Drivers: hv: util: introduce hv_utils_transport abstraction
[linux-2.6/btrfs-unstable.git] / fs / splice.c
blobbfe62ae40f40920e6b95fa8ce16cc3130b8b0972
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include "internal.h"
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
49 lock_page(page);
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
83 out_unlock:
84 unlock_page(page);
85 return 1;
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
103 int err;
105 if (!PageUptodate(page)) {
106 lock_page(page);
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
126 * Page is ok afterall, we are done.
128 unlock_page(page);
131 return 0;
132 error:
133 unlock_page(page);
134 return err;
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
145 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
155 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
163 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
182 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
188 ret = 0;
189 do_wakeup = 0;
190 page_nr = 0;
192 pipe_lock(pipe);
194 for (;;) {
195 if (!pipe->readers) {
196 send_sig(SIGPIPE, current, 0);
197 if (!ret)
198 ret = -EPIPE;
199 break;
202 if (pipe->nrbufs < pipe->buffers) {
203 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
204 struct pipe_buffer *buf = pipe->bufs + newbuf;
206 buf->page = spd->pages[page_nr];
207 buf->offset = spd->partial[page_nr].offset;
208 buf->len = spd->partial[page_nr].len;
209 buf->private = spd->partial[page_nr].private;
210 buf->ops = spd->ops;
211 if (spd->flags & SPLICE_F_GIFT)
212 buf->flags |= PIPE_BUF_FLAG_GIFT;
214 pipe->nrbufs++;
215 page_nr++;
216 ret += buf->len;
218 if (pipe->files)
219 do_wakeup = 1;
221 if (!--spd->nr_pages)
222 break;
223 if (pipe->nrbufs < pipe->buffers)
224 continue;
226 break;
229 if (spd->flags & SPLICE_F_NONBLOCK) {
230 if (!ret)
231 ret = -EAGAIN;
232 break;
235 if (signal_pending(current)) {
236 if (!ret)
237 ret = -ERESTARTSYS;
238 break;
241 if (do_wakeup) {
242 smp_mb();
243 if (waitqueue_active(&pipe->wait))
244 wake_up_interruptible_sync(&pipe->wait);
245 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
246 do_wakeup = 0;
249 pipe->waiting_writers++;
250 pipe_wait(pipe);
251 pipe->waiting_writers--;
254 pipe_unlock(pipe);
256 if (do_wakeup)
257 wakeup_pipe_readers(pipe);
259 while (page_nr < spd_pages)
260 spd->spd_release(spd, page_nr++);
262 return ret;
265 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 page_cache_release(spd->pages[i]);
271 * Check if we need to grow the arrays holding pages and partial page
272 * descriptions.
274 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278 spd->nr_pages_max = buffers;
279 if (buffers <= PIPE_DEF_BUFFERS)
280 return 0;
282 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
283 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285 if (spd->pages && spd->partial)
286 return 0;
288 kfree(spd->pages);
289 kfree(spd->partial);
290 return -ENOMEM;
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296 return;
298 kfree(spd->pages);
299 kfree(spd->partial);
302 static int
303 __generic_file_splice_read(struct file *in, loff_t *ppos,
304 struct pipe_inode_info *pipe, size_t len,
305 unsigned int flags)
307 struct address_space *mapping = in->f_mapping;
308 unsigned int loff, nr_pages, req_pages;
309 struct page *pages[PIPE_DEF_BUFFERS];
310 struct partial_page partial[PIPE_DEF_BUFFERS];
311 struct page *page;
312 pgoff_t index, end_index;
313 loff_t isize;
314 int error, page_nr;
315 struct splice_pipe_desc spd = {
316 .pages = pages,
317 .partial = partial,
318 .nr_pages_max = PIPE_DEF_BUFFERS,
319 .flags = flags,
320 .ops = &page_cache_pipe_buf_ops,
321 .spd_release = spd_release_page,
324 if (splice_grow_spd(pipe, &spd))
325 return -ENOMEM;
327 index = *ppos >> PAGE_CACHE_SHIFT;
328 loff = *ppos & ~PAGE_CACHE_MASK;
329 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
330 nr_pages = min(req_pages, spd.nr_pages_max);
333 * Lookup the (hopefully) full range of pages we need.
335 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
336 index += spd.nr_pages;
339 * If find_get_pages_contig() returned fewer pages than we needed,
340 * readahead/allocate the rest and fill in the holes.
342 if (spd.nr_pages < nr_pages)
343 page_cache_sync_readahead(mapping, &in->f_ra, in,
344 index, req_pages - spd.nr_pages);
346 error = 0;
347 while (spd.nr_pages < nr_pages) {
349 * Page could be there, find_get_pages_contig() breaks on
350 * the first hole.
352 page = find_get_page(mapping, index);
353 if (!page) {
355 * page didn't exist, allocate one.
357 page = page_cache_alloc_cold(mapping);
358 if (!page)
359 break;
361 error = add_to_page_cache_lru(page, mapping, index,
362 GFP_KERNEL);
363 if (unlikely(error)) {
364 page_cache_release(page);
365 if (error == -EEXIST)
366 continue;
367 break;
370 * add_to_page_cache() locks the page, unlock it
371 * to avoid convoluting the logic below even more.
373 unlock_page(page);
376 spd.pages[spd.nr_pages++] = page;
377 index++;
381 * Now loop over the map and see if we need to start IO on any
382 * pages, fill in the partial map, etc.
384 index = *ppos >> PAGE_CACHE_SHIFT;
385 nr_pages = spd.nr_pages;
386 spd.nr_pages = 0;
387 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
388 unsigned int this_len;
390 if (!len)
391 break;
394 * this_len is the max we'll use from this page
396 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
397 page = spd.pages[page_nr];
399 if (PageReadahead(page))
400 page_cache_async_readahead(mapping, &in->f_ra, in,
401 page, index, req_pages - page_nr);
404 * If the page isn't uptodate, we may need to start io on it
406 if (!PageUptodate(page)) {
407 lock_page(page);
410 * Page was truncated, or invalidated by the
411 * filesystem. Redo the find/create, but this time the
412 * page is kept locked, so there's no chance of another
413 * race with truncate/invalidate.
