perf symbols: Add '.note' check into search for NOTE section
[linux-2.6/btrfs-unstable.git] / include / linux / usb.h
blobdea39dc551d44c3602f1b7c33800dfba57a0a5b3
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
11 #ifdef __KERNEL__
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
29 /*-------------------------------------------------------------------------*/
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
42 * And there might be other descriptors mixed in with those.
44 * Devices may also have class-specific or vendor-specific descriptors.
47 struct ep_device;
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
80 /* array of desc.bNumEndpoint endpoints associated with this
81 * interface setting. these will be in no particular order.
83 struct usb_host_endpoint *endpoint;
85 char *string; /* iInterface string, if present */
86 unsigned char *extra; /* Extra descriptors */
87 int extralen;
90 enum usb_interface_condition {
91 USB_INTERFACE_UNBOUND = 0,
92 USB_INTERFACE_BINDING,
93 USB_INTERFACE_BOUND,
94 USB_INTERFACE_UNBINDING,
97 /**
98 * struct usb_interface - what usb device drivers talk to
99 * @altsetting: array of interface structures, one for each alternate
100 * setting that may be selected. Each one includes a set of
101 * endpoint configurations. They will be in no particular order.
102 * @cur_altsetting: the current altsetting.
103 * @num_altsetting: number of altsettings defined.
104 * @intf_assoc: interface association descriptor
105 * @minor: the minor number assigned to this interface, if this
106 * interface is bound to a driver that uses the USB major number.
107 * If this interface does not use the USB major, this field should
108 * be unused. The driver should set this value in the probe()
109 * function of the driver, after it has been assigned a minor
110 * number from the USB core by calling usb_register_dev().
111 * @condition: binding state of the interface: not bound, binding
112 * (in probe()), bound to a driver, or unbinding (in disconnect())
113 * @sysfs_files_created: sysfs attributes exist
114 * @ep_devs_created: endpoint child pseudo-devices exist
115 * @unregistering: flag set when the interface is being unregistered
116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117 * capability during autosuspend.
118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119 * has been deferred.
120 * @needs_binding: flag set when the driver should be re-probed or unbound
121 * following a reset or suspend operation it doesn't support.
122 * @dev: driver model's view of this device
123 * @usb_dev: if an interface is bound to the USB major, this will point
124 * to the sysfs representation for that device.
125 * @pm_usage_cnt: PM usage counter for this interface
126 * @reset_ws: Used for scheduling resets from atomic context.
127 * @reset_running: set to 1 if the interface is currently running a
128 * queued reset so that usb_cancel_queued_reset() doesn't try to
129 * remove from the workqueue when running inside the worker
130 * thread. See __usb_queue_reset_device().
131 * @resetting_device: USB core reset the device, so use alt setting 0 as
132 * current; needs bandwidth alloc after reset.
134 * USB device drivers attach to interfaces on a physical device. Each
135 * interface encapsulates a single high level function, such as feeding
136 * an audio stream to a speaker or reporting a change in a volume control.
137 * Many USB devices only have one interface. The protocol used to talk to
138 * an interface's endpoints can be defined in a usb "class" specification,
139 * or by a product's vendor. The (default) control endpoint is part of
140 * every interface, but is never listed among the interface's descriptors.
142 * The driver that is bound to the interface can use standard driver model
143 * calls such as dev_get_drvdata() on the dev member of this structure.
145 * Each interface may have alternate settings. The initial configuration
146 * of a device sets altsetting 0, but the device driver can change
147 * that setting using usb_set_interface(). Alternate settings are often
148 * used to control the use of periodic endpoints, such as by having
149 * different endpoints use different amounts of reserved USB bandwidth.
150 * All standards-conformant USB devices that use isochronous endpoints
151 * will use them in non-default settings.
153 * The USB specification says that alternate setting numbers must run from
154 * 0 to one less than the total number of alternate settings. But some
155 * devices manage to mess this up, and the structures aren't necessarily
156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
157 * look up an alternate setting in the altsetting array based on its number.
159 struct usb_interface {
160 /* array of alternate settings for this interface,
161 * stored in no particular order */
162 struct usb_host_interface *altsetting;
164 struct usb_host_interface *cur_altsetting; /* the currently
165 * active alternate setting */
166 unsigned num_altsetting; /* number of alternate settings */
168 /* If there is an interface association descriptor then it will list
169 * the associated interfaces */
170 struct usb_interface_assoc_descriptor *intf_assoc;
172 int minor; /* minor number this interface is
173 * bound to */
174 enum usb_interface_condition condition; /* state of binding */
175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
176 unsigned ep_devs_created:1; /* endpoint "devices" exist */
177 unsigned unregistering:1; /* unregistration is in progress */
178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
180 unsigned needs_binding:1; /* needs delayed unbind/rebind */
181 unsigned reset_running:1;
182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
184 struct device dev; /* interface specific device info */
185 struct device *usb_dev;
186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
187 struct work_struct reset_ws; /* for resets in atomic context */
189 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
191 static inline void *usb_get_intfdata(struct usb_interface *intf)
193 return dev_get_drvdata(&intf->dev);
196 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
198 dev_set_drvdata(&intf->dev, data);
201 struct usb_interface *usb_get_intf(struct usb_interface *intf);
202 void usb_put_intf(struct usb_interface *intf);
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES 32
206 #define USB_MAXIADS (USB_MAXINTERFACES/2)
209 * struct usb_interface_cache - long-term representation of a device interface
210 * @num_altsetting: number of altsettings defined.
211 * @ref: reference counter.
212 * @altsetting: variable-length array of interface structures, one for
213 * each alternate setting that may be selected. Each one includes a
214 * set of endpoint configurations. They will be in no particular order.
216 * These structures persist for the lifetime of a usb_device, unlike
217 * struct usb_interface (which persists only as long as its configuration
218 * is installed). The altsetting arrays can be accessed through these
219 * structures at any time, permitting comparison of configurations and
220 * providing support for the /proc/bus/usb/devices pseudo-file.
222 struct usb_interface_cache {
223 unsigned num_altsetting; /* number of alternate settings */
224 struct kref ref; /* reference counter */
226 /* variable-length array of alternate settings for this interface,
227 * stored in no particular order */
228 struct usb_host_interface altsetting[0];
230 #define ref_to_usb_interface_cache(r) \
231 container_of(r, struct usb_interface_cache, ref)
232 #define altsetting_to_usb_interface_cache(a) \
233 container_of(a, struct usb_interface_cache, altsetting[0])
236 * struct usb_host_config - representation of a device's configuration
237 * @desc: the device's configuration descriptor.
238 * @string: pointer to the cached version of the iConfiguration string, if
239 * present for this configuration.
240 * @intf_assoc: list of any interface association descriptors in this config
241 * @interface: array of pointers to usb_interface structures, one for each
242 * interface in the configuration. The number of interfaces is stored
243 * in desc.bNumInterfaces. These pointers are valid only while the
244 * the configuration is active.
245 * @intf_cache: array of pointers to usb_interface_cache structures, one
246 * for each interface in the configuration. These structures exist
247 * for the entire life of the device.
