mm/compaction: clean up unused code lines
[linux-2.6/btrfs-unstable.git] / mm / memory.c
blob0897830011f3c3a0bc6694235579d234f98f58c8
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
72 #include "internal.h"
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
94 void * high_memory;
96 EXPORT_SYMBOL(high_memory);
99 * Randomize the address space (stacks, mmaps, brk, etc.).
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
107 #else
109 #endif
111 static int __init disable_randmaps(char *s)
113 randomize_va_space = 0;
114 return 1;
116 __setup("norandmaps", disable_randmaps);
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
124 static int __init init_zero_pfn(void)
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
129 core_initcall(init_zero_pfn);
132 #if defined(SPLIT_RSS_COUNTING)
134 void sync_mm_rss(struct mm_struct *mm)
136 int i;
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
144 current->rss_stat.events = 0;
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
149 struct task_struct *task = current;
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
168 #else /* SPLIT_RSS_COUNTING */
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
173 static void check_sync_rss_stat(struct task_struct *task)
177 #endif /* SPLIT_RSS_COUNTING */
179 #ifdef HAVE_GENERIC_MMU_GATHER
181 static int tlb_next_batch(struct mmu_gather *tlb)
183 struct mmu_gather_batch *batch;
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
203 tlb->active->next = batch;
204 tlb->active = batch;
206 return 1;
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
216 tlb->mm = mm;
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
220 tlb->need_flush_all = 0;
221 tlb->start = start;
222 tlb->end = end;
223 tlb->need_flush = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
237 tlb->need_flush = 0;
238 tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb);
241 #endif
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
246 struct mmu_gather_batch *batch;
248 for (batch = &tlb->local; batch; batch = batch->next) {
249 free_pages_and_swap_cache(batch->pages, batch->nr);
250 batch->nr = 0;
252 tlb->active = &tlb->local;
255 void tlb_flush_mmu(struct mmu_gather *tlb)
257 if (!tlb->need_flush)
258 return;
259 tlb_flush_mmu_tlbonly(tlb);
260 tlb_flush_mmu_free(tlb);
263 /* tlb_finish_mmu
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
269 struct mmu_gather_batch *batch, *next;
271 tlb_flush_mmu(tlb);
273 /* keep the page table cache within bounds */
274 check_pgt_cache();
276 for (batch = tlb->local.next; batch; batch = next) {
277 next = batch->next;
278 free_pages((unsigned long)batch, 0);
280 tlb->local.next = NULL;
283 /* __tlb_remove_page
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
291 struct mmu_gather_batch *batch;
293 VM_BUG_ON(!tlb->need_flush);
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
300 batch = tlb->active;
302 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
304 return batch->max - batch->nr;
307 #endif /* HAVE_GENERIC_MMU_GATHER */
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 * See the comment near struct mmu_table_batch.
315 static void tlb_remove_table_smp_sync(void *arg)
317 /* Simply deliver the interrupt */
320 static void tlb_remove_table_one(void *table)
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
333 static void tlb_remove_table_rcu(struct rcu_head *head)
335 struct mmu_table_batch *batch;
336 int i;
338 batch = container_of(head, struct mmu_table_batch, rcu);
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
343 free_page((unsigned long)batch);
346 void tlb_table_flush(struct mmu_gather *tlb)
348 struct mmu_table_batch **batch = &tlb->batch;
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
358 struct mmu_table_batch **batch = &tlb->batch;
360 tlb->need_flush = 1;
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
377 (*batch)->nr = 0;
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
393 pgtable_t token = pmd_pgtable(*pmd);
394 pmd_clear(pmd);
395 pte_free_tlb(tlb, token, addr);
396 atomic_long_dec(&tlb->mm->nr_ptes);
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
403 pmd_t *pmd;
404 unsigned long next;
405 unsigned long start;
407 start = addr;
408 pmd = pmd_offset(pud, addr);
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
413 free_pte_range(tlb, pmd, addr);
414 } while (pmd++, addr = next, addr != end);
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
424 if (end - 1 > ceiling - 1)
425 return;
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
429 pmd_free_tlb(tlb, pmd, start);
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
436 pud_t *pud;
437 unsigned long next;
438 unsigned long start;
440 start = addr;
441 pud = pud_offset(pgd, addr);
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 } while (pud++, addr = next, addr != end);
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
457 if (end - 1 > ceiling - 1)
458 return;
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
462 pud_free_tlb(tlb, pud, start);
466 * This function frees user-level page tables of a process.
468 void free_pgd_range(struct mmu_gather *tlb,
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
472 pgd_t *pgd;
473 unsigned long next;
476 * The next few lines have given us lots of grief...
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
517 pgd = pgd_offset(tlb->mm, addr);
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 } while (pgd++, addr = next, addr != end);
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 unsigned long floor, unsigned long ceiling)
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
537 unlink_anon_vmas(vma);
538 unlink_file_vma(vma);
540 if (is_vm_hugetlb_page(vma)) {
541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 floor, next? next->vm_start: ceiling);
543 } else {
545 * Optimization: gather nearby vmas into one call down
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 && !is_vm_hugetlb_page(next)) {
549 vma = next;
550 next = vma->vm_next;
551 unlink_anon_vmas(vma);
552 unlink_file_vma(vma);
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
557 vma = next;
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
564 spinlock_t *ptl;
565 pgtable_t new = pte_alloc_one(mm, address);
566 int wait_split_huge_page;
567 if (!new)
568 return -ENOMEM;
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
585 ptl = pmd_lock(mm, pmd);
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
588 atomic_long_inc(&mm->nr_ptes);
589 pmd_populate(mm, pmd, new);
590 new = NULL;
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
593 spin_unlock(ptl);
594 if (new)
595 pte_free(mm, new);
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
598 return 0;
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
607 smp_wmb(); /* See comment in __pte_alloc */
609 spin_lock(&init_mm.page_table_lock);
610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm, pmd, new);
612 new = NULL;
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
615 spin_unlock(&init_mm.page_table_lock);
616 if (new)
617 pte_free_kernel(&init_mm, new);
618 return 0;
621 static inline void init_rss_vec(int *rss)
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
628 int i;
630 if (current->mm == mm)
631 sync_mm_rss(mm);
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
642 * The calling function must still handle the error.
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
665 if (nr_unshown) {
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
668 nr_unshown);
669 nr_unshown = 0;
671 nr_shown = 0;
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683 if (page)
684 dump_page(page, "bad pte");
685 printk(KERN_ALERT
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
691 if (vma->vm_ops)
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
694 if (vma->vm_file)
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
697 dump_stack();
698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 static inline bool is_cow_mapping(vm_flags_t flags)
703 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
707 * vm_normal_page -- This function gets the "struct page" associated with a pte.
709 * "Special" mappings do not wish to be associated with a "struct page" (either
710 * it doesn't exist, or it exists but they don't want to touch it). In this
711 * case, NULL is returned here. "Normal" mappings do have a struct page.
713 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
714 * pte bit, in which case this function is trivial. Secondly, an architecture
715 * may not have a spare pte bit, which requires a more complicated scheme,
716 * described below.
718 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
719 * special mapping (even if there are underlying and valid "struct pages").
720 * COWed pages of a VM_PFNMAP are always normal.
722 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
723 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
724 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
725 * mapping will always honor the rule
727 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
729 * And for normal mappings this is false.
731 * This restricts such mappings to be a linear translation from virtual address
732 * to pfn. To get around this restriction, we allow arbitrary mappings so long
733 * as the vma is not a COW mapping; in that case, we know that all ptes are
734 * special (because none can have been COWed).
737 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
739 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
740 * page" backing, however the difference is that _all_ pages with a struct
741 * page (that is, those where pfn_valid is true) are refcounted and considered
742 * normal pages by the VM. The disadvantage is that pages are refcounted
743 * (which can be slower and simply not an option for some PFNMAP users). The
744 * advantage is that we don't have to follow the strict linearity rule of
745 * PFNMAP mappings in order to support COWable mappings.
748 #ifdef __HAVE_ARCH_PTE_SPECIAL
749 # define HAVE_PTE_SPECIAL 1
750 #else
751 # define HAVE_PTE_SPECIAL 0
752 #endif
753 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
754 pte_t pte)
756 unsigned long pfn = pte_pfn(pte);
758 if (HAVE_PTE_SPECIAL) {
759 if (likely(!pte_special(pte) || pte_numa(pte)))
760 goto check_pfn;
761 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
762 return NULL;
763 if (!is_zero_pfn(pfn))
764 print_bad_pte(vma, addr, pte, NULL);
765 return NULL;
768 /* !HAVE_PTE_SPECIAL case follows: */
770 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
771 if (vma->vm_flags & VM_MIXEDMAP) {
772 if (!pfn_valid(pfn))
773 return NULL;
774 goto out;
775 } else {
776 unsigned long off;
777 off = (addr - vma->vm_start) >> PAGE_SHIFT;
778 if (pfn == vma->vm_pgoff + off)
779 return NULL;
780 if (!is_cow_mapping(vma->vm_flags))
781 return NULL;
785 check_pfn:
786 if (unlikely(pfn > highest_memmap_pfn)) {
787 print_bad_pte(vma, addr, pte, NULL);
788 return NULL;
791 if (is_zero_pfn(pfn))
792 return NULL;
795 * NOTE! We still have PageReserved() pages in the page tables.
796 * eg. VDSO mappings can cause them to exist.
798 out:
799 return pfn_to_page(pfn);
803 * copy one vm_area from one task to the other. Assumes the page tables
804 * already present in the new task to be cleared in the whole range
805 * covered by this vma.
808 static inline unsigned long
809 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
810 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
811 unsigned long addr, int *rss)
813 unsigned long vm_flags = vma->vm_flags;
814 pte_t pte = *src_pte;
815 struct page *page;
817 /* pte contains position in swap or file, so copy. */
818 if (unlikely(!pte_present(pte))) {
819 if (!pte_file(pte)) {
820 swp_entry_t entry = pte_to_swp_entry(pte);
822 if (swap_duplicate(entry) < 0)
823 return entry.val;
825 /* make sure dst_mm is on swapoff's mmlist. */
826 if (unlikely(list_empty(&dst_mm->mmlist))) {
827 spin_lock(&mmlist_lock);
828 if (list_empty(&dst_mm->mmlist))
829 list_add(&dst_mm->mmlist,
830 &src_mm->mmlist);
831 spin_unlock(&mmlist_lock);
833 if (likely(!non_swap_entry(entry)))
834 rss[MM_SWAPENTS]++;
835 else if (is_migration_entry(entry)) {
836 page = migration_entry_to_page(entry);
838 if (PageAnon(page))
839 rss[MM_ANONPAGES]++;
840 else
841 rss[MM_FILEPAGES]++;
843 if (is_write_migration_entry(entry) &&
844 is_cow_mapping(vm_flags)) {
846 * COW mappings require pages in both
847 * parent and child to be set to read.
849 make_migration_entry_read(&entry);
850 pte = swp_entry_to_pte(entry);
851 if (pte_swp_soft_dirty(*src_pte))
852 pte = pte_swp_mksoft_dirty(pte);
853 set_pte_at(src_mm, addr, src_pte, pte);
857 goto out_set_pte;
861 * If it's a COW mapping, write protect it both
862 * in the parent and the child
864 if (is_cow_mapping(vm_flags)) {
865 ptep_set_wrprotect(src_mm, addr, src_pte);
866 pte = pte_wrprotect(pte);
870 * If it's a shared mapping, mark it clean in
871 * the child
873 if (vm_flags & VM_SHARED)
874 pte = pte_mkclean(pte);
875 pte = pte_mkold(pte);
877 page = vm_normal_page(vma, addr, pte);
878 if (page) {
879 get_page(page);
880 page_dup_rmap(page);
881 if (PageAnon(page))
882 rss[MM_ANONPAGES]++;
883 else
884 rss[MM_FILEPAGES]++;
887 out_set_pte:
888 set_pte_at(dst_mm, addr, dst_pte, pte);
889 return 0;
892 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
893 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
894 unsigned long addr, unsigned long end)
896 pte_t *orig_src_pte, *orig_dst_pte;
897 pte_t *src_pte, *dst_pte;
898 spinlock_t *src_ptl, *dst_ptl;
899 int progress = 0;
900 int rss[NR_MM_COUNTERS];
901 swp_entry_t entry = (swp_entry_t){0};
903 again:
904 init_rss_vec(rss);
906 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
907 if (!dst_pte)
908 return -ENOMEM;
909 src_pte = pte_offset_map(src_pmd, addr);
910 src_ptl = pte_lockptr(src_mm, src_pmd);
911 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
912 orig_src_pte = src_pte;
913 orig_dst_pte = dst_pte;
914 arch_enter_lazy_mmu_mode();
916 do {
918 * We are holding two locks at this point - either of them
919 * could generate latencies in another task on another CPU.
921 if (progress >= 32) {
922 progress = 0;
923 if (need_resched() ||
924 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
925 break;
927 if (pte_none(*src_pte)) {
928 progress++;
929 continue;
931 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
932 vma, addr, rss);
933 if (entry.val)
934 break;
935 progress += 8;
936 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
938 arch_leave_lazy_mmu_mode();
939 spin_unlock(src_ptl);
940 pte_unmap(orig_src_pte);
941 add_mm_rss_vec(dst_mm, rss);
942 pte_unmap_unlock(orig_dst_pte, dst_ptl);
943 cond_resched();
945 if (entry.val) {
946 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
947 return -ENOMEM;
948 progress = 0;
950 if (addr != end)
951 goto again;
952 return 0;
955 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
957 unsigned long addr, unsigned long end)
959 pmd_t *src_pmd, *dst_pmd;
960 unsigned long next;
962 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
963 if (!dst_pmd)
964 return -ENOMEM;
965 src_pmd = pmd_offset(src_pud, addr);
966 do {
967 next = pmd_addr_end(addr, end);
968 if (pmd_trans_huge(*src_pmd)) {
969 int err;
970 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
971 err = copy_huge_pmd(dst_mm, src_mm,
972 dst_pmd, src_pmd, addr, vma);
973 if (err == -ENOMEM)
974 return -ENOMEM;
975 if (!err)
976 continue;
977 /* fall through */
979 if (pmd_none_or_clear_bad(src_pmd))
980 continue;
981 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
982 vma, addr, next))
983 return -ENOMEM;
984 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
985 return 0;
988 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
989 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
990 unsigned long addr, unsigned long end)
992 pud_t *src_pud, *dst_pud;
993 unsigned long next;
995 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
996 if (!dst_pud)
997 return -ENOMEM;
998 src_pud = pud_offset(src_pgd, addr);
999 do {
1000 next = pud_addr_end(addr, end);
1001 if (pud_none_or_clear_bad(src_pud))
1002 continue;
1003 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1004 vma, addr, next))
1005 return -ENOMEM;
1006 } while (dst_pud++, src_pud++, addr = next, addr != end);
1007 return 0;
1010 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1011 struct vm_area_struct *vma)
1013 pgd_t *src_pgd, *dst_pgd;
1014 unsigned long next;
1015 unsigned long addr = vma->vm_start;
1016 unsigned long end = vma->vm_end;
1017 unsigned long mmun_start; /* For mmu_notifiers */
1018 unsigned long mmun_end; /* For mmu_notifiers */
1019 bool is_cow;
1020 int ret;
1023 * Don't copy ptes where a page fault will fill them correctly.
