inet: Remove explicit write references to sk/inet in ip_append_data
[linux-2.6/btrfs-unstable.git] / net / ipv4 / ip_output.c
blob1dd5ecc9a27e0771111a2b12a763d7e84cf08ee3
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
12 * Richard Underwood
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
20 * Fixes:
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
24 * no route is found.
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
41 * datagrams.
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
50 #include <linux/mm.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
58 #include <linux/in.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
66 #include <net/snmp.h>
67 #include <net/ip.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
70 #include <net/xfrm.h>
71 #include <linux/skbuff.h>
72 #include <net/sock.h>
73 #include <net/arp.h>
74 #include <net/icmp.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly = IPDEFTTL;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__ void ip_send_check(struct iphdr *iph)
90 iph->check = 0;
91 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
93 EXPORT_SYMBOL(ip_send_check);
95 int __ip_local_out(struct sk_buff *skb)
97 struct iphdr *iph = ip_hdr(skb);
99 iph->tot_len = htons(skb->len);
100 ip_send_check(iph);
101 return nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, skb, NULL,
102 skb_dst(skb)->dev, dst_output);
105 int ip_local_out(struct sk_buff *skb)
107 int err;
109 err = __ip_local_out(skb);
110 if (likely(err == 1))
111 err = dst_output(skb);
113 return err;
115 EXPORT_SYMBOL_GPL(ip_local_out);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
120 skb_reset_mac_header(newskb);
121 __skb_pull(newskb, skb_network_offset(newskb));
122 newskb->pkt_type = PACKET_LOOPBACK;
123 newskb->ip_summed = CHECKSUM_UNNECESSARY;
124 WARN_ON(!skb_dst(newskb));
125 netif_rx_ni(newskb);
126 return 0;
129 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
131 int ttl = inet->uc_ttl;
133 if (ttl < 0)
134 ttl = ip4_dst_hoplimit(dst);
135 return ttl;
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
143 __be32 saddr, __be32 daddr, struct ip_options *opt)
145 struct inet_sock *inet = inet_sk(sk);
146 struct rtable *rt = skb_rtable(skb);
147 struct iphdr *iph;
149 /* Build the IP header. */
150 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
151 skb_reset_network_header(skb);
152 iph = ip_hdr(skb);
153 iph->version = 4;
154 iph->ihl = 5;
155 iph->tos = inet->tos;
156 if (ip_dont_fragment(sk, &rt->dst))
157 iph->frag_off = htons(IP_DF);
158 else
159 iph->frag_off = 0;
160 iph->ttl = ip_select_ttl(inet, &rt->dst);
161 iph->daddr = rt->rt_dst;
162 iph->saddr = rt->rt_src;
163 iph->protocol = sk->sk_protocol;
164 ip_select_ident(iph, &rt->dst, sk);
166 if (opt && opt->optlen) {
167 iph->ihl += opt->optlen>>2;
168 ip_options_build(skb, opt, daddr, rt, 0);
171 skb->priority = sk->sk_priority;
172 skb->mark = sk->sk_mark;
174 /* Send it out. */
175 return ip_local_out(skb);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
179 static inline int ip_finish_output2(struct sk_buff *skb)
181 struct dst_entry *dst = skb_dst(skb);
182 struct rtable *rt = (struct rtable *)dst;
183 struct net_device *dev = dst->dev;
184 unsigned int hh_len = LL_RESERVED_SPACE(dev);
186 if (rt->rt_type == RTN_MULTICAST) {
187 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTMCAST, skb->len);
188 } else if (rt->rt_type == RTN_BROADCAST)
189 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUTBCAST, skb->len);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
193 struct sk_buff *skb2;
195 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
196 if (skb2 == NULL) {
197 kfree_skb(skb);
198 return -ENOMEM;
200 if (skb->sk)
201 skb_set_owner_w(skb2, skb->sk);
202 kfree_skb(skb);
203 skb = skb2;
206 if (dst->hh)
207 return neigh_hh_output(dst->hh, skb);
208 else if (dst->neighbour)
209 return dst->neighbour->output(skb);
211 if (net_ratelimit())
212 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
213 kfree_skb(skb);
214 return -EINVAL;
217 static inline int ip_skb_dst_mtu(struct sk_buff *skb)
219 struct inet_sock *inet = skb->sk ? inet_sk(skb->sk) : NULL;
221 return (inet && inet->pmtudisc == IP_PMTUDISC_PROBE) ?
222 skb_dst(skb)->dev->mtu : dst_mtu(skb_dst(skb));
225 static int ip_finish_output(struct sk_buff *skb)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb)->xfrm != NULL) {
230 IPCB(skb)->flags |= IPSKB_REROUTED;
231 return dst_output(skb);
233 #endif
234 if (skb->len > ip_skb_dst_mtu(skb) && !skb_is_gso(skb))
235 return ip_fragment(skb, ip_finish_output2);
236 else
237 return ip_finish_output2(skb);
240 int ip_mc_output(struct sk_buff *skb)
242 struct sock *sk = skb->sk;
243 struct rtable *rt = skb_rtable(skb);
244 struct net_device *dev = rt->dst.dev;
247 * If the indicated interface is up and running, send the packet.