248 * @extra: pointer to buffer containing all extra descriptors associated
249 * with this configuration (those preceding the first interface
250 * descriptor).
251 * @extralen: length of the extra descriptors buffer.
253 * USB devices may have multiple configurations, but only one can be active
254 * at any time. Each encapsulates a different operational environment;
255 * for example, a dual-speed device would have separate configurations for
256 * full-speed and high-speed operation. The number of configurations
257 * available is stored in the device descriptor as bNumConfigurations.
259 * A configuration can contain multiple interfaces. Each corresponds to
260 * a different function of the USB device, and all are available whenever
261 * the configuration is active. The USB standard says that interfaces
262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263 * of devices get this wrong. In addition, the interface array is not
264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
265 * look up an interface entry based on its number.
267 * Device drivers should not attempt to activate configurations. The choice
268 * of which configuration to install is a policy decision based on such
269 * considerations as available power, functionality provided, and the user's
270 * desires (expressed through userspace tools). However, drivers can call
271 * usb_reset_configuration() to reinitialize the current configuration and
272 * all its interfaces.
274 struct usb_host_config {
275 struct usb_config_descriptor desc;
277 char *string; /* iConfiguration string, if present */
279 /* List of any Interface Association Descriptors in this
280 * configuration. */
281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
283 /* the interfaces associated with this configuration,
284 * stored in no particular order */
285 struct usb_interface *interface[USB_MAXINTERFACES];
287 /* Interface information available even when this is not the
288 * active configuration */
289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
291 unsigned char *extra; /* Extra descriptors */
292 int extralen;
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297 struct usb_bos_descriptor *desc;
299 /* wireless cap descriptor is handled by wusb */
300 struct usb_ext_cap_descriptor *ext_cap;
301 struct usb_ss_cap_descriptor *ss_cap;
302 struct usb_ss_container_id_descriptor *ss_id;
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306 unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308 __usb_get_extra_descriptor((ifpoint)->extra, \
309 (ifpoint)->extralen, \
310 type, (void **)ptr)
312 /* ----------------------------------------------------------------------- */
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
320 * Allocated per bus (tree of devices) we have:
322 struct usb_bus {
323 struct device *controller; /* host/master side hardware */
324 int busnum; /* Bus number (in order of reg) */
325 const char *bus_name; /* stable id (PCI slot_name etc) */
326 u8 uses_dma; /* Does the host controller use DMA? */
327 u8 uses_pio_for_control; /*
328 * Does the host controller use PIO
329 * for control transfers?
331 u8 otg_port; /* 0, or number of OTG/HNP port */
332 unsigned is_b_host:1; /* true during some HNP roleswitches */
333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
334 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
336 int devnum_next; /* Next open device number in
337 * round-robin allocation */
339 struct usb_devmap devmap; /* device address allocation map */
340 struct usb_device *root_hub; /* Root hub */
341 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
342 struct list_head bus_list; /* list of busses */
344 int bandwidth_allocated; /* on this bus: how much of the time
345 * reserved for periodic (intr/iso)
346 * requests is used, on average?
347 * Units: microseconds/frame.
348 * Limits: Full/low speed reserve 90%,
349 * while high speed reserves 80%.
351 int bandwidth_int_reqs; /* number of Interrupt requests */
352 int bandwidth_isoc_reqs; /* number of Isoc. requests */
354 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
355 struct mon_bus *mon_bus; /* non-null when associated */
356 int monitored; /* non-zero when monitored */
357 #endif
360 /* ----------------------------------------------------------------------- */
362 /* This is arbitrary.
363 * From USB 2.0 spec Table 11-13, offset 7, a hub can
364 * have up to 255 ports. The most yet reported is 10.
366 * Current Wireless USB host hardware (Intel i1480 for example) allows
367 * up to 22 devices to connect. Upcoming hardware might raise that
368 * limit. Because the arrays need to add a bit for hub status data, we
369 * do 31, so plus one evens out to four bytes.
371 #define USB_MAXCHILDREN (31)
373 struct usb_tt;
375 enum usb_device_removable {
376 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
377 USB_DEVICE_REMOVABLE,
378 USB_DEVICE_FIXED,
382 * USB 3.0 Link Power Management (LPM) parameters.
384 * PEL and SEL are USB 3.0 Link PM latencies for device-initiated LPM exit.
385 * MEL is the USB 3.0 Link PM latency for host-initiated LPM exit.
386 * All three are stored in nanoseconds.
388 struct usb3_lpm_parameters {
390 * Maximum exit latency (MEL) for the host to send a packet to the
391 * device (either a Ping for isoc endpoints, or a data packet for
392 * interrupt endpoints), the hubs to decode the packet, and for all hubs
393 * in the path to transition the links to U0.
395 unsigned int mel;
397 * Maximum exit latency for a device-initiated LPM transition to bring
398 * all links into U0. Abbreviated as "PEL" in section 9.4.12 of the USB
399 * 3.0 spec, with no explanation of what "P" stands for. "Path"?
401 unsigned int pel;
404 * The System Exit Latency (SEL) includes PEL, and three other
405 * latencies. After a device initiates a U0 transition, it will take
406 * some time from when the device sends the ERDY to when it will finally
407 * receive the data packet. Basically, SEL should be the worse-case
408 * latency from when a device starts initiating a U0 transition to when
409 * it will get data.
411 unsigned int sel;
413 * The idle timeout value that is currently programmed into the parent
414 * hub for this device. When the timer counts to zero, the parent hub
415 * will initiate an LPM transition to either U1 or U2.
417 int timeout;
421 * struct usb_device - kernel's representation of a USB device
422 * @devnum: device number; address on a USB bus
423 * @devpath: device ID string for use in messages (e.g., /port/...)
424 * @route: tree topology hex string for use with xHCI
425 * @state: device state: configured, not attached, etc.
426 * @speed: device speed: high/full/low (or error)
427 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
428 * @ttport: device port on that tt hub
429 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
430 * @parent: our hub, unless we're the root
431 * @bus: bus we're part of
432 * @ep0: endpoint 0 data (default control pipe)
433 * @dev: generic device interface
434 * @descriptor: USB device descriptor
435 * @bos: USB device BOS descriptor set
436 * @config: all of the device's configs
437 * @actconfig: the active configuration
438 * @ep_in: array of IN endpoints
439 * @ep_out: array of OUT endpoints
440 * @rawdescriptors: raw descriptors for each config
441 * @bus_mA: Current available from the bus
442 * @portnum: parent port number (origin 1)
443 * @level: number of USB hub ancestors
444 * @can_submit: URBs may be submitted
445 * @persist_enabled: USB_PERSIST enabled for this device
446 * @have_langid: whether string_langid is valid
447 * @authorized: policy has said we can use it;
448 * (user space) policy determines if we authorize this device to be
449 * used or not. By default, wired USB devices are authorized.
450 * WUSB devices are not, until we authorize them from user space.
