mm/compaction: clean up unused code lines
[linux-2.6/btrfs-unstable.git] / mm / huge_memory.c
blobe60837dc785c4ce35f579374527587c77665ecce
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74 static struct kmem_cache *mm_slot_cache __read_mostly;
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 static int set_recommended_min_free_kbytes(void)
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
112 if (!khugepaged_enabled())
113 return 0;
115 for_each_populated_zone(zone)
116 nr_zones++;
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
141 min_free_kbytes = recommended_min;
143 setup_per_zone_wmarks();
144 return 0;
146 late_initcall(set_recommended_min_free_kbytes);
148 static int start_khugepaged(void)
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
170 return err;
173 static atomic_t huge_zero_refcount;
174 static struct page *huge_zero_page __read_mostly;
176 static inline bool is_huge_zero_page(struct page *page)
178 return ACCESS_ONCE(huge_zero_page) == page;
181 static inline bool is_huge_zero_pmd(pmd_t pmd)
183 return is_huge_zero_page(pmd_page(pmd));
186 static struct page *get_huge_zero_page(void)
188 struct page *zero_page;
189 retry:
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
191 return ACCESS_ONCE(huge_zero_page);
193 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
194 HPAGE_PMD_ORDER);
195 if (!zero_page) {
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
197 return NULL;
199 count_vm_event(THP_ZERO_PAGE_ALLOC);
200 preempt_disable();
201 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
202 preempt_enable();
203 __free_page(zero_page);
204 goto retry;
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount, 2);
209 preempt_enable();
210 return ACCESS_ONCE(huge_zero_page);
213 static void put_huge_zero_page(void)
216 * Counter should never go to zero here. Only shrinker can put
217 * last reference.
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
222 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 struct shrink_control *sc)
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
229 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 struct shrink_control *sc)
232 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
233 struct page *zero_page = xchg(&huge_zero_page, NULL);
234 BUG_ON(zero_page == NULL);
235 __free_page(zero_page);
236 return HPAGE_PMD_NR;
239 return 0;
242 static struct shrinker huge_zero_page_shrinker = {
243 .count_objects = shrink_huge_zero_page_count,
244 .scan_objects = shrink_huge_zero_page_scan,
245 .seeks = DEFAULT_SEEKS,
248 #ifdef CONFIG_SYSFS
250 static ssize_t double_flag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf,
252 enum transparent_hugepage_flag enabled,
253 enum transparent_hugepage_flag req_madv)
255 if (test_bit(enabled, &transparent_hugepage_flags)) {
256 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 return sprintf(buf, "[always] madvise never\n");
258 } else if (test_bit(req_madv, &transparent_hugepage_flags))
259 return sprintf(buf, "always [madvise] never\n");
260 else
261 return sprintf(buf, "always madvise [never]\n");
263 static ssize_t double_flag_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count,
266 enum transparent_hugepage_flag enabled,
267 enum transparent_hugepage_flag req_madv)
269 if (!memcmp("always", buf,
270 min(sizeof("always")-1, count))) {
271 set_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("madvise", buf,
274 min(sizeof("madvise")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 set_bit(req_madv, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(enabled, &transparent_hugepage_flags);
280 clear_bit(req_madv, &transparent_hugepage_flags);
281 } else
282 return -EINVAL;
284 return count;
287 static ssize_t enabled_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
290 return double_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
294 static ssize_t enabled_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
298 ssize_t ret;
300 ret = double_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_FLAG,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
304 if (ret > 0) {
305 int err;
307 mutex_lock(&khugepaged_mutex);
308 err = start_khugepaged();
309 mutex_unlock(&khugepaged_mutex);
311 if (err)
312 ret = err;
315 return ret;
317 static struct kobj_attribute enabled_attr =
318 __ATTR(enabled, 0644, enabled_show, enabled_store);
320 static ssize_t single_flag_show(struct kobject *kobj,
321 struct kobj_attribute *attr, char *buf,
322 enum transparent_hugepage_flag flag)
324 return sprintf(buf, "%d\n",
325 !!test_bit(flag, &transparent_hugepage_flags));
328 static ssize_t single_flag_store(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 const char *buf, size_t count,
331 enum transparent_hugepage_flag flag)
333 unsigned long value;
334 int ret;
336 ret = kstrtoul(buf, 10, &value);
337 if (ret < 0)
338 return ret;
339 if (value > 1)
340 return -EINVAL;
342 if (value)
343 set_bit(flag, &transparent_hugepage_flags);
344 else
345 clear_bit(flag, &transparent_hugepage_flags);
347 return count;
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
355 static ssize_t defrag_show(struct kobject *kobj,
356 struct kobj_attribute *attr, char *buf)
358 return double_flag_show(kobj, attr, buf,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 static ssize_t defrag_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
366 return double_flag_store(kobj, attr, buf, count,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
370 static struct kobj_attribute defrag_attr =
371 __ATTR(defrag, 0644, defrag_show, defrag_store);
373 static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
376 return single_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379 static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
382 return single_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
385 static struct kobj_attribute use_zero_page_attr =
386 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
387 #ifdef CONFIG_DEBUG_VM
388 static ssize_t debug_cow_show(struct kobject *kobj,
389 struct kobj_attribute *attr, char *buf)
391 return single_flag_show(kobj, attr, buf,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
394 static ssize_t debug_cow_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
398 return single_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
401 static struct kobj_attribute debug_cow_attr =
402 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403 #endif /* CONFIG_DEBUG_VM */
405 static struct attribute *hugepage_attr[] = {
406 &enabled_attr.attr,
407 &defrag_attr.attr,
408 &use_zero_page_attr.attr,
409 #ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr.attr,
411 #endif
412 NULL,
415 static struct attribute_group hugepage_attr_group = {
416 .attrs = hugepage_attr,
419 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 char *buf)
423 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
426 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
430 unsigned long msecs;
431 int err;
433 err = kstrtoul(buf, 10, &msecs);
434 if (err || msecs > UINT_MAX)
435 return -EINVAL;
437 khugepaged_scan_sleep_millisecs = msecs;
438 wake_up_interruptible(&khugepaged_wait);
440 return count;
442 static struct kobj_attribute scan_sleep_millisecs_attr =
443 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 scan_sleep_millisecs_store);
446 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 char *buf)
450 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
453 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
457 unsigned long msecs;
458 int err;
460 err = kstrtoul(buf, 10, &msecs);
461 if (err || msecs > UINT_MAX)
462 return -EINVAL;
464 khugepaged_alloc_sleep_millisecs = msecs;
465 wake_up_interruptible(&khugepaged_wait);
467 return count;
469 static struct kobj_attribute alloc_sleep_millisecs_attr =
470 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 alloc_sleep_millisecs_store);
473 static ssize_t pages_to_scan_show(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 char *buf)
477 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
479 static ssize_t pages_to_scan_store(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 const char *buf, size_t count)
483 int err;
484 unsigned long pages;
486 err = kstrtoul(buf, 10, &pages);
487 if (err || !pages || pages > UINT_MAX)
488 return -EINVAL;
490 khugepaged_pages_to_scan = pages;
492 return count;
494 static struct kobj_attribute pages_to_scan_attr =
495 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 pages_to_scan_store);
498 static ssize_t pages_collapsed_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
502 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
504 static struct kobj_attribute pages_collapsed_attr =
505 __ATTR_RO(pages_collapsed);
507 static ssize_t full_scans_show(struct kobject *kobj,
508 struct kobj_attribute *attr,
509 char *buf)
511 return sprintf(buf, "%u\n", khugepaged_full_scans);
513 static struct kobj_attribute full_scans_attr =
514 __ATTR_RO(full_scans);
516 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
519 return single_flag_show(kobj, attr, buf,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
522 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 const char *buf, size_t count)
526 return single_flag_store(kobj, attr, buf, count,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
529 static struct kobj_attribute khugepaged_defrag_attr =
530 __ATTR(defrag, 0644, khugepaged_defrag_show,
531 khugepaged_defrag_store);
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
541 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 char *buf)
545 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
547 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
551 int err;
552 unsigned long max_ptes_none;
554 err = kstrtoul(buf, 10, &max_ptes_none);
555 if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 return -EINVAL;
558 khugepaged_max_ptes_none = max_ptes_none;
560 return count;
562 static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 khugepaged_max_ptes_none_store);
566 static struct attribute *khugepaged_attr[] = {
567 &khugepaged_defrag_attr.attr,
568 &khugepaged_max_ptes_none_attr.attr,
569 &pages_to_scan_attr.attr,
570 &pages_collapsed_attr.attr,
571 &full_scans_attr.attr,
572 &scan_sleep_millisecs_attr.attr,
573 &alloc_sleep_millisecs_attr.attr,
574 NULL,
577 static struct attribute_group khugepaged_attr_group = {
578 .attrs = khugepaged_attr,
579 .name = "khugepaged",
582 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
584 int err;
586 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 if (unlikely(!*hugepage_kobj)) {
588 pr_err("failed to create transparent hugepage kobject\n");
589 return -ENOMEM;
592 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
593 if (err) {
594 pr_err("failed to register transparent hugepage group\n");
595 goto delete_obj;
598 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
599 if (err) {
600 pr_err("failed to register transparent hugepage group\n");
601 goto remove_hp_group;
604 return 0;
606 remove_hp_group:
607 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608 delete_obj:
609 kobject_put(*hugepage_kobj);
610 return err;
613 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
615 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 kobject_put(hugepage_kobj);
619 #else
620 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
622 return 0;
625 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
628 #endif /* CONFIG_SYSFS */
630 static int __init hugepage_init(void)
632 int err;
633 struct kobject *hugepage_kobj;
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags = 0;
637 return -EINVAL;
640 err = hugepage_init_sysfs(&hugepage_kobj);
641 if (err)
642 return err;
644 err = khugepaged_slab_init();
645 if (err)
646 goto out;
648 register_shrinker(&huge_zero_page_shrinker);
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
655 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 transparent_hugepage_flags = 0;
658 start_khugepaged();
660 return 0;
661 out:
662 hugepage_exit_sysfs(hugepage_kobj);
663 return err;
665 subsys_initcall(hugepage_init);
667 static int __init setup_transparent_hugepage(char *str)
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
691 out:
692 if (!ret)
693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
694 return ret;
696 __setup("transparent_hugepage=", setup_transparent_hugepage);
698 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
705 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
707 pmd_t entry;
708 entry = mk_pmd(page, prot);
709 entry = pmd_mkhuge(entry);
710 return entry;
713 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
718 pgtable_t pgtable;
719 spinlock_t *ptl;
721 VM_BUG_ON_PAGE(!PageCompound(page), page);
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable))
724 return VM_FAULT_OOM;
726 clear_huge_page(page, haddr, HPAGE_PMD_NR);
728 * The memory barrier inside __SetPageUptodate makes sure that
729 * clear_huge_page writes become visible before the set_pmd_at()
730 * write.
