workqueue: fix unbound workqueue attrs hashing / comparison
[linux-2.6/btrfs-unstable.git] / lib / idr.c
blob73f4d53c02f3deaee2a0df5b2909a218b38a10e8
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
9 * Modified by Nadia Derbey to make it RCU safe.
11 * Small id to pointer translation service.
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
41 #define MAX_IDR_SHIFT (sizeof(int) * 8 - 1)
42 #define MAX_IDR_BIT (1U << MAX_IDR_SHIFT)
44 /* Leave the possibility of an incomplete final layer */
45 #define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS)
47 /* Number of id_layer structs to leave in free list */
48 #define MAX_IDR_FREE (MAX_IDR_LEVEL * 2)
50 static struct kmem_cache *idr_layer_cache;
51 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
52 static DEFINE_PER_CPU(int, idr_preload_cnt);
53 static DEFINE_SPINLOCK(simple_ida_lock);
55 /* the maximum ID which can be allocated given idr->layers */
56 static int idr_max(int layers)
58 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
60 return (1 << bits) - 1;
64 * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is
65 * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and
66 * so on.
68 static int idr_layer_prefix_mask(int layer)
70 return ~idr_max(layer + 1);
73 static struct idr_layer *get_from_free_list(struct idr *idp)
75 struct idr_layer *p;
76 unsigned long flags;
78 spin_lock_irqsave(&idp->lock, flags);
79 if ((p = idp->id_free)) {
80 idp->id_free = p->ary[0];
81 idp->id_free_cnt--;
82 p->ary[0] = NULL;
84 spin_unlock_irqrestore(&idp->lock, flags);
85 return(p);
88 /**
89 * idr_layer_alloc - allocate a new idr_layer
90 * @gfp_mask: allocation mask
91 * @layer_idr: optional idr to allocate from
93 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
94 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
95 * an idr_layer from @idr->id_free.
97 * @layer_idr is to maintain backward compatibility with the old alloc
98 * interface - idr_pre_get() and idr_get_new*() - and will be removed
99 * together with per-pool preload buffer.
101 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
103 struct idr_layer *new;
105 /* this is the old path, bypass to get_from_free_list() */
106 if (layer_idr)
107 return get_from_free_list(layer_idr);
109 /* try to allocate directly from kmem_cache */
110 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
111 if (new)
112 return new;
115 * Try to fetch one from the per-cpu preload buffer if in process
116 * context. See idr_preload() for details.
118 if (in_interrupt())
119 return NULL;
121 preempt_disable();
122 new = __this_cpu_read(idr_preload_head);
123 if (new) {
124 __this_cpu_write(idr_preload_head, new->ary[0]);
125 __this_cpu_dec(idr_preload_cnt);
126 new->ary[0] = NULL;
128 preempt_enable();
129 return new;
132 static void idr_layer_rcu_free(struct rcu_head *head)
134 struct idr_layer *layer;
136 layer = container_of(head, struct idr_layer, rcu_head);
137 kmem_cache_free(idr_layer_cache, layer);
140 static inline void free_layer(struct idr *idr, struct idr_layer *p)
142 if (idr->hint && idr->hint == p)
143 RCU_INIT_POINTER(idr->hint, NULL);
144 call_rcu(&p->rcu_head, idr_layer_rcu_free);
147 /* only called when idp->lock is held */
148 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
150 p->ary[0] = idp->id_free;
151 idp->id_free = p;
152 idp->id_free_cnt++;
155 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
157 unsigned long flags;
160 * Depends on the return element being zeroed.
162 spin_lock_irqsave(&idp->lock, flags);
163 __move_to_free_list(idp, p);
164 spin_unlock_irqrestore(&idp->lock, flags);
167 static void idr_mark_full(struct idr_layer **pa, int id)
169 struct idr_layer *p = pa[0];
170 int l = 0;
172 __set_bit(id & IDR_MASK, p->bitmap);
174 * If this layer is full mark the bit in the layer above to
175 * show that this part of the radix tree is full. This may
176 * complete the layer above and require walking up the radix
177 * tree.