451 * FIXME -- complete doc
452 * @authenticated: Crypto authentication passed
453 * @wusb: device is Wireless USB
454 * @lpm_capable: device supports LPM
455 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
456 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
457 * @string_langid: language ID for strings
458 * @product: iProduct string, if present (static)
459 * @manufacturer: iManufacturer string, if present (static)
460 * @serial: iSerialNumber string, if present (static)
461 * @filelist: usbfs files that are open to this device
462 * @usb_classdev: USB class device that was created for usbfs device
463 * access from userspace
464 * @usbfs_dentry: usbfs dentry entry for the device
465 * @maxchild: number of ports if hub
466 * @children: child devices - USB devices that are attached to this hub
467 * @quirks: quirks of the whole device
468 * @urbnum: number of URBs submitted for the whole device
469 * @active_duration: total time device is not suspended
470 * @connect_time: time device was first connected
471 * @do_remote_wakeup: remote wakeup should be enabled
472 * @reset_resume: needs reset instead of resume
473 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
474 * specific data for the device.
475 * @slot_id: Slot ID assigned by xHCI
476 * @removable: Device can be physically removed from this port
477 * @u1_params: exit latencies for USB3 U1 LPM state, and hub-initiated timeout.
478 * @u2_params: exit latencies for USB3 U2 LPM state, and hub-initiated timeout.
479 * @lpm_disable_count: Ref count used by usb_disable_lpm() and usb_enable_lpm()
480 * to keep track of the number of functions that require USB 3.0 Link Power
481 * Management to be disabled for this usb_device. This count should only
482 * be manipulated by those functions, with the bandwidth_mutex is held.
484 * Notes:
485 * Usbcore drivers should not set usbdev->state directly. Instead use
486 * usb_set_device_state().
488 struct usb_device {
489 int devnum;
490 char devpath[16];
491 u32 route;
492 enum usb_device_state state;
493 enum usb_device_speed speed;
495 struct usb_tt *tt;
496 int ttport;
498 unsigned int toggle[2];
500 struct usb_device *parent;
501 struct usb_bus *bus;
502 struct usb_host_endpoint ep0;
504 struct device dev;
506 struct usb_device_descriptor descriptor;
507 struct usb_host_bos *bos;
508 struct usb_host_config *config;
510 struct usb_host_config *actconfig;
511 struct usb_host_endpoint *ep_in[16];
512 struct usb_host_endpoint *ep_out[16];
514 char **rawdescriptors;
516 unsigned short bus_mA;
517 u8 portnum;
518 u8 level;
520 unsigned can_submit:1;
521 unsigned persist_enabled:1;
522 unsigned have_langid:1;
523 unsigned authorized:1;
524 unsigned authenticated:1;
525 unsigned wusb:1;
526 unsigned lpm_capable:1;
527 unsigned usb2_hw_lpm_capable:1;
528 unsigned usb2_hw_lpm_enabled:1;
529 unsigned usb3_lpm_enabled:1;
530 int string_langid;
532 /* static strings from the device */
533 char *product;
534 char *manufacturer;
535 char *serial;
537 struct list_head filelist;
539 int maxchild;
540 struct usb_device **children;
542 u32 quirks;
543 atomic_t urbnum;
545 unsigned long active_duration;
547 #ifdef CONFIG_PM
548 unsigned long connect_time;
550 unsigned do_remote_wakeup:1;
551 unsigned reset_resume:1;
552 #endif
553 struct wusb_dev *wusb_dev;
554 int slot_id;
555 enum usb_device_removable removable;
556 struct usb3_lpm_parameters u1_params;
557 struct usb3_lpm_parameters u2_params;
558 unsigned lpm_disable_count;
559 unsigned hub_initiated_lpm_disable_count;
561 #define to_usb_device(d) container_of(d, struct usb_device, dev)
563 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
565 return to_usb_device(intf->dev.parent);
568 extern struct usb_device *usb_get_dev(struct usb_device *dev);
569 extern void usb_put_dev(struct usb_device *dev);
571 /* USB device locking */
572 #define usb_lock_device(udev) device_lock(&(udev)->dev)
573 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
574 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
575 extern int usb_lock_device_for_reset(struct usb_device *udev,
576 const struct usb_interface *iface);
578 /* USB port reset for device reinitialization */
579 extern int usb_reset_device(struct usb_device *dev);
580 extern void usb_queue_reset_device(struct usb_interface *dev);
583 /* USB autosuspend and autoresume */
584 #ifdef CONFIG_USB_SUSPEND
585 extern void usb_enable_autosuspend(struct usb_device *udev);
586 extern void usb_disable_autosuspend(struct usb_device *udev);
588 extern int usb_autopm_get_interface(struct usb_interface *intf);
589 extern void usb_autopm_put_interface(struct usb_interface *intf);
590 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
591 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
592 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
593 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
595 static inline void usb_mark_last_busy(struct usb_device *udev)
597 pm_runtime_mark_last_busy(&udev->dev);
600 #else
602 static inline int usb_enable_autosuspend(struct usb_device *udev)
603 { return 0; }
604 static inline int usb_disable_autosuspend(struct usb_device *udev)
605 { return 0; }
607 static inline int usb_autopm_get_interface(struct usb_interface *intf)
608 { return 0; }
609 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
610 { return 0; }
612 static inline void usb_autopm_put_interface(struct usb_interface *intf)
614 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
616 static inline void usb_autopm_get_interface_no_resume(
617 struct usb_interface *intf)
619 static inline void usb_autopm_put_interface_no_suspend(
620 struct usb_interface *intf)
622 static inline void usb_mark_last_busy(struct usb_device *udev)
624 #endif
626 extern int usb_disable_lpm(struct usb_device *udev);
627 extern void usb_enable_lpm(struct usb_device *udev);
628 /* Same as above, but these functions lock/unlock the bandwidth_mutex. */
629 extern int usb_unlocked_disable_lpm(struct usb_device *udev);
630 extern void usb_unlocked_enable_lpm(struct usb_device *udev);
632 /*-------------------------------------------------------------------------*/
634 /* for drivers using iso endpoints */
635 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
637 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
638 extern int usb_alloc_streams(struct usb_interface *interface,
639 struct usb_host_endpoint **eps, unsigned int num_eps,
640 unsigned int num_streams, gfp_t mem_flags);
642 /* Reverts a group of bulk endpoints back to not using stream IDs. */
643 extern void usb_free_streams(struct usb_interface *interface,
644 struct usb_host_endpoint **eps, unsigned int num_eps,
645 gfp_t mem_flags);
647 /* used these for multi-interface device registration */
648 extern int usb_driver_claim_interface(struct usb_driver *driver,
649 struct usb_interface *iface, void *priv);
652 * usb_interface_claimed - returns true iff an interface is claimed
653 * @iface: the interface being checked
655 * Returns true (nonzero) iff the interface is claimed, else false (zero).
656 * Callers must own the driver model's usb bus readlock. So driver
657 * probe() entries don't need extra locking, but other call contexts
658 * may need to explicitly claim that lock.
