ipw2200: fix scanning while associated
[linux-2.6/btrfs-unstable.git] / drivers / net / wireless / ipw2x00 / ipw2200.c
blob625f2cf99fa9f9a7bf4976aeb460523e18b1b920
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 802.11 status code portion of this file from ethereal-0.10.6:
6 Copyright 2000, Axis Communications AB
7 Ethereal - Network traffic analyzer
8 By Gerald Combs <gerald@ethereal.com>
9 Copyright 1998 Gerald Combs
11 This program is free software; you can redistribute it and/or modify it
12 under the terms of version 2 of the GNU General Public License as
13 published by the Free Software Foundation.
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 more details.
20 You should have received a copy of the GNU General Public License along with
21 this program; if not, write to the Free Software Foundation, Inc., 59
22 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 The full GNU General Public License is included in this distribution in the
25 file called LICENSE.
27 Contact Information:
28 James P. Ketrenos <ipw2100-admin@linux.intel.com>
29 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
31 ******************************************************************************/
33 #include "ipw2200.h"
36 #ifndef KBUILD_EXTMOD
37 #define VK "k"
38 #else
39 #define VK
40 #endif
42 #ifdef CONFIG_IPW2200_DEBUG
43 #define VD "d"
44 #else
45 #define VD
46 #endif
48 #ifdef CONFIG_IPW2200_MONITOR
49 #define VM "m"
50 #else
51 #define VM
52 #endif
54 #ifdef CONFIG_IPW2200_PROMISCUOUS
55 #define VP "p"
56 #else
57 #define VP
58 #endif
60 #ifdef CONFIG_IPW2200_RADIOTAP
61 #define VR "r"
62 #else
63 #define VR
64 #endif
66 #ifdef CONFIG_IPW2200_QOS
67 #define VQ "q"
68 #else
69 #define VQ
70 #endif
72 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
73 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2200/2915 Network Driver"
74 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
75 #define DRV_VERSION IPW2200_VERSION
77 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
79 MODULE_DESCRIPTION(DRV_DESCRIPTION);
80 MODULE_VERSION(DRV_VERSION);
81 MODULE_AUTHOR(DRV_COPYRIGHT);
82 MODULE_LICENSE("GPL");
84 static int cmdlog = 0;
85 static int debug = 0;
86 static int channel = 0;
87 static int mode = 0;
89 static u32 ipw_debug_level;
90 static int associate;
91 static int auto_create = 1;
92 static int led = 0;
93 static int disable = 0;
94 static int bt_coexist = 0;
95 static int hwcrypto = 0;
96 static int roaming = 1;
97 static const char ipw_modes[] = {
98 'a', 'b', 'g', '?'
100 static int antenna = CFG_SYS_ANTENNA_BOTH;
102 #ifdef CONFIG_IPW2200_PROMISCUOUS
103 static int rtap_iface = 0; /* def: 0 -- do not create rtap interface */
104 #endif
107 #ifdef CONFIG_IPW2200_QOS
108 static int qos_enable = 0;
109 static int qos_burst_enable = 0;
110 static int qos_no_ack_mask = 0;
111 static int burst_duration_CCK = 0;
112 static int burst_duration_OFDM = 0;
114 static struct ieee80211_qos_parameters def_qos_parameters_OFDM = {
115 {QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
116 QOS_TX3_CW_MIN_OFDM},
117 {QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
118 QOS_TX3_CW_MAX_OFDM},
119 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
120 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
121 {QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
122 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
125 static struct ieee80211_qos_parameters def_qos_parameters_CCK = {
126 {QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
127 QOS_TX3_CW_MIN_CCK},
128 {QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
129 QOS_TX3_CW_MAX_CCK},
130 {QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
131 {QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
132 {QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
133 QOS_TX3_TXOP_LIMIT_CCK}
136 static struct ieee80211_qos_parameters def_parameters_OFDM = {
137 {DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
138 DEF_TX3_CW_MIN_OFDM},
139 {DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
140 DEF_TX3_CW_MAX_OFDM},
141 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
142 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
143 {DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
144 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
147 static struct ieee80211_qos_parameters def_parameters_CCK = {
148 {DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
149 DEF_TX3_CW_MIN_CCK},
150 {DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
151 DEF_TX3_CW_MAX_CCK},
152 {DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
153 {DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
154 {DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
155 DEF_TX3_TXOP_LIMIT_CCK}
158 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
160 static int from_priority_to_tx_queue[] = {
161 IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
162 IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
165 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
167 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
168 *qos_param);
169 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
170 *qos_param);
171 #endif /* CONFIG_IPW2200_QOS */
173 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
174 static void ipw_remove_current_network(struct ipw_priv *priv);
175 static void ipw_rx(struct ipw_priv *priv);
176 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
177 struct clx2_tx_queue *txq, int qindex);
178 static int ipw_queue_reset(struct ipw_priv *priv);
180 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
181 int len, int sync);
183 static void ipw_tx_queue_free(struct ipw_priv *);
185 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
186 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
187 static void ipw_rx_queue_replenish(void *);
188 static int ipw_up(struct ipw_priv *);
189 static void ipw_bg_up(struct work_struct *work);
190 static void ipw_down(struct ipw_priv *);
191 static void ipw_bg_down(struct work_struct *work);
192 static int ipw_config(struct ipw_priv *);
193 static int init_supported_rates(struct ipw_priv *priv,
194 struct ipw_supported_rates *prates);
195 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
196 static void ipw_send_wep_keys(struct ipw_priv *, int);
198 static int snprint_line(char *buf, size_t count,
199 const u8 * data, u32 len, u32 ofs)
201 int out, i, j, l;
202 char c;
204 out = snprintf(buf, count, "%08X", ofs);
206 for (l = 0, i = 0; i < 2; i++) {
207 out += snprintf(buf + out, count - out, " ");
208 for (j = 0; j < 8 && l < len; j++, l++)
209 out += snprintf(buf + out, count - out, "%02X ",
210 data[(i * 8 + j)]);
211 for (; j < 8; j++)
212 out += snprintf(buf + out, count - out, " ");
215 out += snprintf(buf + out, count - out, " ");
216 for (l = 0, i = 0; i < 2; i++) {
217 out += snprintf(buf + out, count - out, " ");
218 for (j = 0; j < 8 && l < len; j++, l++) {
219 c = data[(i * 8 + j)];
220 if (!isascii(c) || !isprint(c))
221 c = '.';
223 out += snprintf(buf + out, count - out, "%c", c);
226 for (; j < 8; j++)
227 out += snprintf(buf + out, count - out, " ");
230 return out;
233 static void printk_buf(int level, const u8 * data, u32 len)
235 char line[81];
236 u32 ofs = 0;
237 if (!(ipw_debug_level & level))
238 return;
240 while (len) {
241 snprint_line(line, sizeof(line), &data[ofs],
242 min(len, 16U), ofs);
243 printk(KERN_DEBUG "%s\n", line);
244 ofs += 16;
245 len -= min(len, 16U);
249 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
251 size_t out = size;
252 u32 ofs = 0;
253 int total = 0;
255 while (size && len) {
256 out = snprint_line(output, size, &data[ofs],
257 min_t(size_t, len, 16U), ofs);
259 ofs += 16;
260 output += out;
261 size -= out;
262 len -= min_t(size_t, len, 16U);
263 total += out;
265 return total;
268 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
269 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
270 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
272 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
273 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
274 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
276 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
277 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
278 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
280 IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
281 __LINE__, (u32) (b), (u32) (c));
282 _ipw_write_reg8(a, b, c);
285 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
286 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
287 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
289 IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
290 __LINE__, (u32) (b), (u32) (c));
291 _ipw_write_reg16(a, b, c);
294 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
295 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
296 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
298 IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
299 __LINE__, (u32) (b), (u32) (c));
300 _ipw_write_reg32(a, b, c);
303 /* 8-bit direct write (low 4K) */
304 #define _ipw_write8(ipw, ofs, val) writeb((val), (ipw)->hw_base + (ofs))
306 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
307 #define ipw_write8(ipw, ofs, val) do { \
308 IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
309 _ipw_write8(ipw, ofs, val); \
310 } while (0)
312 /* 16-bit direct write (low 4K) */
313 #define _ipw_write16(ipw, ofs, val) writew((val), (ipw)->hw_base + (ofs))
315 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
316 #define ipw_write16(ipw, ofs, val) \
317 IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
318 _ipw_write16(ipw, ofs, val)
320 /* 32-bit direct write (low 4K) */
321 #define _ipw_write32(ipw, ofs, val) writel((val), (ipw)->hw_base + (ofs))
323 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
324 #define ipw_write32(ipw, ofs, val) \
325 IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, __LINE__, (u32)(ofs), (u32)(val)); \
326 _ipw_write32(ipw, ofs, val)
328 /* 8-bit direct read (low 4K) */
329 #define _ipw_read8(ipw, ofs) readb((ipw)->hw_base + (ofs))
331 /* 8-bit direct read (low 4K), with debug wrapper */
332 static inline u8 __ipw_read8(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
334 IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", f, l, (u32) (ofs));
335 return _ipw_read8(ipw, ofs);
338 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
339 #define ipw_read8(ipw, ofs) __ipw_read8(__FILE__, __LINE__, ipw, ofs)
341 /* 16-bit direct read (low 4K) */
342 #define _ipw_read16(ipw, ofs) readw((ipw)->hw_base + (ofs))
344 /* 16-bit direct read (low 4K), with debug wrapper */
345 static inline u16 __ipw_read16(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
347 IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", f, l, (u32) (ofs));
348 return _ipw_read16(ipw, ofs);
351 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
352 #define ipw_read16(ipw, ofs) __ipw_read16(__FILE__, __LINE__, ipw, ofs)
354 /* 32-bit direct read (low 4K) */
355 #define _ipw_read32(ipw, ofs) readl((ipw)->hw_base + (ofs))
357 /* 32-bit direct read (low 4K), with debug wrapper */
358 static inline u32 __ipw_read32(char *f, u32 l, struct ipw_priv *ipw, u32 ofs)
360 IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", f, l, (u32) (ofs));
361 return _ipw_read32(ipw, ofs);
364 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
365 #define ipw_read32(ipw, ofs) __ipw_read32(__FILE__, __LINE__, ipw, ofs)
367 /* multi-byte read (above 4K), with debug wrapper */
368 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
369 static inline void __ipw_read_indirect(const char *f, int l,
370 struct ipw_priv *a, u32 b, u8 * c, int d)
372 IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %d bytes\n", f, l, (u32) (b),
374 _ipw_read_indirect(a, b, c, d);
377 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
378 #define ipw_read_indirect(a, b, c, d) __ipw_read_indirect(__FILE__, __LINE__, a, b, c, d)
380 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
381 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
382 int num);
383 #define ipw_write_indirect(a, b, c, d) \
384 IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %d bytes\n", __FILE__, __LINE__, (u32)(b), d); \
385 _ipw_write_indirect(a, b, c, d)
387 /* 32-bit indirect write (above 4K) */
388 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
390 IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
391 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
392 _ipw_write32(priv, IPW_INDIRECT_DATA, value);
395 /* 8-bit indirect write (above 4K) */
396 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
398 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
399 u32 dif_len = reg - aligned_addr;
401 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
402 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
403 _ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
406 /* 16-bit indirect write (above 4K) */
407 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
409 u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK; /* dword align */
410 u32 dif_len = (reg - aligned_addr) & (~0x1ul);
412 IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
413 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
414 _ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
417 /* 8-bit indirect read (above 4K) */
418 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
420 u32 word;
421 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
422 IPW_DEBUG_IO(" reg = 0x%8X : \n", reg);
423 word = _ipw_read32(priv, IPW_INDIRECT_DATA);
424 return (word >> ((reg & 0x3) * 8)) & 0xff;
427 /* 32-bit indirect read (above 4K) */
428 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
430 u32 value;
432 IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
434 _ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
435 value = _ipw_read32(priv, IPW_INDIRECT_DATA);
436 IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x \n", reg, value);
437 return value;
440 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
441 /* for area above 1st 4K of SRAM/reg space */
442 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
443 int num)
445 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
446 u32 dif_len = addr - aligned_addr;
447 u32 i;
449 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
451 if (num <= 0) {
452 return;
455 /* Read the first dword (or portion) byte by byte */
456 if (unlikely(dif_len)) {
457 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
458 /* Start reading at aligned_addr + dif_len */
459 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
460 *buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
461 aligned_addr += 4;
464 /* Read all of the middle dwords as dwords, with auto-increment */
465 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
466 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
467 *(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
469 /* Read the last dword (or portion) byte by byte */
470 if (unlikely(num)) {
471 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
472 for (i = 0; num > 0; i++, num--)
473 *buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
477 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
478 /* for area above 1st 4K of SRAM/reg space */
479 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
480 int num)
482 u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK; /* dword align */
483 u32 dif_len = addr - aligned_addr;
484 u32 i;
486 IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
488 if (num <= 0) {
489 return;
492 /* Write the first dword (or portion) byte by byte */
493 if (unlikely(dif_len)) {
494 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
495 /* Start writing at aligned_addr + dif_len */
496 for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
497 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
498 aligned_addr += 4;
501 /* Write all of the middle dwords as dwords, with auto-increment */
502 _ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
503 for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
504 _ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
506 /* Write the last dword (or portion) byte by byte */
507 if (unlikely(num)) {
508 _ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
509 for (i = 0; num > 0; i++, num--, buf++)
510 _ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
514 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
515 /* for 1st 4K of SRAM/regs space */
516 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
517 int num)
519 memcpy_toio((priv->hw_base + addr), buf, num);
522 /* Set bit(s) in low 4K of SRAM/regs */
523 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
525 ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
528 /* Clear bit(s) in low 4K of SRAM/regs */
529 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
531 ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
534 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
536 if (priv->status & STATUS_INT_ENABLED)
537 return;
538 priv->status |= STATUS_INT_ENABLED;
539 ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
542 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
544 if (!(priv->status & STATUS_INT_ENABLED))
545 return;
546 priv->status &= ~STATUS_INT_ENABLED;
547 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
550 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
552 unsigned long flags;
554 spin_lock_irqsave(&priv->irq_lock, flags);
555 __ipw_enable_interrupts(priv);
556 spin_unlock_irqrestore(&priv->irq_lock, flags);
559 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
561 unsigned long flags;
563 spin_lock_irqsave(&priv->irq_lock, flags);
564 __ipw_disable_interrupts(priv);
565 spin_unlock_irqrestore(&priv->irq_lock, flags);
568 static char *ipw_error_desc(u32 val)
570 switch (val) {
571 case IPW_FW_ERROR_OK:
572 return "ERROR_OK";
573 case IPW_FW_ERROR_FAIL:
574 return "ERROR_FAIL";
575 case IPW_FW_ERROR_MEMORY_UNDERFLOW:
576 return "MEMORY_UNDERFLOW";
577 case IPW_FW_ERROR_MEMORY_OVERFLOW:
578 return "MEMORY_OVERFLOW";
579 case IPW_FW_ERROR_BAD_PARAM:
580 return "BAD_PARAM";
581 case IPW_FW_ERROR_BAD_CHECKSUM:
582 return "BAD_CHECKSUM";
583 case IPW_FW_ERROR_NMI_INTERRUPT:
584 return "NMI_INTERRUPT";
585 case IPW_FW_ERROR_BAD_DATABASE:
586 return "BAD_DATABASE";
587 case IPW_FW_ERROR_ALLOC_FAIL:
588 return "ALLOC_FAIL";
589 case IPW_FW_ERROR_DMA_UNDERRUN:
590 return "DMA_UNDERRUN";
591 case IPW_FW_ERROR_DMA_STATUS:
592 return "DMA_STATUS";
593 case IPW_FW_ERROR_DINO_ERROR:
594 return "DINO_ERROR";
595 case IPW_FW_ERROR_EEPROM_ERROR:
596 return "EEPROM_ERROR";
597 case IPW_FW_ERROR_SYSASSERT:
598 return "SYSASSERT";
599 case IPW_FW_ERROR_FATAL_ERROR:
600 return "FATAL_ERROR";
601 default:
602 return "UNKNOWN_ERROR";
606 static void ipw_dump_error_log(struct ipw_priv *priv,
607 struct ipw_fw_error *error)
609 u32 i;
611 if (!error) {
612 IPW_ERROR("Error allocating and capturing error log. "
613 "Nothing to dump.\n");
614 return;
617 IPW_ERROR("Start IPW Error Log Dump:\n");
618 IPW_ERROR("Status: 0x%08X, Config: %08X\n",
619 error->status, error->config);
621 for (i = 0; i < error->elem_len; i++)
622 IPW_ERROR("%s %i 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
623 ipw_error_desc(error->elem[i].desc),
624 error->elem[i].time,
625 error->elem[i].blink1,
626 error->elem[i].blink2,
627 error->elem[i].link1,
628 error->elem[i].link2, error->elem[i].data);
629 for (i = 0; i < error->log_len; i++)
630 IPW_ERROR("%i\t0x%08x\t%i\n",
631 error->log[i].time,
632 error->log[i].data, error->log[i].event);
635 static inline int ipw_is_init(struct ipw_priv *priv)
637 return (priv->status & STATUS_INIT) ? 1 : 0;
640 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
642 u32 addr, field_info, field_len, field_count, total_len;
644 IPW_DEBUG_ORD("ordinal = %i\n", ord);
646 if (!priv || !val || !len) {
647 IPW_DEBUG_ORD("Invalid argument\n");
648 return -EINVAL;
651 /* verify device ordinal tables have been initialized */
652 if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
653 IPW_DEBUG_ORD("Access ordinals before initialization\n");
654 return -EINVAL;
657 switch (IPW_ORD_TABLE_ID_MASK & ord) {
658 case IPW_ORD_TABLE_0_MASK:
660 * TABLE 0: Direct access to a table of 32 bit values
662 * This is a very simple table with the data directly
663 * read from the table
666 /* remove the table id from the ordinal */
667 ord &= IPW_ORD_TABLE_VALUE_MASK;
669 /* boundary check */
670 if (ord > priv->table0_len) {
671 IPW_DEBUG_ORD("ordinal value (%i) longer then "
672 "max (%i)\n", ord, priv->table0_len);
673 return -EINVAL;
676 /* verify we have enough room to store the value */
677 if (*len < sizeof(u32)) {
678 IPW_DEBUG_ORD("ordinal buffer length too small, "
679 "need %zd\n", sizeof(u32));
680 return -EINVAL;
683 IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
684 ord, priv->table0_addr + (ord << 2));
686 *len = sizeof(u32);
687 ord <<= 2;
688 *((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
689 break;
691 case IPW_ORD_TABLE_1_MASK:
693 * TABLE 1: Indirect access to a table of 32 bit values
695 * This is a fairly large table of u32 values each
696 * representing starting addr for the data (which is
697 * also a u32)
700 /* remove the table id from the ordinal */
701 ord &= IPW_ORD_TABLE_VALUE_MASK;
703 /* boundary check */
704 if (ord > priv->table1_len) {
705 IPW_DEBUG_ORD("ordinal value too long\n");
706 return -EINVAL;
709 /* verify we have enough room to store the value */
710 if (*len < sizeof(u32)) {
711 IPW_DEBUG_ORD("ordinal buffer length too small, "
712 "need %zd\n", sizeof(u32));
713 return -EINVAL;
716 *((u32 *) val) =
717 ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
718 *len = sizeof(u32);
719 break;
721 case IPW_ORD_TABLE_2_MASK:
723 * TABLE 2: Indirect access to a table of variable sized values
725 * This table consist of six values, each containing
726 * - dword containing the starting offset of the data
727 * - dword containing the lengh in the first 16bits
728 * and the count in the second 16bits
731 /* remove the table id from the ordinal */
732 ord &= IPW_ORD_TABLE_VALUE_MASK;
734 /* boundary check */
735 if (ord > priv->table2_len) {
736 IPW_DEBUG_ORD("ordinal value too long\n");
737 return -EINVAL;
740 /* get the address of statistic */
741 addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
743 /* get the second DW of statistics ;
744 * two 16-bit words - first is length, second is count */
745 field_info =
746 ipw_read_reg32(priv,
747 priv->table2_addr + (ord << 3) +
748 sizeof(u32));
750 /* get each entry length */
751 field_len = *((u16 *) & field_info);
753 /* get number of entries */
754 field_count = *(((u16 *) & field_info) + 1);
756 /* abort if not enought memory */
757 total_len = field_len * field_count;
758 if (total_len > *len) {
759 *len = total_len;
760 return -EINVAL;
763 *len = total_len;
764 if (!total_len)
765 return 0;
767 IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
768 "field_info = 0x%08x\n",
769 addr, total_len, field_info);
770 ipw_read_indirect(priv, addr, val, total_len);
771 break;
773 default:
774 IPW_DEBUG_ORD("Invalid ordinal!\n");
775 return -EINVAL;
779 return 0;
782 static void ipw_init_ordinals(struct ipw_priv *priv)
784 priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
785 priv->table0_len = ipw_read32(priv, priv->table0_addr);
787 IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
788 priv->table0_addr, priv->table0_len);
790 priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
791 priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
793 IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
794 priv->table1_addr, priv->table1_len);
796 priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
797 priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
798 priv->table2_len &= 0x0000ffff; /* use first two bytes */
800 IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
801 priv->table2_addr, priv->table2_len);
805 static u32 ipw_register_toggle(u32 reg)
807 reg &= ~IPW_START_STANDBY;
808 if (reg & IPW_GATE_ODMA)
809 reg &= ~IPW_GATE_ODMA;
810 if (reg & IPW_GATE_IDMA)
811 reg &= ~IPW_GATE_IDMA;
812 if (reg & IPW_GATE_ADMA)
813 reg &= ~IPW_GATE_ADMA;
814 return reg;
818 * LED behavior:
819 * - On radio ON, turn on any LEDs that require to be on during start
820 * - On initialization, start unassociated blink
821 * - On association, disable unassociated blink
822 * - On disassociation, start unassociated blink
823 * - On radio OFF, turn off any LEDs started during radio on
826 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
827 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
828 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
830 static void ipw_led_link_on(struct ipw_priv *priv)
832 unsigned long flags;
833 u32 led;
835 /* If configured to not use LEDs, or nic_type is 1,
836 * then we don't toggle a LINK led */
837 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
838 return;
840 spin_lock_irqsave(&priv->lock, flags);
842 if (!(priv->status & STATUS_RF_KILL_MASK) &&
843 !(priv->status & STATUS_LED_LINK_ON)) {
844 IPW_DEBUG_LED("Link LED On\n");
845 led = ipw_read_reg32(priv, IPW_EVENT_REG);
846 led |= priv->led_association_on;
848 led = ipw_register_toggle(led);
850 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
851 ipw_write_reg32(priv, IPW_EVENT_REG, led);
853 priv->status |= STATUS_LED_LINK_ON;
855 /* If we aren't associated, schedule turning the LED off */
856 if (!(priv->status & STATUS_ASSOCIATED))
857 queue_delayed_work(priv->workqueue,
858 &priv->led_link_off,
859 LD_TIME_LINK_ON);
862 spin_unlock_irqrestore(&priv->lock, flags);
865 static void ipw_bg_led_link_on(struct work_struct *work)
867 struct ipw_priv *priv =
868 container_of(work, struct ipw_priv, led_link_on.work);
869 mutex_lock(&priv->mutex);
870 ipw_led_link_on(priv);
871 mutex_unlock(&priv->mutex);
874 static void ipw_led_link_off(struct ipw_priv *priv)
876 unsigned long flags;
877 u32 led;
879 /* If configured not to use LEDs, or nic type is 1,
880 * then we don't goggle the LINK led. */
881 if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
882 return;
884 spin_lock_irqsave(&priv->lock, flags);
886 if (priv->status & STATUS_LED_LINK_ON) {
887 led = ipw_read_reg32(priv, IPW_EVENT_REG);
888 led &= priv->led_association_off;
889 led = ipw_register_toggle(led);
891 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
892 ipw_write_reg32(priv, IPW_EVENT_REG, led);
894 IPW_DEBUG_LED("Link LED Off\n");
896 priv->status &= ~STATUS_LED_LINK_ON;
898 /* If we aren't associated and the radio is on, schedule
899 * turning the LED on (blink while unassociated) */
900 if (!(priv->status & STATUS_RF_KILL_MASK) &&
901 !(priv->status & STATUS_ASSOCIATED))
902 queue_delayed_work(priv->workqueue, &priv->led_link_on,
903 LD_TIME_LINK_OFF);
907 spin_unlock_irqrestore(&priv->lock, flags);
910 static void ipw_bg_led_link_off(struct work_struct *work)
912 struct ipw_priv *priv =
913 container_of(work, struct ipw_priv, led_link_off.work);
914 mutex_lock(&priv->mutex);
915 ipw_led_link_off(priv);
916 mutex_unlock(&priv->mutex);
919 static void __ipw_led_activity_on(struct ipw_priv *priv)
921 u32 led;
923 if (priv->config & CFG_NO_LED)
924 return;
926 if (priv->status & STATUS_RF_KILL_MASK)
927 return;
929 if (!(priv->status & STATUS_LED_ACT_ON)) {
930 led = ipw_read_reg32(priv, IPW_EVENT_REG);
931 led |= priv->led_activity_on;
933 led = ipw_register_toggle(led);
935 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
936 ipw_write_reg32(priv, IPW_EVENT_REG, led);
938 IPW_DEBUG_LED("Activity LED On\n");
940 priv->status |= STATUS_LED_ACT_ON;
942 cancel_delayed_work(&priv->led_act_off);
943 queue_delayed_work(priv->workqueue, &priv->led_act_off,
944 LD_TIME_ACT_ON);
945 } else {
946 /* Reschedule LED off for full time period */
947 cancel_delayed_work(&priv->led_act_off);
948 queue_delayed_work(priv->workqueue, &priv->led_act_off,
949 LD_TIME_ACT_ON);
953 #if 0
954 void ipw_led_activity_on(struct ipw_priv *priv)
956 unsigned long flags;
957 spin_lock_irqsave(&priv->lock, flags);
958 __ipw_led_activity_on(priv);
959 spin_unlock_irqrestore(&priv->lock, flags);
961 #endif /* 0 */
963 static void ipw_led_activity_off(struct ipw_priv *priv)
965 unsigned long flags;
966 u32 led;
968 if (priv->config & CFG_NO_LED)
969 return;
971 spin_lock_irqsave(&priv->lock, flags);
973 if (priv->status & STATUS_LED_ACT_ON) {
974 led = ipw_read_reg32(priv, IPW_EVENT_REG);
975 led &= priv->led_activity_off;
977 led = ipw_register_toggle(led);
979 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
980 ipw_write_reg32(priv, IPW_EVENT_REG, led);
982 IPW_DEBUG_LED("Activity LED Off\n");
984 priv->status &= ~STATUS_LED_ACT_ON;
987 spin_unlock_irqrestore(&priv->lock, flags);
990 static void ipw_bg_led_activity_off(struct work_struct *work)
992 struct ipw_priv *priv =
993 container_of(work, struct ipw_priv, led_act_off.work);
994 mutex_lock(&priv->mutex);
995 ipw_led_activity_off(priv);
996 mutex_unlock(&priv->mutex);
999 static void ipw_led_band_on(struct ipw_priv *priv)
1001 unsigned long flags;
1002 u32 led;
1004 /* Only nic type 1 supports mode LEDs */
1005 if (priv->config & CFG_NO_LED ||
1006 priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1007 return;
1009 spin_lock_irqsave(&priv->lock, flags);
1011 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1012 if (priv->assoc_network->mode == IEEE_A) {
1013 led |= priv->led_ofdm_on;
1014 led &= priv->led_association_off;
1015 IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1016 } else if (priv->assoc_network->mode == IEEE_G) {
1017 led |= priv->led_ofdm_on;
1018 led |= priv->led_association_on;
1019 IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1020 } else {
1021 led &= priv->led_ofdm_off;
1022 led |= priv->led_association_on;
1023 IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1026 led = ipw_register_toggle(led);
1028 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1029 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1031 spin_unlock_irqrestore(&priv->lock, flags);
1034 static void ipw_led_band_off(struct ipw_priv *priv)
1036 unsigned long flags;
1037 u32 led;
1039 /* Only nic type 1 supports mode LEDs */
1040 if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1041 return;
1043 spin_lock_irqsave(&priv->lock, flags);
1045 led = ipw_read_reg32(priv, IPW_EVENT_REG);
1046 led &= priv->led_ofdm_off;
1047 led &= priv->led_association_off;
1049 led = ipw_register_toggle(led);
1051 IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1052 ipw_write_reg32(priv, IPW_EVENT_REG, led);
1054 spin_unlock_irqrestore(&priv->lock, flags);
1057 static void ipw_led_radio_on(struct ipw_priv *priv)
1059 ipw_led_link_on(priv);
1062 static void ipw_led_radio_off(struct ipw_priv *priv)
1064 ipw_led_activity_off(priv);
1065 ipw_led_link_off(priv);
1068 static void ipw_led_link_up(struct ipw_priv *priv)
1070 /* Set the Link Led on for all nic types */
1071 ipw_led_link_on(priv);
1074 static void ipw_led_link_down(struct ipw_priv *priv)
1076 ipw_led_activity_off(priv);
1077 ipw_led_link_off(priv);
1079 if (priv->status & STATUS_RF_KILL_MASK)
1080 ipw_led_radio_off(priv);
1083 static void ipw_led_init(struct ipw_priv *priv)
1085 priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1087 /* Set the default PINs for the link and activity leds */
1088 priv->led_activity_on = IPW_ACTIVITY_LED;
1089 priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1091 priv->led_association_on = IPW_ASSOCIATED_LED;
1092 priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1094 /* Set the default PINs for the OFDM leds */
1095 priv->led_ofdm_on = IPW_OFDM_LED;
1096 priv->led_ofdm_off = ~(IPW_OFDM_LED);
1098 switch (priv->nic_type) {
1099 case EEPROM_NIC_TYPE_1:
1100 /* In this NIC type, the LEDs are reversed.... */
1101 priv->led_activity_on = IPW_ASSOCIATED_LED;
1102 priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1103 priv->led_association_on = IPW_ACTIVITY_LED;
1104 priv->led_association_off = ~(IPW_ACTIVITY_LED);
1106 if (!(priv->config & CFG_NO_LED))
1107 ipw_led_band_on(priv);
1109 /* And we don't blink link LEDs for this nic, so
1110 * just return here */
1111 return;
1113 case EEPROM_NIC_TYPE_3:
1114 case EEPROM_NIC_TYPE_2:
1115 case EEPROM_NIC_TYPE_4:
1116 case EEPROM_NIC_TYPE_0:
1117 break;
1119 default:
1120 IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1121 priv->nic_type);
1122 priv->nic_type = EEPROM_NIC_TYPE_0;
1123 break;
1126 if (!(priv->config & CFG_NO_LED)) {
1127 if (priv->status & STATUS_ASSOCIATED)
1128 ipw_led_link_on(priv);
1129 else
1130 ipw_led_link_off(priv);
1134 static void ipw_led_shutdown(struct ipw_priv *priv)
1136 ipw_led_activity_off(priv);
1137 ipw_led_link_off(priv);
1138 ipw_led_band_off(priv);
1139 cancel_delayed_work(&priv->led_link_on);
1140 cancel_delayed_work(&priv->led_link_off);
1141 cancel_delayed_work(&priv->led_act_off);
1145 * The following adds a new attribute to the sysfs representation
1146 * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1147 * used for controling the debug level.
1149 * See the level definitions in ipw for details.
1151 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1153 return sprintf(buf, "0x%08X\n", ipw_debug_level);
1156 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1157 size_t count)
1159 char *p = (char *)buf;
1160 u32 val;
1162 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1163 p++;
1164 if (p[0] == 'x' || p[0] == 'X')
1165 p++;
1166 val = simple_strtoul(p, &p, 16);
1167 } else
1168 val = simple_strtoul(p, &p, 10);
1169 if (p == buf)
1170 printk(KERN_INFO DRV_NAME
1171 ": %s is not in hex or decimal form.\n", buf);
1172 else
1173 ipw_debug_level = val;
1175 return strnlen(buf, count);
1178 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1179 show_debug_level, store_debug_level);
1181 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1183 /* length = 1st dword in log */
1184 return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1187 static void ipw_capture_event_log(struct ipw_priv *priv,
1188 u32 log_len, struct ipw_event *log)
1190 u32 base;
1192 if (log_len) {
1193 base = ipw_read32(priv, IPW_EVENT_LOG);
1194 ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1195 (u8 *) log, sizeof(*log) * log_len);
1199 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1201 struct ipw_fw_error *error;
1202 u32 log_len = ipw_get_event_log_len(priv);
1203 u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1204 u32 elem_len = ipw_read_reg32(priv, base);
1206 error = kmalloc(sizeof(*error) +
1207 sizeof(*error->elem) * elem_len +
1208 sizeof(*error->log) * log_len, GFP_ATOMIC);
1209 if (!error) {
1210 IPW_ERROR("Memory allocation for firmware error log "
1211 "failed.\n");
1212 return NULL;
1214 error->jiffies = jiffies;
1215 error->status = priv->status;
1216 error->config = priv->config;
1217 error->elem_len = elem_len;
1218 error->log_len = log_len;
1219 error->elem = (struct ipw_error_elem *)error->payload;
1220 error->log = (struct ipw_event *)(error->elem + elem_len);
1222 ipw_capture_event_log(priv, log_len, error->log);
1224 if (elem_len)
1225 ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1226 sizeof(*error->elem) * elem_len);
1228 return error;
1231 static ssize_t show_event_log(struct device *d,
1232 struct device_attribute *attr, char *buf)
1234 struct ipw_priv *priv = dev_get_drvdata(d);
1235 u32 log_len = ipw_get_event_log_len(priv);
1236 u32 log_size;
1237 struct ipw_event *log;
1238 u32 len = 0, i;
1240 /* not using min() because of its strict type checking */
1241 log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1242 sizeof(*log) * log_len : PAGE_SIZE;
1243 log = kzalloc(log_size, GFP_KERNEL);
1244 if (!log) {
1245 IPW_ERROR("Unable to allocate memory for log\n");
1246 return 0;
1248 log_len = log_size / sizeof(*log);
1249 ipw_capture_event_log(priv, log_len, log);
1251 len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1252 for (i = 0; i < log_len; i++)
1253 len += snprintf(buf + len, PAGE_SIZE - len,
1254 "\n%08X%08X%08X",
1255 log[i].time, log[i].event, log[i].data);
1256 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1257 kfree(log);
1258 return len;
1261 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1263 static ssize_t show_error(struct device *d,
1264 struct device_attribute *attr, char *buf)
1266 struct ipw_priv *priv = dev_get_drvdata(d);
1267 u32 len = 0, i;
1268 if (!priv->error)
1269 return 0;
1270 len += snprintf(buf + len, PAGE_SIZE - len,
1271 "%08lX%08X%08X%08X",
1272 priv->error->jiffies,
1273 priv->error->status,
1274 priv->error->config, priv->error->elem_len);
1275 for (i = 0; i < priv->error->elem_len; i++)
1276 len += snprintf(buf + len, PAGE_SIZE - len,
1277 "\n%08X%08X%08X%08X%08X%08X%08X",
1278 priv->error->elem[i].time,
1279 priv->error->elem[i].desc,
1280 priv->error->elem[i].blink1,
1281 priv->error->elem[i].blink2,
1282 priv->error->elem[i].link1,
1283 priv->error->elem[i].link2,
1284 priv->error->elem[i].data);
1286 len += snprintf(buf + len, PAGE_SIZE - len,
1287 "\n%08X", priv->error->log_len);
1288 for (i = 0; i < priv->error->log_len; i++)
1289 len += snprintf(buf + len, PAGE_SIZE - len,
1290 "\n%08X%08X%08X",
1291 priv->error->log[i].time,
1292 priv->error->log[i].event,
1293 priv->error->log[i].data);
1294 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1295 return len;
1298 static ssize_t clear_error(struct device *d,
1299 struct device_attribute *attr,
1300 const char *buf, size_t count)
1302 struct ipw_priv *priv = dev_get_drvdata(d);
1304 kfree(priv->error);
1305 priv->error = NULL;
1306 return count;
1309 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1311 static ssize_t show_cmd_log(struct device *d,
1312 struct device_attribute *attr, char *buf)
1314 struct ipw_priv *priv = dev_get_drvdata(d);
1315 u32 len = 0, i;
1316 if (!priv->cmdlog)
1317 return 0;
1318 for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1319 (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1320 i = (i + 1) % priv->cmdlog_len) {
1321 len +=
1322 snprintf(buf + len, PAGE_SIZE - len,
1323 "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1324 priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1325 priv->cmdlog[i].cmd.len);
1326 len +=
1327 snprintk_buf(buf + len, PAGE_SIZE - len,
1328 (u8 *) priv->cmdlog[i].cmd.param,
1329 priv->cmdlog[i].cmd.len);
1330 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1332 len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1333 return len;
1336 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1338 #ifdef CONFIG_IPW2200_PROMISCUOUS
1339 static void ipw_prom_free(struct ipw_priv *priv);
1340 static int ipw_prom_alloc(struct ipw_priv *priv);
1341 static ssize_t store_rtap_iface(struct device *d,
1342 struct device_attribute *attr,
1343 const char *buf, size_t count)
1345 struct ipw_priv *priv = dev_get_drvdata(d);
1346 int rc = 0;
1348 if (count < 1)
1349 return -EINVAL;
1351 switch (buf[0]) {
1352 case '0':
1353 if (!rtap_iface)
1354 return count;
1356 if (netif_running(priv->prom_net_dev)) {
1357 IPW_WARNING("Interface is up. Cannot unregister.\n");
1358 return count;
1361 ipw_prom_free(priv);
1362 rtap_iface = 0;
1363 break;
1365 case '1':
1366 if (rtap_iface)
1367 return count;
1369 rc = ipw_prom_alloc(priv);
1370 if (!rc)
1371 rtap_iface = 1;
1372 break;
1374 default:
1375 return -EINVAL;
1378 if (rc) {
1379 IPW_ERROR("Failed to register promiscuous network "
1380 "device (error %d).\n", rc);
1383 return count;
1386 static ssize_t show_rtap_iface(struct device *d,
1387 struct device_attribute *attr,
1388 char *buf)
1390 struct ipw_priv *priv = dev_get_drvdata(d);
1391 if (rtap_iface)
1392 return sprintf(buf, "%s", priv->prom_net_dev->name);
1393 else {
1394 buf[0] = '-';
1395 buf[1] = '1';
1396 buf[2] = '\0';
1397 return 3;
1401 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1402 store_rtap_iface);
1404 static ssize_t store_rtap_filter(struct device *d,
1405 struct device_attribute *attr,
1406 const char *buf, size_t count)
1408 struct ipw_priv *priv = dev_get_drvdata(d);
1410 if (!priv->prom_priv) {
1411 IPW_ERROR("Attempting to set filter without "
1412 "rtap_iface enabled.\n");
1413 return -EPERM;
1416 priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1418 IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1419 BIT_ARG16(priv->prom_priv->filter));
1421 return count;
1424 static ssize_t show_rtap_filter(struct device *d,
1425 struct device_attribute *attr,
1426 char *buf)
1428 struct ipw_priv *priv = dev_get_drvdata(d);
1429 return sprintf(buf, "0x%04X",
1430 priv->prom_priv ? priv->prom_priv->filter : 0);
1433 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1434 store_rtap_filter);
1435 #endif
1437 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1438 char *buf)
1440 struct ipw_priv *priv = dev_get_drvdata(d);
1441 return sprintf(buf, "%d\n", priv->ieee->scan_age);
1444 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1445 const char *buf, size_t count)
1447 struct ipw_priv *priv = dev_get_drvdata(d);
1448 struct net_device *dev = priv->net_dev;
1449 char buffer[] = "00000000";
1450 unsigned long len =
1451 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1452 unsigned long val;
1453 char *p = buffer;
1455 IPW_DEBUG_INFO("enter\n");
1457 strncpy(buffer, buf, len);
1458 buffer[len] = 0;
1460 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1461 p++;
1462 if (p[0] == 'x' || p[0] == 'X')
1463 p++;
1464 val = simple_strtoul(p, &p, 16);
1465 } else
1466 val = simple_strtoul(p, &p, 10);
1467 if (p == buffer) {
1468 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1469 } else {
1470 priv->ieee->scan_age = val;
1471 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1474 IPW_DEBUG_INFO("exit\n");
1475 return len;
1478 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1480 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1481 char *buf)
1483 struct ipw_priv *priv = dev_get_drvdata(d);
1484 return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1487 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1488 const char *buf, size_t count)
1490 struct ipw_priv *priv = dev_get_drvdata(d);
1492 IPW_DEBUG_INFO("enter\n");
1494 if (count == 0)
1495 return 0;
1497 if (*buf == 0) {
1498 IPW_DEBUG_LED("Disabling LED control.\n");
1499 priv->config |= CFG_NO_LED;
1500 ipw_led_shutdown(priv);
1501 } else {
1502 IPW_DEBUG_LED("Enabling LED control.\n");
1503 priv->config &= ~CFG_NO_LED;
1504 ipw_led_init(priv);
1507 IPW_DEBUG_INFO("exit\n");
1508 return count;
1511 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1513 static ssize_t show_status(struct device *d,
1514 struct device_attribute *attr, char *buf)
1516 struct ipw_priv *p = d->driver_data;
1517 return sprintf(buf, "0x%08x\n", (int)p->status);
1520 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1522 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1523 char *buf)
1525 struct ipw_priv *p = d->driver_data;
1526 return sprintf(buf, "0x%08x\n", (int)p->config);
1529 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1531 static ssize_t show_nic_type(struct device *d,
1532 struct device_attribute *attr, char *buf)
1534 struct ipw_priv *priv = d->driver_data;
1535 return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1538 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1540 static ssize_t show_ucode_version(struct device *d,
1541 struct device_attribute *attr, char *buf)
1543 u32 len = sizeof(u32), tmp = 0;
1544 struct ipw_priv *p = d->driver_data;
1546 if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1547 return 0;
1549 return sprintf(buf, "0x%08x\n", tmp);
1552 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1554 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1555 char *buf)
1557 u32 len = sizeof(u32), tmp = 0;
1558 struct ipw_priv *p = d->driver_data;
1560 if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1561 return 0;
1563 return sprintf(buf, "0x%08x\n", tmp);
1566 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1569 * Add a device attribute to view/control the delay between eeprom
1570 * operations.