179 while (bitmap_full(p->bitmap, IDR_SIZE)) {
180 if (!(p = pa[++l]))
181 break;
182 id = id >> IDR_BITS;
183 __set_bit((id & IDR_MASK), p->bitmap);
188 * idr_pre_get - reserve resources for idr allocation
189 * @idp: idr handle
190 * @gfp_mask: memory allocation flags
192 * This function should be called prior to calling the idr_get_new* functions.
193 * It preallocates enough memory to satisfy the worst possible allocation. The
194 * caller should pass in GFP_KERNEL if possible. This of course requires that
195 * no spinning locks be held.
197 * If the system is REALLY out of memory this function returns %0,
198 * otherwise %1.
200 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
202 while (idp->id_free_cnt < MAX_IDR_FREE) {
203 struct idr_layer *new;
204 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
205 if (new == NULL)
206 return (0);
207 move_to_free_list(idp, new);
209 return 1;
211 EXPORT_SYMBOL(idr_pre_get);
214 * sub_alloc - try to allocate an id without growing the tree depth
215 * @idp: idr handle
216 * @starting_id: id to start search at
217 * @id: pointer to the allocated handle
218 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
219 * @gfp_mask: allocation mask for idr_layer_alloc()
220 * @layer_idr: optional idr passed to idr_layer_alloc()
222 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
223 * growing its depth. Returns
225 * the allocated id >= 0 if successful,
226 * -EAGAIN if the tree needs to grow for allocation to succeed,
227 * -ENOSPC if the id space is exhausted,
228 * -ENOMEM if more idr_layers need to be allocated.
230 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
231 gfp_t gfp_mask, struct idr *layer_idr)
233 int n, m, sh;
234 struct idr_layer *p, *new;
235 int l, id, oid;
237 id = *starting_id;
238 restart:
239 p = idp->top;
240 l = idp->layers;
241 pa[l--] = NULL;
242 while (1) {
244 * We run around this while until we reach the leaf node...
246 n = (id >> (IDR_BITS*l)) & IDR_MASK;
247 m = find_next_zero_bit(p->bitmap, IDR_SIZE, n);
248 if (m == IDR_SIZE) {
249 /* no space available go back to previous layer. */
250 l++;
251 oid = id;
252 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
254 /* if already at the top layer, we need to grow */
255 if (id >= 1 << (idp->layers * IDR_BITS)) {
256 *starting_id = id;
257 return -EAGAIN;
259 p = pa[l];
260 BUG_ON(!p);
262 /* If we need to go up one layer, continue the
263 * loop; otherwise, restart from the top.
265 sh = IDR_BITS * (l + 1);
266 if (oid >> sh == id >> sh)
267 continue;
268 else
269 goto restart;
271 if (m != n) {
272 sh = IDR_BITS*l;
273 id = ((id >> sh) ^ n ^ m) << sh;
275 if ((id >= MAX_IDR_BIT) || (id < 0))
276 return -ENOSPC;
277 if (l == 0)
278 break;
280 * Create the layer below if it is missing.
282 if (!p->ary[m]) {
283 new = idr_layer_alloc(gfp_mask, layer_idr);
284 if (!new)
285 return -ENOMEM;
286 new->layer = l-1;
287 new->prefix = id & idr_layer_prefix_mask(new->layer);
288 rcu_assign_pointer(p->ary[m], new);
289 p->count++;
291 pa[l--] = p;
292 p = p->ary[m];
295 pa[l] = p;
296 return id;
299 static int idr_get_empty_slot(struct idr *idp, int starting_id,
300 struct idr_layer **pa, gfp_t gfp_mask,
301 struct idr *layer_idr)
303 struct idr_layer *p, *new;
304 int layers, v, id;
305 unsigned long flags;
307 id = starting_id;
308 build_up:
309 p = idp->top;
310 layers = idp->layers;
311 if (unlikely(!p)) {
312 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
313 return -ENOMEM;
314 p->layer = 0;
315 layers = 1;
318 * Add a new layer to the top of the tree if the requested
319 * id is larger than the currently allocated space.