1024 * Fork becomes much lighter when there are big shared or private
1025 * readonly mappings. The tradeoff is that copy_page_range is more
1026 * efficient than faulting.
1028 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1029 VM_PFNMAP | VM_MIXEDMAP))) {
1030 if (!vma->anon_vma)
1031 return 0;
1034 if (is_vm_hugetlb_page(vma))
1035 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1037 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1039 * We do not free on error cases below as remove_vma
1040 * gets called on error from higher level routine
1042 ret = track_pfn_copy(vma);
1043 if (ret)
1044 return ret;
1048 * We need to invalidate the secondary MMU mappings only when
1049 * there could be a permission downgrade on the ptes of the
1050 * parent mm. And a permission downgrade will only happen if
1051 * is_cow_mapping() returns true.
1053 is_cow = is_cow_mapping(vma->vm_flags);
1054 mmun_start = addr;
1055 mmun_end = end;
1056 if (is_cow)
1057 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1058 mmun_end);
1060 ret = 0;
1061 dst_pgd = pgd_offset(dst_mm, addr);
1062 src_pgd = pgd_offset(src_mm, addr);
1063 do {
1064 next = pgd_addr_end(addr, end);
1065 if (pgd_none_or_clear_bad(src_pgd))
1066 continue;
1067 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1068 vma, addr, next))) {
1069 ret = -ENOMEM;
1070 break;
1072 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1074 if (is_cow)
1075 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1076 return ret;
1079 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1080 struct vm_area_struct *vma, pmd_t *pmd,
1081 unsigned long addr, unsigned long end,
1082 struct zap_details *details)
1084 struct mm_struct *mm = tlb->mm;
1085 int force_flush = 0;
1086 int rss[NR_MM_COUNTERS];
1087 spinlock_t *ptl;
1088 pte_t *start_pte;
1089 pte_t *pte;
1091 again:
1092 init_rss_vec(rss);
1093 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1094 pte = start_pte;
1095 arch_enter_lazy_mmu_mode();
1096 do {
1097 pte_t ptent = *pte;
1098 if (pte_none(ptent)) {
1099 continue;
1102 if (pte_present(ptent)) {
1103 struct page *page;
1105 page = vm_normal_page(vma, addr, ptent);
1106 if (unlikely(details) && page) {
1108 * unmap_shared_mapping_pages() wants to
1109 * invalidate cache without truncating:
1110 * unmap shared but keep private pages.
1112 if (details->check_mapping &&
1113 details->check_mapping != page->mapping)
1114 continue;
1116 * Each page->index must be checked when
1117 * invalidating or truncating nonlinear.
1119 if (details->nonlinear_vma &&
1120 (page->index < details->first_index ||
1121 page->index > details->last_index))
1122 continue;
1124 ptent = ptep_get_and_clear_full(mm, addr, pte,
1125 tlb->fullmm);
1126 tlb_remove_tlb_entry(tlb, pte, addr);
1127 if (unlikely(!page))
1128 continue;
1129 if (unlikely(details) && details->nonlinear_vma
1130 && linear_page_index(details->nonlinear_vma,
1131 addr) != page->index) {
1132 pte_t ptfile = pgoff_to_pte(page->index);
1133 if (pte_soft_dirty(ptent))
1134 pte_file_mksoft_dirty(ptfile);
1135 set_pte_at(mm, addr, pte, ptfile);
1137 if (PageAnon(page))
1138 rss[MM_ANONPAGES]--;
1139 else {
1140 if (pte_dirty(ptent)) {
1141 force_flush = 1;
1142 set_page_dirty(page);
1144 if (pte_young(ptent) &&
1145 likely(!(vma->vm_flags & VM_SEQ_READ)))
1146 mark_page_accessed(page);
1147 rss[MM_FILEPAGES]--;
1149 page_remove_rmap(page);
1150 if (unlikely(page_mapcount(page) < 0))
1151 print_bad_pte(vma, addr, ptent, page);
1152 if (unlikely(!__tlb_remove_page(tlb, page))) {
1153 force_flush = 1;
1154 break;
1156 continue;
1159 * If details->check_mapping, we leave swap entries;
1160 * if details->nonlinear_vma, we leave file entries.
1162 if (unlikely(details))
1163 continue;
1164 if (pte_file(ptent)) {
1165 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1166 print_bad_pte(vma, addr, ptent, NULL);
1167 } else {
1168 swp_entry_t entry = pte_to_swp_entry(ptent);
1170 if (!non_swap_entry(entry))
1171 rss[MM_SWAPENTS]--;
1172 else if (is_migration_entry(entry)) {
1173 struct page *page;
1175 page = migration_entry_to_page(entry);
1177 if (PageAnon(page))
1178 rss[MM_ANONPAGES]--;
1179 else
1180 rss[MM_FILEPAGES]--;
1182 if (unlikely(!free_swap_and_cache(entry)))
1183 print_bad_pte(vma, addr, ptent, NULL);
1185 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1186 } while (pte++, addr += PAGE_SIZE, addr != end);
1188 add_mm_rss_vec(mm, rss);
1189 arch_leave_lazy_mmu_mode();
1191 /* Do the actual TLB flush before dropping ptl */
1192 if (force_flush) {
1193 unsigned long old_end;
1196 * Flush the TLB just for the previous segment,
1197 * then update the range to be the remaining
1198 * TLB range.
1200 old_end = tlb->end;
1201 tlb->end = addr;
1202 tlb_flush_mmu_tlbonly(tlb);
1203 tlb->start = addr;
1204 tlb->end = old_end;
1206 pte_unmap_unlock(start_pte, ptl);
1209 * If we forced a TLB flush (either due to running out of
1210 * batch buffers or because we needed to flush dirty TLB
1211 * entries before releasing the ptl), free the batched
1212 * memory too. Restart if we didn't do everything.
1214 if (force_flush) {
1215 force_flush = 0;
1216 tlb_flush_mmu_free(tlb);
1218 if (addr != end)
1219 goto again;
1222 return addr;
1225 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1226 struct vm_area_struct *vma, pud_t *pud,
1227 unsigned long addr, unsigned long end,
1228 struct zap_details *details)
1230 pmd_t *pmd;
1231 unsigned long next;
1233 pmd = pmd_offset(pud, addr);
1234 do {
1235 next = pmd_addr_end(addr, end);
1236 if (pmd_trans_huge(*pmd)) {
1237 if (next - addr != HPAGE_PMD_SIZE) {
1238 #ifdef CONFIG_DEBUG_VM
1239 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1240 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1241 __func__, addr, end,
1242 vma->vm_start,
1243 vma->vm_end);
1244 BUG();
1246 #endif
1247 split_huge_page_pmd(vma, addr, pmd);
1248 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1249 goto next;
1250 /* fall through */
1253 * Here there can be other concurrent MADV_DONTNEED or
1254 * trans huge page faults running, and if the pmd is
1255 * none or trans huge it can change under us. This is
1256 * because MADV_DONTNEED holds the mmap_sem in read
1257 * mode.
1259 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1260 goto next;
1261 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1262 next:
1263 cond_resched();
1264 } while (pmd++, addr = next, addr != end);
1266 return addr;
1269 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1270 struct vm_area_struct *vma, pgd_t *pgd,
1271 unsigned long addr, unsigned long end,
1272 struct zap_details *details)
1274 pud_t *pud;
1275 unsigned long next;
1277 pud = pud_offset(pgd, addr);
1278 do {
1279 next = pud_addr_end(addr, end);
1280 if (pud_none_or_clear_bad(pud))
1281 continue;
1282 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1283 } while (pud++, addr = next, addr != end);
1285 return addr;
1288 static void unmap_page_range(struct mmu_gather *tlb,
1289 struct vm_area_struct *vma,
1290 unsigned long addr, unsigned long end,
1291 struct zap_details *details)
1293 pgd_t *pgd;
1294 unsigned long next;
1296 if (details && !details->check_mapping && !details->nonlinear_vma)
1297 details = NULL;
1299 BUG_ON(addr >= end);
1300 mem_cgroup_uncharge_start();
1301 tlb_start_vma(tlb, vma);
1302 pgd = pgd_offset(vma->vm_mm, addr);
1303 do {
1304 next = pgd_addr_end(addr, end);
1305 if (pgd_none_or_clear_bad(pgd))
1306 continue;
1307 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1308 } while (pgd++, addr = next, addr != end);
1309 tlb_end_vma(tlb, vma);
1310 mem_cgroup_uncharge_end();
1314 static void unmap_single_vma(struct mmu_gather *tlb,
1315 struct vm_area_struct *vma, unsigned long start_addr,
1316 unsigned long end_addr,
1317 struct zap_details *details)
1319 unsigned long start = max(vma->vm_start, start_addr);
1320 unsigned long end;
1322 if (start >= vma->vm_end)
1323 return;
1324 end = min(vma->vm_end, end_addr);
1325 if (end <= vma->vm_start)
1326 return;
1328 if (vma->vm_file)
1329 uprobe_munmap(vma, start, end);
1331 if (unlikely(vma->vm_flags & VM_PFNMAP))
1332 untrack_pfn(vma, 0, 0);
1334 if (start != end) {
1335 if (unlikely(is_vm_hugetlb_page(vma))) {
1337 * It is undesirable to test vma->vm_file as it
1338 * should be non-null for valid hugetlb area.
1339 * However, vm_file will be NULL in the error
1340 * cleanup path of mmap_region. When
1341 * hugetlbfs ->mmap method fails,
1342 * mmap_region() nullifies vma->vm_file
1343 * before calling this function to clean up.
1344 * Since no pte has actually been setup, it is
1345 * safe to do nothing in this case.
1347 if (vma->vm_file) {
1348 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1349 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1350 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1352 } else
1353 unmap_page_range(tlb, vma, start, end, details);
1358 * unmap_vmas - unmap a range of memory covered by a list of vma's
1359 * @tlb: address of the caller's struct mmu_gather
1360 * @vma: the starting vma
1361 * @start_addr: virtual address at which to start unmapping
1362 * @end_addr: virtual address at which to end unmapping
1364 * Unmap all pages in the vma list.
1366 * Only addresses between `start' and `end' will be unmapped.
1368 * The VMA list must be sorted in ascending virtual address order.
1370 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1371 * range after unmap_vmas() returns. So the only responsibility here is to
1372 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1373 * drops the lock and schedules.
1375 void unmap_vmas(struct mmu_gather *tlb,
1376 struct vm_area_struct *vma, unsigned long start_addr,
1377 unsigned long end_addr)
1379 struct mm_struct *mm = vma->vm_mm;
1381 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1382 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1383 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1384 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1388 * zap_page_range - remove user pages in a given range
1389 * @vma: vm_area_struct holding the applicable pages
1390 * @start: starting address of pages to zap
1391 * @size: number of bytes to zap
1392 * @details: details of nonlinear truncation or shared cache invalidation
1394 * Caller must protect the VMA list
1396 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1397 unsigned long size, struct zap_details *details)
1399 struct mm_struct *mm = vma->vm_mm;
1400 struct mmu_gather tlb;
1401 unsigned long end = start + size;
1403 lru_add_drain();
1404 tlb_gather_mmu(&tlb, mm, start, end);
1405 update_hiwater_rss(mm);
1406 mmu_notifier_invalidate_range_start(mm, start, end);
1407 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1408 unmap_single_vma(&tlb, vma, start, end, details);
1409 mmu_notifier_invalidate_range_end(mm, start, end);
1410 tlb_finish_mmu(&tlb, start, end);
1414 * zap_page_range_single - remove user pages in a given range
1415 * @vma: vm_area_struct holding the applicable pages
1416 * @address: starting address of pages to zap
1417 * @size: number of bytes to zap
1418 * @details: details of nonlinear truncation or shared cache invalidation
1420 * The range must fit into one VMA.
1422 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1423 unsigned long size, struct zap_details *details)
1425 struct mm_struct *mm = vma->vm_mm;
1426 struct mmu_gather tlb;
1427 unsigned long end = address + size;
1429 lru_add_drain();
1430 tlb_gather_mmu(&tlb, mm, address, end);
1431 update_hiwater_rss(mm);
1432 mmu_notifier_invalidate_range_start(mm, address, end);
1433 unmap_single_vma(&tlb, vma, address, end, details);
1434 mmu_notifier_invalidate_range_end(mm, address, end);
1435 tlb_finish_mmu(&tlb, address, end);
1439 * zap_vma_ptes - remove ptes mapping the vma
1440 * @vma: vm_area_struct holding ptes to be zapped
1441 * @address: starting address of pages to zap
1442 * @size: number of bytes to zap
1444 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1446 * The entire address range must be fully contained within the vma.
1448 * Returns 0 if successful.
1450 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1451 unsigned long size)
1453 if (address < vma->vm_start || address + size > vma->vm_end ||
1454 !(vma->vm_flags & VM_PFNMAP))
1455 return -1;
1456 zap_page_range_single(vma, address, size, NULL);
1457 return 0;
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1462 * follow_page_mask - look up a page descriptor from a user-virtual address
1463 * @vma: vm_area_struct mapping @address
1464 * @address: virtual address to look up
1465 * @flags: flags modifying lookup behaviour
1466 * @page_mask: on output, *page_mask is set according to the size of the page
1468 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1470 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1471 * an error pointer if there is a mapping to something not represented
1472 * by a page descriptor (see also vm_normal_page()).