249 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
251 skb->dev = dev;
252 skb->protocol = htons(ETH_P_IP);
255 * Multicasts are looped back for other local users
258 if (rt->rt_flags&RTCF_MULTICAST) {
259 if (sk_mc_loop(sk)
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
265 to local recipients.
267 This check is duplicated in ip_mr_input at the moment.
270 ((rt->rt_flags & RTCF_LOCAL) ||
271 !(IPCB(skb)->flags & IPSKB_FORWARDED))
272 #endif
274 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
275 if (newskb)
276 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING,
277 newskb, NULL, newskb->dev,
278 ip_dev_loopback_xmit);
281 /* Multicasts with ttl 0 must not go beyond the host */
283 if (ip_hdr(skb)->ttl == 0) {
284 kfree_skb(skb);
285 return 0;
289 if (rt->rt_flags&RTCF_BROADCAST) {
290 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
291 if (newskb)
292 NF_HOOK(NFPROTO_IPV4, NF_INET_POST_ROUTING, newskb,
293 NULL, newskb->dev, ip_dev_loopback_xmit);
296 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL,
297 skb->dev, ip_finish_output,
298 !(IPCB(skb)->flags & IPSKB_REROUTED));
301 int ip_output(struct sk_buff *skb)
303 struct net_device *dev = skb_dst(skb)->dev;
305 IP_UPD_PO_STATS(dev_net(dev), IPSTATS_MIB_OUT, skb->len);
307 skb->dev = dev;
308 skb->protocol = htons(ETH_P_IP);
310 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, skb, NULL, dev,
311 ip_finish_output,
312 !(IPCB(skb)->flags & IPSKB_REROUTED));
315 int ip_queue_xmit(struct sk_buff *skb)
317 struct sock *sk = skb->sk;
318 struct inet_sock *inet = inet_sk(sk);
319 struct ip_options *opt = inet->opt;
320 struct rtable *rt;
321 struct iphdr *iph;
322 int res;
324 /* Skip all of this if the packet is already routed,
325 * f.e. by something like SCTP.
327 rcu_read_lock();
328 rt = skb_rtable(skb);
329 if (rt != NULL)
330 goto packet_routed;
332 /* Make sure we can route this packet. */
333 rt = (struct rtable *)__sk_dst_check(sk, 0);
334 if (rt == NULL) {
335 __be32 daddr;
337 /* Use correct destination address if we have options. */
338 daddr = inet->inet_daddr;
339 if(opt && opt->srr)
340 daddr = opt->faddr;
343 struct flowi fl = { .oif = sk->sk_bound_dev_if,
344 .mark = sk->sk_mark,
345 .fl4_dst = daddr,
346 .fl4_src = inet->inet_saddr,
347 .fl4_tos = RT_CONN_FLAGS(sk),
348 .proto = sk->sk_protocol,
349 .flags = inet_sk_flowi_flags(sk),
350 .fl_ip_sport = inet->inet_sport,
351 .fl_ip_dport = inet->inet_dport };
353 /* If this fails, retransmit mechanism of transport layer will
354 * keep trying until route appears or the connection times
355 * itself out.
357 security_sk_classify_flow(sk, &fl);
358 if (ip_route_output_flow(sock_net(sk), &rt, &fl, sk, 0))
359 goto no_route;
361 sk_setup_caps(sk, &rt->dst);
363 skb_dst_set_noref(skb, &rt->dst);
365 packet_routed:
366 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
367 goto no_route;
369 /* OK, we know where to send it, allocate and build IP header. */
370 skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
371 skb_reset_network_header(skb);
372 iph = ip_hdr(skb);
373 *((__be16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
374 if (ip_dont_fragment(sk, &rt->dst) && !skb->local_df)
375 iph->frag_off = htons(IP_DF);
376 else
377 iph->frag_off = 0;
378 iph->ttl = ip_select_ttl(inet, &rt->dst);
379 iph->protocol = sk->sk_protocol;
380 iph->saddr = rt->rt_src;
381 iph->daddr = rt->rt_dst;
382 /* Transport layer set skb->h.foo itself. */
384 if (opt && opt->optlen) {
385 iph->ihl += opt->optlen >> 2;
386 ip_options_build(skb, opt, inet->inet_daddr, rt, 0);
389 ip_select_ident_more(iph, &rt->dst, sk,
390 (skb_shinfo(skb)->gso_segs ?: 1) - 1);
392 skb->priority = sk->sk_priority;
393 skb->mark = sk->sk_mark;
395 res = ip_local_out(skb);
396 rcu_read_unlock();
397 return res;
399 no_route:
400 rcu_read_unlock();
401 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES);
402 kfree_skb(skb);
403 return -EHOSTUNREACH;
405 EXPORT_SYMBOL(ip_queue_xmit);
408 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
410 to->pkt_type = from->pkt_type;
411 to->priority = from->priority;
412 to->protocol = from->protocol;
413 skb_dst_drop(to);
414 skb_dst_copy(to, from);
415 to->dev = from->dev;
416 to->mark = from->mark;
418 /* Copy the flags to each fragment. */
419 IPCB(to)->flags = IPCB(from)->flags;
421 #ifdef CONFIG_NET_SCHED
422 to->tc_index = from->tc_index;
423 #endif
424 nf_copy(to, from);
425 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
426 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
427 to->nf_trace = from->nf_trace;
428 #endif
429 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
430 to->ipvs_property = from->ipvs_property;
431 #endif
432 skb_copy_secmark(to, from);
436 * This IP datagram is too large to be sent in one piece. Break it up into
437 * smaller pieces (each of size equal to IP header plus
438 * a block of the data of the original IP data part) that will yet fit in a
439 * single device frame, and queue such a frame for sending.