321 while (id > idr_max(layers)) {
322 layers++;
323 if (!p->count) {
324 /* special case: if the tree is currently empty,
325 * then we grow the tree by moving the top node
326 * upwards.
328 p->layer++;
329 WARN_ON_ONCE(p->prefix);
330 continue;
332 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
334 * The allocation failed. If we built part of
335 * the structure tear it down.
337 spin_lock_irqsave(&idp->lock, flags);
338 for (new = p; p && p != idp->top; new = p) {
339 p = p->ary[0];
340 new->ary[0] = NULL;
341 new->count = 0;
342 bitmap_clear(new->bitmap, 0, IDR_SIZE);
343 __move_to_free_list(idp, new);
345 spin_unlock_irqrestore(&idp->lock, flags);
346 return -ENOMEM;
348 new->ary[0] = p;
349 new->count = 1;
350 new->layer = layers-1;
351 new->prefix = id & idr_layer_prefix_mask(new->layer);
352 if (bitmap_full(p->bitmap, IDR_SIZE))
353 __set_bit(0, new->bitmap);
354 p = new;
356 rcu_assign_pointer(idp->top, p);
357 idp->layers = layers;
358 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
359 if (v == -EAGAIN)
360 goto build_up;
361 return(v);
365 * @id and @pa are from a successful allocation from idr_get_empty_slot().
366 * Install the user pointer @ptr and mark the slot full.
368 static void idr_fill_slot(struct idr *idr, void *ptr, int id,
369 struct idr_layer **pa)
371 /* update hint used for lookup, cleared from free_layer() */
372 rcu_assign_pointer(idr->hint, pa[0]);
374 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
375 pa[0]->count++;
376 idr_mark_full(pa, id);
380 * idr_get_new_above - allocate new idr entry above or equal to a start id
381 * @idp: idr handle
382 * @ptr: pointer you want associated with the id
383 * @starting_id: id to start search at
384 * @id: pointer to the allocated handle
386 * This is the allocate id function. It should be called with any
387 * required locks.
389 * If allocation from IDR's private freelist fails, idr_get_new_above() will
390 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
391 * IDR's preallocation and then retry the idr_get_new_above() call.
393 * If the idr is full idr_get_new_above() will return %-ENOSPC.
395 * @id returns a value in the range @starting_id ... %0x7fffffff
397 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
399 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
400 int rv;
402 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
403 if (rv < 0)
404 return rv == -ENOMEM ? -EAGAIN : rv;
406 idr_fill_slot(idp, ptr, rv, pa);
407 *id = rv;
408 return 0;
410 EXPORT_SYMBOL(idr_get_new_above);
413 * idr_preload - preload for idr_alloc()
414 * @gfp_mask: allocation mask to use for preloading
416 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
417 * process context and each idr_preload() invocation should be matched with
418 * idr_preload_end(). Note that preemption is disabled while preloaded.
420 * The first idr_alloc() in the preloaded section can be treated as if it
421 * were invoked with @gfp_mask used for preloading. This allows using more
422 * permissive allocation masks for idrs protected by spinlocks.
424 * For example, if idr_alloc() below fails, the failure can be treated as
425 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
427 * idr_preload(GFP_KERNEL);
428 * spin_lock(lock);
430 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
432 * spin_unlock(lock);
433 * idr_preload_end();
434 * if (id < 0)
435 * error;
437 void idr_preload(gfp_t gfp_mask)
440 * Consuming preload buffer from non-process context breaks preload
441 * allocation guarantee. Disallow usage from those contexts.
443 WARN_ON_ONCE(in_interrupt());
444 might_sleep_if(gfp_mask & __GFP_WAIT);
446 preempt_disable();
449 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
450 * return value from idr_alloc() needs to be checked for failure
451 * anyway. Silently give up if allocation fails. The caller can
452 * treat failures from idr_alloc() as if idr_alloc() were called
453 * with @gfp_mask which should be enough.