661 static inline int usb_interface_claimed(struct usb_interface *iface)
663 return (iface->dev.driver != NULL);
666 extern void usb_driver_release_interface(struct usb_driver *driver,
667 struct usb_interface *iface);
668 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
669 const struct usb_device_id *id);
670 extern int usb_match_one_id(struct usb_interface *interface,
671 const struct usb_device_id *id);
673 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
674 int minor);
675 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
676 unsigned ifnum);
677 extern struct usb_host_interface *usb_altnum_to_altsetting(
678 const struct usb_interface *intf, unsigned int altnum);
679 extern struct usb_host_interface *usb_find_alt_setting(
680 struct usb_host_config *config,
681 unsigned int iface_num,
682 unsigned int alt_num);
686 * usb_make_path - returns stable device path in the usb tree
687 * @dev: the device whose path is being constructed
688 * @buf: where to put the string
689 * @size: how big is "buf"?
691 * Returns length of the string (> 0) or negative if size was too small.
693 * This identifier is intended to be "stable", reflecting physical paths in
694 * hardware such as physical bus addresses for host controllers or ports on
695 * USB hubs. That makes it stay the same until systems are physically
696 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
697 * controllers. Adding and removing devices, including virtual root hubs
698 * in host controller driver modules, does not change these path identifiers;
699 * neither does rebooting or re-enumerating. These are more useful identifiers
700 * than changeable ("unstable") ones like bus numbers or device addresses.
702 * With a partial exception for devices connected to USB 2.0 root hubs, these
703 * identifiers are also predictable. So long as the device tree isn't changed,
704 * plugging any USB device into a given hub port always gives it the same path.
705 * Because of the use of "companion" controllers, devices connected to ports on
706 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
707 * high speed, and a different one if they are full or low speed.
709 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
711 int actual;
712 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
713 dev->devpath);
714 return (actual >= (int)size) ? -1 : actual;
717 /*-------------------------------------------------------------------------*/
719 #define USB_DEVICE_ID_MATCH_DEVICE \
720 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
721 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
722 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
723 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
724 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
725 #define USB_DEVICE_ID_MATCH_DEV_INFO \
726 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
727 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
728 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
729 #define USB_DEVICE_ID_MATCH_INT_INFO \
730 (USB_DEVICE_ID_MATCH_INT_CLASS | \
731 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
732 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
735 * USB_DEVICE - macro used to describe a specific usb device
736 * @vend: the 16 bit USB Vendor ID
737 * @prod: the 16 bit USB Product ID
739 * This macro is used to create a struct usb_device_id that matches a
740 * specific device.
742 #define USB_DEVICE(vend, prod) \
743 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
744 .idVendor = (vend), \
745 .idProduct = (prod)
747 * USB_DEVICE_VER - describe a specific usb device with a version range
748 * @vend: the 16 bit USB Vendor ID
749 * @prod: the 16 bit USB Product ID
750 * @lo: the bcdDevice_lo value
751 * @hi: the bcdDevice_hi value
753 * This macro is used to create a struct usb_device_id that matches a
754 * specific device, with a version range.
756 #define USB_DEVICE_VER(vend, prod, lo, hi) \
757 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
758 .idVendor = (vend), \
759 .idProduct = (prod), \
760 .bcdDevice_lo = (lo), \
761 .bcdDevice_hi = (hi)
764 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
765 * @vend: the 16 bit USB Vendor ID
766 * @prod: the 16 bit USB Product ID
767 * @pr: bInterfaceProtocol value
769 * This macro is used to create a struct usb_device_id that matches a
770 * specific interface protocol of devices.
772 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
773 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
774 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
775 .idVendor = (vend), \
776 .idProduct = (prod), \
777 .bInterfaceProtocol = (pr)
780 * USB_DEVICE_INFO - macro used to describe a class of usb devices
781 * @cl: bDeviceClass value
782 * @sc: bDeviceSubClass value
783 * @pr: bDeviceProtocol value
785 * This macro is used to create a struct usb_device_id that matches a
786 * specific class of devices.
788 #define USB_DEVICE_INFO(cl, sc, pr) \
789 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
790 .bDeviceClass = (cl), \
791 .bDeviceSubClass = (sc), \
792 .bDeviceProtocol = (pr)
795 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
796 * @cl: bInterfaceClass value
797 * @sc: bInterfaceSubClass value
798 * @pr: bInterfaceProtocol value
800 * This macro is used to create a struct usb_device_id that matches a
801 * specific class of interfaces.
803 #define USB_INTERFACE_INFO(cl, sc, pr) \
804 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
805 .bInterfaceClass = (cl), \
806 .bInterfaceSubClass = (sc), \
807 .bInterfaceProtocol = (pr)
810 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
811 * @vend: the 16 bit USB Vendor ID
812 * @prod: the 16 bit USB Product ID
813 * @cl: bInterfaceClass value
814 * @sc: bInterfaceSubClass value
815 * @pr: bInterfaceProtocol value
817 * This macro is used to create a struct usb_device_id that matches a
818 * specific device with a specific class of interfaces.
820 * This is especially useful when explicitly matching devices that have
821 * vendor specific bDeviceClass values, but standards-compliant interfaces.
823 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
824 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
825 | USB_DEVICE_ID_MATCH_DEVICE, \
826 .idVendor = (vend), \
827 .idProduct = (prod), \
828 .bInterfaceClass = (cl), \
829 .bInterfaceSubClass = (sc), \
830 .bInterfaceProtocol = (pr)
832 /* ----------------------------------------------------------------------- */
834 /* Stuff for dynamic usb ids */
835 struct usb_dynids {
836 spinlock_t lock;
837 struct list_head list;
840 struct usb_dynid {
841 struct list_head node;
842 struct usb_device_id id;
845 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
846 struct device_driver *driver,
847 const char *buf, size_t count);
849 extern ssize_t usb_show_dynids(struct usb_dynids *dynids, char *buf);
852 * struct usbdrv_wrap - wrapper for driver-model structure
853 * @driver: The driver-model core driver structure.
854 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
856 struct usbdrv_wrap {
857 struct device_driver driver;
858 int for_devices;
862 * struct usb_driver - identifies USB interface driver to usbcore
863 * @name: The driver name should be unique among USB drivers,
864 * and should normally be the same as the module name.
865 * @probe: Called to see if the driver is willing to manage a particular
866 * interface on a device. If it is, probe returns zero and uses
867 * usb_set_intfdata() to associate driver-specific data with the
868 * interface. It may also use usb_set_interface() to specify the
869 * appropriate altsetting. If unwilling to manage the interface,
870 * return -ENODEV, if genuine IO errors occurred, an appropriate
871 * negative errno value.
872 * @disconnect: Called when the interface is no longer accessible, usually
873 * because its device has been (or is being) disconnected or the
874 * driver module is being unloaded.
875 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
876 * the "usbfs" filesystem. This lets devices provide ways to
877 * expose information to user space regardless of where they
878 * do (or don't) show up otherwise in the filesystem.
879 * @suspend: Called when the device is going to be suspended by the system.
880 * @resume: Called when the device is being resumed by the system.
881 * @reset_resume: Called when the suspended device has been reset instead
882 * of being resumed.
883 * @pre_reset: Called by usb_reset_device() when the device is about to be
884 * reset. This routine must not return until the driver has no active
885 * URBs for the device, and no more URBs may be submitted until the
886 * post_reset method is called.