1572 static ssize_t show_eeprom_delay(struct device *d,
1573 struct device_attribute *attr, char *buf)
1575 int n = ((struct ipw_priv *)d->driver_data)->eeprom_delay;
1576 return sprintf(buf, "%i\n", n);
1578 static ssize_t store_eeprom_delay(struct device *d,
1579 struct device_attribute *attr,
1580 const char *buf, size_t count)
1582 struct ipw_priv *p = d->driver_data;
1583 sscanf(buf, "%i", &p->eeprom_delay);
1584 return strnlen(buf, count);
1587 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1588 show_eeprom_delay, store_eeprom_delay);
1590 static ssize_t show_command_event_reg(struct device *d,
1591 struct device_attribute *attr, char *buf)
1593 u32 reg = 0;
1594 struct ipw_priv *p = d->driver_data;
1596 reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1597 return sprintf(buf, "0x%08x\n", reg);
1599 static ssize_t store_command_event_reg(struct device *d,
1600 struct device_attribute *attr,
1601 const char *buf, size_t count)
1603 u32 reg;
1604 struct ipw_priv *p = d->driver_data;
1606 sscanf(buf, "%x", &reg);
1607 ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1608 return strnlen(buf, count);
1611 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1612 show_command_event_reg, store_command_event_reg);
1614 static ssize_t show_mem_gpio_reg(struct device *d,
1615 struct device_attribute *attr, char *buf)
1617 u32 reg = 0;
1618 struct ipw_priv *p = d->driver_data;
1620 reg = ipw_read_reg32(p, 0x301100);
1621 return sprintf(buf, "0x%08x\n", reg);
1623 static ssize_t store_mem_gpio_reg(struct device *d,
1624 struct device_attribute *attr,
1625 const char *buf, size_t count)
1627 u32 reg;
1628 struct ipw_priv *p = d->driver_data;
1630 sscanf(buf, "%x", &reg);
1631 ipw_write_reg32(p, 0x301100, reg);
1632 return strnlen(buf, count);
1635 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1636 show_mem_gpio_reg, store_mem_gpio_reg);
1638 static ssize_t show_indirect_dword(struct device *d,
1639 struct device_attribute *attr, char *buf)
1641 u32 reg = 0;
1642 struct ipw_priv *priv = d->driver_data;
1644 if (priv->status & STATUS_INDIRECT_DWORD)
1645 reg = ipw_read_reg32(priv, priv->indirect_dword);
1646 else
1647 reg = 0;
1649 return sprintf(buf, "0x%08x\n", reg);
1651 static ssize_t store_indirect_dword(struct device *d,
1652 struct device_attribute *attr,
1653 const char *buf, size_t count)
1655 struct ipw_priv *priv = d->driver_data;
1657 sscanf(buf, "%x", &priv->indirect_dword);
1658 priv->status |= STATUS_INDIRECT_DWORD;
1659 return strnlen(buf, count);
1662 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1663 show_indirect_dword, store_indirect_dword);
1665 static ssize_t show_indirect_byte(struct device *d,
1666 struct device_attribute *attr, char *buf)
1668 u8 reg = 0;
1669 struct ipw_priv *priv = d->driver_data;
1671 if (priv->status & STATUS_INDIRECT_BYTE)
1672 reg = ipw_read_reg8(priv, priv->indirect_byte);
1673 else
1674 reg = 0;
1676 return sprintf(buf, "0x%02x\n", reg);
1678 static ssize_t store_indirect_byte(struct device *d,
1679 struct device_attribute *attr,
1680 const char *buf, size_t count)
1682 struct ipw_priv *priv = d->driver_data;
1684 sscanf(buf, "%x", &priv->indirect_byte);
1685 priv->status |= STATUS_INDIRECT_BYTE;
1686 return strnlen(buf, count);
1689 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1690 show_indirect_byte, store_indirect_byte);
1692 static ssize_t show_direct_dword(struct device *d,
1693 struct device_attribute *attr, char *buf)
1695 u32 reg = 0;
1696 struct ipw_priv *priv = d->driver_data;
1698 if (priv->status & STATUS_DIRECT_DWORD)
1699 reg = ipw_read32(priv, priv->direct_dword);
1700 else
1701 reg = 0;
1703 return sprintf(buf, "0x%08x\n", reg);
1705 static ssize_t store_direct_dword(struct device *d,
1706 struct device_attribute *attr,
1707 const char *buf, size_t count)
1709 struct ipw_priv *priv = d->driver_data;
1711 sscanf(buf, "%x", &priv->direct_dword);
1712 priv->status |= STATUS_DIRECT_DWORD;
1713 return strnlen(buf, count);
1716 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1717 show_direct_dword, store_direct_dword);
1719 static int rf_kill_active(struct ipw_priv *priv)
1721 if (0 == (ipw_read32(priv, 0x30) & 0x10000))
1722 priv->status |= STATUS_RF_KILL_HW;
1723 else
1724 priv->status &= ~STATUS_RF_KILL_HW;
1726 return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1729 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1730 char *buf)
1732 /* 0 - RF kill not enabled
1733 1 - SW based RF kill active (sysfs)
1734 2 - HW based RF kill active
1735 3 - Both HW and SW baed RF kill active */
1736 struct ipw_priv *priv = d->driver_data;
1737 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1738 (rf_kill_active(priv) ? 0x2 : 0x0);
1739 return sprintf(buf, "%i\n", val);
1742 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1744 if ((disable_radio ? 1 : 0) ==
1745 ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1746 return 0;
1748 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
1749 disable_radio ? "OFF" : "ON");
1751 if (disable_radio) {
1752 priv->status |= STATUS_RF_KILL_SW;
1754 if (priv->workqueue) {
1755 cancel_delayed_work(&priv->request_scan);
1756 cancel_delayed_work(&priv->request_direct_scan);
1757 cancel_delayed_work(&priv->request_passive_scan);
1758 cancel_delayed_work(&priv->scan_event);
1760 queue_work(priv->workqueue, &priv->down);
1761 } else {
1762 priv->status &= ~STATUS_RF_KILL_SW;
1763 if (rf_kill_active(priv)) {
1764 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1765 "disabled by HW switch\n");
1766 /* Make sure the RF_KILL check timer is running */
1767 cancel_delayed_work(&priv->rf_kill);
1768 queue_delayed_work(priv->workqueue, &priv->rf_kill,
1769 round_jiffies_relative(2 * HZ));
1770 } else
1771 queue_work(priv->workqueue, &priv->up);
1774 return 1;
1777 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1778 const char *buf, size_t count)
1780 struct ipw_priv *priv = d->driver_data;
1782 ipw_radio_kill_sw(priv, buf[0] == '1');
1784 return count;
1787 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1789 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1790 char *buf)
1792 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1793 int pos = 0, len = 0;
1794 if (priv->config & CFG_SPEED_SCAN) {
1795 while (priv->speed_scan[pos] != 0)
1796 len += sprintf(&buf[len], "%d ",
1797 priv->speed_scan[pos++]);
1798 return len + sprintf(&buf[len], "\n");
1801 return sprintf(buf, "0\n");
1804 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1805 const char *buf, size_t count)
1807 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1808 int channel, pos = 0;
1809 const char *p = buf;
1811 /* list of space separated channels to scan, optionally ending with 0 */
1812 while ((channel = simple_strtol(p, NULL, 0))) {
1813 if (pos == MAX_SPEED_SCAN - 1) {
1814 priv->speed_scan[pos] = 0;
1815 break;
1818 if (ieee80211_is_valid_channel(priv->ieee, channel))
1819 priv->speed_scan[pos++] = channel;
1820 else
1821 IPW_WARNING("Skipping invalid channel request: %d\n",
1822 channel);
1823 p = strchr(p, ' ');
1824 if (!p)
1825 break;
1826 while (*p == ' ' || *p == '\t')
1827 p++;
1830 if (pos == 0)
1831 priv->config &= ~CFG_SPEED_SCAN;
1832 else {
1833 priv->speed_scan_pos = 0;
1834 priv->config |= CFG_SPEED_SCAN;
1837 return count;
1840 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1841 store_speed_scan);
1843 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1844 char *buf)
1846 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1847 return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1850 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1851 const char *buf, size_t count)
1853 struct ipw_priv *priv = (struct ipw_priv *)d->driver_data;
1854 if (buf[0] == '1')
1855 priv->config |= CFG_NET_STATS;
1856 else
1857 priv->config &= ~CFG_NET_STATS;
1859 return count;
1862 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1863 show_net_stats, store_net_stats);
1865 static ssize_t show_channels(struct device *d,
1866 struct device_attribute *attr,
1867 char *buf)
1869 struct ipw_priv *priv = dev_get_drvdata(d);
1870 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
1871 int len = 0, i;
1873 len = sprintf(&buf[len],
1874 "Displaying %d channels in 2.4Ghz band "
1875 "(802.11bg):\n", geo->bg_channels);
1877 for (i = 0; i < geo->bg_channels; i++) {
1878 len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1879 geo->bg[i].channel,
1880 geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT ?
1881 " (radar spectrum)" : "",
1882 ((geo->bg[i].flags & IEEE80211_CH_NO_IBSS) ||
1883 (geo->bg[i].flags & IEEE80211_CH_RADAR_DETECT))
1884 ? "" : ", IBSS",
1885 geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1886 "passive only" : "active/passive",
1887 geo->bg[i].flags & IEEE80211_CH_B_ONLY ?
1888 "B" : "B/G");
1891 len += sprintf(&buf[len],
1892 "Displaying %d channels in 5.2Ghz band "
1893 "(802.11a):\n", geo->a_channels);
1894 for (i = 0; i < geo->a_channels; i++) {
1895 len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1896 geo->a[i].channel,
1897 geo->a[i].flags & IEEE80211_CH_RADAR_DETECT ?
1898 " (radar spectrum)" : "",
1899 ((geo->a[i].flags & IEEE80211_CH_NO_IBSS) ||
1900 (geo->a[i].flags & IEEE80211_CH_RADAR_DETECT))
1901 ? "" : ", IBSS",
1902 geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY ?
1903 "passive only" : "active/passive");
1906 return len;
1909 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1911 static void notify_wx_assoc_event(struct ipw_priv *priv)
1913 union iwreq_data wrqu;
1914 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1915 if (priv->status & STATUS_ASSOCIATED)
1916 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1917 else
1918 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1919 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1922 static void ipw_irq_tasklet(struct ipw_priv *priv)
1924 u32 inta, inta_mask, handled = 0;
1925 unsigned long flags;
1926 int rc = 0;
1928 spin_lock_irqsave(&priv->irq_lock, flags);
1930 inta = ipw_read32(priv, IPW_INTA_RW);
1931 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1932 inta &= (IPW_INTA_MASK_ALL & inta_mask);
1934 /* Add any cached INTA values that need to be handled */
1935 inta |= priv->isr_inta;
1937 spin_unlock_irqrestore(&priv->irq_lock, flags);
1939 spin_lock_irqsave(&priv->lock, flags);
1941 /* handle all the justifications for the interrupt */
1942 if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1943 ipw_rx(priv);
1944 handled |= IPW_INTA_BIT_RX_TRANSFER;
1947 if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
1948 IPW_DEBUG_HC("Command completed.\n");
1949 rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
1950 priv->status &= ~STATUS_HCMD_ACTIVE;
1951 wake_up_interruptible(&priv->wait_command_queue);
1952 handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
1955 if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
1956 IPW_DEBUG_TX("TX_QUEUE_1\n");
1957 rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
1958 handled |= IPW_INTA_BIT_TX_QUEUE_1;
1961 if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
1962 IPW_DEBUG_TX("TX_QUEUE_2\n");
1963 rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
1964 handled |= IPW_INTA_BIT_TX_QUEUE_2;
1967 if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
1968 IPW_DEBUG_TX("TX_QUEUE_3\n");
1969 rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
1970 handled |= IPW_INTA_BIT_TX_QUEUE_3;
1973 if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
1974 IPW_DEBUG_TX("TX_QUEUE_4\n");
1975 rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
1976 handled |= IPW_INTA_BIT_TX_QUEUE_4;
1979 if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
1980 IPW_WARNING("STATUS_CHANGE\n");
1981 handled |= IPW_INTA_BIT_STATUS_CHANGE;
1984 if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
1985 IPW_WARNING("TX_PERIOD_EXPIRED\n");
1986 handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
1989 if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
1990 IPW_WARNING("HOST_CMD_DONE\n");
1991 handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
1994 if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
1995 IPW_WARNING("FW_INITIALIZATION_DONE\n");
1996 handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
1999 if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2000 IPW_WARNING("PHY_OFF_DONE\n");
2001 handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2004 if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2005 IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2006 priv->status |= STATUS_RF_KILL_HW;
2007 wake_up_interruptible(&priv->wait_command_queue);
2008 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2009 cancel_delayed_work(&priv->request_scan);
2010 cancel_delayed_work(&priv->request_direct_scan);
2011 cancel_delayed_work(&priv->request_passive_scan);
2012 cancel_delayed_work(&priv->scan_event);
2013 schedule_work(&priv->link_down);
2014 queue_delayed_work(priv->workqueue, &priv->rf_kill, 2 * HZ);
2015 handled |= IPW_INTA_BIT_RF_KILL_DONE;
2018 if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2019 IPW_WARNING("Firmware error detected. Restarting.\n");
2020 if (priv->error) {
2021 IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2022 if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2023 struct ipw_fw_error *error =
2024 ipw_alloc_error_log(priv);
2025 ipw_dump_error_log(priv, error);
2026 kfree(error);
2028 } else {
2029 priv->error = ipw_alloc_error_log(priv);
2030 if (priv->error)
2031 IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2032 else
2033 IPW_DEBUG_FW("Error allocating sysfs 'error' "
2034 "log.\n");
2035 if (ipw_debug_level & IPW_DL_FW_ERRORS)
2036 ipw_dump_error_log(priv, priv->error);
2039 /* XXX: If hardware encryption is for WPA/WPA2,
2040 * we have to notify the supplicant. */
2041 if (priv->ieee->sec.encrypt) {
2042 priv->status &= ~STATUS_ASSOCIATED;
2043 notify_wx_assoc_event(priv);
2046 /* Keep the restart process from trying to send host
2047 * commands by clearing the INIT status bit */
2048 priv->status &= ~STATUS_INIT;
2050 /* Cancel currently queued command. */
2051 priv->status &= ~STATUS_HCMD_ACTIVE;
2052 wake_up_interruptible(&priv->wait_command_queue);
2054 queue_work(priv->workqueue, &priv->adapter_restart);
2055 handled |= IPW_INTA_BIT_FATAL_ERROR;
2058 if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2059 IPW_ERROR("Parity error\n");
2060 handled |= IPW_INTA_BIT_PARITY_ERROR;
2063 if (handled != inta) {
2064 IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2067 spin_unlock_irqrestore(&priv->lock, flags);
2069 /* enable all interrupts */
2070 ipw_enable_interrupts(priv);
2073 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
2074 static char *get_cmd_string(u8 cmd)
2076 switch (cmd) {
2077 IPW_CMD(HOST_COMPLETE);
2078 IPW_CMD(POWER_DOWN);
2079 IPW_CMD(SYSTEM_CONFIG);
2080 IPW_CMD(MULTICAST_ADDRESS);
2081 IPW_CMD(SSID);
2082 IPW_CMD(ADAPTER_ADDRESS);
2083 IPW_CMD(PORT_TYPE);
2084 IPW_CMD(RTS_THRESHOLD);
2085 IPW_CMD(FRAG_THRESHOLD);
2086 IPW_CMD(POWER_MODE);
2087 IPW_CMD(WEP_KEY);
2088 IPW_CMD(TGI_TX_KEY);
2089 IPW_CMD(SCAN_REQUEST);
2090 IPW_CMD(SCAN_REQUEST_EXT);
2091 IPW_CMD(ASSOCIATE);
2092 IPW_CMD(SUPPORTED_RATES);
2093 IPW_CMD(SCAN_ABORT);
2094 IPW_CMD(TX_FLUSH);
2095 IPW_CMD(QOS_PARAMETERS);
2096 IPW_CMD(DINO_CONFIG);
2097 IPW_CMD(RSN_CAPABILITIES);
2098 IPW_CMD(RX_KEY);
2099 IPW_CMD(CARD_DISABLE);
2100 IPW_CMD(SEED_NUMBER);
2101 IPW_CMD(TX_POWER);
2102 IPW_CMD(COUNTRY_INFO);
2103 IPW_CMD(AIRONET_INFO);
2104 IPW_CMD(AP_TX_POWER);
2105 IPW_CMD(CCKM_INFO);
2106 IPW_CMD(CCX_VER_INFO);
2107 IPW_CMD(SET_CALIBRATION);
2108 IPW_CMD(SENSITIVITY_CALIB);
2109 IPW_CMD(RETRY_LIMIT);
2110 IPW_CMD(IPW_PRE_POWER_DOWN);
2111 IPW_CMD(VAP_BEACON_TEMPLATE);
2112 IPW_CMD(VAP_DTIM_PERIOD);
2113 IPW_CMD(EXT_SUPPORTED_RATES);
2114 IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2115 IPW_CMD(VAP_QUIET_INTERVALS);
2116 IPW_CMD(VAP_CHANNEL_SWITCH);
2117 IPW_CMD(VAP_MANDATORY_CHANNELS);
2118 IPW_CMD(VAP_CELL_PWR_LIMIT);
2119 IPW_CMD(VAP_CF_PARAM_SET);
2120 IPW_CMD(VAP_SET_BEACONING_STATE);
2121 IPW_CMD(MEASUREMENT);
2122 IPW_CMD(POWER_CAPABILITY);
2123 IPW_CMD(SUPPORTED_CHANNELS);
2124 IPW_CMD(TPC_REPORT);
2125 IPW_CMD(WME_INFO);
2126 IPW_CMD(PRODUCTION_COMMAND);
2127 default:
2128 return "UNKNOWN";
2132 #define HOST_COMPLETE_TIMEOUT HZ
2134 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2136 int rc = 0;
2137 unsigned long flags;
2139 spin_lock_irqsave(&priv->lock, flags);
2140 if (priv->status & STATUS_HCMD_ACTIVE) {
2141 IPW_ERROR("Failed to send %s: Already sending a command.\n",
2142 get_cmd_string(cmd->cmd));
2143 spin_unlock_irqrestore(&priv->lock, flags);
2144 return -EAGAIN;
2147 priv->status |= STATUS_HCMD_ACTIVE;
2149 if (priv->cmdlog) {
2150 priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2151 priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2152 priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2153 memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2154 cmd->len);
2155 priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2158 IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2159 get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2160 priv->status);
2162 #ifndef DEBUG_CMD_WEP_KEY
2163 if (cmd->cmd == IPW_CMD_WEP_KEY)
2164 IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2165 else
2166 #endif
2167 printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2169 rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2170 if (rc) {
2171 priv->status &= ~STATUS_HCMD_ACTIVE;
2172 IPW_ERROR("Failed to send %s: Reason %d\n",
2173 get_cmd_string(cmd->cmd), rc);
2174 spin_unlock_irqrestore(&priv->lock, flags);
2175 goto exit;
2177 spin_unlock_irqrestore(&priv->lock, flags);
2179 rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2180 !(priv->
2181 status & STATUS_HCMD_ACTIVE),
2182 HOST_COMPLETE_TIMEOUT);
2183 if (rc == 0) {
2184 spin_lock_irqsave(&priv->lock, flags);
2185 if (priv->status & STATUS_HCMD_ACTIVE) {
2186 IPW_ERROR("Failed to send %s: Command timed out.\n",
2187 get_cmd_string(cmd->cmd));
2188 priv->status &= ~STATUS_HCMD_ACTIVE;
2189 spin_unlock_irqrestore(&priv->lock, flags);
2190 rc = -EIO;
2191 goto exit;
2193 spin_unlock_irqrestore(&priv->lock, flags);
2194 } else
2195 rc = 0;
2197 if (priv->status & STATUS_RF_KILL_HW) {
2198 IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2199 get_cmd_string(cmd->cmd));
2200 rc = -EIO;
2201 goto exit;
2204 exit:
2205 if (priv->cmdlog) {
2206 priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2207 priv->cmdlog_pos %= priv->cmdlog_len;
2209 return rc;
2212 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2214 struct host_cmd cmd = {
2215 .cmd = command,
2218 return __ipw_send_cmd(priv, &cmd);
2221 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2222 void *data)
2224 struct host_cmd cmd = {
2225 .cmd = command,
2226 .len = len,
2227 .param = data,
2230 return __ipw_send_cmd(priv, &cmd);
2233 static int ipw_send_host_complete(struct ipw_priv *priv)
2235 if (!priv) {
2236 IPW_ERROR("Invalid args\n");
2237 return -1;
2240 return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2243 static int ipw_send_system_config(struct ipw_priv *priv)
2245 return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2246 sizeof(priv->sys_config),
2247 &priv->sys_config);
2250 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2252 if (!priv || !ssid) {
2253 IPW_ERROR("Invalid args\n");
2254 return -1;
2257 return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2258 ssid);
2261 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2263 if (!priv || !mac) {
2264 IPW_ERROR("Invalid args\n");
2265 return -1;
2268 IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2269 priv->net_dev->name, mac);
2271 return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2275 * NOTE: This must be executed from our workqueue as it results in udelay
2276 * being called which may corrupt the keyboard if executed on default
2277 * workqueue
2279 static void ipw_adapter_restart(void *adapter)
2281 struct ipw_priv *priv = adapter;
2283 if (priv->status & STATUS_RF_KILL_MASK)
2284 return;
2286 ipw_down(priv);
2288 if (priv->assoc_network &&
2289 (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2290 ipw_remove_current_network(priv);
2292 if (ipw_up(priv)) {
2293 IPW_ERROR("Failed to up device\n");
2294 return;
2298 static void ipw_bg_adapter_restart(struct work_struct *work)
2300 struct ipw_priv *priv =
2301 container_of(work, struct ipw_priv, adapter_restart);
2302 mutex_lock(&priv->mutex);
2303 ipw_adapter_restart(priv);
2304 mutex_unlock(&priv->mutex);
2307 #define IPW_SCAN_CHECK_WATCHDOG (5 * HZ)
2309 static void ipw_scan_check(void *data)
2311 struct ipw_priv *priv = data;
2312 if (priv->status & (STATUS_SCANNING | STATUS_SCAN_ABORTING)) {
2313 IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2314 "adapter after (%dms).\n",
2315 jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2316 queue_work(priv->workqueue, &priv->adapter_restart);
2320 static void ipw_bg_scan_check(struct work_struct *work)
2322 struct ipw_priv *priv =
2323 container_of(work, struct ipw_priv, scan_check.work);
2324 mutex_lock(&priv->mutex);
2325 ipw_scan_check(priv);
2326 mutex_unlock(&priv->mutex);
2329 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2330 struct ipw_scan_request_ext *request)
2332 return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2333 sizeof(*request), request);
2336 static int ipw_send_scan_abort(struct ipw_priv *priv)
2338 if (!priv) {
2339 IPW_ERROR("Invalid args\n");
2340 return -1;
2343 return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2346 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2348 struct ipw_sensitivity_calib calib = {
2349 .beacon_rssi_raw = cpu_to_le16(sens),
2352 return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2353 &calib);
2356 static int ipw_send_associate(struct ipw_priv *priv,
2357 struct ipw_associate *associate)
2359 if (!priv || !associate) {
2360 IPW_ERROR("Invalid args\n");
2361 return -1;
2364 return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2365 associate);
2368 static int ipw_send_supported_rates(struct ipw_priv *priv,
2369 struct ipw_supported_rates *rates)
2371 if (!priv || !rates) {
2372 IPW_ERROR("Invalid args\n");
2373 return -1;
2376 return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2377 rates);
2380 static int ipw_set_random_seed(struct ipw_priv *priv)
2382 u32 val;
2384 if (!priv) {
2385 IPW_ERROR("Invalid args\n");
2386 return -1;
2389 get_random_bytes(&val, sizeof(val));
2391 return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2394 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2396 __le32 v = cpu_to_le32(phy_off);
2397 if (!priv) {
2398 IPW_ERROR("Invalid args\n");
2399 return -1;
2402 return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2405 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2407 if (!priv || !power) {
2408 IPW_ERROR("Invalid args\n");
2409 return -1;
2412 return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2415 static int ipw_set_tx_power(struct ipw_priv *priv)
2417 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
2418 struct ipw_tx_power tx_power;
2419 s8 max_power;
2420 int i;
2422 memset(&tx_power, 0, sizeof(tx_power));
2424 /* configure device for 'G' band */
2425 tx_power.ieee_mode = IPW_G_MODE;
2426 tx_power.num_channels = geo->bg_channels;
2427 for (i = 0; i < geo->bg_channels; i++) {
2428 max_power = geo->bg[i].max_power;
2429 tx_power.channels_tx_power[i].channel_number =
2430 geo->bg[i].channel;
2431 tx_power.channels_tx_power[i].tx_power = max_power ?
2432 min(max_power, priv->tx_power) : priv->tx_power;
2434 if (ipw_send_tx_power(priv, &tx_power))
2435 return -EIO;
2437 /* configure device to also handle 'B' band */
2438 tx_power.ieee_mode = IPW_B_MODE;
2439 if (ipw_send_tx_power(priv, &tx_power))
2440 return -EIO;
2442 /* configure device to also handle 'A' band */
2443 if (priv->ieee->abg_true) {
2444 tx_power.ieee_mode = IPW_A_MODE;
2445 tx_power.num_channels = geo->a_channels;
2446 for (i = 0; i < tx_power.num_channels; i++) {
2447 max_power = geo->a[i].max_power;
2448 tx_power.channels_tx_power[i].channel_number =
2449 geo->a[i].channel;
2450 tx_power.channels_tx_power[i].tx_power = max_power ?
2451 min(max_power, priv->tx_power) : priv->tx_power;
2453 if (ipw_send_tx_power(priv, &tx_power))
2454 return -EIO;
2456 return 0;
2459 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2461 struct ipw_rts_threshold rts_threshold = {
2462 .rts_threshold = cpu_to_le16(rts),
2465 if (!priv) {
2466 IPW_ERROR("Invalid args\n");
2467 return -1;
2470 return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2471 sizeof(rts_threshold), &rts_threshold);
2474 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2476 struct ipw_frag_threshold frag_threshold = {
2477 .frag_threshold = cpu_to_le16(frag),
2480 if (!priv) {
2481 IPW_ERROR("Invalid args\n");
2482 return -1;
2485 return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2486 sizeof(frag_threshold), &frag_threshold);
2489 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2491 __le32 param;
2493 if (!priv) {
2494 IPW_ERROR("Invalid args\n");
2495 return -1;
2498 /* If on battery, set to 3, if AC set to CAM, else user
2499 * level */
2500 switch (mode) {
2501 case IPW_POWER_BATTERY:
2502 param = cpu_to_le32(IPW_POWER_INDEX_3);
2503 break;
2504 case IPW_POWER_AC:
2505 param = cpu_to_le32(IPW_POWER_MODE_CAM);
2506 break;
2507 default:
2508 param = cpu_to_le32(mode);
2509 break;
2512 return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2513 &param);
2516 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2518 struct ipw_retry_limit retry_limit = {
2519 .short_retry_limit = slimit,
2520 .long_retry_limit = llimit
2523 if (!priv) {
2524 IPW_ERROR("Invalid args\n");
2525 return -1;
2528 return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2529 &retry_limit);
2533 * The IPW device contains a Microwire compatible EEPROM that stores
2534 * various data like the MAC address. Usually the firmware has exclusive
2535 * access to the eeprom, but during device initialization (before the
2536 * device driver has sent the HostComplete command to the firmware) the
2537 * device driver has read access to the EEPROM by way of indirect addressing
2538 * through a couple of memory mapped registers.
2540 * The following is a simplified implementation for pulling data out of the
2541 * the eeprom, along with some helper functions to find information in
2542 * the per device private data's copy of the eeprom.
2544 * NOTE: To better understand how these functions work (i.e what is a chip
2545 * select and why do have to keep driving the eeprom clock?), read
2546 * just about any data sheet for a Microwire compatible EEPROM.
2549 /* write a 32 bit value into the indirect accessor register */
2550 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2552 ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2554 /* the eeprom requires some time to complete the operation */
2555 udelay(p->eeprom_delay);
2557 return;
2560 /* perform a chip select operation */
2561 static void eeprom_cs(struct ipw_priv *priv)
2563 eeprom_write_reg(priv, 0);
2564 eeprom_write_reg(priv, EEPROM_BIT_CS);
2565 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2566 eeprom_write_reg(priv, EEPROM_BIT_CS);
2569 /* perform a chip select operation */
2570 static void eeprom_disable_cs(struct ipw_priv *priv)
2572 eeprom_write_reg(priv, EEPROM_BIT_CS);
2573 eeprom_write_reg(priv, 0);
2574 eeprom_write_reg(priv, EEPROM_BIT_SK);
2577 /* push a single bit down to the eeprom */
2578 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2580 int d = (bit ? EEPROM_BIT_DI : 0);
2581 eeprom_write_reg(p, EEPROM_BIT_CS | d);
2582 eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2585 /* push an opcode followed by an address down to the eeprom */
2586 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2588 int i;
2590 eeprom_cs(priv);
2591 eeprom_write_bit(priv, 1);
2592 eeprom_write_bit(priv, op & 2);
2593 eeprom_write_bit(priv, op & 1);
2594 for (i = 7; i >= 0; i--) {
2595 eeprom_write_bit(priv, addr & (1 << i));
2599 /* pull 16 bits off the eeprom, one bit at a time */
2600 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2602 int i;
2603 u16 r = 0;
2605 /* Send READ Opcode */
2606 eeprom_op(priv, EEPROM_CMD_READ, addr);
2608 /* Send dummy bit */
2609 eeprom_write_reg(priv, EEPROM_BIT_CS);
2611 /* Read the byte off the eeprom one bit at a time */
2612 for (i = 0; i < 16; i++) {
2613 u32 data = 0;
2614 eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2615 eeprom_write_reg(priv, EEPROM_BIT_CS);
2616 data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2617 r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2620 /* Send another dummy bit */
2621 eeprom_write_reg(priv, 0);
2622 eeprom_disable_cs(priv);
2624 return r;
2627 /* helper function for pulling the mac address out of the private */
2628 /* data's copy of the eeprom data */
2629 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2631 memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2635 * Either the device driver (i.e. the host) or the firmware can
2636 * load eeprom data into the designated region in SRAM. If neither
2637 * happens then the FW will shutdown with a fatal error.
2639 * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2640 * bit needs region of shared SRAM needs to be non-zero.
2642 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2644 int i;
2645 __le16 *eeprom = (__le16 *) priv->eeprom;
2647 IPW_DEBUG_TRACE(">>\n");
2649 /* read entire contents of eeprom into private buffer */
2650 for (i = 0; i < 128; i++)
2651 eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2654 If the data looks correct, then copy it to our private
2655 copy. Otherwise let the firmware know to perform the operation
2656 on its own.
2658 if (priv->eeprom[EEPROM_VERSION] != 0) {
2659 IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2661 /* write the eeprom data to sram */
2662 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2663 ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2665 /* Do not load eeprom data on fatal error or suspend */
2666 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2667 } else {
2668 IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2670 /* Load eeprom data on fatal error or suspend */
2671 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2674 IPW_DEBUG_TRACE("<<\n");
2677 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2679 count >>= 2;
2680 if (!count)
2681 return;
2682 _ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2683 while (count--)
2684 _ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2687 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2689 ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2690 CB_NUMBER_OF_ELEMENTS_SMALL *
2691 sizeof(struct command_block));
2694 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2695 { /* start dma engine but no transfers yet */
2697 IPW_DEBUG_FW(">> : \n");
2699 /* Start the dma */
2700 ipw_fw_dma_reset_command_blocks(priv);
2702 /* Write CB base address */
2703 ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2705 IPW_DEBUG_FW("<< : \n");
2706 return 0;
2709 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2711 u32 control = 0;
2713 IPW_DEBUG_FW(">> :\n");
2715 /* set the Stop and Abort bit */
2716 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2717 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2718 priv->sram_desc.last_cb_index = 0;
2720 IPW_DEBUG_FW("<< \n");
2723 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2724 struct command_block *cb)
2726 u32 address =
2727 IPW_SHARED_SRAM_DMA_CONTROL +
2728 (sizeof(struct command_block) * index);
2729 IPW_DEBUG_FW(">> :\n");
2731 ipw_write_indirect(priv, address, (u8 *) cb,
2732 (int)sizeof(struct command_block));
2734 IPW_DEBUG_FW("<< :\n");
2735 return 0;
2739 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2741 u32 control = 0;
2742 u32 index = 0;
2744 IPW_DEBUG_FW(">> :\n");
2746 for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2747 ipw_fw_dma_write_command_block(priv, index,
2748 &priv->sram_desc.cb_list[index]);
2750 /* Enable the DMA in the CSR register */
2751 ipw_clear_bit(priv, IPW_RESET_REG,
2752 IPW_RESET_REG_MASTER_DISABLED |
2753 IPW_RESET_REG_STOP_MASTER);
2755 /* Set the Start bit. */
2756 control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2757 ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2759 IPW_DEBUG_FW("<< :\n");
2760 return 0;
2763 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2765 u32 address;
2766 u32 register_value = 0;
2767 u32 cb_fields_address = 0;
2769 IPW_DEBUG_FW(">> :\n");
2770 address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2771 IPW_DEBUG_FW_INFO("Current CB is 0x%x \n", address);
2773 /* Read the DMA Controlor register */
2774 register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2775 IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x \n", register_value);
2777 /* Print the CB values */
2778 cb_fields_address = address;
2779 register_value = ipw_read_reg32(priv, cb_fields_address);
2780 IPW_DEBUG_FW_INFO("Current CB ControlField is 0x%x \n", register_value);
2782 cb_fields_address += sizeof(u32);
2783 register_value = ipw_read_reg32(priv, cb_fields_address);
2784 IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x \n", register_value);
2786 cb_fields_address += sizeof(u32);
2787 register_value = ipw_read_reg32(priv, cb_fields_address);
2788 IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x \n",
2789 register_value);
2791 cb_fields_address += sizeof(u32);
2792 register_value = ipw_read_reg32(priv, cb_fields_address);
2793 IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x \n", register_value);
2795 IPW_DEBUG_FW(">> :\n");
2798 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2800 u32 current_cb_address = 0;
2801 u32 current_cb_index = 0;
2803 IPW_DEBUG_FW("<< :\n");
2804 current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2806 current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2807 sizeof(struct command_block);
2809 IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X \n",
2810 current_cb_index, current_cb_address);
2812 IPW_DEBUG_FW(">> :\n");
2813 return current_cb_index;
2817 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2818 u32 src_address,
2819 u32 dest_address,
2820 u32 length,
2821 int interrupt_enabled, int is_last)
2824 u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2825 CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2826 CB_DEST_SIZE_LONG;
2827 struct command_block *cb;
2828 u32 last_cb_element = 0;
2830 IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2831 src_address, dest_address, length);
2833 if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2834 return -1;
2836 last_cb_element = priv->sram_desc.last_cb_index;
2837 cb = &priv->sram_desc.cb_list[last_cb_element];
2838 priv->sram_desc.last_cb_index++;
2840 /* Calculate the new CB control word */
2841 if (interrupt_enabled)
2842 control |= CB_INT_ENABLED;
2844 if (is_last)
2845 control |= CB_LAST_VALID;
2847 control |= length;
2849 /* Calculate the CB Element's checksum value */
2850 cb->status = control ^ src_address ^ dest_address;
2852 /* Copy the Source and Destination addresses */
2853 cb->dest_addr = dest_address;
2854 cb->source_addr = src_address;
2856 /* Copy the Control Word last */
2857 cb->control = control;
2859 return 0;
2862 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv,
2863 u32 src_phys, u32 dest_address, u32 length)
2865 u32 bytes_left = length;
2866 u32 src_offset = 0;
2867 u32 dest_offset = 0;
2868 int status = 0;
2869 IPW_DEBUG_FW(">> \n");
2870 IPW_DEBUG_FW_INFO("src_phys=0x%x dest_address=0x%x length=0x%x\n",
2871 src_phys, dest_address, length);
2872 while (bytes_left > CB_MAX_LENGTH) {
2873 status = ipw_fw_dma_add_command_block(priv,
2874 src_phys + src_offset,
2875 dest_address +
2876 dest_offset,
2877 CB_MAX_LENGTH, 0, 0);
2878 if (status) {
2879 IPW_DEBUG_FW_INFO(": Failed\n");
2880 return -1;
2881 } else
2882 IPW_DEBUG_FW_INFO(": Added new cb\n");
2884 src_offset += CB_MAX_LENGTH;
2885 dest_offset += CB_MAX_LENGTH;
2886 bytes_left -= CB_MAX_LENGTH;
2889 /* add the buffer tail */
2890 if (bytes_left > 0) {
2891 status =
2892 ipw_fw_dma_add_command_block(priv, src_phys + src_offset,
2893 dest_address + dest_offset,
2894 bytes_left, 0, 0);
2895 if (status) {
2896 IPW_DEBUG_FW_INFO(": Failed on the buffer tail\n");
2897 return -1;
2898 } else
2899 IPW_DEBUG_FW_INFO
2900 (": Adding new cb - the buffer tail\n");
2903 IPW_DEBUG_FW("<< \n");
2904 return 0;
2907 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2909 u32 current_index = 0, previous_index;
2910 u32 watchdog = 0;
2912 IPW_DEBUG_FW(">> : \n");
2914 current_index = ipw_fw_dma_command_block_index(priv);
2915 IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2916 (int)priv->sram_desc.last_cb_index);
2918 while (current_index < priv->sram_desc.last_cb_index) {
2919 udelay(50);
2920 previous_index = current_index;
2921 current_index = ipw_fw_dma_command_block_index(priv);
2923 if (previous_index < current_index) {
2924 watchdog = 0;
2925 continue;
2927 if (++watchdog > 400) {
2928 IPW_DEBUG_FW_INFO("Timeout\n");
2929 ipw_fw_dma_dump_command_block(priv);
2930 ipw_fw_dma_abort(priv);
2931 return -1;
2935 ipw_fw_dma_abort(priv);
2937 /*Disable the DMA in the CSR register */
2938 ipw_set_bit(priv, IPW_RESET_REG,
2939 IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2941 IPW_DEBUG_FW("<< dmaWaitSync \n");
2942 return 0;
2945 static void ipw_remove_current_network(struct ipw_priv *priv)
2947 struct list_head *element, *safe;
2948 struct ieee80211_network *network = NULL;
2949 unsigned long flags;
2951 spin_lock_irqsave(&priv->ieee->lock, flags);
2952 list_for_each_safe(element, safe, &priv->ieee->network_list) {
2953 network = list_entry(element, struct ieee80211_network, list);
2954 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
2955 list_del(element);
2956 list_add_tail(&network->list,
2957 &priv->ieee->network_free_list);
2960 spin_unlock_irqrestore(&priv->ieee->lock, flags);
2964 * Check that card is still alive.
2965 * Reads debug register from domain0.
2966 * If card is present, pre-defined value should
2967 * be found there.
2969 * @param priv
2970 * @return 1 if card is present, 0 otherwise
2972 static inline int ipw_alive(struct ipw_priv *priv)
2974 return ipw_read32(priv, 0x90) == 0xd55555d5;
2977 /* timeout in msec, attempted in 10-msec quanta */
2978 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
2979 int timeout)
2981 int i = 0;
2983 do {
2984 if ((ipw_read32(priv, addr) & mask) == mask)
2985 return i;
2986 mdelay(10);
2987 i += 10;
2988 } while (i < timeout);
2990 return -ETIME;
2993 /* These functions load the firmware and micro code for the operation of
2994 * the ipw hardware. It assumes the buffer has all the bits for the
2995 * image and the caller is handling the memory allocation and clean up.
2998 static int ipw_stop_master(struct ipw_priv *priv)
3000 int rc;
3002 IPW_DEBUG_TRACE(">> \n");
3003 /* stop master. typical delay - 0 */
3004 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3006 /* timeout is in msec, polled in 10-msec quanta */
3007 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3008 IPW_RESET_REG_MASTER_DISABLED, 100);
3009 if (rc < 0) {
3010 IPW_ERROR("wait for stop master failed after 100ms\n");
3011 return -1;
3014 IPW_DEBUG_INFO("stop master %dms\n", rc);
3016 return rc;
3019 static void ipw_arc_release(struct ipw_priv *priv)
3021 IPW_DEBUG_TRACE(">> \n");
3022 mdelay(5);
3024 ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3026 /* no one knows timing, for safety add some delay */
3027 mdelay(5);
3030 struct fw_chunk {
3031 __le32 address;
3032 __le32 length;
3035 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3037 int rc = 0, i, addr;
3038 u8 cr = 0;
3039 __le16 *image;
3041 image = (__le16 *) data;
3043 IPW_DEBUG_TRACE(">> \n");
3045 rc = ipw_stop_master(priv);
3047 if (rc < 0)
3048 return rc;
3050 for (addr = IPW_SHARED_LOWER_BOUND;
3051 addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3052 ipw_write32(priv, addr, 0);
3055 /* no ucode (yet) */
3056 memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3057 /* destroy DMA queues */
3058 /* reset sequence */
3060 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3061 ipw_arc_release(priv);
3062 ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3063 mdelay(1);
3065 /* reset PHY */
3066 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3067 mdelay(1);
3069 ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3070 mdelay(1);
3072 /* enable ucode store */
3073 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3074 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3075 mdelay(1);
3077 /* write ucode */
3079 * @bug
3080 * Do NOT set indirect address register once and then
3081 * store data to indirect data register in the loop.
3082 * It seems very reasonable, but in this case DINO do not
3083 * accept ucode. It is essential to set address each time.
3085 /* load new ipw uCode */
3086 for (i = 0; i < len / 2; i++)
3087 ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3088 le16_to_cpu(image[i]));
3090 /* enable DINO */
3091 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3092 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3094 /* this is where the igx / win driver deveates from the VAP driver. */
3096 /* wait for alive response */
3097 for (i = 0; i < 100; i++) {
3098 /* poll for incoming data */
3099 cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3100 if (cr & DINO_RXFIFO_DATA)
3101 break;
3102 mdelay(1);
3105 if (cr & DINO_RXFIFO_DATA) {
3106 /* alive_command_responce size is NOT multiple of 4 */
3107 __le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3109 for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3110 response_buffer[i] =
3111 cpu_to_le32(ipw_read_reg32(priv,
3112 IPW_BASEBAND_RX_FIFO_READ));
3113 memcpy(&priv->dino_alive, response_buffer,
3114 sizeof(priv->dino_alive));
3115 if (priv->dino_alive.alive_command == 1
3116 && priv->dino_alive.ucode_valid == 1) {
3117 rc = 0;
3118 IPW_DEBUG_INFO
3119 ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3120 "of %02d/%02d/%02d %02d:%02d\n",
3121 priv->dino_alive.software_revision,
3122 priv->dino_alive.software_revision,
3123 priv->dino_alive.device_identifier,
3124 priv->dino_alive.device_identifier,
3125 priv->dino_alive.time_stamp[0],
3126 priv->dino_alive.time_stamp[1],
3127 priv->dino_alive.time_stamp[2],
3128 priv->dino_alive.time_stamp[3],
3129 priv->dino_alive.time_stamp[4]);
3130 } else {
3131 IPW_DEBUG_INFO("Microcode is not alive\n");
3132 rc = -EINVAL;
3134 } else {
3135 IPW_DEBUG_INFO("No alive response from DINO\n");
3136 rc = -ETIME;
3139 /* disable DINO, otherwise for some reason
3140 firmware have problem getting alive resp. */
3141 ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3143 return rc;
3146 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3148 int rc = -1;
3149 int offset = 0;
3150 struct fw_chunk *chunk;
3151 dma_addr_t shared_phys;
3152 u8 *shared_virt;
3154 IPW_DEBUG_TRACE("<< : \n");
3155 shared_virt = pci_alloc_consistent(priv->pci_dev, len, &shared_phys);
3157 if (!shared_virt)
3158 return -ENOMEM;
3160 memmove(shared_virt, data, len);
3162 /* Start the Dma */
3163 rc = ipw_fw_dma_enable(priv);
3165 if (priv->sram_desc.last_cb_index > 0) {
3166 /* the DMA is already ready this would be a bug. */
3167 BUG();
3168 goto out;
3171 do {
3172 chunk = (struct fw_chunk *)(data + offset);
3173 offset += sizeof(struct fw_chunk);
3174 /* build DMA packet and queue up for sending */
3175 /* dma to chunk->address, the chunk->length bytes from data +
3176 * offeset*/
3177 /* Dma loading */
3178 rc = ipw_fw_dma_add_buffer(priv, shared_phys + offset,
3179 le32_to_cpu(chunk->address),
3180 le32_to_cpu(chunk->length));
3181 if (rc) {
3182 IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3183 goto out;
3186 offset += le32_to_cpu(chunk->length);
3187 } while (offset < len);
3189 /* Run the DMA and wait for the answer */
3190 rc = ipw_fw_dma_kick(priv);
3191 if (rc) {
3192 IPW_ERROR("dmaKick Failed\n");
3193 goto out;
3196 rc = ipw_fw_dma_wait(priv);
3197 if (rc) {
3198 IPW_ERROR("dmaWaitSync Failed\n");
3199 goto out;
3201 out:
3202 pci_free_consistent(priv->pci_dev, len, shared_virt, shared_phys);
3203 return rc;
3206 /* stop nic */
3207 static int ipw_stop_nic(struct ipw_priv *priv)
3209 int rc = 0;
3211 /* stop */
3212 ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3214 rc = ipw_poll_bit(priv, IPW_RESET_REG,
3215 IPW_RESET_REG_MASTER_DISABLED, 500);
3216 if (rc < 0) {
3217 IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3218 return rc;
3221 ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3223 return rc;
3226 static void ipw_start_nic(struct ipw_priv *priv)
3228 IPW_DEBUG_TRACE(">>\n");
3230 /* prvHwStartNic release ARC */
3231 ipw_clear_bit(priv, IPW_RESET_REG,
3232 IPW_RESET_REG_MASTER_DISABLED |
3233 IPW_RESET_REG_STOP_MASTER |
3234 CBD_RESET_REG_PRINCETON_RESET);
3236 /* enable power management */
3237 ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3238 IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3240 IPW_DEBUG_TRACE("<<\n");
3243 static int ipw_init_nic(struct ipw_priv *priv)
3245 int rc;
3247 IPW_DEBUG_TRACE(">>\n");
3248 /* reset */
3249 /*prvHwInitNic */
3250 /* set "initialization complete" bit to move adapter to D0 state */
3251 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3253 /* low-level PLL activation */
3254 ipw_write32(priv, IPW_READ_INT_REGISTER,
3255 IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3257 /* wait for clock stabilization */
3258 rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3259 IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3260 if (rc < 0)
3261 IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3263 /* assert SW reset */
3264 ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3266 udelay(10);
3268 /* set "initialization complete" bit to move adapter to D0 state */
3269 ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3271 IPW_DEBUG_TRACE(">>\n");
3272 return 0;
3275 /* Call this function from process context, it will sleep in request_firmware.
