[JFFS2] Reduce calls to ref_totlen() in jffs2_mark_node_obsolete()
[linux-2.6/btrfs-unstable.git] / fs / jffs2 / fs.c
blob24cb4c688efc9f9257218d7e13148496316c86af
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright (C) 2001-2003 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
10 * $Id: fs.c,v 1.66 2005/09/27 13:17:29 dedekind Exp $
14 #include <linux/capability.h>
15 #include <linux/config.h>
16 #include <linux/kernel.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/list.h>
20 #include <linux/mtd/mtd.h>
21 #include <linux/pagemap.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/vfs.h>
25 #include <linux/crc32.h>
26 #include "nodelist.h"
28 static int jffs2_flash_setup(struct jffs2_sb_info *c);
30 static int jffs2_do_setattr (struct inode *inode, struct iattr *iattr)
32 struct jffs2_full_dnode *old_metadata, *new_metadata;
33 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
34 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
35 struct jffs2_raw_inode *ri;
36 union jffs2_device_node dev;
37 unsigned char *mdata = NULL;
38 int mdatalen = 0;
39 unsigned int ivalid;
40 uint32_t phys_ofs, alloclen;
41 int ret;
42 D1(printk(KERN_DEBUG "jffs2_setattr(): ino #%lu\n", inode->i_ino));
43 ret = inode_change_ok(inode, iattr);
44 if (ret)
45 return ret;
47 /* Special cases - we don't want more than one data node
48 for these types on the medium at any time. So setattr
49 must read the original data associated with the node
50 (i.e. the device numbers or the target name) and write
51 it out again with the appropriate data attached */
52 if (S_ISBLK(inode->i_mode) || S_ISCHR(inode->i_mode)) {
53 /* For these, we don't actually need to read the old node */
54 mdatalen = jffs2_encode_dev(&dev, inode->i_rdev);
55 mdata = (char *)&dev;
56 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of kdev_t\n", mdatalen));
57 } else if (S_ISLNK(inode->i_mode)) {
58 down(&f->sem);
59 mdatalen = f->metadata->size;
60 mdata = kmalloc(f->metadata->size, GFP_USER);
61 if (!mdata) {
62 up(&f->sem);
63 return -ENOMEM;
65 ret = jffs2_read_dnode(c, f, f->metadata, mdata, 0, mdatalen);
66 if (ret) {
67 up(&f->sem);
68 kfree(mdata);
69 return ret;
71 up(&f->sem);
72 D1(printk(KERN_DEBUG "jffs2_setattr(): Writing %d bytes of symlink target\n", mdatalen));
75 ri = jffs2_alloc_raw_inode();
76 if (!ri) {
77 if (S_ISLNK(inode->i_mode))
78 kfree(mdata);
79 return -ENOMEM;
82 ret = jffs2_reserve_space(c, sizeof(*ri) + mdatalen, &phys_ofs, &alloclen,
83 ALLOC_NORMAL, JFFS2_SUMMARY_INODE_SIZE);
84 if (ret) {
85 jffs2_free_raw_inode(ri);
86 if (S_ISLNK(inode->i_mode & S_IFMT))
87 kfree(mdata);
88 return ret;
90 down(&f->sem);
91 ivalid = iattr->ia_valid;
93 ri->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
94 ri->nodetype = cpu_to_je16(JFFS2_NODETYPE_INODE);
95 ri->totlen = cpu_to_je32(sizeof(*ri) + mdatalen);
96 ri->hdr_crc = cpu_to_je32(crc32(0, ri, sizeof(struct jffs2_unknown_node)-4));
98 ri->ino = cpu_to_je32(inode->i_ino);
99 ri->version = cpu_to_je32(++f->highest_version);
101 ri->uid = cpu_to_je16((ivalid & ATTR_UID)?iattr->ia_uid:inode->i_uid);
102 ri->gid = cpu_to_je16((ivalid & ATTR_GID)?iattr->ia_gid:inode->i_gid);
104 if (ivalid & ATTR_MODE)
105 if (iattr->ia_mode & S_ISGID &&
106 !in_group_p(je16_to_cpu(ri->gid)) && !capable(CAP_FSETID))
107 ri->mode = cpu_to_jemode(iattr->ia_mode & ~S_ISGID);
108 else
109 ri->mode = cpu_to_jemode(iattr->ia_mode);
110 else
111 ri->mode = cpu_to_jemode(inode->i_mode);