455 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
456 struct idr_layer *new;
458 preempt_enable();
459 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
460 preempt_disable();
461 if (!new)
462 break;
464 /* link the new one to per-cpu preload list */
465 new->ary[0] = __this_cpu_read(idr_preload_head);
466 __this_cpu_write(idr_preload_head, new);
467 __this_cpu_inc(idr_preload_cnt);
470 EXPORT_SYMBOL(idr_preload);
473 * idr_alloc - allocate new idr entry
474 * @idr: the (initialized) idr
475 * @ptr: pointer to be associated with the new id
476 * @start: the minimum id (inclusive)
477 * @end: the maximum id (exclusive, <= 0 for max)
478 * @gfp_mask: memory allocation flags
480 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
481 * available in the specified range, returns -ENOSPC. On memory allocation
482 * failure, returns -ENOMEM.
484 * Note that @end is treated as max when <= 0. This is to always allow
485 * using @start + N as @end as long as N is inside integer range.
487 * The user is responsible for exclusively synchronizing all operations
488 * which may modify @idr. However, read-only accesses such as idr_find()
489 * or iteration can be performed under RCU read lock provided the user
490 * destroys @ptr in RCU-safe way after removal from idr.
492 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
494 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
495 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
496 int id;
498 might_sleep_if(gfp_mask & __GFP_WAIT);
500 /* sanity checks */
501 if (WARN_ON_ONCE(start < 0))
502 return -EINVAL;
503 if (unlikely(max < start))
504 return -ENOSPC;
506 /* allocate id */
507 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
508 if (unlikely(id < 0))
509 return id;
510 if (unlikely(id > max))
511 return -ENOSPC;
513 idr_fill_slot(idr, ptr, id, pa);
514 return id;
516 EXPORT_SYMBOL_GPL(idr_alloc);
518 static void idr_remove_warning(int id)
520 printk(KERN_WARNING
521 "idr_remove called for id=%d which is not allocated.\n", id);
522 dump_stack();
525 static void sub_remove(struct idr *idp, int shift, int id)
527 struct idr_layer *p = idp->top;
528 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
529 struct idr_layer ***paa = &pa[0];
530 struct idr_layer *to_free;
531 int n;
533 *paa = NULL;
534 *++paa = &idp->top;
536 while ((shift > 0) && p) {
537 n = (id >> shift) & IDR_MASK;
538 __clear_bit(n, p->bitmap);
539 *++paa = &p->ary[n];
540 p = p->ary[n];
541 shift -= IDR_BITS;
543 n = id & IDR_MASK;
544 if (likely(p != NULL && test_bit(n, p->bitmap))) {
545 __clear_bit(n, p->bitmap);
546 rcu_assign_pointer(p->ary[n], NULL);
547 to_free = NULL;
548 while(*paa && ! --((**paa)->count)){
549 if (to_free)
550 free_layer(idp, to_free);
551 to_free = **paa;
552 **paa-- = NULL;
554 if (!*paa)
555 idp->layers = 0;
556 if (to_free)
557 free_layer(idp, to_free);
558 } else
559 idr_remove_warning(id);
563 * idr_remove - remove the given id and free its slot
564 * @idp: idr handle
565 * @id: unique key
567 void idr_remove(struct idr *idp, int id)
569 struct idr_layer *p;
570 struct idr_layer *to_free;
572 /* see comment in idr_find_slowpath() */
573 if (WARN_ON_ONCE(id < 0))
574 return;
576 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
577 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
578 idp->top->ary[0]) {
580 * Single child at leftmost slot: we can shrink the tree.
581 * This level is not needed anymore since when layers are
582 * inserted, they are inserted at the top of the existing
583 * tree.
585 to_free = idp->top;
586 p = idp->top->ary[0];
587 rcu_assign_pointer(idp->top, p);
588 --idp->layers;
589 to_free->count = 0;
590 bitmap_clear(to_free->bitmap, 0, IDR_SIZE);
591 free_layer(idp, to_free);
593 while (idp->id_free_cnt >= MAX_IDR_FREE) {
594 p = get_from_free_list(idp);
596 * Note: we don't call the rcu callback here, since the only
597 * layers that fall into the freelist are those that have been
598 * preallocated.