3276 * Probe is an ok place to call this from.
3278 static int ipw_reset_nic(struct ipw_priv *priv)
3280 int rc = 0;
3281 unsigned long flags;
3283 IPW_DEBUG_TRACE(">>\n");
3285 rc = ipw_init_nic(priv);
3287 spin_lock_irqsave(&priv->lock, flags);
3288 /* Clear the 'host command active' bit... */
3289 priv->status &= ~STATUS_HCMD_ACTIVE;
3290 wake_up_interruptible(&priv->wait_command_queue);
3291 priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3292 wake_up_interruptible(&priv->wait_state);
3293 spin_unlock_irqrestore(&priv->lock, flags);
3295 IPW_DEBUG_TRACE("<<\n");
3296 return rc;
3300 struct ipw_fw {
3301 __le32 ver;
3302 __le32 boot_size;
3303 __le32 ucode_size;
3304 __le32 fw_size;
3305 u8 data[0];
3308 static int ipw_get_fw(struct ipw_priv *priv,
3309 const struct firmware **raw, const char *name)
3311 struct ipw_fw *fw;
3312 int rc;
3314 /* ask firmware_class module to get the boot firmware off disk */
3315 rc = request_firmware(raw, name, &priv->pci_dev->dev);
3316 if (rc < 0) {
3317 IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3318 return rc;
3321 if ((*raw)->size < sizeof(*fw)) {
3322 IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3323 return -EINVAL;
3326 fw = (void *)(*raw)->data;
3328 if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3329 le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3330 IPW_ERROR("%s is too small or corrupt (%zd)\n",
3331 name, (*raw)->size);
3332 return -EINVAL;
3335 IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3336 name,
3337 le32_to_cpu(fw->ver) >> 16,
3338 le32_to_cpu(fw->ver) & 0xff,
3339 (*raw)->size - sizeof(*fw));
3340 return 0;
3343 #define IPW_RX_BUF_SIZE (3000)
3345 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3346 struct ipw_rx_queue *rxq)
3348 unsigned long flags;
3349 int i;
3351 spin_lock_irqsave(&rxq->lock, flags);
3353 INIT_LIST_HEAD(&rxq->rx_free);
3354 INIT_LIST_HEAD(&rxq->rx_used);
3356 /* Fill the rx_used queue with _all_ of the Rx buffers */
3357 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3358 /* In the reset function, these buffers may have been allocated
3359 * to an SKB, so we need to unmap and free potential storage */
3360 if (rxq->pool[i].skb != NULL) {
3361 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3362 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3363 dev_kfree_skb(rxq->pool[i].skb);
3364 rxq->pool[i].skb = NULL;
3366 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3369 /* Set us so that we have processed and used all buffers, but have
3370 * not restocked the Rx queue with fresh buffers */
3371 rxq->read = rxq->write = 0;
3372 rxq->free_count = 0;
3373 spin_unlock_irqrestore(&rxq->lock, flags);
3376 #ifdef CONFIG_PM
3377 static int fw_loaded = 0;
3378 static const struct firmware *raw = NULL;
3380 static void free_firmware(void)
3382 if (fw_loaded) {
3383 release_firmware(raw);
3384 raw = NULL;
3385 fw_loaded = 0;
3388 #else
3389 #define free_firmware() do {} while (0)
3390 #endif
3392 static int ipw_load(struct ipw_priv *priv)
3394 #ifndef CONFIG_PM
3395 const struct firmware *raw = NULL;
3396 #endif
3397 struct ipw_fw *fw;
3398 u8 *boot_img, *ucode_img, *fw_img;
3399 u8 *name = NULL;
3400 int rc = 0, retries = 3;
3402 switch (priv->ieee->iw_mode) {
3403 case IW_MODE_ADHOC:
3404 name = "ipw2200-ibss.fw";
3405 break;
3406 #ifdef CONFIG_IPW2200_MONITOR
3407 case IW_MODE_MONITOR:
3408 name = "ipw2200-sniffer.fw";
3409 break;
3410 #endif
3411 case IW_MODE_INFRA:
3412 name = "ipw2200-bss.fw";
3413 break;
3416 if (!name) {
3417 rc = -EINVAL;
3418 goto error;
3421 #ifdef CONFIG_PM
3422 if (!fw_loaded) {
3423 #endif
3424 rc = ipw_get_fw(priv, &raw, name);
3425 if (rc < 0)
3426 goto error;
3427 #ifdef CONFIG_PM
3429 #endif
3431 fw = (void *)raw->data;
3432 boot_img = &fw->data[0];
3433 ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3434 fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3435 le32_to_cpu(fw->ucode_size)];
3437 if (rc < 0)
3438 goto error;
3440 if (!priv->rxq)
3441 priv->rxq = ipw_rx_queue_alloc(priv);
3442 else
3443 ipw_rx_queue_reset(priv, priv->rxq);
3444 if (!priv->rxq) {
3445 IPW_ERROR("Unable to initialize Rx queue\n");
3446 goto error;
3449 retry:
3450 /* Ensure interrupts are disabled */
3451 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3452 priv->status &= ~STATUS_INT_ENABLED;
3454 /* ack pending interrupts */
3455 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3457 ipw_stop_nic(priv);
3459 rc = ipw_reset_nic(priv);
3460 if (rc < 0) {
3461 IPW_ERROR("Unable to reset NIC\n");
3462 goto error;
3465 ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3466 IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3468 /* DMA the initial boot firmware into the device */
3469 rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3470 if (rc < 0) {
3471 IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3472 goto error;
3475 /* kick start the device */
3476 ipw_start_nic(priv);
3478 /* wait for the device to finish its initial startup sequence */
3479 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3480 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3481 if (rc < 0) {
3482 IPW_ERROR("device failed to boot initial fw image\n");
3483 goto error;
3485 IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3487 /* ack fw init done interrupt */
3488 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3490 /* DMA the ucode into the device */
3491 rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3492 if (rc < 0) {
3493 IPW_ERROR("Unable to load ucode: %d\n", rc);
3494 goto error;
3497 /* stop nic */
3498 ipw_stop_nic(priv);
3500 /* DMA bss firmware into the device */
3501 rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3502 if (rc < 0) {
3503 IPW_ERROR("Unable to load firmware: %d\n", rc);
3504 goto error;
3506 #ifdef CONFIG_PM
3507 fw_loaded = 1;
3508 #endif
3510 ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3512 rc = ipw_queue_reset(priv);
3513 if (rc < 0) {
3514 IPW_ERROR("Unable to initialize queues\n");
3515 goto error;
3518 /* Ensure interrupts are disabled */
3519 ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3520 /* ack pending interrupts */
3521 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3523 /* kick start the device */
3524 ipw_start_nic(priv);
3526 if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3527 if (retries > 0) {
3528 IPW_WARNING("Parity error. Retrying init.\n");
3529 retries--;
3530 goto retry;
3533 IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3534 rc = -EIO;
3535 goto error;
3538 /* wait for the device */
3539 rc = ipw_poll_bit(priv, IPW_INTA_RW,
3540 IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3541 if (rc < 0) {
3542 IPW_ERROR("device failed to start within 500ms\n");
3543 goto error;
3545 IPW_DEBUG_INFO("device response after %dms\n", rc);
3547 /* ack fw init done interrupt */
3548 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3550 /* read eeprom data and initialize the eeprom region of sram */
3551 priv->eeprom_delay = 1;
3552 ipw_eeprom_init_sram(priv);
3554 /* enable interrupts */
3555 ipw_enable_interrupts(priv);
3557 /* Ensure our queue has valid packets */
3558 ipw_rx_queue_replenish(priv);
3560 ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3562 /* ack pending interrupts */
3563 ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3565 #ifndef CONFIG_PM
3566 release_firmware(raw);
3567 #endif
3568 return 0;
3570 error:
3571 if (priv->rxq) {
3572 ipw_rx_queue_free(priv, priv->rxq);
3573 priv->rxq = NULL;
3575 ipw_tx_queue_free(priv);
3576 if (raw)
3577 release_firmware(raw);
3578 #ifdef CONFIG_PM
3579 fw_loaded = 0;
3580 raw = NULL;
3581 #endif
3583 return rc;
3587 * DMA services
3589 * Theory of operation
3591 * A queue is a circular buffers with 'Read' and 'Write' pointers.
3592 * 2 empty entries always kept in the buffer to protect from overflow.
3594 * For Tx queue, there are low mark and high mark limits. If, after queuing
3595 * the packet for Tx, free space become < low mark, Tx queue stopped. When
3596 * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3597 * Tx queue resumed.
3599 * The IPW operates with six queues, one receive queue in the device's
3600 * sram, one transmit queue for sending commands to the device firmware,
3601 * and four transmit queues for data.
3603 * The four transmit queues allow for performing quality of service (qos)
3604 * transmissions as per the 802.11 protocol. Currently Linux does not
3605 * provide a mechanism to the user for utilizing prioritized queues, so
3606 * we only utilize the first data transmit queue (queue1).
3610 * Driver allocates buffers of this size for Rx
3614 * ipw_rx_queue_space - Return number of free slots available in queue.
3616 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3618 int s = q->read - q->write;
3619 if (s <= 0)
3620 s += RX_QUEUE_SIZE;
3621 /* keep some buffer to not confuse full and empty queue */
3622 s -= 2;
3623 if (s < 0)
3624 s = 0;
3625 return s;
3628 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3630 int s = q->last_used - q->first_empty;
3631 if (s <= 0)
3632 s += q->n_bd;
3633 s -= 2; /* keep some reserve to not confuse empty and full situations */
3634 if (s < 0)
3635 s = 0;
3636 return s;
3639 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3641 return (++index == n_bd) ? 0 : index;
3645 * Initialize common DMA queue structure
3647 * @param q queue to init
3648 * @param count Number of BD's to allocate. Should be power of 2
3649 * @param read_register Address for 'read' register
3650 * (not offset within BAR, full address)
3651 * @param write_register Address for 'write' register
3652 * (not offset within BAR, full address)
3653 * @param base_register Address for 'base' register
3654 * (not offset within BAR, full address)
3655 * @param size Address for 'size' register
3656 * (not offset within BAR, full address)
3658 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3659 int count, u32 read, u32 write, u32 base, u32 size)
3661 q->n_bd = count;
3663 q->low_mark = q->n_bd / 4;
3664 if (q->low_mark < 4)
3665 q->low_mark = 4;
3667 q->high_mark = q->n_bd / 8;
3668 if (q->high_mark < 2)
3669 q->high_mark = 2;
3671 q->first_empty = q->last_used = 0;
3672 q->reg_r = read;
3673 q->reg_w = write;
3675 ipw_write32(priv, base, q->dma_addr);
3676 ipw_write32(priv, size, count);
3677 ipw_write32(priv, read, 0);
3678 ipw_write32(priv, write, 0);
3680 _ipw_read32(priv, 0x90);
3683 static int ipw_queue_tx_init(struct ipw_priv *priv,
3684 struct clx2_tx_queue *q,
3685 int count, u32 read, u32 write, u32 base, u32 size)
3687 struct pci_dev *dev = priv->pci_dev;
3689 q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3690 if (!q->txb) {
3691 IPW_ERROR("vmalloc for auxilary BD structures failed\n");
3692 return -ENOMEM;
3695 q->bd =
3696 pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3697 if (!q->bd) {
3698 IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3699 sizeof(q->bd[0]) * count);
3700 kfree(q->txb);
3701 q->txb = NULL;
3702 return -ENOMEM;
3705 ipw_queue_init(priv, &q->q, count, read, write, base, size);
3706 return 0;
3710 * Free one TFD, those at index [txq->q.last_used].
3711 * Do NOT advance any indexes
3713 * @param dev
3714 * @param txq
3716 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3717 struct clx2_tx_queue *txq)
3719 struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3720 struct pci_dev *dev = priv->pci_dev;
3721 int i;
3723 /* classify bd */
3724 if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3725 /* nothing to cleanup after for host commands */
3726 return;
3728 /* sanity check */
3729 if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3730 IPW_ERROR("Too many chunks: %i\n",
3731 le32_to_cpu(bd->u.data.num_chunks));
3732 /** @todo issue fatal error, it is quite serious situation */
3733 return;
3736 /* unmap chunks if any */
3737 for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3738 pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3739 le16_to_cpu(bd->u.data.chunk_len[i]),
3740 PCI_DMA_TODEVICE);
3741 if (txq->txb[txq->q.last_used]) {
3742 ieee80211_txb_free(txq->txb[txq->q.last_used]);
3743 txq->txb[txq->q.last_used] = NULL;
3749 * Deallocate DMA queue.
3751 * Empty queue by removing and destroying all BD's.
3752 * Free all buffers.
3754 * @param dev
3755 * @param q
3757 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3759 struct clx2_queue *q = &txq->q;
3760 struct pci_dev *dev = priv->pci_dev;
3762 if (q->n_bd == 0)
3763 return;
3765 /* first, empty all BD's */
3766 for (; q->first_empty != q->last_used;
3767 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3768 ipw_queue_tx_free_tfd(priv, txq);
3771 /* free buffers belonging to queue itself */
3772 pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3773 q->dma_addr);
3774 kfree(txq->txb);
3776 /* 0 fill whole structure */
3777 memset(txq, 0, sizeof(*txq));
3781 * Destroy all DMA queues and structures
3783 * @param priv
3785 static void ipw_tx_queue_free(struct ipw_priv *priv)
3787 /* Tx CMD queue */
3788 ipw_queue_tx_free(priv, &priv->txq_cmd);
3790 /* Tx queues */
3791 ipw_queue_tx_free(priv, &priv->txq[0]);
3792 ipw_queue_tx_free(priv, &priv->txq[1]);
3793 ipw_queue_tx_free(priv, &priv->txq[2]);
3794 ipw_queue_tx_free(priv, &priv->txq[3]);
3797 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3799 /* First 3 bytes are manufacturer */
3800 bssid[0] = priv->mac_addr[0];
3801 bssid[1] = priv->mac_addr[1];
3802 bssid[2] = priv->mac_addr[2];
3804 /* Last bytes are random */
3805 get_random_bytes(&bssid[3], ETH_ALEN - 3);
3807 bssid[0] &= 0xfe; /* clear multicast bit */
3808 bssid[0] |= 0x02; /* set local assignment bit (IEEE802) */
3811 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3813 struct ipw_station_entry entry;
3814 int i;
3816 for (i = 0; i < priv->num_stations; i++) {
3817 if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3818 /* Another node is active in network */
3819 priv->missed_adhoc_beacons = 0;
3820 if (!(priv->config & CFG_STATIC_CHANNEL))
3821 /* when other nodes drop out, we drop out */
3822 priv->config &= ~CFG_ADHOC_PERSIST;
3824 return i;
3828 if (i == MAX_STATIONS)
3829 return IPW_INVALID_STATION;
3831 IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3833 entry.reserved = 0;
3834 entry.support_mode = 0;
3835 memcpy(entry.mac_addr, bssid, ETH_ALEN);
3836 memcpy(priv->stations[i], bssid, ETH_ALEN);
3837 ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3838 &entry, sizeof(entry));
3839 priv->num_stations++;
3841 return i;
3844 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3846 int i;
3848 for (i = 0; i < priv->num_stations; i++)
3849 if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3850 return i;
3852 return IPW_INVALID_STATION;
3855 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3857 int err;
3859 if (priv->status & STATUS_ASSOCIATING) {
3860 IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3861 queue_work(priv->workqueue, &priv->disassociate);
3862 return;
3865 if (!(priv->status & STATUS_ASSOCIATED)) {
3866 IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3867 return;
3870 IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3871 "on channel %d.\n",
3872 priv->assoc_request.bssid,
3873 priv->assoc_request.channel);
3875 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3876 priv->status |= STATUS_DISASSOCIATING;
3878 if (quiet)
3879 priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3880 else
3881 priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3883 err = ipw_send_associate(priv, &priv->assoc_request);
3884 if (err) {
3885 IPW_DEBUG_HC("Attempt to send [dis]associate command "
3886 "failed.\n");
3887 return;
3892 static int ipw_disassociate(void *data)
3894 struct ipw_priv *priv = data;
3895 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3896 return 0;
3897 ipw_send_disassociate(data, 0);
3898 netif_carrier_off(priv->net_dev);
3899 return 1;
3902 static void ipw_bg_disassociate(struct work_struct *work)
3904 struct ipw_priv *priv =
3905 container_of(work, struct ipw_priv, disassociate);
3906 mutex_lock(&priv->mutex);
3907 ipw_disassociate(priv);
3908 mutex_unlock(&priv->mutex);
3911 static void ipw_system_config(struct work_struct *work)
3913 struct ipw_priv *priv =
3914 container_of(work, struct ipw_priv, system_config);
3916 #ifdef CONFIG_IPW2200_PROMISCUOUS
3917 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
3918 priv->sys_config.accept_all_data_frames = 1;
3919 priv->sys_config.accept_non_directed_frames = 1;
3920 priv->sys_config.accept_all_mgmt_bcpr = 1;
3921 priv->sys_config.accept_all_mgmt_frames = 1;
3923 #endif
3925 ipw_send_system_config(priv);
3928 struct ipw_status_code {
3929 u16 status;
3930 const char *reason;
3933 static const struct ipw_status_code ipw_status_codes[] = {
3934 {0x00, "Successful"},
3935 {0x01, "Unspecified failure"},
3936 {0x0A, "Cannot support all requested capabilities in the "
3937 "Capability information field"},
3938 {0x0B, "Reassociation denied due to inability to confirm that "
3939 "association exists"},
3940 {0x0C, "Association denied due to reason outside the scope of this "
3941 "standard"},
3942 {0x0D,
3943 "Responding station does not support the specified authentication "
3944 "algorithm"},
3945 {0x0E,
3946 "Received an Authentication frame with authentication sequence "
3947 "transaction sequence number out of expected sequence"},
3948 {0x0F, "Authentication rejected because of challenge failure"},
3949 {0x10, "Authentication rejected due to timeout waiting for next "
3950 "frame in sequence"},
3951 {0x11, "Association denied because AP is unable to handle additional "
3952 "associated stations"},
3953 {0x12,
3954 "Association denied due to requesting station not supporting all "
3955 "of the datarates in the BSSBasicServiceSet Parameter"},
3956 {0x13,
3957 "Association denied due to requesting station not supporting "
3958 "short preamble operation"},
3959 {0x14,
3960 "Association denied due to requesting station not supporting "
3961 "PBCC encoding"},
3962 {0x15,
3963 "Association denied due to requesting station not supporting "
3964 "channel agility"},
3965 {0x19,
3966 "Association denied due to requesting station not supporting "
3967 "short slot operation"},
3968 {0x1A,
3969 "Association denied due to requesting station not supporting "
3970 "DSSS-OFDM operation"},
3971 {0x28, "Invalid Information Element"},
3972 {0x29, "Group Cipher is not valid"},
3973 {0x2A, "Pairwise Cipher is not valid"},
3974 {0x2B, "AKMP is not valid"},
3975 {0x2C, "Unsupported RSN IE version"},
3976 {0x2D, "Invalid RSN IE Capabilities"},
3977 {0x2E, "Cipher suite is rejected per security policy"},
3980 static const char *ipw_get_status_code(u16 status)
3982 int i;
3983 for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
3984 if (ipw_status_codes[i].status == (status & 0xff))
3985 return ipw_status_codes[i].reason;
3986 return "Unknown status value.";
3989 static void inline average_init(struct average *avg)
3991 memset(avg, 0, sizeof(*avg));
3994 #define DEPTH_RSSI 8
3995 #define DEPTH_NOISE 16
3996 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
3998 return ((depth-1)*prev_avg + val)/depth;
4001 static void average_add(struct average *avg, s16 val)
4003 avg->sum -= avg->entries[avg->pos];
4004 avg->sum += val;
4005 avg->entries[avg->pos++] = val;
4006 if (unlikely(avg->pos == AVG_ENTRIES)) {
4007 avg->init = 1;
4008 avg->pos = 0;
4012 static s16 average_value(struct average *avg)
4014 if (!unlikely(avg->init)) {
4015 if (avg->pos)
4016 return avg->sum / avg->pos;
4017 return 0;
4020 return avg->sum / AVG_ENTRIES;
4023 static void ipw_reset_stats(struct ipw_priv *priv)
4025 u32 len = sizeof(u32);
4027 priv->quality = 0;
4029 average_init(&priv->average_missed_beacons);
4030 priv->exp_avg_rssi = -60;
4031 priv->exp_avg_noise = -85 + 0x100;
4033 priv->last_rate = 0;
4034 priv->last_missed_beacons = 0;
4035 priv->last_rx_packets = 0;
4036 priv->last_tx_packets = 0;
4037 priv->last_tx_failures = 0;
4039 /* Firmware managed, reset only when NIC is restarted, so we have to
4040 * normalize on the current value */
4041 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4042 &priv->last_rx_err, &len);
4043 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4044 &priv->last_tx_failures, &len);
4046 /* Driver managed, reset with each association */
4047 priv->missed_adhoc_beacons = 0;
4048 priv->missed_beacons = 0;
4049 priv->tx_packets = 0;
4050 priv->rx_packets = 0;
4054 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4056 u32 i = 0x80000000;
4057 u32 mask = priv->rates_mask;
4058 /* If currently associated in B mode, restrict the maximum
4059 * rate match to B rates */
4060 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4061 mask &= IEEE80211_CCK_RATES_MASK;
4063 /* TODO: Verify that the rate is supported by the current rates
4064 * list. */
4066 while (i && !(mask & i))
4067 i >>= 1;
4068 switch (i) {
4069 case IEEE80211_CCK_RATE_1MB_MASK:
4070 return 1000000;
4071 case IEEE80211_CCK_RATE_2MB_MASK:
4072 return 2000000;
4073 case IEEE80211_CCK_RATE_5MB_MASK:
4074 return 5500000;
4075 case IEEE80211_OFDM_RATE_6MB_MASK:
4076 return 6000000;
4077 case IEEE80211_OFDM_RATE_9MB_MASK:
4078 return 9000000;
4079 case IEEE80211_CCK_RATE_11MB_MASK:
4080 return 11000000;
4081 case IEEE80211_OFDM_RATE_12MB_MASK:
4082 return 12000000;
4083 case IEEE80211_OFDM_RATE_18MB_MASK:
4084 return 18000000;
4085 case IEEE80211_OFDM_RATE_24MB_MASK:
4086 return 24000000;
4087 case IEEE80211_OFDM_RATE_36MB_MASK:
4088 return 36000000;
4089 case IEEE80211_OFDM_RATE_48MB_MASK:
4090 return 48000000;
4091 case IEEE80211_OFDM_RATE_54MB_MASK:
4092 return 54000000;
4095 if (priv->ieee->mode == IEEE_B)
4096 return 11000000;
4097 else
4098 return 54000000;
4101 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4103 u32 rate, len = sizeof(rate);
4104 int err;
4106 if (!(priv->status & STATUS_ASSOCIATED))
4107 return 0;
4109 if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4110 err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4111 &len);
4112 if (err) {
4113 IPW_DEBUG_INFO("failed querying ordinals.\n");
4114 return 0;
4116 } else
4117 return ipw_get_max_rate(priv);
4119 switch (rate) {
4120 case IPW_TX_RATE_1MB:
4121 return 1000000;
4122 case IPW_TX_RATE_2MB:
4123 return 2000000;
4124 case IPW_TX_RATE_5MB:
4125 return 5500000;
4126 case IPW_TX_RATE_6MB:
4127 return 6000000;
4128 case IPW_TX_RATE_9MB:
4129 return 9000000;
4130 case IPW_TX_RATE_11MB:
4131 return 11000000;
4132 case IPW_TX_RATE_12MB:
4133 return 12000000;
4134 case IPW_TX_RATE_18MB:
4135 return 18000000;
4136 case IPW_TX_RATE_24MB:
4137 return 24000000;
4138 case IPW_TX_RATE_36MB:
4139 return 36000000;
4140 case IPW_TX_RATE_48MB:
4141 return 48000000;
4142 case IPW_TX_RATE_54MB:
4143 return 54000000;
4146 return 0;
4149 #define IPW_STATS_INTERVAL (2 * HZ)
4150 static void ipw_gather_stats(struct ipw_priv *priv)
4152 u32 rx_err, rx_err_delta, rx_packets_delta;
4153 u32 tx_failures, tx_failures_delta, tx_packets_delta;
4154 u32 missed_beacons_percent, missed_beacons_delta;
4155 u32 quality = 0;
4156 u32 len = sizeof(u32);
4157 s16 rssi;
4158 u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4159 rate_quality;
4160 u32 max_rate;
4162 if (!(priv->status & STATUS_ASSOCIATED)) {
4163 priv->quality = 0;
4164 return;
4167 /* Update the statistics */
4168 ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4169 &priv->missed_beacons, &len);
4170 missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4171 priv->last_missed_beacons = priv->missed_beacons;
4172 if (priv->assoc_request.beacon_interval) {
4173 missed_beacons_percent = missed_beacons_delta *
4174 (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4175 (IPW_STATS_INTERVAL * 10);
4176 } else {
4177 missed_beacons_percent = 0;
4179 average_add(&priv->average_missed_beacons, missed_beacons_percent);
4181 ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4182 rx_err_delta = rx_err - priv->last_rx_err;
4183 priv->last_rx_err = rx_err;
4185 ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4186 tx_failures_delta = tx_failures - priv->last_tx_failures;
4187 priv->last_tx_failures = tx_failures;
4189 rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4190 priv->last_rx_packets = priv->rx_packets;
4192 tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4193 priv->last_tx_packets = priv->tx_packets;
4195 /* Calculate quality based on the following:
4197 * Missed beacon: 100% = 0, 0% = 70% missed
4198 * Rate: 60% = 1Mbs, 100% = Max
4199 * Rx and Tx errors represent a straight % of total Rx/Tx
4200 * RSSI: 100% = > -50, 0% = < -80
4201 * Rx errors: 100% = 0, 0% = 50% missed
4203 * The lowest computed quality is used.
4206 #define BEACON_THRESHOLD 5
4207 beacon_quality = 100 - missed_beacons_percent;
4208 if (beacon_quality < BEACON_THRESHOLD)
4209 beacon_quality = 0;
4210 else
4211 beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4212 (100 - BEACON_THRESHOLD);
4213 IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4214 beacon_quality, missed_beacons_percent);
4216 priv->last_rate = ipw_get_current_rate(priv);
4217 max_rate = ipw_get_max_rate(priv);
4218 rate_quality = priv->last_rate * 40 / max_rate + 60;
4219 IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4220 rate_quality, priv->last_rate / 1000000);
4222 if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4223 rx_quality = 100 - (rx_err_delta * 100) /
4224 (rx_packets_delta + rx_err_delta);
4225 else
4226 rx_quality = 100;
4227 IPW_DEBUG_STATS("Rx quality : %3d%% (%u errors, %u packets)\n",
4228 rx_quality, rx_err_delta, rx_packets_delta);
4230 if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4231 tx_quality = 100 - (tx_failures_delta * 100) /
4232 (tx_packets_delta + tx_failures_delta);
4233 else
4234 tx_quality = 100;
4235 IPW_DEBUG_STATS("Tx quality : %3d%% (%u errors, %u packets)\n",
4236 tx_quality, tx_failures_delta, tx_packets_delta);
4238 rssi = priv->exp_avg_rssi;
4239 signal_quality =
4240 (100 *
4241 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4242 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4243 (priv->ieee->perfect_rssi - rssi) *
4244 (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4245 62 * (priv->ieee->perfect_rssi - rssi))) /
4246 ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4247 (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4248 if (signal_quality > 100)
4249 signal_quality = 100;
4250 else if (signal_quality < 1)
4251 signal_quality = 0;
4253 IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4254 signal_quality, rssi);
4256 quality = min(beacon_quality,
4257 min(rate_quality,
4258 min(tx_quality, min(rx_quality, signal_quality))));
4259 if (quality == beacon_quality)
4260 IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4261 quality);
4262 if (quality == rate_quality)
4263 IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4264 quality);
4265 if (quality == tx_quality)
4266 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4267 quality);
4268 if (quality == rx_quality)
4269 IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4270 quality);
4271 if (quality == signal_quality)
4272 IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4273 quality);
4275 priv->quality = quality;
4277 queue_delayed_work(priv->workqueue, &priv->gather_stats,
4278 IPW_STATS_INTERVAL);
4281 static void ipw_bg_gather_stats(struct work_struct *work)
4283 struct ipw_priv *priv =
4284 container_of(work, struct ipw_priv, gather_stats.work);
4285 mutex_lock(&priv->mutex);
4286 ipw_gather_stats(priv);
4287 mutex_unlock(&priv->mutex);
4290 /* Missed beacon behavior:
4291 * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4292 * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4293 * Above disassociate threshold, give up and stop scanning.
4294 * Roaming is disabled if disassociate_threshold <= roaming_threshold */
4295 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4296 int missed_count)
4298 priv->notif_missed_beacons = missed_count;
4300 if (missed_count > priv->disassociate_threshold &&
4301 priv->status & STATUS_ASSOCIATED) {
4302 /* If associated and we've hit the missed
4303 * beacon threshold, disassociate, turn
4304 * off roaming, and abort any active scans */
4305 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4306 IPW_DL_STATE | IPW_DL_ASSOC,
4307 "Missed beacon: %d - disassociate\n", missed_count);
4308 priv->status &= ~STATUS_ROAMING;
4309 if (priv->status & STATUS_SCANNING) {
4310 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4311 IPW_DL_STATE,
4312 "Aborting scan with missed beacon.\n");
4313 queue_work(priv->workqueue, &priv->abort_scan);
4316 queue_work(priv->workqueue, &priv->disassociate);
4317 return;
4320 if (priv->status & STATUS_ROAMING) {
4321 /* If we are currently roaming, then just
4322 * print a debug statement... */
4323 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4324 "Missed beacon: %d - roam in progress\n",
4325 missed_count);
4326 return;
4329 if (roaming &&
4330 (missed_count > priv->roaming_threshold &&
4331 missed_count <= priv->disassociate_threshold)) {
4332 /* If we are not already roaming, set the ROAM
4333 * bit in the status and kick off a scan.
4334 * This can happen several times before we reach
4335 * disassociate_threshold. */
4336 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4337 "Missed beacon: %d - initiate "
4338 "roaming\n", missed_count);
4339 if (!(priv->status & STATUS_ROAMING)) {
4340 priv->status |= STATUS_ROAMING;
4341 if (!(priv->status & STATUS_SCANNING))
4342 queue_delayed_work(priv->workqueue,
4343 &priv->request_scan, 0);
4345 return;
4348 if (priv->status & STATUS_SCANNING &&
4349 missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4350 /* Stop scan to keep fw from getting
4351 * stuck (only if we aren't roaming --
4352 * otherwise we'll never scan more than 2 or 3
4353 * channels..) */
4354 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4355 "Aborting scan with missed beacon.\n");
4356 queue_work(priv->workqueue, &priv->abort_scan);
4359 IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4362 static void ipw_scan_event(struct work_struct *work)
4364 union iwreq_data wrqu;
4366 struct ipw_priv *priv =
4367 container_of(work, struct ipw_priv, scan_event.work);
4369 wrqu.data.length = 0;
4370 wrqu.data.flags = 0;
4371 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4374 static void handle_scan_event(struct ipw_priv *priv)
4376 /* Only userspace-requested scan completion events go out immediately */
4377 if (!priv->user_requested_scan) {
4378 if (!delayed_work_pending(&priv->scan_event))
4379 queue_delayed_work(priv->workqueue, &priv->scan_event,
4380 round_jiffies_relative(msecs_to_jiffies(4000)));
4381 } else {
4382 union iwreq_data wrqu;
4384 priv->user_requested_scan = 0;
4385 cancel_delayed_work(&priv->scan_event);
4387 wrqu.data.length = 0;
4388 wrqu.data.flags = 0;
4389 wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4394 * Handle host notification packet.
4395 * Called from interrupt routine
4397 static void ipw_rx_notification(struct ipw_priv *priv,
4398 struct ipw_rx_notification *notif)
4400 DECLARE_SSID_BUF(ssid);
4401 u16 size = le16_to_cpu(notif->size);
4402 notif->size = le16_to_cpu(notif->size);
4404 IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4406 switch (notif->subtype) {
4407 case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4408 struct notif_association *assoc = &notif->u.assoc;
4410 switch (assoc->state) {
4411 case CMAS_ASSOCIATED:{
4412 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4413 IPW_DL_ASSOC,
4414 "associated: '%s' %pM \n",
4415 print_ssid(ssid, priv->essid,
4416 priv->essid_len),
4417 priv->bssid);
4419 switch (priv->ieee->iw_mode) {
4420 case IW_MODE_INFRA:
4421 memcpy(priv->ieee->bssid,
4422 priv->bssid, ETH_ALEN);
4423 break;
4425 case IW_MODE_ADHOC:
4426 memcpy(priv->ieee->bssid,
4427 priv->bssid, ETH_ALEN);
4429 /* clear out the station table */
4430 priv->num_stations = 0;
4432 IPW_DEBUG_ASSOC
4433 ("queueing adhoc check\n");
4434 queue_delayed_work(priv->
4435 workqueue,
4436 &priv->
4437 adhoc_check,
4438 le16_to_cpu(priv->
4439 assoc_request.
4440 beacon_interval));
4441 break;
4444 priv->status &= ~STATUS_ASSOCIATING;
4445 priv->status |= STATUS_ASSOCIATED;
4446 queue_work(priv->workqueue,
4447 &priv->system_config);
4449 #ifdef CONFIG_IPW2200_QOS
4450 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4451 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4452 if ((priv->status & STATUS_AUTH) &&
4453 (IPW_GET_PACKET_STYPE(&notif->u.raw)
4454 == IEEE80211_STYPE_ASSOC_RESP)) {
4455 if ((sizeof
4456 (struct
4457 ieee80211_assoc_response)
4458 <= size)
4459 && (size <= 2314)) {
4460 struct
4461 ieee80211_rx_stats
4462 stats = {
4463 .len = size - 1,
4466 IPW_DEBUG_QOS
4467 ("QoS Associate "
4468 "size %d\n", size);
4469 ieee80211_rx_mgt(priv->
4470 ieee,
4471 (struct
4472 ieee80211_hdr_4addr
4474 &notif->u.raw, &stats);
4477 #endif
4479 schedule_work(&priv->link_up);
4481 break;
4484 case CMAS_AUTHENTICATED:{
4485 if (priv->
4486 status & (STATUS_ASSOCIATED |
4487 STATUS_AUTH)) {
4488 struct notif_authenticate *auth
4489 = &notif->u.auth;
4490 IPW_DEBUG(IPW_DL_NOTIF |
4491 IPW_DL_STATE |
4492 IPW_DL_ASSOC,
4493 "deauthenticated: '%s' "
4494 "%pM"
4495 ": (0x%04X) - %s \n",
4496 print_ssid(ssid,
4497 priv->
4498 essid,
4499 priv->
4500 essid_len),
4501 priv->bssid,
4502 le16_to_cpu(auth->status),
4503 ipw_get_status_code
4504 (le16_to_cpu
4505 (auth->status)));
4507 priv->status &=
4508 ~(STATUS_ASSOCIATING |
4509 STATUS_AUTH |
4510 STATUS_ASSOCIATED);
4512 schedule_work(&priv->link_down);
4513 break;
4516 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4517 IPW_DL_ASSOC,
4518 "authenticated: '%s' %pM\n",
4519 print_ssid(ssid, priv->essid,
4520 priv->essid_len),
4521 priv->bssid);
4522 break;
4525 case CMAS_INIT:{
4526 if (priv->status & STATUS_AUTH) {
4527 struct
4528 ieee80211_assoc_response
4529 *resp;
4530 resp =
4531 (struct
4532 ieee80211_assoc_response
4533 *)&notif->u.raw;
4534 IPW_DEBUG(IPW_DL_NOTIF |
4535 IPW_DL_STATE |
4536 IPW_DL_ASSOC,
4537 "association failed (0x%04X): %s\n",
4538 le16_to_cpu(resp->status),
4539 ipw_get_status_code
4540 (le16_to_cpu
4541 (resp->status)));
4544 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4545 IPW_DL_ASSOC,
4546 "disassociated: '%s' %pM \n",
4547 print_ssid(ssid, priv->essid,
4548 priv->essid_len),
4549 priv->bssid);
4551 priv->status &=
4552 ~(STATUS_DISASSOCIATING |
4553 STATUS_ASSOCIATING |
4554 STATUS_ASSOCIATED | STATUS_AUTH);
4555 if (priv->assoc_network
4556 && (priv->assoc_network->
4557 capability &
4558 WLAN_CAPABILITY_IBSS))
4559 ipw_remove_current_network
4560 (priv);
4562 schedule_work(&priv->link_down);
4564 break;
4567 case CMAS_RX_ASSOC_RESP:
4568 break;
4570 default:
4571 IPW_ERROR("assoc: unknown (%d)\n",
4572 assoc->state);
4573 break;
4576 break;
4579 case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4580 struct notif_authenticate *auth = &notif->u.auth;
4581 switch (auth->state) {
4582 case CMAS_AUTHENTICATED:
4583 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4584 "authenticated: '%s' %pM \n",
4585 print_ssid(ssid, priv->essid,
4586 priv->essid_len),
4587 priv->bssid);
4588 priv->status |= STATUS_AUTH;
4589 break;
4591 case CMAS_INIT:
4592 if (priv->status & STATUS_AUTH) {
4593 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4594 IPW_DL_ASSOC,
4595 "authentication failed (0x%04X): %s\n",
4596 le16_to_cpu(auth->status),
4597 ipw_get_status_code(le16_to_cpu
4598 (auth->
4599 status)));
4601 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4602 IPW_DL_ASSOC,
4603 "deauthenticated: '%s' %pM\n",
4604 print_ssid(ssid, priv->essid,
4605 priv->essid_len),
4606 priv->bssid);
4608 priv->status &= ~(STATUS_ASSOCIATING |
4609 STATUS_AUTH |
4610 STATUS_ASSOCIATED);
4612 schedule_work(&priv->link_down);
4613 break;
4615 case CMAS_TX_AUTH_SEQ_1:
4616 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4617 IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4618 break;
4619 case CMAS_RX_AUTH_SEQ_2:
4620 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4621 IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4622 break;
4623 case CMAS_AUTH_SEQ_1_PASS:
4624 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4625 IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4626 break;
4627 case CMAS_AUTH_SEQ_1_FAIL:
4628 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4629 IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4630 break;
4631 case CMAS_TX_AUTH_SEQ_3:
4632 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4633 IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4634 break;
4635 case CMAS_RX_AUTH_SEQ_4:
4636 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4637 IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4638 break;
4639 case CMAS_AUTH_SEQ_2_PASS:
4640 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4641 IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4642 break;
4643 case CMAS_AUTH_SEQ_2_FAIL:
4644 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4645 IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4646 break;
4647 case CMAS_TX_ASSOC:
4648 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4649 IPW_DL_ASSOC, "TX_ASSOC\n");
4650 break;
4651 case CMAS_RX_ASSOC_RESP:
4652 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4653 IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4655 break;
4656 case CMAS_ASSOCIATED:
4657 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4658 IPW_DL_ASSOC, "ASSOCIATED\n");
4659 break;
4660 default:
4661 IPW_DEBUG_NOTIF("auth: failure - %d\n",
4662 auth->state);
4663 break;
4665 break;
4668 case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4669 struct notif_channel_result *x =
4670 &notif->u.channel_result;
4672 if (size == sizeof(*x)) {
4673 IPW_DEBUG_SCAN("Scan result for channel %d\n",
4674 x->channel_num);
4675 } else {
4676 IPW_DEBUG_SCAN("Scan result of wrong size %d "
4677 "(should be %zd)\n",
4678 size, sizeof(*x));
4680 break;
4683 case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4684 struct notif_scan_complete *x = &notif->u.scan_complete;
4685 if (size == sizeof(*x)) {
4686 IPW_DEBUG_SCAN
4687 ("Scan completed: type %d, %d channels, "
4688 "%d status\n", x->scan_type,
4689 x->num_channels, x->status);
4690 } else {
4691 IPW_ERROR("Scan completed of wrong size %d "
4692 "(should be %zd)\n",
4693 size, sizeof(*x));
4696 priv->status &=
4697 ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4699 wake_up_interruptible(&priv->wait_state);
4700 cancel_delayed_work(&priv->scan_check);
4702 if (priv->status & STATUS_EXIT_PENDING)
4703 break;
4705 priv->ieee->scans++;
4707 #ifdef CONFIG_IPW2200_MONITOR
4708 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4709 priv->status |= STATUS_SCAN_FORCED;
4710 queue_delayed_work(priv->workqueue,
4711 &priv->request_scan, 0);
4712 break;
4714 priv->status &= ~STATUS_SCAN_FORCED;
4715 #endif /* CONFIG_IPW2200_MONITOR */
4717 /* Do queued direct scans first */
4718 if (priv->status & STATUS_DIRECT_SCAN_PENDING) {
4719 queue_delayed_work(priv->workqueue,
4720 &priv->request_direct_scan, 0);
4723 if (!(priv->status & (STATUS_ASSOCIATED |
4724 STATUS_ASSOCIATING |
4725 STATUS_ROAMING |
4726 STATUS_DISASSOCIATING)))
4727 queue_work(priv->workqueue, &priv->associate);
4728 else if (priv->status & STATUS_ROAMING) {
4729 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4730 /* If a scan completed and we are in roam mode, then
4731 * the scan that completed was the one requested as a
4732 * result of entering roam... so, schedule the
4733 * roam work */
4734 queue_work(priv->workqueue,
4735 &priv->roam);
4736 else
4737 /* Don't schedule if we aborted the scan */
4738 priv->status &= ~STATUS_ROAMING;
4739 } else if (priv->status & STATUS_SCAN_PENDING)
4740 queue_delayed_work(priv->workqueue,
4741 &priv->request_scan, 0);
4742 else if (priv->config & CFG_BACKGROUND_SCAN
4743 && priv->status & STATUS_ASSOCIATED)
4744 queue_delayed_work(priv->workqueue,
4745 &priv->request_scan,
4746 round_jiffies_relative(HZ));
4748 /* Send an empty event to user space.
4749 * We don't send the received data on the event because
4750 * it would require us to do complex transcoding, and
4751 * we want to minimise the work done in the irq handler
4752 * Use a request to extract the data.
4753 * Also, we generate this even for any scan, regardless
4754 * on how the scan was initiated. User space can just
4755 * sync on periodic scan to get fresh data...