442 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff *))
444 struct iphdr *iph;
445 int ptr;
446 struct net_device *dev;
447 struct sk_buff *skb2;
448 unsigned int mtu, hlen, left, len, ll_rs;
449 int offset;
450 __be16 not_last_frag;
451 struct rtable *rt = skb_rtable(skb);
452 int err = 0;
454 dev = rt->dst.dev;
457 * Point into the IP datagram header.
460 iph = ip_hdr(skb);
462 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
463 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
464 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
465 htonl(ip_skb_dst_mtu(skb)));
466 kfree_skb(skb);
467 return -EMSGSIZE;
471 * Setup starting values.
474 hlen = iph->ihl * 4;
475 mtu = dst_mtu(&rt->dst) - hlen; /* Size of data space */
476 #ifdef CONFIG_BRIDGE_NETFILTER
477 if (skb->nf_bridge)
478 mtu -= nf_bridge_mtu_reduction(skb);
479 #endif
480 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
482 /* When frag_list is given, use it. First, check its validity:
483 * some transformers could create wrong frag_list or break existing
484 * one, it is not prohibited. In this case fall back to copying.
486 * LATER: this step can be merged to real generation of fragments,
487 * we can switch to copy when see the first bad fragment.
489 if (skb_has_frag_list(skb)) {
490 struct sk_buff *frag, *frag2;
491 int first_len = skb_pagelen(skb);
493 if (first_len - hlen > mtu ||
494 ((first_len - hlen) & 7) ||
495 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
496 skb_cloned(skb))
497 goto slow_path;
499 skb_walk_frags(skb, frag) {
500 /* Correct geometry. */
501 if (frag->len > mtu ||
502 ((frag->len & 7) && frag->next) ||
503 skb_headroom(frag) < hlen)
504 goto slow_path_clean;
506 /* Partially cloned skb? */
507 if (skb_shared(frag))
508 goto slow_path_clean;
510 BUG_ON(frag->sk);
511 if (skb->sk) {
512 frag->sk = skb->sk;
513 frag->destructor = sock_wfree;
515 skb->truesize -= frag->truesize;
518 /* Everything is OK. Generate! */
520 err = 0;
521 offset = 0;
522 frag = skb_shinfo(skb)->frag_list;
523 skb_frag_list_init(skb);
524 skb->data_len = first_len - skb_headlen(skb);
525 skb->len = first_len;
526 iph->tot_len = htons(first_len);
527 iph->frag_off = htons(IP_MF);
528 ip_send_check(iph);
530 for (;;) {
531 /* Prepare header of the next frame,
532 * before previous one went down. */
533 if (frag) {
534 frag->ip_summed = CHECKSUM_NONE;
535 skb_reset_transport_header(frag);
536 __skb_push(frag, hlen);
537 skb_reset_network_header(frag);
538 memcpy(skb_network_header(frag), iph, hlen);
539 iph = ip_hdr(frag);
540 iph->tot_len = htons(frag->len);
541 ip_copy_metadata(frag, skb);
542 if (offset == 0)
543 ip_options_fragment(frag);
544 offset += skb->len - hlen;
545 iph->frag_off = htons(offset>>3);
546 if (frag->next != NULL)
547 iph->frag_off |= htons(IP_MF);
548 /* Ready, complete checksum */
549 ip_send_check(iph);
552 err = output(skb);
554 if (!err)
555 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
556 if (err || !frag)
557 break;
559 skb = frag;
560 frag = skb->next;
561 skb->next = NULL;
564 if (err == 0) {
565 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
566 return 0;
569 while (frag) {
570 skb = frag->next;
571 kfree_skb(frag);
572 frag = skb;
574 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
575 return err;
577 slow_path_clean:
578 skb_walk_frags(skb, frag2) {
579 if (frag2 == frag)
580 break;
581 frag2->sk = NULL;
582 frag2->destructor = NULL;
583 skb->truesize += frag2->truesize;
587 slow_path:
588 left = skb->len - hlen; /* Space per frame */
589 ptr = hlen; /* Where to start from */
591 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
592 * we need to make room for the encapsulating header
594 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->dst.dev, nf_bridge_pad(skb));
597 * Fragment the datagram.
600 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
601 not_last_frag = iph->frag_off & htons(IP_MF);
604 * Keep copying data until we run out.
607 while (left > 0) {
608 len = left;
609 /* IF: it doesn't fit, use 'mtu' - the data space left */
610 if (len > mtu)
611 len = mtu;
612 /* IF: we are not sending upto and including the packet end
613 then align the next start on an eight byte boundary */
614 if (len < left) {
615 len &= ~7;
618 * Allocate buffer.