600 kmem_cache_free(idr_layer_cache, p);
602 return;
604 EXPORT_SYMBOL(idr_remove);
606 void __idr_remove_all(struct idr *idp)
608 int n, id, max;
609 int bt_mask;
610 struct idr_layer *p;
611 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
612 struct idr_layer **paa = &pa[0];
614 n = idp->layers * IDR_BITS;
615 p = idp->top;
616 rcu_assign_pointer(idp->top, NULL);
617 max = idr_max(idp->layers);
619 id = 0;
620 while (id >= 0 && id <= max) {
621 while (n > IDR_BITS && p) {
622 n -= IDR_BITS;
623 *paa++ = p;
624 p = p->ary[(id >> n) & IDR_MASK];
627 bt_mask = id;
628 id += 1 << n;
629 /* Get the highest bit that the above add changed from 0->1. */
630 while (n < fls(id ^ bt_mask)) {
631 if (p)
632 free_layer(idp, p);
633 n += IDR_BITS;
634 p = *--paa;
637 idp->layers = 0;
639 EXPORT_SYMBOL(__idr_remove_all);
642 * idr_destroy - release all cached layers within an idr tree
643 * @idp: idr handle
645 * Free all id mappings and all idp_layers. After this function, @idp is
646 * completely unused and can be freed / recycled. The caller is
647 * responsible for ensuring that no one else accesses @idp during or after
648 * idr_destroy().
650 * A typical clean-up sequence for objects stored in an idr tree will use
651 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
652 * free up the id mappings and cached idr_layers.
654 void idr_destroy(struct idr *idp)
656 __idr_remove_all(idp);
658 while (idp->id_free_cnt) {
659 struct idr_layer *p = get_from_free_list(idp);
660 kmem_cache_free(idr_layer_cache, p);
663 EXPORT_SYMBOL(idr_destroy);
665 void *idr_find_slowpath(struct idr *idp, int id)
667 int n;
668 struct idr_layer *p;
671 * If @id is negative, idr_find() used to ignore the sign bit and
672 * performed lookup with the rest of bits, which is weird and can
673 * lead to very obscure bugs. We're now returning NULL for all
674 * negative IDs but just in case somebody was depending on the sign
675 * bit being ignored, let's trigger WARN_ON_ONCE() so that they can
676 * be detected and fixed. WARN_ON_ONCE() can later be removed.
678 if (WARN_ON_ONCE(id < 0))
679 return NULL;
681 p = rcu_dereference_raw(idp->top);
682 if (!p)
683 return NULL;
684 n = (p->layer+1) * IDR_BITS;
686 if (id > idr_max(p->layer + 1))
687 return NULL;
688 BUG_ON(n == 0);
690 while (n > 0 && p) {
691 n -= IDR_BITS;
692 BUG_ON(n != p->layer*IDR_BITS);
693 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
695 return((void *)p);
697 EXPORT_SYMBOL(idr_find_slowpath);
700 * idr_for_each - iterate through all stored pointers
701 * @idp: idr handle
702 * @fn: function to be called for each pointer
703 * @data: data passed back to callback function
705 * Iterate over the pointers registered with the given idr. The
706 * callback function will be called for each pointer currently
707 * registered, passing the id, the pointer and the data pointer passed
708 * to this function. It is not safe to modify the idr tree while in
709 * the callback, so functions such as idr_get_new and idr_remove are
710 * not allowed.
712 * We check the return of @fn each time. If it returns anything other
713 * than %0, we break out and return that value.