887 * @post_reset: Called by usb_reset_device() after the device
888 * has been reset
889 * @id_table: USB drivers use ID table to support hotplugging.
890 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
891 * or your driver's probe function will never get called.
892 * @dynids: used internally to hold the list of dynamically added device
893 * ids for this driver.
894 * @drvwrap: Driver-model core structure wrapper.
895 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
896 * added to this driver by preventing the sysfs file from being created.
897 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
898 * for interfaces bound to this driver.
899 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
900 * endpoints before calling the driver's disconnect method.
901 * @disable_hub_initiated_lpm: if set to 0, the USB core will not allow hubs
902 * to initiate lower power link state transitions when an idle timeout
903 * occurs. Device-initiated USB 3.0 link PM will still be allowed.
905 * USB interface drivers must provide a name, probe() and disconnect()
906 * methods, and an id_table. Other driver fields are optional.
908 * The id_table is used in hotplugging. It holds a set of descriptors,
909 * and specialized data may be associated with each entry. That table
910 * is used by both user and kernel mode hotplugging support.
912 * The probe() and disconnect() methods are called in a context where
913 * they can sleep, but they should avoid abusing the privilege. Most
914 * work to connect to a device should be done when the device is opened,
915 * and undone at the last close. The disconnect code needs to address
916 * concurrency issues with respect to open() and close() methods, as
917 * well as forcing all pending I/O requests to complete (by unlinking
918 * them as necessary, and blocking until the unlinks complete).
920 struct usb_driver {
921 const char *name;
923 int (*probe) (struct usb_interface *intf,
924 const struct usb_device_id *id);
926 void (*disconnect) (struct usb_interface *intf);
928 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
929 void *buf);
931 int (*suspend) (struct usb_interface *intf, pm_message_t message);
932 int (*resume) (struct usb_interface *intf);
933 int (*reset_resume)(struct usb_interface *intf);
935 int (*pre_reset)(struct usb_interface *intf);
936 int (*post_reset)(struct usb_interface *intf);
938 const struct usb_device_id *id_table;
940 struct usb_dynids dynids;
941 struct usbdrv_wrap drvwrap;
942 unsigned int no_dynamic_id:1;
943 unsigned int supports_autosuspend:1;
944 unsigned int disable_hub_initiated_lpm:1;
945 unsigned int soft_unbind:1;
947 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
950 * struct usb_device_driver - identifies USB device driver to usbcore
951 * @name: The driver name should be unique among USB drivers,
952 * and should normally be the same as the module name.
953 * @probe: Called to see if the driver is willing to manage a particular
954 * device. If it is, probe returns zero and uses dev_set_drvdata()
955 * to associate driver-specific data with the device. If unwilling
956 * to manage the device, return a negative errno value.
957 * @disconnect: Called when the device is no longer accessible, usually
958 * because it has been (or is being) disconnected or the driver's
959 * module is being unloaded.
960 * @suspend: Called when the device is going to be suspended by the system.
961 * @resume: Called when the device is being resumed by the system.
962 * @drvwrap: Driver-model core structure wrapper.
963 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
964 * for devices bound to this driver.
966 * USB drivers must provide all the fields listed above except drvwrap.
968 struct usb_device_driver {
969 const char *name;
971 int (*probe) (struct usb_device *udev);
972 void (*disconnect) (struct usb_device *udev);
974 int (*suspend) (struct usb_device *udev, pm_message_t message);
975 int (*resume) (struct usb_device *udev, pm_message_t message);
976 struct usbdrv_wrap drvwrap;
977 unsigned int supports_autosuspend:1;
979 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
980 drvwrap.driver)
982 extern struct bus_type usb_bus_type;
985 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
986 * @name: the usb class device name for this driver. Will show up in sysfs.
987 * @devnode: Callback to provide a naming hint for a possible
988 * device node to create.
989 * @fops: pointer to the struct file_operations of this driver.
990 * @minor_base: the start of the minor range for this driver.
992 * This structure is used for the usb_register_dev() and
993 * usb_unregister_dev() functions, to consolidate a number of the
994 * parameters used for them.
996 struct usb_class_driver {
997 char *name;
998 char *(*devnode)(struct device *dev, umode_t *mode);
999 const struct file_operations *fops;
1000 int minor_base;
1004 * use these in module_init()/module_exit()
1005 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1007 extern int usb_register_driver(struct usb_driver *, struct module *,
1008 const char *);
1010 /* use a define to avoid include chaining to get THIS_MODULE & friends */
1011 #define usb_register(driver) \
1012 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
1014 extern void usb_deregister(struct usb_driver *);
1017 * module_usb_driver() - Helper macro for registering a USB driver
1018 * @__usb_driver: usb_driver struct
1020 * Helper macro for USB drivers which do not do anything special in module
1021 * init/exit. This eliminates a lot of boilerplate. Each module may only
1022 * use this macro once, and calling it replaces module_init() and module_exit()
1024 #define module_usb_driver(__usb_driver) \
1025 module_driver(__usb_driver, usb_register, \
1026 usb_deregister)
1028 extern int usb_register_device_driver(struct usb_device_driver *,
1029 struct module *);
1030 extern void usb_deregister_device_driver(struct usb_device_driver *);
1032 extern int usb_register_dev(struct usb_interface *intf,
1033 struct usb_class_driver *class_driver);
1034 extern void usb_deregister_dev(struct usb_interface *intf,
1035 struct usb_class_driver *class_driver);
1037 extern int usb_disabled(void);
1039 /* ----------------------------------------------------------------------- */
1042 * URB support, for asynchronous request completions
1046 * urb->transfer_flags:
1048 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1050 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1051 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1052 * ignored */
1053 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1054 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1055 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1056 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1057 * needed */
1058 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1060 /* The following flags are used internally by usbcore and HCDs */
1061 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1062 #define URB_DIR_OUT 0
1063 #define URB_DIR_MASK URB_DIR_IN
1065 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1066 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1067 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1068 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1069 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1070 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1071 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1072 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1074 struct usb_iso_packet_descriptor {
1075 unsigned int offset;
1076 unsigned int length; /* expected length */
1077 unsigned int actual_length;
1078 int status;
1081 struct urb;
1083 struct usb_anchor {
1084 struct list_head urb_list;
1085 wait_queue_head_t wait;
1086 spinlock_t lock;
1087 unsigned int poisoned:1;
1090 static inline void init_usb_anchor(struct usb_anchor *anchor)
1092 INIT_LIST_HEAD(&anchor->urb_list);
1093 init_waitqueue_head(&anchor->wait);
1094 spin_lock_init(&anchor->lock);
1097 typedef void (*usb_complete_t)(struct urb *);
1100 * struct urb - USB Request Block
1101 * @urb_list: For use by current owner of the URB.
1102 * @anchor_list: membership in the list of an anchor
1103 * @anchor: to anchor URBs to a common mooring
1104 * @ep: Points to the endpoint's data structure. Will eventually
1105 * replace @pipe.
1106 * @pipe: Holds endpoint number, direction, type, and more.