4756 * Jean II */
4757 if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4758 handle_scan_event(priv);
4759 break;
4762 case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4763 struct notif_frag_length *x = &notif->u.frag_len;
4765 if (size == sizeof(*x))
4766 IPW_ERROR("Frag length: %d\n",
4767 le16_to_cpu(x->frag_length));
4768 else
4769 IPW_ERROR("Frag length of wrong size %d "
4770 "(should be %zd)\n",
4771 size, sizeof(*x));
4772 break;
4775 case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4776 struct notif_link_deterioration *x =
4777 &notif->u.link_deterioration;
4779 if (size == sizeof(*x)) {
4780 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4781 "link deterioration: type %d, cnt %d\n",
4782 x->silence_notification_type,
4783 x->silence_count);
4784 memcpy(&priv->last_link_deterioration, x,
4785 sizeof(*x));
4786 } else {
4787 IPW_ERROR("Link Deterioration of wrong size %d "
4788 "(should be %zd)\n",
4789 size, sizeof(*x));
4791 break;
4794 case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4795 IPW_ERROR("Dino config\n");
4796 if (priv->hcmd
4797 && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4798 IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4800 break;
4803 case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4804 struct notif_beacon_state *x = &notif->u.beacon_state;
4805 if (size != sizeof(*x)) {
4806 IPW_ERROR
4807 ("Beacon state of wrong size %d (should "
4808 "be %zd)\n", size, sizeof(*x));
4809 break;
4812 if (le32_to_cpu(x->state) ==
4813 HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4814 ipw_handle_missed_beacon(priv,
4815 le32_to_cpu(x->
4816 number));
4818 break;
4821 case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4822 struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4823 if (size == sizeof(*x)) {
4824 IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4825 "0x%02x station %d\n",
4826 x->key_state, x->security_type,
4827 x->station_index);
4828 break;
4831 IPW_ERROR
4832 ("TGi Tx Key of wrong size %d (should be %zd)\n",
4833 size, sizeof(*x));
4834 break;
4837 case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4838 struct notif_calibration *x = &notif->u.calibration;
4840 if (size == sizeof(*x)) {
4841 memcpy(&priv->calib, x, sizeof(*x));
4842 IPW_DEBUG_INFO("TODO: Calibration\n");
4843 break;
4846 IPW_ERROR
4847 ("Calibration of wrong size %d (should be %zd)\n",
4848 size, sizeof(*x));
4849 break;
4852 case HOST_NOTIFICATION_NOISE_STATS:{
4853 if (size == sizeof(u32)) {
4854 priv->exp_avg_noise =
4855 exponential_average(priv->exp_avg_noise,
4856 (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4857 DEPTH_NOISE);
4858 break;
4861 IPW_ERROR
4862 ("Noise stat is wrong size %d (should be %zd)\n",
4863 size, sizeof(u32));
4864 break;
4867 default:
4868 IPW_DEBUG_NOTIF("Unknown notification: "
4869 "subtype=%d,flags=0x%2x,size=%d\n",
4870 notif->subtype, notif->flags, size);
4875 * Destroys all DMA structures and initialise them again
4877 * @param priv
4878 * @return error code
4880 static int ipw_queue_reset(struct ipw_priv *priv)
4882 int rc = 0;
4883 /** @todo customize queue sizes */
4884 int nTx = 64, nTxCmd = 8;
4885 ipw_tx_queue_free(priv);
4886 /* Tx CMD queue */
4887 rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4888 IPW_TX_CMD_QUEUE_READ_INDEX,
4889 IPW_TX_CMD_QUEUE_WRITE_INDEX,
4890 IPW_TX_CMD_QUEUE_BD_BASE,
4891 IPW_TX_CMD_QUEUE_BD_SIZE);
4892 if (rc) {
4893 IPW_ERROR("Tx Cmd queue init failed\n");
4894 goto error;
4896 /* Tx queue(s) */
4897 rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4898 IPW_TX_QUEUE_0_READ_INDEX,
4899 IPW_TX_QUEUE_0_WRITE_INDEX,
4900 IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4901 if (rc) {
4902 IPW_ERROR("Tx 0 queue init failed\n");
4903 goto error;
4905 rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4906 IPW_TX_QUEUE_1_READ_INDEX,
4907 IPW_TX_QUEUE_1_WRITE_INDEX,
4908 IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4909 if (rc) {
4910 IPW_ERROR("Tx 1 queue init failed\n");
4911 goto error;
4913 rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4914 IPW_TX_QUEUE_2_READ_INDEX,
4915 IPW_TX_QUEUE_2_WRITE_INDEX,
4916 IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
4917 if (rc) {
4918 IPW_ERROR("Tx 2 queue init failed\n");
4919 goto error;
4921 rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
4922 IPW_TX_QUEUE_3_READ_INDEX,
4923 IPW_TX_QUEUE_3_WRITE_INDEX,
4924 IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
4925 if (rc) {
4926 IPW_ERROR("Tx 3 queue init failed\n");
4927 goto error;
4929 /* statistics */
4930 priv->rx_bufs_min = 0;
4931 priv->rx_pend_max = 0;
4932 return rc;
4934 error:
4935 ipw_tx_queue_free(priv);
4936 return rc;
4940 * Reclaim Tx queue entries no more used by NIC.
4942 * When FW advances 'R' index, all entries between old and
4943 * new 'R' index need to be reclaimed. As result, some free space
4944 * forms. If there is enough free space (> low mark), wake Tx queue.
4946 * @note Need to protect against garbage in 'R' index
4947 * @param priv
4948 * @param txq
4949 * @param qindex
4950 * @return Number of used entries remains in the queue
4952 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
4953 struct clx2_tx_queue *txq, int qindex)
4955 u32 hw_tail;
4956 int used;
4957 struct clx2_queue *q = &txq->q;
4959 hw_tail = ipw_read32(priv, q->reg_r);
4960 if (hw_tail >= q->n_bd) {
4961 IPW_ERROR
4962 ("Read index for DMA queue (%d) is out of range [0-%d)\n",
4963 hw_tail, q->n_bd);
4964 goto done;
4966 for (; q->last_used != hw_tail;
4967 q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
4968 ipw_queue_tx_free_tfd(priv, txq);
4969 priv->tx_packets++;
4971 done:
4972 if ((ipw_tx_queue_space(q) > q->low_mark) &&
4973 (qindex >= 0))
4974 netif_wake_queue(priv->net_dev);
4975 used = q->first_empty - q->last_used;
4976 if (used < 0)
4977 used += q->n_bd;
4979 return used;
4982 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
4983 int len, int sync)
4985 struct clx2_tx_queue *txq = &priv->txq_cmd;
4986 struct clx2_queue *q = &txq->q;
4987 struct tfd_frame *tfd;
4989 if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
4990 IPW_ERROR("No space for Tx\n");
4991 return -EBUSY;
4994 tfd = &txq->bd[q->first_empty];
4995 txq->txb[q->first_empty] = NULL;
4997 memset(tfd, 0, sizeof(*tfd));
4998 tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
4999 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5000 priv->hcmd_seq++;
5001 tfd->u.cmd.index = hcmd;
5002 tfd->u.cmd.length = len;
5003 memcpy(tfd->u.cmd.payload, buf, len);
5004 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5005 ipw_write32(priv, q->reg_w, q->first_empty);
5006 _ipw_read32(priv, 0x90);
5008 return 0;
5012 * Rx theory of operation
5014 * The host allocates 32 DMA target addresses and passes the host address
5015 * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5016 * 0 to 31
5018 * Rx Queue Indexes
5019 * The host/firmware share two index registers for managing the Rx buffers.
5021 * The READ index maps to the first position that the firmware may be writing
5022 * to -- the driver can read up to (but not including) this position and get
5023 * good data.
5024 * The READ index is managed by the firmware once the card is enabled.
5026 * The WRITE index maps to the last position the driver has read from -- the
5027 * position preceding WRITE is the last slot the firmware can place a packet.
5029 * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5030 * WRITE = READ.
5032 * During initialization the host sets up the READ queue position to the first
5033 * INDEX position, and WRITE to the last (READ - 1 wrapped)
5035 * When the firmware places a packet in a buffer it will advance the READ index
5036 * and fire the RX interrupt. The driver can then query the READ index and
5037 * process as many packets as possible, moving the WRITE index forward as it
5038 * resets the Rx queue buffers with new memory.
5040 * The management in the driver is as follows:
5041 * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free. When
5042 * ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5043 * to replensish the ipw->rxq->rx_free.
5044 * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5045 * ipw->rxq is replenished and the READ INDEX is updated (updating the
5046 * 'processed' and 'read' driver indexes as well)
5047 * + A received packet is processed and handed to the kernel network stack,
5048 * detached from the ipw->rxq. The driver 'processed' index is updated.
5049 * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5050 * list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5051 * INDEX is not incremented and ipw->status(RX_STALLED) is set. If there
5052 * were enough free buffers and RX_STALLED is set it is cleared.
5055 * Driver sequence:
5057 * ipw_rx_queue_alloc() Allocates rx_free
5058 * ipw_rx_queue_replenish() Replenishes rx_free list from rx_used, and calls
5059 * ipw_rx_queue_restock
5060 * ipw_rx_queue_restock() Moves available buffers from rx_free into Rx
5061 * queue, updates firmware pointers, and updates
5062 * the WRITE index. If insufficient rx_free buffers
5063 * are available, schedules ipw_rx_queue_replenish
5065 * -- enable interrupts --
5066 * ISR - ipw_rx() Detach ipw_rx_mem_buffers from pool up to the
5067 * READ INDEX, detaching the SKB from the pool.
5068 * Moves the packet buffer from queue to rx_used.
5069 * Calls ipw_rx_queue_restock to refill any empty
5070 * slots.
5071 * ...
5076 * If there are slots in the RX queue that need to be restocked,
5077 * and we have free pre-allocated buffers, fill the ranks as much
5078 * as we can pulling from rx_free.
5080 * This moves the 'write' index forward to catch up with 'processed', and
5081 * also updates the memory address in the firmware to reference the new
5082 * target buffer.
5084 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5086 struct ipw_rx_queue *rxq = priv->rxq;
5087 struct list_head *element;
5088 struct ipw_rx_mem_buffer *rxb;
5089 unsigned long flags;
5090 int write;
5092 spin_lock_irqsave(&rxq->lock, flags);
5093 write = rxq->write;
5094 while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5095 element = rxq->rx_free.next;
5096 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5097 list_del(element);
5099 ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5100 rxb->dma_addr);
5101 rxq->queue[rxq->write] = rxb;
5102 rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5103 rxq->free_count--;
5105 spin_unlock_irqrestore(&rxq->lock, flags);
5107 /* If the pre-allocated buffer pool is dropping low, schedule to
5108 * refill it */
5109 if (rxq->free_count <= RX_LOW_WATERMARK)
5110 queue_work(priv->workqueue, &priv->rx_replenish);
5112 /* If we've added more space for the firmware to place data, tell it */
5113 if (write != rxq->write)
5114 ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5118 * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5119 * Also restock the Rx queue via ipw_rx_queue_restock.
5121 * This is called as a scheduled work item (except for during intialization)
5123 static void ipw_rx_queue_replenish(void *data)
5125 struct ipw_priv *priv = data;
5126 struct ipw_rx_queue *rxq = priv->rxq;
5127 struct list_head *element;
5128 struct ipw_rx_mem_buffer *rxb;
5129 unsigned long flags;
5131 spin_lock_irqsave(&rxq->lock, flags);
5132 while (!list_empty(&rxq->rx_used)) {
5133 element = rxq->rx_used.next;
5134 rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5135 rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5136 if (!rxb->skb) {
5137 printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5138 priv->net_dev->name);
5139 /* We don't reschedule replenish work here -- we will
5140 * call the restock method and if it still needs
5141 * more buffers it will schedule replenish */
5142 break;
5144 list_del(element);
5146 rxb->dma_addr =
5147 pci_map_single(priv->pci_dev, rxb->skb->data,
5148 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5150 list_add_tail(&rxb->list, &rxq->rx_free);
5151 rxq->free_count++;
5153 spin_unlock_irqrestore(&rxq->lock, flags);
5155 ipw_rx_queue_restock(priv);
5158 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5160 struct ipw_priv *priv =
5161 container_of(work, struct ipw_priv, rx_replenish);
5162 mutex_lock(&priv->mutex);
5163 ipw_rx_queue_replenish(priv);
5164 mutex_unlock(&priv->mutex);
5167 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5168 * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5169 * This free routine walks the list of POOL entries and if SKB is set to
5170 * non NULL it is unmapped and freed
5172 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5174 int i;
5176 if (!rxq)
5177 return;
5179 for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5180 if (rxq->pool[i].skb != NULL) {
5181 pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5182 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5183 dev_kfree_skb(rxq->pool[i].skb);
5187 kfree(rxq);
5190 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5192 struct ipw_rx_queue *rxq;
5193 int i;
5195 rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5196 if (unlikely(!rxq)) {
5197 IPW_ERROR("memory allocation failed\n");
5198 return NULL;
5200 spin_lock_init(&rxq->lock);
5201 INIT_LIST_HEAD(&rxq->rx_free);
5202 INIT_LIST_HEAD(&rxq->rx_used);
5204 /* Fill the rx_used queue with _all_ of the Rx buffers */
5205 for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5206 list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5208 /* Set us so that we have processed and used all buffers, but have
5209 * not restocked the Rx queue with fresh buffers */
5210 rxq->read = rxq->write = 0;
5211 rxq->free_count = 0;
5213 return rxq;
5216 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5218 rate &= ~IEEE80211_BASIC_RATE_MASK;
5219 if (ieee_mode == IEEE_A) {
5220 switch (rate) {
5221 case IEEE80211_OFDM_RATE_6MB:
5222 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ?
5223 1 : 0;
5224 case IEEE80211_OFDM_RATE_9MB:
5225 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ?
5226 1 : 0;
5227 case IEEE80211_OFDM_RATE_12MB:
5228 return priv->
5229 rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5230 case IEEE80211_OFDM_RATE_18MB:
5231 return priv->
5232 rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5233 case IEEE80211_OFDM_RATE_24MB:
5234 return priv->
5235 rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5236 case IEEE80211_OFDM_RATE_36MB:
5237 return priv->
5238 rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5239 case IEEE80211_OFDM_RATE_48MB:
5240 return priv->
5241 rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5242 case IEEE80211_OFDM_RATE_54MB:
5243 return priv->
5244 rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5245 default:
5246 return 0;
5250 /* B and G mixed */
5251 switch (rate) {
5252 case IEEE80211_CCK_RATE_1MB:
5253 return priv->rates_mask & IEEE80211_CCK_RATE_1MB_MASK ? 1 : 0;
5254 case IEEE80211_CCK_RATE_2MB:
5255 return priv->rates_mask & IEEE80211_CCK_RATE_2MB_MASK ? 1 : 0;
5256 case IEEE80211_CCK_RATE_5MB:
5257 return priv->rates_mask & IEEE80211_CCK_RATE_5MB_MASK ? 1 : 0;
5258 case IEEE80211_CCK_RATE_11MB:
5259 return priv->rates_mask & IEEE80211_CCK_RATE_11MB_MASK ? 1 : 0;
5262 /* If we are limited to B modulations, bail at this point */
5263 if (ieee_mode == IEEE_B)
5264 return 0;
5266 /* G */
5267 switch (rate) {
5268 case IEEE80211_OFDM_RATE_6MB:
5269 return priv->rates_mask & IEEE80211_OFDM_RATE_6MB_MASK ? 1 : 0;
5270 case IEEE80211_OFDM_RATE_9MB:
5271 return priv->rates_mask & IEEE80211_OFDM_RATE_9MB_MASK ? 1 : 0;
5272 case IEEE80211_OFDM_RATE_12MB:
5273 return priv->rates_mask & IEEE80211_OFDM_RATE_12MB_MASK ? 1 : 0;
5274 case IEEE80211_OFDM_RATE_18MB:
5275 return priv->rates_mask & IEEE80211_OFDM_RATE_18MB_MASK ? 1 : 0;
5276 case IEEE80211_OFDM_RATE_24MB:
5277 return priv->rates_mask & IEEE80211_OFDM_RATE_24MB_MASK ? 1 : 0;
5278 case IEEE80211_OFDM_RATE_36MB:
5279 return priv->rates_mask & IEEE80211_OFDM_RATE_36MB_MASK ? 1 : 0;
5280 case IEEE80211_OFDM_RATE_48MB:
5281 return priv->rates_mask & IEEE80211_OFDM_RATE_48MB_MASK ? 1 : 0;
5282 case IEEE80211_OFDM_RATE_54MB:
5283 return priv->rates_mask & IEEE80211_OFDM_RATE_54MB_MASK ? 1 : 0;
5286 return 0;
5289 static int ipw_compatible_rates(struct ipw_priv *priv,
5290 const struct ieee80211_network *network,
5291 struct ipw_supported_rates *rates)
5293 int num_rates, i;
5295 memset(rates, 0, sizeof(*rates));
5296 num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5297 rates->num_rates = 0;
5298 for (i = 0; i < num_rates; i++) {
5299 if (!ipw_is_rate_in_mask(priv, network->mode,
5300 network->rates[i])) {
5302 if (network->rates[i] & IEEE80211_BASIC_RATE_MASK) {
5303 IPW_DEBUG_SCAN("Adding masked mandatory "
5304 "rate %02X\n",
5305 network->rates[i]);
5306 rates->supported_rates[rates->num_rates++] =
5307 network->rates[i];
5308 continue;
5311 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5312 network->rates[i], priv->rates_mask);
5313 continue;
5316 rates->supported_rates[rates->num_rates++] = network->rates[i];
5319 num_rates = min(network->rates_ex_len,
5320 (u8) (IPW_MAX_RATES - num_rates));
5321 for (i = 0; i < num_rates; i++) {
5322 if (!ipw_is_rate_in_mask(priv, network->mode,
5323 network->rates_ex[i])) {
5324 if (network->rates_ex[i] & IEEE80211_BASIC_RATE_MASK) {
5325 IPW_DEBUG_SCAN("Adding masked mandatory "
5326 "rate %02X\n",
5327 network->rates_ex[i]);
5328 rates->supported_rates[rates->num_rates++] =
5329 network->rates[i];
5330 continue;
5333 IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5334 network->rates_ex[i], priv->rates_mask);
5335 continue;
5338 rates->supported_rates[rates->num_rates++] =
5339 network->rates_ex[i];
5342 return 1;
5345 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5346 const struct ipw_supported_rates *src)
5348 u8 i;
5349 for (i = 0; i < src->num_rates; i++)
5350 dest->supported_rates[i] = src->supported_rates[i];
5351 dest->num_rates = src->num_rates;
5354 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5355 * mask should ever be used -- right now all callers to add the scan rates are
5356 * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
5357 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5358 u8 modulation, u32 rate_mask)
5360 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5361 IEEE80211_BASIC_RATE_MASK : 0;
5363 if (rate_mask & IEEE80211_CCK_RATE_1MB_MASK)
5364 rates->supported_rates[rates->num_rates++] =
5365 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_1MB;
5367 if (rate_mask & IEEE80211_CCK_RATE_2MB_MASK)
5368 rates->supported_rates[rates->num_rates++] =
5369 IEEE80211_BASIC_RATE_MASK | IEEE80211_CCK_RATE_2MB;
5371 if (rate_mask & IEEE80211_CCK_RATE_5MB_MASK)
5372 rates->supported_rates[rates->num_rates++] = basic_mask |
5373 IEEE80211_CCK_RATE_5MB;
5375 if (rate_mask & IEEE80211_CCK_RATE_11MB_MASK)
5376 rates->supported_rates[rates->num_rates++] = basic_mask |
5377 IEEE80211_CCK_RATE_11MB;
5380 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5381 u8 modulation, u32 rate_mask)
5383 u8 basic_mask = (IEEE80211_OFDM_MODULATION == modulation) ?
5384 IEEE80211_BASIC_RATE_MASK : 0;
5386 if (rate_mask & IEEE80211_OFDM_RATE_6MB_MASK)
5387 rates->supported_rates[rates->num_rates++] = basic_mask |
5388 IEEE80211_OFDM_RATE_6MB;
5390 if (rate_mask & IEEE80211_OFDM_RATE_9MB_MASK)
5391 rates->supported_rates[rates->num_rates++] =
5392 IEEE80211_OFDM_RATE_9MB;
5394 if (rate_mask & IEEE80211_OFDM_RATE_12MB_MASK)
5395 rates->supported_rates[rates->num_rates++] = basic_mask |
5396 IEEE80211_OFDM_RATE_12MB;
5398 if (rate_mask & IEEE80211_OFDM_RATE_18MB_MASK)
5399 rates->supported_rates[rates->num_rates++] =
5400 IEEE80211_OFDM_RATE_18MB;
5402 if (rate_mask & IEEE80211_OFDM_RATE_24MB_MASK)
5403 rates->supported_rates[rates->num_rates++] = basic_mask |
5404 IEEE80211_OFDM_RATE_24MB;
5406 if (rate_mask & IEEE80211_OFDM_RATE_36MB_MASK)
5407 rates->supported_rates[rates->num_rates++] =
5408 IEEE80211_OFDM_RATE_36MB;
5410 if (rate_mask & IEEE80211_OFDM_RATE_48MB_MASK)
5411 rates->supported_rates[rates->num_rates++] =
5412 IEEE80211_OFDM_RATE_48MB;
5414 if (rate_mask & IEEE80211_OFDM_RATE_54MB_MASK)
5415 rates->supported_rates[rates->num_rates++] =
5416 IEEE80211_OFDM_RATE_54MB;
5419 struct ipw_network_match {
5420 struct ieee80211_network *network;
5421 struct ipw_supported_rates rates;
5424 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5425 struct ipw_network_match *match,
5426 struct ieee80211_network *network,
5427 int roaming)
5429 struct ipw_supported_rates rates;
5430 DECLARE_SSID_BUF(ssid);
5432 /* Verify that this network's capability is compatible with the
5433 * current mode (AdHoc or Infrastructure) */
5434 if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5435 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5436 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5437 "capability mismatch.\n",
5438 print_ssid(ssid, network->ssid,
5439 network->ssid_len),
5440 network->bssid);
5441 return 0;
5444 if (unlikely(roaming)) {
5445 /* If we are roaming, then ensure check if this is a valid
5446 * network to try and roam to */
5447 if ((network->ssid_len != match->network->ssid_len) ||
5448 memcmp(network->ssid, match->network->ssid,
5449 network->ssid_len)) {
5450 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5451 "because of non-network ESSID.\n",
5452 print_ssid(ssid, network->ssid,
5453 network->ssid_len),
5454 network->bssid);
5455 return 0;
5457 } else {
5458 /* If an ESSID has been configured then compare the broadcast
5459 * ESSID to ours */
5460 if ((priv->config & CFG_STATIC_ESSID) &&
5461 ((network->ssid_len != priv->essid_len) ||
5462 memcmp(network->ssid, priv->essid,
5463 min(network->ssid_len, priv->essid_len)))) {
5464 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5466 strncpy(escaped,
5467 print_ssid(ssid, network->ssid,
5468 network->ssid_len),
5469 sizeof(escaped));
5470 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5471 "because of ESSID mismatch: '%s'.\n",
5472 escaped, network->bssid,
5473 print_ssid(ssid, priv->essid,
5474 priv->essid_len));
5475 return 0;
5479 /* If the old network rate is better than this one, don't bother
5480 * testing everything else. */
5482 if (network->time_stamp[0] < match->network->time_stamp[0]) {
5483 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5484 "current network.\n",
5485 print_ssid(ssid, match->network->ssid,
5486 match->network->ssid_len));
5487 return 0;
5488 } else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5489 IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5490 "current network.\n",
5491 print_ssid(ssid, match->network->ssid,
5492 match->network->ssid_len));
5493 return 0;
5496 /* Now go through and see if the requested network is valid... */
5497 if (priv->ieee->scan_age != 0 &&
5498 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5499 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5500 "because of age: %ums.\n",
5501 print_ssid(ssid, network->ssid,
5502 network->ssid_len),
5503 network->bssid,
5504 jiffies_to_msecs(jiffies -
5505 network->last_scanned));
5506 return 0;
5509 if ((priv->config & CFG_STATIC_CHANNEL) &&
5510 (network->channel != priv->channel)) {
5511 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5512 "because of channel mismatch: %d != %d.\n",
5513 print_ssid(ssid, network->ssid,
5514 network->ssid_len),
5515 network->bssid,
5516 network->channel, priv->channel);
5517 return 0;
5520 /* Verify privacy compatability */
5521 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5522 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5523 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5524 "because of privacy mismatch: %s != %s.\n",
5525 print_ssid(ssid, network->ssid,
5526 network->ssid_len),
5527 network->bssid,
5528 priv->
5529 capability & CAP_PRIVACY_ON ? "on" : "off",
5530 network->
5531 capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5532 "off");
5533 return 0;
5536 if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5537 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5538 "because of the same BSSID match: %pM"
5539 ".\n", print_ssid(ssid, network->ssid,
5540 network->ssid_len),
5541 network->bssid,
5542 priv->bssid);
5543 return 0;
5546 /* Filter out any incompatible freq / mode combinations */
5547 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5548 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5549 "because of invalid frequency/mode "
5550 "combination.\n",
5551 print_ssid(ssid, network->ssid,
5552 network->ssid_len),
5553 network->bssid);
5554 return 0;
5557 /* Ensure that the rates supported by the driver are compatible with
5558 * this AP, including verification of basic rates (mandatory) */
5559 if (!ipw_compatible_rates(priv, network, &rates)) {
5560 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5561 "because configured rate mask excludes "
5562 "AP mandatory rate.\n",
5563 print_ssid(ssid, network->ssid,
5564 network->ssid_len),
5565 network->bssid);
5566 return 0;
5569 if (rates.num_rates == 0) {
5570 IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5571 "because of no compatible rates.\n",
5572 print_ssid(ssid, network->ssid,
5573 network->ssid_len),
5574 network->bssid);
5575 return 0;
5578 /* TODO: Perform any further minimal comparititive tests. We do not
5579 * want to put too much policy logic here; intelligent scan selection
5580 * should occur within a generic IEEE 802.11 user space tool. */
5582 /* Set up 'new' AP to this network */
5583 ipw_copy_rates(&match->rates, &rates);
5584 match->network = network;
5585 IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5586 print_ssid(ssid, network->ssid, network->ssid_len),
5587 network->bssid);
5589 return 1;
5592 static void ipw_merge_adhoc_network(struct work_struct *work)
5594 DECLARE_SSID_BUF(ssid);
5595 struct ipw_priv *priv =
5596 container_of(work, struct ipw_priv, merge_networks);
5597 struct ieee80211_network *network = NULL;
5598 struct ipw_network_match match = {
5599 .network = priv->assoc_network
5602 if ((priv->status & STATUS_ASSOCIATED) &&
5603 (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5604 /* First pass through ROAM process -- look for a better
5605 * network */
5606 unsigned long flags;
5608 spin_lock_irqsave(&priv->ieee->lock, flags);
5609 list_for_each_entry(network, &priv->ieee->network_list, list) {
5610 if (network != priv->assoc_network)
5611 ipw_find_adhoc_network(priv, &match, network,
5614 spin_unlock_irqrestore(&priv->ieee->lock, flags);
5616 if (match.network == priv->assoc_network) {
5617 IPW_DEBUG_MERGE("No better ADHOC in this network to "
5618 "merge to.\n");
5619 return;
5622 mutex_lock(&priv->mutex);
5623 if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5624 IPW_DEBUG_MERGE("remove network %s\n",
5625 print_ssid(ssid, priv->essid,
5626 priv->essid_len));
5627 ipw_remove_current_network(priv);
5630 ipw_disassociate(priv);
5631 priv->assoc_network = match.network;
5632 mutex_unlock(&priv->mutex);
5633 return;
5637 static int ipw_best_network(struct ipw_priv *priv,
5638 struct ipw_network_match *match,
5639 struct ieee80211_network *network, int roaming)
5641 struct ipw_supported_rates rates;
5642 DECLARE_SSID_BUF(ssid);
5644 /* Verify that this network's capability is compatible with the
5645 * current mode (AdHoc or Infrastructure) */
5646 if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5647 !(network->capability & WLAN_CAPABILITY_ESS)) ||
5648 (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5649 !(network->capability & WLAN_CAPABILITY_IBSS))) {
5650 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5651 "capability mismatch.\n",
5652 print_ssid(ssid, network->ssid,
5653 network->ssid_len),
5654 network->bssid);
5655 return 0;
5658 if (unlikely(roaming)) {
5659 /* If we are roaming, then ensure check if this is a valid
5660 * network to try and roam to */
5661 if ((network->ssid_len != match->network->ssid_len) ||
5662 memcmp(network->ssid, match->network->ssid,
5663 network->ssid_len)) {
5664 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5665 "because of non-network ESSID.\n",
5666 print_ssid(ssid, network->ssid,
5667 network->ssid_len),
5668 network->bssid);
5669 return 0;
5671 } else {
5672 /* If an ESSID has been configured then compare the broadcast
5673 * ESSID to ours */
5674 if ((priv->config & CFG_STATIC_ESSID) &&
5675 ((network->ssid_len != priv->essid_len) ||
5676 memcmp(network->ssid, priv->essid,
5677 min(network->ssid_len, priv->essid_len)))) {
5678 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5679 strncpy(escaped,
5680 print_ssid(ssid, network->ssid,
5681 network->ssid_len),
5682 sizeof(escaped));
5683 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5684 "because of ESSID mismatch: '%s'.\n",
5685 escaped, network->bssid,
5686 print_ssid(ssid, priv->essid,
5687 priv->essid_len));
5688 return 0;
5692 /* If the old network rate is better than this one, don't bother
5693 * testing everything else. */
5694 if (match->network && match->network->stats.rssi > network->stats.rssi) {
5695 char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5696 strncpy(escaped,
5697 print_ssid(ssid, network->ssid, network->ssid_len),
5698 sizeof(escaped));
5699 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5700 "'%s (%pM)' has a stronger signal.\n",
5701 escaped, network->bssid,
5702 print_ssid(ssid, match->network->ssid,
5703 match->network->ssid_len),
5704 match->network->bssid);
5705 return 0;
5708 /* If this network has already had an association attempt within the
5709 * last 3 seconds, do not try and associate again... */
5710 if (network->last_associate &&
5711 time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5712 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5713 "because of storming (%ums since last "
5714 "assoc attempt).\n",
5715 print_ssid(ssid, network->ssid,
5716 network->ssid_len),
5717 network->bssid,
5718 jiffies_to_msecs(jiffies -
5719 network->last_associate));
5720 return 0;
5723 /* Now go through and see if the requested network is valid... */
5724 if (priv->ieee->scan_age != 0 &&
5725 time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5726 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5727 "because of age: %ums.\n",
5728 print_ssid(ssid, network->ssid,
5729 network->ssid_len),
5730 network->bssid,
5731 jiffies_to_msecs(jiffies -
5732 network->last_scanned));
5733 return 0;
5736 if ((priv->config & CFG_STATIC_CHANNEL) &&
5737 (network->channel != priv->channel)) {
5738 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5739 "because of channel mismatch: %d != %d.\n",
5740 print_ssid(ssid, network->ssid,
5741 network->ssid_len),
5742 network->bssid,
5743 network->channel, priv->channel);
5744 return 0;
5747 /* Verify privacy compatability */
5748 if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5749 ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5750 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5751 "because of privacy mismatch: %s != %s.\n",
5752 print_ssid(ssid, network->ssid,
5753 network->ssid_len),
5754 network->bssid,
5755 priv->capability & CAP_PRIVACY_ON ? "on" :
5756 "off",
5757 network->capability &
5758 WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5759 return 0;
5762 if ((priv->config & CFG_STATIC_BSSID) &&
5763 memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5764 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5765 "because of BSSID mismatch: %pM.\n",
5766 print_ssid(ssid, network->ssid,
5767 network->ssid_len),
5768 network->bssid, priv->bssid);
5769 return 0;
5772 /* Filter out any incompatible freq / mode combinations */
5773 if (!ieee80211_is_valid_mode(priv->ieee, network->mode)) {
5774 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5775 "because of invalid frequency/mode "
5776 "combination.\n",
5777 print_ssid(ssid, network->ssid,
5778 network->ssid_len),
5779 network->bssid);
5780 return 0;
5783 /* Filter out invalid channel in current GEO */
5784 if (!ieee80211_is_valid_channel(priv->ieee, network->channel)) {
5785 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5786 "because of invalid channel in current GEO\n",
5787 print_ssid(ssid, network->ssid,
5788 network->ssid_len),
5789 network->bssid);
5790 return 0;
5793 /* Ensure that the rates supported by the driver are compatible with
5794 * this AP, including verification of basic rates (mandatory) */
5795 if (!ipw_compatible_rates(priv, network, &rates)) {
5796 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5797 "because configured rate mask excludes "
5798 "AP mandatory rate.\n",
5799 print_ssid(ssid, network->ssid,
5800 network->ssid_len),
5801 network->bssid);
5802 return 0;
5805 if (rates.num_rates == 0) {
5806 IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5807 "because of no compatible rates.\n",
5808 print_ssid(ssid, network->ssid,
5809 network->ssid_len),
5810 network->bssid);
5811 return 0;
5814 /* TODO: Perform any further minimal comparititive tests. We do not
5815 * want to put too much policy logic here; intelligent scan selection
5816 * should occur within a generic IEEE 802.11 user space tool. */
5818 /* Set up 'new' AP to this network */
5819 ipw_copy_rates(&match->rates, &rates);
5820 match->network = network;
5822 IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5823 print_ssid(ssid, network->ssid, network->ssid_len),
5824 network->bssid);
5826 return 1;
5829 static void ipw_adhoc_create(struct ipw_priv *priv,
5830 struct ieee80211_network *network)
5832 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
5833 int i;
5836 * For the purposes of scanning, we can set our wireless mode
5837 * to trigger scans across combinations of bands, but when it
5838 * comes to creating a new ad-hoc network, we have tell the FW
5839 * exactly which band to use.
5841 * We also have the possibility of an invalid channel for the
5842 * chossen band. Attempting to create a new ad-hoc network
5843 * with an invalid channel for wireless mode will trigger a
5844 * FW fatal error.
5847 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
5848 case IEEE80211_52GHZ_BAND:
5849 network->mode = IEEE_A;
5850 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5851 BUG_ON(i == -1);
5852 if (geo->a[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5853 IPW_WARNING("Overriding invalid channel\n");
5854 priv->channel = geo->a[0].channel;
5856 break;
5858 case IEEE80211_24GHZ_BAND:
5859 if (priv->ieee->mode & IEEE_G)
5860 network->mode = IEEE_G;
5861 else
5862 network->mode = IEEE_B;
5863 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
5864 BUG_ON(i == -1);
5865 if (geo->bg[i].flags & IEEE80211_CH_PASSIVE_ONLY) {
5866 IPW_WARNING("Overriding invalid channel\n");
5867 priv->channel = geo->bg[0].channel;
5869 break;
5871 default:
5872 IPW_WARNING("Overriding invalid channel\n");
5873 if (priv->ieee->mode & IEEE_A) {
5874 network->mode = IEEE_A;
5875 priv->channel = geo->a[0].channel;
5876 } else if (priv->ieee->mode & IEEE_G) {
5877 network->mode = IEEE_G;
5878 priv->channel = geo->bg[0].channel;
5879 } else {
5880 network->mode = IEEE_B;
5881 priv->channel = geo->bg[0].channel;
5883 break;
5886 network->channel = priv->channel;
5887 priv->config |= CFG_ADHOC_PERSIST;
5888 ipw_create_bssid(priv, network->bssid);
5889 network->ssid_len = priv->essid_len;
5890 memcpy(network->ssid, priv->essid, priv->essid_len);
5891 memset(&network->stats, 0, sizeof(network->stats));
5892 network->capability = WLAN_CAPABILITY_IBSS;
5893 if (!(priv->config & CFG_PREAMBLE_LONG))
5894 network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5895 if (priv->capability & CAP_PRIVACY_ON)
5896 network->capability |= WLAN_CAPABILITY_PRIVACY;
5897 network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5898 memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5899 network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5900 memcpy(network->rates_ex,
5901 &priv->rates.supported_rates[network->rates_len],
5902 network->rates_ex_len);
5903 network->last_scanned = 0;
5904 network->flags = 0;
5905 network->last_associate = 0;
5906 network->time_stamp[0] = 0;
5907 network->time_stamp[1] = 0;
5908 network->beacon_interval = 100; /* Default */
5909 network->listen_interval = 10; /* Default */
5910 network->atim_window = 0; /* Default */
5911 network->wpa_ie_len = 0;
5912 network->rsn_ie_len = 0;
5915 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
5917 struct ipw_tgi_tx_key key;
5919 if (!(priv->ieee->sec.flags & (1 << index)))
5920 return;
5922 key.key_id = index;
5923 memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
5924 key.security_type = type;
5925 key.station_index = 0; /* always 0 for BSS */
5926 key.flags = 0;
5927 /* 0 for new key; previous value of counter (after fatal error) */
5928 key.tx_counter[0] = cpu_to_le32(0);
5929 key.tx_counter[1] = cpu_to_le32(0);
5931 ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
5934 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
5936 struct ipw_wep_key key;
5937 int i;
5939 key.cmd_id = DINO_CMD_WEP_KEY;
5940 key.seq_num = 0;
5942 /* Note: AES keys cannot be set for multiple times.
5943 * Only set it at the first time. */
5944 for (i = 0; i < 4; i++) {
5945 key.key_index = i | type;
5946 if (!(priv->ieee->sec.flags & (1 << i))) {
5947 key.key_size = 0;
5948 continue;
5951 key.key_size = priv->ieee->sec.key_sizes[i];
5952 memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
5954 ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
5958 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
5960 if (priv->ieee->host_encrypt)
5961 return;
5963 switch (level) {
5964 case SEC_LEVEL_3:
5965 priv->sys_config.disable_unicast_decryption = 0;
5966 priv->ieee->host_decrypt = 0;
5967 break;
5968 case SEC_LEVEL_2:
5969 priv->sys_config.disable_unicast_decryption = 1;
5970 priv->ieee->host_decrypt = 1;
5971 break;
5972 case SEC_LEVEL_1:
5973 priv->sys_config.disable_unicast_decryption = 0;
5974 priv->ieee->host_decrypt = 0;
5975 break;
5976 case SEC_LEVEL_0:
5977 priv->sys_config.disable_unicast_decryption = 1;
5978 break;
5979 default:
5980 break;
5984 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
5986 if (priv->ieee->host_encrypt)
5987 return;
5989 switch (level) {
5990 case SEC_LEVEL_3:
5991 priv->sys_config.disable_multicast_decryption = 0;
5992 break;
5993 case SEC_LEVEL_2:
5994 priv->sys_config.disable_multicast_decryption = 1;
5995 break;
5996 case SEC_LEVEL_1:
5997 priv->sys_config.disable_multicast_decryption = 0;
5998 break;
5999 case SEC_LEVEL_0:
6000 priv->sys_config.disable_multicast_decryption = 1;
6001 break;
6002 default:
6003 break;
6007 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6009 switch (priv->ieee->sec.level) {
6010 case SEC_LEVEL_3:
6011 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6012 ipw_send_tgi_tx_key(priv,
6013 DCT_FLAG_EXT_SECURITY_CCM,
6014 priv->ieee->sec.active_key);
6016 if (!priv->ieee->host_mc_decrypt)
6017 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6018 break;
6019 case SEC_LEVEL_2:
6020 if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6021 ipw_send_tgi_tx_key(priv,
6022 DCT_FLAG_EXT_SECURITY_TKIP,
6023 priv->ieee->sec.active_key);
6024 break;
6025 case SEC_LEVEL_1:
6026 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6027 ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6028 ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6029 break;
6030 case SEC_LEVEL_0:
6031 default:
6032 break;
6036 static void ipw_adhoc_check(void *data)
6038 struct ipw_priv *priv = data;
6040 if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6041 !(priv->config & CFG_ADHOC_PERSIST)) {
6042 IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6043 IPW_DL_STATE | IPW_DL_ASSOC,
6044 "Missed beacon: %d - disassociate\n",
6045 priv->missed_adhoc_beacons);
6046 ipw_remove_current_network(priv);
6047 ipw_disassociate(priv);
6048 return;
6051 queue_delayed_work(priv->workqueue, &priv->adhoc_check,
6052 le16_to_cpu(priv->assoc_request.beacon_interval));
6055 static void ipw_bg_adhoc_check(struct work_struct *work)
6057 struct ipw_priv *priv =
6058 container_of(work, struct ipw_priv, adhoc_check.work);
6059 mutex_lock(&priv->mutex);
6060 ipw_adhoc_check(priv);
6061 mutex_unlock(&priv->mutex);
6064 static void ipw_debug_config(struct ipw_priv *priv)
6066 DECLARE_SSID_BUF(ssid);
6067 IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6068 "[CFG 0x%08X]\n", priv->config);
6069 if (priv->config & CFG_STATIC_CHANNEL)
6070 IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6071 else
6072 IPW_DEBUG_INFO("Channel unlocked.\n");
6073 if (priv->config & CFG_STATIC_ESSID)
6074 IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6075 print_ssid(ssid, priv->essid, priv->essid_len));
6076 else
6077 IPW_DEBUG_INFO("ESSID unlocked.\n");
6078 if (priv->config & CFG_STATIC_BSSID)
6079 IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6080 else
6081 IPW_DEBUG_INFO("BSSID unlocked.\n");
6082 if (priv->capability & CAP_PRIVACY_ON)
6083 IPW_DEBUG_INFO("PRIVACY on\n");
6084 else
6085 IPW_DEBUG_INFO("PRIVACY off\n");
6086 IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6089 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6091 /* TODO: Verify that this works... */
6092 struct ipw_fixed_rate fr = {
6093 .tx_rates = priv->rates_mask
6095 u32 reg;
6096 u16 mask = 0;
6098 /* Identify 'current FW band' and match it with the fixed
6099 * Tx rates */
6101 switch (priv->ieee->freq_band) {
6102 case IEEE80211_52GHZ_BAND: /* A only */
6103 /* IEEE_A */
6104 if (priv->rates_mask & ~IEEE80211_OFDM_RATES_MASK) {
6105 /* Invalid fixed rate mask */
6106 IPW_DEBUG_WX
6107 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6108 fr.tx_rates = 0;
6109 break;
6112 fr.tx_rates >>= IEEE80211_OFDM_SHIFT_MASK_A;
6113 break;
6115 default: /* 2.4Ghz or Mixed */
6116 /* IEEE_B */
6117 if (mode == IEEE_B) {
6118 if (fr.tx_rates & ~IEEE80211_CCK_RATES_MASK) {
6119 /* Invalid fixed rate mask */
6120 IPW_DEBUG_WX
6121 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6122 fr.tx_rates = 0;
6124 break;
6127 /* IEEE_G */
6128 if (fr.tx_rates & ~(IEEE80211_CCK_RATES_MASK |
6129 IEEE80211_OFDM_RATES_MASK)) {
6130 /* Invalid fixed rate mask */
6131 IPW_DEBUG_WX
6132 ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6133 fr.tx_rates = 0;
6134 break;
6137 if (IEEE80211_OFDM_RATE_6MB_MASK & fr.tx_rates) {
6138 mask |= (IEEE80211_OFDM_RATE_6MB_MASK >> 1);
6139 fr.tx_rates &= ~IEEE80211_OFDM_RATE_6MB_MASK;
6142 if (IEEE80211_OFDM_RATE_9MB_MASK & fr.tx_rates) {
6143 mask |= (IEEE80211_OFDM_RATE_9MB_MASK >> 1);
6144 fr.tx_rates &= ~IEEE80211_OFDM_RATE_9MB_MASK;
6147 if (IEEE80211_OFDM_RATE_12MB_MASK & fr.tx_rates) {
6148 mask |= (IEEE80211_OFDM_RATE_12MB_MASK >> 1);
6149 fr.tx_rates &= ~IEEE80211_OFDM_RATE_12MB_MASK;
6152 fr.tx_rates |= mask;
6153 break;
6156 reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6157 ipw_write_reg32(priv, reg, *(u32 *) & fr);
6160 static void ipw_abort_scan(struct ipw_priv *priv)
6162 int err;
6164 if (priv->status & STATUS_SCAN_ABORTING) {
6165 IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6166 return;
6168 priv->status |= STATUS_SCAN_ABORTING;
6170 err = ipw_send_scan_abort(priv);
6171 if (err)
6172 IPW_DEBUG_HC("Request to abort scan failed.\n");
6175 static void ipw_add_scan_channels(struct ipw_priv *priv,
6176 struct ipw_scan_request_ext *scan,
6177 int scan_type)
6179 int channel_index = 0;
6180 const struct ieee80211_geo *geo;
6181 int i;
6183 geo = ieee80211_get_geo(priv->ieee);
6185 if (priv->ieee->freq_band & IEEE80211_52GHZ_BAND) {
6186 int start = channel_index;
6187 for (i = 0; i < geo->a_channels; i++) {
6188 if ((priv->status & STATUS_ASSOCIATED) &&
6189 geo->a[i].channel == priv->channel)
6190 continue;
6191 channel_index++;
6192 scan->channels_list[channel_index] = geo->a[i].channel;
6193 ipw_set_scan_type(scan, channel_index,
6194 geo->a[i].
6195 flags & IEEE80211_CH_PASSIVE_ONLY ?
6196 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6197 scan_type);
6200 if (start != channel_index) {
6201 scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6202 (channel_index - start);
6203 channel_index++;
6207 if (priv->ieee->freq_band & IEEE80211_24GHZ_BAND) {
6208 int start = channel_index;
6209 if (priv->config & CFG_SPEED_SCAN) {
6210 int index;
6211 u8 channels[IEEE80211_24GHZ_CHANNELS] = {
6212 /* nop out the list */
6213 [0] = 0
6216 u8 channel;
6217 while (channel_index < IPW_SCAN_CHANNELS) {
6218 channel =
6219 priv->speed_scan[priv->speed_scan_pos];
6220 if (channel == 0) {
6221 priv->speed_scan_pos = 0;
6222 channel = priv->speed_scan[0];
6224 if ((priv->status & STATUS_ASSOCIATED) &&
6225 channel == priv->channel) {
6226 priv->speed_scan_pos++;
6227 continue;
6230 /* If this channel has already been
6231 * added in scan, break from loop
6232 * and this will be the first channel
6233 * in the next scan.