621 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
622 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
623 err = -ENOMEM;
624 goto fail;
628 * Set up data on packet
631 ip_copy_metadata(skb2, skb);
632 skb_reserve(skb2, ll_rs);
633 skb_put(skb2, len + hlen);
634 skb_reset_network_header(skb2);
635 skb2->transport_header = skb2->network_header + hlen;
638 * Charge the memory for the fragment to any owner
639 * it might possess
642 if (skb->sk)
643 skb_set_owner_w(skb2, skb->sk);
646 * Copy the packet header into the new buffer.
649 skb_copy_from_linear_data(skb, skb_network_header(skb2), hlen);
652 * Copy a block of the IP datagram.
654 if (skb_copy_bits(skb, ptr, skb_transport_header(skb2), len))
655 BUG();
656 left -= len;
659 * Fill in the new header fields.
661 iph = ip_hdr(skb2);
662 iph->frag_off = htons((offset >> 3));
664 /* ANK: dirty, but effective trick. Upgrade options only if
665 * the segment to be fragmented was THE FIRST (otherwise,
666 * options are already fixed) and make it ONCE
667 * on the initial skb, so that all the following fragments
668 * will inherit fixed options.
670 if (offset == 0)
671 ip_options_fragment(skb);
674 * Added AC : If we are fragmenting a fragment that's not the
675 * last fragment then keep MF on each bit
677 if (left > 0 || not_last_frag)
678 iph->frag_off |= htons(IP_MF);
679 ptr += len;
680 offset += len;
683 * Put this fragment into the sending queue.
685 iph->tot_len = htons(len + hlen);
687 ip_send_check(iph);
689 err = output(skb2);
690 if (err)
691 goto fail;
693 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGCREATES);
695 kfree_skb(skb);
696 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGOKS);
697 return err;
699 fail:
700 kfree_skb(skb);
701 IP_INC_STATS(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
702 return err;
704 EXPORT_SYMBOL(ip_fragment);
707 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
709 struct iovec *iov = from;
711 if (skb->ip_summed == CHECKSUM_PARTIAL) {
712 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
713 return -EFAULT;
714 } else {
715 __wsum csum = 0;
716 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
717 return -EFAULT;
718 skb->csum = csum_block_add(skb->csum, csum, odd);
720 return 0;
722 EXPORT_SYMBOL(ip_generic_getfrag);
724 static inline __wsum
725 csum_page(struct page *page, int offset, int copy)
727 char *kaddr;
728 __wsum csum;
729 kaddr = kmap(page);
730 csum = csum_partial(kaddr + offset, copy, 0);
731 kunmap(page);
732 return csum;
735 static inline int ip_ufo_append_data(struct sock *sk,
736 struct sk_buff_head *queue,
737 int getfrag(void *from, char *to, int offset, int len,
738 int odd, struct sk_buff *skb),
739 void *from, int length, int hh_len, int fragheaderlen,
740 int transhdrlen, int mtu, unsigned int flags)
742 struct sk_buff *skb;
743 int err;
745 /* There is support for UDP fragmentation offload by network
746 * device, so create one single skb packet containing complete
747 * udp datagram
749 if ((skb = skb_peek_tail(queue)) == NULL) {
750 skb = sock_alloc_send_skb(sk,
751 hh_len + fragheaderlen + transhdrlen + 20,
752 (flags & MSG_DONTWAIT), &err);
754 if (skb == NULL)
755 return err;
757 /* reserve space for Hardware header */
758 skb_reserve(skb, hh_len);
760 /* create space for UDP/IP header */
761 skb_put(skb, fragheaderlen + transhdrlen);
763 /* initialize network header pointer */
764 skb_reset_network_header(skb);
766 /* initialize protocol header pointer */
767 skb->transport_header = skb->network_header + fragheaderlen;
769 skb->ip_summed = CHECKSUM_PARTIAL;
770 skb->csum = 0;
772 /* specify the length of each IP datagram fragment */
773 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
774 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
775 __skb_queue_tail(queue, skb);
778 return skb_append_datato_frags(sk, skb, getfrag, from,
779 (length - transhdrlen));
782 static int __ip_append_data(struct sock *sk, struct sk_buff_head *queue,
783 struct inet_cork *cork,
784 int getfrag(void *from, char *to, int offset,
785 int len, int odd, struct sk_buff *skb),
786 void *from, int length, int transhdrlen,
787 unsigned int flags)
789 struct inet_sock *inet = inet_sk(sk);
790 struct sk_buff *skb;
792 struct ip_options *opt = inet->cork.opt;
793 int hh_len;
794 int exthdrlen;
795 int mtu;
796 int copy;
797 int err;
798 int offset = 0;
799 unsigned int maxfraglen, fragheaderlen;
800 int csummode = CHECKSUM_NONE;
801 struct rtable *rt = (struct rtable *)cork->dst;
803 exthdrlen = transhdrlen ? rt->dst.header_len : 0;
804 length += exthdrlen;
805 transhdrlen += exthdrlen;
806 mtu = inet->cork.fragsize;
808 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
810 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
811 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
813 if (cork->length + length > 0xFFFF - fragheaderlen) {
814 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport,
815 mtu-exthdrlen);
816 return -EMSGSIZE;
820 * transhdrlen > 0 means that this is the first fragment and we wish
821 * it won't be fragmented in the future.