415 if (!page->mapping) {
416 unlock_page(page);
417 page = find_or_create_page(mapping, index,
418 mapping_gfp_mask(mapping));
420 if (!page) {
421 error = -ENOMEM;
422 break;
424 page_cache_release(spd.pages[page_nr]);
425 spd.pages[page_nr] = page;
428 * page was already under io and is now done, great
430 if (PageUptodate(page)) {
431 unlock_page(page);
432 goto fill_it;
436 * need to read in the page
438 error = mapping->a_ops->readpage(in, page);
439 if (unlikely(error)) {
441 * We really should re-lookup the page here,
442 * but it complicates things a lot. Instead
443 * lets just do what we already stored, and
444 * we'll get it the next time we are called.
446 if (error == AOP_TRUNCATED_PAGE)
447 error = 0;
449 break;
452 fill_it:
454 * i_size must be checked after PageUptodate.
456 isize = i_size_read(mapping->host);
457 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
458 if (unlikely(!isize || index > end_index))
459 break;
462 * if this is the last page, see if we need to shrink
463 * the length and stop
465 if (end_index == index) {
466 unsigned int plen;
469 * max good bytes in this page
471 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
472 if (plen <= loff)
473 break;
476 * force quit after adding this page
478 this_len = min(this_len, plen - loff);
479 len = this_len;
482 spd.partial[page_nr].offset = loff;
483 spd.partial[page_nr].len = this_len;
484 len -= this_len;
485 loff = 0;
486 spd.nr_pages++;
487 index++;
491 * Release any pages at the end, if we quit early. 'page_nr' is how far
492 * we got, 'nr_pages' is how many pages are in the map.
494 while (page_nr < nr_pages)
495 page_cache_release(spd.pages[page_nr++]);
496 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498 if (spd.nr_pages)
499 error = splice_to_pipe(pipe, &spd);
501 splice_shrink_spd(&spd);
502 return error;
506 * generic_file_splice_read - splice data from file to a pipe
507 * @in: file to splice from
508 * @ppos: position in @in
509 * @pipe: pipe to splice to
510 * @len: number of bytes to splice
511 * @flags: splice modifier flags
513 * Description:
514 * Will read pages from given file and fill them into a pipe. Can be
515 * used as long as the address_space operations for the source implements
516 * a readpage() hook.
519 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
520 struct pipe_inode_info *pipe, size_t len,
521 unsigned int flags)
523 loff_t isize, left;
524 int ret;
526 if (IS_DAX(in->f_mapping->host))
527 return default_file_splice_read(in, ppos, pipe, len, flags);
529 isize = i_size_read(in->f_mapping->host);
530 if (unlikely(*ppos >= isize))
531 return 0;
533 left = isize - *ppos;
534 if (unlikely(left < len))
535 len = left;
537 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
538 if (ret > 0) {
539 *ppos += ret;
540 file_accessed(in);
543 return ret;
545 EXPORT_SYMBOL(generic_file_splice_read);
547 static const struct pipe_buf_operations default_pipe_buf_ops = {
548 .can_merge = 0,
549 .confirm = generic_pipe_buf_confirm,
550 .release = generic_pipe_buf_release,
551 .steal = generic_pipe_buf_steal,
552 .get = generic_pipe_buf_get,
555 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
556 struct pipe_buffer *buf)
558 return 1;
561 /* Pipe buffer operations for a socket and similar. */
562 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
563 .can_merge = 0,
564 .confirm = generic_pipe_buf_confirm,
565 .release = generic_pipe_buf_release,
566 .steal = generic_pipe_buf_nosteal,
567 .get = generic_pipe_buf_get,
569 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
571 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
572 unsigned long vlen, loff_t offset)
574 mm_segment_t old_fs;
575 loff_t pos = offset;
576 ssize_t res;
578 old_fs = get_fs();
579 set_fs(get_ds());
580 /* The cast to a user pointer is valid due to the set_fs() */
581 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
582 set_fs(old_fs);
584 return res;
587 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
588 loff_t pos)
590 mm_segment_t old_fs;
591 ssize_t res;
593 old_fs = get_fs();
594 set_fs(get_ds());
595 /* The cast to a user pointer is valid due to the set_fs() */
596 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
597 set_fs(old_fs);
599 return res;
601 EXPORT_SYMBOL(kernel_write);
603 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
604 struct pipe_inode_info *pipe, size_t len,
605 unsigned int flags)
607 unsigned int nr_pages;
608 unsigned int nr_freed;
609 size_t offset;
610 struct page *pages[PIPE_DEF_BUFFERS];
611 struct partial_page partial[PIPE_DEF_BUFFERS];
612 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
613 ssize_t res;
614 size_t this_len;
615 int error;
616 int i;
617 struct splice_pipe_desc spd = {
618 .pages = pages,
619 .partial = partial,
620 .nr_pages_max = PIPE_DEF_BUFFERS,
621 .flags = flags,
622 .ops = &default_pipe_buf_ops,
623 .spd_release = spd_release_page,
626 if (splice_grow_spd(pipe, &spd))
627 return -ENOMEM;
629 res = -ENOMEM;
630 vec = __vec;
631 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
632 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
633 if (!vec)
634 goto shrink_ret;
637 offset = *ppos & ~PAGE_CACHE_MASK;
638 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
640 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
641 struct page *page;
643 page = alloc_page(GFP_USER);
644 error = -ENOMEM;
645 if (!page)
646 goto err;
648 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
649 vec[i].iov_base = (void __user *) page_address(page);
650 vec[i].iov_len = this_len;
651 spd.pages[i] = page;
652 spd.nr_pages++;
653 len -= this_len;
654 offset = 0;
657 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
658 if (res < 0) {
659 error = res;
660 goto err;
663 error = 0;
664 if (!res)
665 goto err;
667 nr_freed = 0;
668 for (i = 0; i < spd.nr_pages; i++) {
669 this_len = min_t(size_t, vec[i].iov_len, res);
670 spd.partial[i].offset = 0;
671 spd.partial[i].len = this_len;
672 if (!this_len) {
673 __free_page(spd.pages[i]);
674 spd.pages[i] = NULL;
675 nr_freed++;
677 res -= this_len;
679 spd.nr_pages -= nr_freed;
681 res = splice_to_pipe(pipe, &spd);
682 if (res > 0)
683 *ppos += res;
685 shrink_ret:
686 if (vec != __vec)
687 kfree(vec);
688 splice_shrink_spd(&spd);
689 return res;
691 err:
692 for (i = 0; i < spd.nr_pages; i++)
693 __free_page(spd.pages[i]);
695 res = error;
696 goto shrink_ret;
698 EXPORT_SYMBOL(default_file_splice_read);
701 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
702 * using sendpage(). Return the number of bytes sent.