114 ri->isize = cpu_to_je32((ivalid & ATTR_SIZE)?iattr->ia_size:inode->i_size);
115 ri->atime = cpu_to_je32(I_SEC((ivalid & ATTR_ATIME)?iattr->ia_atime:inode->i_atime));
116 ri->mtime = cpu_to_je32(I_SEC((ivalid & ATTR_MTIME)?iattr->ia_mtime:inode->i_mtime));
117 ri->ctime = cpu_to_je32(I_SEC((ivalid & ATTR_CTIME)?iattr->ia_ctime:inode->i_ctime));
119 ri->offset = cpu_to_je32(0);
120 ri->csize = ri->dsize = cpu_to_je32(mdatalen);
121 ri->compr = JFFS2_COMPR_NONE;
122 if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
123 /* It's an extension. Make it a hole node */
124 ri->compr = JFFS2_COMPR_ZERO;
125 ri->dsize = cpu_to_je32(iattr->ia_size - inode->i_size);
126 ri->offset = cpu_to_je32(inode->i_size);
128 ri->node_crc = cpu_to_je32(crc32(0, ri, sizeof(*ri)-8));
129 if (mdatalen)
130 ri->data_crc = cpu_to_je32(crc32(0, mdata, mdatalen));
131 else
132 ri->data_crc = cpu_to_je32(0);
134 new_metadata = jffs2_write_dnode(c, f, ri, mdata, mdatalen, phys_ofs, ALLOC_NORMAL);
135 if (S_ISLNK(inode->i_mode))
136 kfree(mdata);
138 if (IS_ERR(new_metadata)) {
139 jffs2_complete_reservation(c);
140 jffs2_free_raw_inode(ri);
141 up(&f->sem);
142 return PTR_ERR(new_metadata);
144 /* It worked. Update the inode */
145 inode->i_atime = ITIME(je32_to_cpu(ri->atime));
146 inode->i_ctime = ITIME(je32_to_cpu(ri->ctime));
147 inode->i_mtime = ITIME(je32_to_cpu(ri->mtime));
148 inode->i_mode = jemode_to_cpu(ri->mode);
149 inode->i_uid = je16_to_cpu(ri->uid);
150 inode->i_gid = je16_to_cpu(ri->gid);
153 old_metadata = f->metadata;
155 if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
156 jffs2_truncate_fragtree (c, &f->fragtree, iattr->ia_size);
158 if (ivalid & ATTR_SIZE && inode->i_size < iattr->ia_size) {
159 jffs2_add_full_dnode_to_inode(c, f, new_metadata);
160 inode->i_size = iattr->ia_size;
161 f->metadata = NULL;
162 } else {
163 f->metadata = new_metadata;
165 if (old_metadata) {
166 jffs2_mark_node_obsolete(c, old_metadata->raw);
167 jffs2_free_full_dnode(old_metadata);
169 jffs2_free_raw_inode(ri);
171 up(&f->sem);
172 jffs2_complete_reservation(c);
174 /* We have to do the vmtruncate() without f->sem held, since
175 some pages may be locked and waiting for it in readpage().
176 We are protected from a simultaneous write() extending i_size
177 back past iattr->ia_size, because do_truncate() holds the
178 generic inode semaphore. */
179 if (ivalid & ATTR_SIZE && inode->i_size > iattr->ia_size)
180 vmtruncate(inode, iattr->ia_size);
182 return 0;
185 int jffs2_setattr(struct dentry *dentry, struct iattr *iattr)
187 return jffs2_do_setattr(dentry->d_inode, iattr);
190 int jffs2_statfs(struct super_block *sb, struct kstatfs *buf)
192 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
193 unsigned long avail;
195 buf->f_type = JFFS2_SUPER_MAGIC;
196 buf->f_bsize = 1 << PAGE_SHIFT;
197 buf->f_blocks = c->flash_size >> PAGE_SHIFT;
198 buf->f_files = 0;
199 buf->f_ffree = 0;
200 buf->f_namelen = JFFS2_MAX_NAME_LEN;
202 spin_lock(&c->erase_completion_lock);
203 avail = c->dirty_size + c->free_size;
204 if (avail > c->sector_size * c->resv_blocks_write)
205 avail -= c->sector_size * c->resv_blocks_write;
206 else
207 avail = 0;
208 spin_unlock(&c->erase_completion_lock);
210 buf->f_bavail = buf->f_bfree = avail >> PAGE_SHIFT;
212 return 0;
216 void jffs2_clear_inode (struct inode *inode)
218 /* We can forget about this inode for now - drop all
219 * the nodelists associated with it, etc.