1107 * Create these values with the eight macros available;
1108 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1109 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1110 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1111 * numbers range from zero to fifteen. Note that "in" endpoint two
1112 * is a different endpoint (and pipe) from "out" endpoint two.
1113 * The current configuration controls the existence, type, and
1114 * maximum packet size of any given endpoint.
1115 * @stream_id: the endpoint's stream ID for bulk streams
1116 * @dev: Identifies the USB device to perform the request.
1117 * @status: This is read in non-iso completion functions to get the
1118 * status of the particular request. ISO requests only use it
1119 * to tell whether the URB was unlinked; detailed status for
1120 * each frame is in the fields of the iso_frame-desc.
1121 * @transfer_flags: A variety of flags may be used to affect how URB
1122 * submission, unlinking, or operation are handled. Different
1123 * kinds of URB can use different flags.
1124 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1125 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1126 * (however, do not leave garbage in transfer_buffer even then).
1127 * This buffer must be suitable for DMA; allocate it with
1128 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1129 * of this buffer will be modified. This buffer is used for the data
1130 * stage of control transfers.
1131 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1132 * the device driver is saying that it provided this DMA address,
1133 * which the host controller driver should use in preference to the
1134 * transfer_buffer.
1135 * @sg: scatter gather buffer list
1136 * @num_mapped_sgs: (internal) number of mapped sg entries
1137 * @num_sgs: number of entries in the sg list
1138 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1139 * be broken up into chunks according to the current maximum packet
1140 * size for the endpoint, which is a function of the configuration
1141 * and is encoded in the pipe. When the length is zero, neither
1142 * transfer_buffer nor transfer_dma is used.
1143 * @actual_length: This is read in non-iso completion functions, and
1144 * it tells how many bytes (out of transfer_buffer_length) were
1145 * transferred. It will normally be the same as requested, unless
1146 * either an error was reported or a short read was performed.
1147 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1148 * short reads be reported as errors.
1149 * @setup_packet: Only used for control transfers, this points to eight bytes
1150 * of setup data. Control transfers always start by sending this data
1151 * to the device. Then transfer_buffer is read or written, if needed.
1152 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1153 * this field; setup_packet must point to a valid buffer.
1154 * @start_frame: Returns the initial frame for isochronous transfers.
1155 * @number_of_packets: Lists the number of ISO transfer buffers.
1156 * @interval: Specifies the polling interval for interrupt or isochronous
1157 * transfers. The units are frames (milliseconds) for full and low
1158 * speed devices, and microframes (1/8 millisecond) for highspeed
1159 * and SuperSpeed devices.
1160 * @error_count: Returns the number of ISO transfers that reported errors.
1161 * @context: For use in completion functions. This normally points to
1162 * request-specific driver context.
1163 * @complete: Completion handler. This URB is passed as the parameter to the
1164 * completion function. The completion function may then do what
1165 * it likes with the URB, including resubmitting or freeing it.
1166 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1167 * collect the transfer status for each buffer.
1169 * This structure identifies USB transfer requests. URBs must be allocated by
1170 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1171 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1172 * are submitted using usb_submit_urb(), and pending requests may be canceled
1173 * using usb_unlink_urb() or usb_kill_urb().
1175 * Data Transfer Buffers:
1177 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1178 * taken from the general page pool. That is provided by transfer_buffer
1179 * (control requests also use setup_packet), and host controller drivers
1180 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1181 * mapping operations can be expensive on some platforms (perhaps using a dma
1182 * bounce buffer or talking to an IOMMU),
1183 * although they're cheap on commodity x86 and ppc hardware.
1185 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1186 * which tells the host controller driver that no such mapping is needed for
1187 * the transfer_buffer since
1188 * the device driver is DMA-aware. For example, a device driver might
1189 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1190 * When this transfer flag is provided, host controller drivers will
1191 * attempt to use the dma address found in the transfer_dma
1192 * field rather than determining a dma address themselves.
1194 * Note that transfer_buffer must still be set if the controller
1195 * does not support DMA (as indicated by bus.uses_dma) and when talking
1196 * to root hub. If you have to trasfer between highmem zone and the device
1197 * on such controller, create a bounce buffer or bail out with an error.
1198 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1199 * capable, assign NULL to it, so that usbmon knows not to use the value.
1200 * The setup_packet must always be set, so it cannot be located in highmem.
1202 * Initialization:
1204 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1205 * zero), and complete fields. All URBs must also initialize
1206 * transfer_buffer and transfer_buffer_length. They may provide the
1207 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1208 * to be treated as errors; that flag is invalid for write requests.
1210 * Bulk URBs may
1211 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1212 * should always terminate with a short packet, even if it means adding an
1213 * extra zero length packet.
1215 * Control URBs must provide a valid pointer in the setup_packet field.
1216 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1217 * beforehand.
1219 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1220 * or, for highspeed devices, 125 microsecond units)
1221 * to poll for transfers. After the URB has been submitted, the interval
1222 * field reflects how the transfer was actually scheduled.
1223 * The polling interval may be more frequent than requested.
1224 * For example, some controllers have a maximum interval of 32 milliseconds,
1225 * while others support intervals of up to 1024 milliseconds.
1226 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1227 * endpoints, as well as high speed interrupt endpoints, the encoding of
1228 * the transfer interval in the endpoint descriptor is logarithmic.
1229 * Device drivers must convert that value to linear units themselves.)
1231 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1232 * the host controller to schedule the transfer as soon as bandwidth
1233 * utilization allows, and then set start_frame to reflect the actual frame
1234 * selected during submission. Otherwise drivers must specify the start_frame
1235 * and handle the case where the transfer can't begin then. However, drivers
1236 * won't know how bandwidth is currently allocated, and while they can
1237 * find the current frame using usb_get_current_frame_number () they can't
1238 * know the range for that frame number. (Ranges for frame counter values
1239 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1241 * Isochronous URBs have a different data transfer model, in part because
1242 * the quality of service is only "best effort". Callers provide specially
1243 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1244 * at the end. Each such packet is an individual ISO transfer. Isochronous
1245 * URBs are normally queued, submitted by drivers to arrange that
1246 * transfers are at least double buffered, and then explicitly resubmitted
1247 * in completion handlers, so
1248 * that data (such as audio or video) streams at as constant a rate as the
1249 * host controller scheduler can support.
1251 * Completion Callbacks:
1253 * The completion callback is made in_interrupt(), and one of the first
1254 * things that a completion handler should do is check the status field.
1255 * The status field is provided for all URBs. It is used to report
1256 * unlinked URBs, and status for all non-ISO transfers. It should not
1257 * be examined before the URB is returned to the completion handler.
1259 * The context field is normally used to link URBs back to the relevant
1260 * driver or request state.
1262 * When the completion callback is invoked for non-isochronous URBs, the
1263 * actual_length field tells how many bytes were transferred. This field
1264 * is updated even when the URB terminated with an error or was unlinked.
1266 * ISO transfer status is reported in the status and actual_length fields
1267 * of the iso_frame_desc array, and the number of errors is reported in
1268 * error_count. Completion callbacks for ISO transfers will normally
1269 * (re)submit URBs to ensure a constant transfer rate.