1474 struct page *follow_page_mask(struct vm_area_struct *vma,
1475 unsigned long address, unsigned int flags,
1476 unsigned int *page_mask)
1478 pgd_t *pgd;
1479 pud_t *pud;
1480 pmd_t *pmd;
1481 pte_t *ptep, pte;
1482 spinlock_t *ptl;
1483 struct page *page;
1484 struct mm_struct *mm = vma->vm_mm;
1486 *page_mask = 0;
1488 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1489 if (!IS_ERR(page)) {
1490 BUG_ON(flags & FOLL_GET);
1491 goto out;
1494 page = NULL;
1495 pgd = pgd_offset(mm, address);
1496 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1497 goto no_page_table;
1499 pud = pud_offset(pgd, address);
1500 if (pud_none(*pud))
1501 goto no_page_table;
1502 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1503 if (flags & FOLL_GET)
1504 goto out;
1505 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1506 goto out;
1508 if (unlikely(pud_bad(*pud)))
1509 goto no_page_table;
1511 pmd = pmd_offset(pud, address);
1512 if (pmd_none(*pmd))
1513 goto no_page_table;
1514 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1515 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1516 if (flags & FOLL_GET) {
1518 * Refcount on tail pages are not well-defined and
1519 * shouldn't be taken. The caller should handle a NULL
1520 * return when trying to follow tail pages.
1522 if (PageHead(page))
1523 get_page(page);
1524 else {
1525 page = NULL;
1526 goto out;
1529 goto out;
1531 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1532 goto no_page_table;
1533 if (pmd_trans_huge(*pmd)) {
1534 if (flags & FOLL_SPLIT) {
1535 split_huge_page_pmd(vma, address, pmd);
1536 goto split_fallthrough;
1538 ptl = pmd_lock(mm, pmd);
1539 if (likely(pmd_trans_huge(*pmd))) {
1540 if (unlikely(pmd_trans_splitting(*pmd))) {
1541 spin_unlock(ptl);
1542 wait_split_huge_page(vma->anon_vma, pmd);
1543 } else {
1544 page = follow_trans_huge_pmd(vma, address,
1545 pmd, flags);
1546 spin_unlock(ptl);
1547 *page_mask = HPAGE_PMD_NR - 1;
1548 goto out;
1550 } else
1551 spin_unlock(ptl);
1552 /* fall through */
1554 split_fallthrough:
1555 if (unlikely(pmd_bad(*pmd)))
1556 goto no_page_table;
1558 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1560 pte = *ptep;
1561 if (!pte_present(pte)) {
1562 swp_entry_t entry;
1564 * KSM's break_ksm() relies upon recognizing a ksm page
1565 * even while it is being migrated, so for that case we
1566 * need migration_entry_wait().
1568 if (likely(!(flags & FOLL_MIGRATION)))
1569 goto no_page;
1570 if (pte_none(pte) || pte_file(pte))
1571 goto no_page;
1572 entry = pte_to_swp_entry(pte);
1573 if (!is_migration_entry(entry))
1574 goto no_page;
1575 pte_unmap_unlock(ptep, ptl);
1576 migration_entry_wait(mm, pmd, address);
1577 goto split_fallthrough;
1579 if ((flags & FOLL_NUMA) && pte_numa(pte))
1580 goto no_page;
1581 if ((flags & FOLL_WRITE) && !pte_write(pte))
1582 goto unlock;
1584 page = vm_normal_page(vma, address, pte);
1585 if (unlikely(!page)) {
1586 if ((flags & FOLL_DUMP) ||
1587 !is_zero_pfn(pte_pfn(pte)))
1588 goto bad_page;
1589 page = pte_page(pte);
1592 if (flags & FOLL_GET)
1593 get_page_foll(page);
1594 if (flags & FOLL_TOUCH) {
1595 if ((flags & FOLL_WRITE) &&
1596 !pte_dirty(pte) && !PageDirty(page))
1597 set_page_dirty(page);
1599 * pte_mkyoung() would be more correct here, but atomic care
1600 * is needed to avoid losing the dirty bit: it is easier to use
1601 * mark_page_accessed().
1603 mark_page_accessed(page);
1605 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1607 * The preliminary mapping check is mainly to avoid the
1608 * pointless overhead of lock_page on the ZERO_PAGE
1609 * which might bounce very badly if there is contention.
1611 * If the page is already locked, we don't need to
1612 * handle it now - vmscan will handle it later if and
1613 * when it attempts to reclaim the page.
1615 if (page->mapping && trylock_page(page)) {
1616 lru_add_drain(); /* push cached pages to LRU */
1618 * Because we lock page here, and migration is
1619 * blocked by the pte's page reference, and we
1620 * know the page is still mapped, we don't even
1621 * need to check for file-cache page truncation.
1623 mlock_vma_page(page);
1624 unlock_page(page);
1627 unlock:
1628 pte_unmap_unlock(ptep, ptl);
1629 out:
1630 return page;
1632 bad_page:
1633 pte_unmap_unlock(ptep, ptl);
1634 return ERR_PTR(-EFAULT);
1636 no_page:
1637 pte_unmap_unlock(ptep, ptl);
1638 if (!pte_none(pte))
1639 return page;
1641 no_page_table:
1643 * When core dumping an enormous anonymous area that nobody
1644 * has touched so far, we don't want to allocate unnecessary pages or
1645 * page tables. Return error instead of NULL to skip handle_mm_fault,
1646 * then get_dump_page() will return NULL to leave a hole in the dump.
1647 * But we can only make this optimization where a hole would surely
1648 * be zero-filled if handle_mm_fault() actually did handle it.
1650 if ((flags & FOLL_DUMP) &&
1651 (!vma->vm_ops || !vma->vm_ops->fault))
1652 return ERR_PTR(-EFAULT);
1653 return page;
1656 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1658 return stack_guard_page_start(vma, addr) ||
1659 stack_guard_page_end(vma, addr+PAGE_SIZE);
1663 * __get_user_pages() - pin user pages in memory
1664 * @tsk: task_struct of target task
1665 * @mm: mm_struct of target mm
1666 * @start: starting user address
1667 * @nr_pages: number of pages from start to pin
1668 * @gup_flags: flags modifying pin behaviour
1669 * @pages: array that receives pointers to the pages pinned.
1670 * Should be at least nr_pages long. Or NULL, if caller
1671 * only intends to ensure the pages are faulted in.
1672 * @vmas: array of pointers to vmas corresponding to each page.
1673 * Or NULL if the caller does not require them.
1674 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1676 * Returns number of pages pinned. This may be fewer than the number
1677 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1678 * were pinned, returns -errno. Each page returned must be released
1679 * with a put_page() call when it is finished with. vmas will only
1680 * remain valid while mmap_sem is held.
1682 * Must be called with mmap_sem held for read or write.
1684 * __get_user_pages walks a process's page tables and takes a reference to
1685 * each struct page that each user address corresponds to at a given
1686 * instant. That is, it takes the page that would be accessed if a user
1687 * thread accesses the given user virtual address at that instant.
1689 * This does not guarantee that the page exists in the user mappings when
1690 * __get_user_pages returns, and there may even be a completely different
1691 * page there in some cases (eg. if mmapped pagecache has been invalidated
1692 * and subsequently re faulted). However it does guarantee that the page
1693 * won't be freed completely. And mostly callers simply care that the page
1694 * contains data that was valid *at some point in time*. Typically, an IO
1695 * or similar operation cannot guarantee anything stronger anyway because
1696 * locks can't be held over the syscall boundary.
1698 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1699 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1700 * appropriate) must be called after the page is finished with, and
1701 * before put_page is called.
1703 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1704 * or mmap_sem contention, and if waiting is needed to pin all pages,
1705 * *@nonblocking will be set to 0.
1707 * In most cases, get_user_pages or get_user_pages_fast should be used
1708 * instead of __get_user_pages. __get_user_pages should be used only if
1709 * you need some special @gup_flags.
1711 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1712 unsigned long start, unsigned long nr_pages,
1713 unsigned int gup_flags, struct page **pages,
1714 struct vm_area_struct **vmas, int *nonblocking)
1716 long i;
1717 unsigned long vm_flags;
1718 unsigned int page_mask;
1720 if (!nr_pages)
1721 return 0;
1723 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1726 * If FOLL_FORCE is set then do not force a full fault as the hinting
1727 * fault information is unrelated to the reference behaviour of a task
1728 * using the address space
1730 if (!(gup_flags & FOLL_FORCE))
1731 gup_flags |= FOLL_NUMA;
1733 i = 0;
1735 do {
1736 struct vm_area_struct *vma;
1738 vma = find_extend_vma(mm, start);
1739 if (!vma && in_gate_area(mm, start)) {
1740 unsigned long pg = start & PAGE_MASK;
1741 pgd_t *pgd;
1742 pud_t *pud;
1743 pmd_t *pmd;
1744 pte_t *pte;
1746 /* user gate pages are read-only */
1747 if (gup_flags & FOLL_WRITE)
1748 goto efault;
1749 if (pg > TASK_SIZE)
1750 pgd = pgd_offset_k(pg);
1751 else
1752 pgd = pgd_offset_gate(mm, pg);
1753 BUG_ON(pgd_none(*pgd));
1754 pud = pud_offset(pgd, pg);
1755 BUG_ON(pud_none(*pud));
1756 pmd = pmd_offset(pud, pg);
1757 if (pmd_none(*pmd))
1758 goto efault;
1759 VM_BUG_ON(pmd_trans_huge(*pmd));
1760 pte = pte_offset_map(pmd, pg);
1761 if (pte_none(*pte)) {
1762 pte_unmap(pte);
1763 goto efault;
1765 vma = get_gate_vma(mm);
1766 if (pages) {
1767 struct page *page;
1769 page = vm_normal_page(vma, start, *pte);
1770 if (!page) {
1771 if (!(gup_flags & FOLL_DUMP) &&
1772 is_zero_pfn(pte_pfn(*pte)))
1773 page = pte_page(*pte);
1774 else {
1775 pte_unmap(pte);
1776 goto efault;
1779 pages[i] = page;
1780 get_page(page);
1782 pte_unmap(pte);
1783 page_mask = 0;
1784 goto next_page;
1787 if (!vma)
1788 goto efault;
1789 vm_flags = vma->vm_flags;
1790 if (vm_flags & (VM_IO | VM_PFNMAP))
1791 goto efault;
1793 if (gup_flags & FOLL_WRITE) {
1794 if (!(vm_flags & VM_WRITE)) {
1795 if (!(gup_flags & FOLL_FORCE))
1796 goto efault;
1798 * We used to let the write,force case do COW
1799 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1800 * ptrace could set a breakpoint in a read-only
1801 * mapping of an executable, without corrupting
1802 * the file (yet only when that file had been
1803 * opened for writing!). Anon pages in shared
1804 * mappings are surprising: now just reject it.
1806 if (!is_cow_mapping(vm_flags)) {
1807 WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1808 goto efault;
1811 } else {
1812 if (!(vm_flags & VM_READ)) {
1813 if (!(gup_flags & FOLL_FORCE))
1814 goto efault;
1816 * Is there actually any vma we can reach here
1817 * which does not have VM_MAYREAD set?
1819 if (!(vm_flags & VM_MAYREAD))
1820 goto efault;
1824 if (is_vm_hugetlb_page(vma)) {
1825 i = follow_hugetlb_page(mm, vma, pages, vmas,
1826 &start, &nr_pages, i, gup_flags);
1827 continue;
1830 do {
1831 struct page *page;
1832 unsigned int foll_flags = gup_flags;
1833 unsigned int page_increm;
1836 * If we have a pending SIGKILL, don't keep faulting
1837 * pages and potentially allocating memory.
1839 if (unlikely(fatal_signal_pending(current)))
1840 return i ? i : -ERESTARTSYS;
1842 cond_resched();
1843 while (!(page = follow_page_mask(vma, start,
1844 foll_flags, &page_mask))) {
1845 int ret;
1846 unsigned int fault_flags = 0;
1848 /* For mlock, just skip the stack guard page. */
1849 if (foll_flags & FOLL_MLOCK) {
1850 if (stack_guard_page(vma, start))
1851 goto next_page;
1853 if (foll_flags & FOLL_WRITE)
1854 fault_flags |= FAULT_FLAG_WRITE;
1855 if (nonblocking)
1856 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1857 if (foll_flags & FOLL_NOWAIT)
1858 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1860 ret = handle_mm_fault(mm, vma, start,
1861 fault_flags);
1863 if (ret & VM_FAULT_ERROR) {
1864 if (ret & VM_FAULT_OOM)
1865 return i ? i : -ENOMEM;
1866 if (ret & (VM_FAULT_HWPOISON |
1867 VM_FAULT_HWPOISON_LARGE)) {
1868 if (i)
1869 return i;
1870 else if (gup_flags & FOLL_HWPOISON)
1871 return -EHWPOISON;
1872 else
1873 return -EFAULT;
1875 if (ret & VM_FAULT_SIGBUS)
1876 goto efault;
1877 BUG();
1880 if (tsk) {
1881 if (ret & VM_FAULT_MAJOR)
1882 tsk->maj_flt++;
1883 else
1884 tsk->min_flt++;
1887 if (ret & VM_FAULT_RETRY) {
1888 if (nonblocking)
1889 *nonblocking = 0;
1890 return i;
1894 * The VM_FAULT_WRITE bit tells us that
1895 * do_wp_page has broken COW when necessary,
1896 * even if maybe_mkwrite decided not to set
1897 * pte_write. We can thus safely do subsequent
1898 * page lookups as if they were reads. But only
1899 * do so when looping for pte_write is futile:
1900 * in some cases userspace may also be wanting
1901 * to write to the gotten user page, which a
1902 * read fault here might prevent (a readonly
1903 * page might get reCOWed by userspace write).
1905 if ((ret & VM_FAULT_WRITE) &&
1906 !(vma->vm_flags & VM_WRITE))
1907 foll_flags &= ~FOLL_WRITE;
1909 cond_resched();
1911 if (IS_ERR(page))
1912 return i ? i : PTR_ERR(page);
1913 if (pages) {
1914 pages[i] = page;
1916 flush_anon_page(vma, page, start);
1917 flush_dcache_page(page);
1918 page_mask = 0;
1920 next_page:
1921 if (vmas) {
1922 vmas[i] = vma;
1923 page_mask = 0;
1925 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1926 if (page_increm > nr_pages)
1927 page_increm = nr_pages;
1928 i += page_increm;
1929 start += page_increm * PAGE_SIZE;
1930 nr_pages -= page_increm;
1931 } while (nr_pages && start < vma->vm_end);
1932 } while (nr_pages);
1933 return i;
1934 efault:
1935 return i ? : -EFAULT;
1937 EXPORT_SYMBOL(__get_user_pages);
1940 * fixup_user_fault() - manually resolve a user page fault
1941 * @tsk: the task_struct to use for page fault accounting, or
1942 * NULL if faults are not to be recorded.