6235 if (channels[channel - 1] != 0)
6236 break;
6238 channels[channel - 1] = 1;
6239 priv->speed_scan_pos++;
6240 channel_index++;
6241 scan->channels_list[channel_index] = channel;
6242 index =
6243 ieee80211_channel_to_index(priv->ieee, channel);
6244 ipw_set_scan_type(scan, channel_index,
6245 geo->bg[index].
6246 flags &
6247 IEEE80211_CH_PASSIVE_ONLY ?
6248 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6249 : scan_type);
6251 } else {
6252 for (i = 0; i < geo->bg_channels; i++) {
6253 if ((priv->status & STATUS_ASSOCIATED) &&
6254 geo->bg[i].channel == priv->channel)
6255 continue;
6256 channel_index++;
6257 scan->channels_list[channel_index] =
6258 geo->bg[i].channel;
6259 ipw_set_scan_type(scan, channel_index,
6260 geo->bg[i].
6261 flags &
6262 IEEE80211_CH_PASSIVE_ONLY ?
6263 IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6264 : scan_type);
6268 if (start != channel_index) {
6269 scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6270 (channel_index - start);
6275 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6277 /* staying on passive channels longer than the DTIM interval during a
6278 * scan, while associated, causes the firmware to cancel the scan
6279 * without notification. Hence, don't stay on passive channels longer
6280 * than the beacon interval.
6282 if (priv->status & STATUS_ASSOCIATED
6283 && priv->assoc_network->beacon_interval > 10)
6284 return priv->assoc_network->beacon_interval - 10;
6285 else
6286 return 120;
6289 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6291 struct ipw_scan_request_ext scan;
6292 int err = 0, scan_type;
6294 if (!(priv->status & STATUS_INIT) ||
6295 (priv->status & STATUS_EXIT_PENDING))
6296 return 0;
6298 mutex_lock(&priv->mutex);
6300 if (direct && (priv->direct_scan_ssid_len == 0)) {
6301 IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6302 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6303 goto done;
6306 if (priv->status & STATUS_SCANNING) {
6307 IPW_DEBUG_HC("Concurrent scan requested. Queuing.\n");
6308 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6309 STATUS_SCAN_PENDING;
6310 goto done;
6313 if (!(priv->status & STATUS_SCAN_FORCED) &&
6314 priv->status & STATUS_SCAN_ABORTING) {
6315 IPW_DEBUG_HC("Scan request while abort pending. Queuing.\n");
6316 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6317 STATUS_SCAN_PENDING;
6318 goto done;
6321 if (priv->status & STATUS_RF_KILL_MASK) {
6322 IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6323 priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6324 STATUS_SCAN_PENDING;
6325 goto done;
6328 memset(&scan, 0, sizeof(scan));
6329 scan.full_scan_index = cpu_to_le32(ieee80211_get_scans(priv->ieee));
6331 if (type == IW_SCAN_TYPE_PASSIVE) {
6332 IPW_DEBUG_WX("use passive scanning\n");
6333 scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6334 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6335 cpu_to_le16(ipw_passive_dwell_time(priv));
6336 ipw_add_scan_channels(priv, &scan, scan_type);
6337 goto send_request;
6340 /* Use active scan by default. */
6341 if (priv->config & CFG_SPEED_SCAN)
6342 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6343 cpu_to_le16(30);
6344 else
6345 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6346 cpu_to_le16(20);
6348 scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6349 cpu_to_le16(20);
6351 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6352 cpu_to_le16(ipw_passive_dwell_time(priv));
6353 scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6355 #ifdef CONFIG_IPW2200_MONITOR
6356 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6357 u8 channel;
6358 u8 band = 0;
6360 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
6361 case IEEE80211_52GHZ_BAND:
6362 band = (u8) (IPW_A_MODE << 6) | 1;
6363 channel = priv->channel;
6364 break;
6366 case IEEE80211_24GHZ_BAND:
6367 band = (u8) (IPW_B_MODE << 6) | 1;
6368 channel = priv->channel;
6369 break;
6371 default:
6372 band = (u8) (IPW_B_MODE << 6) | 1;
6373 channel = 9;
6374 break;
6377 scan.channels_list[0] = band;
6378 scan.channels_list[1] = channel;
6379 ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6381 /* NOTE: The card will sit on this channel for this time
6382 * period. Scan aborts are timing sensitive and frequently
6383 * result in firmware restarts. As such, it is best to
6384 * set a small dwell_time here and just keep re-issuing
6385 * scans. Otherwise fast channel hopping will not actually
6386 * hop channels.
6388 * TODO: Move SPEED SCAN support to all modes and bands */
6389 scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6390 cpu_to_le16(2000);
6391 } else {
6392 #endif /* CONFIG_IPW2200_MONITOR */
6393 /* Honor direct scans first, otherwise if we are roaming make
6394 * this a direct scan for the current network. Finally,
6395 * ensure that every other scan is a fast channel hop scan */
6396 if (direct) {
6397 err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6398 priv->direct_scan_ssid_len);
6399 if (err) {
6400 IPW_DEBUG_HC("Attempt to send SSID command "
6401 "failed\n");
6402 goto done;
6405 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6406 } else if ((priv->status & STATUS_ROAMING)
6407 || (!(priv->status & STATUS_ASSOCIATED)
6408 && (priv->config & CFG_STATIC_ESSID)
6409 && (le32_to_cpu(scan.full_scan_index) % 2))) {
6410 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6411 if (err) {
6412 IPW_DEBUG_HC("Attempt to send SSID command "
6413 "failed.\n");
6414 goto done;
6417 scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6418 } else
6419 scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6421 ipw_add_scan_channels(priv, &scan, scan_type);
6422 #ifdef CONFIG_IPW2200_MONITOR
6424 #endif
6426 send_request:
6427 err = ipw_send_scan_request_ext(priv, &scan);
6428 if (err) {
6429 IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6430 goto done;
6433 priv->status |= STATUS_SCANNING;
6434 if (direct) {
6435 priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6436 priv->direct_scan_ssid_len = 0;
6437 } else
6438 priv->status &= ~STATUS_SCAN_PENDING;
6440 queue_delayed_work(priv->workqueue, &priv->scan_check,
6441 IPW_SCAN_CHECK_WATCHDOG);
6442 done:
6443 mutex_unlock(&priv->mutex);
6444 return err;
6447 static void ipw_request_passive_scan(struct work_struct *work)
6449 struct ipw_priv *priv =
6450 container_of(work, struct ipw_priv, request_passive_scan.work);
6451 ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6454 static void ipw_request_scan(struct work_struct *work)
6456 struct ipw_priv *priv =
6457 container_of(work, struct ipw_priv, request_scan.work);
6458 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6461 static void ipw_request_direct_scan(struct work_struct *work)
6463 struct ipw_priv *priv =
6464 container_of(work, struct ipw_priv, request_direct_scan.work);
6465 ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6468 static void ipw_bg_abort_scan(struct work_struct *work)
6470 struct ipw_priv *priv =
6471 container_of(work, struct ipw_priv, abort_scan);
6472 mutex_lock(&priv->mutex);
6473 ipw_abort_scan(priv);
6474 mutex_unlock(&priv->mutex);
6477 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6479 /* This is called when wpa_supplicant loads and closes the driver
6480 * interface. */
6481 priv->ieee->wpa_enabled = value;
6482 return 0;
6485 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6487 struct ieee80211_device *ieee = priv->ieee;
6488 struct ieee80211_security sec = {
6489 .flags = SEC_AUTH_MODE,
6491 int ret = 0;
6493 if (value & IW_AUTH_ALG_SHARED_KEY) {
6494 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6495 ieee->open_wep = 0;
6496 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6497 sec.auth_mode = WLAN_AUTH_OPEN;
6498 ieee->open_wep = 1;
6499 } else if (value & IW_AUTH_ALG_LEAP) {
6500 sec.auth_mode = WLAN_AUTH_LEAP;
6501 ieee->open_wep = 1;
6502 } else
6503 return -EINVAL;
6505 if (ieee->set_security)
6506 ieee->set_security(ieee->dev, &sec);
6507 else
6508 ret = -EOPNOTSUPP;
6510 return ret;
6513 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6514 int wpa_ie_len)
6516 /* make sure WPA is enabled */
6517 ipw_wpa_enable(priv, 1);
6520 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6521 char *capabilities, int length)
6523 IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6525 return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6526 capabilities);
6530 * WE-18 support
6533 /* SIOCSIWGENIE */
6534 static int ipw_wx_set_genie(struct net_device *dev,
6535 struct iw_request_info *info,
6536 union iwreq_data *wrqu, char *extra)
6538 struct ipw_priv *priv = ieee80211_priv(dev);
6539 struct ieee80211_device *ieee = priv->ieee;
6540 u8 *buf;
6541 int err = 0;
6543 if (wrqu->data.length > MAX_WPA_IE_LEN ||
6544 (wrqu->data.length && extra == NULL))
6545 return -EINVAL;
6547 if (wrqu->data.length) {
6548 buf = kmalloc(wrqu->data.length, GFP_KERNEL);
6549 if (buf == NULL) {
6550 err = -ENOMEM;
6551 goto out;
6554 memcpy(buf, extra, wrqu->data.length);
6555 kfree(ieee->wpa_ie);
6556 ieee->wpa_ie = buf;
6557 ieee->wpa_ie_len = wrqu->data.length;
6558 } else {
6559 kfree(ieee->wpa_ie);
6560 ieee->wpa_ie = NULL;
6561 ieee->wpa_ie_len = 0;
6564 ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6565 out:
6566 return err;
6569 /* SIOCGIWGENIE */
6570 static int ipw_wx_get_genie(struct net_device *dev,
6571 struct iw_request_info *info,
6572 union iwreq_data *wrqu, char *extra)
6574 struct ipw_priv *priv = ieee80211_priv(dev);
6575 struct ieee80211_device *ieee = priv->ieee;
6576 int err = 0;
6578 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6579 wrqu->data.length = 0;
6580 goto out;
6583 if (wrqu->data.length < ieee->wpa_ie_len) {
6584 err = -E2BIG;
6585 goto out;
6588 wrqu->data.length = ieee->wpa_ie_len;
6589 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6591 out:
6592 return err;
6595 static int wext_cipher2level(int cipher)
6597 switch (cipher) {
6598 case IW_AUTH_CIPHER_NONE:
6599 return SEC_LEVEL_0;
6600 case IW_AUTH_CIPHER_WEP40:
6601 case IW_AUTH_CIPHER_WEP104:
6602 return SEC_LEVEL_1;
6603 case IW_AUTH_CIPHER_TKIP:
6604 return SEC_LEVEL_2;
6605 case IW_AUTH_CIPHER_CCMP:
6606 return SEC_LEVEL_3;
6607 default:
6608 return -1;
6612 /* SIOCSIWAUTH */
6613 static int ipw_wx_set_auth(struct net_device *dev,
6614 struct iw_request_info *info,
6615 union iwreq_data *wrqu, char *extra)
6617 struct ipw_priv *priv = ieee80211_priv(dev);
6618 struct ieee80211_device *ieee = priv->ieee;
6619 struct iw_param *param = &wrqu->param;
6620 struct lib80211_crypt_data *crypt;
6621 unsigned long flags;
6622 int ret = 0;
6624 switch (param->flags & IW_AUTH_INDEX) {
6625 case IW_AUTH_WPA_VERSION:
6626 break;
6627 case IW_AUTH_CIPHER_PAIRWISE:
6628 ipw_set_hw_decrypt_unicast(priv,
6629 wext_cipher2level(param->value));
6630 break;
6631 case IW_AUTH_CIPHER_GROUP:
6632 ipw_set_hw_decrypt_multicast(priv,
6633 wext_cipher2level(param->value));
6634 break;
6635 case IW_AUTH_KEY_MGMT:
6637 * ipw2200 does not use these parameters
6639 break;
6641 case IW_AUTH_TKIP_COUNTERMEASURES:
6642 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6643 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6644 break;
6646 flags = crypt->ops->get_flags(crypt->priv);
6648 if (param->value)
6649 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6650 else
6651 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6653 crypt->ops->set_flags(flags, crypt->priv);
6655 break;
6657 case IW_AUTH_DROP_UNENCRYPTED:{
6658 /* HACK:
6660 * wpa_supplicant calls set_wpa_enabled when the driver
6661 * is loaded and unloaded, regardless of if WPA is being
6662 * used. No other calls are made which can be used to
6663 * determine if encryption will be used or not prior to
6664 * association being expected. If encryption is not being
6665 * used, drop_unencrypted is set to false, else true -- we
6666 * can use this to determine if the CAP_PRIVACY_ON bit should
6667 * be set.
6669 struct ieee80211_security sec = {
6670 .flags = SEC_ENABLED,
6671 .enabled = param->value,
6673 priv->ieee->drop_unencrypted = param->value;
6674 /* We only change SEC_LEVEL for open mode. Others
6675 * are set by ipw_wpa_set_encryption.
6677 if (!param->value) {
6678 sec.flags |= SEC_LEVEL;
6679 sec.level = SEC_LEVEL_0;
6680 } else {
6681 sec.flags |= SEC_LEVEL;
6682 sec.level = SEC_LEVEL_1;
6684 if (priv->ieee->set_security)
6685 priv->ieee->set_security(priv->ieee->dev, &sec);
6686 break;
6689 case IW_AUTH_80211_AUTH_ALG:
6690 ret = ipw_wpa_set_auth_algs(priv, param->value);
6691 break;
6693 case IW_AUTH_WPA_ENABLED:
6694 ret = ipw_wpa_enable(priv, param->value);
6695 ipw_disassociate(priv);
6696 break;
6698 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6699 ieee->ieee802_1x = param->value;
6700 break;
6702 case IW_AUTH_PRIVACY_INVOKED:
6703 ieee->privacy_invoked = param->value;
6704 break;
6706 default:
6707 return -EOPNOTSUPP;
6709 return ret;
6712 /* SIOCGIWAUTH */
6713 static int ipw_wx_get_auth(struct net_device *dev,
6714 struct iw_request_info *info,
6715 union iwreq_data *wrqu, char *extra)
6717 struct ipw_priv *priv = ieee80211_priv(dev);
6718 struct ieee80211_device *ieee = priv->ieee;
6719 struct lib80211_crypt_data *crypt;
6720 struct iw_param *param = &wrqu->param;
6721 int ret = 0;
6723 switch (param->flags & IW_AUTH_INDEX) {
6724 case IW_AUTH_WPA_VERSION:
6725 case IW_AUTH_CIPHER_PAIRWISE:
6726 case IW_AUTH_CIPHER_GROUP:
6727 case IW_AUTH_KEY_MGMT:
6729 * wpa_supplicant will control these internally
6731 ret = -EOPNOTSUPP;
6732 break;
6734 case IW_AUTH_TKIP_COUNTERMEASURES:
6735 crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6736 if (!crypt || !crypt->ops->get_flags)
6737 break;
6739 param->value = (crypt->ops->get_flags(crypt->priv) &
6740 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6742 break;
6744 case IW_AUTH_DROP_UNENCRYPTED:
6745 param->value = ieee->drop_unencrypted;
6746 break;
6748 case IW_AUTH_80211_AUTH_ALG:
6749 param->value = ieee->sec.auth_mode;
6750 break;
6752 case IW_AUTH_WPA_ENABLED:
6753 param->value = ieee->wpa_enabled;
6754 break;
6756 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6757 param->value = ieee->ieee802_1x;
6758 break;
6760 case IW_AUTH_ROAMING_CONTROL:
6761 case IW_AUTH_PRIVACY_INVOKED:
6762 param->value = ieee->privacy_invoked;
6763 break;
6765 default:
6766 return -EOPNOTSUPP;
6768 return 0;
6771 /* SIOCSIWENCODEEXT */
6772 static int ipw_wx_set_encodeext(struct net_device *dev,
6773 struct iw_request_info *info,
6774 union iwreq_data *wrqu, char *extra)
6776 struct ipw_priv *priv = ieee80211_priv(dev);
6777 struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6779 if (hwcrypto) {
6780 if (ext->alg == IW_ENCODE_ALG_TKIP) {
6781 /* IPW HW can't build TKIP MIC,
6782 host decryption still needed */
6783 if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6784 priv->ieee->host_mc_decrypt = 1;
6785 else {
6786 priv->ieee->host_encrypt = 0;
6787 priv->ieee->host_encrypt_msdu = 1;
6788 priv->ieee->host_decrypt = 1;
6790 } else {
6791 priv->ieee->host_encrypt = 0;
6792 priv->ieee->host_encrypt_msdu = 0;
6793 priv->ieee->host_decrypt = 0;
6794 priv->ieee->host_mc_decrypt = 0;
6798 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6801 /* SIOCGIWENCODEEXT */
6802 static int ipw_wx_get_encodeext(struct net_device *dev,
6803 struct iw_request_info *info,
6804 union iwreq_data *wrqu, char *extra)
6806 struct ipw_priv *priv = ieee80211_priv(dev);
6807 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6810 /* SIOCSIWMLME */
6811 static int ipw_wx_set_mlme(struct net_device *dev,
6812 struct iw_request_info *info,
6813 union iwreq_data *wrqu, char *extra)
6815 struct ipw_priv *priv = ieee80211_priv(dev);
6816 struct iw_mlme *mlme = (struct iw_mlme *)extra;
6817 __le16 reason;
6819 reason = cpu_to_le16(mlme->reason_code);
6821 switch (mlme->cmd) {
6822 case IW_MLME_DEAUTH:
6823 /* silently ignore */
6824 break;
6826 case IW_MLME_DISASSOC:
6827 ipw_disassociate(priv);
6828 break;
6830 default:
6831 return -EOPNOTSUPP;
6833 return 0;
6836 #ifdef CONFIG_IPW2200_QOS
6838 /* QoS */
6840 * get the modulation type of the current network or
6841 * the card current mode
6843 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6845 u8 mode = 0;
6847 if (priv->status & STATUS_ASSOCIATED) {
6848 unsigned long flags;
6850 spin_lock_irqsave(&priv->ieee->lock, flags);
6851 mode = priv->assoc_network->mode;
6852 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6853 } else {
6854 mode = priv->ieee->mode;
6856 IPW_DEBUG_QOS("QoS network/card mode %d \n", mode);
6857 return mode;
6861 * Handle management frame beacon and probe response
6863 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6864 int active_network,
6865 struct ieee80211_network *network)
6867 u32 size = sizeof(struct ieee80211_qos_parameters);
6869 if (network->capability & WLAN_CAPABILITY_IBSS)
6870 network->qos_data.active = network->qos_data.supported;
6872 if (network->flags & NETWORK_HAS_QOS_MASK) {
6873 if (active_network &&
6874 (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6875 network->qos_data.active = network->qos_data.supported;
6877 if ((network->qos_data.active == 1) && (active_network == 1) &&
6878 (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6879 (network->qos_data.old_param_count !=
6880 network->qos_data.param_count)) {
6881 network->qos_data.old_param_count =
6882 network->qos_data.param_count;
6883 schedule_work(&priv->qos_activate);
6884 IPW_DEBUG_QOS("QoS parameters change call "
6885 "qos_activate\n");
6887 } else {
6888 if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6889 memcpy(&network->qos_data.parameters,
6890 &def_parameters_CCK, size);
6891 else
6892 memcpy(&network->qos_data.parameters,
6893 &def_parameters_OFDM, size);
6895 if ((network->qos_data.active == 1) && (active_network == 1)) {
6896 IPW_DEBUG_QOS("QoS was disabled call qos_activate \n");
6897 schedule_work(&priv->qos_activate);
6900 network->qos_data.active = 0;
6901 network->qos_data.supported = 0;
6903 if ((priv->status & STATUS_ASSOCIATED) &&
6904 (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6905 if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6906 if (network->capability & WLAN_CAPABILITY_IBSS)
6907 if ((network->ssid_len ==
6908 priv->assoc_network->ssid_len) &&
6909 !memcmp(network->ssid,
6910 priv->assoc_network->ssid,
6911 network->ssid_len)) {
6912 queue_work(priv->workqueue,
6913 &priv->merge_networks);
6917 return 0;
6921 * This function set up the firmware to support QoS. It sends
6922 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
6924 static int ipw_qos_activate(struct ipw_priv *priv,
6925 struct ieee80211_qos_data *qos_network_data)
6927 int err;
6928 struct ieee80211_qos_parameters qos_parameters[QOS_QOS_SETS];
6929 struct ieee80211_qos_parameters *active_one = NULL;
6930 u32 size = sizeof(struct ieee80211_qos_parameters);
6931 u32 burst_duration;
6932 int i;
6933 u8 type;
6935 type = ipw_qos_current_mode(priv);
6937 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
6938 memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
6939 active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
6940 memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
6942 if (qos_network_data == NULL) {
6943 if (type == IEEE_B) {
6944 IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
6945 active_one = &def_parameters_CCK;
6946 } else
6947 active_one = &def_parameters_OFDM;
6949 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6950 burst_duration = ipw_qos_get_burst_duration(priv);
6951 for (i = 0; i < QOS_QUEUE_NUM; i++)
6952 qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
6953 cpu_to_le16(burst_duration);
6954 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6955 if (type == IEEE_B) {
6956 IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
6957 type);
6958 if (priv->qos_data.qos_enable == 0)
6959 active_one = &def_parameters_CCK;
6960 else
6961 active_one = priv->qos_data.def_qos_parm_CCK;
6962 } else {
6963 if (priv->qos_data.qos_enable == 0)
6964 active_one = &def_parameters_OFDM;
6965 else
6966 active_one = priv->qos_data.def_qos_parm_OFDM;
6968 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6969 } else {
6970 unsigned long flags;
6971 int active;
6973 spin_lock_irqsave(&priv->ieee->lock, flags);
6974 active_one = &(qos_network_data->parameters);
6975 qos_network_data->old_param_count =
6976 qos_network_data->param_count;
6977 memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
6978 active = qos_network_data->supported;
6979 spin_unlock_irqrestore(&priv->ieee->lock, flags);
6981 if (active == 0) {
6982 burst_duration = ipw_qos_get_burst_duration(priv);
6983 for (i = 0; i < QOS_QUEUE_NUM; i++)
6984 qos_parameters[QOS_PARAM_SET_ACTIVE].
6985 tx_op_limit[i] = cpu_to_le16(burst_duration);
6989 IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
6990 err = ipw_send_qos_params_command(priv,
6991 (struct ieee80211_qos_parameters *)
6992 &(qos_parameters[0]));
6993 if (err)
6994 IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
6996 return err;
7000 * send IPW_CMD_WME_INFO to the firmware
7002 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7004 int ret = 0;
7005 struct ieee80211_qos_information_element qos_info;
7007 if (priv == NULL)
7008 return -1;
7010 qos_info.elementID = QOS_ELEMENT_ID;
7011 qos_info.length = sizeof(struct ieee80211_qos_information_element) - 2;
7013 qos_info.version = QOS_VERSION_1;
7014 qos_info.ac_info = 0;
7016 memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7017 qos_info.qui_type = QOS_OUI_TYPE;
7018 qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7020 ret = ipw_send_qos_info_command(priv, &qos_info);
7021 if (ret != 0) {
7022 IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7024 return ret;
7028 * Set the QoS parameter with the association request structure
7030 static int ipw_qos_association(struct ipw_priv *priv,
7031 struct ieee80211_network *network)
7033 int err = 0;
7034 struct ieee80211_qos_data *qos_data = NULL;
7035 struct ieee80211_qos_data ibss_data = {
7036 .supported = 1,
7037 .active = 1,
7040 switch (priv->ieee->iw_mode) {
7041 case IW_MODE_ADHOC:
7042 BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7044 qos_data = &ibss_data;
7045 break;
7047 case IW_MODE_INFRA:
7048 qos_data = &network->qos_data;
7049 break;
7051 default:
7052 BUG();
7053 break;
7056 err = ipw_qos_activate(priv, qos_data);
7057 if (err) {
7058 priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7059 return err;
7062 if (priv->qos_data.qos_enable && qos_data->supported) {
7063 IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7064 priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7065 return ipw_qos_set_info_element(priv);
7068 return 0;
7072 * handling the beaconing responses. if we get different QoS setting
7073 * off the network from the associated setting, adjust the QoS
7074 * setting
7076 static int ipw_qos_association_resp(struct ipw_priv *priv,
7077 struct ieee80211_network *network)
7079 int ret = 0;
7080 unsigned long flags;
7081 u32 size = sizeof(struct ieee80211_qos_parameters);
7082 int set_qos_param = 0;
7084 if ((priv == NULL) || (network == NULL) ||
7085 (priv->assoc_network == NULL))
7086 return ret;
7088 if (!(priv->status & STATUS_ASSOCIATED))
7089 return ret;
7091 if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7092 return ret;
7094 spin_lock_irqsave(&priv->ieee->lock, flags);
7095 if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7096 memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7097 sizeof(struct ieee80211_qos_data));
7098 priv->assoc_network->qos_data.active = 1;
7099 if ((network->qos_data.old_param_count !=
7100 network->qos_data.param_count)) {
7101 set_qos_param = 1;
7102 network->qos_data.old_param_count =
7103 network->qos_data.param_count;
7106 } else {
7107 if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7108 memcpy(&priv->assoc_network->qos_data.parameters,
7109 &def_parameters_CCK, size);
7110 else
7111 memcpy(&priv->assoc_network->qos_data.parameters,
7112 &def_parameters_OFDM, size);
7113 priv->assoc_network->qos_data.active = 0;
7114 priv->assoc_network->qos_data.supported = 0;
7115 set_qos_param = 1;
7118 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7120 if (set_qos_param == 1)
7121 schedule_work(&priv->qos_activate);
7123 return ret;
7126 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7128 u32 ret = 0;
7130 if ((priv == NULL))
7131 return 0;
7133 if (!(priv->ieee->modulation & IEEE80211_OFDM_MODULATION))
7134 ret = priv->qos_data.burst_duration_CCK;
7135 else
7136 ret = priv->qos_data.burst_duration_OFDM;
7138 return ret;
7142 * Initialize the setting of QoS global
7144 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7145 int burst_enable, u32 burst_duration_CCK,
7146 u32 burst_duration_OFDM)
7148 priv->qos_data.qos_enable = enable;
7150 if (priv->qos_data.qos_enable) {
7151 priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7152 priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7153 IPW_DEBUG_QOS("QoS is enabled\n");
7154 } else {
7155 priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7156 priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7157 IPW_DEBUG_QOS("QoS is not enabled\n");
7160 priv->qos_data.burst_enable = burst_enable;
7162 if (burst_enable) {
7163 priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7164 priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7165 } else {
7166 priv->qos_data.burst_duration_CCK = 0;
7167 priv->qos_data.burst_duration_OFDM = 0;
7172 * map the packet priority to the right TX Queue
7174 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7176 if (priority > 7 || !priv->qos_data.qos_enable)
7177 priority = 0;
7179 return from_priority_to_tx_queue[priority] - 1;
7182 static int ipw_is_qos_active(struct net_device *dev,
7183 struct sk_buff *skb)
7185 struct ipw_priv *priv = ieee80211_priv(dev);
7186 struct ieee80211_qos_data *qos_data = NULL;
7187 int active, supported;
7188 u8 *daddr = skb->data + ETH_ALEN;
7189 int unicast = !is_multicast_ether_addr(daddr);
7191 if (!(priv->status & STATUS_ASSOCIATED))
7192 return 0;
7194 qos_data = &priv->assoc_network->qos_data;
7196 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7197 if (unicast == 0)
7198 qos_data->active = 0;
7199 else
7200 qos_data->active = qos_data->supported;
7202 active = qos_data->active;
7203 supported = qos_data->supported;
7204 IPW_DEBUG_QOS("QoS %d network is QoS active %d supported %d "
7205 "unicast %d\n",
7206 priv->qos_data.qos_enable, active, supported, unicast);
7207 if (active && priv->qos_data.qos_enable)
7208 return 1;
7210 return 0;
7214 * add QoS parameter to the TX command
7216 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7217 u16 priority,
7218 struct tfd_data *tfd)
7220 int tx_queue_id = 0;
7223 tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7224 tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7226 if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7227 tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7228 tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7230 return 0;
7234 * background support to run QoS activate functionality
7236 static void ipw_bg_qos_activate(struct work_struct *work)
7238 struct ipw_priv *priv =
7239 container_of(work, struct ipw_priv, qos_activate);
7241 if (priv == NULL)
7242 return;
7244 mutex_lock(&priv->mutex);
7246 if (priv->status & STATUS_ASSOCIATED)
7247 ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7249 mutex_unlock(&priv->mutex);
7252 static int ipw_handle_probe_response(struct net_device *dev,
7253 struct ieee80211_probe_response *resp,
7254 struct ieee80211_network *network)
7256 struct ipw_priv *priv = ieee80211_priv(dev);
7257 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7258 (network == priv->assoc_network));
7260 ipw_qos_handle_probe_response(priv, active_network, network);
7262 return 0;
7265 static int ipw_handle_beacon(struct net_device *dev,
7266 struct ieee80211_beacon *resp,
7267 struct ieee80211_network *network)
7269 struct ipw_priv *priv = ieee80211_priv(dev);
7270 int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7271 (network == priv->assoc_network));
7273 ipw_qos_handle_probe_response(priv, active_network, network);
7275 return 0;
7278 static int ipw_handle_assoc_response(struct net_device *dev,
7279 struct ieee80211_assoc_response *resp,
7280 struct ieee80211_network *network)
7282 struct ipw_priv *priv = ieee80211_priv(dev);
7283 ipw_qos_association_resp(priv, network);
7284 return 0;
7287 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct ieee80211_qos_parameters
7288 *qos_param)
7290 return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7291 sizeof(*qos_param) * 3, qos_param);
7294 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct ieee80211_qos_information_element
7295 *qos_param)
7297 return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7298 qos_param);
7301 #endif /* CONFIG_IPW2200_QOS */
7303 static int ipw_associate_network(struct ipw_priv *priv,
7304 struct ieee80211_network *network,
7305 struct ipw_supported_rates *rates, int roaming)
7307 int err;
7308 DECLARE_SSID_BUF(ssid);
7310 if (priv->config & CFG_FIXED_RATE)
7311 ipw_set_fixed_rate(priv, network->mode);
7313 if (!(priv->config & CFG_STATIC_ESSID)) {
7314 priv->essid_len = min(network->ssid_len,
7315 (u8) IW_ESSID_MAX_SIZE);
7316 memcpy(priv->essid, network->ssid, priv->essid_len);
7319 network->last_associate = jiffies;
7321 memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7322 priv->assoc_request.channel = network->channel;
7323 priv->assoc_request.auth_key = 0;
7325 if ((priv->capability & CAP_PRIVACY_ON) &&
7326 (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7327 priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7328 priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7330 if (priv->ieee->sec.level == SEC_LEVEL_1)
7331 ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7333 } else if ((priv->capability & CAP_PRIVACY_ON) &&
7334 (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7335 priv->assoc_request.auth_type = AUTH_LEAP;
7336 else
7337 priv->assoc_request.auth_type = AUTH_OPEN;
7339 if (priv->ieee->wpa_ie_len) {
7340 priv->assoc_request.policy_support = cpu_to_le16(0x02); /* RSN active */
7341 ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7342 priv->ieee->wpa_ie_len);
7346 * It is valid for our ieee device to support multiple modes, but
7347 * when it comes to associating to a given network we have to choose
7348 * just one mode.
7350 if (network->mode & priv->ieee->mode & IEEE_A)
7351 priv->assoc_request.ieee_mode = IPW_A_MODE;
7352 else if (network->mode & priv->ieee->mode & IEEE_G)
7353 priv->assoc_request.ieee_mode = IPW_G_MODE;
7354 else if (network->mode & priv->ieee->mode & IEEE_B)
7355 priv->assoc_request.ieee_mode = IPW_B_MODE;
7357 priv->assoc_request.capability = cpu_to_le16(network->capability);
7358 if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7359 && !(priv->config & CFG_PREAMBLE_LONG)) {
7360 priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7361 } else {
7362 priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7364 /* Clear the short preamble if we won't be supporting it */
7365 priv->assoc_request.capability &=
7366 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7369 /* Clear capability bits that aren't used in Ad Hoc */
7370 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7371 priv->assoc_request.capability &=
7372 ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7374 IPW_DEBUG_ASSOC("%sssocation attempt: '%s', channel %d, "
7375 "802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7376 roaming ? "Rea" : "A",
7377 print_ssid(ssid, priv->essid, priv->essid_len),
7378 network->channel,
7379 ipw_modes[priv->assoc_request.ieee_mode],
7380 rates->num_rates,
7381 (priv->assoc_request.preamble_length ==
7382 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7383 network->capability &
7384 WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7385 priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7386 priv->capability & CAP_PRIVACY_ON ?
7387 (priv->capability & CAP_SHARED_KEY ? "(shared)" :
7388 "(open)") : "",
7389 priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7390 priv->capability & CAP_PRIVACY_ON ?
7391 '1' + priv->ieee->sec.active_key : '.',
7392 priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7394 priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7395 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7396 (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7397 priv->assoc_request.assoc_type = HC_IBSS_START;
7398 priv->assoc_request.assoc_tsf_msw = 0;
7399 priv->assoc_request.assoc_tsf_lsw = 0;
7400 } else {
7401 if (unlikely(roaming))
7402 priv->assoc_request.assoc_type = HC_REASSOCIATE;
7403 else
7404 priv->assoc_request.assoc_type = HC_ASSOCIATE;
7405 priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7406 priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7409 memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7411 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7412 memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7413 priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7414 } else {
7415 memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7416 priv->assoc_request.atim_window = 0;
7419 priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7421 err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7422 if (err) {
7423 IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7424 return err;
7427 rates->ieee_mode = priv->assoc_request.ieee_mode;
7428 rates->purpose = IPW_RATE_CONNECT;
7429 ipw_send_supported_rates(priv, rates);
7431 if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7432 priv->sys_config.dot11g_auto_detection = 1;
7433 else
7434 priv->sys_config.dot11g_auto_detection = 0;
7436 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7437 priv->sys_config.answer_broadcast_ssid_probe = 1;
7438 else
7439 priv->sys_config.answer_broadcast_ssid_probe = 0;
7441 err = ipw_send_system_config(priv);
7442 if (err) {
7443 IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7444 return err;
7447 IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7448 err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7449 if (err) {
7450 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7451 return err;
7455 * If preemption is enabled, it is possible for the association
7456 * to complete before we return from ipw_send_associate. Therefore
7457 * we have to be sure and update our priviate data first.
7459 priv->channel = network->channel;
7460 memcpy(priv->bssid, network->bssid, ETH_ALEN);
7461 priv->status |= STATUS_ASSOCIATING;
7462 priv->status &= ~STATUS_SECURITY_UPDATED;
7464 priv->assoc_network = network;
7466 #ifdef CONFIG_IPW2200_QOS
7467 ipw_qos_association(priv, network);
7468 #endif
7470 err = ipw_send_associate(priv, &priv->assoc_request);
7471 if (err) {
7472 IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7473 return err;
7476 IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM \n",
7477 print_ssid(ssid, priv->essid, priv->essid_len),
7478 priv->bssid);
7480 return 0;
7483 static void ipw_roam(void *data)
7485 struct ipw_priv *priv = data;
7486 struct ieee80211_network *network = NULL;
7487 struct ipw_network_match match = {
7488 .network = priv->assoc_network
7491 /* The roaming process is as follows:
7493 * 1. Missed beacon threshold triggers the roaming process by
7494 * setting the status ROAM bit and requesting a scan.
7495 * 2. When the scan completes, it schedules the ROAM work
7496 * 3. The ROAM work looks at all of the known networks for one that
7497 * is a better network than the currently associated. If none
7498 * found, the ROAM process is over (ROAM bit cleared)
7499 * 4. If a better network is found, a disassociation request is
7500 * sent.
7501 * 5. When the disassociation completes, the roam work is again
7502 * scheduled. The second time through, the driver is no longer
7503 * associated, and the newly selected network is sent an
7504 * association request.
7505 * 6. At this point ,the roaming process is complete and the ROAM
7506 * status bit is cleared.
7509 /* If we are no longer associated, and the roaming bit is no longer
7510 * set, then we are not actively roaming, so just return */
7511 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7512 return;
7514 if (priv->status & STATUS_ASSOCIATED) {
7515 /* First pass through ROAM process -- look for a better
7516 * network */
7517 unsigned long flags;
7518 u8 rssi = priv->assoc_network->stats.rssi;
7519 priv->assoc_network->stats.rssi = -128;
7520 spin_lock_irqsave(&priv->ieee->lock, flags);
7521 list_for_each_entry(network, &priv->ieee->network_list, list) {
7522 if (network != priv->assoc_network)
7523 ipw_best_network(priv, &match, network, 1);
7525 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7526 priv->assoc_network->stats.rssi = rssi;
7528 if (match.network == priv->assoc_network) {
7529 IPW_DEBUG_ASSOC("No better APs in this network to "
7530 "roam to.\n");
7531 priv->status &= ~STATUS_ROAMING;
7532 ipw_debug_config(priv);
7533 return;
7536 ipw_send_disassociate(priv, 1);
7537 priv->assoc_network = match.network;
7539 return;
7542 /* Second pass through ROAM process -- request association */
7543 ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7544 ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7545 priv->status &= ~STATUS_ROAMING;
7548 static void ipw_bg_roam(struct work_struct *work)
7550 struct ipw_priv *priv =
7551 container_of(work, struct ipw_priv, roam);
7552 mutex_lock(&priv->mutex);
7553 ipw_roam(priv);
7554 mutex_unlock(&priv->mutex);
7557 static int ipw_associate(void *data)
7559 struct ipw_priv *priv = data;
7561 struct ieee80211_network *network = NULL;
7562 struct ipw_network_match match = {
7563 .network = NULL
7565 struct ipw_supported_rates *rates;
7566 struct list_head *element;
7567 unsigned long flags;
7568 DECLARE_SSID_BUF(ssid);
7570 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7571 IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7572 return 0;
7575 if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7576 IPW_DEBUG_ASSOC("Not attempting association (already in "
7577 "progress)\n");
7578 return 0;
7581 if (priv->status & STATUS_DISASSOCIATING) {
7582 IPW_DEBUG_ASSOC("Not attempting association (in "
7583 "disassociating)\n ");
7584 queue_work(priv->workqueue, &priv->associate);
7585 return 0;
7588 if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7589 IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7590 "initialized)\n");
7591 return 0;
7594 if (!(priv->config & CFG_ASSOCIATE) &&
7595 !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7596 IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7597 return 0;
7600 /* Protect our use of the network_list */
7601 spin_lock_irqsave(&priv->ieee->lock, flags);
7602 list_for_each_entry(network, &priv->ieee->network_list, list)
7603 ipw_best_network(priv, &match, network, 0);
7605 network = match.network;
7606 rates = &match.rates;
7608 if (network == NULL &&
7609 priv->ieee->iw_mode == IW_MODE_ADHOC &&
7610 priv->config & CFG_ADHOC_CREATE &&
7611 priv->config & CFG_STATIC_ESSID &&
7612 priv->config & CFG_STATIC_CHANNEL) {
7613 /* Use oldest network if the free list is empty */
7614 if (list_empty(&priv->ieee->network_free_list)) {
7615 struct ieee80211_network *oldest = NULL;
7616 struct ieee80211_network *target;
7618 list_for_each_entry(target, &priv->ieee->network_list, list) {
7619 if ((oldest == NULL) ||
7620 (target->last_scanned < oldest->last_scanned))
7621 oldest = target;
7624 /* If there are no more slots, expire the oldest */
7625 list_del(&oldest->list);
7626 target = oldest;
7627 IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7628 "network list.\n",
7629 print_ssid(ssid, target->ssid,
7630 target->ssid_len),
7631 target->bssid);
7632 list_add_tail(&target->list,
7633 &priv->ieee->network_free_list);
7636 element = priv->ieee->network_free_list.next;
7637 network = list_entry(element, struct ieee80211_network, list);
7638 ipw_adhoc_create(priv, network);
7639 rates = &priv->rates;
7640 list_del(element);
7641 list_add_tail(&network->list, &priv->ieee->network_list);
7643 spin_unlock_irqrestore(&priv->ieee->lock, flags);
7645 /* If we reached the end of the list, then we don't have any valid
7646 * matching APs */
7647 if (!network) {
7648 ipw_debug_config(priv);
7650 if (!(priv->status & STATUS_SCANNING)) {
7651 if (!(priv->config & CFG_SPEED_SCAN))
7652 queue_delayed_work(priv->workqueue,
7653 &priv->request_scan,
7654 SCAN_INTERVAL);
7655 else
7656 queue_delayed_work(priv->workqueue,
7657 &priv->request_scan, 0);
7660 return 0;
7663 ipw_associate_network(priv, network, rates, 0);
7665 return 1;
7668 static void ipw_bg_associate(struct work_struct *work)
7670 struct ipw_priv *priv =
7671 container_of(work, struct ipw_priv, associate);
7672 mutex_lock(&priv->mutex);
7673 ipw_associate(priv);
7674 mutex_unlock(&priv->mutex);
7677 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7678 struct sk_buff *skb)
7680 struct ieee80211_hdr *hdr;
7681 u16 fc;
7683 hdr = (struct ieee80211_hdr *)skb->data;
7684 fc = le16_to_cpu(hdr->frame_control);
7685 if (!(fc & IEEE80211_FCTL_PROTECTED))
7686 return;
7688 fc &= ~IEEE80211_FCTL_PROTECTED;
7689 hdr->frame_control = cpu_to_le16(fc);
7690 switch (priv->ieee->sec.level) {
7691 case SEC_LEVEL_3:
7692 /* Remove CCMP HDR */
7693 memmove(skb->data + IEEE80211_3ADDR_LEN,
7694 skb->data + IEEE80211_3ADDR_LEN + 8,
7695 skb->len - IEEE80211_3ADDR_LEN - 8);
7696 skb_trim(skb, skb->len - 16); /* CCMP_HDR_LEN + CCMP_MIC_LEN */
7697 break;
7698 case SEC_LEVEL_2:
7699 break;
7700 case SEC_LEVEL_1:
7701 /* Remove IV */
7702 memmove(skb->data + IEEE80211_3ADDR_LEN,
7703 skb->data + IEEE80211_3ADDR_LEN + 4,
7704 skb->len - IEEE80211_3ADDR_LEN - 4);
7705 skb_trim(skb, skb->len - 8); /* IV + ICV */
7706 break;
7707 case SEC_LEVEL_0:
7708 break;
7709 default:
7710 printk(KERN_ERR "Unknow security level %d\n",
7711 priv->ieee->sec.level);
7712 break;
7716 static void ipw_handle_data_packet(struct ipw_priv *priv,
7717 struct ipw_rx_mem_buffer *rxb,
7718 struct ieee80211_rx_stats *stats)
7720 struct ieee80211_hdr_4addr *hdr;
7721 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7723 /* We received data from the HW, so stop the watchdog */
7724 priv->net_dev->trans_start = jiffies;
7726 /* We only process data packets if the
7727 * interface is open */
7728 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7729 skb_tailroom(rxb->skb))) {
7730 priv->ieee->stats.rx_errors++;
7731 priv->wstats.discard.misc++;
7732 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7733 return;
7734 } else if (unlikely(!netif_running(priv->net_dev))) {
7735 priv->ieee->stats.rx_dropped++;
7736 priv->wstats.discard.misc++;
7737 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7738 return;
7741 /* Advance skb->data to the start of the actual payload */
7742 skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7744 /* Set the size of the skb to the size of the frame */
7745 skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7747 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7749 /* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7750 hdr = (struct ieee80211_hdr_4addr *)rxb->skb->data;
7751 if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7752 (is_multicast_ether_addr(hdr->addr1) ?