715 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
717 int idr_for_each(struct idr *idp,
718 int (*fn)(int id, void *p, void *data), void *data)
720 int n, id, max, error = 0;
721 struct idr_layer *p;
722 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
723 struct idr_layer **paa = &pa[0];
725 n = idp->layers * IDR_BITS;
726 p = rcu_dereference_raw(idp->top);
727 max = idr_max(idp->layers);
729 id = 0;
730 while (id >= 0 && id <= max) {
731 while (n > 0 && p) {
732 n -= IDR_BITS;
733 *paa++ = p;
734 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
737 if (p) {
738 error = fn(id, (void *)p, data);
739 if (error)
740 break;
743 id += 1 << n;
744 while (n < fls(id)) {
745 n += IDR_BITS;
746 p = *--paa;
750 return error;
752 EXPORT_SYMBOL(idr_for_each);
755 * idr_get_next - lookup next object of id to given id.
756 * @idp: idr handle
757 * @nextidp: pointer to lookup key
759 * Returns pointer to registered object with id, which is next number to
760 * given id. After being looked up, *@nextidp will be updated for the next
761 * iteration.
763 * This function can be called under rcu_read_lock(), given that the leaf
764 * pointers lifetimes are correctly managed.
766 void *idr_get_next(struct idr *idp, int *nextidp)
768 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
769 struct idr_layer **paa = &pa[0];
770 int id = *nextidp;
771 int n, max;
773 /* find first ent */
774 p = rcu_dereference_raw(idp->top);
775 if (!p)
776 return NULL;
777 n = (p->layer + 1) * IDR_BITS;
778 max = idr_max(p->layer + 1);
780 while (id >= 0 && id <= max) {
781 while (n > 0 && p) {
782 n -= IDR_BITS;
783 *paa++ = p;
784 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
787 if (p) {
788 *nextidp = id;
789 return p;
793 * Proceed to the next layer at the current level. Unlike
794 * idr_for_each(), @id isn't guaranteed to be aligned to
795 * layer boundary at this point and adding 1 << n may
796 * incorrectly skip IDs. Make sure we jump to the
797 * beginning of the next layer using round_up().
799 id = round_up(id + 1, 1 << n);
800 while (n < fls(id)) {
801 n += IDR_BITS;
802 p = *--paa;
805 return NULL;
807 EXPORT_SYMBOL(idr_get_next);
811 * idr_replace - replace pointer for given id
812 * @idp: idr handle
813 * @ptr: pointer you want associated with the id
814 * @id: lookup key
816 * Replace the pointer registered with an id and return the old value.
817 * A %-ENOENT return indicates that @id was not found.
818 * A %-EINVAL return indicates that @id was not within valid constraints.
820 * The caller must serialize with writers.
822 void *idr_replace(struct idr *idp, void *ptr, int id)
824 int n;
825 struct idr_layer *p, *old_p;
827 /* see comment in idr_find_slowpath() */
828 if (WARN_ON_ONCE(id < 0))
829 return ERR_PTR(-EINVAL);
831 p = idp->top;
832 if (!p)
833 return ERR_PTR(-EINVAL);
835 n = (p->layer+1) * IDR_BITS;
837 if (id >= (1 << n))
838 return ERR_PTR(-EINVAL);
840 n -= IDR_BITS;
841 while ((n > 0) && p) {
842 p = p->ary[(id >> n) & IDR_MASK];
843 n -= IDR_BITS;
846 n = id & IDR_MASK;
847 if (unlikely(p == NULL || !test_bit(n, p->bitmap)))
848 return ERR_PTR(-ENOENT);
850 old_p = p->ary[n];
851 rcu_assign_pointer(p->ary[n], ptr);
853 return old_p;
855 EXPORT_SYMBOL(idr_replace);
857 void __init idr_init_cache(void)
859 idr_layer_cache = kmem_cache_create("idr_layer_cache",
860 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
864 * idr_init - initialize idr handle
865 * @idp: idr handle
867 * This function is use to set up the handle (@idp) that you will pass
868 * to the rest of the functions.
870 void idr_init(struct idr *idp)
872 memset(idp, 0, sizeof(struct idr));
873 spin_lock_init(&idp->lock);
875 EXPORT_SYMBOL(idr_init);
879 * DOC: IDA description
880 * IDA - IDR based ID allocator
882 * This is id allocator without id -> pointer translation. Memory
883 * usage is much lower than full blown idr because each id only
884 * occupies a bit. ida uses a custom leaf node which contains
885 * IDA_BITMAP_BITS slots.