704 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
705 struct pipe_buffer *buf, struct splice_desc *sd)
707 struct file *file = sd->u.file;
708 loff_t pos = sd->pos;
709 int more;
711 if (!likely(file->f_op->sendpage))
712 return -EINVAL;
714 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
716 if (sd->len < sd->total_len && pipe->nrbufs > 1)
717 more |= MSG_SENDPAGE_NOTLAST;
719 return file->f_op->sendpage(file, buf->page, buf->offset,
720 sd->len, &pos, more);
723 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
725 smp_mb();
726 if (waitqueue_active(&pipe->wait))
727 wake_up_interruptible(&pipe->wait);
728 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
732 * splice_from_pipe_feed - feed available data from a pipe to a file
733 * @pipe: pipe to splice from
734 * @sd: information to @actor
735 * @actor: handler that splices the data
737 * Description:
738 * This function loops over the pipe and calls @actor to do the
739 * actual moving of a single struct pipe_buffer to the desired
740 * destination. It returns when there's no more buffers left in
741 * the pipe or if the requested number of bytes (@sd->total_len)
742 * have been copied. It returns a positive number (one) if the
743 * pipe needs to be filled with more data, zero if the required
744 * number of bytes have been copied and -errno on error.
746 * This, together with splice_from_pipe_{begin,end,next}, may be
747 * used to implement the functionality of __splice_from_pipe() when
748 * locking is required around copying the pipe buffers to the
749 * destination.
751 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
752 splice_actor *actor)
754 int ret;
756 while (pipe->nrbufs) {
757 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
758 const struct pipe_buf_operations *ops = buf->ops;
760 sd->len = buf->len;
761 if (sd->len > sd->total_len)
762 sd->len = sd->total_len;
764 ret = buf->ops->confirm(pipe, buf);
765 if (unlikely(ret)) {
766 if (ret == -ENODATA)
767 ret = 0;
768 return ret;
771 ret = actor(pipe, buf, sd);
772 if (ret <= 0)
773 return ret;
775 buf->offset += ret;
776 buf->len -= ret;
778 sd->num_spliced += ret;
779 sd->len -= ret;
780 sd->pos += ret;
781 sd->total_len -= ret;
783 if (!buf->len) {
784 buf->ops = NULL;
785 ops->release(pipe, buf);
786 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
787 pipe->nrbufs--;
788 if (pipe->files)
789 sd->need_wakeup = true;
792 if (!sd->total_len)
793 return 0;
796 return 1;
800 * splice_from_pipe_next - wait for some data to splice from
801 * @pipe: pipe to splice from
802 * @sd: information about the splice operation
804 * Description:
805 * This function will wait for some data and return a positive
806 * value (one) if pipe buffers are available. It will return zero
807 * or -errno if no more data needs to be spliced.
809 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
811 while (!pipe->nrbufs) {
812 if (!pipe->writers)
813 return 0;
815 if (!pipe->waiting_writers && sd->num_spliced)
816 return 0;
818 if (sd->flags & SPLICE_F_NONBLOCK)
819 return -EAGAIN;
821 if (signal_pending(current))
822 return -ERESTARTSYS;
824 if (sd->need_wakeup) {
825 wakeup_pipe_writers(pipe);
826 sd->need_wakeup = false;
829 pipe_wait(pipe);
832 return 1;
836 * splice_from_pipe_begin - start splicing from pipe
837 * @sd: information about the splice operation
839 * Description:
840 * This function should be called before a loop containing
841 * splice_from_pipe_next() and splice_from_pipe_feed() to
842 * initialize the necessary fields of @sd.
844 static void splice_from_pipe_begin(struct splice_desc *sd)
846 sd->num_spliced = 0;
847 sd->need_wakeup = false;
851 * splice_from_pipe_end - finish splicing from pipe
852 * @pipe: pipe to splice from
853 * @sd: information about the splice operation
855 * Description:
856 * This function will wake up pipe writers if necessary. It should
857 * be called after a loop containing splice_from_pipe_next() and
858 * splice_from_pipe_feed().
860 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
862 if (sd->need_wakeup)
863 wakeup_pipe_writers(pipe);
867 * __splice_from_pipe - splice data from a pipe to given actor
868 * @pipe: pipe to splice from
869 * @sd: information to @actor
870 * @actor: handler that splices the data
872 * Description:
873 * This function does little more than loop over the pipe and call
874 * @actor to do the actual moving of a single struct pipe_buffer to
875 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
876 * pipe_to_user.