732 __SetPageUptodate(page);
734 ptl = pmd_lock(mm, pmd);
735 if (unlikely(!pmd_none(*pmd))) {
736 spin_unlock(ptl);
737 mem_cgroup_uncharge_page(page);
738 put_page(page);
739 pte_free(mm, pgtable);
740 } else {
741 pmd_t entry;
742 entry = mk_huge_pmd(page, vma->vm_page_prot);
743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
744 page_add_new_anon_rmap(page, vma, haddr);
745 pgtable_trans_huge_deposit(mm, pmd, pgtable);
746 set_pmd_at(mm, haddr, pmd, entry);
747 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
748 atomic_long_inc(&mm->nr_ptes);
749 spin_unlock(ptl);
752 return 0;
755 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
757 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
760 static inline struct page *alloc_hugepage_vma(int defrag,
761 struct vm_area_struct *vma,
762 unsigned long haddr, int nd,
763 gfp_t extra_gfp)
765 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
766 HPAGE_PMD_ORDER, vma, haddr, nd);
769 /* Caller must hold page table lock. */
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 struct page *zero_page)
774 pmd_t entry;
775 if (!pmd_none(*pmd))
776 return false;
777 entry = mk_pmd(zero_page, vma->vm_page_prot);
778 entry = pmd_wrprotect(entry);
779 entry = pmd_mkhuge(entry);
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 set_pmd_at(mm, haddr, pmd, entry);
782 atomic_long_inc(&mm->nr_ptes);
783 return true;
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 unsigned long address, pmd_t *pmd,
788 unsigned int flags)
790 struct page *page;
791 unsigned long haddr = address & HPAGE_PMD_MASK;
793 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 return VM_FAULT_FALLBACK;
795 if (unlikely(anon_vma_prepare(vma)))
796 return VM_FAULT_OOM;
797 if (unlikely(khugepaged_enter(vma)))
798 return VM_FAULT_OOM;
799 if (!(flags & FAULT_FLAG_WRITE) &&
800 transparent_hugepage_use_zero_page()) {
801 spinlock_t *ptl;
802 pgtable_t pgtable;
803 struct page *zero_page;
804 bool set;
805 pgtable = pte_alloc_one(mm, haddr);
806 if (unlikely(!pgtable))
807 return VM_FAULT_OOM;
808 zero_page = get_huge_zero_page();
809 if (unlikely(!zero_page)) {
810 pte_free(mm, pgtable);
811 count_vm_event(THP_FAULT_FALLBACK);
812 return VM_FAULT_FALLBACK;
814 ptl = pmd_lock(mm, pmd);
815 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
816 zero_page);
817 spin_unlock(ptl);
818 if (!set) {
819 pte_free(mm, pgtable);
820 put_huge_zero_page();
822 return 0;
824 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
825 vma, haddr, numa_node_id(), 0);
826 if (unlikely(!page)) {
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
830 if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
831 put_page(page);
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
835 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
836 mem_cgroup_uncharge_page(page);
837 put_page(page);
838 count_vm_event(THP_FAULT_FALLBACK);
839 return VM_FAULT_FALLBACK;
842 count_vm_event(THP_FAULT_ALLOC);
843 return 0;
846 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
847 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
848 struct vm_area_struct *vma)
850 spinlock_t *dst_ptl, *src_ptl;
851 struct page *src_page;
852 pmd_t pmd;
853 pgtable_t pgtable;
854 int ret;
856 ret = -ENOMEM;
857 pgtable = pte_alloc_one(dst_mm, addr);
858 if (unlikely(!pgtable))
859 goto out;
861 dst_ptl = pmd_lock(dst_mm, dst_pmd);
862 src_ptl = pmd_lockptr(src_mm, src_pmd);
863 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
865 ret = -EAGAIN;
866 pmd = *src_pmd;
867 if (unlikely(!pmd_trans_huge(pmd))) {
868 pte_free(dst_mm, pgtable);
869 goto out_unlock;
872 * When page table lock is held, the huge zero pmd should not be
873 * under splitting since we don't split the page itself, only pmd to
874 * a page table.
876 if (is_huge_zero_pmd(pmd)) {
877 struct page *zero_page;
878 bool set;
880 * get_huge_zero_page() will never allocate a new page here,
881 * since we already have a zero page to copy. It just takes a
882 * reference.
884 zero_page = get_huge_zero_page();
885 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
886 zero_page);
887 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
888 ret = 0;
889 goto out_unlock;
892 if (unlikely(pmd_trans_splitting(pmd))) {
893 /* split huge page running from under us */
894 spin_unlock(src_ptl);
895 spin_unlock(dst_ptl);
896 pte_free(dst_mm, pgtable);
898 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
899 goto out;
901 src_page = pmd_page(pmd);
902 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
903 get_page(src_page);
904 page_dup_rmap(src_page);
905 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
907 pmdp_set_wrprotect(src_mm, addr, src_pmd);
908 pmd = pmd_mkold(pmd_wrprotect(pmd));
909 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
910 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
911 atomic_long_inc(&dst_mm->nr_ptes);
913 ret = 0;
914 out_unlock:
915 spin_unlock(src_ptl);
916 spin_unlock(dst_ptl);
917 out:
918 return ret;
921 void huge_pmd_set_accessed(struct mm_struct *mm,
922 struct vm_area_struct *vma,
923 unsigned long address,
924 pmd_t *pmd, pmd_t orig_pmd,
925 int dirty)
927 spinlock_t *ptl;
928 pmd_t entry;
929 unsigned long haddr;
931 ptl = pmd_lock(mm, pmd);
932 if (unlikely(!pmd_same(*pmd, orig_pmd)))
933 goto unlock;
935 entry = pmd_mkyoung(orig_pmd);
936 haddr = address & HPAGE_PMD_MASK;
937 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
938 update_mmu_cache_pmd(vma, address, pmd);
940 unlock:
941 spin_unlock(ptl);
944 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
945 struct vm_area_struct *vma,
946 unsigned long address,
947 pmd_t *pmd, pmd_t orig_pmd,
948 struct page *page,
949 unsigned long haddr)
951 spinlock_t *ptl;
952 pgtable_t pgtable;
953 pmd_t _pmd;
954 int ret = 0, i;
955 struct page **pages;
956 unsigned long mmun_start; /* For mmu_notifiers */
957 unsigned long mmun_end; /* For mmu_notifiers */
959 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
960 GFP_KERNEL);
961 if (unlikely(!pages)) {
962 ret |= VM_FAULT_OOM;
963 goto out;
966 for (i = 0; i < HPAGE_PMD_NR; i++) {
967 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
968 __GFP_OTHER_NODE,
969 vma, address, page_to_nid(page));
970 if (unlikely(!pages[i] ||
971 mem_cgroup_charge_anon(pages[i], mm,
972 GFP_KERNEL))) {
973 if (pages[i])
974 put_page(pages[i]);
975 mem_cgroup_uncharge_start();
976 while (--i >= 0) {
977 mem_cgroup_uncharge_page(pages[i]);
978 put_page(pages[i]);
980 mem_cgroup_uncharge_end();
981 kfree(pages);
982 ret |= VM_FAULT_OOM;
983 goto out;
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 copy_user_highpage(pages[i], page + i,
989 haddr + PAGE_SIZE * i, vma);
990 __SetPageUptodate(pages[i]);
991 cond_resched();
994 mmun_start = haddr;
995 mmun_end = haddr + HPAGE_PMD_SIZE;
996 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
998 ptl = pmd_lock(mm, pmd);
999 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000 goto out_free_pages;
1001 VM_BUG_ON_PAGE(!PageHead(page), page);
1003 pmdp_clear_flush(vma, haddr, pmd);
1004 /* leave pmd empty until pte is filled */
1006 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007 pmd_populate(mm, &_pmd, pgtable);
1009 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010 pte_t *pte, entry;
1011 entry = mk_pte(pages[i], vma->vm_page_prot);
1012 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013 page_add_new_anon_rmap(pages[i], vma, haddr);
1014 pte = pte_offset_map(&_pmd, haddr);
1015 VM_BUG_ON(!pte_none(*pte));
1016 set_pte_at(mm, haddr, pte, entry);
1017 pte_unmap(pte);
1019 kfree(pages);
1021 smp_wmb(); /* make pte visible before pmd */
1022 pmd_populate(mm, pmd, pgtable);