887 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
890 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
892 unsigned long flags;
894 if (!ida->free_bitmap) {
895 spin_lock_irqsave(&ida->idr.lock, flags);
896 if (!ida->free_bitmap) {
897 ida->free_bitmap = bitmap;
898 bitmap = NULL;
900 spin_unlock_irqrestore(&ida->idr.lock, flags);
903 kfree(bitmap);
907 * ida_pre_get - reserve resources for ida allocation
908 * @ida: ida handle
909 * @gfp_mask: memory allocation flag
911 * This function should be called prior to locking and calling the
912 * following function. It preallocates enough memory to satisfy the
913 * worst possible allocation.
915 * If the system is REALLY out of memory this function returns %0,
916 * otherwise %1.
918 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
920 /* allocate idr_layers */
921 if (!idr_pre_get(&ida->idr, gfp_mask))
922 return 0;
924 /* allocate free_bitmap */
925 if (!ida->free_bitmap) {
926 struct ida_bitmap *bitmap;
928 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
929 if (!bitmap)
930 return 0;
932 free_bitmap(ida, bitmap);
935 return 1;
937 EXPORT_SYMBOL(ida_pre_get);
940 * ida_get_new_above - allocate new ID above or equal to a start id
941 * @ida: ida handle
942 * @starting_id: id to start search at
943 * @p_id: pointer to the allocated handle
945 * Allocate new ID above or equal to @starting_id. It should be called
946 * with any required locks.
948 * If memory is required, it will return %-EAGAIN, you should unlock
949 * and go back to the ida_pre_get() call. If the ida is full, it will
950 * return %-ENOSPC.
952 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
954 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
956 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
957 struct ida_bitmap *bitmap;
958 unsigned long flags;
959 int idr_id = starting_id / IDA_BITMAP_BITS;
960 int offset = starting_id % IDA_BITMAP_BITS;
961 int t, id;
963 restart:
964 /* get vacant slot */
965 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
966 if (t < 0)
967 return t == -ENOMEM ? -EAGAIN : t;
969 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
970 return -ENOSPC;
972 if (t != idr_id)
973 offset = 0;
974 idr_id = t;
976 /* if bitmap isn't there, create a new one */
977 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
978 if (!bitmap) {
979 spin_lock_irqsave(&ida->idr.lock, flags);
980 bitmap = ida->free_bitmap;
981 ida->free_bitmap = NULL;
982 spin_unlock_irqrestore(&ida->idr.lock, flags);
984 if (!bitmap)
985 return -EAGAIN;
987 memset(bitmap, 0, sizeof(struct ida_bitmap));
988 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
989 (void *)bitmap);
990 pa[0]->count++;
993 /* lookup for empty slot */
994 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
995 if (t == IDA_BITMAP_BITS) {
996 /* no empty slot after offset, continue to the next chunk */
997 idr_id++;
998 offset = 0;
999 goto restart;
1002 id = idr_id * IDA_BITMAP_BITS + t;
1003 if (id >= MAX_IDR_BIT)
1004 return -ENOSPC;
1006 __set_bit(t, bitmap->bitmap);
1007 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
1008 idr_mark_full(pa, idr_id);
1010 *p_id = id;
1012 /* Each leaf node can handle nearly a thousand slots and the
1013 * whole idea of ida is to have small memory foot print.
1014 * Throw away extra resources one by one after each successful
1015 * allocation.