823 if (transhdrlen &&
824 length + fragheaderlen <= mtu &&
825 rt->dst.dev->features & NETIF_F_V4_CSUM &&
826 !exthdrlen)
827 csummode = CHECKSUM_PARTIAL;
829 skb = skb_peek_tail(queue);
831 cork->length += length;
832 if (((length > mtu) || (skb && skb_is_gso(skb))) &&
833 (sk->sk_protocol == IPPROTO_UDP) &&
834 (rt->dst.dev->features & NETIF_F_UFO)) {
835 err = ip_ufo_append_data(sk, queue, getfrag, from, length,
836 hh_len, fragheaderlen, transhdrlen,
837 mtu, flags);
838 if (err)
839 goto error;
840 return 0;
843 /* So, what's going on in the loop below?
845 * We use calculated fragment length to generate chained skb,
846 * each of segments is IP fragment ready for sending to network after
847 * adding appropriate IP header.
850 if (!skb)
851 goto alloc_new_skb;
853 while (length > 0) {
854 /* Check if the remaining data fits into current packet. */
855 copy = mtu - skb->len;
856 if (copy < length)
857 copy = maxfraglen - skb->len;
858 if (copy <= 0) {
859 char *data;
860 unsigned int datalen;
861 unsigned int fraglen;
862 unsigned int fraggap;
863 unsigned int alloclen;
864 struct sk_buff *skb_prev;
865 alloc_new_skb:
866 skb_prev = skb;
867 if (skb_prev)
868 fraggap = skb_prev->len - maxfraglen;
869 else
870 fraggap = 0;
873 * If remaining data exceeds the mtu,
874 * we know we need more fragment(s).
876 datalen = length + fraggap;
877 if (datalen > mtu - fragheaderlen)
878 datalen = maxfraglen - fragheaderlen;
879 fraglen = datalen + fragheaderlen;
881 if ((flags & MSG_MORE) &&
882 !(rt->dst.dev->features&NETIF_F_SG))
883 alloclen = mtu;
884 else
885 alloclen = fraglen;
887 /* The last fragment gets additional space at tail.
888 * Note, with MSG_MORE we overallocate on fragments,
889 * because we have no idea what fragment will be
890 * the last.
892 if (datalen == length + fraggap) {
893 alloclen += rt->dst.trailer_len;
894 /* make sure mtu is not reached */
895 if (datalen > mtu - fragheaderlen - rt->dst.trailer_len)
896 datalen -= ALIGN(rt->dst.trailer_len, 8);
898 if (transhdrlen) {
899 skb = sock_alloc_send_skb(sk,
900 alloclen + hh_len + 15,
901 (flags & MSG_DONTWAIT), &err);
902 } else {
903 skb = NULL;
904 if (atomic_read(&sk->sk_wmem_alloc) <=
905 2 * sk->sk_sndbuf)
906 skb = sock_wmalloc(sk,
907 alloclen + hh_len + 15, 1,
908 sk->sk_allocation);
909 if (unlikely(skb == NULL))
910 err = -ENOBUFS;
911 else
912 /* only the initial fragment is
913 time stamped */
914 cork->tx_flags = 0;
916 if (skb == NULL)
917 goto error;
920 * Fill in the control structures
922 skb->ip_summed = csummode;
923 skb->csum = 0;
924 skb_reserve(skb, hh_len);
925 skb_shinfo(skb)->tx_flags = cork->tx_flags;
928 * Find where to start putting bytes.
930 data = skb_put(skb, fraglen);
931 skb_set_network_header(skb, exthdrlen);
932 skb->transport_header = (skb->network_header +
933 fragheaderlen);
934 data += fragheaderlen;
936 if (fraggap) {
937 skb->csum = skb_copy_and_csum_bits(
938 skb_prev, maxfraglen,
939 data + transhdrlen, fraggap, 0);
940 skb_prev->csum = csum_sub(skb_prev->csum,
941 skb->csum);
942 data += fraggap;
943 pskb_trim_unique(skb_prev, maxfraglen);
946 copy = datalen - transhdrlen - fraggap;
947 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
948 err = -EFAULT;
949 kfree_skb(skb);
950 goto error;
953 offset += copy;
954 length -= datalen - fraggap;
955 transhdrlen = 0;
956 exthdrlen = 0;
957 csummode = CHECKSUM_NONE;
960 * Put the packet on the pending queue.