1271 * Note that even fields marked "public" should not be touched by the driver
1272 * when the urb is owned by the hcd, that is, since the call to
1273 * usb_submit_urb() till the entry into the completion routine.
1275 struct urb {
1276 /* private: usb core and host controller only fields in the urb */
1277 struct kref kref; /* reference count of the URB */
1278 void *hcpriv; /* private data for host controller */
1279 atomic_t use_count; /* concurrent submissions counter */
1280 atomic_t reject; /* submissions will fail */
1281 int unlinked; /* unlink error code */
1283 /* public: documented fields in the urb that can be used by drivers */
1284 struct list_head urb_list; /* list head for use by the urb's
1285 * current owner */
1286 struct list_head anchor_list; /* the URB may be anchored */
1287 struct usb_anchor *anchor;
1288 struct usb_device *dev; /* (in) pointer to associated device */
1289 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1290 unsigned int pipe; /* (in) pipe information */
1291 unsigned int stream_id; /* (in) stream ID */
1292 int status; /* (return) non-ISO status */
1293 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1294 void *transfer_buffer; /* (in) associated data buffer */
1295 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1296 struct scatterlist *sg; /* (in) scatter gather buffer list */
1297 int num_mapped_sgs; /* (internal) mapped sg entries */
1298 int num_sgs; /* (in) number of entries in the sg list */
1299 u32 transfer_buffer_length; /* (in) data buffer length */
1300 u32 actual_length; /* (return) actual transfer length */
1301 unsigned char *setup_packet; /* (in) setup packet (control only) */
1302 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1303 int start_frame; /* (modify) start frame (ISO) */
1304 int number_of_packets; /* (in) number of ISO packets */
1305 int interval; /* (modify) transfer interval
1306 * (INT/ISO) */
1307 int error_count; /* (return) number of ISO errors */
1308 void *context; /* (in) context for completion */
1309 usb_complete_t complete; /* (in) completion routine */
1310 struct usb_iso_packet_descriptor iso_frame_desc[0];
1311 /* (in) ISO ONLY */
1314 /* ----------------------------------------------------------------------- */
1317 * usb_fill_control_urb - initializes a control urb
1318 * @urb: pointer to the urb to initialize.
1319 * @dev: pointer to the struct usb_device for this urb.
1320 * @pipe: the endpoint pipe
1321 * @setup_packet: pointer to the setup_packet buffer
1322 * @transfer_buffer: pointer to the transfer buffer
1323 * @buffer_length: length of the transfer buffer
1324 * @complete_fn: pointer to the usb_complete_t function
1325 * @context: what to set the urb context to.
1327 * Initializes a control urb with the proper information needed to submit
1328 * it to a device.
1330 static inline void usb_fill_control_urb(struct urb *urb,
1331 struct usb_device *dev,
1332 unsigned int pipe,
1333 unsigned char *setup_packet,
1334 void *transfer_buffer,
1335 int buffer_length,
1336 usb_complete_t complete_fn,
1337 void *context)
1339 urb->dev = dev;
1340 urb->pipe = pipe;
1341 urb->setup_packet = setup_packet;
1342 urb->transfer_buffer = transfer_buffer;
1343 urb->transfer_buffer_length = buffer_length;
1344 urb->complete = complete_fn;
1345 urb->context = context;
1349 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1350 * @urb: pointer to the urb to initialize.
1351 * @dev: pointer to the struct usb_device for this urb.
1352 * @pipe: the endpoint pipe
1353 * @transfer_buffer: pointer to the transfer buffer
1354 * @buffer_length: length of the transfer buffer
1355 * @complete_fn: pointer to the usb_complete_t function
1356 * @context: what to set the urb context to.
1358 * Initializes a bulk urb with the proper information needed to submit it
1359 * to a device.
1361 static inline void usb_fill_bulk_urb(struct urb *urb,
1362 struct usb_device *dev,
1363 unsigned int pipe,
1364 void *transfer_buffer,
1365 int buffer_length,
1366 usb_complete_t complete_fn,
1367 void *context)
1369 urb->dev = dev;
1370 urb->pipe = pipe;
1371 urb->transfer_buffer = transfer_buffer;
1372 urb->transfer_buffer_length = buffer_length;
1373 urb->complete = complete_fn;
1374 urb->context = context;
1378 * usb_fill_int_urb - macro to help initialize a interrupt urb
1379 * @urb: pointer to the urb to initialize.
1380 * @dev: pointer to the struct usb_device for this urb.
1381 * @pipe: the endpoint pipe
1382 * @transfer_buffer: pointer to the transfer buffer
1383 * @buffer_length: length of the transfer buffer
1384 * @complete_fn: pointer to the usb_complete_t function
1385 * @context: what to set the urb context to.
1386 * @interval: what to set the urb interval to, encoded like
1387 * the endpoint descriptor's bInterval value.
1389 * Initializes a interrupt urb with the proper information needed to submit
1390 * it to a device.
1392 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1393 * encoding of the endpoint interval, and express polling intervals in
1394 * microframes (eight per millisecond) rather than in frames (one per
1395 * millisecond).
1397 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1398 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1399 * through to the host controller, rather than being translated into microframe
1400 * units.
1402 static inline void usb_fill_int_urb(struct urb *urb,
1403 struct usb_device *dev,
1404 unsigned int pipe,
1405 void *transfer_buffer,
1406 int buffer_length,
1407 usb_complete_t complete_fn,
1408 void *context,
1409 int interval)
1411 urb->dev = dev;
1412 urb->pipe = pipe;
1413 urb->transfer_buffer = transfer_buffer;
1414 urb->transfer_buffer_length = buffer_length;
1415 urb->complete = complete_fn;
1416 urb->context = context;
1417 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1418 urb->interval = 1 << (interval - 1);
1419 else
1420 urb->interval = interval;
1421 urb->start_frame = -1;
1424 extern void usb_init_urb(struct urb *urb);
1425 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1426 extern void usb_free_urb(struct urb *urb);
1427 #define usb_put_urb usb_free_urb
1428 extern struct urb *usb_get_urb(struct urb *urb);
1429 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1430 extern int usb_unlink_urb(struct urb *urb);
1431 extern void usb_kill_urb(struct urb *urb);
1432 extern void usb_poison_urb(struct urb *urb);
1433 extern void usb_unpoison_urb(struct urb *urb);
1434 extern void usb_block_urb(struct urb *urb);
1435 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1436 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1437 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1438 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1439 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1440 extern void usb_unanchor_urb(struct urb *urb);
1441 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1442 unsigned int timeout);
1443 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1444 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1445 extern int usb_anchor_empty(struct usb_anchor *anchor);
1447 #define usb_unblock_urb usb_unpoison_urb
1450 * usb_urb_dir_in - check if an URB describes an IN transfer
1451 * @urb: URB to be checked
1453 * Returns 1 if @urb describes an IN transfer (device-to-host),
1454 * otherwise 0.