1943 * @mm: mm_struct of target mm
1944 * @address: user address
1945 * @fault_flags:flags to pass down to handle_mm_fault()
1947 * This is meant to be called in the specific scenario where for locking reasons
1948 * we try to access user memory in atomic context (within a pagefault_disable()
1949 * section), this returns -EFAULT, and we want to resolve the user fault before
1950 * trying again.
1952 * Typically this is meant to be used by the futex code.
1954 * The main difference with get_user_pages() is that this function will
1955 * unconditionally call handle_mm_fault() which will in turn perform all the
1956 * necessary SW fixup of the dirty and young bits in the PTE, while
1957 * handle_mm_fault() only guarantees to update these in the struct page.
1959 * This is important for some architectures where those bits also gate the
1960 * access permission to the page because they are maintained in software. On
1961 * such architectures, gup() will not be enough to make a subsequent access
1962 * succeed.
1964 * This should be called with the mm_sem held for read.
1966 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1967 unsigned long address, unsigned int fault_flags)
1969 struct vm_area_struct *vma;
1970 vm_flags_t vm_flags;
1971 int ret;
1973 vma = find_extend_vma(mm, address);
1974 if (!vma || address < vma->vm_start)
1975 return -EFAULT;
1977 vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1978 if (!(vm_flags & vma->vm_flags))
1979 return -EFAULT;
1981 ret = handle_mm_fault(mm, vma, address, fault_flags);
1982 if (ret & VM_FAULT_ERROR) {
1983 if (ret & VM_FAULT_OOM)
1984 return -ENOMEM;
1985 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1986 return -EHWPOISON;
1987 if (ret & VM_FAULT_SIGBUS)
1988 return -EFAULT;
1989 BUG();
1991 if (tsk) {
1992 if (ret & VM_FAULT_MAJOR)
1993 tsk->maj_flt++;
1994 else
1995 tsk->min_flt++;
1997 return 0;
2001 * get_user_pages() - pin user pages in memory
2002 * @tsk: the task_struct to use for page fault accounting, or
2003 * NULL if faults are not to be recorded.
2004 * @mm: mm_struct of target mm
2005 * @start: starting user address
2006 * @nr_pages: number of pages from start to pin
2007 * @write: whether pages will be written to by the caller
2008 * @force: whether to force access even when user mapping is currently
2009 * protected (but never forces write access to shared mapping).
2010 * @pages: array that receives pointers to the pages pinned.
2011 * Should be at least nr_pages long. Or NULL, if caller
2012 * only intends to ensure the pages are faulted in.
2013 * @vmas: array of pointers to vmas corresponding to each page.
2014 * Or NULL if the caller does not require them.
2016 * Returns number of pages pinned. This may be fewer than the number
2017 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2018 * were pinned, returns -errno. Each page returned must be released
2019 * with a put_page() call when it is finished with. vmas will only
2020 * remain valid while mmap_sem is held.
2022 * Must be called with mmap_sem held for read or write.
2024 * get_user_pages walks a process's page tables and takes a reference to
2025 * each struct page that each user address corresponds to at a given
2026 * instant. That is, it takes the page that would be accessed if a user
2027 * thread accesses the given user virtual address at that instant.
2029 * This does not guarantee that the page exists in the user mappings when
2030 * get_user_pages returns, and there may even be a completely different
2031 * page there in some cases (eg. if mmapped pagecache has been invalidated
2032 * and subsequently re faulted). However it does guarantee that the page
2033 * won't be freed completely. And mostly callers simply care that the page
2034 * contains data that was valid *at some point in time*. Typically, an IO
2035 * or similar operation cannot guarantee anything stronger anyway because
2036 * locks can't be held over the syscall boundary.
2038 * If write=0, the page must not be written to. If the page is written to,
2039 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2040 * after the page is finished with, and before put_page is called.
2042 * get_user_pages is typically used for fewer-copy IO operations, to get a
2043 * handle on the memory by some means other than accesses via the user virtual
2044 * addresses. The pages may be submitted for DMA to devices or accessed via
2045 * their kernel linear mapping (via the kmap APIs). Care should be taken to
2046 * use the correct cache flushing APIs.
2048 * See also get_user_pages_fast, for performance critical applications.
2050 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2051 unsigned long start, unsigned long nr_pages, int write,
2052 int force, struct page **pages, struct vm_area_struct **vmas)
2054 int flags = FOLL_TOUCH;
2056 if (pages)
2057 flags |= FOLL_GET;
2058 if (write)
2059 flags |= FOLL_WRITE;
2060 if (force)
2061 flags |= FOLL_FORCE;
2063 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2064 NULL);
2066 EXPORT_SYMBOL(get_user_pages);
2069 * get_dump_page() - pin user page in memory while writing it to core dump
2070 * @addr: user address
2072 * Returns struct page pointer of user page pinned for dump,
2073 * to be freed afterwards by page_cache_release() or put_page().
2075 * Returns NULL on any kind of failure - a hole must then be inserted into
2076 * the corefile, to preserve alignment with its headers; and also returns
2077 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2078 * allowing a hole to be left in the corefile to save diskspace.
2080 * Called without mmap_sem, but after all other threads have been killed.
2082 #ifdef CONFIG_ELF_CORE
2083 struct page *get_dump_page(unsigned long addr)
2085 struct vm_area_struct *vma;
2086 struct page *page;
2088 if (__get_user_pages(current, current->mm, addr, 1,
2089 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2090 NULL) < 1)
2091 return NULL;
2092 flush_cache_page(vma, addr, page_to_pfn(page));
2093 return page;
2095 #endif /* CONFIG_ELF_CORE */
2097 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2098 spinlock_t **ptl)
2100 pgd_t * pgd = pgd_offset(mm, addr);
2101 pud_t * pud = pud_alloc(mm, pgd, addr);
2102 if (pud) {
2103 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2104 if (pmd) {
2105 VM_BUG_ON(pmd_trans_huge(*pmd));
2106 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2109 return NULL;
2113 * This is the old fallback for page remapping.
2115 * For historical reasons, it only allows reserved pages. Only
2116 * old drivers should use this, and they needed to mark their
2117 * pages reserved for the old functions anyway.
2119 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2120 struct page *page, pgprot_t prot)
2122 struct mm_struct *mm = vma->vm_mm;
2123 int retval;
2124 pte_t *pte;
2125 spinlock_t *ptl;
2127 retval = -EINVAL;
2128 if (PageAnon(page))
2129 goto out;
2130 retval = -ENOMEM;
2131 flush_dcache_page(page);
2132 pte = get_locked_pte(mm, addr, &ptl);
2133 if (!pte)
2134 goto out;
2135 retval = -EBUSY;
2136 if (!pte_none(*pte))
2137 goto out_unlock;
2139 /* Ok, finally just insert the thing.. */
2140 get_page(page);
2141 inc_mm_counter_fast(mm, MM_FILEPAGES);
2142 page_add_file_rmap(page);
2143 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2145 retval = 0;
2146 pte_unmap_unlock(pte, ptl);
2147 return retval;
2148 out_unlock:
2149 pte_unmap_unlock(pte, ptl);
2150 out:
2151 return retval;
2155 * vm_insert_page - insert single page into user vma
2156 * @vma: user vma to map to
2157 * @addr: target user address of this page
2158 * @page: source kernel page
2160 * This allows drivers to insert individual pages they've allocated
2161 * into a user vma.
2163 * The page has to be a nice clean _individual_ kernel allocation.
2164 * If you allocate a compound page, you need to have marked it as
2165 * such (__GFP_COMP), or manually just split the page up yourself
2166 * (see split_page()).
2168 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2169 * took an arbitrary page protection parameter. This doesn't allow
2170 * that. Your vma protection will have to be set up correctly, which
2171 * means that if you want a shared writable mapping, you'd better
2172 * ask for a shared writable mapping!
2174 * The page does not need to be reserved.
2176 * Usually this function is called from f_op->mmap() handler
2177 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2178 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2179 * function from other places, for example from page-fault handler.
2181 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2182 struct page *page)
2184 if (addr < vma->vm_start || addr >= vma->vm_end)
2185 return -EFAULT;
2186 if (!page_count(page))
2187 return -EINVAL;
2188 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2189 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2190 BUG_ON(vma->vm_flags & VM_PFNMAP);
2191 vma->vm_flags |= VM_MIXEDMAP;
2193 return insert_page(vma, addr, page, vma->vm_page_prot);
2195 EXPORT_SYMBOL(vm_insert_page);
2197 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2198 unsigned long pfn, pgprot_t prot)
2200 struct mm_struct *mm = vma->vm_mm;
2201 int retval;
2202 pte_t *pte, entry;
2203 spinlock_t *ptl;
2205 retval = -ENOMEM;
2206 pte = get_locked_pte(mm, addr, &ptl);
2207 if (!pte)
2208 goto out;
2209 retval = -EBUSY;
2210 if (!pte_none(*pte))
2211 goto out_unlock;
2213 /* Ok, finally just insert the thing.. */
2214 entry = pte_mkspecial(pfn_pte(pfn, prot));
2215 set_pte_at(mm, addr, pte, entry);
2216 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2218 retval = 0;
2219 out_unlock:
2220 pte_unmap_unlock(pte, ptl);
2221 out:
2222 return retval;
2226 * vm_insert_pfn - insert single pfn into user vma
2227 * @vma: user vma to map to
2228 * @addr: target user address of this page
2229 * @pfn: source kernel pfn
2231 * Similar to vm_insert_page, this allows drivers to insert individual pages
2232 * they've allocated into a user vma. Same comments apply.
2234 * This function should only be called from a vm_ops->fault handler, and
2235 * in that case the handler should return NULL.
2237 * vma cannot be a COW mapping.
2239 * As this is called only for pages that do not currently exist, we
2240 * do not need to flush old virtual caches or the TLB.
2242 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2243 unsigned long pfn)
2245 int ret;
2246 pgprot_t pgprot = vma->vm_page_prot;
2248 * Technically, architectures with pte_special can avoid all these
2249 * restrictions (same for remap_pfn_range). However we would like
2250 * consistency in testing and feature parity among all, so we should
2251 * try to keep these invariants in place for everybody.
2253 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2254 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2255 (VM_PFNMAP|VM_MIXEDMAP));
2256 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2257 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2259 if (addr < vma->vm_start || addr >= vma->vm_end)
2260 return -EFAULT;
2261 if (track_pfn_insert(vma, &pgprot, pfn))
2262 return -EINVAL;
2264 ret = insert_pfn(vma, addr, pfn, pgprot);
2266 return ret;
2268 EXPORT_SYMBOL(vm_insert_pfn);
2270 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2271 unsigned long pfn)
2273 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2275 if (addr < vma->vm_start || addr >= vma->vm_end)
2276 return -EFAULT;
2279 * If we don't have pte special, then we have to use the pfn_valid()
2280 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2281 * refcount the page if pfn_valid is true (hence insert_page rather
2282 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2283 * without pte special, it would there be refcounted as a normal page.
2285 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2286 struct page *page;
2288 page = pfn_to_page(pfn);
2289 return insert_page(vma, addr, page, vma->vm_page_prot);
2291 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2293 EXPORT_SYMBOL(vm_insert_mixed);
2296 * maps a range of physical memory into the requested pages. the old
2297 * mappings are removed. any references to nonexistent pages results
2298 * in null mappings (currently treated as "copy-on-access")
2300 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2301 unsigned long addr, unsigned long end,
2302 unsigned long pfn, pgprot_t prot)
2304 pte_t *pte;
2305 spinlock_t *ptl;
2307 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2308 if (!pte)
2309 return -ENOMEM;
2310 arch_enter_lazy_mmu_mode();
2311 do {
2312 BUG_ON(!pte_none(*pte));
2313 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2314 pfn++;
2315 } while (pte++, addr += PAGE_SIZE, addr != end);
2316 arch_leave_lazy_mmu_mode();
2317 pte_unmap_unlock(pte - 1, ptl);
2318 return 0;
2321 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2322 unsigned long addr, unsigned long end,
2323 unsigned long pfn, pgprot_t prot)
2325 pmd_t *pmd;
2326 unsigned long next;
2328 pfn -= addr >> PAGE_SHIFT;
2329 pmd = pmd_alloc(mm, pud, addr);
2330 if (!pmd)
2331 return -ENOMEM;
2332 VM_BUG_ON(pmd_trans_huge(*pmd));
2333 do {
2334 next = pmd_addr_end(addr, end);
2335 if (remap_pte_range(mm, pmd, addr, next,
2336 pfn + (addr >> PAGE_SHIFT), prot))
2337 return -ENOMEM;
2338 } while (pmd++, addr = next, addr != end);
2339 return 0;
2342 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2343 unsigned long addr, unsigned long end,
2344 unsigned long pfn, pgprot_t prot)
2346 pud_t *pud;
2347 unsigned long next;
2349 pfn -= addr >> PAGE_SHIFT;
2350 pud = pud_alloc(mm, pgd, addr);
2351 if (!pud)
2352 return -ENOMEM;
2353 do {
2354 next = pud_addr_end(addr, end);
2355 if (remap_pmd_range(mm, pud, addr, next,
2356 pfn + (addr >> PAGE_SHIFT), prot))
2357 return -ENOMEM;
2358 } while (pud++, addr = next, addr != end);
2359 return 0;
2363 * remap_pfn_range - remap kernel memory to userspace
2364 * @vma: user vma to map to
2365 * @addr: target user address to start at
2366 * @pfn: physical address of kernel memory
2367 * @size: size of map area
2368 * @prot: page protection flags for this mapping
2370 * Note: this is only safe if the mm semaphore is held when called.
2372 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2373 unsigned long pfn, unsigned long size, pgprot_t prot)
2375 pgd_t *pgd;
2376 unsigned long next;
2377 unsigned long end = addr + PAGE_ALIGN(size);
2378 struct mm_struct *mm = vma->vm_mm;
2379 int err;
2382 * Physically remapped pages are special. Tell the
2383 * rest of the world about it:
2384 * VM_IO tells people not to look at these pages
2385 * (accesses can have side effects).
2386 * VM_PFNMAP tells the core MM that the base pages are just
2387 * raw PFN mappings, and do not have a "struct page" associated
2388 * with them.