1023 page_remove_rmap(page);
1024 spin_unlock(ptl);
1026 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1028 ret |= VM_FAULT_WRITE;
1029 put_page(page);
1031 out:
1032 return ret;
1034 out_free_pages:
1035 spin_unlock(ptl);
1036 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037 mem_cgroup_uncharge_start();
1038 for (i = 0; i < HPAGE_PMD_NR; i++) {
1039 mem_cgroup_uncharge_page(pages[i]);
1040 put_page(pages[i]);
1042 mem_cgroup_uncharge_end();
1043 kfree(pages);
1044 goto out;
1047 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1050 spinlock_t *ptl;
1051 int ret = 0;
1052 struct page *page = NULL, *new_page;
1053 unsigned long haddr;
1054 unsigned long mmun_start; /* For mmu_notifiers */
1055 unsigned long mmun_end; /* For mmu_notifiers */
1057 ptl = pmd_lockptr(mm, pmd);
1058 VM_BUG_ON(!vma->anon_vma);
1059 haddr = address & HPAGE_PMD_MASK;
1060 if (is_huge_zero_pmd(orig_pmd))
1061 goto alloc;
1062 spin_lock(ptl);
1063 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064 goto out_unlock;
1066 page = pmd_page(orig_pmd);
1067 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068 if (page_mapcount(page) == 1) {
1069 pmd_t entry;
1070 entry = pmd_mkyoung(orig_pmd);
1071 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1073 update_mmu_cache_pmd(vma, address, pmd);
1074 ret |= VM_FAULT_WRITE;
1075 goto out_unlock;
1077 get_page(page);
1078 spin_unlock(ptl);
1079 alloc:
1080 if (transparent_hugepage_enabled(vma) &&
1081 !transparent_hugepage_debug_cow())
1082 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083 vma, haddr, numa_node_id(), 0);
1084 else
1085 new_page = NULL;
1087 if (unlikely(!new_page)) {
1088 if (!page) {
1089 split_huge_page_pmd(vma, address, pmd);
1090 ret |= VM_FAULT_FALLBACK;
1091 } else {
1092 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093 pmd, orig_pmd, page, haddr);
1094 if (ret & VM_FAULT_OOM) {
1095 split_huge_page(page);
1096 ret |= VM_FAULT_FALLBACK;
1098 put_page(page);
1100 count_vm_event(THP_FAULT_FALLBACK);
1101 goto out;
1104 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
1105 put_page(new_page);
1106 if (page) {
1107 split_huge_page(page);
1108 put_page(page);
1109 } else
1110 split_huge_page_pmd(vma, address, pmd);
1111 ret |= VM_FAULT_FALLBACK;
1112 count_vm_event(THP_FAULT_FALLBACK);
1113 goto out;
1116 count_vm_event(THP_FAULT_ALLOC);
1118 if (!page)
1119 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120 else
1121 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122 __SetPageUptodate(new_page);
1124 mmun_start = haddr;
1125 mmun_end = haddr + HPAGE_PMD_SIZE;
1126 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1128 spin_lock(ptl);
1129 if (page)
1130 put_page(page);
1131 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132 spin_unlock(ptl);
1133 mem_cgroup_uncharge_page(new_page);
1134 put_page(new_page);
1135 goto out_mn;
1136 } else {
1137 pmd_t entry;
1138 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 pmdp_clear_flush(vma, haddr, pmd);
1141 page_add_new_anon_rmap(new_page, vma, haddr);
1142 set_pmd_at(mm, haddr, pmd, entry);
1143 update_mmu_cache_pmd(vma, address, pmd);
1144 if (!page) {
1145 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146 put_huge_zero_page();
1147 } else {
1148 VM_BUG_ON_PAGE(!PageHead(page), page);
1149 page_remove_rmap(page);
1150 put_page(page);
1152 ret |= VM_FAULT_WRITE;
1154 spin_unlock(ptl);
1155 out_mn:
1156 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157 out:
1158 return ret;
1159 out_unlock:
1160 spin_unlock(ptl);
1161 return ret;
1164 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165 unsigned long addr,
1166 pmd_t *pmd,
1167 unsigned int flags)
1169 struct mm_struct *mm = vma->vm_mm;
1170 struct page *page = NULL;
1172 assert_spin_locked(pmd_lockptr(mm, pmd));
1174 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175 goto out;
1177 /* Avoid dumping huge zero page */
1178 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179 return ERR_PTR(-EFAULT);
1181 /* Full NUMA hinting faults to serialise migration in fault paths */
1182 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183 goto out;
1185 page = pmd_page(*pmd);
1186 VM_BUG_ON_PAGE(!PageHead(page), page);
1187 if (flags & FOLL_TOUCH) {
1188 pmd_t _pmd;
1190 * We should set the dirty bit only for FOLL_WRITE but
1191 * for now the dirty bit in the pmd is meaningless.
1192 * And if the dirty bit will become meaningful and
1193 * we'll only set it with FOLL_WRITE, an atomic
1194 * set_bit will be required on the pmd to set the
1195 * young bit, instead of the current set_pmd_at.
1197 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199 pmd, _pmd, 1))
1200 update_mmu_cache_pmd(vma, addr, pmd);
1202 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203 if (page->mapping && trylock_page(page)) {
1204 lru_add_drain();
1205 if (page->mapping)
1206 mlock_vma_page(page);
1207 unlock_page(page);
1210 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211 VM_BUG_ON_PAGE(!PageCompound(page), page);
1212 if (flags & FOLL_GET)
1213 get_page_foll(page);
1215 out:
1216 return page;
1219 /* NUMA hinting page fault entry point for trans huge pmds */
1220 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1223 spinlock_t *ptl;
1224 struct anon_vma *anon_vma = NULL;
1225 struct page *page;
1226 unsigned long haddr = addr & HPAGE_PMD_MASK;
1227 int page_nid = -1, this_nid = numa_node_id();
1228 int target_nid, last_cpupid = -1;
1229 bool page_locked;
1230 bool migrated = false;
1231 int flags = 0;
1233 ptl = pmd_lock(mm, pmdp);
1234 if (unlikely(!pmd_same(pmd, *pmdp)))
1235 goto out_unlock;
1238 * If there are potential migrations, wait for completion and retry
1239 * without disrupting NUMA hinting information. Do not relock and
1240 * check_same as the page may no longer be mapped.
1242 if (unlikely(pmd_trans_migrating(*pmdp))) {
1243 spin_unlock(ptl);
1244 wait_migrate_huge_page(vma->anon_vma, pmdp);
1245 goto out;
1248 page = pmd_page(pmd);
1249 BUG_ON(is_huge_zero_page(page));
1250 page_nid = page_to_nid(page);
1251 last_cpupid = page_cpupid_last(page);
1252 count_vm_numa_event(NUMA_HINT_FAULTS);
1253 if (page_nid == this_nid) {
1254 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255 flags |= TNF_FAULT_LOCAL;
1259 * Avoid grouping on DSO/COW pages in specific and RO pages
1260 * in general, RO pages shouldn't hurt as much anyway since
1261 * they can be in shared cache state.
1263 if (!pmd_write(pmd))
1264 flags |= TNF_NO_GROUP;
1267 * Acquire the page lock to serialise THP migrations but avoid dropping
1268 * page_table_lock if at all possible
1270 page_locked = trylock_page(page);
1271 target_nid = mpol_misplaced(page, vma, haddr);
1272 if (target_nid == -1) {
1273 /* If the page was locked, there are no parallel migrations */
1274 if (page_locked)
1275 goto clear_pmdnuma;
1278 /* Migration could have started since the pmd_trans_migrating check */
1279 if (!page_locked) {
1280 spin_unlock(ptl);
1281 wait_on_page_locked(page);
1282 page_nid = -1;
1283 goto out;
1287 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288 * to serialises splits
1290 get_page(page);
1291 spin_unlock(ptl);
1292 anon_vma = page_lock_anon_vma_read(page);
1294 /* Confirm the PMD did not change while page_table_lock was released */
1295 spin_lock(ptl);
1296 if (unlikely(!pmd_same(pmd, *pmdp))) {
1297 unlock_page(page);
1298 put_page(page);
1299 page_nid = -1;
1300 goto out_unlock;
1303 /* Bail if we fail to protect against THP splits for any reason */
1304 if (unlikely(!anon_vma)) {
1305 put_page(page);
1306 page_nid = -1;
1307 goto clear_pmdnuma;
1311 * Migrate the THP to the requested node, returns with page unlocked
1312 * and pmd_numa cleared.