1017 if (ida->idr.id_free_cnt || ida->free_bitmap) {
1018 struct idr_layer *p = get_from_free_list(&ida->idr);
1019 if (p)
1020 kmem_cache_free(idr_layer_cache, p);
1023 return 0;
1025 EXPORT_SYMBOL(ida_get_new_above);
1028 * ida_remove - remove the given ID
1029 * @ida: ida handle
1030 * @id: ID to free
1032 void ida_remove(struct ida *ida, int id)
1034 struct idr_layer *p = ida->idr.top;
1035 int shift = (ida->idr.layers - 1) * IDR_BITS;
1036 int idr_id = id / IDA_BITMAP_BITS;
1037 int offset = id % IDA_BITMAP_BITS;
1038 int n;
1039 struct ida_bitmap *bitmap;
1041 /* clear full bits while looking up the leaf idr_layer */
1042 while ((shift > 0) && p) {
1043 n = (idr_id >> shift) & IDR_MASK;
1044 __clear_bit(n, p->bitmap);
1045 p = p->ary[n];
1046 shift -= IDR_BITS;
1049 if (p == NULL)
1050 goto err;
1052 n = idr_id & IDR_MASK;
1053 __clear_bit(n, p->bitmap);
1055 bitmap = (void *)p->ary[n];
1056 if (!test_bit(offset, bitmap->bitmap))
1057 goto err;
1059 /* update bitmap and remove it if empty */
1060 __clear_bit(offset, bitmap->bitmap);
1061 if (--bitmap->nr_busy == 0) {
1062 __set_bit(n, p->bitmap); /* to please idr_remove() */
1063 idr_remove(&ida->idr, idr_id);
1064 free_bitmap(ida, bitmap);
1067 return;
1069 err:
1070 printk(KERN_WARNING
1071 "ida_remove called for id=%d which is not allocated.\n", id);
1073 EXPORT_SYMBOL(ida_remove);
1076 * ida_destroy - release all cached layers within an ida tree
1077 * @ida: ida handle
1079 void ida_destroy(struct ida *ida)
1081 idr_destroy(&ida->idr);
1082 kfree(ida->free_bitmap);
1084 EXPORT_SYMBOL(ida_destroy);
1087 * ida_simple_get - get a new id.
1088 * @ida: the (initialized) ida.
1089 * @start: the minimum id (inclusive, < 0x8000000)
1090 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1091 * @gfp_mask: memory allocation flags
1093 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1094 * On memory allocation failure, returns -ENOMEM.
1096 * Use ida_simple_remove() to get rid of an id.
1098 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1099 gfp_t gfp_mask)
1101 int ret, id;
1102 unsigned int max;
1103 unsigned long flags;
1105 BUG_ON((int)start < 0);
1106 BUG_ON((int)end < 0);
1108 if (end == 0)
1109 max = 0x80000000;
1110 else {
1111 BUG_ON(end < start);
1112 max = end - 1;
1115 again:
1116 if (!ida_pre_get(ida, gfp_mask))
1117 return -ENOMEM;
1119 spin_lock_irqsave(&simple_ida_lock, flags);
1120 ret = ida_get_new_above(ida, start, &id);
1121 if (!ret) {
1122 if (id > max) {
1123 ida_remove(ida, id);
1124 ret = -ENOSPC;
1125 } else {
1126 ret = id;
1129 spin_unlock_irqrestore(&simple_ida_lock, flags);
1131 if (unlikely(ret == -EAGAIN))
1132 goto again;
1134 return ret;
1136 EXPORT_SYMBOL(ida_simple_get);
1139 * ida_simple_remove - remove an allocated id.
1140 * @ida: the (initialized) ida.
1141 * @id: the id returned by ida_simple_get.
1143 void ida_simple_remove(struct ida *ida, unsigned int id)
1145 unsigned long flags;
1147 BUG_ON((int)id < 0);
1148 spin_lock_irqsave(&simple_ida_lock, flags);
1149 ida_remove(ida, id);
1150 spin_unlock_irqrestore(&simple_ida_lock, flags);
1152 EXPORT_SYMBOL(ida_simple_remove);
1155 * ida_init - initialize ida handle
1156 * @ida: ida handle
1158 * This function is use to set up the handle (@ida) that you will pass
1159 * to the rest of the functions.
1161 void ida_init(struct ida *ida)
1163 memset(ida, 0, sizeof(struct ida));
1164 idr_init(&ida->idr);
1167 EXPORT_SYMBOL(ida_init);