1456 static inline int usb_urb_dir_in(struct urb *urb)
1458 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1462 * usb_urb_dir_out - check if an URB describes an OUT transfer
1463 * @urb: URB to be checked
1465 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1466 * otherwise 0.
1468 static inline int usb_urb_dir_out(struct urb *urb)
1470 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1473 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1474 gfp_t mem_flags, dma_addr_t *dma);
1475 void usb_free_coherent(struct usb_device *dev, size_t size,
1476 void *addr, dma_addr_t dma);
1478 #if 0
1479 struct urb *usb_buffer_map(struct urb *urb);
1480 void usb_buffer_dmasync(struct urb *urb);
1481 void usb_buffer_unmap(struct urb *urb);
1482 #endif
1484 struct scatterlist;
1485 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1486 struct scatterlist *sg, int nents);
1487 #if 0
1488 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1489 struct scatterlist *sg, int n_hw_ents);
1490 #endif
1491 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1492 struct scatterlist *sg, int n_hw_ents);
1494 /*-------------------------------------------------------------------*
1495 * SYNCHRONOUS CALL SUPPORT *
1496 *-------------------------------------------------------------------*/
1498 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1499 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1500 void *data, __u16 size, int timeout);
1501 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1502 void *data, int len, int *actual_length, int timeout);
1503 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1504 void *data, int len, int *actual_length,
1505 int timeout);
1507 /* wrappers around usb_control_msg() for the most common standard requests */
1508 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1509 unsigned char descindex, void *buf, int size);
1510 extern int usb_get_status(struct usb_device *dev,
1511 int type, int target, void *data);
1512 extern int usb_string(struct usb_device *dev, int index,
1513 char *buf, size_t size);
1515 /* wrappers that also update important state inside usbcore */
1516 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1517 extern int usb_reset_configuration(struct usb_device *dev);
1518 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1519 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1521 /* this request isn't really synchronous, but it belongs with the others */
1522 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1525 * timeouts, in milliseconds, used for sending/receiving control messages
1526 * they typically complete within a few frames (msec) after they're issued
1527 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1528 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1530 #define USB_CTRL_GET_TIMEOUT 5000
1531 #define USB_CTRL_SET_TIMEOUT 5000
1535 * struct usb_sg_request - support for scatter/gather I/O
1536 * @status: zero indicates success, else negative errno
1537 * @bytes: counts bytes transferred.
1539 * These requests are initialized using usb_sg_init(), and then are used
1540 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1541 * members of the request object aren't for driver access.
1543 * The status and bytecount values are valid only after usb_sg_wait()
1544 * returns. If the status is zero, then the bytecount matches the total
1545 * from the request.
1547 * After an error completion, drivers may need to clear a halt condition
1548 * on the endpoint.
1550 struct usb_sg_request {
1551 int status;
1552 size_t bytes;
1554 /* private:
1555 * members below are private to usbcore,
1556 * and are not provided for driver access!
1558 spinlock_t lock;
1560 struct usb_device *dev;
1561 int pipe;
1563 int entries;
1564 struct urb **urbs;
1566 int count;
1567 struct completion complete;
1570 int usb_sg_init(
1571 struct usb_sg_request *io,
1572 struct usb_device *dev,
1573 unsigned pipe,
1574 unsigned period,
1575 struct scatterlist *sg,
1576 int nents,
1577 size_t length,
1578 gfp_t mem_flags
1580 void usb_sg_cancel(struct usb_sg_request *io);
1581 void usb_sg_wait(struct usb_sg_request *io);
1584 /* ----------------------------------------------------------------------- */
1587 * For various legacy reasons, Linux has a small cookie that's paired with
1588 * a struct usb_device to identify an endpoint queue. Queue characteristics
1589 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1590 * an unsigned int encoded as:
1592 * - direction: bit 7 (0 = Host-to-Device [Out],
1593 * 1 = Device-to-Host [In] ...
1594 * like endpoint bEndpointAddress)
1595 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1596 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1597 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1598 * 10 = control, 11 = bulk)
1600 * Given the device address and endpoint descriptor, pipes are redundant.
1603 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1604 /* (yet ... they're the values used by usbfs) */
1605 #define PIPE_ISOCHRONOUS 0
1606 #define PIPE_INTERRUPT 1
1607 #define PIPE_CONTROL 2
1608 #define PIPE_BULK 3
1610 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1611 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1613 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1614 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1616 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1617 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1618 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1619 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1620 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1622 static inline unsigned int __create_pipe(struct usb_device *dev,
1623 unsigned int endpoint)
1625 return (dev->devnum << 8) | (endpoint << 15);
1628 /* Create various pipes... */
1629 #define usb_sndctrlpipe(dev, endpoint) \
1630 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1631 #define usb_rcvctrlpipe(dev, endpoint) \
1632 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1633 #define usb_sndisocpipe(dev, endpoint) \
1634 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1635 #define usb_rcvisocpipe(dev, endpoint) \
1636 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1637 #define usb_sndbulkpipe(dev, endpoint) \
1638 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1639 #define usb_rcvbulkpipe(dev, endpoint) \
1640 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1641 #define usb_sndintpipe(dev, endpoint) \
1642 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1643 #define usb_rcvintpipe(dev, endpoint) \
1644 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1646 static inline struct usb_host_endpoint *
1647 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1649 struct usb_host_endpoint **eps;
1650 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1651 return eps[usb_pipeendpoint(pipe)];
1654 /*-------------------------------------------------------------------------*/
1656 static inline __u16
1657 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1659 struct usb_host_endpoint *ep;
1660 unsigned epnum = usb_pipeendpoint(pipe);
1662 if (is_out) {
1663 WARN_ON(usb_pipein(pipe));
1664 ep = udev->ep_out[epnum];
1665 } else {
1666 WARN_ON(usb_pipeout(pipe));
1667 ep = udev->ep_in[epnum];
1669 if (!ep)
1670 return 0;
1672 /* NOTE: only 0x07ff bits are for packet size... */
1673 return usb_endpoint_maxp(&ep->desc);
1676 /* ----------------------------------------------------------------------- */
1678 /* translate USB error codes to codes user space understands */
1679 static inline int usb_translate_errors(int error_code)
1681 switch (error_code) {
1682 case 0:
1683 case -ENOMEM:
1684 case -ENODEV:
1685 case -EOPNOTSUPP:
1686 return error_code;
1687 default:
1688 return -EIO;
1692 /* Events from the usb core */
1693 #define USB_DEVICE_ADD 0x0001
1694 #define USB_DEVICE_REMOVE 0x0002
1695 #define USB_BUS_ADD 0x0003
1696 #define USB_BUS_REMOVE 0x0004
1697 extern void usb_register_notify(struct notifier_block *nb);
1698 extern void usb_unregister_notify(struct notifier_block *nb);
1700 #ifdef DEBUG
1701 #define dbg(format, arg...) \
1702 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1703 #else
1704 #define dbg(format, arg...) \
1705 do { \
1706 if (0) \
1707 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1708 } while (0)
1709 #endif
1711 /* debugfs stuff */
1712 extern struct dentry *usb_debug_root;
1714 #endif /* __KERNEL__ */
1716 #endif