1314 spin_unlock(ptl);
1315 migrated = migrate_misplaced_transhuge_page(mm, vma,
1316 pmdp, pmd, addr, page, target_nid);
1317 if (migrated) {
1318 flags |= TNF_MIGRATED;
1319 page_nid = target_nid;
1322 goto out;
1323 clear_pmdnuma:
1324 BUG_ON(!PageLocked(page));
1325 pmd = pmd_mknonnuma(pmd);
1326 set_pmd_at(mm, haddr, pmdp, pmd);
1327 VM_BUG_ON(pmd_numa(*pmdp));
1328 update_mmu_cache_pmd(vma, addr, pmdp);
1329 unlock_page(page);
1330 out_unlock:
1331 spin_unlock(ptl);
1333 out:
1334 if (anon_vma)
1335 page_unlock_anon_vma_read(anon_vma);
1337 if (page_nid != -1)
1338 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1340 return 0;
1343 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344 pmd_t *pmd, unsigned long addr)
1346 spinlock_t *ptl;
1347 int ret = 0;
1349 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350 struct page *page;
1351 pgtable_t pgtable;
1352 pmd_t orig_pmd;
1354 * For architectures like ppc64 we look at deposited pgtable
1355 * when calling pmdp_get_and_clear. So do the
1356 * pgtable_trans_huge_withdraw after finishing pmdp related
1357 * operations.
1359 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362 if (is_huge_zero_pmd(orig_pmd)) {
1363 atomic_long_dec(&tlb->mm->nr_ptes);
1364 spin_unlock(ptl);
1365 put_huge_zero_page();
1366 } else {
1367 page = pmd_page(orig_pmd);
1368 page_remove_rmap(page);
1369 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371 VM_BUG_ON_PAGE(!PageHead(page), page);
1372 atomic_long_dec(&tlb->mm->nr_ptes);
1373 spin_unlock(ptl);
1374 tlb_remove_page(tlb, page);
1376 pte_free(tlb->mm, pgtable);
1377 ret = 1;
1379 return ret;
1382 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383 unsigned long addr, unsigned long end,
1384 unsigned char *vec)
1386 spinlock_t *ptl;
1387 int ret = 0;
1389 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1391 * All logical pages in the range are present
1392 * if backed by a huge page.
1394 spin_unlock(ptl);
1395 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396 ret = 1;
1399 return ret;
1402 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403 unsigned long old_addr,
1404 unsigned long new_addr, unsigned long old_end,
1405 pmd_t *old_pmd, pmd_t *new_pmd)
1407 spinlock_t *old_ptl, *new_ptl;
1408 int ret = 0;
1409 pmd_t pmd;
1411 struct mm_struct *mm = vma->vm_mm;
1413 if ((old_addr & ~HPAGE_PMD_MASK) ||
1414 (new_addr & ~HPAGE_PMD_MASK) ||
1415 old_end - old_addr < HPAGE_PMD_SIZE ||
1416 (new_vma->vm_flags & VM_NOHUGEPAGE))
1417 goto out;
1420 * The destination pmd shouldn't be established, free_pgtables()
1421 * should have release it.
1423 if (WARN_ON(!pmd_none(*new_pmd))) {
1424 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425 goto out;
1429 * We don't have to worry about the ordering of src and dst
1430 * ptlocks because exclusive mmap_sem prevents deadlock.
1432 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433 if (ret == 1) {
1434 new_ptl = pmd_lockptr(mm, new_pmd);
1435 if (new_ptl != old_ptl)
1436 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438 VM_BUG_ON(!pmd_none(*new_pmd));
1440 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1441 pgtable_t pgtable;
1442 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1445 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446 if (new_ptl != old_ptl)
1447 spin_unlock(new_ptl);
1448 spin_unlock(old_ptl);
1450 out:
1451 return ret;
1455 * Returns
1456 * - 0 if PMD could not be locked
1457 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1460 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461 unsigned long addr, pgprot_t newprot, int prot_numa)
1463 struct mm_struct *mm = vma->vm_mm;
1464 spinlock_t *ptl;
1465 int ret = 0;
1467 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1468 pmd_t entry;
1469 ret = 1;
1470 if (!prot_numa) {
1471 entry = pmdp_get_and_clear(mm, addr, pmd);
1472 if (pmd_numa(entry))
1473 entry = pmd_mknonnuma(entry);
1474 entry = pmd_modify(entry, newprot);
1475 ret = HPAGE_PMD_NR;
1476 set_pmd_at(mm, addr, pmd, entry);
1477 BUG_ON(pmd_write(entry));
1478 } else {
1479 struct page *page = pmd_page(*pmd);
1482 * Do not trap faults against the zero page. The
1483 * read-only data is likely to be read-cached on the
1484 * local CPU cache and it is less useful to know about
1485 * local vs remote hits on the zero page.
1487 if (!is_huge_zero_page(page) &&
1488 !pmd_numa(*pmd)) {
1489 pmdp_set_numa(mm, addr, pmd);
1490 ret = HPAGE_PMD_NR;
1493 spin_unlock(ptl);
1496 return ret;
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1506 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507 spinlock_t **ptl)
1509 *ptl = pmd_lock(vma->vm_mm, pmd);
1510 if (likely(pmd_trans_huge(*pmd))) {
1511 if (unlikely(pmd_trans_splitting(*pmd))) {
1512 spin_unlock(*ptl);
1513 wait_split_huge_page(vma->anon_vma, pmd);
1514 return -1;
1515 } else {
1516 /* Thp mapped by 'pmd' is stable, so we can
1517 * handle it as it is. */
1518 return 1;
1521 spin_unlock(*ptl);
1522 return 0;
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1533 pmd_t *page_check_address_pmd(struct page *page,
1534 struct mm_struct *mm,
1535 unsigned long address,
1536 enum page_check_address_pmd_flag flag,
1537 spinlock_t **ptl)
1539 pgd_t *pgd;
1540 pud_t *pud;
1541 pmd_t *pmd;
1543 if (address & ~HPAGE_PMD_MASK)
1544 return NULL;
1546 pgd = pgd_offset(mm, address);
1547 if (!pgd_present(*pgd))
1548 return NULL;
1549 pud = pud_offset(pgd, address);
1550 if (!pud_present(*pud))
1551 return NULL;
1552 pmd = pmd_offset(pud, address);
1554 *ptl = pmd_lock(mm, pmd);
1555 if (!pmd_present(*pmd))
1556 goto unlock;
1557 if (pmd_page(*pmd) != page)
1558 goto unlock;
1560 * split_vma() may create temporary aliased mappings. There is
1561 * no risk as long as all huge pmd are found and have their
1562 * splitting bit set before __split_huge_page_refcount
1563 * runs. Finding the same huge pmd more than once during the
1564 * same rmap walk is not a problem.
1566 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567 pmd_trans_splitting(*pmd))
1568 goto unlock;
1569 if (pmd_trans_huge(*pmd)) {
1570 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571 !pmd_trans_splitting(*pmd));
1572 return pmd;
1574 unlock:
1575 spin_unlock(*ptl);
1576 return NULL;
1579 static int __split_huge_page_splitting(struct page *page,
1580 struct vm_area_struct *vma,
1581 unsigned long address)
1583 struct mm_struct *mm = vma->vm_mm;
1584 spinlock_t *ptl;
1585 pmd_t *pmd;
1586 int ret = 0;
1587 /* For mmu_notifiers */
1588 const unsigned long mmun_start = address;
1589 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1591 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592 pmd = page_check_address_pmd(page, mm, address,
1593 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594 if (pmd) {
1596 * We can't temporarily set the pmd to null in order
1597 * to split it, the pmd must remain marked huge at all
1598 * times or the VM won't take the pmd_trans_huge paths
1599 * and it won't wait on the anon_vma->root->rwsem to
1600 * serialize against split_huge_page*.
1602 pmdp_splitting_flush(vma, address, pmd);
1603 ret = 1;
1604 spin_unlock(ptl);
1606 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1608 return ret;
1611 static void __split_huge_page_refcount(struct page *page,
1612 struct list_head *list)
1614 int i;
1615 struct zone *zone = page_zone(page);
1616 struct lruvec *lruvec;
1617 int tail_count = 0;
1619 /* prevent PageLRU to go away from under us, and freeze lru stats */
1620 spin_lock_irq(&zone->lru_lock);
1621 lruvec = mem_cgroup_page_lruvec(page, zone);
1623 compound_lock(page);
1624 /* complete memcg works before add pages to LRU */
1625 mem_cgroup_split_huge_fixup(page);
1627 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628 struct page *page_tail = page + i;
1630 /* tail_page->_mapcount cannot change */
1631 BUG_ON(page_mapcount(page_tail) < 0);
1632 tail_count += page_mapcount(page_tail);
1633 /* check for overflow */
1634 BUG_ON(tail_count < 0);
1635 BUG_ON(atomic_read(&page_tail->_count) != 0);
1637 * tail_page->_count is zero and not changing from
1638 * under us. But get_page_unless_zero() may be running
1639 * from under us on the tail_page. If we used
1640 * atomic_set() below instead of atomic_add(), we
1641 * would then run atomic_set() concurrently with
1642 * get_page_unless_zero(), and atomic_set() is
1643 * implemented in C not using locked ops. spin_unlock
1644 * on x86 sometime uses locked ops because of PPro
1645 * errata 66, 92, so unless somebody can guarantee
1646 * atomic_set() here would be safe on all archs (and
1647 * not only on x86), it's safer to use atomic_add().