879 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
880 splice_actor *actor)
882 int ret;
884 splice_from_pipe_begin(sd);
885 do {
886 ret = splice_from_pipe_next(pipe, sd);
887 if (ret > 0)
888 ret = splice_from_pipe_feed(pipe, sd, actor);
889 } while (ret > 0);
890 splice_from_pipe_end(pipe, sd);
892 return sd->num_spliced ? sd->num_spliced : ret;
894 EXPORT_SYMBOL(__splice_from_pipe);
897 * splice_from_pipe - splice data from a pipe to a file
898 * @pipe: pipe to splice from
899 * @out: file to splice to
900 * @ppos: position in @out
901 * @len: how many bytes to splice
902 * @flags: splice modifier flags
903 * @actor: handler that splices the data
905 * Description:
906 * See __splice_from_pipe. This function locks the pipe inode,
907 * otherwise it's identical to __splice_from_pipe().
910 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
911 loff_t *ppos, size_t len, unsigned int flags,
912 splice_actor *actor)
914 ssize_t ret;
915 struct splice_desc sd = {
916 .total_len = len,
917 .flags = flags,
918 .pos = *ppos,
919 .u.file = out,
922 pipe_lock(pipe);
923 ret = __splice_from_pipe(pipe, &sd, actor);
924 pipe_unlock(pipe);
926 return ret;
930 * iter_file_splice_write - splice data from a pipe to a file
931 * @pipe: pipe info
932 * @out: file to write to
933 * @ppos: position in @out
934 * @len: number of bytes to splice
935 * @flags: splice modifier flags
937 * Description:
938 * Will either move or copy pages (determined by @flags options) from
939 * the given pipe inode to the given file.
940 * This one is ->write_iter-based.
943 ssize_t
944 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
945 loff_t *ppos, size_t len, unsigned int flags)
947 struct splice_desc sd = {
948 .total_len = len,
949 .flags = flags,
950 .pos = *ppos,
951 .u.file = out,
953 int nbufs = pipe->buffers;
954 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
955 GFP_KERNEL);
956 ssize_t ret;
958 if (unlikely(!array))
959 return -ENOMEM;
961 pipe_lock(pipe);
963 splice_from_pipe_begin(&sd);
964 while (sd.total_len) {
965 struct iov_iter from;
966 size_t left;
967 int n, idx;
969 ret = splice_from_pipe_next(pipe, &sd);
970 if (ret <= 0)
971 break;
973 if (unlikely(nbufs < pipe->buffers)) {
974 kfree(array);
975 nbufs = pipe->buffers;
976 array = kcalloc(nbufs, sizeof(struct bio_vec),
977 GFP_KERNEL);
978 if (!array) {
979 ret = -ENOMEM;
980 break;
984 /* build the vector */
985 left = sd.total_len;
986 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
987 struct pipe_buffer *buf = pipe->bufs + idx;
988 size_t this_len = buf->len;
990 if (this_len > left)
991 this_len = left;
993 if (idx == pipe->buffers - 1)
994 idx = -1;
996 ret = buf->ops->confirm(pipe, buf);
997 if (unlikely(ret)) {
998 if (ret == -ENODATA)
999 ret = 0;
1000 goto done;
1003 array[n].bv_page = buf->page;
1004 array[n].bv_len = this_len;
1005 array[n].bv_offset = buf->offset;
1006 left -= this_len;
1009 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1010 sd.total_len - left);
1011 ret = vfs_iter_write(out, &from, &sd.pos);
1012 if (ret <= 0)
1013 break;
1015 sd.num_spliced += ret;
1016 sd.total_len -= ret;
1017 *ppos = sd.pos;
1019 /* dismiss the fully eaten buffers, adjust the partial one */
1020 while (ret) {
1021 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1022 if (ret >= buf->len) {
1023 const struct pipe_buf_operations *ops = buf->ops;
1024 ret -= buf->len;
1025 buf->len = 0;
1026 buf->ops = NULL;
1027 ops->release(pipe, buf);
1028 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1029 pipe->nrbufs--;
1030 if (pipe->files)
1031 sd.need_wakeup = true;
1032 } else {
1033 buf->offset += ret;
1034 buf->len -= ret;
1035 ret = 0;
1039 done:
1040 kfree(array);
1041 splice_from_pipe_end(pipe, &sd);
1043 pipe_unlock(pipe);
1045 if (sd.num_spliced)
1046 ret = sd.num_spliced;
1048 return ret;
1051 EXPORT_SYMBOL(iter_file_splice_write);
1053 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1054 struct splice_desc *sd)
1056 int ret;
1057 void *data;
1058 loff_t tmp = sd->pos;
1060 data = kmap(buf->page);
1061 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1062 kunmap(buf->page);
1064 return ret;
1067 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1068 struct file *out, loff_t *ppos,
1069 size_t len, unsigned int flags)
1071 ssize_t ret;
1073 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1074 if (ret > 0)
1075 *ppos += ret;
1077 return ret;
1081 * generic_splice_sendpage - splice data from a pipe to a socket
1082 * @pipe: pipe to splice from
1083 * @out: socket to write to
1084 * @ppos: position in @out
1085 * @len: number of bytes to splice
1086 * @flags: splice modifier flags
1088 * Description:
1089 * Will send @len bytes from the pipe to a network socket. No data copying
1090 * is involved.
1093 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1094 loff_t *ppos, size_t len, unsigned int flags)
1096 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1099 EXPORT_SYMBOL(generic_splice_sendpage);
1102 * Attempt to initiate a splice from pipe to file.
1104 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1105 loff_t *ppos, size_t len, unsigned int flags)
1107 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1108 loff_t *, size_t, unsigned int);
1110 if (out->f_op->splice_write)
1111 splice_write = out->f_op->splice_write;
1112 else
1113 splice_write = default_file_splice_write;
1115 return splice_write(pipe, out, ppos, len, flags);
1119 * Attempt to initiate a splice from a file to a pipe.