221 struct jffs2_sb_info *c = JFFS2_SB_INFO(inode->i_sb);
222 struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
224 D1(printk(KERN_DEBUG "jffs2_clear_inode(): ino #%lu mode %o\n", inode->i_ino, inode->i_mode));
226 jffs2_do_clear_inode(c, f);
229 void jffs2_read_inode (struct inode *inode)
231 struct jffs2_inode_info *f;
232 struct jffs2_sb_info *c;
233 struct jffs2_raw_inode latest_node;
234 union jffs2_device_node jdev;
235 dev_t rdev = 0;
236 int ret;
238 D1(printk(KERN_DEBUG "jffs2_read_inode(): inode->i_ino == %lu\n", inode->i_ino));
240 f = JFFS2_INODE_INFO(inode);
241 c = JFFS2_SB_INFO(inode->i_sb);
243 jffs2_init_inode_info(f);
244 down(&f->sem);
246 ret = jffs2_do_read_inode(c, f, inode->i_ino, &latest_node);
248 if (ret) {
249 make_bad_inode(inode);
250 up(&f->sem);
251 return;
253 inode->i_mode = jemode_to_cpu(latest_node.mode);
254 inode->i_uid = je16_to_cpu(latest_node.uid);
255 inode->i_gid = je16_to_cpu(latest_node.gid);
256 inode->i_size = je32_to_cpu(latest_node.isize);
257 inode->i_atime = ITIME(je32_to_cpu(latest_node.atime));
258 inode->i_mtime = ITIME(je32_to_cpu(latest_node.mtime));
259 inode->i_ctime = ITIME(je32_to_cpu(latest_node.ctime));
261 inode->i_nlink = f->inocache->nlink;
263 inode->i_blksize = PAGE_SIZE;
264 inode->i_blocks = (inode->i_size + 511) >> 9;
266 switch (inode->i_mode & S_IFMT) {
268 case S_IFLNK:
269 inode->i_op = &jffs2_symlink_inode_operations;
270 break;
272 case S_IFDIR:
274 struct jffs2_full_dirent *fd;
276 for (fd=f->dents; fd; fd = fd->next) {
277 if (fd->type == DT_DIR && fd->ino)
278 inode->i_nlink++;
280 /* and '..' */
281 inode->i_nlink++;
282 /* Root dir gets i_nlink 3 for some reason */
283 if (inode->i_ino == 1)
284 inode->i_nlink++;
286 inode->i_op = &jffs2_dir_inode_operations;
287 inode->i_fop = &jffs2_dir_operations;
288 break;
290 case S_IFREG:
291 inode->i_op = &jffs2_file_inode_operations;
292 inode->i_fop = &jffs2_file_operations;
293 inode->i_mapping->a_ops = &jffs2_file_address_operations;
294 inode->i_mapping->nrpages = 0;
295 break;
297 case S_IFBLK:
298 case S_IFCHR:
299 /* Read the device numbers from the media */
300 if (f->metadata->size != sizeof(jdev.old) &&
301 f->metadata->size != sizeof(jdev.new)) {
302 printk(KERN_NOTICE "Device node has strange size %d\n", f->metadata->size);
303 up(&f->sem);
304 jffs2_do_clear_inode(c, f);
305 make_bad_inode(inode);
306 return;
308 D1(printk(KERN_DEBUG "Reading device numbers from flash\n"));
309 if (jffs2_read_dnode(c, f, f->metadata, (char *)&jdev, 0, f->metadata->size) < 0) {
310 /* Eep */
311 printk(KERN_NOTICE "Read device numbers for inode %lu failed\n", (unsigned long)inode->i_ino);
312 up(&f->sem);
313 jffs2_do_clear_inode(c, f);
314 make_bad_inode(inode);
315 return;
317 if (f->metadata->size == sizeof(jdev.old))
318 rdev = old_decode_dev(je16_to_cpu(jdev.old));
319 else
320 rdev = new_decode_dev(je32_to_cpu(jdev.new));
322 case S_IFSOCK:
323 case S_IFIFO:
324 inode->i_op = &jffs2_file_inode_operations;
325 init_special_inode(inode, inode->i_mode, rdev);
326 break;
328 default:
329 printk(KERN_WARNING "jffs2_read_inode(): Bogus imode %o for ino %lu\n", inode->i_mode, (unsigned long)inode->i_ino);