1649 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650 &page_tail->_count);
1652 /* after clearing PageTail the gup refcount can be released */
1653 smp_mb();
1656 * retain hwpoison flag of the poisoned tail page:
1657 * fix for the unsuitable process killed on Guest Machine(KVM)
1658 * by the memory-failure.
1660 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661 page_tail->flags |= (page->flags &
1662 ((1L << PG_referenced) |
1663 (1L << PG_swapbacked) |
1664 (1L << PG_mlocked) |
1665 (1L << PG_uptodate) |
1666 (1L << PG_active) |
1667 (1L << PG_unevictable)));
1668 page_tail->flags |= (1L << PG_dirty);
1670 /* clear PageTail before overwriting first_page */
1671 smp_wmb();
1674 * __split_huge_page_splitting() already set the
1675 * splitting bit in all pmd that could map this
1676 * hugepage, that will ensure no CPU can alter the
1677 * mapcount on the head page. The mapcount is only
1678 * accounted in the head page and it has to be
1679 * transferred to all tail pages in the below code. So
1680 * for this code to be safe, the split the mapcount
1681 * can't change. But that doesn't mean userland can't
1682 * keep changing and reading the page contents while
1683 * we transfer the mapcount, so the pmd splitting
1684 * status is achieved setting a reserved bit in the
1685 * pmd, not by clearing the present bit.
1687 page_tail->_mapcount = page->_mapcount;
1689 BUG_ON(page_tail->mapping);
1690 page_tail->mapping = page->mapping;
1692 page_tail->index = page->index + i;
1693 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1695 BUG_ON(!PageAnon(page_tail));
1696 BUG_ON(!PageUptodate(page_tail));
1697 BUG_ON(!PageDirty(page_tail));
1698 BUG_ON(!PageSwapBacked(page_tail));
1700 lru_add_page_tail(page, page_tail, lruvec, list);
1702 atomic_sub(tail_count, &page->_count);
1703 BUG_ON(atomic_read(&page->_count) <= 0);
1705 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1707 ClearPageCompound(page);
1708 compound_unlock(page);
1709 spin_unlock_irq(&zone->lru_lock);
1711 for (i = 1; i < HPAGE_PMD_NR; i++) {
1712 struct page *page_tail = page + i;
1713 BUG_ON(page_count(page_tail) <= 0);
1715 * Tail pages may be freed if there wasn't any mapping
1716 * like if add_to_swap() is running on a lru page that
1717 * had its mapping zapped. And freeing these pages
1718 * requires taking the lru_lock so we do the put_page
1719 * of the tail pages after the split is complete.
1721 put_page(page_tail);
1725 * Only the head page (now become a regular page) is required
1726 * to be pinned by the caller.
1728 BUG_ON(page_count(page) <= 0);
1731 static int __split_huge_page_map(struct page *page,
1732 struct vm_area_struct *vma,
1733 unsigned long address)
1735 struct mm_struct *mm = vma->vm_mm;
1736 spinlock_t *ptl;
1737 pmd_t *pmd, _pmd;
1738 int ret = 0, i;
1739 pgtable_t pgtable;
1740 unsigned long haddr;
1742 pmd = page_check_address_pmd(page, mm, address,
1743 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744 if (pmd) {
1745 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746 pmd_populate(mm, &_pmd, pgtable);
1748 haddr = address;
1749 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750 pte_t *pte, entry;
1751 BUG_ON(PageCompound(page+i));
1752 entry = mk_pte(page + i, vma->vm_page_prot);
1753 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754 if (!pmd_write(*pmd))
1755 entry = pte_wrprotect(entry);
1756 else
1757 BUG_ON(page_mapcount(page) != 1);
1758 if (!pmd_young(*pmd))
1759 entry = pte_mkold(entry);
1760 if (pmd_numa(*pmd))
1761 entry = pte_mknuma(entry);
1762 pte = pte_offset_map(&_pmd, haddr);
1763 BUG_ON(!pte_none(*pte));
1764 set_pte_at(mm, haddr, pte, entry);
1765 pte_unmap(pte);
1768 smp_wmb(); /* make pte visible before pmd */
1770 * Up to this point the pmd is present and huge and
1771 * userland has the whole access to the hugepage
1772 * during the split (which happens in place). If we
1773 * overwrite the pmd with the not-huge version
1774 * pointing to the pte here (which of course we could
1775 * if all CPUs were bug free), userland could trigger
1776 * a small page size TLB miss on the small sized TLB
1777 * while the hugepage TLB entry is still established
1778 * in the huge TLB. Some CPU doesn't like that. See
1779 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780 * Erratum 383 on page 93. Intel should be safe but is
1781 * also warns that it's only safe if the permission
1782 * and cache attributes of the two entries loaded in
1783 * the two TLB is identical (which should be the case
1784 * here). But it is generally safer to never allow
1785 * small and huge TLB entries for the same virtual
1786 * address to be loaded simultaneously. So instead of
1787 * doing "pmd_populate(); flush_tlb_range();" we first
1788 * mark the current pmd notpresent (atomically because
1789 * here the pmd_trans_huge and pmd_trans_splitting
1790 * must remain set at all times on the pmd until the
1791 * split is complete for this pmd), then we flush the
1792 * SMP TLB and finally we write the non-huge version
1793 * of the pmd entry with pmd_populate.
1795 pmdp_invalidate(vma, address, pmd);
1796 pmd_populate(mm, pmd, pgtable);
1797 ret = 1;
1798 spin_unlock(ptl);
1801 return ret;
1804 /* must be called with anon_vma->root->rwsem held */
1805 static void __split_huge_page(struct page *page,
1806 struct anon_vma *anon_vma,
1807 struct list_head *list)
1809 int mapcount, mapcount2;
1810 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811 struct anon_vma_chain *avc;
1813 BUG_ON(!PageHead(page));
1814 BUG_ON(PageTail(page));
1816 mapcount = 0;
1817 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818 struct vm_area_struct *vma = avc->vma;
1819 unsigned long addr = vma_address(page, vma);
1820 BUG_ON(is_vma_temporary_stack(vma));
1821 mapcount += __split_huge_page_splitting(page, vma, addr);
1824 * It is critical that new vmas are added to the tail of the
1825 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826 * and establishes a child pmd before
1827 * __split_huge_page_splitting() freezes the parent pmd (so if
1828 * we fail to prevent copy_huge_pmd() from running until the
1829 * whole __split_huge_page() is complete), we will still see
1830 * the newly established pmd of the child later during the
1831 * walk, to be able to set it as pmd_trans_splitting too.
1833 if (mapcount != page_mapcount(page)) {
1834 pr_err("mapcount %d page_mapcount %d\n",
1835 mapcount, page_mapcount(page));
1836 BUG();
1839 __split_huge_page_refcount(page, list);
1841 mapcount2 = 0;
1842 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1843 struct vm_area_struct *vma = avc->vma;
1844 unsigned long addr = vma_address(page, vma);
1845 BUG_ON(is_vma_temporary_stack(vma));
1846 mapcount2 += __split_huge_page_map(page, vma, addr);
1848 if (mapcount != mapcount2) {
1849 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1850 mapcount, mapcount2, page_mapcount(page));
1851 BUG();
1856 * Split a hugepage into normal pages. This doesn't change the position of head
1857 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1858 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1859 * from the hugepage.
1860 * Return 0 if the hugepage is split successfully otherwise return 1.
1862 int split_huge_page_to_list(struct page *page, struct list_head *list)
1864 struct anon_vma *anon_vma;
1865 int ret = 1;
1867 BUG_ON(is_huge_zero_page(page));
1868 BUG_ON(!PageAnon(page));
1871 * The caller does not necessarily hold an mmap_sem that would prevent
1872 * the anon_vma disappearing so we first we take a reference to it
1873 * and then lock the anon_vma for write. This is similar to
1874 * page_lock_anon_vma_read except the write lock is taken to serialise
1875 * against parallel split or collapse operations.
1877 anon_vma = page_get_anon_vma(page);
1878 if (!anon_vma)
1879 goto out;
1880 anon_vma_lock_write(anon_vma);
1882 ret = 0;
1883 if (!PageCompound(page))
1884 goto out_unlock;
1886 BUG_ON(!PageSwapBacked(page));
1887 __split_huge_page(page, anon_vma, list);
1888 count_vm_event(THP_SPLIT);
1890 BUG_ON(PageCompound(page));
1891 out_unlock:
1892 anon_vma_unlock_write(anon_vma);
1893 put_anon_vma(anon_vma);
1894 out:
1895 return ret;
1898 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1900 int hugepage_madvise(struct vm_area_struct *vma,
1901 unsigned long *vm_flags, int advice)
1903 switch (advice) {
1904 case MADV_HUGEPAGE:
1905 #ifdef CONFIG_S390
1907 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1908 * can't handle this properly after s390_enable_sie, so we simply
1909 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1911 if (mm_has_pgste(vma->vm_mm))
1912 return 0;
1913 #endif
1915 * Be somewhat over-protective like KSM for now!