7753 !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7754 ipw_rebuild_decrypted_skb(priv, rxb->skb);
7756 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7757 priv->ieee->stats.rx_errors++;
7758 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7759 rxb->skb = NULL;
7760 __ipw_led_activity_on(priv);
7764 #ifdef CONFIG_IPW2200_RADIOTAP
7765 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7766 struct ipw_rx_mem_buffer *rxb,
7767 struct ieee80211_rx_stats *stats)
7769 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7770 struct ipw_rx_frame *frame = &pkt->u.frame;
7772 /* initial pull of some data */
7773 u16 received_channel = frame->received_channel;
7774 u8 antennaAndPhy = frame->antennaAndPhy;
7775 s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM; /* call it signed anyhow */
7776 u16 pktrate = frame->rate;
7778 /* Magic struct that slots into the radiotap header -- no reason
7779 * to build this manually element by element, we can write it much
7780 * more efficiently than we can parse it. ORDER MATTERS HERE */
7781 struct ipw_rt_hdr *ipw_rt;
7783 short len = le16_to_cpu(pkt->u.frame.length);
7785 /* We received data from the HW, so stop the watchdog */
7786 priv->net_dev->trans_start = jiffies;
7788 /* We only process data packets if the
7789 * interface is open */
7790 if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7791 skb_tailroom(rxb->skb))) {
7792 priv->ieee->stats.rx_errors++;
7793 priv->wstats.discard.misc++;
7794 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7795 return;
7796 } else if (unlikely(!netif_running(priv->net_dev))) {
7797 priv->ieee->stats.rx_dropped++;
7798 priv->wstats.discard.misc++;
7799 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7800 return;
7803 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7804 * that now */
7805 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7806 /* FIXME: Should alloc bigger skb instead */
7807 priv->ieee->stats.rx_dropped++;
7808 priv->wstats.discard.misc++;
7809 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7810 return;
7813 /* copy the frame itself */
7814 memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7815 rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7817 ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7819 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7820 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
7821 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr)); /* total header+data */
7823 /* Big bitfield of all the fields we provide in radiotap */
7824 ipw_rt->rt_hdr.it_present = cpu_to_le32(
7825 (1 << IEEE80211_RADIOTAP_TSFT) |
7826 (1 << IEEE80211_RADIOTAP_FLAGS) |
7827 (1 << IEEE80211_RADIOTAP_RATE) |
7828 (1 << IEEE80211_RADIOTAP_CHANNEL) |
7829 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7830 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7831 (1 << IEEE80211_RADIOTAP_ANTENNA));
7833 /* Zero the flags, we'll add to them as we go */
7834 ipw_rt->rt_flags = 0;
7835 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7836 frame->parent_tsf[2] << 16 |
7837 frame->parent_tsf[1] << 8 |
7838 frame->parent_tsf[0]);
7840 /* Convert signal to DBM */
7841 ipw_rt->rt_dbmsignal = antsignal;
7842 ipw_rt->rt_dbmnoise = frame->noise;
7844 /* Convert the channel data and set the flags */
7845 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7846 if (received_channel > 14) { /* 802.11a */
7847 ipw_rt->rt_chbitmask =
7848 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7849 } else if (antennaAndPhy & 32) { /* 802.11b */
7850 ipw_rt->rt_chbitmask =
7851 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7852 } else { /* 802.11g */
7853 ipw_rt->rt_chbitmask =
7854 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7857 /* set the rate in multiples of 500k/s */
7858 switch (pktrate) {
7859 case IPW_TX_RATE_1MB:
7860 ipw_rt->rt_rate = 2;
7861 break;
7862 case IPW_TX_RATE_2MB:
7863 ipw_rt->rt_rate = 4;
7864 break;
7865 case IPW_TX_RATE_5MB:
7866 ipw_rt->rt_rate = 10;
7867 break;
7868 case IPW_TX_RATE_6MB:
7869 ipw_rt->rt_rate = 12;
7870 break;
7871 case IPW_TX_RATE_9MB:
7872 ipw_rt->rt_rate = 18;
7873 break;
7874 case IPW_TX_RATE_11MB:
7875 ipw_rt->rt_rate = 22;
7876 break;
7877 case IPW_TX_RATE_12MB:
7878 ipw_rt->rt_rate = 24;
7879 break;
7880 case IPW_TX_RATE_18MB:
7881 ipw_rt->rt_rate = 36;
7882 break;
7883 case IPW_TX_RATE_24MB:
7884 ipw_rt->rt_rate = 48;
7885 break;
7886 case IPW_TX_RATE_36MB:
7887 ipw_rt->rt_rate = 72;
7888 break;
7889 case IPW_TX_RATE_48MB:
7890 ipw_rt->rt_rate = 96;
7891 break;
7892 case IPW_TX_RATE_54MB:
7893 ipw_rt->rt_rate = 108;
7894 break;
7895 default:
7896 ipw_rt->rt_rate = 0;
7897 break;
7900 /* antenna number */
7901 ipw_rt->rt_antenna = (antennaAndPhy & 3); /* Is this right? */
7903 /* set the preamble flag if we have it */
7904 if ((antennaAndPhy & 64))
7905 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7907 /* Set the size of the skb to the size of the frame */
7908 skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7910 IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7912 if (!ieee80211_rx(priv->ieee, rxb->skb, stats))
7913 priv->ieee->stats.rx_errors++;
7914 else { /* ieee80211_rx succeeded, so it now owns the SKB */
7915 rxb->skb = NULL;
7916 /* no LED during capture */
7919 #endif
7921 #ifdef CONFIG_IPW2200_PROMISCUOUS
7922 #define ieee80211_is_probe_response(fc) \
7923 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
7924 (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
7926 #define ieee80211_is_management(fc) \
7927 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
7929 #define ieee80211_is_control(fc) \
7930 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
7932 #define ieee80211_is_data(fc) \
7933 ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
7935 #define ieee80211_is_assoc_request(fc) \
7936 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
7938 #define ieee80211_is_reassoc_request(fc) \
7939 ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
7941 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
7942 struct ipw_rx_mem_buffer *rxb,
7943 struct ieee80211_rx_stats *stats)
7945 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7946 struct ipw_rx_frame *frame = &pkt->u.frame;
7947 struct ipw_rt_hdr *ipw_rt;
7949 /* First cache any information we need before we overwrite
7950 * the information provided in the skb from the hardware */
7951 struct ieee80211_hdr *hdr;
7952 u16 channel = frame->received_channel;
7953 u8 phy_flags = frame->antennaAndPhy;
7954 s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
7955 s8 noise = frame->noise;
7956 u8 rate = frame->rate;
7957 short len = le16_to_cpu(pkt->u.frame.length);
7958 struct sk_buff *skb;
7959 int hdr_only = 0;
7960 u16 filter = priv->prom_priv->filter;
7962 /* If the filter is set to not include Rx frames then return */
7963 if (filter & IPW_PROM_NO_RX)
7964 return;
7966 /* We received data from the HW, so stop the watchdog */
7967 priv->prom_net_dev->trans_start = jiffies;
7969 if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
7970 priv->prom_priv->ieee->stats.rx_errors++;
7971 IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7972 return;
7975 /* We only process data packets if the interface is open */
7976 if (unlikely(!netif_running(priv->prom_net_dev))) {
7977 priv->prom_priv->ieee->stats.rx_dropped++;
7978 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7979 return;
7982 /* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7983 * that now */
7984 if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7985 /* FIXME: Should alloc bigger skb instead */
7986 priv->prom_priv->ieee->stats.rx_dropped++;
7987 IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7988 return;
7991 hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
7992 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
7993 if (filter & IPW_PROM_NO_MGMT)
7994 return;
7995 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
7996 hdr_only = 1;
7997 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
7998 if (filter & IPW_PROM_NO_CTL)
7999 return;
8000 if (filter & IPW_PROM_CTL_HEADER_ONLY)
8001 hdr_only = 1;
8002 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
8003 if (filter & IPW_PROM_NO_DATA)
8004 return;
8005 if (filter & IPW_PROM_DATA_HEADER_ONLY)
8006 hdr_only = 1;
8009 /* Copy the SKB since this is for the promiscuous side */
8010 skb = skb_copy(rxb->skb, GFP_ATOMIC);
8011 if (skb == NULL) {
8012 IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8013 return;
8016 /* copy the frame data to write after where the radiotap header goes */
8017 ipw_rt = (void *)skb->data;
8019 if (hdr_only)
8020 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
8022 memcpy(ipw_rt->payload, hdr, len);
8024 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8025 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
8026 ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt)); /* total header+data */
8028 /* Set the size of the skb to the size of the frame */
8029 skb_put(skb, sizeof(*ipw_rt) + len);
8031 /* Big bitfield of all the fields we provide in radiotap */
8032 ipw_rt->rt_hdr.it_present = cpu_to_le32(
8033 (1 << IEEE80211_RADIOTAP_TSFT) |
8034 (1 << IEEE80211_RADIOTAP_FLAGS) |
8035 (1 << IEEE80211_RADIOTAP_RATE) |
8036 (1 << IEEE80211_RADIOTAP_CHANNEL) |
8037 (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8038 (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8039 (1 << IEEE80211_RADIOTAP_ANTENNA));
8041 /* Zero the flags, we'll add to them as we go */
8042 ipw_rt->rt_flags = 0;
8043 ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8044 frame->parent_tsf[2] << 16 |
8045 frame->parent_tsf[1] << 8 |
8046 frame->parent_tsf[0]);
8048 /* Convert to DBM */
8049 ipw_rt->rt_dbmsignal = signal;
8050 ipw_rt->rt_dbmnoise = noise;
8052 /* Convert the channel data and set the flags */
8053 ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8054 if (channel > 14) { /* 802.11a */
8055 ipw_rt->rt_chbitmask =
8056 cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8057 } else if (phy_flags & (1 << 5)) { /* 802.11b */
8058 ipw_rt->rt_chbitmask =
8059 cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8060 } else { /* 802.11g */
8061 ipw_rt->rt_chbitmask =
8062 cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8065 /* set the rate in multiples of 500k/s */
8066 switch (rate) {
8067 case IPW_TX_RATE_1MB:
8068 ipw_rt->rt_rate = 2;
8069 break;
8070 case IPW_TX_RATE_2MB:
8071 ipw_rt->rt_rate = 4;
8072 break;
8073 case IPW_TX_RATE_5MB:
8074 ipw_rt->rt_rate = 10;
8075 break;
8076 case IPW_TX_RATE_6MB:
8077 ipw_rt->rt_rate = 12;
8078 break;
8079 case IPW_TX_RATE_9MB:
8080 ipw_rt->rt_rate = 18;
8081 break;
8082 case IPW_TX_RATE_11MB:
8083 ipw_rt->rt_rate = 22;
8084 break;
8085 case IPW_TX_RATE_12MB:
8086 ipw_rt->rt_rate = 24;
8087 break;
8088 case IPW_TX_RATE_18MB:
8089 ipw_rt->rt_rate = 36;
8090 break;
8091 case IPW_TX_RATE_24MB:
8092 ipw_rt->rt_rate = 48;
8093 break;
8094 case IPW_TX_RATE_36MB:
8095 ipw_rt->rt_rate = 72;
8096 break;
8097 case IPW_TX_RATE_48MB:
8098 ipw_rt->rt_rate = 96;
8099 break;
8100 case IPW_TX_RATE_54MB:
8101 ipw_rt->rt_rate = 108;
8102 break;
8103 default:
8104 ipw_rt->rt_rate = 0;
8105 break;
8108 /* antenna number */
8109 ipw_rt->rt_antenna = (phy_flags & 3);
8111 /* set the preamble flag if we have it */
8112 if (phy_flags & (1 << 6))
8113 ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8115 IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8117 if (!ieee80211_rx(priv->prom_priv->ieee, skb, stats)) {
8118 priv->prom_priv->ieee->stats.rx_errors++;
8119 dev_kfree_skb_any(skb);
8122 #endif
8124 static int is_network_packet(struct ipw_priv *priv,
8125 struct ieee80211_hdr_4addr *header)
8127 /* Filter incoming packets to determine if they are targetted toward
8128 * this network, discarding packets coming from ourselves */
8129 switch (priv->ieee->iw_mode) {
8130 case IW_MODE_ADHOC: /* Header: Dest. | Source | BSSID */
8131 /* packets from our adapter are dropped (echo) */
8132 if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8133 return 0;
8135 /* {broad,multi}cast packets to our BSSID go through */
8136 if (is_multicast_ether_addr(header->addr1))
8137 return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8139 /* packets to our adapter go through */
8140 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8141 ETH_ALEN);
8143 case IW_MODE_INFRA: /* Header: Dest. | BSSID | Source */
8144 /* packets from our adapter are dropped (echo) */
8145 if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8146 return 0;
8148 /* {broad,multi}cast packets to our BSS go through */
8149 if (is_multicast_ether_addr(header->addr1))
8150 return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8152 /* packets to our adapter go through */
8153 return !memcmp(header->addr1, priv->net_dev->dev_addr,
8154 ETH_ALEN);
8157 return 1;
8160 #define IPW_PACKET_RETRY_TIME HZ
8162 static int is_duplicate_packet(struct ipw_priv *priv,
8163 struct ieee80211_hdr_4addr *header)
8165 u16 sc = le16_to_cpu(header->seq_ctl);
8166 u16 seq = WLAN_GET_SEQ_SEQ(sc);
8167 u16 frag = WLAN_GET_SEQ_FRAG(sc);
8168 u16 *last_seq, *last_frag;
8169 unsigned long *last_time;
8171 switch (priv->ieee->iw_mode) {
8172 case IW_MODE_ADHOC:
8174 struct list_head *p;
8175 struct ipw_ibss_seq *entry = NULL;
8176 u8 *mac = header->addr2;
8177 int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8179 __list_for_each(p, &priv->ibss_mac_hash[index]) {
8180 entry =
8181 list_entry(p, struct ipw_ibss_seq, list);
8182 if (!memcmp(entry->mac, mac, ETH_ALEN))
8183 break;
8185 if (p == &priv->ibss_mac_hash[index]) {
8186 entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8187 if (!entry) {
8188 IPW_ERROR
8189 ("Cannot malloc new mac entry\n");
8190 return 0;
8192 memcpy(entry->mac, mac, ETH_ALEN);
8193 entry->seq_num = seq;
8194 entry->frag_num = frag;
8195 entry->packet_time = jiffies;
8196 list_add(&entry->list,
8197 &priv->ibss_mac_hash[index]);
8198 return 0;
8200 last_seq = &entry->seq_num;
8201 last_frag = &entry->frag_num;
8202 last_time = &entry->packet_time;
8203 break;
8205 case IW_MODE_INFRA:
8206 last_seq = &priv->last_seq_num;
8207 last_frag = &priv->last_frag_num;
8208 last_time = &priv->last_packet_time;
8209 break;
8210 default:
8211 return 0;
8213 if ((*last_seq == seq) &&
8214 time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8215 if (*last_frag == frag)
8216 goto drop;
8217 if (*last_frag + 1 != frag)
8218 /* out-of-order fragment */
8219 goto drop;
8220 } else
8221 *last_seq = seq;
8223 *last_frag = frag;
8224 *last_time = jiffies;
8225 return 0;
8227 drop:
8228 /* Comment this line now since we observed the card receives
8229 * duplicate packets but the FCTL_RETRY bit is not set in the
8230 * IBSS mode with fragmentation enabled.
8231 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8232 return 1;
8235 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8236 struct ipw_rx_mem_buffer *rxb,
8237 struct ieee80211_rx_stats *stats)
8239 struct sk_buff *skb = rxb->skb;
8240 struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8241 struct ieee80211_hdr_4addr *header = (struct ieee80211_hdr_4addr *)
8242 (skb->data + IPW_RX_FRAME_SIZE);
8244 ieee80211_rx_mgt(priv->ieee, header, stats);
8246 if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8247 ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8248 IEEE80211_STYPE_PROBE_RESP) ||
8249 (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8250 IEEE80211_STYPE_BEACON))) {
8251 if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8252 ipw_add_station(priv, header->addr2);
8255 if (priv->config & CFG_NET_STATS) {
8256 IPW_DEBUG_HC("sending stat packet\n");
8258 /* Set the size of the skb to the size of the full
8259 * ipw header and 802.11 frame */
8260 skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8261 IPW_RX_FRAME_SIZE);
8263 /* Advance past the ipw packet header to the 802.11 frame */
8264 skb_pull(skb, IPW_RX_FRAME_SIZE);
8266 /* Push the ieee80211_rx_stats before the 802.11 frame */
8267 memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8269 skb->dev = priv->ieee->dev;
8271 /* Point raw at the ieee80211_stats */
8272 skb_reset_mac_header(skb);
8274 skb->pkt_type = PACKET_OTHERHOST;
8275 skb->protocol = __constant_htons(ETH_P_80211_STATS);
8276 memset(skb->cb, 0, sizeof(rxb->skb->cb));
8277 netif_rx(skb);
8278 rxb->skb = NULL;
8283 * Main entry function for recieving a packet with 80211 headers. This
8284 * should be called when ever the FW has notified us that there is a new
8285 * skb in the recieve queue.
8287 static void ipw_rx(struct ipw_priv *priv)
8289 struct ipw_rx_mem_buffer *rxb;
8290 struct ipw_rx_packet *pkt;
8291 struct ieee80211_hdr_4addr *header;
8292 u32 r, w, i;
8293 u8 network_packet;
8294 u8 fill_rx = 0;
8296 r = ipw_read32(priv, IPW_RX_READ_INDEX);
8297 w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8298 i = priv->rxq->read;
8300 if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8301 fill_rx = 1;
8303 while (i != r) {
8304 rxb = priv->rxq->queue[i];
8305 if (unlikely(rxb == NULL)) {
8306 printk(KERN_CRIT "Queue not allocated!\n");
8307 break;
8309 priv->rxq->queue[i] = NULL;
8311 pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8312 IPW_RX_BUF_SIZE,
8313 PCI_DMA_FROMDEVICE);
8315 pkt = (struct ipw_rx_packet *)rxb->skb->data;
8316 IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8317 pkt->header.message_type,
8318 pkt->header.rx_seq_num, pkt->header.control_bits);
8320 switch (pkt->header.message_type) {
8321 case RX_FRAME_TYPE: /* 802.11 frame */ {
8322 struct ieee80211_rx_stats stats = {
8323 .rssi = pkt->u.frame.rssi_dbm -
8324 IPW_RSSI_TO_DBM,
8325 .signal =
8326 le16_to_cpu(pkt->u.frame.rssi_dbm) -
8327 IPW_RSSI_TO_DBM + 0x100,
8328 .noise =
8329 le16_to_cpu(pkt->u.frame.noise),
8330 .rate = pkt->u.frame.rate,
8331 .mac_time = jiffies,
8332 .received_channel =
8333 pkt->u.frame.received_channel,
8334 .freq =
8335 (pkt->u.frame.
8336 control & (1 << 0)) ?
8337 IEEE80211_24GHZ_BAND :
8338 IEEE80211_52GHZ_BAND,
8339 .len = le16_to_cpu(pkt->u.frame.length),
8342 if (stats.rssi != 0)
8343 stats.mask |= IEEE80211_STATMASK_RSSI;
8344 if (stats.signal != 0)
8345 stats.mask |= IEEE80211_STATMASK_SIGNAL;
8346 if (stats.noise != 0)
8347 stats.mask |= IEEE80211_STATMASK_NOISE;
8348 if (stats.rate != 0)
8349 stats.mask |= IEEE80211_STATMASK_RATE;
8351 priv->rx_packets++;
8353 #ifdef CONFIG_IPW2200_PROMISCUOUS
8354 if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8355 ipw_handle_promiscuous_rx(priv, rxb, &stats);
8356 #endif
8358 #ifdef CONFIG_IPW2200_MONITOR
8359 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8360 #ifdef CONFIG_IPW2200_RADIOTAP
8362 ipw_handle_data_packet_monitor(priv,
8363 rxb,
8364 &stats);
8365 #else
8366 ipw_handle_data_packet(priv, rxb,
8367 &stats);
8368 #endif
8369 break;
8371 #endif
8373 header =
8374 (struct ieee80211_hdr_4addr *)(rxb->skb->
8375 data +
8376 IPW_RX_FRAME_SIZE);
8377 /* TODO: Check Ad-Hoc dest/source and make sure
8378 * that we are actually parsing these packets
8379 * correctly -- we should probably use the
8380 * frame control of the packet and disregard
8381 * the current iw_mode */
8383 network_packet =
8384 is_network_packet(priv, header);
8385 if (network_packet && priv->assoc_network) {
8386 priv->assoc_network->stats.rssi =
8387 stats.rssi;
8388 priv->exp_avg_rssi =
8389 exponential_average(priv->exp_avg_rssi,
8390 stats.rssi, DEPTH_RSSI);
8393 IPW_DEBUG_RX("Frame: len=%u\n",
8394 le16_to_cpu(pkt->u.frame.length));
8396 if (le16_to_cpu(pkt->u.frame.length) <
8397 ieee80211_get_hdrlen(le16_to_cpu(
8398 header->frame_ctl))) {
8399 IPW_DEBUG_DROP
8400 ("Received packet is too small. "
8401 "Dropping.\n");
8402 priv->ieee->stats.rx_errors++;
8403 priv->wstats.discard.misc++;
8404 break;
8407 switch (WLAN_FC_GET_TYPE
8408 (le16_to_cpu(header->frame_ctl))) {
8410 case IEEE80211_FTYPE_MGMT:
8411 ipw_handle_mgmt_packet(priv, rxb,
8412 &stats);
8413 break;
8415 case IEEE80211_FTYPE_CTL:
8416 break;
8418 case IEEE80211_FTYPE_DATA:
8419 if (unlikely(!network_packet ||
8420 is_duplicate_packet(priv,
8421 header)))
8423 IPW_DEBUG_DROP("Dropping: "
8424 "%pM, "
8425 "%pM, "
8426 "%pM\n",
8427 header->addr1,
8428 header->addr2,
8429 header->addr3);
8430 break;
8433 ipw_handle_data_packet(priv, rxb,
8434 &stats);
8436 break;
8438 break;
8441 case RX_HOST_NOTIFICATION_TYPE:{
8442 IPW_DEBUG_RX
8443 ("Notification: subtype=%02X flags=%02X size=%d\n",
8444 pkt->u.notification.subtype,
8445 pkt->u.notification.flags,
8446 le16_to_cpu(pkt->u.notification.size));
8447 ipw_rx_notification(priv, &pkt->u.notification);
8448 break;
8451 default:
8452 IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8453 pkt->header.message_type);
8454 break;
8457 /* For now we just don't re-use anything. We can tweak this
8458 * later to try and re-use notification packets and SKBs that
8459 * fail to Rx correctly */
8460 if (rxb->skb != NULL) {
8461 dev_kfree_skb_any(rxb->skb);
8462 rxb->skb = NULL;
8465 pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8466 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8467 list_add_tail(&rxb->list, &priv->rxq->rx_used);
8469 i = (i + 1) % RX_QUEUE_SIZE;
8471 /* If there are a lot of unsued frames, restock the Rx queue
8472 * so the ucode won't assert */
8473 if (fill_rx) {
8474 priv->rxq->read = i;
8475 ipw_rx_queue_replenish(priv);
8479 /* Backtrack one entry */
8480 priv->rxq->read = i;
8481 ipw_rx_queue_restock(priv);
8484 #define DEFAULT_RTS_THRESHOLD 2304U
8485 #define MIN_RTS_THRESHOLD 1U
8486 #define MAX_RTS_THRESHOLD 2304U
8487 #define DEFAULT_BEACON_INTERVAL 100U
8488 #define DEFAULT_SHORT_RETRY_LIMIT 7U
8489 #define DEFAULT_LONG_RETRY_LIMIT 4U
8492 * ipw_sw_reset
8493 * @option: options to control different reset behaviour
8494 * 0 = reset everything except the 'disable' module_param
8495 * 1 = reset everything and print out driver info (for probe only)
8496 * 2 = reset everything
8498 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8500 int band, modulation;
8501 int old_mode = priv->ieee->iw_mode;
8503 /* Initialize module parameter values here */
8504 priv->config = 0;
8506 /* We default to disabling the LED code as right now it causes
8507 * too many systems to lock up... */
8508 if (!led)
8509 priv->config |= CFG_NO_LED;
8511 if (associate)
8512 priv->config |= CFG_ASSOCIATE;
8513 else
8514 IPW_DEBUG_INFO("Auto associate disabled.\n");
8516 if (auto_create)
8517 priv->config |= CFG_ADHOC_CREATE;
8518 else
8519 IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8521 priv->config &= ~CFG_STATIC_ESSID;
8522 priv->essid_len = 0;
8523 memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8525 if (disable && option) {
8526 priv->status |= STATUS_RF_KILL_SW;
8527 IPW_DEBUG_INFO("Radio disabled.\n");
8530 if (channel != 0) {
8531 priv->config |= CFG_STATIC_CHANNEL;
8532 priv->channel = channel;
8533 IPW_DEBUG_INFO("Bind to static channel %d\n", channel);
8534 /* TODO: Validate that provided channel is in range */
8536 #ifdef CONFIG_IPW2200_QOS
8537 ipw_qos_init(priv, qos_enable, qos_burst_enable,
8538 burst_duration_CCK, burst_duration_OFDM);
8539 #endif /* CONFIG_IPW2200_QOS */
8541 switch (mode) {
8542 case 1:
8543 priv->ieee->iw_mode = IW_MODE_ADHOC;
8544 priv->net_dev->type = ARPHRD_ETHER;
8546 break;
8547 #ifdef CONFIG_IPW2200_MONITOR
8548 case 2:
8549 priv->ieee->iw_mode = IW_MODE_MONITOR;
8550 #ifdef CONFIG_IPW2200_RADIOTAP
8551 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8552 #else
8553 priv->net_dev->type = ARPHRD_IEEE80211;
8554 #endif
8555 break;
8556 #endif
8557 default:
8558 case 0:
8559 priv->net_dev->type = ARPHRD_ETHER;
8560 priv->ieee->iw_mode = IW_MODE_INFRA;
8561 break;
8564 if (hwcrypto) {
8565 priv->ieee->host_encrypt = 0;
8566 priv->ieee->host_encrypt_msdu = 0;
8567 priv->ieee->host_decrypt = 0;
8568 priv->ieee->host_mc_decrypt = 0;
8570 IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8572 /* IPW2200/2915 is abled to do hardware fragmentation. */
8573 priv->ieee->host_open_frag = 0;
8575 if ((priv->pci_dev->device == 0x4223) ||
8576 (priv->pci_dev->device == 0x4224)) {
8577 if (option == 1)
8578 printk(KERN_INFO DRV_NAME
8579 ": Detected Intel PRO/Wireless 2915ABG Network "
8580 "Connection\n");
8581 priv->ieee->abg_true = 1;
8582 band = IEEE80211_52GHZ_BAND | IEEE80211_24GHZ_BAND;
8583 modulation = IEEE80211_OFDM_MODULATION |
8584 IEEE80211_CCK_MODULATION;
8585 priv->adapter = IPW_2915ABG;
8586 priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8587 } else {
8588 if (option == 1)
8589 printk(KERN_INFO DRV_NAME
8590 ": Detected Intel PRO/Wireless 2200BG Network "
8591 "Connection\n");
8593 priv->ieee->abg_true = 0;
8594 band = IEEE80211_24GHZ_BAND;
8595 modulation = IEEE80211_OFDM_MODULATION |
8596 IEEE80211_CCK_MODULATION;
8597 priv->adapter = IPW_2200BG;
8598 priv->ieee->mode = IEEE_G | IEEE_B;
8601 priv->ieee->freq_band = band;
8602 priv->ieee->modulation = modulation;
8604 priv->rates_mask = IEEE80211_DEFAULT_RATES_MASK;
8606 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8607 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8609 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8610 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8611 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8613 /* If power management is turned on, default to AC mode */
8614 priv->power_mode = IPW_POWER_AC;
8615 priv->tx_power = IPW_TX_POWER_DEFAULT;
8617 return old_mode == priv->ieee->iw_mode;
8621 * This file defines the Wireless Extension handlers. It does not
8622 * define any methods of hardware manipulation and relies on the
8623 * functions defined in ipw_main to provide the HW interaction.
8625 * The exception to this is the use of the ipw_get_ordinal()
8626 * function used to poll the hardware vs. making unecessary calls.
8630 static int ipw_wx_get_name(struct net_device *dev,
8631 struct iw_request_info *info,
8632 union iwreq_data *wrqu, char *extra)
8634 struct ipw_priv *priv = ieee80211_priv(dev);
8635 mutex_lock(&priv->mutex);
8636 if (priv->status & STATUS_RF_KILL_MASK)
8637 strcpy(wrqu->name, "radio off");
8638 else if (!(priv->status & STATUS_ASSOCIATED))
8639 strcpy(wrqu->name, "unassociated");
8640 else
8641 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11%c",
8642 ipw_modes[priv->assoc_request.ieee_mode]);
8643 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
8644 mutex_unlock(&priv->mutex);
8645 return 0;
8648 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8650 if (channel == 0) {
8651 IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8652 priv->config &= ~CFG_STATIC_CHANNEL;
8653 IPW_DEBUG_ASSOC("Attempting to associate with new "
8654 "parameters.\n");
8655 ipw_associate(priv);
8656 return 0;
8659 priv->config |= CFG_STATIC_CHANNEL;
8661 if (priv->channel == channel) {
8662 IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8663 channel);
8664 return 0;
8667 IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8668 priv->channel = channel;
8670 #ifdef CONFIG_IPW2200_MONITOR
8671 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8672 int i;
8673 if (priv->status & STATUS_SCANNING) {
8674 IPW_DEBUG_SCAN("Scan abort triggered due to "
8675 "channel change.\n");
8676 ipw_abort_scan(priv);
8679 for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8680 udelay(10);
8682 if (priv->status & STATUS_SCANNING)
8683 IPW_DEBUG_SCAN("Still scanning...\n");
8684 else
8685 IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8686 1000 - i);
8688 return 0;
8690 #endif /* CONFIG_IPW2200_MONITOR */
8692 /* Network configuration changed -- force [re]association */
8693 IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8694 if (!ipw_disassociate(priv))
8695 ipw_associate(priv);
8697 return 0;
8700 static int ipw_wx_set_freq(struct net_device *dev,
8701 struct iw_request_info *info,
8702 union iwreq_data *wrqu, char *extra)
8704 struct ipw_priv *priv = ieee80211_priv(dev);
8705 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8706 struct iw_freq *fwrq = &wrqu->freq;
8707 int ret = 0, i;
8708 u8 channel, flags;
8709 int band;
8711 if (fwrq->m == 0) {
8712 IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8713 mutex_lock(&priv->mutex);
8714 ret = ipw_set_channel(priv, 0);
8715 mutex_unlock(&priv->mutex);
8716 return ret;
8718 /* if setting by freq convert to channel */
8719 if (fwrq->e == 1) {
8720 channel = ieee80211_freq_to_channel(priv->ieee, fwrq->m);
8721 if (channel == 0)
8722 return -EINVAL;
8723 } else
8724 channel = fwrq->m;
8726 if (!(band = ieee80211_is_valid_channel(priv->ieee, channel)))
8727 return -EINVAL;
8729 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8730 i = ieee80211_channel_to_index(priv->ieee, channel);
8731 if (i == -1)
8732 return -EINVAL;
8734 flags = (band == IEEE80211_24GHZ_BAND) ?
8735 geo->bg[i].flags : geo->a[i].flags;
8736 if (flags & IEEE80211_CH_PASSIVE_ONLY) {
8737 IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8738 return -EINVAL;
8742 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
8743 mutex_lock(&priv->mutex);
8744 ret = ipw_set_channel(priv, channel);
8745 mutex_unlock(&priv->mutex);
8746 return ret;
8749 static int ipw_wx_get_freq(struct net_device *dev,
8750 struct iw_request_info *info,
8751 union iwreq_data *wrqu, char *extra)
8753 struct ipw_priv *priv = ieee80211_priv(dev);
8755 wrqu->freq.e = 0;
8757 /* If we are associated, trying to associate, or have a statically
8758 * configured CHANNEL then return that; otherwise return ANY */
8759 mutex_lock(&priv->mutex);
8760 if (priv->config & CFG_STATIC_CHANNEL ||
8761 priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8762 int i;
8764 i = ieee80211_channel_to_index(priv->ieee, priv->channel);
8765 BUG_ON(i == -1);
8766 wrqu->freq.e = 1;
8768 switch (ieee80211_is_valid_channel(priv->ieee, priv->channel)) {
8769 case IEEE80211_52GHZ_BAND:
8770 wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8771 break;
8773 case IEEE80211_24GHZ_BAND:
8774 wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8775 break;
8777 default:
8778 BUG();
8780 } else
8781 wrqu->freq.m = 0;
8783 mutex_unlock(&priv->mutex);
8784 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
8785 return 0;
8788 static int ipw_wx_set_mode(struct net_device *dev,
8789 struct iw_request_info *info,
8790 union iwreq_data *wrqu, char *extra)
8792 struct ipw_priv *priv = ieee80211_priv(dev);
8793 int err = 0;
8795 IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8797 switch (wrqu->mode) {
8798 #ifdef CONFIG_IPW2200_MONITOR
8799 case IW_MODE_MONITOR:
8800 #endif
8801 case IW_MODE_ADHOC:
8802 case IW_MODE_INFRA:
8803 break;
8804 case IW_MODE_AUTO:
8805 wrqu->mode = IW_MODE_INFRA;
8806 break;
8807 default:
8808 return -EINVAL;
8810 if (wrqu->mode == priv->ieee->iw_mode)
8811 return 0;
8813 mutex_lock(&priv->mutex);
8815 ipw_sw_reset(priv, 0);
8817 #ifdef CONFIG_IPW2200_MONITOR
8818 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8819 priv->net_dev->type = ARPHRD_ETHER;
8821 if (wrqu->mode == IW_MODE_MONITOR)
8822 #ifdef CONFIG_IPW2200_RADIOTAP
8823 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8824 #else
8825 priv->net_dev->type = ARPHRD_IEEE80211;
8826 #endif
8827 #endif /* CONFIG_IPW2200_MONITOR */
8829 /* Free the existing firmware and reset the fw_loaded
8830 * flag so ipw_load() will bring in the new firmawre */
8831 free_firmware();
8833 priv->ieee->iw_mode = wrqu->mode;
8835 queue_work(priv->workqueue, &priv->adapter_restart);
8836 mutex_unlock(&priv->mutex);
8837 return err;
8840 static int ipw_wx_get_mode(struct net_device *dev,
8841 struct iw_request_info *info,
8842 union iwreq_data *wrqu, char *extra)
8844 struct ipw_priv *priv = ieee80211_priv(dev);
8845 mutex_lock(&priv->mutex);
8846 wrqu->mode = priv->ieee->iw_mode;
8847 IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8848 mutex_unlock(&priv->mutex);
8849 return 0;
8852 /* Values are in microsecond */
8853 static const s32 timeout_duration[] = {
8854 350000,
8855 250000,
8856 75000,
8857 37000,
8858 25000,
8861 static const s32 period_duration[] = {
8862 400000,
8863 700000,
8864 1000000,
8865 1000000,
8866 1000000
8869 static int ipw_wx_get_range(struct net_device *dev,
8870 struct iw_request_info *info,
8871 union iwreq_data *wrqu, char *extra)
8873 struct ipw_priv *priv = ieee80211_priv(dev);
8874 struct iw_range *range = (struct iw_range *)extra;
8875 const struct ieee80211_geo *geo = ieee80211_get_geo(priv->ieee);
8876 int i = 0, j;
8878 wrqu->data.length = sizeof(*range);
8879 memset(range, 0, sizeof(*range));
8881 /* 54Mbs == ~27 Mb/s real (802.11g) */
8882 range->throughput = 27 * 1000 * 1000;
8884 range->max_qual.qual = 100;
8885 /* TODO: Find real max RSSI and stick here */
8886 range->max_qual.level = 0;
8887 range->max_qual.noise = 0;
8888 range->max_qual.updated = 7; /* Updated all three */
8890 range->avg_qual.qual = 70;
8891 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
8892 range->avg_qual.level = 0; /* FIXME to real average level */
8893 range->avg_qual.noise = 0;
8894 range->avg_qual.updated = 7; /* Updated all three */
8895 mutex_lock(&priv->mutex);
8896 range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8898 for (i = 0; i < range->num_bitrates; i++)
8899 range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8900 500000;
8902 range->max_rts = DEFAULT_RTS_THRESHOLD;
8903 range->min_frag = MIN_FRAG_THRESHOLD;
8904 range->max_frag = MAX_FRAG_THRESHOLD;
8906 range->encoding_size[0] = 5;
8907 range->encoding_size[1] = 13;
8908 range->num_encoding_sizes = 2;
8909 range->max_encoding_tokens = WEP_KEYS;
8911 /* Set the Wireless Extension versions */
8912 range->we_version_compiled = WIRELESS_EXT;
8913 range->we_version_source = 18;
8915 i = 0;
8916 if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8917 for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8918 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8919 (geo->bg[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8920 continue;
8922 range->freq[i].i = geo->bg[j].channel;
8923 range->freq[i].m = geo->bg[j].freq * 100000;
8924 range->freq[i].e = 1;
8925 i++;
8929 if (priv->ieee->mode & IEEE_A) {
8930 for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8931 if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8932 (geo->a[j].flags & IEEE80211_CH_PASSIVE_ONLY))
8933 continue;
8935 range->freq[i].i = geo->a[j].channel;
8936 range->freq[i].m = geo->a[j].freq * 100000;
8937 range->freq[i].e = 1;
8938 i++;
8942 range->num_channels = i;
8943 range->num_frequency = i;
8945 mutex_unlock(&priv->mutex);
8947 /* Event capability (kernel + driver) */
8948 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
8949 IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
8950 IW_EVENT_CAPA_MASK(SIOCGIWAP) |
8951 IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
8952 range->event_capa[1] = IW_EVENT_CAPA_K_1;
8954 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
8955 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
8957 range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
8959 IPW_DEBUG_WX("GET Range\n");
8960 return 0;
8963 static int ipw_wx_set_wap(struct net_device *dev,
8964 struct iw_request_info *info,
8965 union iwreq_data *wrqu, char *extra)