1121 static long do_splice_to(struct file *in, loff_t *ppos,
1122 struct pipe_inode_info *pipe, size_t len,
1123 unsigned int flags)
1125 ssize_t (*splice_read)(struct file *, loff_t *,
1126 struct pipe_inode_info *, size_t, unsigned int);
1127 int ret;
1129 if (unlikely(!(in->f_mode & FMODE_READ)))
1130 return -EBADF;
1132 ret = rw_verify_area(READ, in, ppos, len);
1133 if (unlikely(ret < 0))
1134 return ret;
1136 if (in->f_op->splice_read)
1137 splice_read = in->f_op->splice_read;
1138 else
1139 splice_read = default_file_splice_read;
1141 return splice_read(in, ppos, pipe, len, flags);
1145 * splice_direct_to_actor - splices data directly between two non-pipes
1146 * @in: file to splice from
1147 * @sd: actor information on where to splice to
1148 * @actor: handles the data splicing
1150 * Description:
1151 * This is a special case helper to splice directly between two
1152 * points, without requiring an explicit pipe. Internally an allocated
1153 * pipe is cached in the process, and reused during the lifetime of
1154 * that process.
1157 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1158 splice_direct_actor *actor)
1160 struct pipe_inode_info *pipe;
1161 long ret, bytes;
1162 umode_t i_mode;
1163 size_t len;
1164 int i, flags, more;
1167 * We require the input being a regular file, as we don't want to
1168 * randomly drop data for eg socket -> socket splicing. Use the
1169 * piped splicing for that!
1171 i_mode = file_inode(in)->i_mode;
1172 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1173 return -EINVAL;
1176 * neither in nor out is a pipe, setup an internal pipe attached to
1177 * 'out' and transfer the wanted data from 'in' to 'out' through that
1179 pipe = current->splice_pipe;
1180 if (unlikely(!pipe)) {
1181 pipe = alloc_pipe_info();
1182 if (!pipe)
1183 return -ENOMEM;
1186 * We don't have an immediate reader, but we'll read the stuff
1187 * out of the pipe right after the splice_to_pipe(). So set
1188 * PIPE_READERS appropriately.
1190 pipe->readers = 1;
1192 current->splice_pipe = pipe;
1196 * Do the splice.
1198 ret = 0;
1199 bytes = 0;
1200 len = sd->total_len;
1201 flags = sd->flags;
1204 * Don't block on output, we have to drain the direct pipe.
1206 sd->flags &= ~SPLICE_F_NONBLOCK;
1207 more = sd->flags & SPLICE_F_MORE;
1209 while (len) {
1210 size_t read_len;
1211 loff_t pos = sd->pos, prev_pos = pos;
1213 ret = do_splice_to(in, &pos, pipe, len, flags);
1214 if (unlikely(ret <= 0))
1215 goto out_release;
1217 read_len = ret;
1218 sd->total_len = read_len;
1221 * If more data is pending, set SPLICE_F_MORE
1222 * If this is the last data and SPLICE_F_MORE was not set
1223 * initially, clears it.
1225 if (read_len < len)
1226 sd->flags |= SPLICE_F_MORE;
1227 else if (!more)
1228 sd->flags &= ~SPLICE_F_MORE;
1230 * NOTE: nonblocking mode only applies to the input. We
1231 * must not do the output in nonblocking mode as then we
1232 * could get stuck data in the internal pipe:
1234 ret = actor(pipe, sd);
1235 if (unlikely(ret <= 0)) {
1236 sd->pos = prev_pos;
1237 goto out_release;
1240 bytes += ret;
1241 len -= ret;
1242 sd->pos = pos;
1244 if (ret < read_len) {
1245 sd->pos = prev_pos + ret;
1246 goto out_release;
1250 done:
1251 pipe->nrbufs = pipe->curbuf = 0;
1252 file_accessed(in);
1253 return bytes;
1255 out_release:
1257 * If we did an incomplete transfer we must release
1258 * the pipe buffers in question:
1260 for (i = 0; i < pipe->buffers; i++) {
1261 struct pipe_buffer *buf = pipe->bufs + i;
1263 if (buf->ops) {
1264 buf->ops->release(pipe, buf);
1265 buf->ops = NULL;
1269 if (!bytes)
1270 bytes = ret;
1272 goto done;
1274 EXPORT_SYMBOL(splice_direct_to_actor);
1276 static int direct_splice_actor(struct pipe_inode_info *pipe,
1277 struct splice_desc *sd)
1279 struct file *file = sd->u.file;
1281 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1282 sd->flags);
1286 * do_splice_direct - splices data directly between two files
1287 * @in: file to splice from
1288 * @ppos: input file offset
1289 * @out: file to splice to
1290 * @opos: output file offset
1291 * @len: number of bytes to splice
1292 * @flags: splice modifier flags
1294 * Description:
1295 * For use by do_sendfile(). splice can easily emulate sendfile, but
1296 * doing it in the application would incur an extra system call
1297 * (splice in + splice out, as compared to just sendfile()). So this helper
1298 * can splice directly through a process-private pipe.
1301 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1302 loff_t *opos, size_t len, unsigned int flags)
1304 struct splice_desc sd = {
1305 .len = len,
1306 .total_len = len,
1307 .flags = flags,
1308 .pos = *ppos,
1309 .u.file = out,
1310 .opos = opos,
1312 long ret;
1314 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1315 return -EBADF;
1317 if (unlikely(out->f_flags & O_APPEND))
1318 return -EINVAL;
1320 ret = rw_verify_area(WRITE, out, opos, len);
1321 if (unlikely(ret < 0))
1322 return ret;
1324 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1325 if (ret > 0)
1326 *ppos = sd.pos;
1328 return ret;
1330 EXPORT_SYMBOL(do_splice_direct);
1332 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1333 struct pipe_inode_info *opipe,
1334 size_t len, unsigned int flags);
1337 * Determine where to splice to/from.