2389 * VM_DONTEXPAND
2390 * Disable vma merging and expanding with mremap().
2391 * VM_DONTDUMP
2392 * Omit vma from core dump, even when VM_IO turned off.
2394 * There's a horrible special case to handle copy-on-write
2395 * behaviour that some programs depend on. We mark the "original"
2396 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2397 * See vm_normal_page() for details.
2399 if (is_cow_mapping(vma->vm_flags)) {
2400 if (addr != vma->vm_start || end != vma->vm_end)
2401 return -EINVAL;
2402 vma->vm_pgoff = pfn;
2405 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2406 if (err)
2407 return -EINVAL;
2409 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2411 BUG_ON(addr >= end);
2412 pfn -= addr >> PAGE_SHIFT;
2413 pgd = pgd_offset(mm, addr);
2414 flush_cache_range(vma, addr, end);
2415 do {
2416 next = pgd_addr_end(addr, end);
2417 err = remap_pud_range(mm, pgd, addr, next,
2418 pfn + (addr >> PAGE_SHIFT), prot);
2419 if (err)
2420 break;
2421 } while (pgd++, addr = next, addr != end);
2423 if (err)
2424 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2426 return err;
2428 EXPORT_SYMBOL(remap_pfn_range);
2431 * vm_iomap_memory - remap memory to userspace
2432 * @vma: user vma to map to
2433 * @start: start of area
2434 * @len: size of area
2436 * This is a simplified io_remap_pfn_range() for common driver use. The
2437 * driver just needs to give us the physical memory range to be mapped,
2438 * we'll figure out the rest from the vma information.
2440 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2441 * whatever write-combining details or similar.
2443 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2445 unsigned long vm_len, pfn, pages;
2447 /* Check that the physical memory area passed in looks valid */
2448 if (start + len < start)
2449 return -EINVAL;
2451 * You *really* shouldn't map things that aren't page-aligned,
2452 * but we've historically allowed it because IO memory might
2453 * just have smaller alignment.
2455 len += start & ~PAGE_MASK;
2456 pfn = start >> PAGE_SHIFT;
2457 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2458 if (pfn + pages < pfn)
2459 return -EINVAL;
2461 /* We start the mapping 'vm_pgoff' pages into the area */
2462 if (vma->vm_pgoff > pages)
2463 return -EINVAL;
2464 pfn += vma->vm_pgoff;
2465 pages -= vma->vm_pgoff;
2467 /* Can we fit all of the mapping? */
2468 vm_len = vma->vm_end - vma->vm_start;
2469 if (vm_len >> PAGE_SHIFT > pages)
2470 return -EINVAL;
2472 /* Ok, let it rip */
2473 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2475 EXPORT_SYMBOL(vm_iomap_memory);
2477 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2478 unsigned long addr, unsigned long end,
2479 pte_fn_t fn, void *data)
2481 pte_t *pte;
2482 int err;
2483 pgtable_t token;
2484 spinlock_t *uninitialized_var(ptl);
2486 pte = (mm == &init_mm) ?
2487 pte_alloc_kernel(pmd, addr) :
2488 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2489 if (!pte)
2490 return -ENOMEM;
2492 BUG_ON(pmd_huge(*pmd));
2494 arch_enter_lazy_mmu_mode();
2496 token = pmd_pgtable(*pmd);
2498 do {
2499 err = fn(pte++, token, addr, data);
2500 if (err)
2501 break;
2502 } while (addr += PAGE_SIZE, addr != end);
2504 arch_leave_lazy_mmu_mode();
2506 if (mm != &init_mm)
2507 pte_unmap_unlock(pte-1, ptl);
2508 return err;
2511 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2512 unsigned long addr, unsigned long end,
2513 pte_fn_t fn, void *data)
2515 pmd_t *pmd;
2516 unsigned long next;
2517 int err;
2519 BUG_ON(pud_huge(*pud));
2521 pmd = pmd_alloc(mm, pud, addr);
2522 if (!pmd)
2523 return -ENOMEM;
2524 do {
2525 next = pmd_addr_end(addr, end);
2526 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2527 if (err)
2528 break;
2529 } while (pmd++, addr = next, addr != end);
2530 return err;
2533 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2534 unsigned long addr, unsigned long end,
2535 pte_fn_t fn, void *data)
2537 pud_t *pud;
2538 unsigned long next;
2539 int err;
2541 pud = pud_alloc(mm, pgd, addr);
2542 if (!pud)
2543 return -ENOMEM;
2544 do {
2545 next = pud_addr_end(addr, end);
2546 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2547 if (err)
2548 break;
2549 } while (pud++, addr = next, addr != end);
2550 return err;
2554 * Scan a region of virtual memory, filling in page tables as necessary
2555 * and calling a provided function on each leaf page table.
2557 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2558 unsigned long size, pte_fn_t fn, void *data)
2560 pgd_t *pgd;
2561 unsigned long next;
2562 unsigned long end = addr + size;
2563 int err;
2565 BUG_ON(addr >= end);
2566 pgd = pgd_offset(mm, addr);
2567 do {
2568 next = pgd_addr_end(addr, end);
2569 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2570 if (err)
2571 break;
2572 } while (pgd++, addr = next, addr != end);
2574 return err;
2576 EXPORT_SYMBOL_GPL(apply_to_page_range);
2579 * handle_pte_fault chooses page fault handler according to an entry
2580 * which was read non-atomically. Before making any commitment, on
2581 * those architectures or configurations (e.g. i386 with PAE) which
2582 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2583 * must check under lock before unmapping the pte and proceeding
2584 * (but do_wp_page is only called after already making such a check;
2585 * and do_anonymous_page can safely check later on).
2587 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2588 pte_t *page_table, pte_t orig_pte)
2590 int same = 1;
2591 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2592 if (sizeof(pte_t) > sizeof(unsigned long)) {
2593 spinlock_t *ptl = pte_lockptr(mm, pmd);
2594 spin_lock(ptl);
2595 same = pte_same(*page_table, orig_pte);
2596 spin_unlock(ptl);
2598 #endif
2599 pte_unmap(page_table);
2600 return same;
2603 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2605 debug_dma_assert_idle(src);
2608 * If the source page was a PFN mapping, we don't have
2609 * a "struct page" for it. We do a best-effort copy by
2610 * just copying from the original user address. If that
2611 * fails, we just zero-fill it. Live with it.
2613 if (unlikely(!src)) {
2614 void *kaddr = kmap_atomic(dst);
2615 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2618 * This really shouldn't fail, because the page is there
2619 * in the page tables. But it might just be unreadable,
2620 * in which case we just give up and fill the result with
2621 * zeroes.
2623 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2624 clear_page(kaddr);
2625 kunmap_atomic(kaddr);
2626 flush_dcache_page(dst);
2627 } else
2628 copy_user_highpage(dst, src, va, vma);
2632 * Notify the address space that the page is about to become writable so that
2633 * it can prohibit this or wait for the page to get into an appropriate state.
2635 * We do this without the lock held, so that it can sleep if it needs to.
2637 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2638 unsigned long address)
2640 struct vm_fault vmf;
2641 int ret;
2643 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2644 vmf.pgoff = page->index;
2645 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2646 vmf.page = page;
2648 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2649 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2650 return ret;
2651 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2652 lock_page(page);
2653 if (!page->mapping) {
2654 unlock_page(page);
2655 return 0; /* retry */
2657 ret |= VM_FAULT_LOCKED;
2658 } else
2659 VM_BUG_ON_PAGE(!PageLocked(page), page);
2660 return ret;
2664 * This routine handles present pages, when users try to write
2665 * to a shared page. It is done by copying the page to a new address
2666 * and decrementing the shared-page counter for the old page.
2668 * Note that this routine assumes that the protection checks have been
2669 * done by the caller (the low-level page fault routine in most cases).
2670 * Thus we can safely just mark it writable once we've done any necessary
2671 * COW.
2673 * We also mark the page dirty at this point even though the page will
2674 * change only once the write actually happens. This avoids a few races,
2675 * and potentially makes it more efficient.
2677 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2678 * but allow concurrent faults), with pte both mapped and locked.
2679 * We return with mmap_sem still held, but pte unmapped and unlocked.
2681 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2682 unsigned long address, pte_t *page_table, pmd_t *pmd,
2683 spinlock_t *ptl, pte_t orig_pte)
2684 __releases(ptl)
2686 struct page *old_page, *new_page = NULL;
2687 pte_t entry;
2688 int ret = 0;
2689 int page_mkwrite = 0;
2690 struct page *dirty_page = NULL;
2691 unsigned long mmun_start = 0; /* For mmu_notifiers */
2692 unsigned long mmun_end = 0; /* For mmu_notifiers */
2694 old_page = vm_normal_page(vma, address, orig_pte);
2695 if (!old_page) {
2697 * VM_MIXEDMAP !pfn_valid() case
2699 * We should not cow pages in a shared writeable mapping.
2700 * Just mark the pages writable as we can't do any dirty
2701 * accounting on raw pfn maps.
2703 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2704 (VM_WRITE|VM_SHARED))
2705 goto reuse;
2706 goto gotten;
2710 * Take out anonymous pages first, anonymous shared vmas are
2711 * not dirty accountable.
2713 if (PageAnon(old_page) && !PageKsm(old_page)) {
2714 if (!trylock_page(old_page)) {
2715 page_cache_get(old_page);
2716 pte_unmap_unlock(page_table, ptl);
2717 lock_page(old_page);
2718 page_table = pte_offset_map_lock(mm, pmd, address,
2719 &ptl);
2720 if (!pte_same(*page_table, orig_pte)) {
2721 unlock_page(old_page);
2722 goto unlock;
2724 page_cache_release(old_page);
2726 if (reuse_swap_page(old_page)) {
2728 * The page is all ours. Move it to our anon_vma so
2729 * the rmap code will not search our parent or siblings.
2730 * Protected against the rmap code by the page lock.
2732 page_move_anon_rmap(old_page, vma, address);
2733 unlock_page(old_page);
2734 goto reuse;
2736 unlock_page(old_page);
2737 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2738 (VM_WRITE|VM_SHARED))) {
2740 * Only catch write-faults on shared writable pages,
2741 * read-only shared pages can get COWed by
2742 * get_user_pages(.write=1, .force=1).
2744 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2745 int tmp;
2746 page_cache_get(old_page);
2747 pte_unmap_unlock(page_table, ptl);
2748 tmp = do_page_mkwrite(vma, old_page, address);
2749 if (unlikely(!tmp || (tmp &
2750 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2751 page_cache_release(old_page);
2752 return tmp;
2755 * Since we dropped the lock we need to revalidate
2756 * the PTE as someone else may have changed it. If
2757 * they did, we just return, as we can count on the
2758 * MMU to tell us if they didn't also make it writable.
2760 page_table = pte_offset_map_lock(mm, pmd, address,
2761 &ptl);
2762 if (!pte_same(*page_table, orig_pte)) {
2763 unlock_page(old_page);
2764 goto unlock;
2767 page_mkwrite = 1;
2769 dirty_page = old_page;
2770 get_page(dirty_page);
2772 reuse:
2774 * Clear the pages cpupid information as the existing
2775 * information potentially belongs to a now completely
2776 * unrelated process.
2778 if (old_page)
2779 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2781 flush_cache_page(vma, address, pte_pfn(orig_pte));
2782 entry = pte_mkyoung(orig_pte);
2783 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2784 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2785 update_mmu_cache(vma, address, page_table);
2786 pte_unmap_unlock(page_table, ptl);
2787 ret |= VM_FAULT_WRITE;
2789 if (!dirty_page)
2790 return ret;
2793 * Yes, Virginia, this is actually required to prevent a race
2794 * with clear_page_dirty_for_io() from clearing the page dirty
2795 * bit after it clear all dirty ptes, but before a racing
2796 * do_wp_page installs a dirty pte.
2798 * do_shared_fault is protected similarly.
2800 if (!page_mkwrite) {
2801 wait_on_page_locked(dirty_page);
2802 set_page_dirty_balance(dirty_page);
2803 /* file_update_time outside page_lock */
2804 if (vma->vm_file)
2805 file_update_time(vma->vm_file);
2807 put_page(dirty_page);
2808 if (page_mkwrite) {
2809 struct address_space *mapping = dirty_page->mapping;
2811 set_page_dirty(dirty_page);
2812 unlock_page(dirty_page);
2813 page_cache_release(dirty_page);
2814 if (mapping) {
2816 * Some device drivers do not set page.mapping
2817 * but still dirty their pages
2819 balance_dirty_pages_ratelimited(mapping);
2823 return ret;
2827 * Ok, we need to copy. Oh, well..
2829 page_cache_get(old_page);
2830 gotten:
2831 pte_unmap_unlock(page_table, ptl);
2833 if (unlikely(anon_vma_prepare(vma)))
2834 goto oom;
2836 if (is_zero_pfn(pte_pfn(orig_pte))) {
2837 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2838 if (!new_page)
2839 goto oom;
2840 } else {
2841 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2842 if (!new_page)
2843 goto oom;
2844 cow_user_page(new_page, old_page, address, vma);
2846 __SetPageUptodate(new_page);
2848 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2849 goto oom_free_new;
2851 mmun_start = address & PAGE_MASK;
2852 mmun_end = mmun_start + PAGE_SIZE;
2853 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2856 * Re-check the pte - we dropped the lock
2858 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2859 if (likely(pte_same(*page_table, orig_pte))) {
2860 if (old_page) {
2861 if (!PageAnon(old_page)) {
2862 dec_mm_counter_fast(mm, MM_FILEPAGES);
2863 inc_mm_counter_fast(mm, MM_ANONPAGES);
2865 } else
2866 inc_mm_counter_fast(mm, MM_ANONPAGES);
2867 flush_cache_page(vma, address, pte_pfn(orig_pte));
2868 entry = mk_pte(new_page, vma->vm_page_prot);
2869 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2871 * Clear the pte entry and flush it first, before updating the
2872 * pte with the new entry. This will avoid a race condition
2873 * seen in the presence of one thread doing SMC and another
2874 * thread doing COW.
2876 ptep_clear_flush(vma, address, page_table);
2877 page_add_new_anon_rmap(new_page, vma, address);
2879 * We call the notify macro here because, when using secondary
2880 * mmu page tables (such as kvm shadow page tables), we want the
2881 * new page to be mapped directly into the secondary page table.
