230 struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
1232 if (err)
1233 bp->error = err;
1235 bio_pair_release(bp);
1238 static void bio_pair_end_2(struct bio *bi, int err)
1240 struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
1242 if (err)
1243 bp->error = err;
1245 bio_pair_release(bp);
1249 * split a bio - only worry about a bio with a single page
1250 * in it's iovec
1252 struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
1254 struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
1256 if (!bp)
1257 return bp;
1259 blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi,
1260 bi->bi_sector + first_sectors);
1262 BUG_ON(bi->bi_vcnt != 1);
1263 BUG_ON(bi->bi_idx != 0);
1264 atomic_set(&bp->cnt, 3);
1265 bp->error = 0;
1266 bp->bio1 = *bi;
1267 bp->bio2 = *bi;
1268 bp->bio2.bi_sector += first_sectors;
1269 bp->bio2.bi_size -= first_sectors << 9;
1270 bp->bio1.bi_size = first_sectors << 9;
1272 bp->bv1 = bi->bi_io_vec[0];
1273 bp->bv2 = bi->bi_io_vec[0];
1274 bp->bv2.bv_offset += first_sectors << 9;
1275 bp->bv2.bv_len -= first_sectors << 9;
1276 bp->bv1.bv_len = first_sectors << 9;
1278 bp->bio1.bi_io_vec = &bp->bv1;
1279 bp->bio2.bi_io_vec = &bp->bv2;
1281 bp->bio1.bi_max_vecs = 1;
1282 bp->bio2.bi_max_vecs = 1;
1284 bp->bio1.bi_end_io = bio_pair_end_1;
1285 bp->bio2.bi_end_io = bio_pair_end_2;
1287 bp->bio1.bi_private = bi;
1288 bp->bio2.bi_private = pool;
1290 if (bio_integrity(bi))
1291 bio_integrity_split(bi, bp, first_sectors);
1293 return bp;
1298 * create memory pools for biovec's in a bio_set.
1299 * use the global biovec slabs created for general use.
1301 static int biovec_create_pools(struct bio_set *bs, int pool_entries)
1303 int i;
1305 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1306 struct biovec_slab *bp = bvec_slabs + i;
1307 mempool_t **bvp = bs->bvec_pools + i;
1309 *bvp = mempool_create_slab_pool(pool_entries, bp->slab);
1310 if (!*bvp)
1311 return -ENOMEM;
1313 return 0;
1316 static void biovec_free_pools(struct bio_set *bs)
1318 int i;
1320 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1321 mempool_t *bvp = bs->bvec_pools[i];
1323 if (bvp)
1324 mempool_destroy(bvp);
1329 void bioset_free(struct bio_set *bs)
1331 if (bs->bio_pool)
1332 mempool_destroy(bs->bio_pool);
1334 bioset_integrity_free(bs);
1335 biovec_free_pools(bs);
1337 kfree(bs);
1340 struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size)
1342 struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1344 if (!bs)
1345 return NULL;
1347 bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab);
1348 if (!bs->bio_pool)
1349 goto bad;
1351 if (bioset_integrity_create(bs, bio_pool_size))
1352 goto bad;
1354 if (!biovec_create_pools(bs, bvec_pool_size))
1355 return bs;
1357 bad:
1358 bioset_free(bs);
1359 return NULL;
1362 static void __init biovec_init_slabs(void)
1364 int i;
1366 for (i = 0; i < BIOVEC_NR_POOLS; i++) {
1367 int size;
1368 struct biovec_slab *bvs = bvec_slabs + i;
1370 size = bvs->nr_vecs * sizeof(struct bio_vec);
1371 bvs->slab = kmem_cache_create(bvs->name, size, 0,
1372 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1376 static int __init init_bio(void)
1378 bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1380 bio_integrity_init_slab();
1381 biovec_init_slabs();
1383 fs_bio_set = bioset_create(BIO_POOL_SIZE, 2);
1384 if (!fs_bio_set)
1385 panic("bio: can't allocate bios\n");
1387 bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES,
1388 sizeof(struct bio_pair));
1389 if (!bio_split_pool)
1390 panic("bio: can't create split pool\n");
1392 return 0;
1395 subsys_initcall(init_bio);
1397 EXPORT_SYMBOL(bio_alloc);
1398 EXPORT_SYMBOL(bio_put);
1399 EXPORT_SYMBOL(bio_free);
1400 EXPORT_SYMBOL(bio_endio);
1401 EXPORT_SYMBOL(bio_init);
1402 EXPORT_SYMBOL(__bio_clone);
1403 EXPORT_SYMBOL(bio_clone);
1404 EXPORT_SYMBOL(bio_phys_segments);
1405 EXPORT_SYMBOL(bio_add_page);
1406 EXPORT_SYMBOL(bio_add_pc_page);
1407 EXPORT_SYMBOL(bio_get_nr_vecs);
1408 EXPORT_SYMBOL(bio_map_user);
1409 EXPORT_SYMBOL(bio_unmap_user);
1410 EXPORT_SYMBOL(bio_map_kern);
1411 EXPORT_SYMBOL(bio_copy_kern);
1412 EXPORT_SYMBOL(bio_pair_release);
1413 EXPORT_SYMBOL(bio_split);
1414 EXPORT_SYMBOL(bio_split_pool);
1415 EXPORT_SYMBOL(bio_copy_user);
1416 EXPORT_SYMBOL(bio_uncopy_user);
1417 EXPORT_SYMBOL(bioset_create);
1418 EXPORT_SYMBOL(bioset_free);
1419 EXPORT_SYMBOL(bio_alloc_bioset);