1339 static long do_splice(struct file *in, loff_t __user *off_in,
1340 struct file *out, loff_t __user *off_out,
1341 size_t len, unsigned int flags)
1343 struct pipe_inode_info *ipipe;
1344 struct pipe_inode_info *opipe;
1345 loff_t offset;
1346 long ret;
1348 ipipe = get_pipe_info(in);
1349 opipe = get_pipe_info(out);
1351 if (ipipe && opipe) {
1352 if (off_in || off_out)
1353 return -ESPIPE;
1355 if (!(in->f_mode & FMODE_READ))
1356 return -EBADF;
1358 if (!(out->f_mode & FMODE_WRITE))
1359 return -EBADF;
1361 /* Splicing to self would be fun, but... */
1362 if (ipipe == opipe)
1363 return -EINVAL;
1365 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1368 if (ipipe) {
1369 if (off_in)
1370 return -ESPIPE;
1371 if (off_out) {
1372 if (!(out->f_mode & FMODE_PWRITE))
1373 return -EINVAL;
1374 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1375 return -EFAULT;
1376 } else {
1377 offset = out->f_pos;
1380 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1381 return -EBADF;
1383 if (unlikely(out->f_flags & O_APPEND))
1384 return -EINVAL;
1386 ret = rw_verify_area(WRITE, out, &offset, len);
1387 if (unlikely(ret < 0))
1388 return ret;
1390 file_start_write(out);
1391 ret = do_splice_from(ipipe, out, &offset, len, flags);
1392 file_end_write(out);
1394 if (!off_out)
1395 out->f_pos = offset;
1396 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1397 ret = -EFAULT;
1399 return ret;
1402 if (opipe) {
1403 if (off_out)
1404 return -ESPIPE;
1405 if (off_in) {
1406 if (!(in->f_mode & FMODE_PREAD))
1407 return -EINVAL;
1408 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1409 return -EFAULT;
1410 } else {
1411 offset = in->f_pos;
1414 ret = do_splice_to(in, &offset, opipe, len, flags);
1416 if (!off_in)
1417 in->f_pos = offset;
1418 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1419 ret = -EFAULT;
1421 return ret;
1424 return -EINVAL;
1428 * Map an iov into an array of pages and offset/length tupples. With the
1429 * partial_page structure, we can map several non-contiguous ranges into
1430 * our ones pages[] map instead of splitting that operation into pieces.
1431 * Could easily be exported as a generic helper for other users, in which
1432 * case one would probably want to add a 'max_nr_pages' parameter as well.
1434 static int get_iovec_page_array(const struct iovec __user *iov,
1435 unsigned int nr_vecs, struct page **pages,
1436 struct partial_page *partial, bool aligned,
1437 unsigned int pipe_buffers)
1439 int buffers = 0, error = 0;
1441 while (nr_vecs) {
1442 unsigned long off, npages;
1443 struct iovec entry;
1444 void __user *base;
1445 size_t len;
1446 int i;
1448 error = -EFAULT;
1449 if (copy_from_user(&entry, iov, sizeof(entry)))
1450 break;
1452 base = entry.iov_base;
1453 len = entry.iov_len;
1456 * Sanity check this iovec. 0 read succeeds.
1458 error = 0;
1459 if (unlikely(!len))
1460 break;
1461 error = -EFAULT;
1462 if (!access_ok(VERIFY_READ, base, len))
1463 break;
1466 * Get this base offset and number of pages, then map
1467 * in the user pages.
1469 off = (unsigned long) base & ~PAGE_MASK;
1472 * If asked for alignment, the offset must be zero and the
1473 * length a multiple of the PAGE_SIZE.
1475 error = -EINVAL;
1476 if (aligned && (off || len & ~PAGE_MASK))
1477 break;
1479 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1480 if (npages > pipe_buffers - buffers)
1481 npages = pipe_buffers - buffers;
1483 error = get_user_pages_fast((unsigned long)base, npages,
1484 0, &pages[buffers]);
1486 if (unlikely(error <= 0))
1487 break;
1490 * Fill this contiguous range into the partial page map.
1492 for (i = 0; i < error; i++) {
1493 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1495 partial[buffers].offset = off;
1496 partial[buffers].len = plen;
1498 off = 0;
1499 len -= plen;
1500 buffers++;
1504 * We didn't complete this iov, stop here since it probably
1505 * means we have to move some of this into a pipe to
1506 * be able to continue.
1508 if (len)
1509 break;
1512 * Don't continue if we mapped fewer pages than we asked for,
1513 * or if we mapped the max number of pages that we have
1514 * room for.
1516 if (error < npages || buffers == pipe_buffers)
1517 break;
1519 nr_vecs--;
1520 iov++;
1523 if (buffers)
1524 return buffers;
1526 return error;
1529 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1530 struct splice_desc *sd)
1532 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1533 return n == sd->len ? n : -EFAULT;
1537 * For lack of a better implementation, implement vmsplice() to userspace
1538 * as a simple copy of the pipes pages to the user iov.
1540 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1541 unsigned long nr_segs, unsigned int flags)
1543 struct pipe_inode_info *pipe;
1544 struct splice_desc sd;
1545 long ret;
1546 struct iovec iovstack[UIO_FASTIOV];
1547 struct iovec *iov = iovstack;
1548 struct iov_iter iter;
1550 pipe = get_pipe_info(file);
1551 if (!pipe)
1552 return -EBADF;
1554 ret = import_iovec(READ, uiov, nr_segs,
1555 ARRAY_SIZE(iovstack), &iov, &iter);
1556 if (ret < 0)
1557 return ret;
1559 sd.total_len = iov_iter_count(&iter);
1560 sd.len = 0;
1561 sd.flags = flags;
1562 sd.u.data = &iter;
1563 sd.pos = 0;
1565 if (sd.total_len) {
1566 pipe_lock(pipe);
1567 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1568 pipe_unlock(pipe);
1571 kfree(iov);
1572 return ret;
1576 * vmsplice splices a user address range into a pipe. It can be thought of
1577 * as splice-from-memory, where the regular splice is splice-from-file (or
1578 * to file). In both cases the output is a pipe, naturally.