1917 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1918 return -EINVAL;
1919 *vm_flags &= ~VM_NOHUGEPAGE;
1920 *vm_flags |= VM_HUGEPAGE;
1922 * If the vma become good for khugepaged to scan,
1923 * register it here without waiting a page fault that
1924 * may not happen any time soon.
1926 if (unlikely(khugepaged_enter_vma_merge(vma)))
1927 return -ENOMEM;
1928 break;
1929 case MADV_NOHUGEPAGE:
1931 * Be somewhat over-protective like KSM for now!
1933 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1934 return -EINVAL;
1935 *vm_flags &= ~VM_HUGEPAGE;
1936 *vm_flags |= VM_NOHUGEPAGE;
1938 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1939 * this vma even if we leave the mm registered in khugepaged if
1940 * it got registered before VM_NOHUGEPAGE was set.
1942 break;
1945 return 0;
1948 static int __init khugepaged_slab_init(void)
1950 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1951 sizeof(struct mm_slot),
1952 __alignof__(struct mm_slot), 0, NULL);
1953 if (!mm_slot_cache)
1954 return -ENOMEM;
1956 return 0;
1959 static inline struct mm_slot *alloc_mm_slot(void)
1961 if (!mm_slot_cache) /* initialization failed */
1962 return NULL;
1963 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1966 static inline void free_mm_slot(struct mm_slot *mm_slot)
1968 kmem_cache_free(mm_slot_cache, mm_slot);
1971 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1973 struct mm_slot *mm_slot;
1975 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1976 if (mm == mm_slot->mm)
1977 return mm_slot;
1979 return NULL;
1982 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1983 struct mm_slot *mm_slot)
1985 mm_slot->mm = mm;
1986 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1989 static inline int khugepaged_test_exit(struct mm_struct *mm)
1991 return atomic_read(&mm->mm_users) == 0;
1994 int __khugepaged_enter(struct mm_struct *mm)
1996 struct mm_slot *mm_slot;
1997 int wakeup;
1999 mm_slot = alloc_mm_slot();
2000 if (!mm_slot)
2001 return -ENOMEM;
2003 /* __khugepaged_exit() must not run from under us */
2004 VM_BUG_ON(khugepaged_test_exit(mm));
2005 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2006 free_mm_slot(mm_slot);
2007 return 0;
2010 spin_lock(&khugepaged_mm_lock);
2011 insert_to_mm_slots_hash(mm, mm_slot);
2013 * Insert just behind the scanning cursor, to let the area settle
2014 * down a little.
2016 wakeup = list_empty(&khugepaged_scan.mm_head);
2017 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2018 spin_unlock(&khugepaged_mm_lock);
2020 atomic_inc(&mm->mm_count);
2021 if (wakeup)
2022 wake_up_interruptible(&khugepaged_wait);
2024 return 0;
2027 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2029 unsigned long hstart, hend;
2030 if (!vma->anon_vma)
2032 * Not yet faulted in so we will register later in the
2033 * page fault if needed.
2035 return 0;
2036 if (vma->vm_ops)
2037 /* khugepaged not yet working on file or special mappings */
2038 return 0;
2039 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2040 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2041 hend = vma->vm_end & HPAGE_PMD_MASK;
2042 if (hstart < hend)
2043 return khugepaged_enter(vma);
2044 return 0;
2047 void __khugepaged_exit(struct mm_struct *mm)
2049 struct mm_slot *mm_slot;
2050 int free = 0;
2052 spin_lock(&khugepaged_mm_lock);
2053 mm_slot = get_mm_slot(mm);
2054 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2055 hash_del(&mm_slot->hash);
2056 list_del(&mm_slot->mm_node);
2057 free = 1;
2059 spin_unlock(&khugepaged_mm_lock);
2061 if (free) {
2062 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2063 free_mm_slot(mm_slot);
2064 mmdrop(mm);
2065 } else if (mm_slot) {
2067 * This is required to serialize against
2068 * khugepaged_test_exit() (which is guaranteed to run
2069 * under mmap sem read mode). Stop here (after we
2070 * return all pagetables will be destroyed) until
2071 * khugepaged has finished working on the pagetables
2072 * under the mmap_sem.
2074 down_write(&mm->mmap_sem);
2075 up_write(&mm->mmap_sem);
2079 static void release_pte_page(struct page *page)
2081 /* 0 stands for page_is_file_cache(page) == false */
2082 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2083 unlock_page(page);
2084 putback_lru_page(page);
2087 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2089 while (--_pte >= pte) {
2090 pte_t pteval = *_pte;
2091 if (!pte_none(pteval))
2092 release_pte_page(pte_page(pteval));
2096 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2097 unsigned long address,
2098 pte_t *pte)
2100 struct page *page;
2101 pte_t *_pte;
2102 int referenced = 0, none = 0;
2103 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2104 _pte++, address += PAGE_SIZE) {
2105 pte_t pteval = *_pte;
2106 if (pte_none(pteval)) {
2107 if (++none <= khugepaged_max_ptes_none)
2108 continue;
2109 else
2110 goto out;
2112 if (!pte_present(pteval) || !pte_write(pteval))
2113 goto out;
2114 page = vm_normal_page(vma, address, pteval);
2115 if (unlikely(!page))
2116 goto out;
2118 VM_BUG_ON_PAGE(PageCompound(page), page);
2119 VM_BUG_ON_PAGE(!PageAnon(page), page);
2120 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2122 /* cannot use mapcount: can't collapse if there's a gup pin */
2123 if (page_count(page) != 1)
2124 goto out;
2126 * We can do it before isolate_lru_page because the
2127 * page can't be freed from under us. NOTE: PG_lock
2128 * is needed to serialize against split_huge_page
2129 * when invoked from the VM.
2131 if (!trylock_page(page))
2132 goto out;
2134 * Isolate the page to avoid collapsing an hugepage
2135 * currently in use by the VM.
2137 if (isolate_lru_page(page)) {
2138 unlock_page(page);
2139 goto out;
2141 /* 0 stands for page_is_file_cache(page) == false */
2142 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2143 VM_BUG_ON_PAGE(!PageLocked(page), page);
2144 VM_BUG_ON_PAGE(PageLRU(page), page);
2146 /* If there is no mapped pte young don't collapse the page */
2147 if (pte_young(pteval) || PageReferenced(page) ||
2148 mmu_notifier_test_young(vma->vm_mm, address))
2149 referenced = 1;
2151 if (likely(referenced))
2152 return 1;
2153 out:
2154 release_pte_pages(pte, _pte);
2155 return 0;
2158 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2159 struct vm_area_struct *vma,
2160 unsigned long address,
2161 spinlock_t *ptl)
2163 pte_t *_pte;
2164 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2165 pte_t pteval = *_pte;
2166 struct page *src_page;
2168 if (pte_none(pteval)) {
2169 clear_user_highpage(page, address);
2170 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2171 } else {
2172 src_page = pte_page(pteval);
2173 copy_user_highpage(page, src_page, address, vma);
2174 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2175 release_pte_page(src_page);
2177 * ptl mostly unnecessary, but preempt has to
2178 * be disabled to update the per-cpu stats
2179 * inside page_remove_rmap().
2181 spin_lock(ptl);
2183 * paravirt calls inside pte_clear here are
2184 * superfluous.
2186 pte_clear(vma->vm_mm, address, _pte);
2187 page_remove_rmap(src_page);
2188 spin_unlock(ptl);
2189 free_page_and_swap_cache(src_page);
2192 address += PAGE_SIZE;
2193 page++;
2197 static void khugepaged_alloc_sleep(void)
2199 wait_event_freezable_timeout(khugepaged_wait, false,
2200 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2203 static int khugepaged_node_load[MAX_NUMNODES];
2205 #ifdef CONFIG_NUMA
2206 static int khugepaged_find_target_node(void)
2208 static int last_khugepaged_target_node = NUMA_NO_NODE;
2209 int nid, target_node = 0, max_value = 0;
2211 /* find first node with max normal pages hit */
2212 for (nid = 0; nid < MAX_NUMNODES; nid++)
2213 if (khugepaged_node_load[nid] > max_value) {
2214 max_value = khugepaged_node_load[nid];
2215 target_node = nid;
2218 /* do some balance if several nodes have the same hit record */
2219 if (target_node <= last_khugepaged_target_node)
2220 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2221 nid++)
2222 if (max_value == khugepaged_node_load[nid]) {
2223 target_node = nid;
2224 break;
2227 last_khugepaged_target_node = target_node;
2228 return target_node;
2231 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233 if (IS_ERR(*hpage)) {
2234 if (!*wait)
2235 return false;
2237 *wait = false;
2238 *hpage = NULL;
2239 khugepaged_alloc_sleep();
2240 } else if (*hpage) {
2241 put_page(*hpage);
2242 *hpage = NULL;
2245 return true;
2248 static struct page
2249 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2250 struct vm_area_struct *vma, unsigned long address,
2251 int node)
2253 VM_BUG_ON_PAGE(*hpage, *hpage);
2255 * Allocate the page while the vma is still valid and under
2256 * the mmap_sem read mode so there is no memory allocation
2257 * later when we take the mmap_sem in write mode. This is more
2258 * friendly behavior (OTOH it may actually hide bugs) to
2259 * filesystems in userland with daemons allocating memory in
2260 * the userland I/O paths. Allocating memory with the
2261 * mmap_sem in read mode is good idea also to allow greater
2262 * scalability.