2883 set_pte_at_notify(mm, address, page_table, entry);
2884 update_mmu_cache(vma, address, page_table);
2885 if (old_page) {
2887 * Only after switching the pte to the new page may
2888 * we remove the mapcount here. Otherwise another
2889 * process may come and find the rmap count decremented
2890 * before the pte is switched to the new page, and
2891 * "reuse" the old page writing into it while our pte
2892 * here still points into it and can be read by other
2893 * threads.
2895 * The critical issue is to order this
2896 * page_remove_rmap with the ptp_clear_flush above.
2897 * Those stores are ordered by (if nothing else,)
2898 * the barrier present in the atomic_add_negative
2899 * in page_remove_rmap.
2901 * Then the TLB flush in ptep_clear_flush ensures that
2902 * no process can access the old page before the
2903 * decremented mapcount is visible. And the old page
2904 * cannot be reused until after the decremented
2905 * mapcount is visible. So transitively, TLBs to
2906 * old page will be flushed before it can be reused.
2908 page_remove_rmap(old_page);
2911 /* Free the old page.. */
2912 new_page = old_page;
2913 ret |= VM_FAULT_WRITE;
2914 } else
2915 mem_cgroup_uncharge_page(new_page);
2917 if (new_page)
2918 page_cache_release(new_page);
2919 unlock:
2920 pte_unmap_unlock(page_table, ptl);
2921 if (mmun_end > mmun_start)
2922 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2923 if (old_page) {
2925 * Don't let another task, with possibly unlocked vma,
2926 * keep the mlocked page.
2928 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2929 lock_page(old_page); /* LRU manipulation */
2930 munlock_vma_page(old_page);
2931 unlock_page(old_page);
2933 page_cache_release(old_page);
2935 return ret;
2936 oom_free_new:
2937 page_cache_release(new_page);
2938 oom:
2939 if (old_page)
2940 page_cache_release(old_page);
2941 return VM_FAULT_OOM;
2944 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2945 unsigned long start_addr, unsigned long end_addr,
2946 struct zap_details *details)
2948 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2951 static inline void unmap_mapping_range_tree(struct rb_root *root,
2952 struct zap_details *details)
2954 struct vm_area_struct *vma;
2955 pgoff_t vba, vea, zba, zea;
2957 vma_interval_tree_foreach(vma, root,
2958 details->first_index, details->last_index) {
2960 vba = vma->vm_pgoff;
2961 vea = vba + vma_pages(vma) - 1;
2962 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2963 zba = details->first_index;
2964 if (zba < vba)
2965 zba = vba;
2966 zea = details->last_index;
2967 if (zea > vea)
2968 zea = vea;
2970 unmap_mapping_range_vma(vma,
2971 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2972 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2973 details);
2977 static inline void unmap_mapping_range_list(struct list_head *head,
2978 struct zap_details *details)
2980 struct vm_area_struct *vma;
2983 * In nonlinear VMAs there is no correspondence between virtual address
2984 * offset and file offset. So we must perform an exhaustive search
2985 * across *all* the pages in each nonlinear VMA, not just the pages
2986 * whose virtual address lies outside the file truncation point.
2988 list_for_each_entry(vma, head, shared.nonlinear) {
2989 details->nonlinear_vma = vma;
2990 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2995 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2996 * @mapping: the address space containing mmaps to be unmapped.
2997 * @holebegin: byte in first page to unmap, relative to the start of
2998 * the underlying file. This will be rounded down to a PAGE_SIZE
2999 * boundary. Note that this is different from truncate_pagecache(), which
3000 * must keep the partial page. In contrast, we must get rid of
3001 * partial pages.
3002 * @holelen: size of prospective hole in bytes. This will be rounded
3003 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3004 * end of the file.
3005 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3006 * but 0 when invalidating pagecache, don't throw away private data.
3008 void unmap_mapping_range(struct address_space *mapping,
3009 loff_t const holebegin, loff_t const holelen, int even_cows)
3011 struct zap_details details;
3012 pgoff_t hba = holebegin >> PAGE_SHIFT;
3013 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3015 /* Check for overflow. */
3016 if (sizeof(holelen) > sizeof(hlen)) {
3017 long long holeend =
3018 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3019 if (holeend & ~(long long)ULONG_MAX)
3020 hlen = ULONG_MAX - hba + 1;
3023 details.check_mapping = even_cows? NULL: mapping;
3024 details.nonlinear_vma = NULL;
3025 details.first_index = hba;
3026 details.last_index = hba + hlen - 1;
3027 if (details.last_index < details.first_index)
3028 details.last_index = ULONG_MAX;
3031 mutex_lock(&mapping->i_mmap_mutex);
3032 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3033 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3034 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3035 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3036 mutex_unlock(&mapping->i_mmap_mutex);
3038 EXPORT_SYMBOL(unmap_mapping_range);
3041 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3042 * but allow concurrent faults), and pte mapped but not yet locked.
3043 * We return with mmap_sem still held, but pte unmapped and unlocked.
3045 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3046 unsigned long address, pte_t *page_table, pmd_t *pmd,
3047 unsigned int flags, pte_t orig_pte)
3049 spinlock_t *ptl;
3050 struct page *page, *swapcache;
3051 swp_entry_t entry;
3052 pte_t pte;
3053 int locked;
3054 struct mem_cgroup *ptr;
3055 int exclusive = 0;
3056 int ret = 0;
3058 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3059 goto out;
3061 entry = pte_to_swp_entry(orig_pte);
3062 if (unlikely(non_swap_entry(entry))) {
3063 if (is_migration_entry(entry)) {
3064 migration_entry_wait(mm, pmd, address);
3065 } else if (is_hwpoison_entry(entry)) {
3066 ret = VM_FAULT_HWPOISON;
3067 } else {
3068 print_bad_pte(vma, address, orig_pte, NULL);
3069 ret = VM_FAULT_SIGBUS;
3071 goto out;
3073 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3074 page = lookup_swap_cache(entry);
3075 if (!page) {
3076 page = swapin_readahead(entry,
3077 GFP_HIGHUSER_MOVABLE, vma, address);
3078 if (!page) {
3080 * Back out if somebody else faulted in this pte
3081 * while we released the pte lock.
3083 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3084 if (likely(pte_same(*page_table, orig_pte)))
3085 ret = VM_FAULT_OOM;
3086 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3087 goto unlock;
3090 /* Had to read the page from swap area: Major fault */
3091 ret = VM_FAULT_MAJOR;
3092 count_vm_event(PGMAJFAULT);
3093 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3094 } else if (PageHWPoison(page)) {
3096 * hwpoisoned dirty swapcache pages are kept for killing
3097 * owner processes (which may be unknown at hwpoison time)
3099 ret = VM_FAULT_HWPOISON;
3100 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3101 swapcache = page;
3102 goto out_release;
3105 swapcache = page;
3106 locked = lock_page_or_retry(page, mm, flags);
3108 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3109 if (!locked) {
3110 ret |= VM_FAULT_RETRY;
3111 goto out_release;
3115 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3116 * release the swapcache from under us. The page pin, and pte_same
3117 * test below, are not enough to exclude that. Even if it is still
3118 * swapcache, we need to check that the page's swap has not changed.
3120 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3121 goto out_page;
3123 page = ksm_might_need_to_copy(page, vma, address);
3124 if (unlikely(!page)) {
3125 ret = VM_FAULT_OOM;
3126 page = swapcache;
3127 goto out_page;
3130 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3131 ret = VM_FAULT_OOM;
3132 goto out_page;
3136 * Back out if somebody else already faulted in this pte.
3138 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3139 if (unlikely(!pte_same(*page_table, orig_pte)))
3140 goto out_nomap;
3142 if (unlikely(!PageUptodate(page))) {
3143 ret = VM_FAULT_SIGBUS;
3144 goto out_nomap;
3148 * The page isn't present yet, go ahead with the fault.
3150 * Be careful about the sequence of operations here.
3151 * To get its accounting right, reuse_swap_page() must be called
3152 * while the page is counted on swap but not yet in mapcount i.e.
3153 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3154 * must be called after the swap_free(), or it will never succeed.
3155 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3156 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3157 * in page->private. In this case, a record in swap_cgroup is silently
3158 * discarded at swap_free().
3161 inc_mm_counter_fast(mm, MM_ANONPAGES);
3162 dec_mm_counter_fast(mm, MM_SWAPENTS);
3163 pte = mk_pte(page, vma->vm_page_prot);
3164 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3165 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3166 flags &= ~FAULT_FLAG_WRITE;
3167 ret |= VM_FAULT_WRITE;
3168 exclusive = 1;
3170 flush_icache_page(vma, page);
3171 if (pte_swp_soft_dirty(orig_pte))
3172 pte = pte_mksoft_dirty(pte);
3173 set_pte_at(mm, address, page_table, pte);
3174 if (page == swapcache)
3175 do_page_add_anon_rmap(page, vma, address, exclusive);
3176 else /* ksm created a completely new copy */
3177 page_add_new_anon_rmap(page, vma, address);
3178 /* It's better to call commit-charge after rmap is established */
3179 mem_cgroup_commit_charge_swapin(page, ptr);
3181 swap_free(entry);
3182 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3183 try_to_free_swap(page);
3184 unlock_page(page);
3185 if (page != swapcache) {
3187 * Hold the lock to avoid the swap entry to be reused
3188 * until we take the PT lock for the pte_same() check
3189 * (to avoid false positives from pte_same). For
3190 * further safety release the lock after the swap_free
3191 * so that the swap count won't change under a
3192 * parallel locked swapcache.
3194 unlock_page(swapcache);
3195 page_cache_release(swapcache);
3198 if (flags & FAULT_FLAG_WRITE) {
3199 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3200 if (ret & VM_FAULT_ERROR)
3201 ret &= VM_FAULT_ERROR;
3202 goto out;
3205 /* No need to invalidate - it was non-present before */
3206 update_mmu_cache(vma, address, page_table);
3207 unlock:
3208 pte_unmap_unlock(page_table, ptl);
3209 out:
3210 return ret;
3211 out_nomap:
3212 mem_cgroup_cancel_charge_swapin(ptr);
3213 pte_unmap_unlock(page_table, ptl);
3214 out_page:
3215 unlock_page(page);
3216 out_release:
3217 page_cache_release(page);
3218 if (page != swapcache) {
3219 unlock_page(swapcache);
3220 page_cache_release(swapcache);
3222 return ret;
3226 * This is like a special single-page "expand_{down|up}wards()",
3227 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3228 * doesn't hit another vma.
3230 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3232 address &= PAGE_MASK;
3233 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3234 struct vm_area_struct *prev = vma->vm_prev;
3237 * Is there a mapping abutting this one below?
3239 * That's only ok if it's the same stack mapping
3240 * that has gotten split..
3242 if (prev && prev->vm_end == address)
3243 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3245 expand_downwards(vma, address - PAGE_SIZE);
3247 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3248 struct vm_area_struct *next = vma->vm_next;
3250 /* As VM_GROWSDOWN but s/below/above/ */
3251 if (next && next->vm_start == address + PAGE_SIZE)
3252 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3254 expand_upwards(vma, address + PAGE_SIZE);
3256 return 0;
3260 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3261 * but allow concurrent faults), and pte mapped but not yet locked.
3262 * We return with mmap_sem still held, but pte unmapped and unlocked.
3264 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3265 unsigned long address, pte_t *page_table, pmd_t *pmd,
3266 unsigned int flags)
3268 struct page *page;
3269 spinlock_t *ptl;
3270 pte_t entry;
3272 pte_unmap(page_table);
3274 /* Check if we need to add a guard page to the stack */
3275 if (check_stack_guard_page(vma, address) < 0)
3276 return VM_FAULT_SIGBUS;
3278 /* Use the zero-page for reads */
3279 if (!(flags & FAULT_FLAG_WRITE)) {
3280 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3281 vma->vm_page_prot));
3282 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3283 if (!pte_none(*page_table))
3284 goto unlock;
3285 goto setpte;
3288 /* Allocate our own private page. */
3289 if (unlikely(anon_vma_prepare(vma)))
3290 goto oom;
3291 page = alloc_zeroed_user_highpage_movable(vma, address);
3292 if (!page)
3293 goto oom;
3295 * The memory barrier inside __SetPageUptodate makes sure that
3296 * preceeding stores to the page contents become visible before
3297 * the set_pte_at() write.
3299 __SetPageUptodate(page);
3301 if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3302 goto oom_free_page;
3304 entry = mk_pte(page, vma->vm_page_prot);
3305 if (vma->vm_flags & VM_WRITE)
3306 entry = pte_mkwrite(pte_mkdirty(entry));
3308 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3309 if (!pte_none(*page_table))
3310 goto release;
3312 inc_mm_counter_fast(mm, MM_ANONPAGES);
3313 page_add_new_anon_rmap(page, vma, address);
3314 setpte:
3315 set_pte_at(mm, address, page_table, entry);
3317 /* No need to invalidate - it was non-present before */
3318 update_mmu_cache(vma, address, page_table);
3319 unlock:
3320 pte_unmap_unlock(page_table, ptl);
3321 return 0;
3322 release:
3323 mem_cgroup_uncharge_page(page);
3324 page_cache_release(page);
3325 goto unlock;
3326 oom_free_page:
3327 page_cache_release(page);
3328 oom:
3329 return VM_FAULT_OOM;
3332 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3333 pgoff_t pgoff, unsigned int flags, struct page **page)
3335 struct vm_fault vmf;
3336 int ret;
3338 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3339 vmf.pgoff = pgoff;
3340 vmf.flags = flags;
3341 vmf.page = NULL;
3343 ret = vma->vm_ops->fault(vma, &vmf);
3344 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3345 return ret;
3347 if (unlikely(PageHWPoison(vmf.page))) {
3348 if (ret & VM_FAULT_LOCKED)
3349 unlock_page(vmf.page);
3350 page_cache_release(vmf.page);
3351 return VM_FAULT_HWPOISON;
3354 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3355 lock_page(vmf.page);
3356 else
3357 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3359 *page = vmf.page;
3360 return ret;
3364 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3366 * @vma: virtual memory area
3367 * @address: user virtual address
3368 * @page: page to map
3369 * @pte: pointer to target page table entry
3370 * @write: true, if new entry is writable
3371 * @anon: true, if it's anonymous page
3373 * Caller must hold page table lock relevant for @pte.
3375 * Target users are page handler itself and implementations of
3376 * vm_ops->map_pages.