8967 struct ipw_priv *priv = ieee80211_priv(dev);
8969 static const unsigned char any[] = {
8970 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
8972 static const unsigned char off[] = {
8973 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
8976 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
8977 return -EINVAL;
8978 mutex_lock(&priv->mutex);
8979 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
8980 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8981 /* we disable mandatory BSSID association */
8982 IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
8983 priv->config &= ~CFG_STATIC_BSSID;
8984 IPW_DEBUG_ASSOC("Attempting to associate with new "
8985 "parameters.\n");
8986 ipw_associate(priv);
8987 mutex_unlock(&priv->mutex);
8988 return 0;
8991 priv->config |= CFG_STATIC_BSSID;
8992 if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
8993 IPW_DEBUG_WX("BSSID set to current BSSID.\n");
8994 mutex_unlock(&priv->mutex);
8995 return 0;
8998 IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
8999 wrqu->ap_addr.sa_data);
9001 memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9003 /* Network configuration changed -- force [re]association */
9004 IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9005 if (!ipw_disassociate(priv))
9006 ipw_associate(priv);
9008 mutex_unlock(&priv->mutex);
9009 return 0;
9012 static int ipw_wx_get_wap(struct net_device *dev,
9013 struct iw_request_info *info,
9014 union iwreq_data *wrqu, char *extra)
9016 struct ipw_priv *priv = ieee80211_priv(dev);
9018 /* If we are associated, trying to associate, or have a statically
9019 * configured BSSID then return that; otherwise return ANY */
9020 mutex_lock(&priv->mutex);
9021 if (priv->config & CFG_STATIC_BSSID ||
9022 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9023 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9024 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9025 } else
9026 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9028 IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9029 wrqu->ap_addr.sa_data);
9030 mutex_unlock(&priv->mutex);
9031 return 0;
9034 static int ipw_wx_set_essid(struct net_device *dev,
9035 struct iw_request_info *info,
9036 union iwreq_data *wrqu, char *extra)
9038 struct ipw_priv *priv = ieee80211_priv(dev);
9039 int length;
9040 DECLARE_SSID_BUF(ssid);
9042 mutex_lock(&priv->mutex);
9044 if (!wrqu->essid.flags)
9046 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9047 ipw_disassociate(priv);
9048 priv->config &= ~CFG_STATIC_ESSID;
9049 ipw_associate(priv);
9050 mutex_unlock(&priv->mutex);
9051 return 0;
9054 length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9056 priv->config |= CFG_STATIC_ESSID;
9058 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9059 && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9060 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9061 mutex_unlock(&priv->mutex);
9062 return 0;
9065 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9066 print_ssid(ssid, extra, length), length);
9068 priv->essid_len = length;
9069 memcpy(priv->essid, extra, priv->essid_len);
9071 /* Network configuration changed -- force [re]association */
9072 IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9073 if (!ipw_disassociate(priv))
9074 ipw_associate(priv);
9076 mutex_unlock(&priv->mutex);
9077 return 0;
9080 static int ipw_wx_get_essid(struct net_device *dev,
9081 struct iw_request_info *info,
9082 union iwreq_data *wrqu, char *extra)
9084 struct ipw_priv *priv = ieee80211_priv(dev);
9085 DECLARE_SSID_BUF(ssid);
9087 /* If we are associated, trying to associate, or have a statically
9088 * configured ESSID then return that; otherwise return ANY */
9089 mutex_lock(&priv->mutex);
9090 if (priv->config & CFG_STATIC_ESSID ||
9091 priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9092 IPW_DEBUG_WX("Getting essid: '%s'\n",
9093 print_ssid(ssid, priv->essid, priv->essid_len));
9094 memcpy(extra, priv->essid, priv->essid_len);
9095 wrqu->essid.length = priv->essid_len;
9096 wrqu->essid.flags = 1; /* active */
9097 } else {
9098 IPW_DEBUG_WX("Getting essid: ANY\n");
9099 wrqu->essid.length = 0;
9100 wrqu->essid.flags = 0; /* active */
9102 mutex_unlock(&priv->mutex);
9103 return 0;
9106 static int ipw_wx_set_nick(struct net_device *dev,
9107 struct iw_request_info *info,
9108 union iwreq_data *wrqu, char *extra)
9110 struct ipw_priv *priv = ieee80211_priv(dev);
9112 IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9113 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9114 return -E2BIG;
9115 mutex_lock(&priv->mutex);
9116 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9117 memset(priv->nick, 0, sizeof(priv->nick));
9118 memcpy(priv->nick, extra, wrqu->data.length);
9119 IPW_DEBUG_TRACE("<<\n");
9120 mutex_unlock(&priv->mutex);
9121 return 0;
9125 static int ipw_wx_get_nick(struct net_device *dev,
9126 struct iw_request_info *info,
9127 union iwreq_data *wrqu, char *extra)
9129 struct ipw_priv *priv = ieee80211_priv(dev);
9130 IPW_DEBUG_WX("Getting nick\n");
9131 mutex_lock(&priv->mutex);
9132 wrqu->data.length = strlen(priv->nick);
9133 memcpy(extra, priv->nick, wrqu->data.length);
9134 wrqu->data.flags = 1; /* active */
9135 mutex_unlock(&priv->mutex);
9136 return 0;
9139 static int ipw_wx_set_sens(struct net_device *dev,
9140 struct iw_request_info *info,
9141 union iwreq_data *wrqu, char *extra)
9143 struct ipw_priv *priv = ieee80211_priv(dev);
9144 int err = 0;
9146 IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9147 IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9148 mutex_lock(&priv->mutex);
9150 if (wrqu->sens.fixed == 0)
9152 priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9153 priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9154 goto out;
9156 if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9157 (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9158 err = -EINVAL;
9159 goto out;
9162 priv->roaming_threshold = wrqu->sens.value;
9163 priv->disassociate_threshold = 3*wrqu->sens.value;
9164 out:
9165 mutex_unlock(&priv->mutex);
9166 return err;
9169 static int ipw_wx_get_sens(struct net_device *dev,
9170 struct iw_request_info *info,
9171 union iwreq_data *wrqu, char *extra)
9173 struct ipw_priv *priv = ieee80211_priv(dev);
9174 mutex_lock(&priv->mutex);
9175 wrqu->sens.fixed = 1;
9176 wrqu->sens.value = priv->roaming_threshold;
9177 mutex_unlock(&priv->mutex);
9179 IPW_DEBUG_WX("GET roaming threshold -> %s %d \n",
9180 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9182 return 0;
9185 static int ipw_wx_set_rate(struct net_device *dev,
9186 struct iw_request_info *info,
9187 union iwreq_data *wrqu, char *extra)
9189 /* TODO: We should use semaphores or locks for access to priv */
9190 struct ipw_priv *priv = ieee80211_priv(dev);
9191 u32 target_rate = wrqu->bitrate.value;
9192 u32 fixed, mask;
9194 /* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9195 /* value = X, fixed = 1 means only rate X */
9196 /* value = X, fixed = 0 means all rates lower equal X */
9198 if (target_rate == -1) {
9199 fixed = 0;
9200 mask = IEEE80211_DEFAULT_RATES_MASK;
9201 /* Now we should reassociate */
9202 goto apply;
9205 mask = 0;
9206 fixed = wrqu->bitrate.fixed;
9208 if (target_rate == 1000000 || !fixed)
9209 mask |= IEEE80211_CCK_RATE_1MB_MASK;
9210 if (target_rate == 1000000)
9211 goto apply;
9213 if (target_rate == 2000000 || !fixed)
9214 mask |= IEEE80211_CCK_RATE_2MB_MASK;
9215 if (target_rate == 2000000)
9216 goto apply;
9218 if (target_rate == 5500000 || !fixed)
9219 mask |= IEEE80211_CCK_RATE_5MB_MASK;
9220 if (target_rate == 5500000)
9221 goto apply;
9223 if (target_rate == 6000000 || !fixed)
9224 mask |= IEEE80211_OFDM_RATE_6MB_MASK;
9225 if (target_rate == 6000000)
9226 goto apply;
9228 if (target_rate == 9000000 || !fixed)
9229 mask |= IEEE80211_OFDM_RATE_9MB_MASK;
9230 if (target_rate == 9000000)
9231 goto apply;
9233 if (target_rate == 11000000 || !fixed)
9234 mask |= IEEE80211_CCK_RATE_11MB_MASK;
9235 if (target_rate == 11000000)
9236 goto apply;
9238 if (target_rate == 12000000 || !fixed)
9239 mask |= IEEE80211_OFDM_RATE_12MB_MASK;
9240 if (target_rate == 12000000)
9241 goto apply;
9243 if (target_rate == 18000000 || !fixed)
9244 mask |= IEEE80211_OFDM_RATE_18MB_MASK;
9245 if (target_rate == 18000000)
9246 goto apply;
9248 if (target_rate == 24000000 || !fixed)
9249 mask |= IEEE80211_OFDM_RATE_24MB_MASK;
9250 if (target_rate == 24000000)
9251 goto apply;
9253 if (target_rate == 36000000 || !fixed)
9254 mask |= IEEE80211_OFDM_RATE_36MB_MASK;
9255 if (target_rate == 36000000)
9256 goto apply;
9258 if (target_rate == 48000000 || !fixed)
9259 mask |= IEEE80211_OFDM_RATE_48MB_MASK;
9260 if (target_rate == 48000000)
9261 goto apply;
9263 if (target_rate == 54000000 || !fixed)
9264 mask |= IEEE80211_OFDM_RATE_54MB_MASK;
9265 if (target_rate == 54000000)
9266 goto apply;
9268 IPW_DEBUG_WX("invalid rate specified, returning error\n");
9269 return -EINVAL;
9271 apply:
9272 IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9273 mask, fixed ? "fixed" : "sub-rates");
9274 mutex_lock(&priv->mutex);
9275 if (mask == IEEE80211_DEFAULT_RATES_MASK) {
9276 priv->config &= ~CFG_FIXED_RATE;
9277 ipw_set_fixed_rate(priv, priv->ieee->mode);
9278 } else
9279 priv->config |= CFG_FIXED_RATE;
9281 if (priv->rates_mask == mask) {
9282 IPW_DEBUG_WX("Mask set to current mask.\n");
9283 mutex_unlock(&priv->mutex);
9284 return 0;
9287 priv->rates_mask = mask;
9289 /* Network configuration changed -- force [re]association */
9290 IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9291 if (!ipw_disassociate(priv))
9292 ipw_associate(priv);
9294 mutex_unlock(&priv->mutex);
9295 return 0;
9298 static int ipw_wx_get_rate(struct net_device *dev,
9299 struct iw_request_info *info,
9300 union iwreq_data *wrqu, char *extra)
9302 struct ipw_priv *priv = ieee80211_priv(dev);
9303 mutex_lock(&priv->mutex);
9304 wrqu->bitrate.value = priv->last_rate;
9305 wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9306 mutex_unlock(&priv->mutex);
9307 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
9308 return 0;
9311 static int ipw_wx_set_rts(struct net_device *dev,
9312 struct iw_request_info *info,
9313 union iwreq_data *wrqu, char *extra)
9315 struct ipw_priv *priv = ieee80211_priv(dev);
9316 mutex_lock(&priv->mutex);
9317 if (wrqu->rts.disabled || !wrqu->rts.fixed)
9318 priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9319 else {
9320 if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9321 wrqu->rts.value > MAX_RTS_THRESHOLD) {
9322 mutex_unlock(&priv->mutex);
9323 return -EINVAL;
9325 priv->rts_threshold = wrqu->rts.value;
9328 ipw_send_rts_threshold(priv, priv->rts_threshold);
9329 mutex_unlock(&priv->mutex);
9330 IPW_DEBUG_WX("SET RTS Threshold -> %d \n", priv->rts_threshold);
9331 return 0;
9334 static int ipw_wx_get_rts(struct net_device *dev,
9335 struct iw_request_info *info,
9336 union iwreq_data *wrqu, char *extra)
9338 struct ipw_priv *priv = ieee80211_priv(dev);
9339 mutex_lock(&priv->mutex);
9340 wrqu->rts.value = priv->rts_threshold;
9341 wrqu->rts.fixed = 0; /* no auto select */
9342 wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9343 mutex_unlock(&priv->mutex);
9344 IPW_DEBUG_WX("GET RTS Threshold -> %d \n", wrqu->rts.value);
9345 return 0;
9348 static int ipw_wx_set_txpow(struct net_device *dev,
9349 struct iw_request_info *info,
9350 union iwreq_data *wrqu, char *extra)
9352 struct ipw_priv *priv = ieee80211_priv(dev);
9353 int err = 0;
9355 mutex_lock(&priv->mutex);
9356 if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9357 err = -EINPROGRESS;
9358 goto out;
9361 if (!wrqu->power.fixed)
9362 wrqu->power.value = IPW_TX_POWER_DEFAULT;
9364 if (wrqu->power.flags != IW_TXPOW_DBM) {
9365 err = -EINVAL;
9366 goto out;
9369 if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9370 (wrqu->power.value < IPW_TX_POWER_MIN)) {
9371 err = -EINVAL;
9372 goto out;
9375 priv->tx_power = wrqu->power.value;
9376 err = ipw_set_tx_power(priv);
9377 out:
9378 mutex_unlock(&priv->mutex);
9379 return err;
9382 static int ipw_wx_get_txpow(struct net_device *dev,
9383 struct iw_request_info *info,
9384 union iwreq_data *wrqu, char *extra)
9386 struct ipw_priv *priv = ieee80211_priv(dev);
9387 mutex_lock(&priv->mutex);
9388 wrqu->power.value = priv->tx_power;
9389 wrqu->power.fixed = 1;
9390 wrqu->power.flags = IW_TXPOW_DBM;
9391 wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9392 mutex_unlock(&priv->mutex);
9394 IPW_DEBUG_WX("GET TX Power -> %s %d \n",
9395 wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9397 return 0;
9400 static int ipw_wx_set_frag(struct net_device *dev,
9401 struct iw_request_info *info,
9402 union iwreq_data *wrqu, char *extra)
9404 struct ipw_priv *priv = ieee80211_priv(dev);
9405 mutex_lock(&priv->mutex);
9406 if (wrqu->frag.disabled || !wrqu->frag.fixed)
9407 priv->ieee->fts = DEFAULT_FTS;
9408 else {
9409 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9410 wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9411 mutex_unlock(&priv->mutex);
9412 return -EINVAL;
9415 priv->ieee->fts = wrqu->frag.value & ~0x1;
9418 ipw_send_frag_threshold(priv, wrqu->frag.value);
9419 mutex_unlock(&priv->mutex);
9420 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", wrqu->frag.value);
9421 return 0;
9424 static int ipw_wx_get_frag(struct net_device *dev,
9425 struct iw_request_info *info,
9426 union iwreq_data *wrqu, char *extra)
9428 struct ipw_priv *priv = ieee80211_priv(dev);
9429 mutex_lock(&priv->mutex);
9430 wrqu->frag.value = priv->ieee->fts;
9431 wrqu->frag.fixed = 0; /* no auto select */
9432 wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9433 mutex_unlock(&priv->mutex);
9434 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
9436 return 0;
9439 static int ipw_wx_set_retry(struct net_device *dev,
9440 struct iw_request_info *info,
9441 union iwreq_data *wrqu, char *extra)
9443 struct ipw_priv *priv = ieee80211_priv(dev);
9445 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9446 return -EINVAL;
9448 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9449 return 0;
9451 if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9452 return -EINVAL;
9454 mutex_lock(&priv->mutex);
9455 if (wrqu->retry.flags & IW_RETRY_SHORT)
9456 priv->short_retry_limit = (u8) wrqu->retry.value;
9457 else if (wrqu->retry.flags & IW_RETRY_LONG)
9458 priv->long_retry_limit = (u8) wrqu->retry.value;
9459 else {
9460 priv->short_retry_limit = (u8) wrqu->retry.value;
9461 priv->long_retry_limit = (u8) wrqu->retry.value;
9464 ipw_send_retry_limit(priv, priv->short_retry_limit,
9465 priv->long_retry_limit);
9466 mutex_unlock(&priv->mutex);
9467 IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9468 priv->short_retry_limit, priv->long_retry_limit);
9469 return 0;
9472 static int ipw_wx_get_retry(struct net_device *dev,
9473 struct iw_request_info *info,
9474 union iwreq_data *wrqu, char *extra)
9476 struct ipw_priv *priv = ieee80211_priv(dev);
9478 mutex_lock(&priv->mutex);
9479 wrqu->retry.disabled = 0;
9481 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9482 mutex_unlock(&priv->mutex);
9483 return -EINVAL;
9486 if (wrqu->retry.flags & IW_RETRY_LONG) {
9487 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9488 wrqu->retry.value = priv->long_retry_limit;
9489 } else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9490 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9491 wrqu->retry.value = priv->short_retry_limit;
9492 } else {
9493 wrqu->retry.flags = IW_RETRY_LIMIT;
9494 wrqu->retry.value = priv->short_retry_limit;
9496 mutex_unlock(&priv->mutex);
9498 IPW_DEBUG_WX("GET retry -> %d \n", wrqu->retry.value);
9500 return 0;
9503 static int ipw_wx_set_scan(struct net_device *dev,
9504 struct iw_request_info *info,
9505 union iwreq_data *wrqu, char *extra)
9507 struct ipw_priv *priv = ieee80211_priv(dev);
9508 struct iw_scan_req *req = (struct iw_scan_req *)extra;
9509 struct delayed_work *work = NULL;
9511 mutex_lock(&priv->mutex);
9513 priv->user_requested_scan = 1;
9515 if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9516 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9517 int len = min((int)req->essid_len,
9518 (int)sizeof(priv->direct_scan_ssid));
9519 memcpy(priv->direct_scan_ssid, req->essid, len);
9520 priv->direct_scan_ssid_len = len;
9521 work = &priv->request_direct_scan;
9522 } else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9523 work = &priv->request_passive_scan;
9525 } else {
9526 /* Normal active broadcast scan */
9527 work = &priv->request_scan;
9530 mutex_unlock(&priv->mutex);
9532 IPW_DEBUG_WX("Start scan\n");
9534 queue_delayed_work(priv->workqueue, work, 0);
9536 return 0;
9539 static int ipw_wx_get_scan(struct net_device *dev,
9540 struct iw_request_info *info,
9541 union iwreq_data *wrqu, char *extra)
9543 struct ipw_priv *priv = ieee80211_priv(dev);
9544 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
9547 static int ipw_wx_set_encode(struct net_device *dev,
9548 struct iw_request_info *info,
9549 union iwreq_data *wrqu, char *key)
9551 struct ipw_priv *priv = ieee80211_priv(dev);
9552 int ret;
9553 u32 cap = priv->capability;
9555 mutex_lock(&priv->mutex);
9556 ret = ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
9558 /* In IBSS mode, we need to notify the firmware to update
9559 * the beacon info after we changed the capability. */
9560 if (cap != priv->capability &&
9561 priv->ieee->iw_mode == IW_MODE_ADHOC &&
9562 priv->status & STATUS_ASSOCIATED)
9563 ipw_disassociate(priv);
9565 mutex_unlock(&priv->mutex);
9566 return ret;
9569 static int ipw_wx_get_encode(struct net_device *dev,
9570 struct iw_request_info *info,
9571 union iwreq_data *wrqu, char *key)
9573 struct ipw_priv *priv = ieee80211_priv(dev);
9574 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
9577 static int ipw_wx_set_power(struct net_device *dev,
9578 struct iw_request_info *info,
9579 union iwreq_data *wrqu, char *extra)
9581 struct ipw_priv *priv = ieee80211_priv(dev);
9582 int err;
9583 mutex_lock(&priv->mutex);
9584 if (wrqu->power.disabled) {
9585 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9586 err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9587 if (err) {
9588 IPW_DEBUG_WX("failed setting power mode.\n");
9589 mutex_unlock(&priv->mutex);
9590 return err;
9592 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9593 mutex_unlock(&priv->mutex);
9594 return 0;
9597 switch (wrqu->power.flags & IW_POWER_MODE) {
9598 case IW_POWER_ON: /* If not specified */
9599 case IW_POWER_MODE: /* If set all mask */
9600 case IW_POWER_ALL_R: /* If explicitly state all */
9601 break;
9602 default: /* Otherwise we don't support it */
9603 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9604 wrqu->power.flags);
9605 mutex_unlock(&priv->mutex);
9606 return -EOPNOTSUPP;
9609 /* If the user hasn't specified a power management mode yet, default
9610 * to BATTERY */
9611 if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9612 priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9613 else
9614 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9616 err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9617 if (err) {
9618 IPW_DEBUG_WX("failed setting power mode.\n");
9619 mutex_unlock(&priv->mutex);
9620 return err;
9623 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9624 mutex_unlock(&priv->mutex);
9625 return 0;
9628 static int ipw_wx_get_power(struct net_device *dev,
9629 struct iw_request_info *info,
9630 union iwreq_data *wrqu, char *extra)
9632 struct ipw_priv *priv = ieee80211_priv(dev);
9633 mutex_lock(&priv->mutex);
9634 if (!(priv->power_mode & IPW_POWER_ENABLED))
9635 wrqu->power.disabled = 1;
9636 else
9637 wrqu->power.disabled = 0;
9639 mutex_unlock(&priv->mutex);
9640 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9642 return 0;
9645 static int ipw_wx_set_powermode(struct net_device *dev,
9646 struct iw_request_info *info,
9647 union iwreq_data *wrqu, char *extra)
9649 struct ipw_priv *priv = ieee80211_priv(dev);
9650 int mode = *(int *)extra;
9651 int err;
9653 mutex_lock(&priv->mutex);
9654 if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9655 mode = IPW_POWER_AC;
9657 if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9658 err = ipw_send_power_mode(priv, mode);
9659 if (err) {
9660 IPW_DEBUG_WX("failed setting power mode.\n");
9661 mutex_unlock(&priv->mutex);
9662 return err;
9664 priv->power_mode = IPW_POWER_ENABLED | mode;
9666 mutex_unlock(&priv->mutex);
9667 return 0;
9670 #define MAX_WX_STRING 80
9671 static int ipw_wx_get_powermode(struct net_device *dev,
9672 struct iw_request_info *info,
9673 union iwreq_data *wrqu, char *extra)
9675 struct ipw_priv *priv = ieee80211_priv(dev);
9676 int level = IPW_POWER_LEVEL(priv->power_mode);
9677 char *p = extra;
9679 p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9681 switch (level) {
9682 case IPW_POWER_AC:
9683 p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9684 break;
9685 case IPW_POWER_BATTERY:
9686 p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9687 break;
9688 default:
9689 p += snprintf(p, MAX_WX_STRING - (p - extra),
9690 "(Timeout %dms, Period %dms)",
9691 timeout_duration[level - 1] / 1000,
9692 period_duration[level - 1] / 1000);
9695 if (!(priv->power_mode & IPW_POWER_ENABLED))
9696 p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9698 wrqu->data.length = p - extra + 1;
9700 return 0;
9703 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9704 struct iw_request_info *info,
9705 union iwreq_data *wrqu, char *extra)
9707 struct ipw_priv *priv = ieee80211_priv(dev);
9708 int mode = *(int *)extra;
9709 u8 band = 0, modulation = 0;
9711 if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9712 IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9713 return -EINVAL;
9715 mutex_lock(&priv->mutex);
9716 if (priv->adapter == IPW_2915ABG) {
9717 priv->ieee->abg_true = 1;
9718 if (mode & IEEE_A) {
9719 band |= IEEE80211_52GHZ_BAND;
9720 modulation |= IEEE80211_OFDM_MODULATION;
9721 } else
9722 priv->ieee->abg_true = 0;
9723 } else {
9724 if (mode & IEEE_A) {
9725 IPW_WARNING("Attempt to set 2200BG into "
9726 "802.11a mode\n");
9727 mutex_unlock(&priv->mutex);
9728 return -EINVAL;
9731 priv->ieee->abg_true = 0;
9734 if (mode & IEEE_B) {
9735 band |= IEEE80211_24GHZ_BAND;
9736 modulation |= IEEE80211_CCK_MODULATION;
9737 } else
9738 priv->ieee->abg_true = 0;
9740 if (mode & IEEE_G) {
9741 band |= IEEE80211_24GHZ_BAND;
9742 modulation |= IEEE80211_OFDM_MODULATION;
9743 } else
9744 priv->ieee->abg_true = 0;
9746 priv->ieee->mode = mode;
9747 priv->ieee->freq_band = band;
9748 priv->ieee->modulation = modulation;
9749 init_supported_rates(priv, &priv->rates);
9751 /* Network configuration changed -- force [re]association */
9752 IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9753 if (!ipw_disassociate(priv)) {
9754 ipw_send_supported_rates(priv, &priv->rates);
9755 ipw_associate(priv);
9758 /* Update the band LEDs */
9759 ipw_led_band_on(priv);
9761 IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9762 mode & IEEE_A ? 'a' : '.',
9763 mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9764 mutex_unlock(&priv->mutex);
9765 return 0;
9768 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9769 struct iw_request_info *info,
9770 union iwreq_data *wrqu, char *extra)
9772 struct ipw_priv *priv = ieee80211_priv(dev);
9773 mutex_lock(&priv->mutex);
9774 switch (priv->ieee->mode) {
9775 case IEEE_A:
9776 strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9777 break;
9778 case IEEE_B:
9779 strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9780 break;
9781 case IEEE_A | IEEE_B:
9782 strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9783 break;
9784 case IEEE_G:
9785 strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9786 break;
9787 case IEEE_A | IEEE_G:
9788 strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9789 break;
9790 case IEEE_B | IEEE_G:
9791 strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9792 break;
9793 case IEEE_A | IEEE_B | IEEE_G:
9794 strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9795 break;
9796 default:
9797 strncpy(extra, "unknown", MAX_WX_STRING);
9798 break;
9801 IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9803 wrqu->data.length = strlen(extra) + 1;
9804 mutex_unlock(&priv->mutex);
9806 return 0;
9809 static int ipw_wx_set_preamble(struct net_device *dev,
9810 struct iw_request_info *info,
9811 union iwreq_data *wrqu, char *extra)
9813 struct ipw_priv *priv = ieee80211_priv(dev);
9814 int mode = *(int *)extra;
9815 mutex_lock(&priv->mutex);
9816 /* Switching from SHORT -> LONG requires a disassociation */
9817 if (mode == 1) {
9818 if (!(priv->config & CFG_PREAMBLE_LONG)) {
9819 priv->config |= CFG_PREAMBLE_LONG;
9821 /* Network configuration changed -- force [re]association */
9822 IPW_DEBUG_ASSOC
9823 ("[re]association triggered due to preamble change.\n");
9824 if (!ipw_disassociate(priv))
9825 ipw_associate(priv);
9827 goto done;
9830 if (mode == 0) {
9831 priv->config &= ~CFG_PREAMBLE_LONG;
9832 goto done;
9834 mutex_unlock(&priv->mutex);
9835 return -EINVAL;
9837 done:
9838 mutex_unlock(&priv->mutex);
9839 return 0;
9842 static int ipw_wx_get_preamble(struct net_device *dev,
9843 struct iw_request_info *info,
9844 union iwreq_data *wrqu, char *extra)
9846 struct ipw_priv *priv = ieee80211_priv(dev);
9847 mutex_lock(&priv->mutex);
9848 if (priv->config & CFG_PREAMBLE_LONG)
9849 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9850 else
9851 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9852 mutex_unlock(&priv->mutex);
9853 return 0;
9856 #ifdef CONFIG_IPW2200_MONITOR
9857 static int ipw_wx_set_monitor(struct net_device *dev,
9858 struct iw_request_info *info,
9859 union iwreq_data *wrqu, char *extra)
9861 struct ipw_priv *priv = ieee80211_priv(dev);
9862 int *parms = (int *)extra;
9863 int enable = (parms[0] > 0);
9864 mutex_lock(&priv->mutex);
9865 IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9866 if (enable) {
9867 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9868 #ifdef CONFIG_IPW2200_RADIOTAP
9869 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9870 #else
9871 priv->net_dev->type = ARPHRD_IEEE80211;
9872 #endif
9873 queue_work(priv->workqueue, &priv->adapter_restart);
9876 ipw_set_channel(priv, parms[1]);
9877 } else {
9878 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9879 mutex_unlock(&priv->mutex);
9880 return 0;
9882 priv->net_dev->type = ARPHRD_ETHER;
9883 queue_work(priv->workqueue, &priv->adapter_restart);
9885 mutex_unlock(&priv->mutex);
9886 return 0;
9889 #endif /* CONFIG_IPW2200_MONITOR */
9891 static int ipw_wx_reset(struct net_device *dev,
9892 struct iw_request_info *info,
9893 union iwreq_data *wrqu, char *extra)
9895 struct ipw_priv *priv = ieee80211_priv(dev);
9896 IPW_DEBUG_WX("RESET\n");
9897 queue_work(priv->workqueue, &priv->adapter_restart);
9898 return 0;
9901 static int ipw_wx_sw_reset(struct net_device *dev,
9902 struct iw_request_info *info,
9903 union iwreq_data *wrqu, char *extra)
9905 struct ipw_priv *priv = ieee80211_priv(dev);
9906 union iwreq_data wrqu_sec = {
9907 .encoding = {
9908 .flags = IW_ENCODE_DISABLED,
9911 int ret;
9913 IPW_DEBUG_WX("SW_RESET\n");
9915 mutex_lock(&priv->mutex);
9917 ret = ipw_sw_reset(priv, 2);
9918 if (!ret) {
9919 free_firmware();
9920 ipw_adapter_restart(priv);
9923 /* The SW reset bit might have been toggled on by the 'disable'
9924 * module parameter, so take appropriate action */
9925 ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9927 mutex_unlock(&priv->mutex);
9928 ieee80211_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9929 mutex_lock(&priv->mutex);
9931 if (!(priv->status & STATUS_RF_KILL_MASK)) {
9932 /* Configuration likely changed -- force [re]association */
9933 IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9934 "reset.\n");
9935 if (!ipw_disassociate(priv))
9936 ipw_associate(priv);
9939 mutex_unlock(&priv->mutex);
9941 return 0;
9944 /* Rebase the WE IOCTLs to zero for the handler array */
9945 #define IW_IOCTL(x) [(x)-SIOCSIWCOMMIT]
9946 static iw_handler ipw_wx_handlers[] = {
9947 IW_IOCTL(SIOCGIWNAME) = ipw_wx_get_name,
9948 IW_IOCTL(SIOCSIWFREQ) = ipw_wx_set_freq,
9949 IW_IOCTL(SIOCGIWFREQ) = ipw_wx_get_freq,
9950 IW_IOCTL(SIOCSIWMODE) = ipw_wx_set_mode,
9951 IW_IOCTL(SIOCGIWMODE) = ipw_wx_get_mode,
9952 IW_IOCTL(SIOCSIWSENS) = ipw_wx_set_sens,
9953 IW_IOCTL(SIOCGIWSENS) = ipw_wx_get_sens,
9954 IW_IOCTL(SIOCGIWRANGE) = ipw_wx_get_range,
9955 IW_IOCTL(SIOCSIWAP) = ipw_wx_set_wap,
9956 IW_IOCTL(SIOCGIWAP) = ipw_wx_get_wap,
9957 IW_IOCTL(SIOCSIWSCAN) = ipw_wx_set_scan,
9958 IW_IOCTL(SIOCGIWSCAN) = ipw_wx_get_scan,
9959 IW_IOCTL(SIOCSIWESSID) = ipw_wx_set_essid,
9960 IW_IOCTL(SIOCGIWESSID) = ipw_wx_get_essid,
9961 IW_IOCTL(SIOCSIWNICKN) = ipw_wx_set_nick,
9962 IW_IOCTL(SIOCGIWNICKN) = ipw_wx_get_nick,
9963 IW_IOCTL(SIOCSIWRATE) = ipw_wx_set_rate,
9964 IW_IOCTL(SIOCGIWRATE) = ipw_wx_get_rate,
9965 IW_IOCTL(SIOCSIWRTS) = ipw_wx_set_rts,
9966 IW_IOCTL(SIOCGIWRTS) = ipw_wx_get_rts,
9967 IW_IOCTL(SIOCSIWFRAG) = ipw_wx_set_frag,
9968 IW_IOCTL(SIOCGIWFRAG) = ipw_wx_get_frag,
9969 IW_IOCTL(SIOCSIWTXPOW) = ipw_wx_set_txpow,
9970 IW_IOCTL(SIOCGIWTXPOW) = ipw_wx_get_txpow,
9971 IW_IOCTL(SIOCSIWRETRY) = ipw_wx_set_retry,
9972 IW_IOCTL(SIOCGIWRETRY) = ipw_wx_get_retry,
9973 IW_IOCTL(SIOCSIWENCODE) = ipw_wx_set_encode,
9974 IW_IOCTL(SIOCGIWENCODE) = ipw_wx_get_encode,
9975 IW_IOCTL(SIOCSIWPOWER) = ipw_wx_set_power,
9976 IW_IOCTL(SIOCGIWPOWER) = ipw_wx_get_power,
9977 IW_IOCTL(SIOCSIWSPY) = iw_handler_set_spy,
9978 IW_IOCTL(SIOCGIWSPY) = iw_handler_get_spy,
9979 IW_IOCTL(SIOCSIWTHRSPY) = iw_handler_set_thrspy,
9980 IW_IOCTL(SIOCGIWTHRSPY) = iw_handler_get_thrspy,
9981 IW_IOCTL(SIOCSIWGENIE) = ipw_wx_set_genie,
9982 IW_IOCTL(SIOCGIWGENIE) = ipw_wx_get_genie,
9983 IW_IOCTL(SIOCSIWMLME) = ipw_wx_set_mlme,
9984 IW_IOCTL(SIOCSIWAUTH) = ipw_wx_set_auth,
9985 IW_IOCTL(SIOCGIWAUTH) = ipw_wx_get_auth,
9986 IW_IOCTL(SIOCSIWENCODEEXT) = ipw_wx_set_encodeext,
9987 IW_IOCTL(SIOCGIWENCODEEXT) = ipw_wx_get_encodeext,
9990 enum {
9991 IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
9992 IPW_PRIV_GET_POWER,
9993 IPW_PRIV_SET_MODE,
9994 IPW_PRIV_GET_MODE,
9995 IPW_PRIV_SET_PREAMBLE,
9996 IPW_PRIV_GET_PREAMBLE,
9997 IPW_PRIV_RESET,
9998 IPW_PRIV_SW_RESET,
9999 #ifdef CONFIG_IPW2200_MONITOR
10000 IPW_PRIV_SET_MONITOR,
10001 #endif
10004 static struct iw_priv_args ipw_priv_args[] = {
10006 .cmd = IPW_PRIV_SET_POWER,
10007 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10008 .name = "set_power"},
10010 .cmd = IPW_PRIV_GET_POWER,
10011 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10012 .name = "get_power"},
10014 .cmd = IPW_PRIV_SET_MODE,
10015 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10016 .name = "set_mode"},
10018 .cmd = IPW_PRIV_GET_MODE,
10019 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10020 .name = "get_mode"},
10022 .cmd = IPW_PRIV_SET_PREAMBLE,
10023 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10024 .name = "set_preamble"},
10026 .cmd = IPW_PRIV_GET_PREAMBLE,
10027 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10028 .name = "get_preamble"},
10030 IPW_PRIV_RESET,
10031 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10033 IPW_PRIV_SW_RESET,
10034 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10035 #ifdef CONFIG_IPW2200_MONITOR
10037 IPW_PRIV_SET_MONITOR,
10038 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10039 #endif /* CONFIG_IPW2200_MONITOR */
10042 static iw_handler ipw_priv_handler[] = {
10043 ipw_wx_set_powermode,
10044 ipw_wx_get_powermode,
10045 ipw_wx_set_wireless_mode,
10046 ipw_wx_get_wireless_mode,
10047 ipw_wx_set_preamble,
10048 ipw_wx_get_preamble,
10049 ipw_wx_reset,
10050 ipw_wx_sw_reset,
10051 #ifdef CONFIG_IPW2200_MONITOR
10052 ipw_wx_set_monitor,
10053 #endif
10056 static struct iw_handler_def ipw_wx_handler_def = {
10057 .standard = ipw_wx_handlers,
10058 .num_standard = ARRAY_SIZE(ipw_wx_handlers),
10059 .num_private = ARRAY_SIZE(ipw_priv_handler),
10060 .num_private_args = ARRAY_SIZE(ipw_priv_args),
10061 .private = ipw_priv_handler,
10062 .private_args = ipw_priv_args,
10063 .get_wireless_stats = ipw_get_wireless_stats,
10067 * Get wireless statistics.
10068 * Called by /proc/net/wireless
10069 * Also called by SIOCGIWSTATS
10071 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10073 struct ipw_priv *priv = ieee80211_priv(dev);
10074 struct iw_statistics *wstats;
10076 wstats = &priv->wstats;
10078 /* if hw is disabled, then ipw_get_ordinal() can't be called.
10079 * netdev->get_wireless_stats seems to be called before fw is
10080 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
10081 * and associated; if not associcated, the values are all meaningless
10082 * anyway, so set them all to NULL and INVALID */
10083 if (!(priv->status & STATUS_ASSOCIATED)) {
10084 wstats->miss.beacon = 0;
10085 wstats->discard.retries = 0;
10086 wstats->qual.qual = 0;
10087 wstats->qual.level = 0;
10088 wstats->qual.noise = 0;
10089 wstats->qual.updated = 7;
10090 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10091 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10092 return wstats;
10095 wstats->qual.qual = priv->quality;
10096 wstats->qual.level = priv->exp_avg_rssi;
10097 wstats->qual.noise = priv->exp_avg_noise;
10098 wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10099 IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10101 wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10102 wstats->discard.retries = priv->last_tx_failures;
10103 wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10105 /* if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10106 goto fail_get_ordinal;
10107 wstats->discard.retries += tx_retry; */
10109 return wstats;
10112 /* net device stuff */
10114 static void init_sys_config(struct ipw_sys_config *sys_config)
10116 memset(sys_config, 0, sizeof(struct ipw_sys_config));
10117 sys_config->bt_coexistence = 0;
10118 sys_config->answer_broadcast_ssid_probe = 0;
10119 sys_config->accept_all_data_frames = 0;
10120 sys_config->accept_non_directed_frames = 1;
10121 sys_config->exclude_unicast_unencrypted = 0;
10122 sys_config->disable_unicast_decryption = 1;
10123 sys_config->exclude_multicast_unencrypted = 0;
10124 sys_config->disable_multicast_decryption = 1;
10125 if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10126 antenna = CFG_SYS_ANTENNA_BOTH;
10127 sys_config->antenna_diversity = antenna;
10128 sys_config->pass_crc_to_host = 0; /* TODO: See if 1 gives us FCS */
10129 sys_config->dot11g_auto_detection = 0;
10130 sys_config->enable_cts_to_self = 0;
10131 sys_config->bt_coexist_collision_thr = 0;
10132 sys_config->pass_noise_stats_to_host = 1; /* 1 -- fix for 256 */
10133 sys_config->silence_threshold = 0x1e;
10136 static int ipw_net_open(struct net_device *dev)
10138 IPW_DEBUG_INFO("dev->open\n");
10139 netif_start_queue(dev);
10140 return 0;
10143 static int ipw_net_stop(struct net_device *dev)
10145 IPW_DEBUG_INFO("dev->close\n");
10146 netif_stop_queue(dev);
10147 return 0;
10151 todo:
10153 modify to send one tfd per fragment instead of using chunking. otherwise
10154 we need to heavily modify the ieee80211_skb_to_txb.