332 up(&f->sem);
334 D1(printk(KERN_DEBUG "jffs2_read_inode() returning\n"));
337 void jffs2_dirty_inode(struct inode *inode)
339 struct iattr iattr;
341 if (!(inode->i_state & I_DIRTY_DATASYNC)) {
342 D2(printk(KERN_DEBUG "jffs2_dirty_inode() not calling setattr() for ino #%lu\n", inode->i_ino));
343 return;
346 D1(printk(KERN_DEBUG "jffs2_dirty_inode() calling setattr() for ino #%lu\n", inode->i_ino));
348 iattr.ia_valid = ATTR_MODE|ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_MTIME|ATTR_CTIME;
349 iattr.ia_mode = inode->i_mode;
350 iattr.ia_uid = inode->i_uid;
351 iattr.ia_gid = inode->i_gid;
352 iattr.ia_atime = inode->i_atime;
353 iattr.ia_mtime = inode->i_mtime;
354 iattr.ia_ctime = inode->i_ctime;
356 jffs2_do_setattr(inode, &iattr);
359 int jffs2_remount_fs (struct super_block *sb, int *flags, char *data)
361 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
363 if (c->flags & JFFS2_SB_FLAG_RO && !(sb->s_flags & MS_RDONLY))
364 return -EROFS;
366 /* We stop if it was running, then restart if it needs to.
367 This also catches the case where it was stopped and this
368 is just a remount to restart it.
369 Flush the writebuffer, if neccecary, else we loose it */
370 if (!(sb->s_flags & MS_RDONLY)) {
371 jffs2_stop_garbage_collect_thread(c);
372 down(&c->alloc_sem);
373 jffs2_flush_wbuf_pad(c);
374 up(&c->alloc_sem);
377 if (!(*flags & MS_RDONLY))
378 jffs2_start_garbage_collect_thread(c);
380 *flags |= MS_NOATIME;
382 return 0;
385 void jffs2_write_super (struct super_block *sb)
387 struct jffs2_sb_info *c = JFFS2_SB_INFO(sb);
388 sb->s_dirt = 0;
390 if (sb->s_flags & MS_RDONLY)
391 return;
393 D1(printk(KERN_DEBUG "jffs2_write_super()\n"));
394 jffs2_garbage_collect_trigger(c);
395 jffs2_erase_pending_blocks(c, 0);
396 jffs2_flush_wbuf_gc(c, 0);
400 /* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
401 fill in the raw_inode while you're at it. */
402 struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri)
404 struct inode *inode;
405 struct super_block *sb = dir_i->i_sb;
406 struct jffs2_sb_info *c;
407 struct jffs2_inode_info *f;
408 int ret;
410 D1(printk(KERN_DEBUG "jffs2_new_inode(): dir_i %ld, mode 0x%x\n", dir_i->i_ino, mode));
412 c = JFFS2_SB_INFO(sb);
414 inode = new_inode(sb);
416 if (!inode)
417 return ERR_PTR(-ENOMEM);
419 f = JFFS2_INODE_INFO(inode);
420 jffs2_init_inode_info(f);
421 down(&f->sem);
423 memset(ri, 0, sizeof(*ri));
424 /* Set OS-specific defaults for new inodes */
425 ri->uid = cpu_to_je16(current->fsuid);
427 if (dir_i->i_mode & S_ISGID) {
428 ri->gid = cpu_to_je16(dir_i->i_gid);
429 if (S_ISDIR(mode))
430 mode |= S_ISGID;
431 } else {
432 ri->gid = cpu_to_je16(current->fsgid);
434 ri->mode = cpu_to_jemode(mode);
435 ret = jffs2_do_new_inode (c, f, mode, ri);
436 if (ret) {
437 make_bad_inode(inode);
438 iput(inode);
439 return ERR_PTR(ret);
441 inode->i_nlink = 1;
442 inode->i_ino = je32_to_cpu(ri->ino);
443 inode->i_mode = jemode_to_cpu(ri->mode);
444 inode->i_gid = je16_to_cpu(ri->gid);
445 inode->i_uid = je16_to_cpu(ri->uid);
446 inode->i_atime = inode->i_ctime = inode->i_mtime = CURRENT_TIME_SEC;
447 ri->atime = ri->mtime = ri->ctime = cpu_to_je32(I_SEC(inode->i_mtime));