2264 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2265 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2267 * After allocating the hugepage, release the mmap_sem read lock in
2268 * preparation for taking it in write mode.
2270 up_read(&mm->mmap_sem);
2271 if (unlikely(!*hpage)) {
2272 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273 *hpage = ERR_PTR(-ENOMEM);
2274 return NULL;
2277 count_vm_event(THP_COLLAPSE_ALLOC);
2278 return *hpage;
2280 #else
2281 static int khugepaged_find_target_node(void)
2283 return 0;
2286 static inline struct page *alloc_hugepage(int defrag)
2288 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2289 HPAGE_PMD_ORDER);
2292 static struct page *khugepaged_alloc_hugepage(bool *wait)
2294 struct page *hpage;
2296 do {
2297 hpage = alloc_hugepage(khugepaged_defrag());
2298 if (!hpage) {
2299 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2300 if (!*wait)
2301 return NULL;
2303 *wait = false;
2304 khugepaged_alloc_sleep();
2305 } else
2306 count_vm_event(THP_COLLAPSE_ALLOC);
2307 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2309 return hpage;
2312 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2314 if (!*hpage)
2315 *hpage = khugepaged_alloc_hugepage(wait);
2317 if (unlikely(!*hpage))
2318 return false;
2320 return true;
2323 static struct page
2324 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2325 struct vm_area_struct *vma, unsigned long address,
2326 int node)
2328 up_read(&mm->mmap_sem);
2329 VM_BUG_ON(!*hpage);
2330 return *hpage;
2332 #endif
2334 static bool hugepage_vma_check(struct vm_area_struct *vma)
2336 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2337 (vma->vm_flags & VM_NOHUGEPAGE))
2338 return false;
2340 if (!vma->anon_vma || vma->vm_ops)
2341 return false;
2342 if (is_vma_temporary_stack(vma))
2343 return false;
2344 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2345 return true;
2348 static void collapse_huge_page(struct mm_struct *mm,
2349 unsigned long address,
2350 struct page **hpage,
2351 struct vm_area_struct *vma,
2352 int node)
2354 pmd_t *pmd, _pmd;
2355 pte_t *pte;
2356 pgtable_t pgtable;
2357 struct page *new_page;
2358 spinlock_t *pmd_ptl, *pte_ptl;
2359 int isolated;
2360 unsigned long hstart, hend;
2361 unsigned long mmun_start; /* For mmu_notifiers */
2362 unsigned long mmun_end; /* For mmu_notifiers */
2364 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2366 /* release the mmap_sem read lock. */
2367 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2368 if (!new_page)
2369 return;
2371 if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2372 return;
2375 * Prevent all access to pagetables with the exception of
2376 * gup_fast later hanlded by the ptep_clear_flush and the VM
2377 * handled by the anon_vma lock + PG_lock.
2379 down_write(&mm->mmap_sem);
2380 if (unlikely(khugepaged_test_exit(mm)))
2381 goto out;
2383 vma = find_vma(mm, address);
2384 if (!vma)
2385 goto out;
2386 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2387 hend = vma->vm_end & HPAGE_PMD_MASK;
2388 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2389 goto out;
2390 if (!hugepage_vma_check(vma))
2391 goto out;
2392 pmd = mm_find_pmd(mm, address);
2393 if (!pmd)
2394 goto out;
2395 if (pmd_trans_huge(*pmd))
2396 goto out;
2398 anon_vma_lock_write(vma->anon_vma);
2400 pte = pte_offset_map(pmd, address);
2401 pte_ptl = pte_lockptr(mm, pmd);
2403 mmun_start = address;
2404 mmun_end = address + HPAGE_PMD_SIZE;
2405 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2406 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2408 * After this gup_fast can't run anymore. This also removes
2409 * any huge TLB entry from the CPU so we won't allow
2410 * huge and small TLB entries for the same virtual address
2411 * to avoid the risk of CPU bugs in that area.
2413 _pmd = pmdp_clear_flush(vma, address, pmd);
2414 spin_unlock(pmd_ptl);
2415 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2417 spin_lock(pte_ptl);
2418 isolated = __collapse_huge_page_isolate(vma, address, pte);
2419 spin_unlock(pte_ptl);
2421 if (unlikely(!isolated)) {
2422 pte_unmap(pte);
2423 spin_lock(pmd_ptl);
2424 BUG_ON(!pmd_none(*pmd));
2426 * We can only use set_pmd_at when establishing
2427 * hugepmds and never for establishing regular pmds that
2428 * points to regular pagetables. Use pmd_populate for that
2430 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2431 spin_unlock(pmd_ptl);
2432 anon_vma_unlock_write(vma->anon_vma);
2433 goto out;
2437 * All pages are isolated and locked so anon_vma rmap
2438 * can't run anymore.
2440 anon_vma_unlock_write(vma->anon_vma);
2442 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2443 pte_unmap(pte);
2444 __SetPageUptodate(new_page);
2445 pgtable = pmd_pgtable(_pmd);
2447 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2448 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2451 * spin_lock() below is not the equivalent of smp_wmb(), so
2452 * this is needed to avoid the copy_huge_page writes to become
2453 * visible after the set_pmd_at() write.
2455 smp_wmb();
2457 spin_lock(pmd_ptl);
2458 BUG_ON(!pmd_none(*pmd));
2459 page_add_new_anon_rmap(new_page, vma, address);
2460 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2461 set_pmd_at(mm, address, pmd, _pmd);
2462 update_mmu_cache_pmd(vma, address, pmd);
2463 spin_unlock(pmd_ptl);
2465 *hpage = NULL;
2467 khugepaged_pages_collapsed++;
2468 out_up_write:
2469 up_write(&mm->mmap_sem);
2470 return;
2472 out:
2473 mem_cgroup_uncharge_page(new_page);
2474 goto out_up_write;
2477 static int khugepaged_scan_pmd(struct mm_struct *mm,
2478 struct vm_area_struct *vma,
2479 unsigned long address,
2480 struct page **hpage)
2482 pmd_t *pmd;
2483 pte_t *pte, *_pte;
2484 int ret = 0, referenced = 0, none = 0;
2485 struct page *page;
2486 unsigned long _address;
2487 spinlock_t *ptl;
2488 int node = NUMA_NO_NODE;
2490 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2492 pmd = mm_find_pmd(mm, address);
2493 if (!pmd)
2494 goto out;
2495 if (pmd_trans_huge(*pmd))
2496 goto out;
2498 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2499 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2500 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2501 _pte++, _address += PAGE_SIZE) {
2502 pte_t pteval = *_pte;
2503 if (pte_none(pteval)) {
2504 if (++none <= khugepaged_max_ptes_none)
2505 continue;
2506 else
2507 goto out_unmap;
2509 if (!pte_present(pteval) || !pte_write(pteval))
2510 goto out_unmap;
2511 page = vm_normal_page(vma, _address, pteval);
2512 if (unlikely(!page))
2513 goto out_unmap;
2515 * Record which node the original page is from and save this
2516 * information to khugepaged_node_load[].
2517 * Khupaged will allocate hugepage from the node has the max
2518 * hit record.
2520 node = page_to_nid(page);
2521 khugepaged_node_load[node]++;
2522 VM_BUG_ON_PAGE(PageCompound(page), page);
2523 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2524 goto out_unmap;
2525 /* cannot use mapcount: can't collapse if there's a gup pin */
2526 if (page_count(page) != 1)
2527 goto out_unmap;
2528 if (pte_young(pteval) || PageReferenced(page) ||
2529 mmu_notifier_test_young(vma->vm_mm, address))
2530 referenced = 1;
2532 if (referenced)
2533 ret = 1;
2534 out_unmap:
2535 pte_unmap_unlock(pte, ptl);
2536 if (ret) {
2537 node = khugepaged_find_target_node();
2538 /* collapse_huge_page will return with the mmap_sem released */
2539 collapse_huge_page(mm, address, hpage, vma, node);
2541 out:
2542 return ret;
2545 static void collect_mm_slot(struct mm_slot *mm_slot)
2547 struct mm_struct *mm = mm_slot->mm;
2549 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2551 if (khugepaged_test_exit(mm)) {
2552 /* free mm_slot */
2553 hash_del(&mm_slot->hash);
2554 list_del(&mm_slot->mm_node);
2557 * Not strictly needed because the mm exited already.