10157 static int ipw_tx_skb(struct ipw_priv *priv, struct ieee80211_txb *txb,
10158 int pri)
10160 struct ieee80211_hdr_3addrqos *hdr = (struct ieee80211_hdr_3addrqos *)
10161 txb->fragments[0]->data;
10162 int i = 0;
10163 struct tfd_frame *tfd;
10164 #ifdef CONFIG_IPW2200_QOS
10165 int tx_id = ipw_get_tx_queue_number(priv, pri);
10166 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10167 #else
10168 struct clx2_tx_queue *txq = &priv->txq[0];
10169 #endif
10170 struct clx2_queue *q = &txq->q;
10171 u8 id, hdr_len, unicast;
10172 u16 remaining_bytes;
10173 int fc;
10175 if (!(priv->status & STATUS_ASSOCIATED))
10176 goto drop;
10178 hdr_len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10179 switch (priv->ieee->iw_mode) {
10180 case IW_MODE_ADHOC:
10181 unicast = !is_multicast_ether_addr(hdr->addr1);
10182 id = ipw_find_station(priv, hdr->addr1);
10183 if (id == IPW_INVALID_STATION) {
10184 id = ipw_add_station(priv, hdr->addr1);
10185 if (id == IPW_INVALID_STATION) {
10186 IPW_WARNING("Attempt to send data to "
10187 "invalid cell: %pM\n",
10188 hdr->addr1);
10189 goto drop;
10192 break;
10194 case IW_MODE_INFRA:
10195 default:
10196 unicast = !is_multicast_ether_addr(hdr->addr3);
10197 id = 0;
10198 break;
10201 tfd = &txq->bd[q->first_empty];
10202 txq->txb[q->first_empty] = txb;
10203 memset(tfd, 0, sizeof(*tfd));
10204 tfd->u.data.station_number = id;
10206 tfd->control_flags.message_type = TX_FRAME_TYPE;
10207 tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10209 tfd->u.data.cmd_id = DINO_CMD_TX;
10210 tfd->u.data.len = cpu_to_le16(txb->payload_size);
10211 remaining_bytes = txb->payload_size;
10213 if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10214 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10215 else
10216 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10218 if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10219 tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10221 fc = le16_to_cpu(hdr->frame_ctl);
10222 hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10224 memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10226 if (likely(unicast))
10227 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10229 if (txb->encrypted && !priv->ieee->host_encrypt) {
10230 switch (priv->ieee->sec.level) {
10231 case SEC_LEVEL_3:
10232 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10233 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10234 /* XXX: ACK flag must be set for CCMP even if it
10235 * is a multicast/broadcast packet, because CCMP
10236 * group communication encrypted by GTK is
10237 * actually done by the AP. */
10238 if (!unicast)
10239 tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10241 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10242 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10243 tfd->u.data.key_index = 0;
10244 tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10245 break;
10246 case SEC_LEVEL_2:
10247 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10248 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10249 tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10250 tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10251 tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10252 break;
10253 case SEC_LEVEL_1:
10254 tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10255 cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10256 tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10257 if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10259 tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10260 else
10261 tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10262 break;
10263 case SEC_LEVEL_0:
10264 break;
10265 default:
10266 printk(KERN_ERR "Unknow security level %d\n",
10267 priv->ieee->sec.level);
10268 break;
10270 } else
10271 /* No hardware encryption */
10272 tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10274 #ifdef CONFIG_IPW2200_QOS
10275 if (fc & IEEE80211_STYPE_QOS_DATA)
10276 ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10277 #endif /* CONFIG_IPW2200_QOS */
10279 /* payload */
10280 tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10281 txb->nr_frags));
10282 IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10283 txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10284 for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10285 IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10286 i, le32_to_cpu(tfd->u.data.num_chunks),
10287 txb->fragments[i]->len - hdr_len);
10288 IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10289 i, tfd->u.data.num_chunks,
10290 txb->fragments[i]->len - hdr_len);
10291 printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10292 txb->fragments[i]->len - hdr_len);
10294 tfd->u.data.chunk_ptr[i] =
10295 cpu_to_le32(pci_map_single
10296 (priv->pci_dev,
10297 txb->fragments[i]->data + hdr_len,
10298 txb->fragments[i]->len - hdr_len,
10299 PCI_DMA_TODEVICE));
10300 tfd->u.data.chunk_len[i] =
10301 cpu_to_le16(txb->fragments[i]->len - hdr_len);
10304 if (i != txb->nr_frags) {
10305 struct sk_buff *skb;
10306 u16 remaining_bytes = 0;
10307 int j;
10309 for (j = i; j < txb->nr_frags; j++)
10310 remaining_bytes += txb->fragments[j]->len - hdr_len;
10312 printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10313 remaining_bytes);
10314 skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10315 if (skb != NULL) {
10316 tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10317 for (j = i; j < txb->nr_frags; j++) {
10318 int size = txb->fragments[j]->len - hdr_len;
10320 printk(KERN_INFO "Adding frag %d %d...\n",
10321 j, size);
10322 memcpy(skb_put(skb, size),
10323 txb->fragments[j]->data + hdr_len, size);
10325 dev_kfree_skb_any(txb->fragments[i]);
10326 txb->fragments[i] = skb;
10327 tfd->u.data.chunk_ptr[i] =
10328 cpu_to_le32(pci_map_single
10329 (priv->pci_dev, skb->data,
10330 remaining_bytes,
10331 PCI_DMA_TODEVICE));
10333 le32_add_cpu(&tfd->u.data.num_chunks, 1);
10337 /* kick DMA */
10338 q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10339 ipw_write32(priv, q->reg_w, q->first_empty);
10341 if (ipw_tx_queue_space(q) < q->high_mark)
10342 netif_stop_queue(priv->net_dev);
10344 return NETDEV_TX_OK;
10346 drop:
10347 IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10348 ieee80211_txb_free(txb);
10349 return NETDEV_TX_OK;
10352 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10354 struct ipw_priv *priv = ieee80211_priv(dev);
10355 #ifdef CONFIG_IPW2200_QOS
10356 int tx_id = ipw_get_tx_queue_number(priv, pri);
10357 struct clx2_tx_queue *txq = &priv->txq[tx_id];
10358 #else
10359 struct clx2_tx_queue *txq = &priv->txq[0];
10360 #endif /* CONFIG_IPW2200_QOS */
10362 if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10363 return 1;
10365 return 0;
10368 #ifdef CONFIG_IPW2200_PROMISCUOUS
10369 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10370 struct ieee80211_txb *txb)
10372 struct ieee80211_rx_stats dummystats;
10373 struct ieee80211_hdr *hdr;
10374 u8 n;
10375 u16 filter = priv->prom_priv->filter;
10376 int hdr_only = 0;
10378 if (filter & IPW_PROM_NO_TX)
10379 return;
10381 memset(&dummystats, 0, sizeof(dummystats));
10383 /* Filtering of fragment chains is done agains the first fragment */
10384 hdr = (void *)txb->fragments[0]->data;
10385 if (ieee80211_is_management(le16_to_cpu(hdr->frame_control))) {
10386 if (filter & IPW_PROM_NO_MGMT)
10387 return;
10388 if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10389 hdr_only = 1;
10390 } else if (ieee80211_is_control(le16_to_cpu(hdr->frame_control))) {
10391 if (filter & IPW_PROM_NO_CTL)
10392 return;
10393 if (filter & IPW_PROM_CTL_HEADER_ONLY)
10394 hdr_only = 1;
10395 } else if (ieee80211_is_data(le16_to_cpu(hdr->frame_control))) {
10396 if (filter & IPW_PROM_NO_DATA)
10397 return;
10398 if (filter & IPW_PROM_DATA_HEADER_ONLY)
10399 hdr_only = 1;
10402 for(n=0; n<txb->nr_frags; ++n) {
10403 struct sk_buff *src = txb->fragments[n];
10404 struct sk_buff *dst;
10405 struct ieee80211_radiotap_header *rt_hdr;
10406 int len;
10408 if (hdr_only) {
10409 hdr = (void *)src->data;
10410 len = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
10411 } else
10412 len = src->len;
10414 dst = alloc_skb(len + sizeof(*rt_hdr), GFP_ATOMIC);
10415 if (!dst)
10416 continue;
10418 rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10420 rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10421 rt_hdr->it_pad = 0;
10422 rt_hdr->it_present = 0; /* after all, it's just an idea */
10423 rt_hdr->it_present |= cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10425 *(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10426 ieee80211chan2mhz(priv->channel));
10427 if (priv->channel > 14) /* 802.11a */
10428 *(__le16*)skb_put(dst, sizeof(u16)) =
10429 cpu_to_le16(IEEE80211_CHAN_OFDM |
10430 IEEE80211_CHAN_5GHZ);
10431 else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10432 *(__le16*)skb_put(dst, sizeof(u16)) =
10433 cpu_to_le16(IEEE80211_CHAN_CCK |
10434 IEEE80211_CHAN_2GHZ);
10435 else /* 802.11g */
10436 *(__le16*)skb_put(dst, sizeof(u16)) =
10437 cpu_to_le16(IEEE80211_CHAN_OFDM |
10438 IEEE80211_CHAN_2GHZ);
10440 rt_hdr->it_len = cpu_to_le16(dst->len);
10442 skb_copy_from_linear_data(src, skb_put(dst, len), len);
10444 if (!ieee80211_rx(priv->prom_priv->ieee, dst, &dummystats))
10445 dev_kfree_skb_any(dst);
10448 #endif
10450 static int ipw_net_hard_start_xmit(struct ieee80211_txb *txb,
10451 struct net_device *dev, int pri)
10453 struct ipw_priv *priv = ieee80211_priv(dev);
10454 unsigned long flags;
10455 int ret;
10457 IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10458 spin_lock_irqsave(&priv->lock, flags);
10460 #ifdef CONFIG_IPW2200_PROMISCUOUS
10461 if (rtap_iface && netif_running(priv->prom_net_dev))
10462 ipw_handle_promiscuous_tx(priv, txb);
10463 #endif
10465 ret = ipw_tx_skb(priv, txb, pri);
10466 if (ret == NETDEV_TX_OK)
10467 __ipw_led_activity_on(priv);
10468 spin_unlock_irqrestore(&priv->lock, flags);
10470 return ret;
10473 static struct net_device_stats *ipw_net_get_stats(struct net_device *dev)
10475 struct ipw_priv *priv = ieee80211_priv(dev);
10477 priv->ieee->stats.tx_packets = priv->tx_packets;
10478 priv->ieee->stats.rx_packets = priv->rx_packets;
10479 return &priv->ieee->stats;
10482 static void ipw_net_set_multicast_list(struct net_device *dev)
10487 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10489 struct ipw_priv *priv = ieee80211_priv(dev);
10490 struct sockaddr *addr = p;
10492 if (!is_valid_ether_addr(addr->sa_data))
10493 return -EADDRNOTAVAIL;
10494 mutex_lock(&priv->mutex);
10495 priv->config |= CFG_CUSTOM_MAC;
10496 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10497 printk(KERN_INFO "%s: Setting MAC to %pM\n",
10498 priv->net_dev->name, priv->mac_addr);
10499 queue_work(priv->workqueue, &priv->adapter_restart);
10500 mutex_unlock(&priv->mutex);
10501 return 0;
10504 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10505 struct ethtool_drvinfo *info)
10507 struct ipw_priv *p = ieee80211_priv(dev);
10508 char vers[64];
10509 char date[32];
10510 u32 len;
10512 strcpy(info->driver, DRV_NAME);
10513 strcpy(info->version, DRV_VERSION);
10515 len = sizeof(vers);
10516 ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10517 len = sizeof(date);
10518 ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10520 snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10521 vers, date);
10522 strcpy(info->bus_info, pci_name(p->pci_dev));
10523 info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10526 static u32 ipw_ethtool_get_link(struct net_device *dev)
10528 struct ipw_priv *priv = ieee80211_priv(dev);
10529 return (priv->status & STATUS_ASSOCIATED) != 0;
10532 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10534 return IPW_EEPROM_IMAGE_SIZE;
10537 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10538 struct ethtool_eeprom *eeprom, u8 * bytes)
10540 struct ipw_priv *p = ieee80211_priv(dev);
10542 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10543 return -EINVAL;
10544 mutex_lock(&p->mutex);
10545 memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10546 mutex_unlock(&p->mutex);
10547 return 0;
10550 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10551 struct ethtool_eeprom *eeprom, u8 * bytes)
10553 struct ipw_priv *p = ieee80211_priv(dev);
10554 int i;
10556 if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10557 return -EINVAL;
10558 mutex_lock(&p->mutex);
10559 memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10560 for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10561 ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10562 mutex_unlock(&p->mutex);
10563 return 0;
10566 static const struct ethtool_ops ipw_ethtool_ops = {
10567 .get_link = ipw_ethtool_get_link,
10568 .get_drvinfo = ipw_ethtool_get_drvinfo,
10569 .get_eeprom_len = ipw_ethtool_get_eeprom_len,
10570 .get_eeprom = ipw_ethtool_get_eeprom,
10571 .set_eeprom = ipw_ethtool_set_eeprom,
10574 static irqreturn_t ipw_isr(int irq, void *data)
10576 struct ipw_priv *priv = data;
10577 u32 inta, inta_mask;
10579 if (!priv)
10580 return IRQ_NONE;
10582 spin_lock(&priv->irq_lock);
10584 if (!(priv->status & STATUS_INT_ENABLED)) {
10585 /* IRQ is disabled */
10586 goto none;
10589 inta = ipw_read32(priv, IPW_INTA_RW);
10590 inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10592 if (inta == 0xFFFFFFFF) {
10593 /* Hardware disappeared */
10594 IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10595 goto none;
10598 if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10599 /* Shared interrupt */
10600 goto none;
10603 /* tell the device to stop sending interrupts */
10604 __ipw_disable_interrupts(priv);
10606 /* ack current interrupts */
10607 inta &= (IPW_INTA_MASK_ALL & inta_mask);
10608 ipw_write32(priv, IPW_INTA_RW, inta);
10610 /* Cache INTA value for our tasklet */
10611 priv->isr_inta = inta;
10613 tasklet_schedule(&priv->irq_tasklet);
10615 spin_unlock(&priv->irq_lock);
10617 return IRQ_HANDLED;
10618 none:
10619 spin_unlock(&priv->irq_lock);
10620 return IRQ_NONE;
10623 static void ipw_rf_kill(void *adapter)
10625 struct ipw_priv *priv = adapter;
10626 unsigned long flags;
10628 spin_lock_irqsave(&priv->lock, flags);
10630 if (rf_kill_active(priv)) {
10631 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10632 if (priv->workqueue)
10633 queue_delayed_work(priv->workqueue,
10634 &priv->rf_kill, 2 * HZ);
10635 goto exit_unlock;
10638 /* RF Kill is now disabled, so bring the device back up */
10640 if (!(priv->status & STATUS_RF_KILL_MASK)) {
10641 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10642 "device\n");
10644 /* we can not do an adapter restart while inside an irq lock */
10645 queue_work(priv->workqueue, &priv->adapter_restart);
10646 } else
10647 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
10648 "enabled\n");
10650 exit_unlock:
10651 spin_unlock_irqrestore(&priv->lock, flags);
10654 static void ipw_bg_rf_kill(struct work_struct *work)
10656 struct ipw_priv *priv =
10657 container_of(work, struct ipw_priv, rf_kill.work);
10658 mutex_lock(&priv->mutex);
10659 ipw_rf_kill(priv);
10660 mutex_unlock(&priv->mutex);
10663 static void ipw_link_up(struct ipw_priv *priv)
10665 priv->last_seq_num = -1;
10666 priv->last_frag_num = -1;
10667 priv->last_packet_time = 0;
10669 netif_carrier_on(priv->net_dev);
10671 cancel_delayed_work(&priv->request_scan);
10672 cancel_delayed_work(&priv->request_direct_scan);
10673 cancel_delayed_work(&priv->request_passive_scan);
10674 cancel_delayed_work(&priv->scan_event);
10675 ipw_reset_stats(priv);
10676 /* Ensure the rate is updated immediately */
10677 priv->last_rate = ipw_get_current_rate(priv);
10678 ipw_gather_stats(priv);
10679 ipw_led_link_up(priv);
10680 notify_wx_assoc_event(priv);
10682 if (priv->config & CFG_BACKGROUND_SCAN)
10683 queue_delayed_work(priv->workqueue, &priv->request_scan, HZ);
10686 static void ipw_bg_link_up(struct work_struct *work)
10688 struct ipw_priv *priv =
10689 container_of(work, struct ipw_priv, link_up);
10690 mutex_lock(&priv->mutex);
10691 ipw_link_up(priv);
10692 mutex_unlock(&priv->mutex);
10695 static void ipw_link_down(struct ipw_priv *priv)
10697 ipw_led_link_down(priv);
10698 netif_carrier_off(priv->net_dev);
10699 notify_wx_assoc_event(priv);
10701 /* Cancel any queued work ... */
10702 cancel_delayed_work(&priv->request_scan);
10703 cancel_delayed_work(&priv->request_direct_scan);
10704 cancel_delayed_work(&priv->request_passive_scan);
10705 cancel_delayed_work(&priv->adhoc_check);
10706 cancel_delayed_work(&priv->gather_stats);
10708 ipw_reset_stats(priv);
10710 if (!(priv->status & STATUS_EXIT_PENDING)) {
10711 /* Queue up another scan... */
10712 queue_delayed_work(priv->workqueue, &priv->request_scan, 0);
10713 } else
10714 cancel_delayed_work(&priv->scan_event);
10717 static void ipw_bg_link_down(struct work_struct *work)
10719 struct ipw_priv *priv =
10720 container_of(work, struct ipw_priv, link_down);
10721 mutex_lock(&priv->mutex);
10722 ipw_link_down(priv);
10723 mutex_unlock(&priv->mutex);
10726 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10728 int ret = 0;
10730 priv->workqueue = create_workqueue(DRV_NAME);
10731 init_waitqueue_head(&priv->wait_command_queue);
10732 init_waitqueue_head(&priv->wait_state);
10734 INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10735 INIT_WORK(&priv->associate, ipw_bg_associate);
10736 INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10737 INIT_WORK(&priv->system_config, ipw_system_config);
10738 INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10739 INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10740 INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10741 INIT_WORK(&priv->up, ipw_bg_up);
10742 INIT_WORK(&priv->down, ipw_bg_down);
10743 INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10744 INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10745 INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10746 INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10747 INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10748 INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10749 INIT_WORK(&priv->roam, ipw_bg_roam);
10750 INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10751 INIT_WORK(&priv->link_up, ipw_bg_link_up);
10752 INIT_WORK(&priv->link_down, ipw_bg_link_down);
10753 INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10754 INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10755 INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10756 INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10758 #ifdef CONFIG_IPW2200_QOS
10759 INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10760 #endif /* CONFIG_IPW2200_QOS */
10762 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10763 ipw_irq_tasklet, (unsigned long)priv);
10765 return ret;
10768 static void shim__set_security(struct net_device *dev,
10769 struct ieee80211_security *sec)
10771 struct ipw_priv *priv = ieee80211_priv(dev);
10772 int i;
10773 for (i = 0; i < 4; i++) {
10774 if (sec->flags & (1 << i)) {
10775 priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10776 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10777 if (sec->key_sizes[i] == 0)
10778 priv->ieee->sec.flags &= ~(1 << i);
10779 else {
10780 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10781 sec->key_sizes[i]);
10782 priv->ieee->sec.flags |= (1 << i);
10784 priv->status |= STATUS_SECURITY_UPDATED;
10785 } else if (sec->level != SEC_LEVEL_1)
10786 priv->ieee->sec.flags &= ~(1 << i);
10789 if (sec->flags & SEC_ACTIVE_KEY) {
10790 if (sec->active_key <= 3) {
10791 priv->ieee->sec.active_key = sec->active_key;
10792 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10793 } else
10794 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10795 priv->status |= STATUS_SECURITY_UPDATED;
10796 } else
10797 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10799 if ((sec->flags & SEC_AUTH_MODE) &&
10800 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10801 priv->ieee->sec.auth_mode = sec->auth_mode;
10802 priv->ieee->sec.flags |= SEC_AUTH_MODE;
10803 if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10804 priv->capability |= CAP_SHARED_KEY;
10805 else
10806 priv->capability &= ~CAP_SHARED_KEY;
10807 priv->status |= STATUS_SECURITY_UPDATED;
10810 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10811 priv->ieee->sec.flags |= SEC_ENABLED;
10812 priv->ieee->sec.enabled = sec->enabled;
10813 priv->status |= STATUS_SECURITY_UPDATED;
10814 if (sec->enabled)
10815 priv->capability |= CAP_PRIVACY_ON;
10816 else
10817 priv->capability &= ~CAP_PRIVACY_ON;
10820 if (sec->flags & SEC_ENCRYPT)
10821 priv->ieee->sec.encrypt = sec->encrypt;
10823 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10824 priv->ieee->sec.level = sec->level;
10825 priv->ieee->sec.flags |= SEC_LEVEL;
10826 priv->status |= STATUS_SECURITY_UPDATED;
10829 if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10830 ipw_set_hwcrypto_keys(priv);
10832 /* To match current functionality of ipw2100 (which works well w/
10833 * various supplicants, we don't force a disassociate if the
10834 * privacy capability changes ... */
10835 #if 0
10836 if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10837 (((priv->assoc_request.capability &
10838 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10839 (!(priv->assoc_request.capability &
10840 cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10841 IPW_DEBUG_ASSOC("Disassociating due to capability "
10842 "change.\n");
10843 ipw_disassociate(priv);
10845 #endif
10848 static int init_supported_rates(struct ipw_priv *priv,
10849 struct ipw_supported_rates *rates)
10851 /* TODO: Mask out rates based on priv->rates_mask */
10853 memset(rates, 0, sizeof(*rates));
10854 /* configure supported rates */
10855 switch (priv->ieee->freq_band) {
10856 case IEEE80211_52GHZ_BAND:
10857 rates->ieee_mode = IPW_A_MODE;
10858 rates->purpose = IPW_RATE_CAPABILITIES;
10859 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10860 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10861 break;
10863 default: /* Mixed or 2.4Ghz */
10864 rates->ieee_mode = IPW_G_MODE;
10865 rates->purpose = IPW_RATE_CAPABILITIES;
10866 ipw_add_cck_scan_rates(rates, IEEE80211_CCK_MODULATION,
10867 IEEE80211_CCK_DEFAULT_RATES_MASK);
10868 if (priv->ieee->modulation & IEEE80211_OFDM_MODULATION) {
10869 ipw_add_ofdm_scan_rates(rates, IEEE80211_CCK_MODULATION,
10870 IEEE80211_OFDM_DEFAULT_RATES_MASK);
10872 break;
10875 return 0;
10878 static int ipw_config(struct ipw_priv *priv)
10880 /* This is only called from ipw_up, which resets/reloads the firmware
10881 so, we don't need to first disable the card before we configure
10882 it */
10883 if (ipw_set_tx_power(priv))
10884 goto error;
10886 /* initialize adapter address */
10887 if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10888 goto error;
10890 /* set basic system config settings */
10891 init_sys_config(&priv->sys_config);
10893 /* Support Bluetooth if we have BT h/w on board, and user wants to.
10894 * Does not support BT priority yet (don't abort or defer our Tx) */
10895 if (bt_coexist) {
10896 unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10898 if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10899 priv->sys_config.bt_coexistence
10900 |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10901 if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10902 priv->sys_config.bt_coexistence
10903 |= CFG_BT_COEXISTENCE_OOB;
10906 #ifdef CONFIG_IPW2200_PROMISCUOUS
10907 if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10908 priv->sys_config.accept_all_data_frames = 1;
10909 priv->sys_config.accept_non_directed_frames = 1;
10910 priv->sys_config.accept_all_mgmt_bcpr = 1;
10911 priv->sys_config.accept_all_mgmt_frames = 1;
10913 #endif
10915 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10916 priv->sys_config.answer_broadcast_ssid_probe = 1;
10917 else
10918 priv->sys_config.answer_broadcast_ssid_probe = 0;
10920 if (ipw_send_system_config(priv))
10921 goto error;
10923 init_supported_rates(priv, &priv->rates);
10924 if (ipw_send_supported_rates(priv, &priv->rates))
10925 goto error;
10927 /* Set request-to-send threshold */
10928 if (priv->rts_threshold) {
10929 if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10930 goto error;
10932 #ifdef CONFIG_IPW2200_QOS
10933 IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10934 ipw_qos_activate(priv, NULL);
10935 #endif /* CONFIG_IPW2200_QOS */
10937 if (ipw_set_random_seed(priv))
10938 goto error;
10940 /* final state transition to the RUN state */
10941 if (ipw_send_host_complete(priv))
10942 goto error;
10944 priv->status |= STATUS_INIT;
10946 ipw_led_init(priv);
10947 ipw_led_radio_on(priv);
10948 priv->notif_missed_beacons = 0;
10950 /* Set hardware WEP key if it is configured. */
10951 if ((priv->capability & CAP_PRIVACY_ON) &&
10952 (priv->ieee->sec.level == SEC_LEVEL_1) &&
10953 !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
10954 ipw_set_hwcrypto_keys(priv);
10956 return 0;
10958 error:
10959 return -EIO;
10963 * NOTE:
10965 * These tables have been tested in conjunction with the
10966 * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
10968 * Altering this values, using it on other hardware, or in geographies
10969 * not intended for resale of the above mentioned Intel adapters has
10970 * not been tested.
10972 * Remember to update the table in README.ipw2200 when changing this
10973 * table.
10976 static const struct ieee80211_geo ipw_geos[] = {
10977 { /* Restricted */
10978 "---",
10979 .bg_channels = 11,
10980 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10981 {2427, 4}, {2432, 5}, {2437, 6},
10982 {2442, 7}, {2447, 8}, {2452, 9},
10983 {2457, 10}, {2462, 11}},
10986 { /* Custom US/Canada */
10987 "ZZF",
10988 .bg_channels = 11,
10989 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
10990 {2427, 4}, {2432, 5}, {2437, 6},
10991 {2442, 7}, {2447, 8}, {2452, 9},
10992 {2457, 10}, {2462, 11}},
10993 .a_channels = 8,
10994 .a = {{5180, 36},
10995 {5200, 40},
10996 {5220, 44},
10997 {5240, 48},
10998 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
10999 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11000 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11001 {5320, 64, IEEE80211_CH_PASSIVE_ONLY}},
11004 { /* Rest of World */
11005 "ZZD",
11006 .bg_channels = 13,
11007 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11008 {2427, 4}, {2432, 5}, {2437, 6},
11009 {2442, 7}, {2447, 8}, {2452, 9},
11010 {2457, 10}, {2462, 11}, {2467, 12},
11011 {2472, 13}},
11014 { /* Custom USA & Europe & High */
11015 "ZZA",
11016 .bg_channels = 11,
11017 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11018 {2427, 4}, {2432, 5}, {2437, 6},
11019 {2442, 7}, {2447, 8}, {2452, 9},
11020 {2457, 10}, {2462, 11}},
11021 .a_channels = 13,
11022 .a = {{5180, 36},
11023 {5200, 40},
11024 {5220, 44},
11025 {5240, 48},
11026 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11027 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11028 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11029 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11030 {5745, 149},
11031 {5765, 153},
11032 {5785, 157},
11033 {5805, 161},
11034 {5825, 165}},
11037 { /* Custom NA & Europe */
11038 "ZZB",
11039 .bg_channels = 11,
11040 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11041 {2427, 4}, {2432, 5}, {2437, 6},
11042 {2442, 7}, {2447, 8}, {2452, 9},
11043 {2457, 10}, {2462, 11}},
11044 .a_channels = 13,
11045 .a = {{5180, 36},
11046 {5200, 40},
11047 {5220, 44},
11048 {5240, 48},
11049 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11050 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11051 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11052 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11053 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11054 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11055 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11056 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11057 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11060 { /* Custom Japan */
11061 "ZZC",
11062 .bg_channels = 11,
11063 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11064 {2427, 4}, {2432, 5}, {2437, 6},
11065 {2442, 7}, {2447, 8}, {2452, 9},
11066 {2457, 10}, {2462, 11}},
11067 .a_channels = 4,
11068 .a = {{5170, 34}, {5190, 38},
11069 {5210, 42}, {5230, 46}},
11072 { /* Custom */
11073 "ZZM",
11074 .bg_channels = 11,
11075 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11076 {2427, 4}, {2432, 5}, {2437, 6},
11077 {2442, 7}, {2447, 8}, {2452, 9},
11078 {2457, 10}, {2462, 11}},
11081 { /* Europe */
11082 "ZZE",
11083 .bg_channels = 13,
11084 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11085 {2427, 4}, {2432, 5}, {2437, 6},
11086 {2442, 7}, {2447, 8}, {2452, 9},
11087 {2457, 10}, {2462, 11}, {2467, 12},
11088 {2472, 13}},
11089 .a_channels = 19,
11090 .a = {{5180, 36},
11091 {5200, 40},
11092 {5220, 44},
11093 {5240, 48},
11094 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11095 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11096 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11097 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11098 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11099 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11100 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11101 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11102 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11103 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11104 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11105 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11106 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11107 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11108 {5700, 140, IEEE80211_CH_PASSIVE_ONLY}},
11111 { /* Custom Japan */
11112 "ZZJ",
11113 .bg_channels = 14,
11114 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11115 {2427, 4}, {2432, 5}, {2437, 6},
11116 {2442, 7}, {2447, 8}, {2452, 9},
11117 {2457, 10}, {2462, 11}, {2467, 12},
11118 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY}},
11119 .a_channels = 4,
11120 .a = {{5170, 34}, {5190, 38},
11121 {5210, 42}, {5230, 46}},
11124 { /* Rest of World */
11125 "ZZR",
11126 .bg_channels = 14,
11127 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11128 {2427, 4}, {2432, 5}, {2437, 6},
11129 {2442, 7}, {2447, 8}, {2452, 9},
11130 {2457, 10}, {2462, 11}, {2467, 12},
11131 {2472, 13}, {2484, 14, IEEE80211_CH_B_ONLY |
11132 IEEE80211_CH_PASSIVE_ONLY}},
11135 { /* High Band */
11136 "ZZH",
11137 .bg_channels = 13,
11138 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11139 {2427, 4}, {2432, 5}, {2437, 6},
11140 {2442, 7}, {2447, 8}, {2452, 9},
11141 {2457, 10}, {2462, 11},
11142 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11143 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11144 .a_channels = 4,
11145 .a = {{5745, 149}, {5765, 153},
11146 {5785, 157}, {5805, 161}},
11149 { /* Custom Europe */
11150 "ZZG",
11151 .bg_channels = 13,
11152 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11153 {2427, 4}, {2432, 5}, {2437, 6},
11154 {2442, 7}, {2447, 8}, {2452, 9},
11155 {2457, 10}, {2462, 11},
11156 {2467, 12}, {2472, 13}},
11157 .a_channels = 4,
11158 .a = {{5180, 36}, {5200, 40},
11159 {5220, 44}, {5240, 48}},
11162 { /* Europe */
11163 "ZZK",
11164 .bg_channels = 13,
11165 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11166 {2427, 4}, {2432, 5}, {2437, 6},
11167 {2442, 7}, {2447, 8}, {2452, 9},
11168 {2457, 10}, {2462, 11},
11169 {2467, 12, IEEE80211_CH_PASSIVE_ONLY},
11170 {2472, 13, IEEE80211_CH_PASSIVE_ONLY}},
11171 .a_channels = 24,
11172 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11173 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11174 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11175 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11176 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11177 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11178 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11179 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11180 {5500, 100, IEEE80211_CH_PASSIVE_ONLY},
11181 {5520, 104, IEEE80211_CH_PASSIVE_ONLY},
11182 {5540, 108, IEEE80211_CH_PASSIVE_ONLY},
11183 {5560, 112, IEEE80211_CH_PASSIVE_ONLY},
11184 {5580, 116, IEEE80211_CH_PASSIVE_ONLY},
11185 {5600, 120, IEEE80211_CH_PASSIVE_ONLY},
11186 {5620, 124, IEEE80211_CH_PASSIVE_ONLY},
11187 {5640, 128, IEEE80211_CH_PASSIVE_ONLY},
11188 {5660, 132, IEEE80211_CH_PASSIVE_ONLY},
11189 {5680, 136, IEEE80211_CH_PASSIVE_ONLY},
11190 {5700, 140, IEEE80211_CH_PASSIVE_ONLY},
11191 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11192 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11193 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11194 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11195 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11198 { /* Europe */
11199 "ZZL",
11200 .bg_channels = 11,
11201 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11202 {2427, 4}, {2432, 5}, {2437, 6},
11203 {2442, 7}, {2447, 8}, {2452, 9},
11204 {2457, 10}, {2462, 11}},
11205 .a_channels = 13,
11206 .a = {{5180, 36, IEEE80211_CH_PASSIVE_ONLY},
11207 {5200, 40, IEEE80211_CH_PASSIVE_ONLY},
11208 {5220, 44, IEEE80211_CH_PASSIVE_ONLY},
11209 {5240, 48, IEEE80211_CH_PASSIVE_ONLY},
11210 {5260, 52, IEEE80211_CH_PASSIVE_ONLY},
11211 {5280, 56, IEEE80211_CH_PASSIVE_ONLY},
11212 {5300, 60, IEEE80211_CH_PASSIVE_ONLY},
11213 {5320, 64, IEEE80211_CH_PASSIVE_ONLY},
11214 {5745, 149, IEEE80211_CH_PASSIVE_ONLY},
11215 {5765, 153, IEEE80211_CH_PASSIVE_ONLY},
11216 {5785, 157, IEEE80211_CH_PASSIVE_ONLY},
11217 {5805, 161, IEEE80211_CH_PASSIVE_ONLY},
11218 {5825, 165, IEEE80211_CH_PASSIVE_ONLY}},
11222 #define MAX_HW_RESTARTS 5
11223 static int ipw_up(struct ipw_priv *priv)
11225 int rc, i, j;
11227 if (priv->status & STATUS_EXIT_PENDING)
11228 return -EIO;
11230 if (cmdlog && !priv->cmdlog) {
11231 priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11232 GFP_KERNEL);
11233 if (priv->cmdlog == NULL) {
11234 IPW_ERROR("Error allocating %d command log entries.\n",
11235 cmdlog);
11236 return -ENOMEM;
11237 } else {
11238 priv->cmdlog_len = cmdlog;
11242 for (i = 0; i < MAX_HW_RESTARTS; i++) {
11243 /* Load the microcode, firmware, and eeprom.
11244 * Also start the clocks. */
11245 rc = ipw_load(priv);
11246 if (rc) {
11247 IPW_ERROR("Unable to load firmware: %d\n", rc);
11248 return rc;
11251 ipw_init_ordinals(priv);
11252 if (!(priv->config & CFG_CUSTOM_MAC))
11253 eeprom_parse_mac(priv, priv->mac_addr);
11254 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11256 for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11257 if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11258 ipw_geos[j].name, 3))
11259 break;
11261 if (j == ARRAY_SIZE(ipw_geos)) {
11262 IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11263 priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11264 priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11265 priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11266 j = 0;
11268 if (ieee80211_set_geo(priv->ieee, &ipw_geos[j])) {
11269 IPW_WARNING("Could not set geography.");
11270 return 0;
11273 if (priv->status & STATUS_RF_KILL_SW) {
11274 IPW_WARNING("Radio disabled by module parameter.\n");
11275 return 0;
11276 } else if (rf_kill_active(priv)) {
11277 IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11278 "Kill switch must be turned off for "
11279 "wireless networking to work.\n");
11280 queue_delayed_work(priv->workqueue, &priv->rf_kill,
11281 2 * HZ);
11282 return 0;
11285 rc = ipw_config(priv);
11286 if (!rc) {
11287 IPW_DEBUG_INFO("Configured device on count %i\n", i);
11289 /* If configure to try and auto-associate, kick
11290 * off a scan. */
11291 queue_delayed_work(priv->workqueue,
11292 &priv->request_scan, 0);
11294 return 0;
11297 IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11298 IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11299 i, MAX_HW_RESTARTS);
11301 /* We had an error bringing up the hardware, so take it
11302 * all the way back down so we can try again */
11303 ipw_down(priv);
11306 /* tried to restart and config the device for as long as our
11307 * patience could withstand */
11308 IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11310 return -EIO;
11313 static void ipw_bg_up(struct work_struct *work)
11315 struct ipw_priv *priv =
11316 container_of(work, struct ipw_priv, up);
11317 mutex_lock(&priv->mutex);
11318 ipw_up(priv);
11319 mutex_unlock(&priv->mutex);
11322 static void ipw_deinit(struct ipw_priv *priv)
11324 int i;
11326 if (priv->status & STATUS_SCANNING) {
11327 IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11328 ipw_abort_scan(priv);
11331 if (priv->status & STATUS_ASSOCIATED) {
11332 IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11333 ipw_disassociate(priv);
11336 ipw_led_shutdown(priv);
11338 /* Wait up to 1s for status to change to not scanning and not
11339 * associated (disassociation can take a while for a ful 802.11
11340 * exchange */
11341 for (i = 1000; i && (priv->status &
11342 (STATUS_DISASSOCIATING |
11343 STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11344 udelay(10);
11346 if (priv->status & (STATUS_DISASSOCIATING |
11347 STATUS_ASSOCIATED | STATUS_SCANNING))
11348 IPW_DEBUG_INFO("Still associated or scanning...\n");
11349 else
11350 IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11352 /* Attempt to disable the card */
11353 ipw_send_card_disable(priv, 0);
11355 priv->status &= ~STATUS_INIT;
11358 static void ipw_down(struct ipw_priv *priv)
11360 int exit_pending = priv->status & STATUS_EXIT_PENDING;
11362 priv->status |= STATUS_EXIT_PENDING;
11364 if (ipw_is_init(priv))
11365 ipw_deinit(priv);
11367 /* Wipe out the EXIT_PENDING status bit if we are not actually
11368 * exiting the module */
11369 if (!exit_pending)
11370 priv->status &= ~STATUS_EXIT_PENDING;
11372 /* tell the device to stop sending interrupts */
11373 ipw_disable_interrupts(priv);
11375 /* Clear all bits but the RF Kill */
11376 priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11377 netif_carrier_off(priv->net_dev);
11379 ipw_stop_nic(priv);
11381 ipw_led_radio_off(priv);
11384 static void ipw_bg_down(struct work_struct *work)
11386 struct ipw_priv *priv =
11387 container_of(work, struct ipw_priv, down);
11388 mutex_lock(&priv->mutex);
11389 ipw_down(priv);
11390 mutex_unlock(&priv->mutex);
11393 /* Called by register_netdev() */
11394 static int ipw_net_init(struct net_device *dev)
11396 struct ipw_priv *priv = ieee80211_priv(dev);
11397 mutex_lock(&priv->mutex);
11399 if (ipw_up(priv)) {
11400 mutex_unlock(&priv->mutex);
11401 return -EIO;
11404 mutex_unlock(&priv->mutex);
11405 return 0;
11408 /* PCI driver stuff */
11409 static struct pci_device_id card_ids[] = {
11410 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11411 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11412 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11413 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11414 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11415 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11416 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11417 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11418 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11419 {PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11420 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11421 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11422 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11423 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11424 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11425 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11426 {PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11427 {PCI_VENDOR_ID_INTEL, 0x104f, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11428 {PCI_VENDOR_ID_INTEL, 0x4220, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11429 {PCI_VENDOR_ID_INTEL, 0x4221, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* BG */
11430 {PCI_VENDOR_ID_INTEL, 0x4223, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11431 {PCI_VENDOR_ID_INTEL, 0x4224, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, /* ABG */
11433 /* required last entry */
11434 {0,}
11437 MODULE_DEVICE_TABLE(pci, card_ids);
11439 static struct attribute *ipw_sysfs_entries[] = {
11440 &dev_attr_rf_kill.attr,
11441 &dev_attr_direct_dword.attr,
11442 &dev_attr_indirect_byte.attr,
11443 &dev_attr_indirect_dword.attr,
11444 &dev_attr_mem_gpio_reg.attr,
11445 &dev_attr_command_event_reg.attr,
11446 &dev_attr_nic_type.attr,
11447 &dev_attr_status.attr,
11448 &dev_attr_cfg.attr,
11449 &dev_attr_error.attr,
11450 &dev_attr_event_log.attr,
11451 &dev_attr_cmd_log.attr,
11452 &dev_attr_eeprom_delay.attr,
11453 &dev_attr_ucode_version.attr,
11454 &dev_attr_rtc.attr,
11455 &dev_attr_scan_age.attr,
11456 &dev_attr_led.attr,
11457 &dev_attr_speed_scan.attr,
11458 &dev_attr_net_stats.attr,
11459 &dev_attr_channels.attr,
11460 #ifdef CONFIG_IPW2200_PROMISCUOUS
11461 &dev_attr_rtap_iface.attr,
11462 &dev_attr_rtap_filter.attr,
11463 #endif
11464 NULL
11467 static struct attribute_group ipw_attribute_group = {
11468 .name = NULL, /* put in device directory */
11469 .attrs = ipw_sysfs_entries,
11472 #ifdef CONFIG_IPW2200_PROMISCUOUS
11473 static int ipw_prom_open(struct net_device *dev)
11475 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11476 struct ipw_priv *priv = prom_priv->priv;
11478 IPW_DEBUG_INFO("prom dev->open\n");
11479 netif_carrier_off(dev);
11481 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11482 priv->sys_config.accept_all_data_frames = 1;
11483 priv->sys_config.accept_non_directed_frames = 1;
11484 priv->sys_config.accept_all_mgmt_bcpr = 1;
11485 priv->sys_config.accept_all_mgmt_frames = 1;
11487 ipw_send_system_config(priv);
11490 return 0;
11493 static int ipw_prom_stop(struct net_device *dev)
11495 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11496 struct ipw_priv *priv = prom_priv->priv;
11498 IPW_DEBUG_INFO("prom dev->stop\n");
11500 if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11501 priv->sys_config.accept_all_data_frames = 0;
11502 priv->sys_config.accept_non_directed_frames = 0;
11503 priv->sys_config.accept_all_mgmt_bcpr = 0;
11504 priv->sys_config.accept_all_mgmt_frames = 0;
11506 ipw_send_system_config(priv);
11509 return 0;
11512 static int ipw_prom_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
11514 IPW_DEBUG_INFO("prom dev->xmit\n");
11515 return -EOPNOTSUPP;
11518 static struct net_device_stats *ipw_prom_get_stats(struct net_device *dev)
11520 struct ipw_prom_priv *prom_priv = ieee80211_priv(dev);
11521 return &prom_priv->ieee->stats;
11524 static int ipw_prom_alloc(struct ipw_priv *priv)
11526 int rc = 0;
11528 if (priv->prom_net_dev)
11529 return -EPERM;
11531 priv->prom_net_dev = alloc_ieee80211(sizeof(struct ipw_prom_priv));
11532 if (priv->prom_net_dev == NULL)
11533 return -ENOMEM;
11535 priv->prom_priv = ieee80211_priv(priv->prom_net_dev);
11536 priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11537 priv->prom_priv->priv = priv;
11539 strcpy(priv->prom_net_dev->name, "rtap%d");
11540 memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11542 priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11543 priv->prom_net_dev->open = ipw_prom_open;
11544 priv->prom_net_dev->stop = ipw_prom_stop;
11545 priv->prom_net_dev->get_stats = ipw_prom_get_stats;
11546 priv->prom_net_dev->hard_start_xmit = ipw_prom_hard_start_xmit;
11548 priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11549 SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11551 rc = register_netdev(priv->prom_net_dev);
11552 if (rc) {
11553 free_ieee80211(priv->prom_net_dev);
11554 priv->prom_net_dev = NULL;
11555 return rc;
11558 return 0;
11561 static void ipw_prom_free(struct ipw_priv *priv)
11563 if (!priv->prom_net_dev)
11564 return;
11566 unregister_netdev(priv->prom_net_dev);
11567 free_ieee80211(priv->prom_net_dev);
11569 priv->prom_net_dev = NULL;
11572 #endif
11575 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11576 const struct pci_device_id *ent)
11578 int err = 0;
11579 struct net_device *net_dev;
11580 void __iomem *base;
11581 u32 length, val;
11582 struct ipw_priv *priv;
11583 int i;
11585 net_dev = alloc_ieee80211(sizeof(struct ipw_priv));
11586 if (net_dev == NULL) {
11587 err = -ENOMEM;
11588 goto out;
11591 priv = ieee80211_priv(net_dev);
11592 priv->ieee = netdev_priv(net_dev);
11594 priv->net_dev = net_dev;
11595 priv->pci_dev = pdev;
11596 ipw_debug_level = debug;
11597 spin_lock_init(&priv->irq_lock);
11598 spin_lock_init(&priv->lock);
11599 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11600 INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11602 mutex_init(&priv->mutex);
11603 if (pci_enable_device(pdev)) {
11604 err = -ENODEV;
11605 goto out_free_ieee80211;
11608 pci_set_master(pdev);
11610 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
11611 if (!err)
11612 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
11613 if (err) {
11614 printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11615 goto out_pci_disable_device;
11618 pci_set_drvdata(pdev, priv);
11620 err = pci_request_regions(pdev, DRV_NAME);
11621 if (err)
11622 goto out_pci_disable_device;
11624 /* We disable the RETRY_TIMEOUT register (0x41) to keep
11625 * PCI Tx retries from interfering with C3 CPU state */
11626 pci_read_config_dword(pdev, 0x40, &val);
11627 if ((val & 0x0000ff00) != 0)
11628 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11630 length = pci_resource_len(pdev, 0);
11631 priv->hw_len = length;
11633 base = pci_ioremap_bar(pdev, 0);
11634 if (!base) {
11635 err = -ENODEV;
11636 goto out_pci_release_regions;
11639 priv->hw_base = base;
11640 IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11641 IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11643 err = ipw_setup_deferred_work(priv);
11644 if (err) {
11645 IPW_ERROR("Unable to setup deferred work\n");
11646 goto out_iounmap;
11649 ipw_sw_reset(priv, 1);
11651 err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11652 if (err) {
11653 IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11654 goto out_destroy_workqueue;
11657 SET_NETDEV_DEV(net_dev, &pdev->dev);
11659 mutex_lock(&priv->mutex);
11661 priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11662 priv->ieee->set_security = shim__set_security;
11663 priv->ieee->is_queue_full = ipw_net_is_queue_full;
11665 #ifdef CONFIG_IPW2200_QOS
11666 priv->ieee->is_qos_active = ipw_is_qos_active;
11667 priv->ieee->handle_probe_response = ipw_handle_beacon;
11668 priv->ieee->handle_beacon = ipw_handle_probe_response;
11669 priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11670 #endif /* CONFIG_IPW2200_QOS */
11672 priv->ieee->perfect_rssi = -20;
11673 priv->ieee->worst_rssi = -85;
11675 net_dev->open = ipw_net_open;
11676 net_dev->stop = ipw_net_stop;
11677 net_dev->init = ipw_net_init;
11678 net_dev->get_stats = ipw_net_get_stats;
11679 net_dev->set_multicast_list = ipw_net_set_multicast_list;
11680 net_dev->set_mac_address = ipw_net_set_mac_address;
11681 priv->wireless_data.spy_data = &priv->ieee->spy_data;
11682 net_dev->wireless_data = &priv->wireless_data;
11683 net_dev->wireless_handlers = &ipw_wx_handler_def;
11684 net_dev->ethtool_ops = &ipw_ethtool_ops;
11685 net_dev->irq = pdev->irq;
11686 net_dev->base_addr = (unsigned long)priv->hw_base;
11687 net_dev->mem_start = pci_resource_start(pdev, 0);
11688 net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11690 err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11691 if (err) {
11692 IPW_ERROR("failed to create sysfs device attributes\n");
11693 mutex_unlock(&priv->mutex);
11694 goto out_release_irq;
11697 mutex_unlock(&priv->mutex);
11698 err = register_netdev(net_dev);
11699 if (err) {
11700 IPW_ERROR("failed to register network device\n");
11701 goto out_remove_sysfs;
11704 #ifdef CONFIG_IPW2200_PROMISCUOUS
11705 if (rtap_iface) {
11706 err = ipw_prom_alloc(priv);
11707 if (err) {
11708 IPW_ERROR("Failed to register promiscuous network "
11709 "device (error %d).\n", err);
11710 unregister_netdev(priv->net_dev);
11711 goto out_remove_sysfs;
11714 #endif
11716 printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11717 "channels, %d 802.11a channels)\n",
11718 priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11719 priv->ieee->geo.a_channels);
11721 return 0;
11723 out_remove_sysfs:
11724 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11725 out_release_irq:
11726 free_irq(pdev->irq, priv);
11727 out_destroy_workqueue:
11728 destroy_workqueue(priv->workqueue);
11729 priv->workqueue = NULL;
11730 out_iounmap:
11731 iounmap(priv->hw_base);
11732 out_pci_release_regions:
11733 pci_release_regions(pdev);
11734 out_pci_disable_device:
11735 pci_disable_device(pdev);
11736 pci_set_drvdata(pdev, NULL);
11737 out_free_ieee80211:
11738 free_ieee80211(priv->net_dev);
11739 out:
11740 return err;
11743 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11745 struct ipw_priv *priv = pci_get_drvdata(pdev);
11746 struct list_head *p, *q;
11747 int i;
11749 if (!priv)
11750 return;
11752 mutex_lock(&priv->mutex);
11754 priv->status |= STATUS_EXIT_PENDING;
11755 ipw_down(priv);
11756 sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11758 mutex_unlock(&priv->mutex);
11760 unregister_netdev(priv->net_dev);
11762 if (priv->rxq) {
11763 ipw_rx_queue_free(priv, priv->rxq);
11764 priv->rxq = NULL;
11766 ipw_tx_queue_free(priv);
11768 if (priv->cmdlog) {
11769 kfree(priv->cmdlog);
11770 priv->cmdlog = NULL;
11772 /* ipw_down will ensure that there is no more pending work
11773 * in the workqueue's, so we can safely remove them now. */
11774 cancel_delayed_work(&priv->adhoc_check);
11775 cancel_delayed_work(&priv->gather_stats);
11776 cancel_delayed_work(&priv->request_scan);
11777 cancel_delayed_work(&priv->request_direct_scan);
11778 cancel_delayed_work(&priv->request_passive_scan);
11779 cancel_delayed_work(&priv->scan_event);
11780 cancel_delayed_work(&priv->rf_kill);
11781 cancel_delayed_work(&priv->scan_check);
11782 destroy_workqueue(priv->workqueue);
11783 priv->workqueue = NULL;
11785 /* Free MAC hash list for ADHOC */
11786 for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11787 list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11788 list_del(p);
11789 kfree(list_entry(p, struct ipw_ibss_seq, list));
11793 kfree(priv->error);
11794 priv->error = NULL;
11796 #ifdef CONFIG_IPW2200_PROMISCUOUS
11797 ipw_prom_free(priv);
11798 #endif
11800 free_irq(pdev->irq, priv);
11801 iounmap(priv->hw_base);
11802 pci_release_regions(pdev);
11803 pci_disable_device(pdev);
11804 pci_set_drvdata(pdev, NULL);
11805 free_ieee80211(priv->net_dev);
11806 free_firmware();
11809 #ifdef CONFIG_PM
11810 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11812 struct ipw_priv *priv = pci_get_drvdata(pdev);
11813 struct net_device *dev = priv->net_dev;
11815 printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11817 /* Take down the device; powers it off, etc. */
11818 ipw_down(priv);
11820 /* Remove the PRESENT state of the device */
11821 netif_device_detach(dev);
11823 pci_save_state(pdev);
11824 pci_disable_device(pdev);
11825 pci_set_power_state(pdev, pci_choose_state(pdev, state));
11827 return 0;
11830 static int ipw_pci_resume(struct pci_dev *pdev)
11832 struct ipw_priv *priv = pci_get_drvdata(pdev);
11833 struct net_device *dev = priv->net_dev;
11834 int err;
11835 u32 val;
11837 printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
11839 pci_set_power_state(pdev, PCI_D0);
11840 err = pci_enable_device(pdev);
11841 if (err) {
11842 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
11843 dev->name);
11844 return err;
11846 pci_restore_state(pdev);
11849 * Suspend/Resume resets the PCI configuration space, so we have to
11850 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
11851 * from interfering with C3 CPU state. pci_restore_state won't help
11852 * here since it only restores the first 64 bytes pci config header.
11854 pci_read_config_dword(pdev, 0x40, &val);
11855 if ((val & 0x0000ff00) != 0)
11856 pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11858 /* Set the device back into the PRESENT state; this will also wake
11859 * the queue of needed */
11860 netif_device_attach(dev);
11862 /* Bring the device back up */
11863 queue_work(priv->workqueue, &priv->up);
11865 return 0;
11867 #endif
11869 static void ipw_pci_shutdown(struct pci_dev *pdev)
11871 struct ipw_priv *priv = pci_get_drvdata(pdev);
11873 /* Take down the device; powers it off, etc. */
11874 ipw_down(priv);
11876 pci_disable_device(pdev);
11879 /* driver initialization stuff */
11880 static struct pci_driver ipw_driver = {
11881 .name = DRV_NAME,
11882 .id_table = card_ids,
11883 .probe = ipw_pci_probe,
11884 .remove = __devexit_p(ipw_pci_remove),
11885 #ifdef CONFIG_PM
11886 .suspend = ipw_pci_suspend,
11887 .resume = ipw_pci_resume,
11888 #endif
11889 .shutdown = ipw_pci_shutdown,
11892 static int __init ipw_init(void)
11894 int ret;
11896 printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
11897 printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
11899 ret = pci_register_driver(&ipw_driver);
11900 if (ret) {
11901 IPW_ERROR("Unable to initialize PCI module\n");
11902 return ret;
11905 ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
11906 if (ret) {
11907 IPW_ERROR("Unable to create driver sysfs file\n");
11908 pci_unregister_driver(&ipw_driver);
11909 return ret;
11912 return ret;
11915 static void __exit ipw_exit(void)
11917 driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
11918 pci_unregister_driver(&ipw_driver);
11921 module_param(disable, int, 0444);
11922 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
11924 module_param(associate, int, 0444);
11925 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
11927 module_param(auto_create, int, 0444);
11928 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
11930 module_param(led, int, 0444);
11931 MODULE_PARM_DESC(led, "enable led control on some systems (default 0 off)");
11933 module_param(debug, int, 0444);
11934 MODULE_PARM_DESC(debug, "debug output mask");
11936 module_param(channel, int, 0444);
11937 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
11939 #ifdef CONFIG_IPW2200_PROMISCUOUS
11940 module_param(rtap_iface, int, 0444);
11941 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
11942 #endif
11944 #ifdef CONFIG_IPW2200_QOS
11945 module_param(qos_enable, int, 0444);
11946 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
11948 module_param(qos_burst_enable, int, 0444);
11949 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
11951 module_param(qos_no_ack_mask, int, 0444);
11952 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
11954 module_param(burst_duration_CCK, int, 0444);
11955 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
11957 module_param(burst_duration_OFDM, int, 0444);
11958 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
11959 #endif /* CONFIG_IPW2200_QOS */
11961 #ifdef CONFIG_IPW2200_MONITOR
11962 module_param(mode, int, 0444);
11963 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
11964 #else
11965 module_param(mode, int, 0444);
11966 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
11967 #endif
11969 module_param(bt_coexist, int, 0444);
11970 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
11972 module_param(hwcrypto, int, 0444);
11973 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
11975 module_param(cmdlog, int, 0444);
11976 MODULE_PARM_DESC(cmdlog,
11977 "allocate a ring buffer for logging firmware commands");
11979 module_param(roaming, int, 0444);
11980 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
11982 module_param(antenna, int, 0444);
11983 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
11985 module_exit(ipw_exit);
11986 module_init(ipw_init);