449 inode->i_blksize = PAGE_SIZE;
450 inode->i_blocks = 0;
451 inode->i_size = 0;
453 insert_inode_hash(inode);
455 return inode;
459 int jffs2_do_fill_super(struct super_block *sb, void *data, int silent)
461 struct jffs2_sb_info *c;
462 struct inode *root_i;
463 int ret;
464 size_t blocks;
466 c = JFFS2_SB_INFO(sb);
468 #ifndef CONFIG_JFFS2_FS_WRITEBUFFER
469 if (c->mtd->type == MTD_NANDFLASH) {
470 printk(KERN_ERR "jffs2: Cannot operate on NAND flash unless jffs2 NAND support is compiled in.\n");
471 return -EINVAL;
473 if (c->mtd->type == MTD_DATAFLASH) {
474 printk(KERN_ERR "jffs2: Cannot operate on DataFlash unless jffs2 DataFlash support is compiled in.\n");
475 return -EINVAL;
477 #endif
479 c->flash_size = c->mtd->size;
480 c->sector_size = c->mtd->erasesize;
481 blocks = c->flash_size / c->sector_size;
484 * Size alignment check
486 if ((c->sector_size * blocks) != c->flash_size) {
487 c->flash_size = c->sector_size * blocks;
488 printk(KERN_INFO "jffs2: Flash size not aligned to erasesize, reducing to %dKiB\n",
489 c->flash_size / 1024);
492 if (c->flash_size < 5*c->sector_size) {
493 printk(KERN_ERR "jffs2: Too few erase blocks (%d)\n", c->flash_size / c->sector_size);
494 return -EINVAL;
497 c->cleanmarker_size = sizeof(struct jffs2_unknown_node);
499 /* NAND (or other bizarre) flash... do setup accordingly */
500 ret = jffs2_flash_setup(c);
501 if (ret)
502 return ret;
504 c->inocache_list = kmalloc(INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *), GFP_KERNEL);
505 if (!c->inocache_list) {
506 ret = -ENOMEM;
507 goto out_wbuf;
509 memset(c->inocache_list, 0, INOCACHE_HASHSIZE * sizeof(struct jffs2_inode_cache *));
511 if ((ret = jffs2_do_mount_fs(c)))
512 goto out_inohash;
514 ret = -EINVAL;
516 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): Getting root inode\n"));
517 root_i = iget(sb, 1);
518 if (is_bad_inode(root_i)) {
519 D1(printk(KERN_WARNING "get root inode failed\n"));
520 goto out_root_i;
523 D1(printk(KERN_DEBUG "jffs2_do_fill_super(): d_alloc_root()\n"));
524 sb->s_root = d_alloc_root(root_i);
525 if (!sb->s_root)
526 goto out_root_i;
528 sb->s_maxbytes = 0xFFFFFFFF;
529 sb->s_blocksize = PAGE_CACHE_SIZE;
530 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
531 sb->s_magic = JFFS2_SUPER_MAGIC;
532 if (!(sb->s_flags & MS_RDONLY))
533 jffs2_start_garbage_collect_thread(c);
534 return 0;
536 out_root_i:
537 iput(root_i);
538 jffs2_free_ino_caches(c);
539 jffs2_free_raw_node_refs(c);
540 if (jffs2_blocks_use_vmalloc(c))
541 vfree(c->blocks);
542 else
543 kfree(c->blocks);
544 out_inohash:
545 kfree(c->inocache_list);
546 out_wbuf:
547 jffs2_flash_cleanup(c);
549 return ret;
552 void jffs2_gc_release_inode(struct jffs2_sb_info *c,
553 struct jffs2_inode_info *f)
555 iput(OFNI_EDONI_2SFFJ(f));
558 struct jffs2_inode_info *jffs2_gc_fetch_inode(struct jffs2_sb_info *c,
559 int inum, int nlink)
561 struct inode *inode;
562 struct jffs2_inode_cache *ic;
563 if (!nlink) {
564 /* The inode has zero nlink but its nodes weren't yet marked
565 obsolete. This has to be because we're still waiting for
566 the final (close() and) iput() to happen.