3378 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3379 struct page *page, pte_t *pte, bool write, bool anon)
3381 pte_t entry;
3383 flush_icache_page(vma, page);
3384 entry = mk_pte(page, vma->vm_page_prot);
3385 if (write)
3386 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3387 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3388 pte_mksoft_dirty(entry);
3389 if (anon) {
3390 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3391 page_add_new_anon_rmap(page, vma, address);
3392 } else {
3393 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3394 page_add_file_rmap(page);
3396 set_pte_at(vma->vm_mm, address, pte, entry);
3398 /* no need to invalidate: a not-present page won't be cached */
3399 update_mmu_cache(vma, address, pte);
3402 #define FAULT_AROUND_ORDER 4
3404 #ifdef CONFIG_DEBUG_FS
3405 static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3407 static int fault_around_order_get(void *data, u64 *val)
3409 *val = fault_around_order;
3410 return 0;
3413 static int fault_around_order_set(void *data, u64 val)
3415 BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3416 if (1UL << val > PTRS_PER_PTE)
3417 return -EINVAL;
3418 fault_around_order = val;
3419 return 0;
3421 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3422 fault_around_order_get, fault_around_order_set, "%llu\n");
3424 static int __init fault_around_debugfs(void)
3426 void *ret;
3428 ret = debugfs_create_file("fault_around_order", 0644, NULL, NULL,
3429 &fault_around_order_fops);
3430 if (!ret)
3431 pr_warn("Failed to create fault_around_order in debugfs");
3432 return 0;
3434 late_initcall(fault_around_debugfs);
3436 static inline unsigned long fault_around_pages(void)
3438 return 1UL << fault_around_order;
3441 static inline unsigned long fault_around_mask(void)
3443 return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3445 #else
3446 static inline unsigned long fault_around_pages(void)
3448 unsigned long nr_pages;
3450 nr_pages = 1UL << FAULT_AROUND_ORDER;
3451 BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3452 return nr_pages;
3455 static inline unsigned long fault_around_mask(void)
3457 return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3459 #endif
3461 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3462 pte_t *pte, pgoff_t pgoff, unsigned int flags)
3464 unsigned long start_addr;
3465 pgoff_t max_pgoff;
3466 struct vm_fault vmf;
3467 int off;
3469 start_addr = max(address & fault_around_mask(), vma->vm_start);
3470 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3471 pte -= off;
3472 pgoff -= off;
3475 * max_pgoff is either end of page table or end of vma
3476 * or fault_around_pages() from pgoff, depending what is neast.
3478 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3479 PTRS_PER_PTE - 1;
3480 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3481 pgoff + fault_around_pages() - 1);
3483 /* Check if it makes any sense to call ->map_pages */
3484 while (!pte_none(*pte)) {
3485 if (++pgoff > max_pgoff)
3486 return;
3487 start_addr += PAGE_SIZE;
3488 if (start_addr >= vma->vm_end)
3489 return;
3490 pte++;
3493 vmf.virtual_address = (void __user *) start_addr;
3494 vmf.pte = pte;
3495 vmf.pgoff = pgoff;
3496 vmf.max_pgoff = max_pgoff;
3497 vmf.flags = flags;
3498 vma->vm_ops->map_pages(vma, &vmf);
3501 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3502 unsigned long address, pmd_t *pmd,
3503 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3505 struct page *fault_page;
3506 spinlock_t *ptl;
3507 pte_t *pte;
3508 int ret = 0;
3511 * Let's call ->map_pages() first and use ->fault() as fallback
3512 * if page by the offset is not ready to be mapped (cold cache or
3513 * something).
3515 if (vma->vm_ops->map_pages) {
3516 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3517 do_fault_around(vma, address, pte, pgoff, flags);
3518 if (!pte_same(*pte, orig_pte))
3519 goto unlock_out;
3520 pte_unmap_unlock(pte, ptl);
3523 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3524 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3525 return ret;
3527 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3528 if (unlikely(!pte_same(*pte, orig_pte))) {
3529 pte_unmap_unlock(pte, ptl);
3530 unlock_page(fault_page);
3531 page_cache_release(fault_page);
3532 return ret;
3534 do_set_pte(vma, address, fault_page, pte, false, false);
3535 unlock_page(fault_page);
3536 unlock_out:
3537 pte_unmap_unlock(pte, ptl);
3538 return ret;
3541 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3542 unsigned long address, pmd_t *pmd,
3543 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3545 struct page *fault_page, *new_page;
3546 spinlock_t *ptl;
3547 pte_t *pte;
3548 int ret;
3550 if (unlikely(anon_vma_prepare(vma)))
3551 return VM_FAULT_OOM;
3553 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3554 if (!new_page)
3555 return VM_FAULT_OOM;
3557 if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3558 page_cache_release(new_page);
3559 return VM_FAULT_OOM;
3562 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3564 goto uncharge_out;
3566 copy_user_highpage(new_page, fault_page, address, vma);
3567 __SetPageUptodate(new_page);
3569 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3570 if (unlikely(!pte_same(*pte, orig_pte))) {
3571 pte_unmap_unlock(pte, ptl);
3572 unlock_page(fault_page);
3573 page_cache_release(fault_page);
3574 goto uncharge_out;
3576 do_set_pte(vma, address, new_page, pte, true, true);
3577 pte_unmap_unlock(pte, ptl);
3578 unlock_page(fault_page);
3579 page_cache_release(fault_page);
3580 return ret;
3581 uncharge_out:
3582 mem_cgroup_uncharge_page(new_page);
3583 page_cache_release(new_page);
3584 return ret;
3587 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3588 unsigned long address, pmd_t *pmd,
3589 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3591 struct page *fault_page;
3592 struct address_space *mapping;
3593 spinlock_t *ptl;
3594 pte_t *pte;
3595 int dirtied = 0;
3596 int ret, tmp;
3598 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3599 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3600 return ret;
3603 * Check if the backing address space wants to know that the page is
3604 * about to become writable
3606 if (vma->vm_ops->page_mkwrite) {
3607 unlock_page(fault_page);
3608 tmp = do_page_mkwrite(vma, fault_page, address);
3609 if (unlikely(!tmp ||
3610 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3611 page_cache_release(fault_page);
3612 return tmp;
3616 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3617 if (unlikely(!pte_same(*pte, orig_pte))) {
3618 pte_unmap_unlock(pte, ptl);
3619 unlock_page(fault_page);
3620 page_cache_release(fault_page);
3621 return ret;
3623 do_set_pte(vma, address, fault_page, pte, true, false);
3624 pte_unmap_unlock(pte, ptl);
3626 if (set_page_dirty(fault_page))
3627 dirtied = 1;
3628 mapping = fault_page->mapping;
3629 unlock_page(fault_page);
3630 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3632 * Some device drivers do not set page.mapping but still
3633 * dirty their pages
3635 balance_dirty_pages_ratelimited(mapping);
3638 /* file_update_time outside page_lock */
3639 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3640 file_update_time(vma->vm_file);
3642 return ret;
3645 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3646 unsigned long address, pte_t *page_table, pmd_t *pmd,
3647 unsigned int flags, pte_t orig_pte)
3649 pgoff_t pgoff = (((address & PAGE_MASK)
3650 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3652 pte_unmap(page_table);
3653 if (!(flags & FAULT_FLAG_WRITE))
3654 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3655 orig_pte);
3656 if (!(vma->vm_flags & VM_SHARED))
3657 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3658 orig_pte);
3659 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3663 * Fault of a previously existing named mapping. Repopulate the pte
3664 * from the encoded file_pte if possible. This enables swappable
3665 * nonlinear vmas.
3667 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3668 * but allow concurrent faults), and pte mapped but not yet locked.
3669 * We return with mmap_sem still held, but pte unmapped and unlocked.
3671 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3672 unsigned long address, pte_t *page_table, pmd_t *pmd,
3673 unsigned int flags, pte_t orig_pte)
3675 pgoff_t pgoff;
3677 flags |= FAULT_FLAG_NONLINEAR;
3679 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3680 return 0;
3682 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3684 * Page table corrupted: show pte and kill process.
3686 print_bad_pte(vma, address, orig_pte, NULL);
3687 return VM_FAULT_SIGBUS;
3690 pgoff = pte_to_pgoff(orig_pte);
3691 if (!(flags & FAULT_FLAG_WRITE))
3692 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3693 orig_pte);
3694 if (!(vma->vm_flags & VM_SHARED))
3695 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3696 orig_pte);
3697 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3700 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3701 unsigned long addr, int page_nid,
3702 int *flags)
3704 get_page(page);
3706 count_vm_numa_event(NUMA_HINT_FAULTS);
3707 if (page_nid == numa_node_id()) {
3708 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3709 *flags |= TNF_FAULT_LOCAL;
3712 return mpol_misplaced(page, vma, addr);
3715 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3716 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3718 struct page *page = NULL;
3719 spinlock_t *ptl;
3720 int page_nid = -1;
3721 int last_cpupid;
3722 int target_nid;
3723 bool migrated = false;
3724 int flags = 0;
3727 * The "pte" at this point cannot be used safely without
3728 * validation through pte_unmap_same(). It's of NUMA type but
3729 * the pfn may be screwed if the read is non atomic.
3731 * ptep_modify_prot_start is not called as this is clearing
3732 * the _PAGE_NUMA bit and it is not really expected that there
3733 * would be concurrent hardware modifications to the PTE.
3735 ptl = pte_lockptr(mm, pmd);
3736 spin_lock(ptl);
3737 if (unlikely(!pte_same(*ptep, pte))) {
3738 pte_unmap_unlock(ptep, ptl);
3739 goto out;
3742 pte = pte_mknonnuma(pte);
3743 set_pte_at(mm, addr, ptep, pte);
3744 update_mmu_cache(vma, addr, ptep);
3746 page = vm_normal_page(vma, addr, pte);
3747 if (!page) {
3748 pte_unmap_unlock(ptep, ptl);
3749 return 0;
3751 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3754 * Avoid grouping on DSO/COW pages in specific and RO pages
3755 * in general, RO pages shouldn't hurt as much anyway since
3756 * they can be in shared cache state.
3758 if (!pte_write(pte))
3759 flags |= TNF_NO_GROUP;
3762 * Flag if the page is shared between multiple address spaces. This
3763 * is later used when determining whether to group tasks together
3765 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3766 flags |= TNF_SHARED;
3768 last_cpupid = page_cpupid_last(page);
3769 page_nid = page_to_nid(page);
3770 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3771 pte_unmap_unlock(ptep, ptl);
3772 if (target_nid == -1) {
3773 put_page(page);
3774 goto out;
3777 /* Migrate to the requested node */
3778 migrated = migrate_misplaced_page(page, vma, target_nid);
3779 if (migrated) {
3780 page_nid = target_nid;
3781 flags |= TNF_MIGRATED;
3784 out:
3785 if (page_nid != -1)
3786 task_numa_fault(last_cpupid, page_nid, 1, flags);
3787 return 0;
3791 * These routines also need to handle stuff like marking pages dirty
3792 * and/or accessed for architectures that don't do it in hardware (most
3793 * RISC architectures). The early dirtying is also good on the i386.
3795 * There is also a hook called "update_mmu_cache()" that architectures
3796 * with external mmu caches can use to update those (ie the Sparc or
3797 * PowerPC hashed page tables that act as extended TLBs).
3799 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3800 * but allow concurrent faults), and pte mapped but not yet locked.
3801 * We return with mmap_sem still held, but pte unmapped and unlocked.
3803 static int handle_pte_fault(struct mm_struct *mm,
3804 struct vm_area_struct *vma, unsigned long address,
3805 pte_t *pte, pmd_t *pmd, unsigned int flags)
3807 pte_t entry;
3808 spinlock_t *ptl;
3810 entry = *pte;
3811 if (!pte_present(entry)) {
3812 if (pte_none(entry)) {
3813 if (vma->vm_ops) {
3814 if (likely(vma->vm_ops->fault))
3815 return do_linear_fault(mm, vma, address,
3816 pte, pmd, flags, entry);
3818 return do_anonymous_page(mm, vma, address,
3819 pte, pmd, flags);
3821 if (pte_file(entry))
3822 return do_nonlinear_fault(mm, vma, address,
3823 pte, pmd, flags, entry);
3824 return do_swap_page(mm, vma, address,
3825 pte, pmd, flags, entry);
3828 if (pte_numa(entry))
3829 return do_numa_page(mm, vma, address, entry, pte, pmd);
3831 ptl = pte_lockptr(mm, pmd);
3832 spin_lock(ptl);
3833 if (unlikely(!pte_same(*pte, entry)))
3834 goto unlock;
3835 if (flags & FAULT_FLAG_WRITE) {
3836 if (!pte_write(entry))
3837 return do_wp_page(mm, vma, address,
3838 pte, pmd, ptl, entry);
3839 entry = pte_mkdirty(entry);
3841 entry = pte_mkyoung(entry);
3842 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3843 update_mmu_cache(vma, address, pte);
3844 } else {
3846 * This is needed only for protection faults but the arch code
3847 * is not yet telling us if this is a protection fault or not.
3848 * This still avoids useless tlb flushes for .text page faults
3849 * with threads.
3851 if (flags & FAULT_FLAG_WRITE)
3852 flush_tlb_fix_spurious_fault(vma, address);
3854 unlock:
3855 pte_unmap_unlock(pte, ptl);
3856 return 0;
3860 * By the time we get here, we already hold the mm semaphore
3862 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3863 unsigned long address, unsigned int flags)
3865 pgd_t *pgd;
3866 pud_t *pud;
3867 pmd_t *pmd;
3868 pte_t *pte;
3870 if (unlikely(is_vm_hugetlb_page(vma)))
3871 return hugetlb_fault(mm, vma, address, flags);
3873 pgd = pgd_offset(mm, address);
3874 pud = pud_alloc(mm, pgd, address);
3875 if (!pud)
3876 return VM_FAULT_OOM;
3877 pmd = pmd_alloc(mm, pud, address);
3878 if (!pmd)
3879 return VM_FAULT_OOM;
3880 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3881 int ret = VM_FAULT_FALLBACK;
3882 if (!vma->vm_ops)
3883 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3884 pmd, flags);
3885 if (!(ret & VM_FAULT_FALLBACK))
3886 return ret;
3887 } else {
3888 pmd_t orig_pmd = *pmd;
3889 int ret;
3891 barrier();
3892 if (pmd_trans_huge(orig_pmd)) {
3893 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3896 * If the pmd is splitting, return and retry the
3897 * the fault. Alternative: wait until the split
3898 * is done, and goto retry.