962 __skb_queue_tail(queue, skb);
963 continue;
966 if (copy > length)
967 copy = length;
969 if (!(rt->dst.dev->features&NETIF_F_SG)) {
970 unsigned int off;
972 off = skb->len;
973 if (getfrag(from, skb_put(skb, copy),
974 offset, copy, off, skb) < 0) {
975 __skb_trim(skb, off);
976 err = -EFAULT;
977 goto error;
979 } else {
980 int i = skb_shinfo(skb)->nr_frags;
981 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
982 struct page *page = cork->page;
983 int off = cork->off;
984 unsigned int left;
986 if (page && (left = PAGE_SIZE - off) > 0) {
987 if (copy >= left)
988 copy = left;
989 if (page != frag->page) {
990 if (i == MAX_SKB_FRAGS) {
991 err = -EMSGSIZE;
992 goto error;
994 get_page(page);
995 skb_fill_page_desc(skb, i, page, off, 0);
996 frag = &skb_shinfo(skb)->frags[i];
998 } else if (i < MAX_SKB_FRAGS) {
999 if (copy > PAGE_SIZE)
1000 copy = PAGE_SIZE;
1001 page = alloc_pages(sk->sk_allocation, 0);
1002 if (page == NULL) {
1003 err = -ENOMEM;
1004 goto error;
1006 cork->page = page;
1007 cork->off = 0;
1009 skb_fill_page_desc(skb, i, page, 0, 0);
1010 frag = &skb_shinfo(skb)->frags[i];
1011 } else {
1012 err = -EMSGSIZE;
1013 goto error;
1015 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1016 err = -EFAULT;
1017 goto error;
1019 cork->off += copy;
1020 frag->size += copy;
1021 skb->len += copy;
1022 skb->data_len += copy;
1023 skb->truesize += copy;
1024 atomic_add(copy, &sk->sk_wmem_alloc);
1026 offset += copy;
1027 length -= copy;
1030 return 0;
1032 error:
1033 cork->length -= length;
1034 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1035 return err;
1038 static int ip_setup_cork(struct sock *sk, struct inet_cork *cork,
1039 struct ipcm_cookie *ipc, struct rtable **rtp)
1041 struct inet_sock *inet = inet_sk(sk);
1042 struct ip_options *opt;
1043 struct rtable *rt;
1046 * setup for corking.
1048 opt = ipc->opt;
1049 if (opt) {
1050 if (cork->opt == NULL) {
1051 cork->opt = kmalloc(sizeof(struct ip_options) + 40,
1052 sk->sk_allocation);
1053 if (unlikely(cork->opt == NULL))
1054 return -ENOBUFS;
1056 memcpy(cork->opt, opt, sizeof(struct ip_options) + opt->optlen);
1057 cork->flags |= IPCORK_OPT;
1058 cork->addr = ipc->addr;
1060 rt = *rtp;
1061 if (unlikely(!rt))
1062 return -EFAULT;
1064 * We steal reference to this route, caller should not release it
1066 *rtp = NULL;
1067 cork->fragsize = inet->pmtudisc == IP_PMTUDISC_PROBE ?
1068 rt->dst.dev->mtu : dst_mtu(rt->dst.path);
1069 cork->dst = &rt->dst;
1070 cork->length = 0;
1071 cork->tx_flags = ipc->tx_flags;
1072 cork->page = NULL;
1073 cork->off = 0;
1075 return 0;
1079 * ip_append_data() and ip_append_page() can make one large IP datagram
1080 * from many pieces of data. Each pieces will be holded on the socket
1081 * until ip_push_pending_frames() is called. Each piece can be a page
1082 * or non-page data.
1084 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1085 * this interface potentially.
1087 * LATER: length must be adjusted by pad at tail, when it is required.
1089 int ip_append_data(struct sock *sk,
1090 int getfrag(void *from, char *to, int offset, int len,
1091 int odd, struct sk_buff *skb),
1092 void *from, int length, int transhdrlen,
1093 struct ipcm_cookie *ipc, struct rtable **rtp,
1094 unsigned int flags)
1096 struct inet_sock *inet = inet_sk(sk);
1097 int err;
1099 if (flags&MSG_PROBE)
1100 return 0;
1102 if (skb_queue_empty(&sk->sk_write_queue)) {
1103 err = ip_setup_cork(sk, &inet->cork, ipc, rtp);
1104 if (err)
1105 return err;
1106 } else {
1107 transhdrlen = 0;
1110 return __ip_append_data(sk, &sk->sk_write_queue, &inet->cork, getfrag,
1111 from, length, transhdrlen, flags);
1114 ssize_t ip_append_page(struct sock *sk, struct page *page,
1115 int offset, size_t size, int flags)
1117 struct inet_sock *inet = inet_sk(sk);
1118 struct sk_buff *skb;
1119 struct rtable *rt;
1120 struct ip_options *opt = NULL;
1121 int hh_len;
1122 int mtu;
1123 int len;
1124 int err;
1125 unsigned int maxfraglen, fragheaderlen, fraggap;
1127 if (inet->hdrincl)
1128 return -EPERM;
1130 if (flags&MSG_PROBE)
1131 return 0;
1133 if (skb_queue_empty(&sk->sk_write_queue))
1134 return -EINVAL;
1136 rt = (struct rtable *)inet->cork.dst;
1137 if (inet->cork.flags & IPCORK_OPT)
1138 opt = inet->cork.opt;
1140 if (!(rt->dst.dev->features&NETIF_F_SG))
1141 return -EOPNOTSUPP;
1143 hh_len = LL_RESERVED_SPACE(rt->dst.dev);
1144 mtu = inet->cork.fragsize;
1146 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1147 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1149 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1150 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->inet_dport, mtu);
1151 return -EMSGSIZE;
1154 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1155 return -EINVAL;
1157 inet->cork.length += size;
1158 if ((size + skb->len > mtu) &&
1159 (sk->sk_protocol == IPPROTO_UDP) &&
1160 (rt->dst.dev->features & NETIF_F_UFO)) {
1161 skb_shinfo(skb)->gso_size = mtu - fragheaderlen;
1162 skb_shinfo(skb)->gso_type = SKB_GSO_UDP;
1166 while (size > 0) {
1167 int i;
1169 if (skb_is_gso(skb))
1170 len = size;
1171 else {
1173 /* Check if the remaining data fits into current packet. */
1174 len = mtu - skb->len;
1175 if (len < size)
1176 len = maxfraglen - skb->len;
1178 if (len <= 0) {
1179 struct sk_buff *skb_prev;
1180 int alloclen;
1182 skb_prev = skb;
1183 fraggap = skb_prev->len - maxfraglen;
1185 alloclen = fragheaderlen + hh_len + fraggap + 15;
1186 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1187 if (unlikely(!skb)) {
1188 err = -ENOBUFS;
1189 goto error;
1193 * Fill in the control structures
1195 skb->ip_summed = CHECKSUM_NONE;
1196 skb->csum = 0;
1197 skb_reserve(skb, hh_len);
1200 * Find where to start putting bytes.