1580 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1581 unsigned long nr_segs, unsigned int flags)
1583 struct pipe_inode_info *pipe;
1584 struct page *pages[PIPE_DEF_BUFFERS];
1585 struct partial_page partial[PIPE_DEF_BUFFERS];
1586 struct splice_pipe_desc spd = {
1587 .pages = pages,
1588 .partial = partial,
1589 .nr_pages_max = PIPE_DEF_BUFFERS,
1590 .flags = flags,
1591 .ops = &user_page_pipe_buf_ops,
1592 .spd_release = spd_release_page,
1594 long ret;
1596 pipe = get_pipe_info(file);
1597 if (!pipe)
1598 return -EBADF;
1600 if (splice_grow_spd(pipe, &spd))
1601 return -ENOMEM;
1603 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1604 spd.partial, false,
1605 spd.nr_pages_max);
1606 if (spd.nr_pages <= 0)
1607 ret = spd.nr_pages;
1608 else
1609 ret = splice_to_pipe(pipe, &spd);
1611 splice_shrink_spd(&spd);
1612 return ret;
1616 * Note that vmsplice only really supports true splicing _from_ user memory
1617 * to a pipe, not the other way around. Splicing from user memory is a simple
1618 * operation that can be supported without any funky alignment restrictions
1619 * or nasty vm tricks. We simply map in the user memory and fill them into
1620 * a pipe. The reverse isn't quite as easy, though. There are two possible
1621 * solutions for that:
1623 * - memcpy() the data internally, at which point we might as well just
1624 * do a regular read() on the buffer anyway.
1625 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1626 * has restriction limitations on both ends of the pipe).
1628 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1631 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1632 unsigned long, nr_segs, unsigned int, flags)
1634 struct fd f;
1635 long error;
1637 if (unlikely(nr_segs > UIO_MAXIOV))
1638 return -EINVAL;
1639 else if (unlikely(!nr_segs))
1640 return 0;
1642 error = -EBADF;
1643 f = fdget(fd);
1644 if (f.file) {
1645 if (f.file->f_mode & FMODE_WRITE)
1646 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1647 else if (f.file->f_mode & FMODE_READ)
1648 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1650 fdput(f);
1653 return error;
1656 #ifdef CONFIG_COMPAT
1657 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1658 unsigned int, nr_segs, unsigned int, flags)
1660 unsigned i;
1661 struct iovec __user *iov;
1662 if (nr_segs > UIO_MAXIOV)
1663 return -EINVAL;
1664 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1665 for (i = 0; i < nr_segs; i++) {
1666 struct compat_iovec v;
1667 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1668 get_user(v.iov_len, &iov32[i].iov_len) ||
1669 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1670 put_user(v.iov_len, &iov[i].iov_len))
1671 return -EFAULT;
1673 return sys_vmsplice(fd, iov, nr_segs, flags);
1675 #endif
1677 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1678 int, fd_out, loff_t __user *, off_out,
1679 size_t, len, unsigned int, flags)
1681 struct fd in, out;
1682 long error;
1684 if (unlikely(!len))
1685 return 0;
1687 error = -EBADF;
1688 in = fdget(fd_in);
1689 if (in.file) {
1690 if (in.file->f_mode & FMODE_READ) {
1691 out = fdget(fd_out);
1692 if (out.file) {
1693 if (out.file->f_mode & FMODE_WRITE)
1694 error = do_splice(in.file, off_in,
1695 out.file, off_out,
1696 len, flags);
1697 fdput(out);
1700 fdput(in);
1702 return error;
1706 * Make sure there's data to read. Wait for input if we can, otherwise
1707 * return an appropriate error.
1709 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1711 int ret;
1714 * Check ->nrbufs without the inode lock first. This function
1715 * is speculative anyways, so missing one is ok.
1717 if (pipe->nrbufs)
1718 return 0;
1720 ret = 0;
1721 pipe_lock(pipe);
1723 while (!pipe->nrbufs) {
1724 if (signal_pending(current)) {
1725 ret = -ERESTARTSYS;
1726 break;
1728 if (!pipe->writers)
1729 break;
1730 if (!pipe->waiting_writers) {
1731 if (flags & SPLICE_F_NONBLOCK) {
1732 ret = -EAGAIN;
1733 break;
1736 pipe_wait(pipe);
1739 pipe_unlock(pipe);
1740 return ret;
1744 * Make sure there's writeable room. Wait for room if we can, otherwise
1745 * return an appropriate error.
1747 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1749 int ret;
1752 * Check ->nrbufs without the inode lock first. This function
1753 * is speculative anyways, so missing one is ok.
1755 if (pipe->nrbufs < pipe->buffers)
1756 return 0;
1758 ret = 0;
1759 pipe_lock(pipe);
1761 while (pipe->nrbufs >= pipe->buffers) {
1762 if (!pipe->readers) {
1763 send_sig(SIGPIPE, current, 0);
1764 ret = -EPIPE;
1765 break;
1767 if (flags & SPLICE_F_NONBLOCK) {
1768 ret = -EAGAIN;
1769 break;
1771 if (signal_pending(current)) {
1772 ret = -ERESTARTSYS;
1773 break;
1775 pipe->waiting_writers++;
1776 pipe_wait(pipe);
1777 pipe->waiting_writers--;
1780 pipe_unlock(pipe);
1781 return ret;
1785 * Splice contents of ipipe to opipe.
1787 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1788 struct pipe_inode_info *opipe,
1789 size_t len, unsigned int flags)
1791 struct pipe_buffer *ibuf, *obuf;
1792 int ret = 0, nbuf;
1793 bool input_wakeup = false;
1796 retry:
1797 ret = ipipe_prep(ipipe, flags);
1798 if (ret)
1799 return ret;
1801 ret = opipe_prep(opipe, flags);
1802 if (ret)
1803 return ret;
1806 * Potential ABBA deadlock, work around it by ordering lock
1807 * grabbing by pipe info address. Otherwise two different processes
1808 * could deadlock (one doing tee from A -> B, the other from B -> A).