3900 if (pmd_trans_splitting(orig_pmd))
3901 return 0;
3903 if (pmd_numa(orig_pmd))
3904 return do_huge_pmd_numa_page(mm, vma, address,
3905 orig_pmd, pmd);
3907 if (dirty && !pmd_write(orig_pmd)) {
3908 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3909 orig_pmd);
3910 if (!(ret & VM_FAULT_FALLBACK))
3911 return ret;
3912 } else {
3913 huge_pmd_set_accessed(mm, vma, address, pmd,
3914 orig_pmd, dirty);
3915 return 0;
3921 * Use __pte_alloc instead of pte_alloc_map, because we can't
3922 * run pte_offset_map on the pmd, if an huge pmd could
3923 * materialize from under us from a different thread.
3925 if (unlikely(pmd_none(*pmd)) &&
3926 unlikely(__pte_alloc(mm, vma, pmd, address)))
3927 return VM_FAULT_OOM;
3928 /* if an huge pmd materialized from under us just retry later */
3929 if (unlikely(pmd_trans_huge(*pmd)))
3930 return 0;
3932 * A regular pmd is established and it can't morph into a huge pmd
3933 * from under us anymore at this point because we hold the mmap_sem
3934 * read mode and khugepaged takes it in write mode. So now it's
3935 * safe to run pte_offset_map().
3937 pte = pte_offset_map(pmd, address);
3939 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3942 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3943 unsigned long address, unsigned int flags)
3945 int ret;
3947 __set_current_state(TASK_RUNNING);
3949 count_vm_event(PGFAULT);
3950 mem_cgroup_count_vm_event(mm, PGFAULT);
3952 /* do counter updates before entering really critical section. */
3953 check_sync_rss_stat(current);
3956 * Enable the memcg OOM handling for faults triggered in user
3957 * space. Kernel faults are handled more gracefully.
3959 if (flags & FAULT_FLAG_USER)
3960 mem_cgroup_oom_enable();
3962 ret = __handle_mm_fault(mm, vma, address, flags);
3964 if (flags & FAULT_FLAG_USER) {
3965 mem_cgroup_oom_disable();
3967 * The task may have entered a memcg OOM situation but
3968 * if the allocation error was handled gracefully (no
3969 * VM_FAULT_OOM), there is no need to kill anything.
3970 * Just clean up the OOM state peacefully.
3972 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3973 mem_cgroup_oom_synchronize(false);
3976 return ret;
3979 #ifndef __PAGETABLE_PUD_FOLDED
3981 * Allocate page upper directory.
3982 * We've already handled the fast-path in-line.
3984 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3986 pud_t *new = pud_alloc_one(mm, address);
3987 if (!new)
3988 return -ENOMEM;
3990 smp_wmb(); /* See comment in __pte_alloc */
3992 spin_lock(&mm->page_table_lock);
3993 if (pgd_present(*pgd)) /* Another has populated it */
3994 pud_free(mm, new);
3995 else
3996 pgd_populate(mm, pgd, new);
3997 spin_unlock(&mm->page_table_lock);
3998 return 0;
4000 #endif /* __PAGETABLE_PUD_FOLDED */
4002 #ifndef __PAGETABLE_PMD_FOLDED
4004 * Allocate page middle directory.
4005 * We've already handled the fast-path in-line.
4007 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4009 pmd_t *new = pmd_alloc_one(mm, address);
4010 if (!new)
4011 return -ENOMEM;
4013 smp_wmb(); /* See comment in __pte_alloc */
4015 spin_lock(&mm->page_table_lock);
4016 #ifndef __ARCH_HAS_4LEVEL_HACK
4017 if (pud_present(*pud)) /* Another has populated it */
4018 pmd_free(mm, new);
4019 else
4020 pud_populate(mm, pud, new);
4021 #else
4022 if (pgd_present(*pud)) /* Another has populated it */
4023 pmd_free(mm, new);
4024 else
4025 pgd_populate(mm, pud, new);
4026 #endif /* __ARCH_HAS_4LEVEL_HACK */
4027 spin_unlock(&mm->page_table_lock);
4028 return 0;
4030 #endif /* __PAGETABLE_PMD_FOLDED */
4032 #if !defined(__HAVE_ARCH_GATE_AREA)
4034 #if defined(AT_SYSINFO_EHDR)
4035 static struct vm_area_struct gate_vma;
4037 static int __init gate_vma_init(void)
4039 gate_vma.vm_mm = NULL;
4040 gate_vma.vm_start = FIXADDR_USER_START;
4041 gate_vma.vm_end = FIXADDR_USER_END;
4042 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4043 gate_vma.vm_page_prot = __P101;
4045 return 0;
4047 __initcall(gate_vma_init);
4048 #endif
4050 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4052 #ifdef AT_SYSINFO_EHDR
4053 return &gate_vma;
4054 #else
4055 return NULL;
4056 #endif
4059 int in_gate_area_no_mm(unsigned long addr)
4061 #ifdef AT_SYSINFO_EHDR
4062 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4063 return 1;
4064 #endif
4065 return 0;
4068 #endif /* __HAVE_ARCH_GATE_AREA */
4070 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4071 pte_t **ptepp, spinlock_t **ptlp)
4073 pgd_t *pgd;
4074 pud_t *pud;
4075 pmd_t *pmd;
4076 pte_t *ptep;
4078 pgd = pgd_offset(mm, address);
4079 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4080 goto out;
4082 pud = pud_offset(pgd, address);
4083 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4084 goto out;
4086 pmd = pmd_offset(pud, address);
4087 VM_BUG_ON(pmd_trans_huge(*pmd));
4088 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4089 goto out;
4091 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
4092 if (pmd_huge(*pmd))
4093 goto out;
4095 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4096 if (!ptep)
4097 goto out;
4098 if (!pte_present(*ptep))
4099 goto unlock;
4100 *ptepp = ptep;
4101 return 0;
4102 unlock:
4103 pte_unmap_unlock(ptep, *ptlp);
4104 out:
4105 return -EINVAL;
4108 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4109 pte_t **ptepp, spinlock_t **ptlp)
4111 int res;
4113 /* (void) is needed to make gcc happy */
4114 (void) __cond_lock(*ptlp,
4115 !(res = __follow_pte(mm, address, ptepp, ptlp)));
4116 return res;
4120 * follow_pfn - look up PFN at a user virtual address
4121 * @vma: memory mapping
4122 * @address: user virtual address
4123 * @pfn: location to store found PFN
4125 * Only IO mappings and raw PFN mappings are allowed.
4127 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4129 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4130 unsigned long *pfn)
4132 int ret = -EINVAL;
4133 spinlock_t *ptl;
4134 pte_t *ptep;
4136 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4137 return ret;
4139 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4140 if (ret)
4141 return ret;
4142 *pfn = pte_pfn(*ptep);
4143 pte_unmap_unlock(ptep, ptl);
4144 return 0;
4146 EXPORT_SYMBOL(follow_pfn);
4148 #ifdef CONFIG_HAVE_IOREMAP_PROT
4149 int follow_phys(struct vm_area_struct *vma,
4150 unsigned long address, unsigned int flags,
4151 unsigned long *prot, resource_size_t *phys)
4153 int ret = -EINVAL;
4154 pte_t *ptep, pte;
4155 spinlock_t *ptl;
4157 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4158 goto out;
4160 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4161 goto out;
4162 pte = *ptep;
4164 if ((flags & FOLL_WRITE) && !pte_write(pte))
4165 goto unlock;
4167 *prot = pgprot_val(pte_pgprot(pte));
4168 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4170 ret = 0;
4171 unlock:
4172 pte_unmap_unlock(ptep, ptl);
4173 out:
4174 return ret;
4177 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4178 void *buf, int len, int write)
4180 resource_size_t phys_addr;
4181 unsigned long prot = 0;
4182 void __iomem *maddr;
4183 int offset = addr & (PAGE_SIZE-1);
4185 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4186 return -EINVAL;
4188 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4189 if (write)
4190 memcpy_toio(maddr + offset, buf, len);
4191 else
4192 memcpy_fromio(buf, maddr + offset, len);
4193 iounmap(maddr);
4195 return len;
4197 EXPORT_SYMBOL_GPL(generic_access_phys);
4198 #endif
4201 * Access another process' address space as given in mm. If non-NULL, use the
4202 * given task for page fault accounting.
4204 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4205 unsigned long addr, void *buf, int len, int write)
4207 struct vm_area_struct *vma;
4208 void *old_buf = buf;
4210 down_read(&mm->mmap_sem);
4211 /* ignore errors, just check how much was successfully transferred */
4212 while (len) {
4213 int bytes, ret, offset;
4214 void *maddr;
4215 struct page *page = NULL;
4217 ret = get_user_pages(tsk, mm, addr, 1,
4218 write, 1, &page, &vma);
4219 if (ret <= 0) {
4221 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4222 * we can access using slightly different code.
4224 #ifdef CONFIG_HAVE_IOREMAP_PROT
4225 vma = find_vma(mm, addr);
4226 if (!vma || vma->vm_start > addr)
4227 break;
4228 if (vma->vm_ops && vma->vm_ops->access)
4229 ret = vma->vm_ops->access(vma, addr, buf,
4230 len, write);
4231 if (ret <= 0)
4232 #endif
4233 break;
4234 bytes = ret;
4235 } else {
4236 bytes = len;
4237 offset = addr & (PAGE_SIZE-1);
4238 if (bytes > PAGE_SIZE-offset)
4239 bytes = PAGE_SIZE-offset;
4241 maddr = kmap(page);
4242 if (write) {
4243 copy_to_user_page(vma, page, addr,
4244 maddr + offset, buf, bytes);
4245 set_page_dirty_lock(page);
4246 } else {
4247 copy_from_user_page(vma, page, addr,
4248 buf, maddr + offset, bytes);
4250 kunmap(page);
4251 page_cache_release(page);
4253 len -= bytes;
4254 buf += bytes;
4255 addr += bytes;
4257 up_read(&mm->mmap_sem);
4259 return buf - old_buf;
4263 * access_remote_vm - access another process' address space
4264 * @mm: the mm_struct of the target address space
4265 * @addr: start address to access
4266 * @buf: source or destination buffer
4267 * @len: number of bytes to transfer
4268 * @write: whether the access is a write
4270 * The caller must hold a reference on @mm.
4272 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4273 void *buf, int len, int write)
4275 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4279 * Access another process' address space.
4280 * Source/target buffer must be kernel space,
4281 * Do not walk the page table directly, use get_user_pages
4283 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4284 void *buf, int len, int write)
4286 struct mm_struct *mm;
4287 int ret;
4289 mm = get_task_mm(tsk);
4290 if (!mm)
4291 return 0;
4293 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4294 mmput(mm);
4296 return ret;
4300 * Print the name of a VMA.
4302 void print_vma_addr(char *prefix, unsigned long ip)
4304 struct mm_struct *mm = current->mm;
4305 struct vm_area_struct *vma;
4308 * Do not print if we are in atomic
4309 * contexts (in exception stacks, etc.):
4311 if (preempt_count())
4312 return;
4314 down_read(&mm->mmap_sem);
4315 vma = find_vma(mm, ip);
4316 if (vma && vma->vm_file) {
4317 struct file *f = vma->vm_file;
4318 char *buf = (char *)__get_free_page(GFP_KERNEL);
4319 if (buf) {
4320 char *p;
4322 p = d_path(&f->f_path, buf, PAGE_SIZE);
4323 if (IS_ERR(p))
4324 p = "?";
4325 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4326 vma->vm_start,
4327 vma->vm_end - vma->vm_start);
4328 free_page((unsigned long)buf);
4331 up_read(&mm->mmap_sem);
4334 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4335 void might_fault(void)
4338 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4339 * holding the mmap_sem, this is safe because kernel memory doesn't
4340 * get paged out, therefore we'll never actually fault, and the
4341 * below annotations will generate false positives.
4343 if (segment_eq(get_fs(), KERNEL_DS))
4344 return;
4347 * it would be nicer only to annotate paths which are not under
4348 * pagefault_disable, however that requires a larger audit and
4349 * providing helpers like get_user_atomic.
4351 if (in_atomic())
4352 return;
4354 __might_sleep(__FILE__, __LINE__, 0);
4356 if (current->mm)
4357 might_lock_read(&current->mm->mmap_sem);
4359 EXPORT_SYMBOL(might_fault);
4360 #endif
4362 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4363 static void clear_gigantic_page(struct page *page,
4364 unsigned long addr,
4365 unsigned int pages_per_huge_page)
4367 int i;
4368 struct page *p = page;
4370 might_sleep();
4371 for (i = 0; i < pages_per_huge_page;
4372 i++, p = mem_map_next(p, page, i)) {
4373 cond_resched();
4374 clear_user_highpage(p, addr + i * PAGE_SIZE);
4377 void clear_huge_page(struct page *page,
4378 unsigned long addr, unsigned int pages_per_huge_page)
4380 int i;
4382 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4383 clear_gigantic_page(page, addr, pages_per_huge_page);
4384 return;
4387 might_sleep();
4388 for (i = 0; i < pages_per_huge_page; i++) {
4389 cond_resched();
4390 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4394 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4395 unsigned long addr,
4396 struct vm_area_struct *vma,
4397 unsigned int pages_per_huge_page)
4399 int i;
4400 struct page *dst_base = dst;
4401 struct page *src_base = src;
4403 for (i = 0; i < pages_per_huge_page; ) {
4404 cond_resched();
4405 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4407 i++;
4408 dst = mem_map_next(dst, dst_base, i);
4409 src = mem_map_next(src, src_base, i);
4413 void copy_user_huge_page(struct page *dst, struct page *src,
4414 unsigned long addr, struct vm_area_struct *vma,
4415 unsigned int pages_per_huge_page)
4417 int i;
4419 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4420 copy_user_gigantic_page(dst, src, addr, vma,
4421 pages_per_huge_page);
4422 return;
4425 might_sleep();
4426 for (i = 0; i < pages_per_huge_page; i++) {
4427 cond_resched();
4428 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4431 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4433 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4435 static struct kmem_cache *page_ptl_cachep;
4437 void __init ptlock_cache_init(void)
4439 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4440 SLAB_PANIC, NULL);
4443 bool ptlock_alloc(struct page *page)
4445 spinlock_t *ptl;
4447 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4448 if (!ptl)
4449 return false;
4450 page->ptl = ptl;
4451 return true;
4454 void ptlock_free(struct page *page)
4456 kmem_cache_free(page_ptl_cachep, page->ptl);
4458 #endif