1202 skb_put(skb, fragheaderlen + fraggap);
1203 skb_reset_network_header(skb);
1204 skb->transport_header = (skb->network_header +
1205 fragheaderlen);
1206 if (fraggap) {
1207 skb->csum = skb_copy_and_csum_bits(skb_prev,
1208 maxfraglen,
1209 skb_transport_header(skb),
1210 fraggap, 0);
1211 skb_prev->csum = csum_sub(skb_prev->csum,
1212 skb->csum);
1213 pskb_trim_unique(skb_prev, maxfraglen);
1217 * Put the packet on the pending queue.
1219 __skb_queue_tail(&sk->sk_write_queue, skb);
1220 continue;
1223 i = skb_shinfo(skb)->nr_frags;
1224 if (len > size)
1225 len = size;
1226 if (skb_can_coalesce(skb, i, page, offset)) {
1227 skb_shinfo(skb)->frags[i-1].size += len;
1228 } else if (i < MAX_SKB_FRAGS) {
1229 get_page(page);
1230 skb_fill_page_desc(skb, i, page, offset, len);
1231 } else {
1232 err = -EMSGSIZE;
1233 goto error;
1236 if (skb->ip_summed == CHECKSUM_NONE) {
1237 __wsum csum;
1238 csum = csum_page(page, offset, len);
1239 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1242 skb->len += len;
1243 skb->data_len += len;
1244 skb->truesize += len;
1245 atomic_add(len, &sk->sk_wmem_alloc);
1246 offset += len;
1247 size -= len;
1249 return 0;
1251 error:
1252 inet->cork.length -= size;
1253 IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTDISCARDS);
1254 return err;
1257 static void ip_cork_release(struct inet_cork *cork)
1259 cork->flags &= ~IPCORK_OPT;
1260 kfree(cork->opt);
1261 cork->opt = NULL;
1262 dst_release(cork->dst);
1263 cork->dst = NULL;
1267 * Combined all pending IP fragments on the socket as one IP datagram
1268 * and push them out.
1270 static int __ip_push_pending_frames(struct sock *sk,
1271 struct sk_buff_head *queue,
1272 struct inet_cork *cork)
1274 struct sk_buff *skb, *tmp_skb;
1275 struct sk_buff **tail_skb;
1276 struct inet_sock *inet = inet_sk(sk);
1277 struct net *net = sock_net(sk);
1278 struct ip_options *opt = NULL;
1279 struct rtable *rt = (struct rtable *)cork->dst;
1280 struct iphdr *iph;
1281 __be16 df = 0;
1282 __u8 ttl;
1283 int err = 0;
1285 if ((skb = __skb_dequeue(queue)) == NULL)
1286 goto out;
1287 tail_skb = &(skb_shinfo(skb)->frag_list);
1289 /* move skb->data to ip header from ext header */
1290 if (skb->data < skb_network_header(skb))
1291 __skb_pull(skb, skb_network_offset(skb));
1292 while ((tmp_skb = __skb_dequeue(queue)) != NULL) {
1293 __skb_pull(tmp_skb, skb_network_header_len(skb));
1294 *tail_skb = tmp_skb;
1295 tail_skb = &(tmp_skb->next);
1296 skb->len += tmp_skb->len;
1297 skb->data_len += tmp_skb->len;
1298 skb->truesize += tmp_skb->truesize;
1299 tmp_skb->destructor = NULL;
1300 tmp_skb->sk = NULL;
1303 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1304 * to fragment the frame generated here. No matter, what transforms
1305 * how transforms change size of the packet, it will come out.
1307 if (inet->pmtudisc < IP_PMTUDISC_DO)
1308 skb->local_df = 1;
1310 /* DF bit is set when we want to see DF on outgoing frames.