2559 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2562 /* khugepaged_mm_lock actually not necessary for the below */
2563 free_mm_slot(mm_slot);
2564 mmdrop(mm);
2568 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2569 struct page **hpage)
2570 __releases(&khugepaged_mm_lock)
2571 __acquires(&khugepaged_mm_lock)
2573 struct mm_slot *mm_slot;
2574 struct mm_struct *mm;
2575 struct vm_area_struct *vma;
2576 int progress = 0;
2578 VM_BUG_ON(!pages);
2579 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2581 if (khugepaged_scan.mm_slot)
2582 mm_slot = khugepaged_scan.mm_slot;
2583 else {
2584 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2585 struct mm_slot, mm_node);
2586 khugepaged_scan.address = 0;
2587 khugepaged_scan.mm_slot = mm_slot;
2589 spin_unlock(&khugepaged_mm_lock);
2591 mm = mm_slot->mm;
2592 down_read(&mm->mmap_sem);
2593 if (unlikely(khugepaged_test_exit(mm)))
2594 vma = NULL;
2595 else
2596 vma = find_vma(mm, khugepaged_scan.address);
2598 progress++;
2599 for (; vma; vma = vma->vm_next) {
2600 unsigned long hstart, hend;
2602 cond_resched();
2603 if (unlikely(khugepaged_test_exit(mm))) {
2604 progress++;
2605 break;
2607 if (!hugepage_vma_check(vma)) {
2608 skip:
2609 progress++;
2610 continue;
2612 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2613 hend = vma->vm_end & HPAGE_PMD_MASK;
2614 if (hstart >= hend)
2615 goto skip;
2616 if (khugepaged_scan.address > hend)
2617 goto skip;
2618 if (khugepaged_scan.address < hstart)
2619 khugepaged_scan.address = hstart;
2620 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2622 while (khugepaged_scan.address < hend) {
2623 int ret;
2624 cond_resched();
2625 if (unlikely(khugepaged_test_exit(mm)))
2626 goto breakouterloop;
2628 VM_BUG_ON(khugepaged_scan.address < hstart ||
2629 khugepaged_scan.address + HPAGE_PMD_SIZE >
2630 hend);
2631 ret = khugepaged_scan_pmd(mm, vma,
2632 khugepaged_scan.address,
2633 hpage);
2634 /* move to next address */
2635 khugepaged_scan.address += HPAGE_PMD_SIZE;
2636 progress += HPAGE_PMD_NR;
2637 if (ret)
2638 /* we released mmap_sem so break loop */
2639 goto breakouterloop_mmap_sem;
2640 if (progress >= pages)
2641 goto breakouterloop;
2644 breakouterloop:
2645 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2646 breakouterloop_mmap_sem:
2648 spin_lock(&khugepaged_mm_lock);
2649 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2651 * Release the current mm_slot if this mm is about to die, or
2652 * if we scanned all vmas of this mm.
2654 if (khugepaged_test_exit(mm) || !vma) {
2656 * Make sure that if mm_users is reaching zero while
2657 * khugepaged runs here, khugepaged_exit will find
2658 * mm_slot not pointing to the exiting mm.
2660 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2661 khugepaged_scan.mm_slot = list_entry(
2662 mm_slot->mm_node.next,
2663 struct mm_slot, mm_node);
2664 khugepaged_scan.address = 0;
2665 } else {
2666 khugepaged_scan.mm_slot = NULL;
2667 khugepaged_full_scans++;
2670 collect_mm_slot(mm_slot);
2673 return progress;
2676 static int khugepaged_has_work(void)
2678 return !list_empty(&khugepaged_scan.mm_head) &&
2679 khugepaged_enabled();
2682 static int khugepaged_wait_event(void)
2684 return !list_empty(&khugepaged_scan.mm_head) ||
2685 kthread_should_stop();
2688 static void khugepaged_do_scan(void)
2690 struct page *hpage = NULL;
2691 unsigned int progress = 0, pass_through_head = 0;
2692 unsigned int pages = khugepaged_pages_to_scan;
2693 bool wait = true;
2695 barrier(); /* write khugepaged_pages_to_scan to local stack */
2697 while (progress < pages) {
2698 if (!khugepaged_prealloc_page(&hpage, &wait))
2699 break;
2701 cond_resched();
2703 if (unlikely(kthread_should_stop() || freezing(current)))
2704 break;
2706 spin_lock(&khugepaged_mm_lock);
2707 if (!khugepaged_scan.mm_slot)
2708 pass_through_head++;
2709 if (khugepaged_has_work() &&
2710 pass_through_head < 2)
2711 progress += khugepaged_scan_mm_slot(pages - progress,
2712 &hpage);
2713 else
2714 progress = pages;
2715 spin_unlock(&khugepaged_mm_lock);
2718 if (!IS_ERR_OR_NULL(hpage))
2719 put_page(hpage);
2722 static void khugepaged_wait_work(void)
2724 try_to_freeze();
2726 if (khugepaged_has_work()) {
2727 if (!khugepaged_scan_sleep_millisecs)
2728 return;
2730 wait_event_freezable_timeout(khugepaged_wait,
2731 kthread_should_stop(),
2732 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2733 return;
2736 if (khugepaged_enabled())
2737 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2740 static int khugepaged(void *none)
2742 struct mm_slot *mm_slot;
2744 set_freezable();
2745 set_user_nice(current, MAX_NICE);
2747 while (!kthread_should_stop()) {
2748 khugepaged_do_scan();
2749 khugepaged_wait_work();
2752 spin_lock(&khugepaged_mm_lock);
2753 mm_slot = khugepaged_scan.mm_slot;
2754 khugepaged_scan.mm_slot = NULL;
2755 if (mm_slot)
2756 collect_mm_slot(mm_slot);
2757 spin_unlock(&khugepaged_mm_lock);
2758 return 0;
2761 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2762 unsigned long haddr, pmd_t *pmd)
2764 struct mm_struct *mm = vma->vm_mm;
2765 pgtable_t pgtable;
2766 pmd_t _pmd;
2767 int i;
2769 pmdp_clear_flush(vma, haddr, pmd);
2770 /* leave pmd empty until pte is filled */
2772 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2773 pmd_populate(mm, &_pmd, pgtable);
2775 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2776 pte_t *pte, entry;
2777 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2778 entry = pte_mkspecial(entry);
2779 pte = pte_offset_map(&_pmd, haddr);
2780 VM_BUG_ON(!pte_none(*pte));
2781 set_pte_at(mm, haddr, pte, entry);
2782 pte_unmap(pte);
2784 smp_wmb(); /* make pte visible before pmd */
2785 pmd_populate(mm, pmd, pgtable);
2786 put_huge_zero_page();
2789 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2790 pmd_t *pmd)
2792 spinlock_t *ptl;
2793 struct page *page;
2794 struct mm_struct *mm = vma->vm_mm;
2795 unsigned long haddr = address & HPAGE_PMD_MASK;
2796 unsigned long mmun_start; /* For mmu_notifiers */
2797 unsigned long mmun_end; /* For mmu_notifiers */
2799 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2801 mmun_start = haddr;
2802 mmun_end = haddr + HPAGE_PMD_SIZE;
2803 again:
2804 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2805 ptl = pmd_lock(mm, pmd);
2806 if (unlikely(!pmd_trans_huge(*pmd))) {
2807 spin_unlock(ptl);
2808 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2809 return;
2811 if (is_huge_zero_pmd(*pmd)) {
2812 __split_huge_zero_page_pmd(vma, haddr, pmd);
2813 spin_unlock(ptl);
2814 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2815 return;
2817 page = pmd_page(*pmd);
2818 VM_BUG_ON_PAGE(!page_count(page), page);
2819 get_page(page);
2820 spin_unlock(ptl);
2821 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2823 split_huge_page(page);
2825 put_page(page);
2828 * We don't always have down_write of mmap_sem here: a racing
2829 * do_huge_pmd_wp_page() might have copied-on-write to another
2830 * huge page before our split_huge_page() got the anon_vma lock.
2832 if (unlikely(pmd_trans_huge(*pmd)))
2833 goto again;
2836 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2837 pmd_t *pmd)
2839 struct vm_area_struct *vma;
2841 vma = find_vma(mm, address);
2842 BUG_ON(vma == NULL);
2843 split_huge_page_pmd(vma, address, pmd);
2846 static void split_huge_page_address(struct mm_struct *mm,
2847 unsigned long address)
2849 pmd_t *pmd;
2851 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2853 pmd = mm_find_pmd(mm, address);
2854 if (!pmd)
2855 return;
2857 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2858 * materialize from under us.
2860 split_huge_page_pmd_mm(mm, address, pmd);
2863 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2864 unsigned long start,
2865 unsigned long end,
2866 long adjust_next)
2869 * If the new start address isn't hpage aligned and it could
2870 * previously contain an hugepage: check if we need to split
2871 * an huge pmd.
2873 if (start & ~HPAGE_PMD_MASK &&
2874 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2875 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2876 split_huge_page_address(vma->vm_mm, start);
2879 * If the new end address isn't hpage aligned and it could
2880 * previously contain an hugepage: check if we need to split
2881 * an huge pmd.
2883 if (end & ~HPAGE_PMD_MASK &&
2884 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2885 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2886 split_huge_page_address(vma->vm_mm, end);
2889 * If we're also updating the vma->vm_next->vm_start, if the new
2890 * vm_next->vm_start isn't page aligned and it could previously
2891 * contain an hugepage: check if we need to split an huge pmd.
2893 if (adjust_next > 0) {
2894 struct vm_area_struct *next = vma->vm_next;
2895 unsigned long nstart = next->vm_start;
2896 nstart += adjust_next << PAGE_SHIFT;
2897 if (nstart & ~HPAGE_PMD_MASK &&
2898 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2899 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2900 split_huge_page_address(next->vm_mm, nstart);