568 There's a possibility that the final iput() could have
569 happened while we were contemplating. In order to ensure
570 that we don't cause a new read_inode() (which would fail)
571 for the inode in question, we use ilookup() in this case
572 instead of iget().
574 The nlink can't _become_ zero at this point because we're
575 holding the alloc_sem, and jffs2_do_unlink() would also
576 need that while decrementing nlink on any inode.
578 inode = ilookup(OFNI_BS_2SFFJ(c), inum);
579 if (!inode) {
580 D1(printk(KERN_DEBUG "ilookup() failed for ino #%u; inode is probably deleted.\n",
581 inum));
583 spin_lock(&c->inocache_lock);
584 ic = jffs2_get_ino_cache(c, inum);
585 if (!ic) {
586 D1(printk(KERN_DEBUG "Inode cache for ino #%u is gone.\n", inum));
587 spin_unlock(&c->inocache_lock);
588 return NULL;
590 if (ic->state != INO_STATE_CHECKEDABSENT) {
591 /* Wait for progress. Don't just loop */
592 D1(printk(KERN_DEBUG "Waiting for ino #%u in state %d\n",
593 ic->ino, ic->state));
594 sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
595 } else {
596 spin_unlock(&c->inocache_lock);
599 return NULL;
601 } else {
602 /* Inode has links to it still; they're not going away because
603 jffs2_do_unlink() would need the alloc_sem and we have it.
604 Just iget() it, and if read_inode() is necessary that's OK.
606 inode = iget(OFNI_BS_2SFFJ(c), inum);
607 if (!inode)
608 return ERR_PTR(-ENOMEM);
610 if (is_bad_inode(inode)) {
611 printk(KERN_NOTICE "Eep. read_inode() failed for ino #%u. nlink %d\n",
612 inum, nlink);
613 /* NB. This will happen again. We need to do something appropriate here. */
614 iput(inode);
615 return ERR_PTR(-EIO);
618 return JFFS2_INODE_INFO(inode);
621 unsigned char *jffs2_gc_fetch_page(struct jffs2_sb_info *c,
622 struct jffs2_inode_info *f,
623 unsigned long offset,
624 unsigned long *priv)
626 struct inode *inode = OFNI_EDONI_2SFFJ(f);
627 struct page *pg;
629 pg = read_cache_page(inode->i_mapping, offset >> PAGE_CACHE_SHIFT,
630 (void *)jffs2_do_readpage_unlock, inode);
631 if (IS_ERR(pg))
632 return (void *)pg;
634 *priv = (unsigned long)pg;
635 return kmap(pg);
638 void jffs2_gc_release_page(struct jffs2_sb_info *c,
639 unsigned char *ptr,
640 unsigned long *priv)
642 struct page *pg = (void *)*priv;
644 kunmap(pg);
645 page_cache_release(pg);
648 static int jffs2_flash_setup(struct jffs2_sb_info *c) {
649 int ret = 0;
651 if (jffs2_cleanmarker_oob(c)) {
652 /* NAND flash... do setup accordingly */
653 ret = jffs2_nand_flash_setup(c);
654 if (ret)
655 return ret;
658 /* add setups for other bizarre flashes here... */
659 if (jffs2_nor_ecc(c)) {
660 ret = jffs2_nor_ecc_flash_setup(c);
661 if (ret)
662 return ret;
665 /* and Dataflash */
666 if (jffs2_dataflash(c)) {
667 ret = jffs2_dataflash_setup(c);
668 if (ret)
669 return ret;
672 /* and Intel "Sibley" flash */
673 if (jffs2_nor_wbuf_flash(c)) {
674 ret = jffs2_nor_wbuf_flash_setup(c);
675 if (ret)
676 return ret;
679 return ret;
682 void jffs2_flash_cleanup(struct jffs2_sb_info *c) {
684 if (jffs2_cleanmarker_oob(c)) {
685 jffs2_nand_flash_cleanup(c);
688 /* add cleanups for other bizarre flashes here... */
689 if (jffs2_nor_ecc(c)) {
690 jffs2_nor_ecc_flash_cleanup(c);
693 /* and DataFlash */
694 if (jffs2_dataflash(c)) {
695 jffs2_dataflash_cleanup(c);
698 /* and Intel "Sibley" flash */
699 if (jffs2_nor_wbuf_flash(c)) {
700 jffs2_nor_wbuf_flash_cleanup(c);