1311 * If local_df is set too, we still allow to fragment this frame
1312 * locally. */
1313 if (inet->pmtudisc >= IP_PMTUDISC_DO ||
1314 (skb->len <= dst_mtu(&rt->dst) &&
1315 ip_dont_fragment(sk, &rt->dst)))
1316 df = htons(IP_DF);
1318 if (cork->flags & IPCORK_OPT)
1319 opt = cork->opt;
1321 if (rt->rt_type == RTN_MULTICAST)
1322 ttl = inet->mc_ttl;
1323 else
1324 ttl = ip_select_ttl(inet, &rt->dst);
1326 iph = (struct iphdr *)skb->data;
1327 iph->version = 4;
1328 iph->ihl = 5;
1329 if (opt) {
1330 iph->ihl += opt->optlen>>2;
1331 ip_options_build(skb, opt, cork->addr, rt, 0);
1333 iph->tos = inet->tos;
1334 iph->frag_off = df;
1335 ip_select_ident(iph, &rt->dst, sk);
1336 iph->ttl = ttl;
1337 iph->protocol = sk->sk_protocol;
1338 iph->saddr = rt->rt_src;
1339 iph->daddr = rt->rt_dst;
1341 skb->priority = sk->sk_priority;
1342 skb->mark = sk->sk_mark;
1344 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1345 * on dst refcount
1347 cork->dst = NULL;
1348 skb_dst_set(skb, &rt->dst);
1350 if (iph->protocol == IPPROTO_ICMP)
1351 icmp_out_count(net, ((struct icmphdr *)
1352 skb_transport_header(skb))->type);
1354 /* Netfilter gets whole the not fragmented skb. */
1355 err = ip_local_out(skb);
1356 if (err) {
1357 if (err > 0)
1358 err = net_xmit_errno(err);
1359 if (err)
1360 goto error;
1363 out:
1364 ip_cork_release(cork);
1365 return err;
1367 error:
1368 IP_INC_STATS(net, IPSTATS_MIB_OUTDISCARDS);
1369 goto out;
1372 int ip_push_pending_frames(struct sock *sk)
1374 return __ip_push_pending_frames(sk, &sk->sk_write_queue,
1375 &inet_sk(sk)->cork);
1379 * Throw away all pending data on the socket.
1381 static void __ip_flush_pending_frames(struct sock *sk,
1382 struct sk_buff_head *queue,
1383 struct inet_cork *cork)
1385 struct sk_buff *skb;
1387 while ((skb = __skb_dequeue_tail(queue)) != NULL)
1388 kfree_skb(skb);
1390 ip_cork_release(cork);
1393 void ip_flush_pending_frames(struct sock *sk)
1395 __ip_flush_pending_frames(sk, &sk->sk_write_queue, &inet_sk(sk)->cork);
1400 * Fetch data from kernel space and fill in checksum if needed.
1402 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1403 int len, int odd, struct sk_buff *skb)
1405 __wsum csum;
1407 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1408 skb->csum = csum_block_add(skb->csum, csum, odd);
1409 return 0;
1413 * Generic function to send a packet as reply to another packet.
1414 * Used to send TCP resets so far. ICMP should use this function too.
1416 * Should run single threaded per socket because it uses the sock
1417 * structure to pass arguments.
1419 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1420 unsigned int len)
1422 struct inet_sock *inet = inet_sk(sk);
1423 struct {
1424 struct ip_options opt;
1425 char data[40];
1426 } replyopts;
1427 struct ipcm_cookie ipc;
1428 __be32 daddr;
1429 struct rtable *rt = skb_rtable(skb);
1431 if (ip_options_echo(&replyopts.opt, skb))
1432 return;
1434 daddr = ipc.addr = rt->rt_src;
1435 ipc.opt = NULL;
1436 ipc.tx_flags = 0;
1438 if (replyopts.opt.optlen) {
1439 ipc.opt = &replyopts.opt;
1441 if (ipc.opt->srr)
1442 daddr = replyopts.opt.faddr;
1446 struct flowi fl = { .oif = arg->bound_dev_if,
1447 .fl4_dst = daddr,
1448 .fl4_src = rt->rt_spec_dst,
1449 .fl4_tos = RT_TOS(ip_hdr(skb)->tos),
1450 .fl_ip_sport = tcp_hdr(skb)->dest,
1451 .fl_ip_dport = tcp_hdr(skb)->source,
1452 .proto = sk->sk_protocol,
1453 .flags = ip_reply_arg_flowi_flags(arg) };
1454 security_skb_classify_flow(skb, &fl);
1455 if (ip_route_output_key(sock_net(sk), &rt, &fl))
1456 return;
1459 /* And let IP do all the hard work.
1461 This chunk is not reenterable, hence spinlock.
1462 Note that it uses the fact, that this function is called
1463 with locally disabled BH and that sk cannot be already spinlocked.
1465 bh_lock_sock(sk);
1466 inet->tos = ip_hdr(skb)->tos;
1467 sk->sk_priority = skb->priority;
1468 sk->sk_protocol = ip_hdr(skb)->protocol;
1469 sk->sk_bound_dev_if = arg->bound_dev_if;
1470 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1471 &ipc, &rt, MSG_DONTWAIT);
1472 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1473 if (arg->csumoffset >= 0)
1474 *((__sum16 *)skb_transport_header(skb) +
1475 arg->csumoffset) = csum_fold(csum_add(skb->csum,
1476 arg->csum));
1477 skb->ip_summed = CHECKSUM_NONE;
1478 ip_push_pending_frames(sk);
1481 bh_unlock_sock(sk);
1483 ip_rt_put(rt);
1486 void __init ip_init(void)
1488 ip_rt_init();
1489 inet_initpeers();
1491 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1492 igmp_mc_proc_init();
1493 #endif