1810 pipe_double_lock(ipipe, opipe);
1812 do {
1813 if (!opipe->readers) {
1814 send_sig(SIGPIPE, current, 0);
1815 if (!ret)
1816 ret = -EPIPE;
1817 break;
1820 if (!ipipe->nrbufs && !ipipe->writers)
1821 break;
1824 * Cannot make any progress, because either the input
1825 * pipe is empty or the output pipe is full.
1827 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1828 /* Already processed some buffers, break */
1829 if (ret)
1830 break;
1832 if (flags & SPLICE_F_NONBLOCK) {
1833 ret = -EAGAIN;
1834 break;
1838 * We raced with another reader/writer and haven't
1839 * managed to process any buffers. A zero return
1840 * value means EOF, so retry instead.
1842 pipe_unlock(ipipe);
1843 pipe_unlock(opipe);
1844 goto retry;
1847 ibuf = ipipe->bufs + ipipe->curbuf;
1848 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1849 obuf = opipe->bufs + nbuf;
1851 if (len >= ibuf->len) {
1853 * Simply move the whole buffer from ipipe to opipe
1855 *obuf = *ibuf;
1856 ibuf->ops = NULL;
1857 opipe->nrbufs++;
1858 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1859 ipipe->nrbufs--;
1860 input_wakeup = true;
1861 } else {
1863 * Get a reference to this pipe buffer,
1864 * so we can copy the contents over.
1866 ibuf->ops->get(ipipe, ibuf);
1867 *obuf = *ibuf;
1870 * Don't inherit the gift flag, we need to
1871 * prevent multiple steals of this page.
1873 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1875 obuf->len = len;
1876 opipe->nrbufs++;
1877 ibuf->offset += obuf->len;
1878 ibuf->len -= obuf->len;
1880 ret += obuf->len;
1881 len -= obuf->len;
1882 } while (len);
1884 pipe_unlock(ipipe);
1885 pipe_unlock(opipe);
1888 * If we put data in the output pipe, wakeup any potential readers.
1890 if (ret > 0)
1891 wakeup_pipe_readers(opipe);
1893 if (input_wakeup)
1894 wakeup_pipe_writers(ipipe);
1896 return ret;
1900 * Link contents of ipipe to opipe.
1902 static int link_pipe(struct pipe_inode_info *ipipe,
1903 struct pipe_inode_info *opipe,
1904 size_t len, unsigned int flags)
1906 struct pipe_buffer *ibuf, *obuf;
1907 int ret = 0, i = 0, nbuf;
1910 * Potential ABBA deadlock, work around it by ordering lock
1911 * grabbing by pipe info address. Otherwise two different processes
1912 * could deadlock (one doing tee from A -> B, the other from B -> A).
1914 pipe_double_lock(ipipe, opipe);
1916 do {
1917 if (!opipe->readers) {
1918 send_sig(SIGPIPE, current, 0);
1919 if (!ret)
1920 ret = -EPIPE;
1921 break;
1925 * If we have iterated all input buffers or ran out of
1926 * output room, break.
1928 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1929 break;
1931 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1932 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1935 * Get a reference to this pipe buffer,
1936 * so we can copy the contents over.
1938 ibuf->ops->get(ipipe, ibuf);
1940 obuf = opipe->bufs + nbuf;
1941 *obuf = *ibuf;
1944 * Don't inherit the gift flag, we need to
1945 * prevent multiple steals of this page.
1947 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1949 if (obuf->len > len)
1950 obuf->len = len;
1952 opipe->nrbufs++;
1953 ret += obuf->len;
1954 len -= obuf->len;
1955 i++;
1956 } while (len);
1959 * return EAGAIN if we have the potential of some data in the
1960 * future, otherwise just return 0
1962 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1963 ret = -EAGAIN;
1965 pipe_unlock(ipipe);
1966 pipe_unlock(opipe);
1969 * If we put data in the output pipe, wakeup any potential readers.
1971 if (ret > 0)
1972 wakeup_pipe_readers(opipe);
1974 return ret;
1978 * This is a tee(1) implementation that works on pipes. It doesn't copy
1979 * any data, it simply references the 'in' pages on the 'out' pipe.
1980 * The 'flags' used are the SPLICE_F_* variants, currently the only
1981 * applicable one is SPLICE_F_NONBLOCK.
1983 static long do_tee(struct file *in, struct file *out, size_t len,
1984 unsigned int flags)
1986 struct pipe_inode_info *ipipe = get_pipe_info(in);
1987 struct pipe_inode_info *opipe = get_pipe_info(out);
1988 int ret = -EINVAL;
1991 * Duplicate the contents of ipipe to opipe without actually
1992 * copying the data.
1994 if (ipipe && opipe && ipipe != opipe) {
1996 * Keep going, unless we encounter an error. The ipipe/opipe
1997 * ordering doesn't really matter.
1999 ret = ipipe_prep(ipipe, flags);
2000 if (!ret) {
2001 ret = opipe_prep(opipe, flags);
2002 if (!ret)
2003 ret = link_pipe(ipipe, opipe, len, flags);
2007 return ret;
2010 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2012 struct fd in;
2013 int error;
2015 if (unlikely(!len))
2016 return 0;
2018 error = -EBADF;
2019 in = fdget(fdin);
2020 if (in.file) {
2021 if (in.file->f_mode & FMODE_READ) {
2022 struct fd out = fdget(fdout);
2023 if (out.file) {
2024 if (out.file->f_mode & FMODE_WRITE)
2025 error = do_tee(in.file, out.file,
2026 len, flags);
2027 fdput(out);
2030 fdput(in);
2033 return error;